EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P – 516126, INDIA. ## **DEPARTMENT OF MATHEMATICS** Course Structure and Syllabi for Pre Ph.D Programme ## SUBJECT - 1 | S.No | Course Code | Title of the Course | |------|--------------------|----------------------| | 1 | 24CMGT01T | Research Methodology | ## **SUBJECT - 2** | S.No | Course Code | Title of the Course | |------|--------------------|---------------------------------| | 1 | 24CMGT02T | Research and Publication Ethics | ## **CORE SUBJECTS** ## Choose any Two subjects from the following list | S.No | Course Code | Title of the Course | |------|--------------------|---------------------------------------| | 1 | 24CMAT01T | Topics in Analysis | | 2 | 24CMAT02T | Mathematical Methods | | 3 | 24CMAT03T | Discrete Mathematics and Graph Theory | | 4 | 24CMAT04T | Advance Statistical Inference | | 5 | 24CMAT05T | Theory of Differential Equations | | 6 | 24CMAT06T | Topics In Algebra | | 7 | 24CMAT07T | Fluid Mechanics | | 8 | 24CMAT08T | Operations Research | ## **Topics in Analysis (24CMAT01T)** ## **Unit 1: Abstract Integration** The concept of measurability - Simple functions – Properties of measure, Integration of positive functions and complex functions – Set of measure zero. #### **Unit 2: Positive Borel Measures** Vector spaces – Review of topological preliminaries leading to locally compact Hausdorff spaces – Riesz representation theorem – Regularity properties of Borel measures – Lebesgue measures – Continuity property of measureable functions. ## Unit 3: L^p-Spaces Convex functions and inequalities – The L^p-spaces – Approximation by continuous functions. Banach Space Techniques: Banach spaces – Consequences of Baire's theorem – Fourier coefficients of L^1 functions – Hahn Banach theorem. ## **Unit 4: Integration on product spaces** Measurability on Cartesian products – Product measure and its completion – Fubini's theorem – Convolution – Distribution functions. ## **Unit 5: Harmonic Functions** Laplacian of a harmonic function – Poisson integral of L^1 function – Mean value property – Boundary behavior of Poisson Integrals – Representation theorems. Analytic continuation: Regular and Singular Points – Continuation along curves natural boundaries – Monodromy theorem. - 1. Walter Rudin, Real & Complex Analysis, Tata McGraw-Hill, Third Edition (Year of publication/Reprint: 1987). - 2. H.L. Royden, Real Analysis, Collier Macmillan (Year of publication/Reprint: 1988) - 3. P.R.Halmos, Measure theory Graduate Text in Mathematics, Springer Verlag, New York (Year of Publication/Reprint 1974). - 4. M. Thamban Nair, Functional Analysis Prentice Hall, India (Year of Publication/Reprint 2003). - 5. E.Kreyszig, Introductory Functional Analysis with Applications, John Wiley and sons. (Year of Publication/Reprint 1989). EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P – 516126, INDIA. - 6. L.V. Ahlfors, Complex Analysis, Mc Graw Hill. (Year of Publication/Reprint 1988) - 7. J.B.Conway, Functions of one complex Variables I, Narosa Publishing House. (Year of Publication/Reprint 2000) - 8. S.Lang, Complex Analysis, Springerm Verlag (Year of Publication/Reprint 2003). ## **Mathematical Methods (24CMAT02T)** #### **Unit 1: Harmonic Functions** Harmonic Functions: Basic properties of harmonic functions-harmonic functions on a disk- sub harmonics and super harmonic functions-the Dirichlet problem-Green's functions. Entire Functions: Jensen's formula-the genus and order of an entire function-Hadamard factorization theorem. Steady temperatures: Steady temperatures in a half plane-a related problem. ## **Unit 2: Laplace Transforms** Temperatures in a Quadrant with part of One Boundary Insulated. Electrostatic Potential. Potential in a Cylindrical space. Two-dimensional Fluid Flow. The stream Function. Flow around a Corner. Flow around a Cylinder. Laplace Transforms – Inverse Laplace Transforms – Error functions – Application to boundary value problems (Heat equation- Laplace equation) – Fourier transform – Fourier integral formula – Finite &infinite Fourier sine and cosine transforms – Application to integral equations and Boundary Value problems. ## **Unit 3: Special function: Bessel functions** Bessel functions: recurrence relations for the Bessel co-efficients – Series expansion for Bessel co-efficients – Integral expression for the Bessel co-efficients. The additions formula for the Bessel co-efficients. Numerical solution of partial differential equations – Introduction – Finite difference approximation to derivatives – Finite difference methods – Laplace's equation - parabolic equations – Cranice – Nicholson Method – Jacobi Method - Gauss Siedel method. ## **Unit 4: Finite Element Methods** Finite Element Methods - Integral formulation and Variational Methods: Need for Weighted-Integral forms - Some mathematical concepts and formulas - Boundary, Initial and Eigen value problems - Integral relations - Functionals - The Variational Symbol - Weak formulation of Boundary Value problems - Weighted - Integral and Weak formulations - Linear and Bilinear forms and Quadratic Functional - examples. Variational methods of approximation - The Rayleigh - Ritz Method - Petrov - Galerkin method. ## **Unit 5: Differential and Integral Equations** Maxima and Minima- The Simplest Case, Illustrative Examples, Natural Boundary Conditions and transition conditions, The Variational notation, The more general case, Constraints. EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P - 516126, INDIA. Lagrange Multipliers, Variable end points, Sturm-Liouville problems. integral equations: Introduction, Relations between Differential and Integral Equations, The Green's function, Alternative Definition of the Green's function, Linear Equations in Cause and Effect-The influence function. #### **Reference Books:** - 1. Functions of one complex variable, Second edition, John B. Conway, Springer International Student Edition. (Chapter X and XI) - 2. Integral Transforms Goyal and Gupta - 3. Introductory Methods of Numerical Analysis by S. S. Sastry, Printis Hall Publication. - 4. Standard and treatment "AN INTRODUCTION TO THE FINITE ELEMENT METHOD" G.N.REDDY McGraw-Hill Inc. (Second Edition) (Chapters 1 and 2). - 5. "Methods of Applied Mathematics", FRANCIS B. HILDEBRAND, Second Edition, PHI Ltd, New Delhi. "Special functions of Mathematical physic and Chemistry" I.N. Sneddon, of Longman Publications. (Chapter 4). ## **Discrete Mathematics and Graph Theory (24CMAT03T)** ## **Unit 1: Mathematical Logic** Statements & Notation – Connectives - Well-formed formulas – Duality law – Functionally complete sets of connectives – Normal forms and principal normal forms. Theory of Inference for the statement calculus – Rule of inference – Automatic theorem proving – Predicate calculus. ## **Unit 2 : Relations and Algebraic Structure** Representation of Discrete Structures – Relations and ordering – Functions – Composition of functions and inverse functions – Recursive functions, sets and predicates. Lattices and Boolean algebra – Lattices as a partially ordered sets – Some properties of lattices, lattices as algebraic systems – Sublattices – Direct product and Homomorphism – special Lattices – Boolean algebra – Boolean functions, - Representation and minimization of Boolean functions. ## Unit 3: Graph theory-1 Graphs – Isomorphism – Sub graphs – Euler Graphs – Hamiltonian paths and Circuits – Travelling salesman problem – Trees – Properties of trees – Spanning trees – Minimal spanning trees – Kruzkal's algorithm – Prim's algorithm – Dijkstra's algorithm. ## **Unit 4: Graph theory-2** Cut-sets and cut-vertices – Planar graph duality in planner graphs – Matrix representation of graphs – incidence matrix – Adjacent matrix path matrix – Circuit matrix – Cut set matrix – Transitive closur or a graph – Warshall's algorithm. Coloring covering and partitioning – Chromatic number – Chromatic partitioning – Chromatic polynomial – Matching – Coverings the four-color problem. ## **Unit 5: Graph theory and Trees** Directed graphs – Digraphs – Types of Digraphs – Directed paths and connectedness – Euler digraphs – Trees with directed edges – Fundamental circuits in digraphs – Adjacency matrix of a digraphs – Acyclic digraphs & decyclization EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P – 516126, INDIA. - 1. Discrete Mathematical structures with Applications to Computer Science, J.P. Tremblay & R. Manohar, TATA McGraw-Hill Edition (Chapter 1.1 to 1.5, 2.2 to 2.6 and 4.1 to 4.4). - 2. Graph Theory with applications to Engineering and Computer Science. Narsingh Deo,PHI Prentice-Hall India. ## **Advance Statistical Inference (24CMAT04T)** #### **Unit 1: Principle of Data Reduction** Principle of Data Reduction: Sufficiency principle - Factorization criterion - minimal sufficiency - completeness and bounded completeness - likelihood principle - Equivariance principle. ## **Unit 2: Theory of estimation** Theory of estimation: Basic concepts of estimation – Point estimation – methods of estimation – method of moments - method of maximum likelihood – Unbiasedness – Minimum variance estimation – Cramer – Rao bound and its generalization – Rao Blackwell theorem – Existence of U.M.V.U.E estimators. ## **Unit 3: General decision problem** General decision problem: Loss function, Risk function – Non-randomized and Randomized decision rules – Admissibility – Bayes' and Minimax decision rules – Sequential decision rules. ## **Unit 4: Testing of Hypothesis** Testing of Hypothesis: Critical region and power of the test – Neyman-Pearson lemma – Likelihood ratio principle – Uniformly most powerful tests – Unbiased test – Sequential probability ratio test. ## **Unit 5: Analysis of variance** Analysis of variance: one way classification and its extension – Simple linear regression analysis with normal distribution. - 1. Rao. C.R Linear statistica inference and its Application (Wiley Eastern Ltd) 2nd Edition (Year of Publication/Reprint: 2001). - 2. Ferguson, T: Mathematical Statistics A Decision Theoreite Approach (wiley & Sons) (Year of Publication/Reprint: 1967) - 3. Berger, J.O: Statistical Decision Theory and Bayesian Analysis (springer Verlag) (Year of Publication/Reprint: 1985) - 4. Lehman, E.L: Testing of Statistical Hypothesis, Wiley Eastern Ltd. (Year of Publication/Reprint: 1959) - 5. Lehman, E.L: Point Estimation, John Wiley & Sons (Year of Publication/Reprint: 1984). - 6. G.Casella, R.L Berger: Statistical Inference 2nd Edition, Duxbury Press (Year of Publication/Reprint: 2002). ## **Theory of Differential Equations (24CMAT05T)** ## **Unit 1: System of differential equations** System of differential equations: System of first order equations – existence and uniqueness of solution – Gronwall's inequality – continuous dependence on initial conditions and parameters ## **Unit 2: Linear systems** Linear systems: Autonomous systems – Transition matrix – Phase- space of two-dimensional systems – time varying systems – fundamental matrix and its properties – linear systems with periodic coefficients. ## **Unit 3: Stability of differential systems** Stability of differential systems: Stability of linear systems – almost linear systems – stability of periodic solutions – Lyapunov stability theorems for non-linear system – limit cycles – Poincare – Bendixon theorem – Lienard System – Construction of Lyapunov function – Bifurcations (Transcritical, Saddlenode, Pitchfork, Hopf, Sotomayor theorem) ## **Unit 4: Review of first order PDE** Review of first order PDE: classification – solution method for quasi-linear and nonlinear PDE – discontinuous solution – conservations laws and shocks. Four important linear PDE's (transport, Laplace, heat and wave equations): fundamental solution – mean value formulae – properties of harmonic functions – Green's function and energy method. ## **Unit 5: Sobolev spaces and Elliptic Equations** Sobolev spaces: Definition – approximations – sobolev inequalities – extensions –traces – compactness – dual spaces. Elliptic Equations: Definitions - Existence of Weak solutions - Regularity - Maximum principles - Eigne values and eigen - function. Linear evolution equations: Parabolic equation - hyperbolic equations - semigroup theory. - 1. G.F. Simmons, Differential Equations with Applications and Historical Notes, 2nd Ed., McGraw Hill (Year of Publication/Reprint: 1991). - 2. R.P Agarwal, D.O's Regan, An Introduction to Ordinary Differential Equations, Springer ((Year of Publication/Reprint: 2008). EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P - 516126, INDIA. - 3. K.S Bhamra Ordinary Differential Equations Narosa Publications ((Year of Publication/Reprint: 2015). - 4. I.N. Sneddon, Elements of Partial Differential Equations McGraw –Hill ((Year of Publication/Reprint: 1957). - 5. L.C. Evans, Partial Differential Equations, 2nd Ed., American Mathematics Society. (Year of Publication/Reprint: 2015). - 9. M. Renardy, R.C Rogers, An Introduction to Partial Differential Equations, 2nd Ed., Springer (Year of Publication/Reprint: 2010). - 10. S. Kesavan, Topics In innctional Analysis and its Applications, New Age International (P) Ltd. (Year of Publication/Reprint: 2012). ## **Topics in Algebra (24CMAT06T)** ## **Unit 1: Groups** Review of group actions and Sylow's theorems – Free groups and relations – normal series – nilpotent and solvable groups. ## **Unit 2: Rings and Ideals** Review of rings and ideals – PID – Euclidean domains and UFD. Modules – direct sums of modules – free modules – exact sequences – finitely generated modules over a PID – Structure of finitely generated abelian groups – rational and Jordan canonical forms. #### Unit 3: L^p-Spaces Review of algebraic extensions of fields – algebraic closure and splitting fields. Normal extensions and separable extensions – finite fields- Galois theory – The fundamental theorem of Galois Theory – roots of unity – cyclotomic extensions – cyclic extensions Galois group of a polynomial – solvable and radical extension – insolvability of the quintic. ## **Unit 4: Integration on product spaces** Artinian and Noetherian modules and rings- modules of finite lengths – simple and semi simple modules and rings – Wedderburn –Artin theorem – nil radical and Jacobson radical of an Artinian ring. ## **Unit 5: Harmonic Functions** Commutative rings: Primary decompositions of Ideals and modules. - 1. N. Herstein University of Chicago Topics in Algebra 2nd Edition John Wiley & Son's New York. - 2. Dummit D.S and Foote R.M., "Abstract Algebra" John Wiley and Sons (3rd Edition) (Year of Publication/Reprint: 2003). - 3. Hungerford T.W., "Algebra", Springer. (Year of Publication/Reprint: 1980). - 4. Bhattacharya P.B., Jain S.K and Nagpaul S.R., "Basic Abstract Algebra", Cambridge University Press (2nd Edition) (Year of Publication/Reprint: 1995). - 5. LangS., "Algebra", Springer (3rd Edition) (Year of Publication/Reprint: 2005). - 6. Jacobson N., "Basic Algebra Vol. I & Vol .II" Dover Publications (2nd Edition) (Year of Publication/Reprint: 2009). - 7. Musuli C., "Introduction to Rings and Modules", Narosa Publishing House (2nd Edition) (Year of Publication/Reprint: 1997) ## Fluid Mechanics (24CMAT07T) #### **Unit 1: Kinematics of fluids in motion** Kinematics of fluids in motion: Real fluid and ideal fluids - Velocity of fluid at a point - Stream lines and path lines - Steady flow and unsteady flow, velocity potential, velocity vector, local and particle of fluid, conditions at a rigid boundary, general analysis of fluid motion. Equations of motion of a fluid: Pressure at a point in a fluid at rest - Pressure at a point in a moving fluid - Conditions at boundary of two inviscid in compressive fluids - Euler's equation of motion - Bernoulli's equation. #### **Unit 2: Three dimensional flows** Three dimensional flows: Sources – Sinks – Doublets - Images in a rigid infinite plane - Images in solid spheres - Axisymmetric flows - Stokes stream function for axisymmetrical irrotational motions. Two dimensional flows: Meaning of two-dimensional flow - Use of cylindrical polar coordinates - stream function, complex potential for two dimensional irrotational incompressible flow - Complex velocity potentials for standard two-dimensional flow - Uniform stream line sources and line sinks - Line doublets line vortices. ## **Unit 3: Stress and Strain Analysis** Milne Thompson circle theorem - application s of circle theorems extensions of circle theorem - theorem of Blasius. Stress components in a real fluid – Relations between Cartesian components of stress – Translational motion of fluid element - The rate of strain quadric and principal stresses – Some further properties of the rate of strain — quadric – Stress analysis in fluid motion – Relations between stress and rate of strain – The coefficient of viscosity and laminar flow. ## **Unit 4: Viscous Flow and Solutions of the Navier-Stokes Equations** The Navier-Stokes equations of motion of a viscous fluid – Some solvable problems in viscous flow – Steady motion between parallel planes – Steady flow through tube of uniform circular cross-section – steady flow between concentric rotating cylinders – Steady viscous flow in tubes of uniform cross-section – Tube having equilateral triangular cross-section. ## **Unit 5: Harmonic Functions** Diffusion of vorticity – Energy dissipation due to viscosity – steady flow past a fixed sphere – Dimensional analysis; Reynolds number Prandtl's boundary layer. EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P - 516126, INDIA. ## **Reference Books:** 1. F. Chorlton, Textbook of Fluid Dynamics, CBS Publishers & Distributors. EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P - 516126, INDIA. ## **Operations Research (24CMAT08T)** ## **Unit 1: Linear Programming and Solution Methods** Introduction to Linear program problem method -Simplex Method-big M-method and Dual Simplex methods. ## **Unit 2: Transportation, Assignment, and Routing Problems** Transportation problems – Assignment models and The traveling salesman (Routing) Problem. ## **Unit 3: Markov Processes and Stochastic Analysis** Markov Analysis: Introduction – Stochastic (Random) process – Markov process – Transition probability – Transition probability matrix – First order and higher order Markov process – n-Step transition probabilities – Markov chain – Steady state (Equilibrium) condition – Markov Analysis. ## **Unit 4: Game Theory and Job Sequencing Optimization** Game Theory in job sequencing Minimax (Maximin) Criterion and optimal strategy – Saddle point, optimal strategies and the value of game – Solution of games with saddle point(s) – Illustrative examples – Rectangular games without saddle point – Minimax-Maximin principle for mixed strategy games – Equivalence of Rectangular game and Linear programming – Minimax Theorem (Fundamental theorem of game theory) – solution of m x n games by linear programming – Two by-two (2 x 2) games – Principle of dominance to reduce the size of the game – Graphical method for (2 x n) and (m x 2) games – Matrix method for m x n games Job sequencing: Introduction – Terminology and notations – Principal assumptions – Solution of sequencing problem – Processing n jobs through 2 machines – Processing n jobs through 3 machines – Processing 2 jobs through m machines – Processing n jobs through m machines ## **Unit 5: Inventory Models and Queuing Theory** Deterministic Elementary inventory models: Concept of average inventory – Concept of economic ordering quantity (EOQ) – the EOQ model without shortage – The EOQ model with shortages – multi-item deterministic models (The EOQ with constraints). Solution of queueing models and limitations for the applications – Model (M|M|1): FCFS): Birth and Death model – Model ii (A) General Erlang queueing model (Birth-Death process) – Model III, (M|M|1): (N|FCFS) – Model IV (A), (M|M|s): (X|FCFS) – Non-Poisson queueing model. EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET, Annamayya District, A.P - 516126, INDIA. ## **Reference Books:** 1. Operations Research, S. D. Sharma, Kedar Nath Ram Nath & Co. Publishers