ANNAMACHARYA UNIVERSITY RESEARCH ADMISSION TEST (AURAT)-2024-25

08- PHYSICS

UNIT-I

Mathematical Methods of Physics: Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley-Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier And Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; Poles, residues and evaluation of integrals. Elementary probability theory, random variables, binomial, Poisson and normal distributions. Central limit theorem.

UNIT-II

Classical and Quantum Mechanics: Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment. Time independent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion Principle, spin-statistics connection.

Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamics moment of inertia tensor. Non-inertial frames and pseudo forces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special Theory of relativity Lorentz transformations, relativistic kinematics and mass–energy equivalence.

UNIT-III

Electromagnetic Theory and Electronics: Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magneto statics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear

isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.

Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and heterojunction Devices), device structure, device characteristics, frequency dependence and applications. Opto- lectronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A converters. Microprocessor and microcontroller basics.

Unit-IV

Thermodynamics, Statistical and Atomic Physics: Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, Chemical potential, phase equilibria. Phase space, micro- and macro-states. Micro-canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Principle of detailed balance. Blackbody radiation and Planck's distribution law.

Quantum states of an electron in an atom. Electron spin. Spectrum of helium and alkali atom. Relativistic corrections for energy levels of hydrogen atom, hyperfine structure and isotopic shift, width of spectrum lines, LS & JJ couplings. Zeeman, Paschen-Bach & Stark effects. Electron spin resonance. Nuclear magnetic resonance, chemical shift. Frank-Condon principle. Born-Oppenheimer

Approximation. Electronic, rotational, vibrational and Raman spectra of diatomic molecules, selection rules.

Lasers: spontaneous and stimulated emission, Einstein A & B coefficients. Optical pumping, population

inversion, rate equation. Modes of resonators and coherence length.

Unit-V

Nuclear and Condensed Matter Physics: Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semiempirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleonnucleon Potential, charge- independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single-

particle shell model, its validity and limitations. Rotational spectra. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions. Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity nonconservation in weak interaction. Relativistic kinematics.

Bravais lattices. Reciprocal lattice. Diffraction and the structure factor. Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall Effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, kinds of liquid crystalline order. Quasi crystals.