
1

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

UNIT-I

Introduction: The Structure of Complex systems, The Inherent Complexity of Software,

Attributes of Complex System, Organized and Disorganized Complexity, Bringing Order to

Chaos, Designing Complex Systems.

COMPLEXITY

Systems: Systems are constructed by interconnecting components (Boundaries, Environments,

Characters, Emergent Properties), which may well be systems in their own right. The larger the

number of these components and relationships between them, higher will be the complexity of the

overall system.

Software Systems: Software systems are not any different from other systems with respect to

these characteristics. Thus, they are also embedded within some operational environment, and

perform operations which are clearly defined and distinguished from the operations of other

systems in this environment. They also have properties which emerge from the interactions of

their components and/or the interactions of themselves with other systems in their environment.

A system that embodies one or more software subsystems which contribute to or control a

significant part of its overall behavior is what we call a software intensive system. As examples

of complex software-intensive systems, we may consider stock and production control systems,

aviation systems, rail systems, banking systems, health care systems and so on.

Complexity: Complexity depends on the number of the components embedded in them as well

as the relationships and the interactions between these components which carry;

• Impossible for humans to comprehend fully

• Difficult to document and test

• Potentially inconsistent or incomplete

• Subject to change

• No fundamental laws to explain phenomena and approaches

2

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

THE STRUCTURE OF COMPLEX SYSTEMS

Examples of Complex Systems: The structure of personal computer, plants and animals, matter,

social institutions are some examples of complex system.

The structure of a Personal Computer: A personal computer is a device of moderate

complexity. Major elements are CPU, monitor, keyboard and some secondary storage devices.

CPU encompasses primary memory, an ALU, and a bus to which peripheral devices are attached.

An ALU may be divided into registers which are constructed from NAND gates, inverters and so

on. All are the hierarchical nature of a complex system.

The structure of Plants: Plants are complex multicellular organism which are composed of cells

which is turn encompasses elements such as chloroplasts, nucleus, and so on. For example, at the

highest level of abstraction, roots are responsible for absorbing water and minerals from the soil.

Roots interact with stems, which transport these raw materials up to the leaves. The leaves in turn

use water and minerals provided by stems to produce food through photosynthesis.

The structure of Animals: Animals exhibit a multicultural hierarchical structure in which

collection of cells form tissues, tissues work together as organs, clusters of organs define systems

(such as the digestive system) and so on.

The structure of Matter: Nuclear physicists are concerned with a structural hierarchy of matter.

Atoms are made up of electrons, protons and neutrons. Elements and elementary particles but

protons, neutrons and other particles are formed from more basic components called quarks,

which eventually formed from pro-quarks.

The structure of Social institutions: In social institutions, group of people join together to

accomplish tasks that can not be done by made of divisions which in turn contain branches which

in turn encompass local offices and so on.

THE INHERENT COMPLEXITY OF SOFTWARE

The Properties of Complex and Simple Software Systems: Software may involve elements of

great complexity which is of different kind.

Some software systems are simple.

• These are the largely forgettable applications that are specified, constructed, maintained,

3

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

and used by the same person, usually the amateur programmer or the professional developer

working in isolation.

• Such systems tend to have a very limited purpose and a very short life span.

• We can afford to throw them away and replace them with entirely new software rather

than attempt to reuse them, repair them, or extend their functionality, Such applications are

generally more tedious than difficult to develop; consequently, learning how to design them does

not interest us.

Some software systems are complex.

• The applications that exhibit a very rich set of behaviors, as, for example, in reactive

systems that drive or are driven by events in the physical world, and for which time and space are

scarce resources; applications that maintain the integrity of hundreds of thousands of records of

information while allowing concurrent updates and queries; and systems for the command and

control of real-world entities, such as the routing of air or railway traffic.

• Software systems such as world of industrial strength software tend to have a long life

span, and over time, many users come to depend upon their proper functioning.

• The frameworks that simplify the creation of domain-specific applications, and programs

that mimic some aspect of human intelligence.

• Although such applications are generally products of research and development they are

no less complex, for they are the means and artifacts of incremental and exploratory development.

Why Software is inherently Complex

The complexity of software is an essential property not an accidental one. The inherent complexity

derives from four elements; the complexity of the problem domain, the difficultly of managing

the developmental process, the flexibility possible through software and the problems of

characterizing the behavior of discrete systems.

1. The complexity of the problem domain

• Complex requirements

• Decay of system

The first reason has to do with the relationship between the application domains for which

software systems are being constructed and the people who develop them. Often, although

4

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

software developers have the knowledge and skills required to develop software they usually lack

detailed knowledge of the application domain of such systems. This affects their ability to

understand and express accurately the requirements for the system to be built which come from

the particular domain. Note, that these requirements are usually themselves subject to change.

They evolve during the construction of the system as well as after its delivery and thereby they

impose a need for a continuous evolution of the system. Complexity is often increased as a result

of trying to preserve the investments made in legacy applications. In such cases, the components

which address new requirements have to be integrated with existing legacy applications. This

results into interoperability problems caused by the heterogeneity of the different components

which introduce new complexities.

Consider the requirement for the electronic systems of a multi-engine aircraft, a cellular phone

switching system or a cautious (traditional) robot. The row functionality of such systems is

difficult enough to comprehend. External complexity usually springs from the impedance

mismatch that exists between the users of a system and its developers. Users may have only vague

ideas of what they want in a software system. Users and developers have different perspectives

on the nature of the problem and make different assumptions regarding the nature of the system.

A further complication is that the requirement of a software system is often change during its

development. Once system is installed, the process helps developers master the problem domain,

enabling them to ask better questions that illuminate the done existing system every time its

requirements change because a large software system is a capital investment. It is software

maintenance when we correct errors, evolution when we respond to changing environments and

preservations, when we continue to use extraordinary means to keep an ancient and decaying piece

of software in operation.

2. The Difficulty of Managing the Development Process

• Management problems

• Need of simplicity

The second reason is the complexity of the software development process. Complex software

intensive systems cannot be developed by single individuals. They require teams of developers.

This adds extra overhead to the process since the developers have to communicate with each other

about the intermediate artifacts they produce and make them interoperable with each other.

This complexity often gets even more difficult to handle if the teams do not work in one location

5

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

but are geographically dispersed. In such situations, the management of these processes becomes

an important subtask on its own and they need to be kept as simple as possible.

None person can understand the system whose size is measured in hundreds of thousands, or even

millions of lines of code. Even if we decompose our implementation in meaningful ways, we still

end up with hundreds and sometimes even thousand modules. The amount of work demands that

we use a team of developers and there are always significant challenges associated with team

development more developer’s means more complex communication and hence more difficult

coordination.

3. The flexibility possible through software

• Software is flexible and expressive and thus encourages highly demanding

requirements, which in turn lead to complex implementations which are difficult to assess

The third reason is the danger of flexibility. Flexibility leads to an attitude where developers

develop system components themselves rather than purchasing them from somewhere else. Unlike

other industrial sectors, the production depth of the software industry is very large. The

construction or automobile industries largely rely on highly specialized suppliers providing parts.

The developers in these industries just produce the design, the part specifications and assemble

the parts delivered. The software development is different: most of the software companies

develop every single component from scratch. Flexibility also triggers more demanding

requirements which make products even more complicated.

Software offers the ultimate flexibility. It is highly unusual for a construction firm to build an

onsite steel mill to forge (create with hammer) custom girders (beams) for a new building.

Construction industry has standards for quality of row materials, few such standards exist in the

software industry.

4. The problem of characterizing the behavior of discrete systems

• Numerous possible states

• Difficult to express all states

The final reason for complexity according to Booch is related to the difficulty in describing

the behavior of software systems. Humans are capable of describing the static structure and

properties of complex systems if they are properly decomposed, but have problems in describing

their behavior. This is because to describe behavior, it is not sufficient to list the

6

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

properties of the system. It is also necessary to describe the sequence of the values that these

properties take over time.

Within a large application, there may be hundreds or even thousands of variables well as

more than one thread of control. The entire collection of these variables as well as their current

values and the current address within the system constitute the present state of the system with

discrete states. Discrete systems by their very nature have a finite number of possible states.

The Consequences of Unrestrained Complexity

The more complex the system, the more open it is to total breakdown. Rarely would a builder

think about adding a new sub-basement to an existing 100-story building; to do so would be very

costly and would undoubtedly invite failure. Amazingly, users of software systems rarely think

twice about asking for equivalent changes. Besides, they argue, it is only a simple matter of

programming.

Our failure to master the complexity of software results in projects that are late, over budget, and

deficient in their stated requirements. We often call this condition the software crisis, but frankly,

a malady that has carried on this long must be called normal. Sadly, this crisis translates into the

squandering of human resources - a most precious commodity - as well as a considerable loss of

opportunities. There are simply not enough good developers around to create all the new software

that users need. Furthermore, a significant number of the developmental personnel in any given

organization must often be dedicated to the maintenance or preservation of geriatric software.

Given the indirect as well as the direct contribution of software to the economic base of most

industrialized countries, and considering the ways in which software can amplify the powers of

the individual, it is unacceptable to allow this situation to continue.

THE FIVE ATTRIBUTES OF A COMPLEX SYSTEM

There are five attribute common to all complex systems. They are as follows:

1. Hierarchical and interacting subsystems

Frequently, complexity takes the form of a hierarchy, whereby a complex system is composed of

interrelated subsystems that have in turn their own subsystems and so on, until some lowest level

of elementary components is reached.

2. Arbitrary determination of primitive components

7

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

The choice of what components in a system are primitive is relatively arbitrary and is largely up

to the discretion of the observer of the system class structure and the object structure are not

completely independent each object in object structure represents a specific instance of some class.

3. Stronger intra-component than inter-component link

Intra-component linkages are generally stronger than inter-component linkages. This fact has the

involving the high frequency dynamics of the components-involving the internal structure of the

components – from the low frequency dynamic involving interaction among components.

4. Combine and arrange common rearranging subsystems

Hierarchic systems are usually composed of only a few different kinds of subsystems in various

combinations and arrangements. In other words, complex systems have common patterns. These

patterns may involve the reuse of small components such as the cells found in both plants and

animals, or of larger structures, such as vascular systems, also found in both plants and animals.

5. Evolution from simple to complex systems

A complex system that works is invariably bound to have evolved from a simple system that

worked A complex system designed from scratch never works and can't be patched up

to make it work. You have to start over, beginning with a working simple system.

Booch has identified five properties that architectures of complex software systems have in

common.

Firstly, every complex system is decomposed into a hierarchy of subsystems. This decomposition

is essential in order to keep the complexity of the overall system manageable. These subsystems,

however, are not isolated from each other, but interact with each other.

Very often subsystems are decomposed again into subsystems, which are decomposed and so on.

The way how this decomposition is done and when it is stopped, i.e. which components are

considered primitive, is rather arbitrary and subject to the architects decision.

The decomposition should be chosen, such that most of the coupling is between components that

lie in the same subsystem and only a loose coupling exists between components of different

subsystem. This is partly motivated by the fact that often different individuals are in charge with

the creation and maintenance of subsystems and every additional link to other subsystems does

imply an higher communication and coordination overhead.

Certain design patterns re-appear in every single subsystem. Examples are patterns for iterating

8

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

over collections of elements, or patterns for the creation of object instances and the like.

The development of the complete system should be done in slices so that there is an increasing

number of subsystems that work together. This facilitates the provision of feedback about the

overall architecture.

ORGANIZED AND DISORGANIZED COMPLEXITY

Simplifying Complex Systems

• Usefulness of abstractions common to similar activities

e.g. driving different kinds of motor vehicle

• Multiple orthogonal hierarchies

e.g. structure and control system

• Prominent hierarchies in object-orientation “ class structure ” “ object structure ”

e. g. engine types, engine in a specific car

One mechanism to simplify concerns in order to make them more manageable is to identify and

understand abstractions common to similar objects or activities. We can use a car as an example

(which are considerable complex systems). Understanding common abstractions in this particular

example would, for instance, involve the insight that clutch, accelerator and brakes facilitate the

use of a wide range of devices, namely transport vehicles depending on transmission of power

from engine to wheels).

Another principle to understand complex systems is the separation of concerns leading to multiple

hierarchies that are orthogonal to each other. In the car example, this could be, for instance, the

distinction between physical structure of the car (chassis, body, engine), functions the car

performs (forward, back, turn) and control systems the car has (manual, mechanical, and

electrical). In object-orientation, the class structure and the object structure relationship is the

simplest form of related hierarchy. It forms a canonical representation for object oriented analysis.

The canonical form of a complex system – the discovery of common abstractions and mechanisms

greatly facilitates are standing of complex system. For example, if a pilot already knows how to

fly a given aircraft, it is easier to know how to fly a similar one. May different hierarchies are

present within the complex system. For example an aircraft may be studied by

9

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

decomposing it into its propulsion system. Flight control system and so on the decomposition

represent a structural or "part of" hierarchy. The complex system also includes an "Is A" hierarchy.

These hierodules for class structure and object structure combining the concept of the class and

object structure together with the five attributes of complex system, we find that virtually all

complex system take on the same (canonical) form as shown in figure. There are two orthogonal

hierarchies of system, its class structure and the object structure.

Figure: Canonical form of a complex system

The figure represents the relationship between two different hierarchies: a hierarchy of objects

and a hierarchy of classes. The class structure defines the 'is-a' hierarchy, identifying the

commonalities between different classes at different levels of abstractions. Hence class C4 is also

a class C1 and therefore has every single property that C1 has. C4, however, may have more

specific properties that C1 does not have; hence the distinction between C1 and C4. The object

structure defines the 'part-of' representation. This identifies the composition of an object from

component objects, like a car is composed from wheels, a steering wheel, a chassis and an engine.

The two hierarchies are not entirely orthogonal as objects are instances of certain

10

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

classes. The relationship between these two hierarchies is shown by identifying the instance-of

relationship as well. The objects in component D8 are instances of C6 and C7 As suggested by

the diagram, there are many more objects then there are classes. The point in identifying classes

is therefore to have a vehicle to describe only once all properties that all instances of the class

have.

APPROACHING A SOLUTION

Hampered by human limitations

• dealing with complexities

• memory

• communications

When we devise a methodology for the analysis and design of complex systems, we need to bear

in mind the limitations of human beings, who will be the main acting agents, especially during

early phases. Unlike computers, human beings are rather limited in dealing with complex

problems and any method need to bear that in mind and give as much support as possible.

Human beings are able to understand and remember fairly complex diagrams, though linear

notations expressing the same concepts are not dealt with so easily. This is why many methods

rely on diagramming techniques as a basis. The human mind is also rather limited. Miller revealed

in 1956 that humans can only remember 7 plus or minus one item at once. Methods should

therefore encourage its users to bear these limitations in mind and not deploy overly complex

diagrams.

The analysis process is a communication intensive process where the analyst has to have intensive

communications with the stakeholders who hold the domain knowledge. Also the design process

is a communication intensive process, since the different agents involved in the design need to

agree on decompositions of the system into different hierarchies that are consistent with each

other.

The Limitations of the human capacity for dealing with complexity: Object model is the

organized complexity of software. As we begin to analyze a complex software system, we find

many parts that must interact in a multitude of intricate ways with little commonality among either

the parts or their interactions. This is an example of disorganized complexity. In complex system,

we find many parts that must interact in a multitude of intricate ways with little

11

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

commonality among either the parts or their intricate. This is an example in an air traffic control

system, we must deal with states of different aircraft at once, and involving such it is absolutely

impossible for a single person to keep track of all these details at once.

BRINGING ORDER TO CHAOS

Principles that will provide basis for development

• Abstraction

• Hierarchy

• Decomposition

The Role of Abstraction: Abstraction is an exceptionally powerful technique for dealing with

complexity. Unable to master the entirely of a complex object, we choose to ignore its inessential

details, dealing instead with the generalized, idealized model of the object. For example, when

studying about how photosynthesis works in a plant, we can focus upon the chemical reactions in

certain cells in a leaf and ignore all other parts such as roots and stems. Objects are abstractions

of entities in the real world.

In general abstraction assists people's understanding by grouping, generalizing and chunking

information.

Object-orientation attempts to deploy abstraction. The common properties of similar objects are

defined in an abstract way in terms of a class. Properties that different classes have in common

are identified in more abstract classes and then an ‘is-a’ relationship defines the inheritance

between these classes.

The role of Hierarchy: Identifying the hierarchies within a complex software system makes

understanding of the system very simple. The object structure is important because it illustrates

how different objects collaborate with one another through pattern of interaction (called

mechanisms). By classifying objects into groups of related abstractions (for example, kinds of

plant cells versus animal cells, we come to explicitly distinguish the common and distinct

properties of different objects, which helps to master their inherent complexity.

Different hierarchies support the recognition of higher and lower orders. A class high in the ‘is-

a’ hierarchy is a rather abstract concept and a class that is a leaf represents a fairly concrete

concept. The ‘is-a’ hierarchy also identifies concepts, such as attributes or operations, that are

12

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

common to a number of classes and instances thereof. Similarly, an object that is up in the part-

of hierarchy represents a rather coarse-grained and complex objects, assembled from a number of

objects, while objects that are leafs are rather fine grained. But note that there are many other

forms of patterns which are nonhierarchical: interactions, ‘relationships’.

The role of Decomposition: Decomposition is important techniques for copying with complexity

based on the idea of divide and conquer. In dividing a problem into a sub problem the problem

becomes less complex and easier to overlook and to deal with. Repeatedly dividing a problem will

eventually lead to sub problems that are small enough so that they can be conquered. After all the

sub problems have been conquered and solutions to them have been found, the solutions need to

be composed in order to obtain the solution of the whole problem. The history of computing has

seen two forms of decomposition, process-oriented (Algorithmic) and object-oriented

decomposition.

Algorithmic (Process Oriented) Decomposition: In Algorithmic decomposition, each module

in the system denotes a major step in some ovrall process.

Figure: Algorithmic decomposition

13

Object oriented decomposition: Objects are identified as Master file and check sum which

derive directly from the vocabulary of the problem as shown in figure. We know the world as a

set of autonomous agents that collaborate to perform some higher level behavior. Get formatted

update thus does not exist as an independent algorithm; rather it is an operation associated with

the object file of updates. Calling this operation creates another object, update to card. In this

manner, each object in our solution embodies its own unique behavior .Each hierarchy in layered

with the more abstract classes and objects built upon more primitive ones especially among the

parts of the object structure, object in the real world. Here decomposition is based on objects and

not algorithms.

Figure: Object oriented decomposition

Algorithmic versus object-oriented decomposition: The algorithmic view highlights the

ordering of events and the object-oriented view emphasizes the agents that either cause action or

are the subjects upon which these operations act. We must start decomposing a system either by

algorithms or by objects then use the resulting structure as the framework for expressing the other

perspective generally object-oriented view is applied because this approach is better at helping us

organize the inherent complexity of software systems. Object oriented algorithm has a number of

advantages over algorithmic decomposition. Object oriented decomposition yields smaller

systems through the reuse of common mechanisms, thus providing an important

14

economy of expression and are also more resident to change and thus better able to involve over

time and it also reduces risks of building complex software systems. Object oriented

decomposition also directly addresses the inherent complexity of software by helping us make

intelligent decisions regarding the separation of concerns in a large state space.

Process-oriented decompositions divide a complex process, function or task into simpler sub

processes until they are simple enough to be dealt with. The solutions of these sub functions then

need to be executed in certain sequential or parallel orders in order to obtain a solution to the

complex process. Object-oriented decomposition aims at identifying individual autonomous

objects that encapsulate both a state and a certain behavior. Then communication among these

objects leads to the desired solutions.

Although both solutions help dealing with complexity, we have reasons to believe that an object-

oriented decomposition is favorable because, the object-oriented approach provides for a

semantically richer framework that leads to decompositions that are more closely related to

entities from the real world. Moreover, the identification of abstractions supports (more abstract)

solutions to be reused and the object-oriented approach supports the evolution of systems better

as those concepts that are more likely to change can be hidden within the objects.

ON DESIGNING COMPLEX SYSTEMS

Engineering as a Science and an Art: Every engineering discipline involves elements of both

science and art. The programming challenge is a large-scale exercise in applied abstraction and

thus requires the abilities of the formal mathematician blended with the attribute of the competent

engineer. The role of the engineer as artist is particularly challenging when the task is to design

an entirely new system.

The meaning of Design: In every engineering discipline, design encompasses the discipline

approach we use to invent a solution for some problem, thus providing a path from requirements

to implementation. The purpose of design is to construct a system that.

1. Satisfies a given (perhaps) informal functional specification

2. Conforms to limitations of the target medium

3. Meets implicit or explicit requirements on performance and resource usage

4. Satisfies implicit or explicit design criteria on the form of the artifact

5. Satisfies restrictions on the design process itself, such as its length or cost, or the available

15

for doing the design.

According to Stroustrup, the purpose of design is to create a clean and relatively simple

internal structure, sometimes also called as architecture. A design is the end product of the design

process.

The Importance of Model Building: The buildings of models have a broad acceptance among

all engineering disciplines largely because model building appeals to the principles of

decomposition, abstraction and hierarchy. Each model within a design describes a specific aspect

of the system under consideration. Models give us the opportunity to fail under controlled

conditions. We evaluate each model under both expected and unusual situations and then after

them when they fail to behave as we expect or desire. More than one kind of model is used on

order to express all the subtleties of a complex system.

The Elements of Software design Methods: Design of complex software system involves an

incremental and iterative process. Each method includes the following:

1. Notation: The language for expressing each model.

2. Process: The activities leading to the orderly construction of the system's mode.

3. Tools: The artifacts that eliminate the medium of model building and enforce rules about

the models themselves, so that errors and inconsistencies can be exposed.

The models of Object-Oriented Development: The models of object-oriented analysis and

design reflect the importance of explicitly capturing both the class and object hierarchies of the

system under design. These models also over the spectrum of the important design decisions that

we must consider in developing a complex system and so encourage us to craft implementations

that embody the five attributes of well-formed complex systems.

Figure: Models of object-oriented development

en
t4

16

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Booch presents a model of object-oriented development that identifies several relevant

perspectives. The classes and objects that form the system are identified in a logical model. For

this logical model, again two different perspectives have to be considered. A static perspective

identifies the structure of classes and objects, their properties and the relationships classes and

objects participate in. A dynamic model identifies the dynamic behavior of classes and objects,

the different valid states they can be in and the transitions between these states.

Besides the logical model, also a physical model needs to be identified. This is usually done later

in the system's lifecycle. The module architecture identifies how classes are kept in separately

compliable modules and the process architecture identifies how objects are distributed at run-

time over different operating system processes and identifies the relationships between those.

Again, for this physical model a static perspective is defined that considers the structure of module

and process architecture and a dynamic perspective identifies process and object activation

strategies and inter-process communication. Object-orientation has not, however, emerged fully

formed. In fact, it has developed over a long period, and continues to change.

The elements of the object-oriented technology collectively known as the object model. The object

model encompasses the principles of abstraction, encapsulation, modularity, hierarchy, typing,

concurrency and persistency. The object model brought together these elements in a synergistic

way.

17

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

UNIT-II

Introduction to UML: Why we model, Conceptual model of UML, Architecture,

Classes, Relationships, Common Mechanisms, Class diagrams, Object diagrams.

WHY WE MODEL

A model is a simplification at some level of abstraction

1. Importance of Modeling:

We build models to better understand the systems we are developing.

To help us visualize

To specify structure or behaviour

To provide template for building system

To document decisions we have made

2. Principles of Modeling:

The models we choose have a profound influence on the solution we provide Every

model may be expressed at different levels of abstraction

The best models are connected to reality

No single model is sufficient, a set of models is needed to solve any nontrivial system

UML is a visual modeling language

“A picture is worth a thousand words.” - old saying

Unified Modeling Language: “A language provides a vocabulary and the rules for

combining words [...] for the purpose of communication.

A modeling language is a language whose vocabulary and rules focus on the conceptual

and

physical representation of a system. A modeling language such as the UML is thus a

standard

language for software blueprints.”

Usages of UML: UML is used to

18

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

i. document designs

design patterns / frameworks

ii. Represent different views/aspects of design – visualize and construct designs static /

dynamic / deployment / modular aspects

iii. Provide a next-to-precise, common, language –specify visually for the benefit of

analysis, discussion, comprehension...

Object Oriented Modeling:

Traditionally two approaches to modeling a software system

Algorithmically – becomes hard to focus on as the requirements change

Object-oriented – models more closely real world entities

19

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

CONCEPTUAL MODEL OF THE UML

Conceptual Model of UML

Building Blocks Rules Common Mechanisms

Things RelationshipsDiagrams

1. Class Diagram.

1)Association 2. Object Diagram.

1) Specifications

2) Adornments

3) Common Divisions

4) Extensibility Mechanisms

2)Dependency 3. Use Case Diagram.

3)Generalization 4. Sequence Diagram. *Stereotypes

4)Realization 5. Collaboration Diagram. *Tagged Values

6.State Chart Diagram. 1) Names *Constraints

7.Activity Diagram. 2) Scope

9.Deployment Diagram. 3) Visibility

4) Integrity

5) Execution

Structural Things Behavioral Things Grouping Things Annotational

 Things

*Classes *Interaction *Packages *notes

*Interfaces *State machines

*Collaborations *States

*Use Case

*Component

*Node

20

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

To understand the UML, you need to form a conceptual model of the language, and this

requires learning three major elements: the UML's basic building blocks, the rules that

dictate how those building blocks may be put together, and some common mechanisms

that apply throughout the UML. Once you have grasped these ideas, you will be able to

read UML models and create some basic ones. As you gain more experience in applying

the UML, you can build on this conceptual model, using more advanced features of the

language.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams

Things are the abstractions that are first-class citizens in a model; relationships tie these

things together; diagrams group interesting collections of things.

Things in the UML

There are four kinds of things in the UML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

These things are the basic object-oriented building blocks of the UML. You use them to

write well-formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static parts of a

model, representing elements that are either conceptual or physical. Collectively, the

structural things are called classifiers.

A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics. A class implements one or more interfaces. Graphically, a

class is rendered as a rectangle, usually including its name, attributes, and operations, as

shown in the following figure.

http://umlguide2.uw.hu/gloss01.html#gloss01entry32
http://umlguide2.uw.hu/gloss01.html#gloss01entry30

21

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Classes

An interface is a collection of operations that specify a service of a class or component.

An interface therefore describes the externally visible behavior of that element. An

interface might represent the complete behavior of a class or component or only a part of

that behavior. An interface defines a set of operation specifications (that is, their signatures)

but never a set of operation implementations. The declaration of an interface looks like a

class with the keyword «interface» above the name; attributes are not relevant, except

sometimes to show constants. An interface rarely stands alone, however. An interface

provided by a class to the outside world is shown as a small circle attached to the class box

by a line. An interface required by a class from some other class is shown as a small

semicircle attached to the class box by a line, as shown in the following figure.

Figure: Interfaces

A collaboration defines an interaction and is a society of roles and other elements

that work together to provide some cooperative behavior that's bigger than the sum of all

http://umlguide2.uw.hu/gloss01.html#gloss01entry93
http://umlguide2.uw.hu/gloss01.html#gloss01entry34

22

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

the elements. Collaborations have structural, as well as behavioral, dimensions. A given

23

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

class or object might participate in several collaborations. These collaborations therefore

represent the implementation of patterns that make up a system. Graphically, a

collaboration is rendered as an ellipse with dashed lines, sometimes including only its

name, as shown in the following figure.

Figure: Collaborations

A use case is a description of sequences of actions that a system performs that yield

observable results of value to a particular actor. A use case is used to structure the

behavioral things in a model. A use case is realized by a collaboration. Graphically, a use

case is rendered as an ellipse with solid lines, usually including only its name, as shown in

the following figure.

Figure: Use Cases

The remaining three thingsactive classes, components, and nodesare all class-like,

meaning they also describe sets of entities that share the same attributes, operations,

relationships, and semantics. However, these three are different enough and are necessary

for modeling certain aspects of an object-oriented system, so they warrant special

treatment.

An active class is a class whose objects own one or more processes or threads and

therefore can initiate control activity. An active class is just like a class except that its

objects represent elements whose behavior is concurrent with other elements. Graphically,

an active class is rendered as a class with double lines on the left and right; it

http://umlguide2.uw.hu/gloss01.html#gloss01entry189
http://umlguide2.uw.hu/gloss01.html#gloss01entry04

24

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

usually includes its name, attributes, and operations, as shown in the following figure.

Figure: Active Classes

A component is a modular part of the system design that hides its implementation

behind a set of external interfaces. Within a system, components sharing the same

interfaces can be substituted while preserving the same logical behavior. The

implementation of a component can be expressed by wiring together parts and connectors;

the parts can include smaller components. Graphically, a component is rendered like a class

with a special icon in the upper right corner, as shown in the following figure.

Figure: Components

The remaining two elements’ artifacts and nodes are also different. They represent physical

things, whereas the previous five things represent conceptual or logical things.

An artifact is a physical and replaceable part of a system that contains physical information

("bits"). In a system, you'll encounter different kinds of deployment artifacts, such as source

code files, executables, and scripts. An artifact typically represents the physical packaging

of source or run-time information. Graphically, an artifact is rendered as a rectangle with

the keyword «artifact» above the name, as shown in the following figure.

Figure: Artifacts

http://umlguide2.uw.hu/gloss01.html#gloss01entry16

25

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

A node is a physical element that exists at run time and represents a computational

resource, generally having at least some memory and, often, processing capability. A set

of components may reside on a node and may also migrate from node to node. Graphically,

a node is rendered as a cube, usually including only its name, as shown in the following

figure.

Figure: Nodes

These elements classes, interfaces, collaborations, use cases, active classes, components,

artifacts, and nodes are the basic structural things that you may include in a UML model.

There are also variations on these, such as actors, signals, and utilities (kinds of classes);

processes and threads (kinds of active classes); and applications, documents, files, libraries,

pages, and tables (kinds of artifacts).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a

model, representing behavior over time and space. In all, there are three primary kinds of

behavioral things.

First, an interaction is a behavior that comprises a set of messages exchanged

among a set of objects or roles within a particular context to accomplish a specific purpose.

The behavior of a society of objects or of an individual operation may be specified with an

interaction. An interaction involves a number of other elements, including messages,

actions, and connectors (the connection between objects). Graphically, a message is

rendered as a directed line, almost always including the name of its operation, as shown in

the following figure.

Figure: Messages

http://umlguide2.uw.hu/gloss01.html#gloss01entry110
http://umlguide2.uw.hu/gloss01.html#gloss01entry88

26

Second, a state machine is a behavior that specifies the sequences of states an object or an

interaction goes through during its lifetime in response to events, together with its responses to

those events. The behavior of an individual class or a collaboration of classes may be specified

with a state machine. A state machine involves a number of other elements, including states,

transitions (the flow from state to state), events (things that trigger a transition), and activities (the

response to a transition). Graphically, a state is rendered as a rounded rectangle, usually including

its name and its substates, if any, as shown in the following figure.

Figure: States

Third, an activity is a behavior that specifies the sequence of steps a computational process

performs. In an interaction, the focus is on the set of objects that interact. In a state machine, the

focus is on the life cycle of one object at a time. In an activity, the focus is on the flows among

steps without regard to which object performs each step. A step of an activity is called an action.

Graphically, an action is rendered as a rounded rectangle with a name indicating its purpose. States

and actions are distinguished by their different contexts.

Figure: Actions

These three elements interactions, state machines, and activities are the basic behavioral

things that you may include in a UML model. Semantically, these elements are usually connected

to various structural elements, primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into

which a model can be decomposed. There is one primary kind of grouping thing, namely, packages.

A package is a general-purpose mechanism for organizing the design itself, as opposed to

classes, which organize implementation constructs. Structural things, behavioral things, and even

http://umlguide2.uw.hu/gloss01.html#gloss01entry158
http://umlguide2.uw.hu/gloss01.html#gloss01entry03
http://umlguide2.uw.hu/gloss01.html#gloss01entry120

27

other grouping things may be placed in a package. Unlike components (which exist at run time), a

package is purely conceptual (meaning that it exists only at development time). Graphically, a

package is rendered as a tabbed folder, usually including only its name and, sometimes, its contents,

as shown in the following figure.

Figure: Packages

Packages are the basic grouping things with which you may organize a UML model. There are also

variations, such as frameworks, models, and subsystems (kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments you may

apply to describe, illuminate, and remark about any element in a model. There is one primary kind

of annotational thing, called a note. A note is simply a symbol for rendering constraints and

comments attached to an element or a collection of elements. Graphically, a note is rendered as a

rectangle with a dog-eared corner, together with a textual or graphical comment, as shown in the

following figure.

Figure: Notes

This element is the one basic annotational thing you may include in a UML model. You'll typically

use notes to adorn your diagrams with constraints or comments that are best expressed in informal

or formal text. There are also variations on this element, such as requirements (which specify some

desired behavior from the perspective of outside the model).

Relationships in the UML

There are four kinds of relationships in the UML:

1. Dependency

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML. You use them to write

http://umlguide2.uw.hu/gloss01.html#gloss01entry112

28

well-formed models.

First, a dependency is a semantic relationship between two model elements in which a change to

one element (the independent one) may affect the semantics of the other element (the dependent

one). Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally

including a label, as shown in the following figure.

Figure: Dependencies

Second, an association is a structural relationship among classes that describes a set of links, a link

being a connection among objects that are instances of the classes. Aggregation is a special kind of

association, representing a structural relationship between a whole and its parts. Graphically, an

association is rendered as a solid line, possibly directed, occasionally including a label, and often

containing other adornments, such as multiplicity and end names, as shown in the following figure.

Figure: Associations

Third, a generalization is a specialization/generalization relationship in which the specialized

element (the child) builds on the specification of the generalized element (the parent). The child

shares the structure and the behavior of the parent. Graphically, a generalization relationship is

rendered as a solid line with a hollow arrowhead pointing to the parent, as shown in the following

figure.

Figure: Generalizations

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier specifies

a contract that another classifier guarantees to carry out. You'll encounter realization relationships

in two places: between interfaces and the classes or components that realize them, and between use

cases and the collaborations that realize them. Graphically, a realization relationship is rendered as

a cross between a generalization and a dependency relationship, as shown in the following figure.

Figure: Realizations

These four elements are the basic relational things you may include in a UML model. There are

http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry75
http://umlguide2.uw.hu/gloss01.html#gloss01entry136

29

also variations on these four, such as refinement, trace, include, and extend.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a

connected graph of vertices (things) and paths (relationships). You draw diagrams to visualize a

system from different perspectives, so a diagram is a projection into a system. For all but the most

trivial systems, a diagram represents an elided view of the elements that make up a system. The

same element may appear in all diagrams, only a few diagrams (the most common case), or in no

diagrams at all (a very rare case). In theory, a diagram may contain any combination of things and

relationships. In practice, however, a small number of common combinations arise, which are

consistent with the five most useful views that comprise the architecture of a software- intensive

system. For this reason, the UML includes thirteen kinds of diagrams:

1. Class diagram

2. Object diagram

3. Component diagram

4. Composite structure diagram

5. Use case diagram

6. Sequence diagram

7. Communication diagram

8. State diagram

9. Activity diagram

10. Deployment diagram

11. Package diagram

12. Timing diagram

13. Interaction overview diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships.

These diagrams are the most common diagram found in modeling object-oriented systems.

Class diagrams address the static design view of a system. Class diagrams that include active

classes address the static process view of a system. Component diagrams are variants of class

diagrams.

An object diagram shows a set of objects and their relationships. Object diagrams represent

static snapshots of instances of the things found in class diagrams. These diagrams address the

static design view or static process view of a system as do class diagrams, but from

http://umlguide2.uw.hu/gloss01.html#gloss01entry56
http://umlguide2.uw.hu/gloss01.html#gloss01entry31
http://umlguide2.uw.hu/gloss01.html#gloss01entry115

30

the perspective of real or prototypical cases.

A component diagram is shows an encapsulated class and its interfaces, ports, and internal

structure consisting of nested components and connectors. Component diagrams address the static

design implementation view of a system. They are important for building large systems from

smaller parts. (UML distinguishes a composite structure diagram, applicable to any class, from a

component diagram, but we combine the discussion because the distinction between a component

and a structured class is unnecessarily subtle.)

A use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system. These diagrams are

especially important in organizing and modeling the behaviors of a system.

Both sequence diagrams and communication diagrams are kinds of interaction diagrams.

An interaction diagram shows an interaction, consisting of a set of objects or roles, including the

messages that may be dispatched among them. Interaction diagrams address the dynamic view of

a system. A sequence diagram is an interaction diagram that emphasizes the time-ordering of

messages; a communication diagram is an interaction diagram that emphasizes the structural

organization of the objects or roles that send and receive messages. Sequence diagrams and

communication diagrams represent similar basic concepts, but each diagram emphasizes a different

view of the concepts. Sequence diagrams emphasize temporal ordering, and communication

diagrams emphasize the data structure through which messages flow. A timing diagram (not

covered in this book) shows the actual times at which messages are exchanged.

A state diagram shows a state machine, consisting of states, transitions, events, and

activities. A state diagrams shows the dynamic view of an object. They are especially important in

modeling the behavior of an interface, class, or collaboration and emphasize the event-ordered

behavior of an object, which is especially useful in modeling reactive systems.

An activity diagram shows the structure of a process or other computation as the flow of

control and data from step to step within the computation. Activity diagrams address the dynamic

view of a system. They are especially important in modeling the function of a system and

emphasize the flow of control among objects.

A deployment diagram shows the configuration of run-time processing nodes and the

components that live on them. Deployment diagrams address the static deployment view of an

architecture. A node typically hosts one or more artifacts.

An artifact diagram shows the physical constituents of a system on the computer. Artifacts

include files, databases, and similar physical collections of bits. Artifacts are often used

http://umlguide2.uw.hu/gloss01.html#gloss01entry38
http://umlguide2.uw.hu/gloss01.html#gloss01entry190
http://umlguide2.uw.hu/gloss01.html#gloss01entry89
http://umlguide2.uw.hu/gloss01.html#gloss01entry151
http://umlguide2.uw.hu/gloss01.html#gloss01entry36
http://umlguide2.uw.hu/gloss01.html#gloss01entry157
http://umlguide2.uw.hu/gloss01.html#gloss01entry07
http://umlguide2.uw.hu/gloss01.html#gloss01entry52

31

in conjunction with deployment diagrams. Artifacts also show the classes and components that

they implement. (UML treats artifact diagrams as a variety of deployment diagram, but we discuss

them separately.)

A package diagram shows the decomposition of the model itself into organization units and

their dependencies.

A timing diagram is an interaction diagram that shows actual times across different objects

or roles, as opposed to just relative sequences of messages. An interaction overview diagram is a

hybrid of an activity diagram and a sequence diagram. These diagrams have specialized uses and

so are not discussed in this book. See the UML Reference Manual for more details.

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of

diagrams, although these are the most common ones that you will encounter in practice.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any

language, the UML has a number of rules that specify what a well-formed model should look like.

A well-formed model is one that is semantically self-consistent and in harmony with all its related

models.

The UML has syntactic and semantic rules for

Names What you can call things, relationships, and diagrams

 Scope The context that gives specific meaning to a name

 Visibility How those names can be seen and used by others

 Integrity How things properly and consistently relate to one another

 Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve and may be

viewed by many stakeholders in different ways and at different times. For this reason, it is common

for the development team to not only build models that are well-formed, but also to build models

that are

 Elided Certain elements are hidden to simplify the view

 Incomplete Certain elements may be missing

 Inconsistent The integrity of the model is not guaranteed

These less-than-well-formed models are unavoidable as the details of a system unfold and

32

churn during the software development life cycle. The rules of the UML encourage you but do not

force you to address the most important analysis, design, and implementation questions that push

such models to become well-formed over time.

Common Mechanisms in the UML

A building is made simpler and more harmonious by the conformance to a pattern of common

features. A house may be built in the Victorian or French country style largely by using certain

architectural patterns that define those styles. The same is true of the UML. It is made simpler by

the presence of four common mechanisms that apply consistently throughout the language.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility mechanisms

Specifications

The UML's graphical notation to visualize a system; & the UML's specification to state the

system's details. Given this split, it's possible to build up a model incrementally by drawing

diagrams and then adding semantics to the model's specifications, or directly by creating a

specification, perhaps by reverse engineering an existing system, and then creating diagrams that

are projections into those specifications.

The UML's specifications provide a semantic backplane that contains all the parts of all

the models of a system, each part related to one another in a consistent fashion. The UML's

diagrams are thus simply visual projections into that backplane, each diagram revealing a specific

interesting aspect of the system.

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a

visual representation of the most important aspects of the element. For example, the notation for a

class is intentionally designed to be easy to draw, because classes are the most common

element found in modeling object-oriented systems. The class notation also exposes the most

important aspects of a class, namely its name, attributes, and operations.

A class's specification may include other details, such as whether it is abstract or the

visibility of its attributes and operations. Many of these details can be rendered as graphical or

textual adornments to the class's basic rectangular notation. For example, the following figure

shows a class, adorned to indicate that it is an abstract class with two public, one protected, and

one private operation.

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig18

33

Figure: Adornments

Every element in the UML's notation starts with a basic symbol, to which can be added a variety

of adornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in several ways.

First, there is the division of class and object. A class is an abstraction; an object is one concrete

manifestation of that abstraction. In the UML, you can model classes as well as objects, as shown

in the following figure. Graphically, the UML distinguishes an object by using the same symbol

as its class and then simply underlying the object's name.

Figure: Classes and Objects

In this figure, there is one class, named Customer, together with three objects: Jan (which is marked

explicitly as being a customer object), Customer (an anonymous Customer object), and Elyse

(which in its specification is marked as being a kind of Customer object, although it's not shown

explicitly here).

Almost every building block in the UML has this same kind of class/object dichotomy. For

example, you can have use cases and use case executions, components and component instances,

nodes and node instances, and so on.

Second, there is the separation of interface and implementation. An interface declares a

contract, and an implementation represents one concrete realization of that contract, responsible

for faithfully carrying out the interface's complete semantics. In the UML, you can model both

interfaces and their implementations, as shown in the following figure.

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19

34

Figure: Interfaces and Implementations

In this figure, there is one component named SpellingWizard.dll that provides (implements)

two interfaces, IUnknown and ISpelling. It also requires an interface, IDictionary, that must be

provided by another component.

Almost every building block in the UML has this same kind of interface/implementation

dichotomy. For example, you can have use cases and the collaborations that realize them, as well

as operations and the methods that implement them.

Third, there is the separation of type and role. The type declares the class of an entity, such

as an object, an attribute, or a parameter. A role describes the meaning of an entity within its

context, such as a class, component, or collaboration. Any entity that forms part of the structure of

another entity, such as an attribute, has both characteristics: It derives some of its meaning from its

inherent type and some of its meaning from its role within its context (below Figure).

Figure: Part with role and type

Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is not

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig21

35

possible for one closed language to ever be sufficient to express all possible nuances of all models

across all domains across all time. For this reason, the UML is opened-ended, making it possible

for you to extend the language in controlled ways. The UML's extensibility mechanisms include

• Stereotypes

• Tagged values

• Constraints

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of

building blocks that are derived from existing ones but that are specific to your problem. For

example, if you are working in a programming language, such as Java or C++, you will often want

to model exceptions. In these languages, exceptions are just classes, although they are treated in

very special ways. Typically, you only want to allow them to be thrown and caught, nothing else.

You can make exceptions first-class citizens in your modelsmeaning that they are treated like basic

building blocksby marking them with an appropriate stereotype, as for the class Overflow in Figure

2-19.

A tagged value extends the properties of a UML stereotype, allowing you to create new

information in the stereotype's specification. For example, if you are working on a shrink- wrapped

product that undergoes many releases over time, you often want to track the version and author of

certain critical abstractions. Version and author are not primitive UML concepts. They can be

added to any building block, such as a class, by introducing new tagged values to that building

block. For example, the class EventQueue is extended by marking its version and author explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new

rules or modify existing ones. For example, you might want to constrain the EventQueue class so

that all additions are done in order. As shown in the following figure shows, you can add a

constraint that explicitly marks these for the operation add.

Figure: Extensibility Mechanisms

http://umlguide2.uw.hu/gloss01.html#gloss01entry161
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19
http://umlguide2.uw.hu/gloss01.html#gloss01entry173
http://umlguide2.uw.hu/gloss01.html#gloss01entry44
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig22

36

Collectively, these three extensibility mechanisms allow you to shape and grow the UML to your

project's needs. These mechanisms also let the UML adapt to new software technology, such as the

likely emergence of more powerful distributed programming languages. You can add new building

blocks, modify the specification of existing ones, and even change their semantics. Naturally, it's

important that you do so in controlled ways so that through these extensions, you remain true to

the UML's purpose the communication of information.

ARCHITECTURE

Any real world system is used by different users. The users can be developers, testers, business

people, analysts and many more. So before designing a system the architecture is made with

different perspectives in mind. The most important part is to visualize the system from different

viewer.s perspective. The better we understand the better we make the system.

UML plays an important role in defining different perspectives of a system. These

perspectives are:

• Design View

• Implementation View

• Process View

• Deployment View

• Usecase View

And the centre is the Use Case view which connects all these four. A Use case represents

the functionality of the system. So the other perspectives are connected with use case.

Design of a system consists of classes, interfaces and collaboration. UML provides class

diagram, object diagram to support this.

 Implementation defines the components assembled together to make a complete physical

system. UML component diagram is used to support implementation perspective.

 Process defines the flow of the system. So the same elements as used in Design are also

used to support this perspective.

 Deployment represents the physical nodes of the system that forms the hardware. UML

deployment diagram is used to support this perspective.

Software Development Life Cycle:

The Unified Software Development Process

A software development process is the set of activities needed to transform a user„s requirements

into a software system.

Basic properties:

37

• use case driven

• architecture centric

• iterative and incremental

Use case Driven

Use cases

• capture requirements of the user,

• divide the development project into smaller subprojects,

• are constantly refined during the whole development process

• are used to verify the correctness of the implemented software

Architecture Centric:

• Find structures which are suitable to achive the function specified in the use cases,

• understandable,

• maintainable,

• reusable for later extensions or newly discovered use cases and describe them, so that they can

be communicated between developers and users.

Inception establishes the business rationale for the project and decides on the scope of the project.

Elaboration is the phase where you collect more detailed requirements, do high-level analysis and

design to establish a baseline architecture and create the plan for construction.

Construction is an iterative and incremental process. Each iteration in this phase builds

production- quality software prototypes, tested and integrated as subset of the requirements of the

project.

Transition contains beta testing, performance tuning and user training.

CLASSES

A class is a description of a set of objects that share the same attributes, operations, relationships,
and semantics. Graphically, a class is rendered as a rectangle.

Names

Every class must have a name that distinguishes it from other classes. A name is a textual string.

That name alone is known as a simple name; a qualified name is the class name prefixed by the

name of the package in which that class lives. A class may be drawn showing only its name

http://umlguide2.uw.hu/gloss01.html#gloss01entry30
http://umlguide2.uw.hu/gloss01.html#gloss01entry108

38

Attributes

An attribute is a named property of a class that describes a range of values that instances of the

property may hold. A class may have any number of attributes or no attributes at all. An attribute

represents some property of the thing you are modeling that is shared by all objects of that class.

For example, every wall has a height, width, and thickness; you might model your customers in

such a way that each has a name, address, phone number, and date of birth.

Operations

An operation is the implementation of a service that can be requested from any object of the class

to affect behavior. In other words, an operation is an abstraction of something you can do to an

object that is shared by all objects of that class. A class may have any number of operations or no

operations at all. For example, in a windowing library such as the one found in Java's awt package,

all objects of the class Rectangle can be moved, resized, or queried for their properties. Often (but

not always), invoking an operation on an object changes the object's data or state. Graphically,

operations are listed in a compartment just below the class attributes. Operations may be drawn

showing only their names

You can specify an operation by stating its signature, which includes the name, type, and default

value of all parameters and (in the case of functions) a return type.

http://umlguide2.uw.hu/gloss01.html#gloss01entry21
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118
http://umlguide2.uw.hu/gloss01.html#gloss01entry118

39

RELATIONSHIPS

A relationship is a connection among things. In object-oriented modeling, the three most

important relationships are dependencies, generalizations, and associations. Graphically, a

relationship is rendered as a path, with different kinds of lines used to distinguish the kinds of

relationships.

Dependencies

A dependency is a relationship that states that one thing (for example, class Window) uses

the information and services of another thing (for example, class Event), but not necessarily the

reverse. Graphically, a dependency is rendered as a dashed directed line, directed to the thing being

depended on. Choose dependencies when you want to show one thing using another.

Generalizations

A generalization is a relationship between a general kind of thing (called the superclass

http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/gloss01.html#gloss01entry75

40

or parent) and a more specific kind of thing (called the subclass or child). Generalization is

sometimes called an "is-a-kind-of" relationship: one thing (like the class BayWindow) is-a-kind-

of a more general thing (for example, the class Window). An objects of the child class may be used

for a variable or parameter typed by the parent, but not the reverse

Associations

An association is a structural relationship that specifies that objects of one thing are

connected to objects of another. Given an association connecting two classes, you can relate objects

of one class to objects of the other class. It's quite legal to have both ends of an association circle

back to the same class. This means that, given an object of the class, you can link to other objects

of the same class. An association that connects exactly two classes is called a binary association.

Although it's not as common, you can have associations that connect more than two classes; these

are called n-ary associations.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the relationship.

So that there is no ambiguity about its meaning, you can give a direction to the name by providing

a direction triangle that points in the direction you intend to read the name.

http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry17

41

Role

When a class participates in an association, it has a specific role that it plays in that

relationship; a role is just the face the class at the far end of the association presents to the class at

the near end of the association. You can explicitly name the role a class plays in an association.

The role played by an end of an association is called an end name (in UML1, it was called a role

name). the class Person playing the role of employee is associated with the class Company playing

the role of employer.

Multiplicity

An association represents a structural relationship among objects. In many modeling

situations, it's important for you to state how many objects may be connected across an instance of

an association. This "how many" is called the multiplicity of an association's role. It represents a

range of integers specifying the possible size of the set of related objects.

The number of objects must be in the given range. You can show a multiplicity of exactly

one (1), zero or one (0..1), many (0..*), or one or more (1..*). You can give an integer range (such

as 2..5). You can even state an exact number (for example, 3, which is equivalent to 3..3).

Aggregation

A plain association between two classes represents a structural relationship between

peers, meaning that both classes are conceptually at the same level, no one more important than

42

the other. Sometimes you will want to model a "whole/part" relationship, in which one class

represents a larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of

relationship is called aggregation, which represents a "has-a" relationship

COMMON MECHANISMS

A note is a graphical symbol for rendering constraints or comments attached to an element

or a collection of elements. Graphically, a note is rendered as a rectangle with a dog- eared corner,

together with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing you to create new

kinds of building blocks similar to existing ones but specific to your problem. Graphically, a

stereotype is rendered as a name enclosed by guillemets (French quotation marks of the form «

»), placed above the name of another element.

Optionally the stereotyped element may be rendered by using a new icon associated with

that stereotype.

A tagged value is a property of a stereotype, allowing you to create new information in an

element bearing that stereotype. Graphically, a tagged value is rendered as a string of the form

name = value within a note attached to the object.

A constraint is a textual specification of the semantics of a UML element, allowing you to

add new rules or to modify existing ones. Graphically, a constraint is rendered as a string enclosed

by brackets and placed near the associated element or connected to that element or elements by

dependency relationships. As an alternative, you can render a constraint in a note.

Notes

A note that renders a comment has no semantic impact, meaning that its contents do not

alter the meaning of the model to which it is attached. This is why notes are used to specify things

like requirements, observations, reviews, and explanations, in addition to rendering constraints.

A note may contain any combination of text or graphics

http://umlguide2.uw.hu/gloss01.html#gloss01entry112
http://umlguide2.uw.hu/gloss01.html#gloss01entry112
http://umlguide2.uw.hu/gloss01.html#gloss01entry112
http://umlguide2.uw.hu/gloss01.html#gloss01entry161
http://umlguide2.uw.hu/gloss01.html#gloss01entry173
http://umlguide2.uw.hu/gloss01.html#gloss01entry44

43

Other Adornments

Adornments are textual or graphical items that are added to an element's basic notation and

are used to visualize details from the element's specification.

Stereotypes

The UML provides a language for structural things, behavioral things, grouping things, and

notational things. These four basic kinds of things address the overwhelming majority of the

systems you'll need to model.

In its simplest form, a stereotype is rendered as a name enclosed by guillemets (for example,

«name») and placed above the name of another element.

Tagged Values

Everything in

the UML has its own

set of properties:

classes have names,

attributes, and

operations;

associations have

names and two or

more ends, each with

its own properties; and

so on. With

stereotypes, you can

add new things to the

UML; with tagged

values, you can add

new properties to a

stereotype.

Constraints

Everything in the UML has its own semantics. Generalization (usually,

if you know what's good for you) implies the Liskov substitution

principle, and multiple associations connected to one class denote

distinct relationships. With constraints, you can add new semantics or

extend existing rules. A constraint specifies conditions that a run-time

configuration must satisfy to conform to the model.

• Stereotype specifies that the classifier is a stereotype that may be

applied to other elements

Contents:

1. Classes

2. Relationships UNIT-II

I. BASIC STRUCTURAL MODELING

3. Common Mechanisms

4. Diagrams

1. Classes:

Terms and Concepts:

A class is a description of a set of objects that share the same attributes, operations, relationships,
and semantics. Graphically, a class is rendered as a rectangle.

Names

Every class must have a name that distinguishes it from other classes. A name is a textual string.

That name alone is known as a simple name; a qualified name is the class name prefixed by the

name of the package in which that class lives. A class may be drawn showing only its name

Attributes

An attribute is a named property of a class that describes a range of values that instances of the

property may hold. A class may have any number of attributes or no attributes at all. An attribute

represents some property of the thing you are modeling that is shared by all objects of that class.

For example, every wall has a height, width, and thickness; you might model your customers in

such a way that each has a name, address, phone number, and date of birth

http://umlguide2.uw.hu/gloss01.html#gloss01entry30
http://umlguide2.uw.hu/gloss01.html#gloss01entry108
http://umlguide2.uw.hu/gloss01.html#gloss01entry21

Operations

An operation is the implementation of a service that can be requested from any object of the class

to affect behavior. In other words, an operation is an abstraction of something you can do to an

object that is shared by all objects of that class. A class may have any number of operations or no

operations at all. For example, in a windowing library such as the one found in Java's awt package,

all objects of the class Rectangle can be moved, resized, or queried for their properties. Often (but

not always), invoking an operation on an object changes the object's data or state. Graphically,

operations are listed in a compartment just below the class attributes. Operations may be drawn

showing only their names

You can specify an operation by stating its signature, which includes the name, type, and default

value of all parameters and (in the case of functions) a return type

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation at once. In fact,

in most cases, you can't (there are too many of them to put in one figure) and you probably shouldn't

(only a subset of these attributes and operations are likely to be relevant to a specific view). For

these reasons, you can elide a class, meaning that you can choose to show only some

http://umlguide2.uw.hu/gloss01.html#gloss01entry118

or none of a class's attributes and operations. You can indicate that there are more attributes or

properties than shown by ending each list with an ellipsis ("...").

Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are making

a statement that all objects of that class have the same kind of state and the same kind of behavior.

At a more abstract level, these corresponding attributes and operations are just the features by

which the class's responsibilities are carried out. A Wall class is responsible for knowing about

height, width, and thickness; a FraudAgent class, as you might find in a credit card application, is

responsible for processing orders and determining if they are legitimate, suspect, or fraudulent; a

TemperatureSensor class is responsible for measuring temperature and raising an alarm if the

temperature reaches a certain point.

Common Modeling Techniques

Modeling the Vocabulary of a System

You'll use classes most commonly to model abstractions that are drawn from the problem you
are trying to solve or from the technology you are using to implement a solution to that problem.

Each of these abstractions is a part of the vocabulary of your system, meaning that, together, they

represent the things that are important to users and to implementers.

http://umlguide2.uw.hu/gloss01.html#gloss01entry143

To model the vocabulary of a system,

 Identify those things that users or implementers use to describe the problem or solution.

Use CRC cards and use case-based analysis to help find these abstractions.

 For each abstraction, identify a set of responsibilities. Make sure that each class is crisply

defined and that there is a good balance of responsibilities among all your classes.

 Provide the attributes and operations that are needed to carry out these responsibilities for

each class.

A set of classes drawn from a retail system, including Customer, Order, and Product. This figure

includes a few other related abstractions drawn from the vocabulary of the problem, such as

Shipment (used to track orders), Invoice (used to bill orders), and Warehouse (where products are

located prior to shipment). There is also one solution-related abstraction, TRansaction, which

applies to orders and shipments.

Modeling the Distribution of Responsibilities in a System

Once you start modeling more than just a handful of classes, you will want to be sure that your

abstractions provide a balanced set of responsibilities.

To model the distribution of responsibilities in a system,

Identify a set of classes that work together closely to carry out some behavior.

Identify a set of responsibilities for each of these classes.

Look at this set of classes as a whole, split classes that have too many responsibilities into

smaller abstractions, collapse tiny classes that have trivial responsibilities into larger ones,

and reallocate responsibilities so that each abstraction reasonably stands on its own.

 Consider the ways in which those classes collaborate with one another, and redistribute

their responsibilities accordingly so that no class within a collaboration does too much or

too little.

Modeling Nonsoftware Things

To model nonsoftware things,

Model the thing you are abstracting as a class.

If you want to distinguish these things from the UML's defined building blocks, create a

new building block by using stereotypes to specify these new semantics and to give a

distinctive visual cue.

 If the thing you are modeling is some kind of hardware that itself contains software, consider

modeling it as a kind of node as well, so that you can further expand on its structure.

Modeling Primitive Types

To model primitive types,

 Model the thing you are abstracting as a class or an enumeration, which is rendered using

class notation with the appropriate stereotype.

 If you need to specify the range of values associated with this type, use constraints.

2. Relationships:

Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the three most important

relationships are dependencies, generalizations, and associations. Graphically, a relationship is

rendered as a path, with different kinds of lines used to distinguish the kinds of relationships.

Dependencies

A dependency is a relationship that states that one thing (for example, class Window) uses the

information and services of another thing (for example, class Event), but not necessarily the

reverse. Graphically, a dependency is rendered as a dashed directed line, directed to the thing being

depended on. Choose dependencies when you want to show one thing using another.

http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry51

Generalizations

A generalization is a relationship between a general kind of thing (called the superclass or parent)

and a more specific kind of thing (called the subclass or child). Generalization is sometimes called

an "is-a-kind-of" relationship: one thing (like the class BayWindow) is-a-kind- of a more general

thing (for example, the class Window). An objects of the child class may be used for a variable or

parameter typed by the parent, but not the reverse

Associations

An association is a structural relationship that specifies that objects of one thing are connected to

objects of another. Given an association connecting two classes, you can relate objects of one class

to objects of the other class. It's quite legal to have both ends of an association circle back to the

same class. This means that, given an object of the class, you can link to other objects of the same

class. An association that connects exactly two classes is called a binary association. Although it's

not as common, you can have associations that connect more than two classes; these are called n-

ary associations.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the relationship.

So that there is no ambiguity about its meaning, you can give a direction to the name by providing

a direction triangle that points in the direction you intend to read the name.

http://umlguide2.uw.hu/gloss01.html#gloss01entry75
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/gloss01.html#gloss01entry107
http://umlguide2.uw.hu/gloss01.html#gloss01entry107

Role

When a class participates in an association, it has a specific role that it plays in that relationship; a

role is just the face the class at the far end of the association presents to the class at the near end of

the association. You can explicitly name the role a class plays in an association. The role played

by an end of an association is called an end name (in UML1, it was called a role name). the class

Person playing the role of employee is associated with the class Company playing the role of

employer.

Multiplicity

An association represents a structural relationship among objects. In many modeling situations,

it's important for you to state how many objects may be connected across an instance of an

association. This "how many" is called the multiplicity of an association's role. It represents a range

of integers specifying the possible size of the set of related objects.

The number of objects must be in the given range. You can show a multiplicity of exactly one (1),

zero or one (0..1), many (0..*), or one or more (1..*). You can give an integer range (such as 2..5).

You can even state an exact number (for example, 3, which is equivalent to 3..3).

Aggregation

A plain association between two classes represents a structural relationship between peers,

meaning that both classes are conceptually at the same level, no one more important than the other.

Sometimes you will want to model a "whole/part" relationship, in which one class represents a

larger thing (the "whole"), which consists of smaller things (the "parts"). This kind of relationship

is called aggregation, which represents a "has-a" relationship

Common Modeling Techniques

Modeling Simple Dependencies

A common kind of dependency relationship is the connection between a class that uses another
class as a parameter to an operation.

To model this using relationship,

 Create a dependency pointing from the class with the operation to the class used as a

parameter in the operation.

a set of classes drawn from a system that manages the assignment of students and instructors to

courses in a university. This figure shows a dependency from CourseSchedule to Course, because

Course is used in both the add and remove operations of CourseSchedule.

Modeling Single Inheritance

In modeling the vocabulary of your system, you will often run across classes that are structurally

or behaviorally similar to others. You could model each of these as distinct and unrelated

abstractions. A better way would be to extract any common structural and behavioral features and

place them in more-general classes from which the specialized ones inherit.

To model inheritance relationships,

 Given a set of classes, look for responsibilities, attributes, and operations that are common

to two or more classes.

 Elevate these common responsibilities, attributes, and operations to a more general class.

If necessary, create a new class to which you can assign these elements (but be careful

about introducing too many levels).

 Specify that the more-specific classes inherit from the more-general class by placing a

generalization relationship that is drawn from each specialized class to its more-general

parent.

Modeling Structural Relationships

When you model with dependencies or generalization relationships, you may be modeling classes

that represent different levels of importance or different levels of abstraction. Given a dependency

between two classes, one class depends on another but the other class has no knowledge of the

one.

To model structural relationships,

 For each pair of classes, if you need to navigate from objects of one to objects of another,

specify an association between the two. This is a data-driven view of associations.

 For each pair of classes, if objects of one class need to interact with objects of the other

class other than as local variables in a procedure or parameters to an operation, specify an

association between the two. This is more of a behavior-driven view of associations.

 For each of these associations, specify a multiplicity (especially when the multiplicity is

not *, which is the default), as well as role names (especially if they help to explain the

model).

 If one of the classes in an association is structurally or organizationally a whole compared

with the classes at the other end that look like parts, mark this as an aggregation by adorning

the association at the end near the whole with a diamond.

3. Common Mechanisms:

Terms and Concepts

A note is a graphical symbol for rendering constraints or comments attached to an element or a

collection of elements. Graphically, a note is rendered as a rectangle with a dog-eared corner,

together with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing you to create new kinds of

building blocks similar to existing ones but specific to your problem. Graphically, a stereotype is

rendered as a name enclosed by guillemets (French quotation marks of the form « »), placed above

the name of another element.

Optionally the stereotyped element may be rendered by using a new icon associated with that

stereotype.

A tagged value is a property of a stereotype, allowing you to create new information in an element

bearing that stereotype. Graphically, a tagged value is rendered as a string of the form name =

value within a note attached to the object.

A constraint is a textual specification of the semantics of a UML element, allowing you to add

new rules or to modify existing ones. Graphically, a constraint is rendered as a string enclosed by

brackets and placed near the associated element or connected to that element or elements by

dependency relationships. As an alternative, you can render a constraint in a note.

http://umlguide2.uw.hu/gloss01.html#gloss01entry112
http://umlguide2.uw.hu/gloss01.html#gloss01entry161
http://umlguide2.uw.hu/gloss01.html#gloss01entry173
http://umlguide2.uw.hu/gloss01.html#gloss01entry44

Notes

A note that renders a comment has no semantic impact, meaning that its contents do not alter the

meaning of the model to which it is attached. This is why notes are used to specify things like

requirements, observations, reviews, and explanations, in addition to rendering constraints.

A note may contain any combination of text or graphics

Other Adornments

Adornments are textual or graphical items that are added to an element's basic notation and are

used to visualize details from the element's specification

Stereotypes

The UML provides a language for structural things, behavioral things, grouping things, and

notational things. These four basic kinds of things address the overwhelming majority of the

systems you'll need to model.

In its simplest form, a stereotype is rendered as a name enclosed by guillemets (for example,

«name») and placed above the name of another element.

Tagged Values

Every thing in the UML has its own set of properties: classes have names, attributes, and

operations; associations have names and two or more ends, each with its own properties; and so

on. With stereotypes, you can add new things to the UML; with tagged values, you can add new

properties to a stereotype.

Constraints

Everything in the UML has its own semantics. Generalization (usually, if you know what's good

for you) implies the Liskov substitution principle, and multiple associations connected to one class

denote distinct relationships. With constraints, you can add new semantics or extend existing rules.

A constraint specifies conditions that a run-time configuration must satisfy to conform to the

model.

• stereotype Specifies that the classifier is a stereotype that may be applied to other elements

Common Modeling Techniques

Modeling Comments

The most common purpose for which you'll use notes is to write down free-form observations,
reviews, or explanations.

To model a comment,

 Put your comment as text in a note and place it adjacent to the element to which it refers.

You can show a more explicit relationship by connecting a note to its elements using a

dependency relationship.

 Remember that you can hide or make visible the elements of your model as you see fit. This

means that you don't have to make your comments visible everywhere the elements to

which it is attached are visible. Rather, expose your comments in your diagrams only

insofar as you need to communicate that information in that context.

 If your comment is lengthy or involves something richer than plain text, consider putting

your comment in an external document and linking or embedding that document in a note

attached to your model.

 As your model evolves, keep those comments that record significant decisions that

cannot be inferred from the model itself, andunless they are of historic interestdiscard the

others.

Modeling New Properties

The basic properties of the UML's building blocksattributes and operations for classes, the

contents of packages

To model new properties,

First, make sure there's not already a way to express what you want by using basic UML.

If you re convinced there's no other way to express these semantics, define a stereotype

and add the new properties to the stereotype. The rules of generalization applytagged

values defined for one kind of stereotype apply to its children.

Modeling New Semantics

When you create a model using the UML, you work within the rules the UML lays down. However,

if you find yourself needing to express new semantics about which the UML is silent or that you

need to modify the UML's rules, then you need to write a constraint.

To model new semantics,

First, make sure there's not already a way to express what you want by using basic UML.

If you re convinced there's no other way to express these semantics, write your new

semantics in a constraint placed near the element to which it refers. You can show a more

explicit relationship by connecting a constraint to its elements using a dependency

relationship.

 If you need to specify your semantics more precisely and formally, write your new

semantics using OCL.

4. Diagrams:

Terms and Concepts

A system is a collection of subsystems organized to accomplish a purpose and described by a set

of models, possibly from different viewpoints.

A subsystem is a grouping of elements, some of which constitute a specification of the behavior

offered by the other contained elements.

A model is a semantically closed abstraction of a system, meaning that it represents a complete

and self-consistent simplification of reality, created in order to better understand the system. In the

context of architecture,

A view is a projection into the organization and structure of a system's model, focused on one

aspect of that system.

A diagram is the graphical presentation of a set of elements, most often rendered as a connected

graph of vertices (things) and arcs (relationships).

http://umlguide2.uw.hu/gloss01.html#gloss01entry172
http://umlguide2.uw.hu/gloss01.html#gloss01entry167
http://umlguide2.uw.hu/gloss01.html#gloss01entry103
http://umlguide2.uw.hu/gloss01.html#gloss01entry194
http://umlguide2.uw.hu/gloss01.html#gloss01entry56

In modeling real systems, no matter what the problem domain, you'll find yourself creating the

same kinds of diagrams, because they represent common views into common models. Typically,

you'll view the static parts of a system using one of the following diagrams.

1. Class diagram

2. Component diagram

3. Composite structure diagram

4. Object diagram

5. Deployment diagram

6. Artifact diagram

You'll often use five additional diagrams to view the dynamic parts of a system.

1. Use case diagram

2. Sequence diagram

3. Communication diagram

4. State diagram

5. Activity diagram

Structural Diagrams

The UML's structural diagrams exist to visualize, specify, construct, and document the static

aspects of a system. You can think of the static aspects of a system as representing its relatively

stable skeleton and scaffolding. Just as the static aspects of a house encompass the existence and

placement of such things as walls, doors, windows, pipes, wires, and vents, so too do the static

aspects of a software system encompass the existence and placement of such things as classes,

interfaces, collaborations, components, and nodes.

The UML's structural diagrams are roughly organized around the major groups of things you'll

find when modeling a system.

1.Class diagram Classes, interfaces, and collaborations

2.Component diagram Components

3.Object diagram Objects

4.Deployment diagram Nodes

Behavioral Diagrams

The UML's behavioral diagrams are used to visualize, specify, construct, and document the

dynamic aspects of a system. You can think of the dynamic aspects of a system as representing its

changing parts. Just as the dynamic aspects of a house encompass airflow and traffic through the

rooms of a house, so too do the dynamic aspects of a software system encompass such things as

the flow of messages over time and the physical movement of components across a network.

The UML's behavioral diagrams are roughly organized around the major ways you can model

the dynamics of a system.

1.Use case diagram Organizes the behaviors of the system

2.Sequence diagram Focuses on the time ordering of messages

3.Collaboration

diagram

Focuses on the structural organization of objects that send and receive

messages

4.State diagram Focuses on the changing state of a system driven by events

5.Activity diagram Focuses on the flow of control from activity to activity

Common Modeling Techniques

Modeling Different Views of a System

When you model a system from different views, you are in effect constructing your system
simultaneously from multiple dimensions.

To model a system from different views,

 Decide which views you need to best express the architecture of your system and to expose

the technical risks to your project. The five views of an architecture described earlier are a

good starting point.

 For each of these views, decide which artifacts you need to create to capture the essential

details of that view. For the most part, these artifacts will consist of various UML diagrams.

 As part of your process planning, decide which of these diagrams you'll want to put under

some sort of formal or semi-formal control. These are the diagrams for which you'll want

to schedule reviews and to preserve as documentation for the project.

 Allow room for diagrams that are thrown away. Such transitory diagrams are still useful

for exploring the implications of your decisions and for experimenting with changes.

For example, if you are modeling a simple monolithic application that runs on a single machine,

you might need only the following handful of diagrams.

Use case view Use case diagrams

Design view Class diagrams (for structural modeling)

Interaction view Interaction diagrams (for behavioral modeling)

Implementation view Composite structure diagrams

Deployment view None required

Similarly, if yours is a client/server system, you'll probably want to include component diagrams

and deployment diagrams to model the physical details of your system.

Finally, if you are modeling a complex, distributed system, you'll need to employ the full range of

the UML's diagrams in order to express the architecture of your system and the technical risks to

your project, as in the following.

Use case view Use case diagrams

 Sequence diagrams

Design view Class diagrams (for structural modeling)

 Interaction diagrams (for behavioral modeling)

 State diagrams (for behavioral modeling)

 Activity diagrams

Interaction view Interaction diagrams (for behavioral modeling)

Implementation view Class diagrams

 Composite structure diagrams

Deployment view Deployment diagrams

Modeling Different Levels of Abstraction

Not only do you need to view a system from several angles, you'll also find people involved in

development who need the same view of the system but at different levels of abstraction

To model a system at different levels of abstraction by presenting diagrams with different levels

of detail,

Consider the needs of your readers, and start with a given model.

If your reader is using the model to construct an implementation, she'll need diagrams that

are at a lower level of abstraction, which means that they'll need to reveal a lot of detail. If

she is using the model to present a conceptual model to an end user, she'll need diagrams

that are at a higher level of abstraction, which means that they'll hide a lot of detail.

 Depending on where you land in this spectrum of low-to-high levels of abstraction, create

a diagram at the right level of abstraction by hiding or revealing the following four

categories of things from your model:

1. Building blocks and relationships: Hide those that are not relevant to the intent of

your diagram or the needs of your reader.

2. Adornments: Reveal only the adornments of these building blocks and relationships

that are essential to understanding your intent.

3. Flow: In the context of behavioral diagrams, expand only those messages or

transitions that are essential to understanding your intent.

4. Stereotypes: In the context of stereotypes used to classify lists of things, such as

attributes and operations, reveal only those stereotyped items that are essential to

understanding your intent.

To model a system at different levels of abstraction by creating models at different levels of

abstraction,

 Consider the needs of your readers and decide on the level of abstraction that each should

view, forming a separate model for each level.

 In general, populate your models that are at a high level of abstraction with simple

abstractions and your models that are at a low level of abstraction with detailed

abstractions. Establish trace dependencies among the related elements of different models.

 In practice, if you follow the five views of an architecture, there are four common situations

you'll encounter when modeling a system at different levels of abstraction:

1. Use cases and their realization: Use cases in a use case model will trace to

collaborations in a design model.

2. Collaborations and their realization: Collaborations will trace to a society of

classes that work together to carry out the collaboration.

3. Components and their design: Components in an implementation model will trace

to the elements in a design model.

4. Nodes and their components: Nodes in a deployment model will trace to

components in an implementation model.

Higher Level of Abstraction

Lower level of Abstraction

Modeling Complex Views

To model complex views,

 First, convince yourself that there is no meaningful way to present this information at a

higher level of abstraction, perhaps eliding some parts of the diagram and retaining the

detail in other parts.

 If you've hidden as much detail as you can and your diagram is still complex, consider

grouping some of the elements in packages or in higher-level collaborations, then render

only those packages or collaborations in your diagram.

 If your diagram is still complex, use notes and color as visual cues to draw the reader's

attention to the points you want to make.

 If your diagram is still complex, print it in its entirety and hang it on a convenient large

wall. You lose the interactivity that an online version of the diagram brings, but you can

step back from the diagram and study it for common patterns.

1. ADVANCED STRUCTURAL MODELING

Terms and Concepts

A class diagram is a diagram that shows a set of classes, interfaces, and collaborations and their

relationships. Graphically, a class diagram is a collection of vertices and arcs.

http://umlguide2.uw.hu/gloss01.html#gloss01entry31

Common Properties

A class diagram is just a special kind of diagram and shares the same common properties as do all

other diagramsa name and graphical content that are a projection into a model. What distinguishes

a class diagram from other kinds of diagrams is its particular content.

Contents

Class diagrams commonly contain the following things:

Classes

Interfaces

Dependency, generalization, and association relationships

Common Uses

You use class diagrams to model the static design view of a system. This view primarily supports

the functional requirements of a systemthe services the system should provide to its end users.

When you model the static design view of a system, you'll typically use class diagrams in one of

three ways.

1. To model the vocabulary of a system

Modeling the vocabulary of a system involves making a decision about which abstractions are a

part of the system under consideration and which fall outside its boundaries. You use class

diagrams to specify these abstractions and their responsibilities.

2. To model simple collaborations

A collaboration is a society of classes, interfaces, and other elements that work together to provide

some cooperative behavior that's bigger than the sum of all the elements. For example, when you

re modeling the semantics of a transaction in a distributed system, you can't just stare at a single

class to understand what's going on. Rather, these semantics are carried out by a set of classes that

work together. You use class diagrams to visualize and specify this set of classes and their

relationships.

3. To model a logical database schema

Think of a schema as the blueprint for the conceptual design of a database. In many domains, you'll

want to store persistent information in a relational database or in an object-oriented database. You

can model schemas for these databases using class diagrams.

Common Modeling Techniques

Modeling Simple Collaborations

To model a collaboration,

 Identify the mechanism you'd like to model. A mechanism represents some function or

behavior of the part of the system you are modeling that results from the interaction of a

society of classes, interfaces, and other things.

 For each mechanism, identify the classes, interfaces, and other collaborations that

participate in this collaboration. Identify the relationships among these things as well.

 Use scenarios to walk through these things. Along the way, you'll discover parts of your

model that were missing and parts that were just plain semantically wrong.

 Be sure to populate these elements with their contents. For classes, start with getting a good

balance of responsibilities. Then, over time, turn these into concrete attributes and

operations.

Modeling a Logical Database Schema

To model a schema,

 Identify those classes in your model whose state must transcend the lifetime of their

applications.

 Create a class diagram that contains these classes. You can define your own set of

stereotypes and tagged values to address database-specific details.

 Expand the structural details of these classes. In general, this means specifying the details

of their attributes and focusing on the associations and their multiplicities that relate these

classes.

 Watch for common patterns that complicate physical database design, such as cyclic

associations and one-to-one associations. Where necessary, create intermediate

abstractions to simplify your logical structure.

 Consider also the behavior of these classes by expanding operations that are important for

data access and data integrity. In general, to provide a better separation of concerns,

business rules concerned with the manipulation of sets of these objects should be

encapsulated in a layer above these persistent classes.

 Where possible, use tools to help you transform your logical design into a physical design.

Forward and Reverse Engineering

Forward engineering is the process of transforming a model into code through a mapping to an

implementation language. Forward engineering results in a loss of information, because models

written in the UML are semantically richer than any current object-oriented programming

language. In fact, this is a major reason why you need models in addition to code. Structural

features, such as collaborations, and behavioral features, such as interactions, can be visualized

clearly in the UML, but not so clearly from raw code.

http://umlguide2.uw.hu/gloss01.html#gloss01entry73

To forward engineer a class diagram,

 Identify the rules for mapping to your implementation language or languages of choice.

This is something you'll want to do for your project or your organization as a whole.

 Depending on the semantics of the languages you choose, you may want to constrain your

use of certain UML features. For example, the UML permits you to model multiple

inheritance, but Smalltalk permits only single inheritance. You can choose to prohibit

developers from modeling with multiple inheritance (which makes your models language-

dependent), or you can develop idioms that transform these richer features into the

implementation language (which makes the mapping more complex).

 Use tagged values to guide implementation choices in your target language. You can do

this at the level of individual classes if you need precise control. You can also do so at a

higher level, such as with collaborations or packages.

 Use tools to generate code.

All of these classes specify a mapping to Java, as noted in their stereotype. Forward engineering

the classes in this diagram to Java is straightforward, using a tool. Forward engineering the class

EventHandler yields the following code.

public abstract class EventHandler {

EventHandler successor;

private Integer currentEventID;

private String source;

EventHandler() {}

public void handleRequest() {}

}

Reverse engineering is the process of transforming code into a model through a mapping from a

specific implementation language. Reverse engineering results in a flood of information, some of

which is at a lower level of detail than you'll need to build useful models. At the same time, reverse

engineering is incomplete. There is a loss of information when forward engineering models into

code, and so you can't completely recreate a model from code unless your tools encode information

in the source comments that goes beyond the semantics of the implementation language.

To reverse engineer a class diagram,

 Identify the rules for mapping from your implementation language or languages of choice.

This is something you'll want to do for your project or your organization as a whole.

 Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a

new model or modify an existing one that was previously forward engineered. It is

unreasonable to expect to reverse engineer a single concise model from a large body of

code. You need to select portion of the code and build the model from the bottom.

 Using your tool, create a class diagram by querying the model. For example, you might

start with one or more classes, then expand the diagram by following specific relationships

or other neighboring classes. Expose or hide details of the contents of this class diagram as

necessary to communicate your intent.

 Manually add design information to the model to express the intent of the design that is

missing or hidden in the code.

II. ADVANCED STRUCTURAL MODELING

1. Advanced Classes

2. Advanced Relationships

3. Interface, Type and Role

4. Packages

1. Advanced Classes:

Terms and Concepts

A classifier is a mechanism that describes structural and behavioral features. Classifiers include

classes, associations, interfaces, datatypes, signals, components, nodes, use cases, and subsystems.

Classifiers

When you model, you'll discover abstractions that represent things in the real world and things in

your solution. For example, if you are building a Web-based ordering system, the vocabulary of

your project will likely include a Customer class (representing people who order products) and a

http://umlguide2.uw.hu/gloss01.html#gloss01entry144
http://umlguide2.uw.hu/gloss01.html#gloss01entry32

TRansaction class (an implementation artifact, representing an atomic action). In the deployed

system, you might have a Pricing component, with instances living on every client node. Each of

these abstractions will have instances; separating the essence and the instance of the things in your

world is an important part of modeling.

The most important kind of classifier in the UML is the class. A class is a description of a set of

objects that share the same attributes, operations, relationships, and semantics. Classes are not the

only kind of classifier, however. The UML provides a number of other kinds of classifiers to help

you model.

Interface A collection of operations that are used to specify a service of a class or a

component

Datatype A type whose values are immutable, including primitive built-in types (such as

numbers and strings) as well as enumeration types (such as Boolean)

Association

A description of a set of links, each of which relates two or more objects.

Signal The specification of an asynchronous message communicated between instances

Component

A modular part of a system that hides its implementation behind a set of external

interfaces

Node A physical element that exists at run time and that represents a computational

resource, generally having at least some memory and often processing capability

Use case A description of a set of a sequence of actions, including variants, that a system

performs that yields an observable result of value to a particular actor

Subsystem A component that represents a major part of a system

Visibility

One of the design details you can specify for an attribute or operation is visibility. The visibility

of a feature specifies whether it can be used by other classifiers. In the UML, you can specify any

of four levels of visibility.

1. public Any outside classifier with visibility to the given classifier can use the feature;

specified by prepending the symbol +.

2.

protected

Any descendant of the classifier can use the feature; specified by prepending the

symbol #.

3. private Only the classifier itself can use the feature; specified by prepending the symbol -.

3. package Only classifiers declared in the same package can use the feature; specified by

prepending the symbol ~.

Abstract, Leaf, and Polymorphic Elements

You use generalization relationships to model a lattice of classes, with more-generalized

abstractions at the top of the hierarchy and more-specific ones at the bottom. Within these

hierarchies, it's common to specify that certain classes are abstractmeaning that they may not have

any direct instances. In the UML, you specify that a class is abstract by writing its name in italics.

Icon, RectangularIcon, and ArbitraryIcon are all abstract classes. By contrast, a concrete class

(such as Button and OKButton) may have direct instances.

Multiplicity

Whenever you use a class, it's reasonable to assume that there may be any number of instances of

that class (unless, of course, it is an abstract class and may not have any direct instances, although

there may be any number of instances of its concrete children).

Attributes

At the most abstract level, when you model a class's structural features (that is, its attributes), you

simply write each attribute's name.

visibility] name

[':' type] ['[' multiplicity] ']']

['=' initial-value]

[property-string {',' property-string}]

For example, the following are all legal attribute declarations:

origin Name only

+ origin Visibility and name

origin : Point Name and type

name : String[0..1] Name, type, and multiplicity

origin : Point = (0,0) Name, type, and initial value

id: Integer {readonly} Name and property

Operations

At the most abstract level, when you model a class's behavioral features. ou can also specify the

parameters, return type, concurrency semantics, and other properties of each operation.

Collectively, the name of an operation plus its parameters (including its return type, if any) is

called the operation's signature.

[visibility] name ['(' parameter-list ')']

[':' return-type]

[property-string {',' property-string}]

For example, the following are all legal operation declarations:

display Name only

+ display Visibility and name

set(n : Name, s : String) Name and parameters

getID() : Integer Name and return type

restart() {guarded} Name and property

In an operation's signature, you may provide zero or more parameters, each of which follows the

syntax

[direction] name : type [= default-value]

Direction may be any of the following values:

in An input parameter; may not be modified

out An output parameter; may be modified to communicate information to the caller

inout An input parameter; may be modified to communicate information to the caller

In addition to the leaf and abstract properties described earlier, there are defined properties that

you can use with operations.

1. query Execution of the operation leaves the state of the system unchanged. In other words,

the operation is a pure function that has no side effects.

2.

sequential

Callers must coordinate outside the object so that only one flow is in the object at a

time. In the presence of multiple flows of control, the semantics and integrity of the

object cannot be guaranteed.

3. guarded The semantics and integrity of the object is guaranteed in the presence of multiple

flows of control by sequentializing all calls to all of the object's guarded operations.

In effect, exactly one operation at a time can be invoked on the object, reducing this

to sequential semantics.

4.

concurrent

The semantics and integrity of the object is guaranteed in the presence of multiple

flows of control by treating the operation as atomic. Multiple calls from concurrent

flows of control may occur simultaneously to one object on any concurrent operation,

and all may proceed concurrently with correct semantics; concurrent operations must

be designed so that they perform correctly in case of a concurrent sequential or

guarded operation on the same object.

5. static The operation does not have an implicit parameter for the target object; it behaves

like a traditional global procedure.

Template Classes

A template is a parameterized element. In such languages as C++ and Ada, you can write

template classes, each of which defines a family of classes.

A template may include slots for classes, objects, and values, and these slots serve as the template's

parameters. You can't use a template directly; you have to instantiate it first. Instantiation involves

binding these formal template parameters to actual ones. For a template class, the result is a

concrete class that can be used just like any ordinary class.

The most common use of template classes is to specify containers that can be instantiated for

specific elements, making them type-safe. For example, the following C++ code fragment declares

a parameterized Map class.

template<class Item, class VType, int Buckets>

class Map {

public:

virtual map(const Item&, const VType&);

virtual Boolean isMappen(const Item&) const;

...

};

You might then instantiate this template to map Customer objects to Order objects.

m : Map<Customer, Order, 3>;

Standard Elements

All of the UML's extensibility mechanisms apply to classes.

The UML defines four standard stereotypes that apply to classes.

1. metaclass Specifies a classifier whose objects are all classes

2.

powertype

Specifies a classifier whose objects are classes that are the children of a given

parent class

3.stereotype Specifies that the classifier is a stereotype that may be applied to other elements

4. utility Specifies a class whose attributes and operations are all static scoped

Common Modeling Techniques

Modeling the Semantics of a Class

To model the semantics of a class, choose among the following possibilities, arranged from

informal to formal.

 Specify the responsibilities of the class. A responsibility is a contract or obligation of a type

or class and is rendered in a note attached to the class, or in an extra compartment in the

class icon.

 Specify the semantics of the class as a whole using structured text, rendered in a note

(stereotyped as semantics) attached to the class.

 Specify the body of each method using structured text or a programming language, rendered

in a note attached to the operation by a dependency relationship.

 Specify the pre- and postconditions of each operation, plus the invariants of the class as a

whole, using structured text. These elements are rendered in notes (stereotyped as

precondition, postcondition, and invariant) attached to the operation or class by a

dependency relationship.

 Specify a state machine for the class. A state machine is a behavior that specifies the

sequences of states an object goes through during its lifetime in response to events, together

with its responses to those events.

Specify internal structure of the class.

Specify a collaboration that represents the class. A collaboration is a society of roles and

other elements that work together to provide some cooperative behavior that's bigger than

the sum of all the elements. A collaboration has a structural part as well as a dynamic part,

so you can use collaborations to specify all dimensions of a class's semantics.

 Specify the pre- and postconditions of each operation, plus the invariants of the class as a

whole, using a formal language such as OCL.

Pragmatically, you'll end up doing some combination of these approaches for the different

abstractions in your system.

2. Advanced

Relationships Terms

and Concepts

A relationship is a connection among things. In object-oriented modeling, the four most important

relationships are dependencies, generalizations, associations, and realizations. Graphically, a

relationship is rendered as a path, with different kinds of lines used to distinguish the different

relationships.

Dependencies

A dependency is a using relationship, specifying that a change in the specification of one thing (for

example, class SetTopController) may affect another thing that uses it (for example, class

ChannelIterator), but not the reverse. Graphically, a dependency is rendered as a dashed line,

directed to the thing that is depended on. Apply dependencies when you want to show one thing

using another.

http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/gloss01.html#gloss01entry51

A plain, unadorned dependency relationship is sufficient for most of the using relationships you'll

encounter. However, if you want to specify a shade of meaning, the UML defines a number of

stereotypes that may be applied to dependency relationships. There are a number of stereotypes,

which can be organized into several groups.

First, there are stereotypes that apply to dependency relationships among classes and objects in

class diagrams.

1. bind Specifies that the source instantiates the target template using the given actual

parameters

2.derive Specifies that the source may be computed from the target

3.permit Specifies that the source is given special visibility into the target

4.instanceOf Specifies that the source object is an instance of the target classifier. Ordinarily

shown using text notation in the form source : Target

5.instantiate Specifies that the source creates instances of the target

6.powertype Specifies that the target is a powertype of the source; a powertype is a classifier

whose objects are the children of a given parent

7. refine Specifies that the source is at a finer degree of

8. use Specifies that the semantics of the source element depends on the semantics of the

public part of the target

There are two stereotypes that apply to dependency relationships among packages.

1.import Specifies that the public contents of the target package enter the public namespace of

the source, as if they had been declared in the source.

2.access Specifies that the public contents of the target package enter the private namespace of

the source. The unqualified names may be used within the source, but they may not be

re-exported.

Two stereotypes apply to dependency relationships among use cases:

1. extend Specifies that the target use case extends the behavior of the source

2.include Specifies that the source use case explicitly incorporates the behavior of another use

case at a location specified by the source

One stereotype you'll encounter in the context of interactions among objects is

1. send Specifies that the source class sends the target event

Finally, one stereotype that you'll encounter in the context of organizing the elements of your

system into subsystems and models is

1.TRace Specifies that the target is a historical predecessor of the source from an earlier stage of
development

Generalizations

A generalization is a relationship between a general classifier (called the superclass or parent) and

a more specific classifier (called the subclass or child). For example, you might encounter the

general class Window with its more specific subclass, MultiPaneWindow. With a generalization

relationship from the child to the parent, the child (MultiPaneWindow) will inherit all the structure

and behavior of the parent (Window).

A plain, unadorned generalization relationship is sufficient for most of the inheritance relationships

you'll encounter. However, if you want to specify a shade of meaning, the UML defines four

constraints that may be applied to generalization relationships:

1. complete Specifies that all children in the generalization have been specified in the model

(although some may be elided in the diagram) and that no additional children are

permitted

2.incomplete Specifies that not all children in the generalization have been specified (even if

some are elided) and that additional children are permitted

3. disjoint Specifies that objects of the parent may have no more than one of the children as a

type. For example, class Person can be specialized into disjoint classes Man and

Woman.

4.overlapping Specifies that objects of the parent may have more than one of the children as a

type. For example, class Vehicle can be specialized into overlapping subclasses

LandVehicle and WaterVehicle (an amphibious vehicle is both).

Associations

http://umlguide2.uw.hu/gloss01.html#gloss01entry75

An association is a structural relationship, specifying that objects of one thing are connected to

objects of another. For example, a Library class might have a one-to-many association to a Book

class, indicating that each Book instance is owned by one Library instance.

Navigation

Given a plain, unadorned association between two classes, such as Book and Library, it's possible

to navigate from objects of one kind to objects of the other kind. Unless otherwise specified,

navigation across an association is bidirectional.

Visibility

Given an association between two classes, objects of one class can see and navigate to objects of

the other unless otherwise restricted by an explicit statement of navigation. However, there are

circumstances in which you'll want to limit the visibility across that association relative to objects

outside the association.

There is an association between UserGroup and User and another between User and Password.

Given a User object, it's possible to identify its corresponding Password objects. However, a

Password is private to a User, so it shouldn't be accessible from the outside (unless, of course, the

User explicitly exposes access to the Password,

Qualification

In the context of an association, one of the most common modeling idioms you'll encounter is the

problem of lookup. Given an object at one end of an association, how do you identify an object or

set of objects at the other end? For example, consider the problem of modeling a work desk at a

manufacturing site at which returned items are processed to be fixed

http://umlguide2.uw.hu/gloss01.html#gloss01entry17

Composition

Aggregation turns out to be a simple concept with some fairly deep semantics. Simple aggregation

is entirely conceptual and does nothing more than distinguish a "whole" from a "part." Simple

aggregation does not change the meaning of navigation across the association between the whole

and its parts, nor does it link the lifetimes of the whole and its parts.

in a composite aggregation, an object may be a part of only one composite at a time. For example,

in a windowing system, a Frame belongs to exactly one Window. This is in contrast to simple

aggregation, in which a part may be shared by several wholes. For example, in the model of a

house, a Wall may be a part of one or more Room objects.

Association Classes

In an association between two classes, the association itself might have properties. For example,

in an employer/employee relationship between a Company and a Person, there is a Job that

represents the properties of that relationship that apply to exactly one pairing of the Person and

Company. It wouldn't be appropriate to model this situation with a Company to Job association

together with a Job to Person association.

Constraints

These simple and advanced properties of associations are sufficient for most of the structural

relationships you'll encounter. However, if you want to specify a shade of meaning, the UML

defines five constraints that may be applied to association relationships.

First, you can specify whether the objects at one end of an association (with a multiplicity greater

than one) are ordered or unordered.

1. ordered Specifies that the set of objects at one end of an association are in an explicit

order.

2. set The objects are unique with no duplicates.

3. bag The objects are non-unique, may be duplicates.

4. ordered

set

The objects are unique but ordered.

5. list or

sequence

The objects are ordered, may be duplicates.

6. readonly A link, once added from an object on the opposite end of the association, may not

be modified or deleted. The default in the absence of this constraint is unlimited

changeability.

Realizations

A realization is a semantic relationship between classifiers in which one classifier specifies a

contract that another classifier guarantees to carry out. Graphically, a realization is rendered as a

dashed directed line with a large open arrowhead pointing to the classifier that specifies the

contract.

Realization is different enough from dependency, generalization, and association relationships that

it is treated as a separate kind of relationship. Semantically, realization is somewhat of a cross

between dependency and generalization, and its notation is a combination of the notation for

dependency and generalization.

http://umlguide2.uw.hu/gloss01.html#gloss01entry136

Common Modeling Techniques

Modeling Webs of Relationships

When you model the vocabulary of a complex system, you may encounter dozens, if not
hundreds or thousands, of classes, interfaces, components, nodes, and use cases.

When you model these webs of relationships,

 Don't begin in isolation. Apply use cases and scenarios to drive your discovery of the

relationships among a set of abstractions.

 In general, start by modeling the structural relationships that are present. These reflect the

static view of the system and are therefore fairly tangible.

 Next, identify opportunities for generalization/specialization relationships; use multiple

inheritance sparingly.

 Only after completing the preceding steps should you look for dependencies; they generally

represent more-subtle forms of semantic connection.

 For each kind of relationship, start with its basic form and apply advanced features only as

absolutely necessary to express your intent.

 Remember that it is both undesirable and unnecessary to model all relationships among a

set of abstractions in a single diagram or view. Rather, build up your system's relationships

by considering different views on the system. Highlight interesting sets of relationships in

individual diagrams.

3. Interface, Types

and Roles: Terms and

Concepts

An interface is a collection of operations that are used to specify a service of a class or a

component. A type is a stereotype of a class used to specify a domain of objects, together with the

operations (but not the methods) applicable to the object. A role is the behavior of an entity

participating in a particular context.

Graphically, an interface may be rendered as a stereotyped class in order to expose its operations

and other properties.

Names

Every interface must have a name that distinguishes it from other interfaces. A name is a textual

string. That name alone is known as a simple name; a path name is the interface name prefixed by

the name of the package in which that interface lives.

Operations

An interface is a named collection of operations used to specify a service of a class or of a

component. Unlike classes or types, interfaces do not specify any implementation (so they may

not include any methods, which provide the implementation of an operation). Like a class, an

interface may have any number of operations. These operations may be adorned with visibility

properties, concurrency properties, stereotypes, tagged values, and constraints.

Relationships

Like a class, an interface may participate in generalization, association, and dependency

relationships. In addition, an interface may participate in realization relationships. Realization is a

semantic relationship between two classifiers in which one classifier specifies a contract that

http://umlguide2.uw.hu/gloss01.html#gloss01entry93
http://umlguide2.uw.hu/gloss01.html#gloss01entry185
http://umlguide2.uw.hu/gloss01.html#gloss01entry146
http://umlguide2.uw.hu/gloss01.html#gloss01entry108

another classifier guarantees to carry out.

Understanding an Interface

When you are handed an interface, the first thing you'll see is a set of operations that specify a

service of a class or a component. Look a little deeper and you'll see the full signature of those

operations, along with any of their special properties, such as visibility, scope, and concurrency

semantics.

Common Modeling Techniques

Modeling the Seams in a System

o model the seams in a system,

 Within the collection of classes and components in your system, draw a line around those

that tend to be tightly coupled relative to other sets of classes and components.

 Refine your grouping by considering the impact of change. Classes or components that

tend to change together should be grouped together as collaborations.

 Consider the operations and the signals that cross these boundaries, from instances of one

set of classes or components to instances of other sets of classes and components.

 Package logically related sets of these operations and signals as interfaces.

 For each such collaboration in your system, identify the interfaces it requires from (imports)

and those it provides to others (exports). You model the importing of interfaces by

dependency relationships, and you model the exporting of interfaces by realization

relationships.

 For each such interface in your system, document its dynamics by using pre- and

postconditions for each operation, and use cases and state machines for the interface as a

whole.

Modeling Static and Dynamic Types

o model a dynamic type,

 Specify the different possible types of that object by rendering each type as a class (if the

abstraction requires structure and behavior) or as an interface (if the abstraction requires

only behavior).

 Model all the roles the class of the object may take on at any point in time. You can mark

them with the «dynamic» stereotype. (This is not a predefined UML stereotype, but one

that you can add.)

 In an interaction diagram, properly render each instance of the dynamically typed class.

Display the type of the instance in brackets below the object's name, just like a state. (We

are using UML syntax in a novel way, but one that we feel is consistent with the intent of

states.)

4. Packages

Terms and Concepts

A package is a general-purpose mechanism for organizing the model itself into a hierarchy; it has

no meaning to the execution. Graphically, a package is rendered as a tabbed folder. The name of

the package goes in the folder (if its contents are not shown) or in the tab (if the contents of the

folder are shown).

Names

Every package must have a name that distinguishes it from other packages. A name is a textual

string. That name alone is known as a simple name; a qualified name is the package name prefixed

by the name of the package in which that package lives, if any. A double colon (::) separates

package names.

Owned Elements

A package may own other elements, including classes, interfaces, components, nodes,

collaborations, use cases, diagrams, and even other packages. Ownership is a composite

relationship, which means that the element is declared in the package. If the package is destroyed,

the element is destroyed. Every element is uniquely owned by exactly one package.

Visibility

You can control the visibility of the elements owned by a package just as you can control the

visibility of the attributes and operations owned by a class. Typically, an element owned by a

package is public, which means that it is visible to the contents of any package that imports the

element's enclosing package. Conversely, protected elements can only be seen by children, and

private elements cannot be seen outside the package in which they are declared.

Importing and Exporting

http://umlguide2.uw.hu/gloss01.html#gloss01entry120
http://umlguide2.uw.hu/gloss01.html#gloss01entry108

suppose that instead you put A in one package and B in another package, both packages sitting

side by side. Suppose also that A and B are both declared as public parts of their respective

packages. This is a very different situation. Although A and B are both public, accessing one of

the classes from within the other package requires a qualified name. However, if A's package

imports B's package, A can now see B directly, although still B cannot see A without a qualified

name. Importing adds the public elements from the target package to the public namespace of the

importing package. In the UML, you model an import relationship as a dependency adorned with

the stereotype import. By packaging your abstractions into meaningful chunks and then controlling

their access by importing, you can control the complexity of large numbers of abstractions.

Common Modeling Techniques

Modeling Groups of Elements

To model groups of elements,

 Scan the modeling elements in a particular architectural view and look for clumps

defined by elements that are conceptually or semantically close to one another.

Surround each of these clumps in a package.

For each package, distinguish which elements should be accessible outside the package.

Mark them public, and all others protected or private. When in doubt, hide the element.

Explicitly connect packages that build on others via import dependencies.

In the case of families of packages, connect specialized packages to their more general

part via generalizations.

91

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Modeling Architectural Views

To model architectural views,

 Identify the set of architectural views that are significant in the context of your problem.

In practice, this typically includes a design view, an interaction view, an

implementation view, a deployment view, and a use case view.

 Place the elements (and diagrams) that are necessary and sufficient to visualize, specify,

construct, and document the semantics of each view into the appropriate package.

 As necessary, further group these elements into their own packages.

UNIT – IV

92

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Basic Behavioral Modelling: Interactions, Interaction diagrams, Use cases, Use case

Diagrams, Activity Diagrams.

INTERACTIONS

• An interaction is a behavior that is composed of a set of messages exchanged among a set

of objects within a context to accomplish a purpose.

• A message specifies the communication between objects for an activity to happen. It has

following parts: its name, parameters (if any), and sequence number.

• Objects in an interaction can be concrete things or prototypical things.

A link is a semantic connection(path) among objects through which a message/s can be send. A

link is an instance of an association. The semantics of link can be enhanced by using following

prototypes as adornments

<<association>> – Specifies that the corresponding object is visible by association

<<self>> – Specifies that the corresponding object is visible because it is the dispatcher of the

operation <<global>> – Specifies that the corresponding object is visible because it is in an

enclosing scope <<local>> – Specifies that the corresponding object is visible because it is in a

local scope <<parameter>> – Specifies that the corresponding object is visible because it is a

parameter.

93

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

message – indicates an action to be done. Complex expressions can be written on arbitrary string

of message.Different types of messages are:

Call -Invokes an operation on an object; an object may send a message to itself, resulting

in the local invocation of an operation

Return – Returns a value to the caller

Send – Sends a signal to an object

Create – Creates an object

Destroy – Destroys an object; an object may commit suicide by destroying itself

Sequencing

 a sequence is a stream of messages exchange between objects

 sequence must have a beginning and is rooted in some process or thread

 sequence will continue as long as the process or thread that owns it lives

Flow of control (2 types)

In each flow of control, messages are ordered in sequence by time and are visualized by prefixing

the message with a sequence number set apart by a colon separator

 A procedural or nested flow of control is rendered by using a filled solid arrowhead,

 A flat flow of control is rendered by using a stick arrowhead

 Distinguishing one flow of control from another by prefixing a message’s sequence

number with the name of the process or thread that sits at the root of the sequence.

 more-complex forms of sequencing, such as iteration, branching, and guarded messages

94

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

can be modeled in UML.

95

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Creation, Modification, and Destruction of links

Enabled by adding the following constraints to the element

new – Specifies that the instance or link is created during execution of the enclosing

interaction

destroyed – Specifies that the instance or link is destroyed prior to completion of execution of

the enclosing interaction

transient – Specifies that the instance or link is created during execution of the enclosing

interaction but is destroyed before completion of execution

Representation of interactions

interaction goes together with objects and messages.

represented by time ordering of its messages (sequence diagram), and by emphasizing the

structural organization of these objects that send and receive messages (collaboration diagram)

Common Modeling Techniques

Modeling a Flow of Control

To model a flow of control,

96

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Set the context for the interaction, whether it is the system as a whole, a class, or an

97

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

individual operation

Set the stage for the interaction by identifying which objects play a role; set their initial

properties, including their attribute values, state, and role

If model emphasizes the structural organization of these objects, identify the links that connect

them, relevant to the paths of communication that take place in this interaction

In time order, specify the messages that pass from object to object As necessary, distinguish

the different kinds of messages; include parameters and return values to convey the necessary detail

of this interaction

Also to convey the necessary detail of this interaction, adorn each object at every moment in

time with its state and role

Figure: Flow of Control by time

Figure: Flow of Control by Organization

98

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

INTERACTION DIAGRAMS

An interaction diagram shows an interaction, consisting of a set of objects and their

relationships, including the messages that may be dispatched among them

Interaction diagrams commonly contain Objects, Links, Messages

interaction diagrams are used to model the dynamic aspects of a system

An interaction diagram is basically a projection of the elements found in an interaction.

It may contain notes and constraints

Fig: Interaction Diagrams

99

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Sequence Diagrams

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages

Graphically it is a table that shows objects arranged along the X axis and messages ordered in

increasing time along the Y axis

place the objects that participate in the interaction at the top of your diagram, across the X axis,

object that initiates the interaction at the left, and increasingly more subordinate objects to the right

place the messages that these objects send and receive along the Y axis, in order of increasing

time from top to bottom

Figure: Sequence Diagram

Sequence diagrams have two features that distinguish them from collaboration diagrams

First, there is the object lifeline which is a vertical dashed line that represents the existence of

an object over a period of time

Second, there is the focus of control which is a tall, thin rectangle that shows the period of time

during which an object is performing an action, either directly or through a subordinate procedure

Collaboration Diagrams

A collaboration diagram is an interaction diagram that emphasizes the structural organization

of the objects that send and receive messages

Graphically it is a collection of vertices and arcs

100

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

more-complex flows, involving iterations and branching are modeled as [i := 1n] (or just), [x

> 0]

Figure: Collaboration Diagram

Collaboration diagrams have two features that distinguish them from sequence diagrams

First, there is the path to indicate how one object is linked to another, attach a path stereotype

to the far end of a link such as local, parameter, global, and self

Second, there is the sequence number to indicate the time order of a message denoted by

prefixing the message with a number, nesting is indicated by Dewey decimal numbering (eg:- 1 is

the first message; 1.1 is the first message nested in message 1.)

Semantic Equivalence

sequence diagrams and collaboration diagrams are semantically equivalent that means conversion

to the other is possible without any loss of information.

Common Modeling Techniques

Modeling Flows of Control by Time Ordering

To model a flow of control by time ordering,

Set the context for the interaction, whether it is a system, subsystem, operation, or class or one

scenario of a use case or collaboration

Set the stage for the interaction by identifying which objects play a role in the interaction.

Set the lifeline for each object. Objects will persist through the entire interaction. For those

objects that are created and destroyed during the interaction, set their lifelines, as appropriate, and

explicitly indicate their birth and death with appropriately stereotyped messages

Starting with the message that initiates this interaction, lay out each subsequent message from

101

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

top to bottom between the lifelines, showing each message’s properties .

102

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

If you need to visualize the nesting of messages or the points in time when actual

computation is taking place, adorn each object’s lifeline with its focus of control

If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints

If you need to specify this flow of control more formally, attach pre- conditions and post-

conditions to each message

Figure: Modeling Flows of Control by Time Ordering

Modeling Flows of Control by Organization

To model a flow of control by organization

Set the context for the interaction, whether it is a system, subsystem, operation, or class or one

scenario of a use case or collaboration

Set the stage for the interaction by identifying which objects play a role in the interaction .

 Set the initial properties of each of these objects If the attribute values, tagged values, state or

role of any object changes in significant ways over the duration of the interaction, place a duplicate

object on the diagram, update it with these new values, and connect them by a message stereotyped

as become or copy .

Specify the links among these objects, along which messages may pass

1. Lay out the association links first; these are the most important ones, because they represent

structural connections

103

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

2. Lay out other links next, and adorn them with suitable path stereotypes (such as global and

104

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

local) to explicitly specify how these objects are related to one another

Starting with the message that initiates this interaction, attach each subsequent message to the

appropriate link, setting its sequence number, as appropriate Show nesting by using Dewey decimal

numbering.

If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

If you need to specify this flow of control more formally, attach pre- and post-conditions to

each message

The Figure shows a collaboration diagram that specifies the flow of control involved in registering

a new student at a school, with an emphasis on the structural relationships among these objects

Figure: Modeling Flows of Control by Organization

Sequence diagram emphasizes on time sequence of messages and collaboration diagram

emphasizes on the structural organization of the objects that send and receive messages.

So the purposes of interaction diagram can be describes as:

 To capture dynamic behaviour of a system.

 To describe the message flow in the system.

 To describe structural organization of the objects.

 To describe interaction among objects.

105

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

USE CASES

 use case is a description of a set of sequences of actions, including variants, that a system

performs to yield an observable result of value to an actor

 use case captures the intended behavior of the system (or subsystem, class, or interface)

without having to specify how that behavior is implemented

 a use case is represented as an ellipse

 Every use case must have a name that distinguishes it from other use cases: simple name

and path name Figure 2: Simple and Path Names

Figure 1: Actors and Use Cases

Actors

Figure 2: Simple and Path Names

actor represents a coherent set of roles that users of use cases play when interacting with

these use cases

 an actor represents a role that a human, a hardware device, or even another system plays

with a system Figure 3: Actors

Actors may be connected to use cases by association

106

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure 3: Actors

Use Cases & Flow of Events

flow of events include how and when the use case starts and ends when the use case interacts with

the actors and what objects are exchanged, and the basic flow and alternative flows of the behavior.

The behavior of a use case can be specified by describing a flow of events in text.

There can be Main flow of events and one or more Exceptional flow of events.

Use Cases and Scenarios

 A scenario is a specific sequence of actions that illustrates behavior

 Scenarios are to use cases, as instances are to classes means that scenario is basically one

instance of a use case

 for each use case, there will be primary scenarios and secondary scenarios.

Use Cases and Collaborations

 Collaborations are used to implement the behavior of use cases with society of classes and

other elements that work together

 It includes static and dynamic structure

Figure 4: Use Cases and Collaborations

107

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Organizing Use Cases

 organize use cases by grouping them in packages

 organize use cases by specifying generalization, include, and extend relationships among

them

Generalization, Include and Extend

An include relationship between use cases means that the base use case explicitly incorporates the

behavior of another use case at a location specified in the base. An include relationship can be

rendered as a dependency, stereotyped as include

An extend relationship between use cases means that the base use case implicitly incorporates the

behavior of another use case at a location specified indirectly by the extending use case. An extend

relationship can be rendered as a dependency, stereotyped as extend. extension points are just labels

that may appear in the flow of the base use case

Figure 5: Generalization, Include and Extend

Modeling the Behavior of an Element

To model the behavior of an element,

 Identify the actors that interact with the element Candidate actors include groups that

require certain behavior to perform their tasks or that are needed directly or indirectly to perform

the element’s functions

 Organize actors by identifying general and more specialized roles

 For each actor, consider the primary ways in which that actor interacts with the element

Consider also interactions that change the state of the element or its environment or that involve a

response to some event

108

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

 Consider also the exceptional ways in which each actor interacts with the element

109

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

 Organize these behaviors as use cases, applying include and extend

Figure 6: Modeling the Behavior of an Element

USE CASE DIAGRAMS

 A use case diagram is a diagram that shows a set of use cases and actors and their

relationships

 Use case diagrams commonly contain Use cases, Actors, Dependency, generalization, and

association relationships

 use case diagrams may contain packages, certain times instances of use cases, notes and

constraints

 apply use case diagrams to model the static use case view of a system by modeling the

context of a system and by modeling the requirements of a system

110

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure 1: A Use Case Diagram

111

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Modeling the Context of a System

To model the context of a system,

 Identify the actors that surround the system by considering which groups require help from

the system to perform their tasks; which groups are needed to execute the system’s functions; which

groups interact with external hardware or other software systems; and which groups perform

secondary functions for administration and maintenance

 Organize actors that are similar to one another in a generalization / specialization hierarchy

 provide a stereotype for each such actor

 Populate a use case diagram with these actors and specify the paths of communication from

each actor to the system’s use cases

Figure 2 shows the context of a credit card validation system, with an emphasis on the actors that

surround the system.

Figure 2: Modeling the Context of a System

Common Modeling Techniques

Modeling the Requirements of a System

To model the requirements of a system,

 Establish the context of the system by identifying the actors that surround it

 For each actor, consider the behavior that each expects or requires the system to provide

 Name these common behaviors as use cases

112

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

 Factor common behavior into new use cases that are used by others; factor variant

behavior into new use cases that extend more main line flows

 Model these use cases, actors, and their relationships in a use case diagram

 Adorn these use cases with notes that assert nonfunctional requirements; you may have to

attach some of these to the whole system

Figure 3: Modeling the Requirements of a System

ACTIVITY DIAGRAMS

An activity diagram shows the flow from activity to activity

an activity diagram shows the flow of an object, how its role, state and attribute values changes

activity diagrams is used to model the dynamic aspects of a system

Activities result in some action (Actions encompass calling another operation, sending a signal,

creating or destroying an object, or some pure computation, such as evaluating an expression)

an activity diagram is a collection of vertices and arcs

Activity diagrams commonly contain Activity states and action states, Transitions, Objects

activity diagrams may contain simple and composite states, branches, forks, and joins

the initial state is represented as a solid ball and stop state as a solid ball inside a circle

113

Figure 1: activity diagram

Action States

 The executable, atomic computations are called action states because they are

states of the system, each representing the execution of an action

 Figure 2 Action States

 action states can’t be decomposed

 action states are atomic, meaning that events may occur, but the work of the

action state is not interrupted

 action state is considered to take insignificant execution time

 action states are special kinds of states in a state machine

Figure 2: Action States

Activity States

 activity states can be further decomposed

 activity states are not atomic, meaning that they may be interrupted

 they take some duration to complete

 are just special kinds of states in a state machine

Figure 3: Activity States

114

Transitions

 transitions shows the path from one action or activity state to the next action or

activity state

 a transition is represented as a simple directed line

Triggerless Transitions

 Triggerless Transitions are transitions where control passes immediately once the

work of the source state is done

Figure 4: Triggerless Transitions

Branching

 represent a branch as a diamond

 A branch may have one incoming transition and two or more outgoing ones

 each outgoing transition contains a guard expression, which is evaluated only once on

entering the branch

Figure 5: Branching

Forking and Joining

 A fork may have one incoming transition and two or more outgoing transitions each of

which represents an independent flow of control

 a fork represents the splitting of a single flow of control into two or more concurrent

flows of control

 Below the fork, the activities associated with each of these paths continues in parallel

 A join may have two or more incoming transitions and one outgoing transition

 Above the join, the activities associated with each of these paths continues in parallel

 At the join, the concurrent flows synchronize, meaning that each waits until all incoming

flows have reached the join, at which point one flow of control continues on below the join

 the forking and joining of the parallel flows of control are specified by a synchronization

115

bar

 A synchronization bar is rendered as a thick horizontal or vertical line

Joins and forks should balance, meaning that the number of flows that leave a fork should match

the number of flows that enter its corresponding join.

Figure 6: Forking and Joining

Swimlanes

 swimlanes partitions activity diagrams into groups having activity states where each

group represents the business organization responsible for those activities

 Each swimlane has a name unique within its diagram

 swimlane represents a high-level responsibility for part of the overall activity of an

activity diagram

 each swimlane is implemented by one or more classes

Figure 7: Swimlanes

Object Flow

 object flow indicates the participation of an object in a flow of control, it is represented

with the help of dependency relationships.

116

Figure 8: Object Flow

Common Modeling Techniques

Modeling a Workflow

To model a workflow,

 Establish a focus for the workflow. For nontrivial systems, it’s impossible to show all

interesting workflows in one diagram.

 Select the business objects that have the high-level responsibilities for parts of the overall

workflow. These may be real things from the vocabulary of the system, or they may be more

abstract. In either case, create a swimlane for each important business object.

 Identify the preconditions of the workflow’s initial state and the postconditions of the

workflow’s final state. This is important in helping you model the boundaries of the workflow.

 Beginning at the workflow’s initial state, specify the activities and actions that take place

over time and render them in the activity diagram as either activity states or action states.

 For complicated actions, or for sets of actions that appear multiple times, collapse these

into activity states, and provide a separate activity diagram that expands on each.

 Render the transitions that connect these activity and action states. Start with the sequential

flows in the workflow first, next consider branching, and only then consider forking and joining.

 If there are important objects that are involved in the workflow, render them in the activity

diagram, as well. Show their changing values and state as necessary to communicate the intent of

the object flow.

For example, Figure shows an activity diagram for a retail business, which specifies the workflow

involved when a customer returns an item from a mail order.

117

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Modeling a Workflow

Modeling an Operation

To model an operation,

 Collect the abstractions that are involved in this operation. This includes the operation’s

parameters (including its return type, if any), the attributes of the enclosing class, and certain

neighboring classes.

 Identify the preconditions at the operation’s initial state and the post conditions at the

operation’s final state. Also identify any invariants of the enclosing class that must hold during the

execution of the operation.

 Beginning at the operation’s initial state, specify the activities and actions that take place

over time and render them in the activity diagram as either activity states or action states.

 Use branching as necessary to specify conditional paths and iteration.

 Only if this operation is owned by an active class, use forking and joining as necessary to

specify parallel flows of control.

Figure shows an activity diagram that specifies the algorithm of the operation intersection b/w

lines.

Figure 10: Modeling an Operation

118

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

UNIT – V

Advanced Behavioral Modelling: Events and signals, state machines, processes and Threads,

time and space, state chart diagrams.

EVENTS AND SIGNALS

Events

An event is the specification of a significant occurrence that has a location in time and space.

Anything that happens is modeled as an event in UML.

In the context of state machines, an event is an occurrence of a stimulus that can trigger a state

transition

four kinds of events – signals, calls, the passing of time, and a change in state.

Events may be external or internal and asynchronous or synchronous.

Asynchronous events are events that can happen at arbitrary times eg:- signal, the passing of

time, and a change of state.

Synchronous events, represents the invocation of an operation eg:- Calls

External events are those that pass between the system and its actors.

Internal events are those that pass among the objects that live inside the system.

A signal is an event that represents the specification of an asynchronous stimulus communicated

between instances.

Figure 1: Events

kinds of events

1. Signal Event

A signal event represents a named object that is dispatched (thrown) asynchronously by one

object and then received (caught) by another. Exceptions are an example of internal signal

a signal event is an asynchronous event

signal events may have instances, generalization relationships, attributes and operations.

Attributes of a signal serve as its parameters

A signal event may be sent as the action of a state transition in a state machine or the sending

of a message in an interaction

signals are modeled as stereotyped classes and the relationship between an operation and the

119

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

events by using a dependency relationship, stereotyped as send.

120

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Signals

2. Call Event

a call event represents the dispatch of an operation

a call event is a synchronous event

Figure: Call Events

3. Time and Change Events

A time event is an event that represents the passage of time.

modeled by using the keyword ‘after’ followed by some expression that evaluates to a period

of time which can be simple or complex.

A change event is an event that represents a change in state or the satisfaction of some

condition

modeled by using the keyword ‘when’ followed by some Boolean expression

Figure: Time and Change Events

4. Sending and Receiving Events

For synchronous events (Sending or Receiving) like call event, the sender and the receiver are in

a rendezvous (the sender dispatches the signal and wait for a response from the receiver) for the

duration of the operation. When an object calls an operation, the sender dispatches the operation

and then waits for the receiver.

For asynchronous events (Sending or Receiving) like signal event, the sender and receiver do not

rendezvous ie,the sender dispatches the signal but does not wait for a response from the receiver.

When an object sends a signal, the sender dispatches the signal and then continues along its flow

of control, not waiting for any return from the receiver.

121

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Call events can be modeled as operations on the class of the object.

Named signals can be modeled by naming them in an extra compartment of the class

Figure: Signals and Active Classes

Common Modeling Techniques Modeling family of signals

To model a family of signals,

Consider all the different kinds of signals to which a given set of active objects may respond.

Look for the common kinds of signals and place them in a generalization/specialization

hierarchy using inheritance. Elevate more general ones and lower more specialized ones.

Look for the opportunity for polymorphism in the state machines of these active objects. Where

you find polymorphism, adjust the hierarchy as necessary by introducing intermediate abstract

signals.

Figure: Modeling Families of Signals

Modeling Exceptions

To model exceptions,

For each class and interface, and for each operation of such elements, consider the exceptional

conditions that may be raised.

Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, and

introduce intermediate exceptions, as necessary.

For each operation, specify the exceptions that it may raise. You can do so explicitly (by

showing send dependencies from an operation to its exceptions) or you can put this in the

operation’s specification.

122

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Modeling Exceptions

STATE MACHINES

A state machine is a behavior that specifies the sequences of states an object goes through

during its lifetime in response to events.

Graphically, a state is rendered as a rectangle with rounded corners. A transition is rendered as

a solid directed line.

State machines are used to specify the behavior of objects that must respond to asynchronous

stimulus or whose current behavior depends on their past.

state machines are used to model the behavior of entire systems, especially reactive systems,

which must respond to signals from actors outside the system.

States

A state is a condition or situation during the life of an object during which it satisfies some

condition, performs some activity, or waits for some event.

An object remains in a state for a finite amount of time. For example, a Heater in a home

might be in any of four states: Idle, Activating, Active, and Shutting Down.

a state name must be unique within its enclosing state

A state has five parts: Name, Entry/exit actions, Internal transitions – Transitions that are

handled without causing a change in state,

Substates – nested structure of a state, involving disjoint (sequentially active) or concurrent

(concurrently active) substates,

Deferred events – A list of events that are not handled in that state but, rather, are postponed

and queued for handling by the object in another state

initial state indicates the default starting place for the state machine or substate and is

represented as a filled black circle

final state indicates that the execution of the state machine or the enclosing state has been

completed and is represented as a filled black circle surrounded by an unfilled circle

Initial and final states are pseudo-states

123

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: States

Transitions

A transition is a relationship between two states indicating that an object in the first state will

perform certain actions and enter the second state when a specified event occurs and specified

conditions are satisfied.

Transition fires means change of state occurs. Until transition fires, the object is in the source

state; after it fires, it is said to be in the target state.

A transition has five parts:

Source state – The state affected by the transition,

Event trigger – a stimulus that can trigger a source state to fire on satisfying guard condition,

Guard condition – Boolean expression that is evaluated when the transition is triggered by the

reception of the event trigger,

Action – An executable atomic computation that may directly act on the object that owns the

state machine, and indirectly on other objects that are visible to the object,

Target state – The state that is active after the completion of the transition.

A transition may have multiple sources as well as multiple targets

A self-transitionis a transition whose source and target states are the same

Figure: Transitions

Event Trigger

An event in the context of state machines is an occurrence of a stimulus that can trigger a state

transition.

events may include signals, calls, the passing of time, or a change in state.

An event – signal or a call – may have parameters whose values are available to the transition,

including expressions for the guard condition and action.

An event trigger may be polymorphic

124

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Guard condition

guard condition is rendered as a Boolean expression enclosed in square brackets and placed

after the trigger event

A guard condition is evaluated only after the trigger event for its transition occurs

A guard condition is evaluated just once for each transition at the time the event occurs, but it

may be evaluated again if the transition is retriggered

Action

An action is an executable atomic computation i.e, it cannot be interrupted by an event and

runs to completion.

Actions may include operation calls, the creation or destruction of another object, or the

sending of a signal to an object

An activity may be interrupted by other events.

Advanced States and Transitions

Figure: Advanced States and Transitions

Entry and Exit Actions

Entry Actions are those actions that are to be done upon entry of a state and are shown by the

keyword event ‘entry’ with an appropriate action

Exit Actions are those actions that are to be done upon exit from a state marked by the

keyword event ‘exit’, together with an appropriate action

Internal Transitions

Internal Transitions are events that should be handled internally without leaving the state.

Internal transitions may have events with parameters and guard conditions.

Activities

Activities make use of object’s idle time when inside a state. ‘do’ transition is used to specify the

work that’s to be done inside a state after the entry action is dispatched.

Deferred Events

A deferred event is a list of events whose occurrence in the state is postponed until a state in which

the listed events are not deferred becomes active, at which time they occur and may trigger

transitions as if they had just occurred. A deferred event is specified by listing the event with the

special action ‘defer’.

Substates

A substate is a state that’s nested inside another one.

A state that has substates is called a composite state.

A composite state may contain either concurrent (orthogonal) or sequential (disjoint) sub

states.

Substates may be nested to any level Sequential Substates

a

125

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Sequential Substates are those sub states in which an event common to the composite states

can easily be exercised by each states inside it at any time

sequential substates partition the state space of the composite state into disjoint states

A nested sequential state machine may have at most one initial state and one final state

History States

A history state allows composite state that contains sequential substates to remember the last

substate that was active in it prior to the transition from the composite state.

a shallow history state is represented as a small circle containing the symbol H

The first time entry to a composite state doesn’t have any history

the symbol H designates a shallow history, which remembers only the history of the

immediate nested state machine.

the symbol H* designates deep history, which remembers down to the innermost nested state

at any depth.

When only one level of nesting, shallow and deep history states are semantically equivalent.

Concurrent Substates

concurrent substates specify two or more state machines that execute in parallel in the context

of the enclosing object

Execution of these concurrent substates continues in parallel. These substates waits for each

other to finish to joins back into one flow

A nested concurrent state machine does not have an initial, final, or history state

Figure : Sequential Substates

126

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: History State

Figure: Concurrent Sub states

Common Modeling Techniques Modeling the Lifetime of an Object

To model the lifetime of an object,

Set the context for the state machine, whether it is a class, a use case, or the system as a whole.

If the context is a class or a use case, collect the neighboring classes, including any parents of

the class and any classes reachable by associations or dependences. These neighbors are

candidate targets for actions and are candidates for including in guard conditions.

If the context is the system as a whole, narrow your focus to one behavior of the system.

Theoretically, every object in the system may be a participant in a model of the system’s lifetime,

and except for the most trivial systems, a complete model would be intractable.

Establish the initial and final states for the object. To guide the rest of your model, possibly

state the pre- and postconditions of the initial and final states, respectively.

Decide on the events to which this object may respond. If already specified, you’ll find these in

the object’s interfaces; if not already specified, you’ll have to consider which objects may interact

with the object in your context, and then which events they may possibly dispatch.

Starting from the initial state to the final state, lay out the top-level states the object may be in.

Connect these states with transitions triggered by the appropriate events. Continue by adding

actions to these transitions.

127

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Identify any entry or exit actions (especially if you find that the idiom they cover is used in the

state machine).

Expand these states as necessary by using substates.

Check that all events mentioned in the state machine match events expected by the interface of

the object. Similarly, check that all events expected by the interface of the object are handled by

the state machine. Finally, look to places where you explicitly want to ignore events.

Check that all actions mentioned in the state machine are sustained by the relationships,

methods, and operations of the enclosing object.

Trace through the state machine, either manually or by using tools, to check it against expected

sequences of events and their responses. Be especially diligent in looking for unreachable states

and states in which the machine may get stuck.

After rearranging your state machine, check it against expected sequences again to ensure that

you have not changed the object’s semantics.

For example, Figure shows the state machine for the controller in a home security system

Figure: Modeling the Lifetime of an Object

PROCESSES AND THREADS

A process is a heavyweight flow that can execute concurrently with other processes.

A thread is a lightweight flow that can execute concurrently with other threads within the

same process.

An active object is an object that owns a process or thread and can initiate control activity.

An active class is a class whose instances are active objects.

Graphically, an active class is rendered as a rectangle with thick lines. Processes and threads

are rendered as stereotyped active classes.

128

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Active Class

Flow of Control

In a sequential system, there is a single flow of control. i.e, one thing, and one thing only, can take

place at a time. In a concurrent system, there is multiple simultaneous flow of control i.e, more

than one thing can take place at a time.

Classes and Events

Active classes are just classes which represents an independent flow of control

Active classes share the same properties as all other classes.

When an active object is created, the associated flow of control is started; when the active

object is destroyed, the associated flow of control is terminated. Two standard stereotypes that apply

to active classes are, <<process>> – Specifies a heavyweight flow that can execute concurrently with

other processes. (heavyweight means, a thing known to the OS itself and runs in an independent

address space) <<thread>> – Specifies a lightweight flow that can execute concurrently with other

threads within the same process (lightweight means, known to the OS itself.)

All the threads that live in the context of a process are peers of one another.

Communication

In a system with both active and passive objects, there are four possible combinations of

interaction

First, a message may be passed from one passive object to another

Second, a message may be passed from one active object to another

In inter-process communication there are two possible styles of communication. First, one

active object might synchronously call an operation of another. Second, one active object might

asynchronously send a signal or call an operation of another object

synchronous message is rendered as a full arrow and an asynchronous message is rendered as

a half arrow

Third, a message may be passed from an active object to a passive object

Fourth, a message may be passed from a passive object to an active one

a

129

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Figure: Communication

Synchronization

Synchronization means arranging the flow of controls of objects so that mutual exclusion will

be guaranteed.

in object-oriented systems these objects are treated as a critical region

three approaches are there to handle synchronization:

Sequential – Callers must coordinate outside the object so that only one flow is in the object at

a time

Guarded – multiple flow of control is sequentialized with the help of object’s guarded

operations. in effect it becomes sequential.

Concurrent – multiple flow of control is guaranteed by treating each operation as atomic

synchronization are rendered in the operations of active classes with the help of constraints

Figure: Synchronization

Process Views

The process view of a system encompasses the threads and processes that form the system’s

concurrency and synchronization mechanisms.

This view primarily addresses the performance, scalability, and throughput of the system.

Common Modeling Techniques Modeling Multiple Flows of Control

To model multiple flows of control,

Identify the opportunities for concurrent action and reify each flow as an active class.

Generalize common sets of active objects into an active class. Be careful not to over engineer the

process view of your system by introducing too much concurrency.

Consider a balanced distribution of responsibilities among these active classes, then examine

the other active and passive classes with which each collaborates statically. Ensure that each active

class is both tightly cohesive and loosely coupled relative to these neighboring classes and that

130

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

each has the right set of attributes, operations, and signals.

Capture these static decisions in class diagrams, explicitly highlighting each active class.

Consider how each group of classes collaborates with one another dynamically. Capture those

decisions in interaction diagrams. Explicitly show active objects as the root of such flows. Identify

each related sequence by identifying it with the name of the active object.

Pay close attention to communication among active objects. Apply synchronous and

asynchronous messaging, as appropriate.

Pay close attention to synchronization among these active objects and the passive objects with

which they collaborate. Apply sequential, guarded, or concurrent operation semantics, as

appropriate.

Figure: Modeling Flows of Control

Modeling InterProcess Communication

To model InterProcess communication,

Model the multiple flows of control.

Consider which of these active objects represent processes and which represent threads.

Distinguish them using the appropriate stereotype.

Model messaging using asynchronous communication; model remote procedure calls using

synchronous communication.

Informally specify the underlying mechanism for communication by using notes, or more

formally by using collaborations.

Figure: Modeling Inter process Communication

TIME AND SPACE

A distributed system is one in which components may be physically distributed across nodes.

These nodes may represent different processors physically located in the same box, or they may

131

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

even represent computers that are located half a world away from one another.

To represent the modeling needs of real time and distributed systems, the UML provides a graphic

representation for timing marks, time expressions, timing constraints, and location.

Figure: Timing Constraints and Location

A timing mark is a denotation for the time at which an event occurs. Graphically, a timing mark is

depicted as a small hash mark (horizontal line) on the border of a sequence diagram.

A time expression is an expression that evaluates to an absolute or relative value of time. A time

expression can also be formed using the name of a message and an indication of a stage in its

processing, for example, request.sendTime or request.receiveTime.

A timing constraint is a semantic statement about the relative or absolute value of time.

Graphically, a timing constraint is rendered as for any constraint-that is, a string enclosed by

brackets and generally connected to an element by a dependency relationship.

Location is the placement of a component on a node. Location is an attribute of an object.

Time

Real time systems are, time-critical systems. Events may happen at regular or irregular times; the

response to an event must happen at predictable absolute times or at predictable times relative to

the event itself.

The passing of messages represents the dynamic aspect of any system, They are mainly rendered

with the name of an event, such as a signal or a call.

Figure: Time

Location

Distributed systems, encompass components that are physically scattered among the nodes of a

system. For many systems, components are fixed in place at the time they are loaded on the system;

132

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

in other systems, components may migrate from node to node.

Figure: Location

Common Modeling Techniques Modeling Timing Constraints

To model timing constraints,

For each event in an interaction, consider whether it must start at some absolute time. Model

that real time property as a timing constraint on the message.

For each interesting sequence of messages in an interaction, consider whether there is an

associated maximum relative time for that sequence. Model that real time property as a timing

constraint on the sequence.

Figure: Modeling Timing Constraint

Modeling the Distribution of Objects

To model the distribution of objects,

For each interesting class of objects in your system, consider its locality of reference. In other

words, consider all its neighbours and their locations. A tightly coupled locality will have

neighbouring objects close by; a loosely coupled one will have distant objects.

Tentatively allocate objects closest to the actors that manipulate them.

Next consider patterns of interaction among related sets of objects.

Partition sets of objects that have low degrees of interaction.

Next consider the distribution of responsibilities across the system. Redistribute your objects to

balance the load of each node.

133

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Consider also issues of security, volatility, and quality of service, and redistribute your objects

as appropriate.

Assign objects to components so that tightly coupled objects are on the same component. Assign

components to nodes so that the computation needs of each node are within capacity.

Add additional nodes if necessary.

Balance performance and communication costs by assigning tightly coupled components to the

same node.

Figure: Modeling the Distribution of Objects

134

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

STATE CHART DIAGRAMS

Figure: State chart Diagram

State chart diagram is simply a presentation of a state machine which shows the flow of

control from state to state.

State chart diagrams are important for constructing executable systems through forward and

reverse engineering.

State chart diagrams are useful in modeling the lifetime of an object

State chart diagrams commonly contain – Simple states and composite states, Transitions-

including events and actions

t is one of the five diagrams in UML for modeling the dynamic aspects of systems.

Graphically, a state chart diagram is a collection of vertices and arcs.

A state is a condition or situation in the life of an object during which it satisfies some

condition, performs some activity, or waits for some event. An event in the context of state

machines is an occurrence of a stimulus that can trigger a state transition. A transition is a

relationship between two states indicating that an object in the first state will perform certain

actions and enter the second state when a specified event occurs and specified conditions are

satisfied. An activity is ongoing non atomic execution within a state machine. An action is an

executable atomic computation that results in a change in state of the model or the return of a

value. A reactive or event-driven object is one whose behavior is best characterized by its response

to events dispatched from outside its context

Modeling Reactive Objects

To model a reactive object,

Choose the context for the state machine, whether it is a class, a use case, or the system as a

whole.

Choose the initial and final states for the object. To guide the rest of your model, possibly state

the pre- and postconditions of the initial and final states, respectively.

Decide on the stable states of the object by considering the conditions in which the object may

exist for some identifiable period of time. Start with the high-level states of the object and only

then consider its possible substates.

Decide on the meaningful partial ordering of stable states over the lifetime of the object. Decide

on the events that may trigger a transition from state to state. Model these events as triggers

to transitions that move from one legal ordering of states to another.

It

135

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a

Moore machine).

Consider ways to simplify your machine by using substates, branches, forks, joins, and history

states.

Check that all states are reachable under some combination of events.

Check that no state is a dead end from which no combination of events will transition the

object out of that state.

Trace through the state machine, either manually or by using tools, to check it against

expected sequences of events and their responses.

The first string represents a tag; the second string represents the body of the message.

Figure: Modeling Reactive Object

 OBJECT ORIENTED ANALYSIS AND DESIGN N. SWATHI

 (R23 Regulation CSE(DS)) ASSISTANT PROFESSOR, AI&DS DEPT

 ANNAMACHARYA UNIVERSITY.

