Workshop Report 1: Electrical Vehicles Design with Simulation

Event Overview

The "Electrical Vehicles Design with Simulation" workshop was conducted from 23rd September 2024 to 28th September 2024 and was organized by the Department of Electrical & Electronics Engineering at Annamacharya University (formerly Annamacharya Institute of Technology and Sciences, Rajampet). The workshop was held in association with Technotran Electronics Solutions and IEEE Ananthapuram Sub-Section.

The workshop aimed to provide participants with a comprehensive understanding of designing electric vehicles (EVs) through simulations using **MATLAB Simulink**. This workshop was a mix of theoretical knowledge and hands-on practical sessions that focused on the simulation and prototyping of electric vehicle systems.

Objectives of the Workshop

- Understanding Electric Vehicle Design: To familiarize participants with the
 core principles of electric vehicle (EV) design, including the powertrain, energy
 storage, and charging systems.
- Hands-On Simulation: To provide participants with the ability to model and simulate electrical systems used in electric vehicles using MATLAB Simulink.
- **Practical Application**: To develop practical skills in designing and analyzing the performance of EV components, such as the battery system, electric motors, and controllers.
- **Emerging Trends**: To expose students to the latest developments in electric vehicle technology and how simulation tools are used to optimize designs and performance.

Key Focus Areas

1. Introduction to Electric Vehicles

- Types of Electric Vehicles (EVs): BEVs (Battery Electric Vehicles), PHEVs (Plug-in Hybrid Electric Vehicles), FCEVs (Fuel Cell Electric Vehicles).
- Components of Electric Vehicles: Powertrain, battery management system, electric motors, and controllers.
- Basic working principles of electric vehicles, energy flow, and vehicle dynamics.

2. MATLAB Simulink for Simulation

 Introduction to MATLAB Simulink as a tool for simulating electric vehicle systems.

- Building and running simulations for electric vehicle performance in terms of battery charge/discharge cycles, motor speed, power consumption, and regenerative braking.
- Introduction to libraries in Simulink for modeling different vehicle systems such as motors, energy storage, and control systems.

3. Designing EV Systems Using MATLAB Simulink

- Battery Management System (BMS): Simulation of battery charging/discharging behavior and power management.
- Motor and Controller Design: Simulation of electric motor dynamics, motor control strategies (e.g., Field Oriented Control, Direct Torque Control), and torque-speed characteristics.
- Energy Management System (EMS): Simulating the coordination between different power sources (e.g., battery and supercapacitors).
- Regenerative Braking: Understanding how energy can be recovered during braking and the impact of this on battery life.

4. Electric Vehicle Prototyping

- Practical demonstration of prototyping an electric vehicle using simulation tools.
- Simulating different road conditions, driving cycles, and power demands to assess the overall performance of the EV.
- Analyzing the efficiency of various components, including the motor, battery, and energy converter systems.

Training and Hands-On Sessions

The workshop included **interactive sessions** where participants were introduced to:

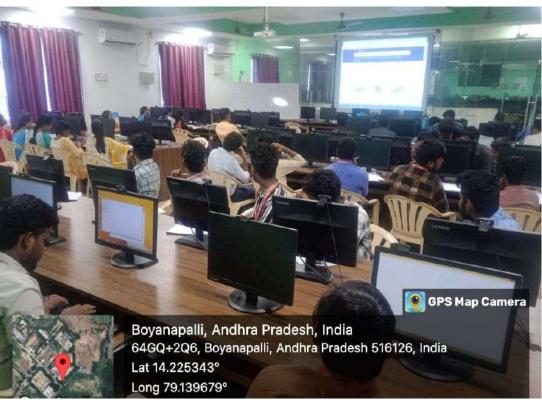
- **Simulink Models**: The attendees were taught how to build and modify Simulink models for electric vehicle subsystems.
- **Simulation Exercises**: Students worked on creating simulations for battery models, EV charging and discharging cycles, and other key components.
- Performance Optimization: Participants were encouraged to optimize the design of EV subsystems using simulation tools, understanding the impact of different parameters on vehicle performance.

Outcome of the Workshop

 Practical Skills Acquired: The participants learned how to simulate an electric vehicle using MATLAB Simulink. They gained a better understanding of how to model and optimize electric vehicle systems for efficiency, performance, and sustainability.

- Hands-On Experience: Participants worked on actual simulations of electric vehicles, experiencing firsthand how simulations can help in designing and testing real-world systems.
- Increased Knowledge on Electric Vehicle Technologies: The workshop
 provided participants with a deep dive into electric vehicle technologies,
 including battery management, energy storage, motor control, and vehicle
 dynamics.

Number of Students Participated


The workshop saw an active participation of **111 students** from various engineering backgrounds, primarily from electrical and electronics engineering disciplines, eager to learn about electric vehicle design and simulation.

Feedback and Future Recommendations

- Student Feedback: The participants expressed satisfaction with the hands-on experience and the knowledge gained through practical simulations. They appreciated the use of MATLAB Simulink as an industry-standard tool for simulation and modeling.
- **Future Improvements**: It was suggested that additional focus be placed on more advanced topics such as vehicle-to-grid (V2G) technology and advanced battery chemistries in future workshops.

Workshop Report 2: PCB Designing and Fabrication

Event Overview

The "PCB Designing and Fabrication" workshop was conducted from **15th October 2024 to 20th October 2024** and was organized by the **Department of Electrical & Electronics Engineering** at **Annamacharya University** (formerly Annamacharya Institute of Technology and Sciences, Rajampet). The workshop was held in collaboration with **STEMTEC AI and Robotics Technology Pvt. Ltd.**.

The main goal of the workshop was to introduce participants to the essential concepts of **Printed Circuit Board (PCB) design** and **fabrication techniques**, as well as provide hands-on experience in designing and assembling PCBs. It was tailored to cater to both theoretical understanding and practical knowledge, preparing students for real-world PCB design and manufacturing processes.

Objectives of the Workshop

- **Understanding PCB Design**: To provide participants with foundational knowledge of how to design effective PCBs, considering factors like component placement, signal integrity, and circuit layout.
- **Hands-On Fabrication**: To offer hands-on experience in the PCB fabrication process, from designing the schematic to producing the final circuit board.
- **Tools and Techniques**: To introduce participants to industry-standard tools used for PCB design and fabrication.
- Practical Applications: To equip students with the ability to design functional PCBs for various electronic systems and understand how they can be used in real-world applications.

Key Focus Areas

1. Introduction to PCB Design

- Overview of PCB design and its importance in modern electronics.
- Types of PCBs: Single-sided, double-sided, and multilayer PCBs.
- Basic PCB terminology, including traces, vias, pads, and components.
- Design Considerations: Signal integrity, power distribution, and grounding techniques for high-performance circuits.

2. PCB Design Process

 Schematic Design: Introduction to schematic capture tools and circuit design.

- Layout Design: Using PCB design software (such as Eagle, KiCad, or Altium Designer) for creating PCB layouts. Focus on correct component placement and routing.
- Design Rule Checks (DRC): Ensuring that the design adheres to industry standards and is free of design errors that could affect functionality.
- Gerber Files: The creation and significance of Gerber files for PCB manufacturing.

3. PCB Fabrication Techniques

- PCB Manufacturing Process: Overview of the PCB fabrication process, including copper etching, drilling, and layering.
- Etching Process: Introduction to the chemical etching process used to create traces on the PCB.
- Soldering and Assembly: Practical demonstration of soldering electronic components onto the PCB. Introduction to both manual soldering and automated soldering methods.
- Testing and Debugging: How to test and debug a PCB after fabrication to ensure it works as intended.

4. Hands-On PCB Design and Fabrication

- Participants were introduced to design tools and software used in the industry, with a hands-on session that guided them in designing their own simple PCBs.
- After designing the PCBs, participants fabricated their own PCBs using the standard etching process and assembled components onto the boards.
- A troubleshooting session helped participants understand how to detect common mistakes during fabrication and assembly.

Training and Hands-On Sessions

The workshop was structured to balance **theoretical learning** with **hands-on activities**:

- Introduction to PCB Design Software: Participants were taught how to use PCB design software to create schematics and layout for their PCB designs.
- PCB Fabrication Demonstration: A step-by-step demonstration was provided for the process of fabricating a PCB, including etching and drilling.
- Assembly and Testing: Students assembled components onto their fabricated PCBs, followed by testing to ensure that the circuit functioned properly.

• **Real-World Projects**: The participants had the opportunity to design and fabricate a basic functional PCB, applying everything they learned throughout the workshop.

Outcome of the Workshop

- **Knowledge and Skills Acquired**: Participants learned the core principles of PCB design, including designing circuits, understanding layout considerations, and using industry-standard tools for design and fabrication.
- Hands-On Experience: Students gained direct experience in PCB fabrication, from designing the schematic to assembling the components and testing the final product.
- Improved Understanding of the PCB Manufacturing Process: The workshop enabled participants to understand the practical challenges and processes involved in turning a design concept into a functional PCB.

Number of Students Participated

The workshop had active participation from **167 students**, primarily from electrical, electronics, and related engineering disciplines, who gained valuable knowledge and practical skills in PCB design and fabrication.

