








































































                                                                   UNIT-III 

Merging DataFrame 

Merging DataFrames in Pandas is similar to performing SQL joins. It is useful when we need 

to combine two DataFrames based on a common column or index. The merge() function 

provides flexibility for different types of joins. 

There are four basic ways to handle the join (inner, left, right and outer) depending on which 

rows must retain their data. 

 

1. Merging DataFrames Using One Key 

We can merge DataFrames based on a common column by using the on argument. This 

allows us to combine the DataFrames where values in a specific column match. 

import pandas as pd 

 

data1 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'Name':*'Jai', 'Princi', 'Gaurav', 'Anuj'+, 

        'Age':*27, 24, 22, 32+,- 

 

data2 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'Address':*'Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'+, 

        'Qualification':*'Btech', 'B.A', 'Bcom', 'B.hons'+- 

 



df = pd.DataFrame(data1) 

df1 = pd.DataFrame(data2) 

print(df, "\n\n", df1) 

Output: 

 

Now here we are using .merge() with one unique key combination. 

res = pd.merge(df, df1, on='key') 

res 

Output: 

 

2. Merging DataFrames Using Multiple Keys 

We can also merge DataFrames based on more than one column by passing a list of column 

names to the on argument. 

import pandas as pd 

data1 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'key1': *'K0', 'K1', 'K0', 'K1'+, 

         'Name':*'Jai', 'Princi', 'Gaurav', 'Anuj'+, 

        'Age':*27, 24, 22, 32+,- 

 



data2 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'key1': *'K0', 'K0', 'K0', 'K0'+, 

         'Address':*'Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'+, 

        'Qualification':*'Btech', 'B.A', 'Bcom', 'B.hons'+- 

df = pd.DataFrame(data1) 

df1 = pd.DataFrame(data2) 

print(df, "\n\n", df1) 

 

Now we merge dataframe using multiple keys. 

res1 = pd.merge(df, df1, on=*'key', 'key1'+) 

res1 

Output 

 

3. Merging DataFrames Using the how Argument 

We use how argument to merge specifies how to find which keys are to be included in the 

resulting table. If a key combination does not appear in either the left or right tables, the 

values in the joined table will be NA. Here is a summary of the how options and their SQL 

equivalent names: 

MERGE METHOD JOIN NAME DESCRIPTION 



MERGE METHOD JOIN NAME DESCRIPTION 

left LEFT OUTER JOIN Use keys from left frame only 

right RIGHT OUTER JOIN Use keys from right frame only 

outer FULL OUTER JOIN Use union of keys from both frames 

inner INNER JOIN Use intersection of keys from both frames 

import pandas as pd 

data1 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'key1': *'K0', 'K1', 'K0', 'K1'+, 

         'Name':*'Jai', 'Princi', 'Gaurav', 'Anuj'+, 

        'Age':*27, 24, 22, 32+,- 

data2 = ,'key': *'K0', 'K1', 'K2', 'K3'+, 

         'key1': *'K0', 'K0', 'K0', 'K0'+, 

         'Address':*'Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'+, 

        'Qualification':*'Btech', 'B.A', 'Bcom', 'B.hons'+- 

df = pd.DataFrame(data1) 

df1 = pd.DataFrame(data2) 

print(df, "\n\n", df1) 

Output: 

 



Now we set how = 'left' in order to use keys from left frame only. In this it includes all rows 

from the left DataFrame and only matching rows from the right. 

res = pd.merge(df, df1, how='left', on=*'key', 'key1'+) 

res 

Output: 

 

 Now we set how = 'right' in order to use keys from right frame only. In this it includes all 

rows from the right DataFrame and only matching rows from the left. 

res1 = pd.merge(df, df1, how='right', on=*'key', 'key1'+) 

res1 

Output 

 

 Now we set how = 'outer' in order to get union of keys from dataframes. In this it combines 

all rows from both DataFrames, filling missing values with NaN. 

res2 = pd.merge(df, df1, how='outer', on=*'key', 'key1'+) 

res2 

Output: 

 



 Now we set how = 'inner' in order to get intersection of keys from dataframes. In this it only 

includes rows where there is a match in both DataFrames. 

res3 = pd.merge(df, df1, how='inner', on=*'key', 'key1'+) 

res3 

Output: 

 

Joining DataFrame 

The .join() method in Pandas is used to combine columns of two DataFrames based on their 

indexes. It's a simple way of merging two DataFrames when the relationship between them 

is primarily based on their row indexes. It is used when we want to combine DataFrames 

along their indexes rather than specific columns. 

1. Joining DataFrames Using .join() 

If both DataFrames have the same index, we can use the .join() function to combine their 

columns. This method is useful when we want to merge DataFrames based on their row 

indexes rather than columns. 

import pandas as pd 

data1 = ,'Name':*'Jai', 'Princi', 'Gaurav', 'Anuj'+, 

        'Age':*27, 24, 22, 32+- 

data2 = ,'Address':*'Allahabad', 'Kannuaj', 'Allahabad', 'Kannuaj'+, 

        'Qualification':*'MCA', 'Phd', 'Bcom', 'B.hons'+- 

df = pd.DataFrame(data1,index=*'K0', 'K1', 'K2', 'K3'+) 

df1 = pd.DataFrame(data2, index=*'K0', 'K2', 'K3', 'K4'+) 

print(df, "\n\n", df1) 

 



Now we are using .join() method in order to join dataframes 

res = df.join(df1) 

res 

 

 

 Now we use how = 'outer' in order to get union 

res1 = df.join(df1, how='outer') 

res1 

 

2. Joining DataFrames Using the "on" Argument 

If we want to join DataFrames based on a column (rather than the index), we can use the on 

argument. This allows us to specify which column(s) should be used to align the two 

DataFrames. 

import pandas as pd 

data1 = ,'Name':*'Jai', 'Princi', 'Gaurav', 'Anuj'+, 

        'Age':*27, 24, 22, 32+, 

        'Key':*'K0', 'K1', 'K2', 'K3'+- 

data2 = ,'Address':*'Allahabad', 'Kannuaj', 'Allahabad', 'Kannuaj'+, 

        'Qualification':*'MCA', 'Phd', 'Bcom', 'B.hons'+- 



df = pd.DataFrame(data1) 

df1 = pd.DataFrame(data2, index=*'K0', 'K2', 'K3', 'K4'+) 

print(df, "\n\n", df1) 

Output: 

 

 

Now we are using .join with “on” argument. 

res2 = df.join(df1, on='Key') 

res2 

Output: 

 

3. Joining DataFrames with Different Index Levels (Multi-Index) 

In some cases, we may be working with DataFrames that have multi-level indexes. 

The .join() function also supports joining DataFrames that have different index levels by 

specifying the index levels. 

import pandas as pd 

data1 = ,'Name':*'Jai', 'Princi', 'Gaurav'+, 

        'Age':*27, 24, 22+- 

data2 = ,'Address':*'Allahabad', 'Kannuaj', 'Allahabad', 'Kanpur'+ 



  'Qualification':*'MCA', 'Phd', 'Bcom', 'B.hons'+- 

df = pd.DataFrame(data1, index=pd.Index(*'K0', 'K1', 'K2'+, name='key')) 

index = pd.MultiIndex.from_tuples(*('K0', 'Y0'), ('K1', 'Y1'), 

                                   ('K2', 'Y2'), ('K2', 'Y3')+, 

                                   names=*'key', 'Y'+) 

df1 = pd.DataFrame(data2, index= index) 

print(df, "\n\n", df1) 

Output: 

 

Now we join singly indexed dataframe with multi-indexed dataframe. 

result = df.join(df1, how='inner') 

result 

Output: 

 

 

 



Applying Functions to Data Frames 

As with lists, you can use the lapply and sapply functions with data frames. 

Using lapply() and sapply() on Data Frames 

The data frames are special cases of lists, with the list components consisting of the data 

frame’s columns. Thus, if you call lapply() on a data frame with a specified function f(), 

then f() will be called on each of the frame’s columns, with the return values placed in a list. 

For instance, with our previous example, we can use lapply as follows: 

> d 
  kids ages 
1 Jack   12 
2 Jill   10 
> dl <- lapply(d,sort) 
> dl 
$kids 
[1] "Jack" "Jill" 
$ages 
[1] 10 12 

1. Using apply() 
The apply() function works mainly with matrices, but it also works with data frames (which 
are internally lists of equal-length vectors). 
Syntax: 
apply(dataframe, MARGIN, function) 
MARGIN = 1 → apply function row-wise 
MARGIN = 2 → apply function column-wise 
Example: 
df <- data.frame( 
  A = c(1, 2, 3), 
  B = c(4, 5, 6), 
  C = c(7, 8, 9) 
) 
# Column-wise sum 
apply(df, 2, sum) 
 
# Row-wise mean 
apply(df, 1, mean) 
2. Using lapply() 
lapply() applies a function to each column of the data frame and returns a list. 
lapply(df, mean) 

 
🔹 3. Using sapply() 
sapply() is similar to lapply(), but it simplifies the result (vector or matrix if possible). 
sapply(df, mean) 

 
🔹 4. Using mapply() 



mapply() applies a function to multiple columns element-wise. 
df$A <- c(1,2,3) 
df$B <- c(4,5,6) 
 
# Add corresponding elements of A and B 
mapply(sum, df$A, df$B) 

 
🔹 5. Using dplyr (Tidyverse approach) 
If you’re using dplyr, you can apply functions easily with mutate(), summarise(), and across(). 
library(dplyr) 
 
# Apply mean to all columns 
df %>% summarise(across(everything(), mean)) 
 
# Apply log() to all numeric columns 
df %>% mutate(across(where(is.numeric), log)) 
 

Apply function to every value in R dataframe 
In R Programming Language to apply a function to every integer type value in a data frame, 
we can use lapply function from dplyr package. And if the datatype of values is string then 
we can use paste() with lapply. Let's understand the problem with the help of an example. 
Dataset in use: 

  A B C D 

1. 1 8 21 4 

2. 9 2 0 6 

3. 6 3 14 3 

4. 5 6 5 7 

5. 9 4 3 1 

6. 6 3 2 3 

after applying value*7+1 to each value of the dataframe 
Expected result: 

  A B C D 

1. 8 57 148 29 



  A B C D 

2. 64 15 1 43 

3. 43 22 99 22 

4. 36 43 36 50 

5. 64 29 22 8 

6. 43 22 15 22 

Method 1 :  Using lapply function: 
lapply is a function from apply family. By using lapply, we can avoid for loop as for loop is 
slower than lapply. lapply works faster than a normal loop because it doesn't mess with the 
environment you work in. It returns output as a list. 'l' in lapply indicates list. 
Syntax: 
lapply(X, FUN, ...) 
Here, X can be a vector list or data frame. And FUN takes a function that you wish to apply to 
the data frame as an argument. 
Approach: 
Create a dummy dataset. 
Create a custom function that you want to apply to every value in the data frame. 
Apply this custom function to every value in the data frame with the help of lapply. 
Display result 
Example 
# Apply function to every value in dataframe 
 
# Creating dataset  
m <- c(1,9,6,5,9,6) 
n <- c(8,2,3,6,4,3) 
o <- c(21,0,14,5,3,2) 
p <- c(4,6,3,7,1,3) 

# creating dataframe 
df <- data.frame(A=m,B=n,C=o,D=p) 
# creating function 
# that will multiply  
# each value by 7 and then add 1 
magic_fun <- function(x), 
  return (x*7+1)- 
# applying the custom function to every value and converting  
# it to dataframe, as lapply returns result in list  
# we have to convert it to data frame 
data.frame(lapply(df,magic_fun)) 
Output : 



Using lapply 
Method 2 : Using paste and apply function: 
paste() takes an R object as an argument and converts it to characters then paste it back 
with another string, i.e.it converts the argument to the character string and concatenates 
them. 
Syntax: 
paste (..., sep = " ") 
Our R object which is to be converted to string goes in place of "...",  sep=" "  represents a 
character string to separate the terms. 
Approach: 
Create a dummy dataset. 
Apply the custom function which will print "Hello," then value in the data frame value 
Display result 
Example: 
# Apply function to every value in dataframe 
# Creating dataset  
m <- c("Vikas","Varun","Deepak") 
 
n <- c("Komal","Suneha","Priya") 
# creating dataframe 
df <- data.frame(A=m,B=n) 
# Applying custom function to every element in dataframe 
df*+<-data.frame(lapply(df,function(x) paste("Hello,",x,sep=""))) 
# display dataset 
df 
Output: 



Using paste and apply 
Method 3: Using purrr 
purrr is a functional programming toolkit. Which comes with many useful functions such as 
a map. The map() function iterates across all entries of the vector and returns the output as 
a list. It allows us to replace for loop with in the code and makes it easier to read. 
Syntax : 
 map(.x, .f) returns a list 
 map_df(.x, .f) returns a data frame 
 map_dbl(.x, .f) returns a numeric (double) vector 
 map_chr(.x, .f) returns a character vector 
 map_lgl(.x, .f) returns a logical vector 
Here, .x is input and .f is a function that you want to be applied. Input to map function can 
be a list, a vector, or a data frame. 
Note: You need to install purrr package explicitly using the following command.  
install.packages("purrr") 
Approach : 
Create a vector, a list and a data frame 
Create a custom function which you want to be applied. 
Use map() to apply custom function on vector, list and data frame. 
Display result 

Factors in R 
Factors in R are data structures used to represent categorical data. They are essentially 
integer vectors where each integer is assigned a label, known as a "level." This allows for 
efficient storage and manipulation of categorical variables.  
Key characteristics of factors: 

 Categorical Data: 
Factors are designed for variables with a limited and predefined set of possible values (eg, 
"Male," "Female" for gender, or "Red," "Green," "Blue" for color). 

 Levels: 



The distinct values a factor can take are called its levels. By default, R sorts these levels 
alphabetically. 

 Storage: 
Although they appear as character strings, factors are stored internally as integers, which 
optimizes memory usage, especially with repeating values. 

 Statistical Modeling: 
Factors are crucial in statistical modeling functions like lm()and glm(), as they correctly 
represent categorical variables for analysis. 

 Ordered vs. Unordered: 
Factors can be either ordered (eg, "Low," "Medium," "High") or unordered (eg, "North," 
"South," "East," "West"). 

Creating a factor: 
Code 
gender <- factor(c("Male", "Female", "Male", "Female", "Male")) 

Factors 
Factors in R are data structures used to represent categorical variables. They are essentially 
integer vectors with associated labels (levels) that correspond to the unique categories.  

 Purpose: Factors are crucial for statistical analysis and modeling functions 
(e.g., lm(), glm()) as they correctly handle categorical variables, ensuring appropriate 
statistical tests and model interpretations. 

 Creation: Factors are created using the factor() function. 
    # Create a character vector 
    gender_vector <- c("male", "female", "male", "female", "male") 
 
    # Convert to a factor 
    gender_factor <- factor(gender_vector) 
    print(gender_factor) 

 Levels: 
Factors have predefined levels, which are the distinct categories. By default, levels are sorted 
alphabetically. The levels() function can be used to view or modify the order of levels. 

 Ordered Factors: 
Factors can be ordered, meaning there's an inherent order among the categories (e.g., 
"low", "medium", "high"). This is specified using the ordered = TRUE argument in 
the factor() function. 

Tables 
Tables in R, typically created using the table() function, are used to generate frequency 
distributions of one or more categorical variables (factors). 

 Purpose: 
Tables provide a concise summary of how many observations fall into each category or 
combination of categories. They are essential for understanding data distributions and 
exploring relationships between categorical variables. 

 Creation: 
The table() function takes one or more factors (or variables that can be coerced to factors) as 
arguments. 
    # Create a factor 
    color_factor <- factor(c("red", "blue", "red", "green", "blue")) 



 
    # Create a frequency table 
    color_table <- table(color_factor) 
    print(color_table) 
 
    # Create a two-way contingency table 
    gender_color_table <- table(gender_factor, color_factor) 
    print(gender_color_table) 

 Contingency Tables: 
When table() is used with multiple factors, it creates a multi-dimensional contingency table, 
showing the joint frequencies of the categories. 

 Analysis: 
Tables are often the starting point for further statistical analysis, such as chi-squared tests for 
independence using chisq.test(). 
 

Tables in R 
Tables in R, often created using the table()function, are used to generate frequency 
distributions or cross-tabulations of categorical variables, including factors. They provide a 
summary of the counts of occurrences for each unique value or combination of values. 
Key characteristics of tables: 

 Frequency Distributions: 
A single factor can be used to create a simple frequency table showing the count of each 
level. 

 Cross-Tabulations (Contingency Tables): 
Multiple factors can be used to create a two-way (or multi-way) cross-tabulation, displaying 
the joint frequencies of combinations of levels. 

 Output: 
The table()function returns a "table" object, which is a specialized form of vector or matrix 
designed for displaying frequencies.  

Creating a table: 
Code 
# Using the factor created above 
gender_table <- table(gender) 
 
# Creating a cross-tabulation with another factor (e.g., 'education_level') 
education_level <- factor(c("High School", "College", "High School", "College", "Graduate")) 
cross_table <- table(gender, education_level) 

Factors and levels 
In R programming, factors are data structures used to represent categorical data. They are 

essentially integer vectors where each integer is associated with a label, known as a 

level. Factors are particularly useful for statistical modeling and plotting, as R's statistical 

functions often treat factors differently than other data types like character or numeric 

vectors.  

Here's a breakdown of factors and levels: 

Factors: 

 Purpose: 



Factors are designed to handle categorical data, which are variables that can take on a limited 

number of distinct values or categories. Examples include gender (Male, Female), education 

level (High School, Bachelor's, Master's), or product quality (Good, Average, Bad). 

 Storage: 

While they display as labels (e.g., "Male", "Female"), factors are internally stored as integers, 

with each integer mapping to a specific level. This makes them memory-efficient compared 

to storing character strings directly. 

 Types: 

Factors can be ordered or unordered. 

 Unordered factors: The levels have no inherent order (e.g., "Red", "Green", 

"Blue"). 

 Ordered factors: The levels have a meaningful order (e.g., "Low" < "Medium" 

< "High"). This is important for analyses that depend on the order of 

categories. 

 Creation: 

Factors are created using the factor() function. 

Levels: 

 Definition: 

Levels are the distinct, predefined categories or values that a factor can take. They are the 

labels associated with the internal integer representation of the factor. 

 Default Order: 

By default, R sorts factor levels alphabetically when a factor is created without explicitly 

specifying the levels argument in the factor() function. 

 Custom Order: 

You can specify the order of levels when creating a factor using the levels argument in 

the factor() function. This is crucial for ordered factors or when you want a specific display 

order. 

 Accessing Levels: 

The levels of a factor can be accessed and manipulated using the levels() function. 

Example: 

కోడ్ 

# Create a character vector 

colors_vector <- c("Red", "Blue", "Green", "Red", "Blue") 

 

# Convert to an unordered factor 

colors_factor_unordered <- factor(colors_vector) 

print(colors_factor_unordered) 

# Output: [1] Red   Blue  Green Red   Blue 

# Levels: Blue Green Red (default alphabetical order) 

 

# Convert to an ordered factor with custom levels 

satisfaction_vector <- c("Medium", "High", "Low", "Medium") 

satisfaction_factor_ordered <- factor(satisfaction_vector,  

                                      levels = c("Low", "Medium", "High"),  

                                      ordered = TRUE) 

print(satisfaction_factor_ordered) 

# Output: [1] Medium High   Low    Medium 

# Levels: Low < Medium < High (custom order) 

 

 

Level Ordering of Factors in R Programming 
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  

  

  

Level ordering controls how categorical values are stored, displayed, and interpreted in 

analyses and plots. By default, R orders factor levels alphabetically. In this article, we will 

see the level ordering of factors in the R Programming Language. 

What Are Factors in R? 

Factors are data objects used to categorize data and store it as levels. They can store a string 

as well as an integer. They represent columns as they have a limited number of unique values. 

Factors in R can be created using the factor() function. It takes a vector as input. c() 

function is used to create a vector with explicitly provided values.  

Example:  

In this example, x is a vector with 8 elements. To convert it to a factor the function factor() is 

used. Here, there are 8 factors and 3 levels. Levels are the unique elements in the data. It can 

be found using the levels() function 

x <- c("Pen", "Pencil", "Brush", "Pen", 

        "Brush", "Brush", "Pencil", "Pencil") 

 

print(x) 

print(is.factor(x)) 

 

# Apply the factor function. 

factor_x = factor(x) 

levels(factor_x) 

Output :  

[1] "Pen"    "Pencil" "Brush"  "Pen"    "Brush"  "Brush"  "Pencil" "Pencil" 

 

[1] FALSE 

 

[1] "Brush"  "Pen"    "Pencil"  

Ordering Factor Levels 

Ordered factors levels are an extension of factors. It arranges the levels in increasing order. 

We use two functions: factor() and argument ordered(). 

1. Using the factor() Function 

You can rearrange factor levels by actually stating the order in the levels argument to the 

factor() function. This is perfect if you have an established, predetermined order for your 

factor levels. 

Syntax: 

factor(data, levels =c(""), ordered =TRUE)  

Parameter:  

 data: input vector with explicitly defined values. 

 levels(): Mention the list of levels in c function. 

 ordered: It is set true for enabling ordering. 

Example: In this example, the size vector is created using the c function. Then it is converted 

to a factor. For the ordering factor, the factor() function is used along with the arguments 

described as "Orderd=TRUE" . Thus the sizes are arranged in order. 

size = c("small", "large", "large", "small", 

         "medium", "large", "medium", "medium")  

 

size_factor <- factor(size)                                       

https://www.geeksforgeeks.org/r-language/r-factors/
https://www.geeksforgeeks.org/r-language/how-to-convert-factor-levels-to-list-in-r/


print(size_factor) 

 

ordered.size <- factor(size, levels = c( 

  "small", "medium", "large"), ordered = TRUE)   

print(ordered.size) 

Output:  

[1] small  large  large  small  medium large  medium medium 

Levels: large medium small 

 

[1] small  large  large  small  medium large  medium medium 

Levels: small < medium < large 

2. Using the ordered() Function 

The same can be done using the ordered function. 

Example:  

sizes <- factor(c("small", "large", "large", 

                   "small", "medium")) 

 

# ordering the levels 

sizes <- ordered(sizes, levels = c("small", "medium", "large"))     

print(sizes) 

Output:  

[1] small  large  large  small  medium 

Levels: small < medium < large 

Level ordering visualization in R 

To visualise the level ordering , we have a dataset of student grades, and we want to create a 

boxplot to compare the distribution of grades for different class levels (freshman, sophomore, 

junior, and senior). We can create a factor variable to represent the class levels and specify 

the level ordering so that the boxplot is ordered by class level. 

Example: 

In this example, we create a sample dataset of student grades with a grade column and 

a level column representing the class level of each student. We then create a factor 

variable level from the level column and specify the level ordering as "freshman", 

"sophomore", "junior", and "senior" using the factor() function. 

Finally, we create a boxplot of grades by class level using the boxplot() function. 

The grade column represents the response variable, and the level column represents the 

explanatory variable. We also specify a title for the plot. 

grades <- data.frame( 

  grade = c(75, 82, 68, 92, 89, 78, 85, 90, 72, 81, 94, 87, 79, 86, 91), 

  level = factor(c(rep("freshman", 5), rep("sophomore", 4), rep("junior", 3), rep("senior", 3))) 

) 

 

grades$level <- factor(grades$level, levels = c("freshman", "sophomore", "junior", "senior")) 

 

boxplot(grade ~ level, data = grades, main = "Student Grades by Class Level") 

Output: 



                                                         Level Ordering of Factors in R Programming 

Examples 
Factor Example 

# Factor for fruits 

fruits <- factor(c("Apple", "Mango", "Apple", "Banana", "Mango", "Apple")) 

 

print(fruits)          # prints factor values 

print(levels(fruits))  # shows unique categories 

Output: 

[1] Apple  Mango  Apple  Banana Mango  Apple  

Levels: Apple Banana Mango 

[1] "Apple"  "Banana" "Mango" 

 
🔹 2. Table Example (One-way) 

# Frequency of fruits 

table(fruits) 

Output: 

fruits 

 Apple Banana  Mango  

     3      1      2 

 
🔹 3. Two-way Table 

# Factors for gender and preference 

gender <- factor(c("Male", "Female", "Male", "Female", "Female", "Male")) 

drink  <- factor(c("Tea", "Coffee", "Coffee", "Tea", "Tea", "Coffee")) 

 

# Cross tabulation 

table(gender, drink) 

Output: 

        drink 



gender   Coffee Tea 

  Female      1   2 

  Male        2   1 

 
🔹 4. Using prop.table() (Proportions) 

# Proportion instead of counts 

prop.table(table(gender, drink)) 

Output (as fractions of total 6): 

        drink 

gender     Coffee       Tea 

  Female 0.1666667 0.3333333 

  Male   0.3333333 0.1666667 

 
🔹 5. Three-way Table 

age_group <- factor(c("Young", "Young", "Old", "Young", "Old", "Old")) 

 

# 3D table (gender x drink x age) 

table(gender, drink, age_group) 

Output (simplified view): 

, , age_group = Old 

 

        drink 

gender   Coffee Tea 

  Female      0   1 

  Male        2   0 

age_group = Young 

drink 

gender   Coffee Tea 

  Female      1   1 

  Male        0   1 

 
 

 Factors = categories (Apple, Mango, Banana, …) 

 Tables = count how often each category (or combination) appears 

Common functions used with factors in R include: 
Creation and Identification: 

 factor(): Converts a vector into a factor. 

 as.factor(): Converts an object to a factor. 

 is.factor(): Checks if an object is a factor, returning TRUE or FALSE. 

 ordered(): Creates an ordered factor, where levels have a specific order. 

 is.ordered(): Checks if a factor is ordered. 

 gl(): Generates factor levels, useful for creating factors with a specific number of 

levels and replications. 

Accessing and Modifying Properties: 

 levels(): Retrieves or sets the levels of a factor. 

 nlevels(): Returns the number of levels in a factor. 

 length(): Returns the number of elements in a factor. 

Data Manipulation and Analysis: 

 table(): Creates a frequency table of factor levels, showing the count of each level. 



 summary(): Provides a summary of the factor, including frequency counts for each 

level. 

 as.character(): Converts a factor back to a character vector. 

 as.numeric(): Converts a factor to its underlying numeric codes. 

forcats Package (for advanced factor manipulation): 

 fct_reorder(): Reorders factor levels based on another variable. 

 fct_recode(): Recodes factor levels, changing their names. 

 fct_collapse(): Collapses multiple factor levels into a single level. 

 

Working with tables in R involves various operations, including creating, 

inspecting, manipulating, and presenting tabular data. 

1. Creating Tables: 

 Frequency Tables: The table() function is used to create frequency tables for 

categorical variables.  
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    vec <- c(2, 4, 3, 1, 2, 3, 2, 1, 4, 2) 

    table(vec) 

 Contingency Tables (Cross-tabulations): table() can also be used with multiple 

variables to create contingency tables, showing the relationship between categories. 
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    df <- data.frame( 

      "Name" = c("abc", "cde", "def"), 

      "Gender" = c("Male", "Female", "Male") 

    ) 

    table(df$Name, df$Gender) 

 From Scratch: You can create a table from a matrix using as.table(). 
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    mat <- matrix(c(10, 20, 30, 40), nrow = 2, byrow = TRUE) 

    my_table <- as.table(mat) 

2. Inspecting Tables: 

 head(): Displays the first few rows of a table or data frame. 
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    head(my_data_frame) 

 str(): Provides a summary of the structure of the data, including data types and 

dimensions. 
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    str(my_data_frame) 

3. Manipulating Tables (often using dplyr or base R): 

 Filtering Rows: Select rows based on conditions. 
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    # Using dplyr 

    library(dplyr) 

    filtered_data <- my_data_frame %>% filter(column_name > value) 

    # Using base R 

    filtered_data_base <- my_data_frame[my_data_frame$column_name > value, ] 

 Selecting Columns: Choose specific columns of interest. 

కోడ్ 

    # Using dplyr 

    selected_columns <- my_data_frame %>% select(col1, col2) 



    # Using base R 

    selected_columns_base <- my_data_frame[, c("col1", "col2")] 

 Summarizing Data: Calculate summaries like mean, median, sum, etc. 
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    # Using dplyr 

    summary_data <- my_data_frame %>% summarize(mean_col = mean(column_name)) 

 Grouping Data: Perform operations within groups defined by one or more categorical 

variables. 
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    # Using dplyr 

    grouped_summary <- my_data_frame %>% group_by(category_col) %>% 

summarize(mean_col = mean(value_col)) 

 Adding New Columns: Create new columns based on existing ones. 
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    # Using dplyr 

    new_column_data <- my_data_frame %>% mutate(new_col = col1 * col2) 

    # Using base R 

    my_data_frame$new_col <- my_data_frame$col1 * my_data_frame$col2 

4. Presenting Tables: 

 Packages like gt, kableExtra, reactable, DT: These packages offer advanced 

functionalities for creating aesthetically pleasing and interactive tables for reports, 

web applications, or presentations. They allow for custom styling, formatting, and 

interactive features. 

 

Working with Factors 

 Creating Factors:  

Use factor() to create a factor from a vector or to define a specific order for the factor's 

levels using ordered=TRUE or the ordered() function.  

 Inspecting Factors: 

 levels(my_factor): Displays the different categories or levels of the factor.  

 summary(my_factor): Shows the frequency (count) of each level.  

 is.factor(my_variable): Checks if a variable is a factor.  

 Converting Factors: 

 as.numeric(my_factor): Converts a factor to a numeric vector representing the 

underlying integer codes of the levels.  

 as.character(my_factor): Converts a factor to a character vector, which 

preserves the level names.  

2. Working with Tables (Frequency Tables) 

 Creating Tables: 

 table(my_factor): Creates a frequency table of factor levels, showing the 

counts for each category.  

 table(factor1, factor2, factor3): Creates a multi-dimensional contingency table 

for three or more categorical variables.  

 ftable(my_multi_dim_table): Prints multi-dimensional tables in a more 

compact, "flat" format for better readability.  

 Modifying Tables: 

 prop.table(my_table): Converts a frequency table into a table of proportions.  

 margin.table(my_table): Calculates the marginal frequencies (total counts) for 

rows or columns of a table.  

 Statistical Tests with Tables: 



 chisq.test(my_table): Performs a Chi-Square test for independence on a two-

dimensional table.  

3. Other Related Functions 

 Applying Functions to Groups: 

 tapply(x, f, FUN): Applies a function (FUN) to subsets of a vector (x) defined 

by a factor (f).  

 aggregate(x ~ f, data=my_data, FUN=mean): A more general way to 

summarize data in a data frame by grouping with factors, often used for 

calculating means, sums, etc., within each group.  

 Visualizing Tables: 

 barplot(table(my_factor)): Creates a bar plot from the frequency table of a 

factor, visualizing the counts of each category.  

 

other factors and tables related functions 

When designing or managing any table (document, spreadsheet, or database): 

1. Data Integrity 

o Use validation rules or constraints to avoid duplicates and invalid data. 

2. Normalization / Structure 

o Especially in databases: split repeated info into separate tables with 

relationships. 

3. Performance & Size 

o For large data sets, plan indexes (SQL) or filters (Excel/Pandas) for faster 

queries. 

4. Security & Access 

o Control who can edit or view sensitive rows/columns. 

5. Consistency 

o Stick to a single data type per column (e.g., don’t mix text and numbers). 

6. Documentation & Metadata 

o Add captions, comments, or a data dictionary so others know what each field 

means. 

 

  Table-Related Functions by Environment 

📊 Spreadsheet (Excel / Google Sheets) 

Task Common Functions 

Math SUM(), AVERAGE(), COUNT(), ROUND() 

Conditional IF(), IFS(), COUNTIF(), SUMIF() 

Lookup VLOOKUP(), HLOOKUP(), XLOOKUP(), INDEX() + MATCH() 

Table Ops Insert → Table, structured refs like =Table1[Column], SORT(), FILTER() 

Text CONCAT(), TEXT(), LEFT(), RIGHT(), TRIM() 

 



  SQL Databases 

Action Key Statements / Functions 

Create/Modify CREATE TABLE, ALTER TABLE, DROP TABLE 

Insert/Update INSERT INTO, UPDATE, DELETE 

Retrieve SELECT, WHERE, ORDER BY, JOIN 

Aggregate COUNT(), SUM(), AVG(), MAX(), MIN() 

Constraints PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK 

 

🌐 HTML/CSS 

 Tags: <table>, <thead>, <tbody>, <tr>, <th>, <td>, <caption>. 

 CSS helpers: border-collapse, padding, nth-child(even) for zebra stripes. 

Control statements 
Control statements in R programming are used to manage the flow of execution within a 

program, allowing for decision-making and repetitive actions based on specific conditions. 

1. Conditional Statements: 

 if statement: Executes a block of code only if a specified condition is TRUE.  
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    x <- 10 

    if (x > 5) { 

      print("x is greater than 5") 

    } 

 if-else statement: Executes one block of code if the condition is TRUE and another if 

it's FALSE.  
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    x <- 3 

    if (x > 5) { 

      print("x is greater than 5") 

    } else { 

      print("x is not greater than 5") 

    } 

 if-else if-else statement: Tests multiple conditions sequentially, executing the block 

corresponding to the first TRUE condition. 
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    grade <- 85 

    if (grade >= 90) { 

      print("A") 

    } else if (grade >= 80) { 

      print("B") 

    } else { 

      print("C") 

    } 

 switch statement: Evaluates an expression and executes code based on its value, 

providing a cleaner alternative to nested if-else if for multiple choices. 
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    day <- "Monday" 

    switch(day, 

           "Monday" = print("Start of the week"), 

           "Friday" = print("End of the week"), 

           print("Mid-week") 

    ) 

2. Looping Statements: 

 for loop: Iterates over a sequence (e.g., a vector, list, or range of numbers) and 

executes a block of code for each element. 
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    for (i in 1:5) { 

      print(i) 

    } 

 while loop: Continuously executes a block of code as long as a specified condition 

remains TRUE. 
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    count <- 1 

    while (count <= 3) { 

      print(count) 

      count <- count + 1 

    } 

 repeat loop: Executes a block of code indefinitely until explicitly terminated by 

a break statement. 
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    x <- 1 

    repeat { 

      print(x) 

      x <- x + 1 

      if (x > 3) { 

        break 

      } 

    } 

3. Jump Statements (within loops): 

 break statement: Terminates the current loop and transfers control to the statement 

immediately following the loop. 

 next statement: Skips the current iteration of a loop and proceeds to the next iteration.  

Arithmetic and boolean operators and values in r programming 
R programming language utilizes various operators for arithmetic calculations and logical 

(Boolean) operations. 

Arithmetic Operators: 

These operators perform mathematical computations: 

 +: Addition 

 -: Subtraction 

 *: Multiplication 

 /: Division 

 ^ or **: Exponentiation (raises the first operand to the power of the second) 

 %%: Modulus (returns the remainder of a division) 

 %/%: Integer Division (returns the quotient of a division, discarding the remainder) 

Boolean Operators and Values: 



Boolean operators perform logical comparisons and 

return TRUE or FALSE values. These TRUE and FALSE are the Boolean values in R. 

Relational Operators (return Boolean values): 

 <: Less than 

 <=: Less than or equal to 

 >: Greater than 

 >=: Greater than or equal to 

 ==: Equal to 

 !=: Not equal to 

Logical Operators (work with Boolean values): 

 &: Element-wise Logical AND. Returns TRUE if both corresponding elements 

are TRUE. 

 |: Element-wise Logical OR. Returns TRUE if at least one of the corresponding 

elements is TRUE. 

 !: Logical NOT. Inverts the Boolean value (e.g., !TRUE is FALSE). 

 &&: Logical AND (scalar). Evaluates only the first element of each operand, 

returning a single TRUE or FALSE. 

 ||: Logical OR (scalar). Evaluates only the first element of each operand, returning a 

single TRUE or FALSE. 

Examples: 
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# Arithmetic Operators 

a <- 10 

b <- 3 

print(a + b)  # Output: 13 

print(a - b)  # Output: 7 

print(a * b)  # Output: 30 

print(a / b)  # Output: 3.333333 

print(a ^ b)  # Output: 1000 

print(a %% b) # Output: 1 (remainder of 10/3) 

print(a %/% b) # Output: 3 (integer part of 10/3) 

 

# Boolean Operators and Values 

x <- 5 

y <- 7 

print(x < y)   # Output: TRUE 

print(x == y)  # Output: FALSE 

print(x != y)  # Output: TRUE 

 

vec1 <- c(TRUE, FALSE, TRUE) 

vec2 <- c(FALSE, TRUE, TRUE) 

print(vec1 & vec2) # Output: FALSE TRUE TRUE (element-wise AND) 

print(vec1 | vec2) # Output: TRUE TRUE TRUE (element-wise OR) 

print(!vec1)       # Output: FALSE TRUE FALSE (logical NOT) 

 

print(TRUE && FALSE) # Output: FALSE (scalar AND) 

print(TRUE || FALSE) # Output: TRUE (scalar OR) 

Default values of arguments 

Default arguments provide predefined values for function parameters that are 

automatically assigned if a user doesn't provide a value when calling the 



function. This allows for flexible function calls, as you can omit certain 

arguments and still have the function work correctly using the default 

values. Default arguments are typically defined with a specific syntax (like = in 

Python and C++) and are placed after any non-default arguments in the function 

definition.  

How Default Arguments Work 

1. Function Definition:  

When defining a function, you assign a default value to a parameter using 

syntax like parameter_name = default_value.  

2. Function Call: 

 If you provide a value for that parameter in the function call, the 

default value is overridden.  

 If you do not provide a value for the parameter, the function 

automatically uses the assigned default value.  

Example 

Consider a Python function create_user(name, country="USA"):  

 create_user("John") will result in a user named "John" from the "USA", 

as "USA" is the default value for country. 

 create_user("Jane", "Canada") will result in a user named "Jane" from 

"Canada", as the explicitly provided "Canada" overrides the default. 

Benefits 

 Flexibility: Allows functions to be called with fewer arguments, making 

them more versatile.  

 Simplicity: Reduces the need for separate functions with slightly different 

parameter lists.  

 Readability: Clearly indicates optional values that are often used.  

Key Considerations 

 Order:  

Default arguments must come after any non-default arguments in the function 

definition.  

 Scope:  

In languages like JavaScript, default parameters are evaluated at the time of the 

function call, not when the function is defined.  

Returning Boolean values 

To return a Boolean value, a function uses conditional logic (like if statements) 

or comparison operators to evaluate a condition and 

returns True or False (or 1 or 0 in some languages like C) based on the result. In 

many programming languages, functions that return a Boolean are often called 

"predicate" functions and are good practice to name starting with "is", such 

as isEven() or isValid().  

1. Using Conditional Statements 

You can use if/else statements to check conditions and explicitly 

return True or False. Python Example.  



Python 

    def is_positive(number): 

        if number > 0: 

            return True 

        else: 

            return False 

This function checks if a number is positive, returning True if it is, 

and False otherwise. JavaScript Example.  

JavaScript 

    function isPositive(number) { 

        if (number > 0) { 

            return true; 

        } else { 

            return false; 

        } 

    } 

2. Using Comparison Operators 

You can directly return the result of a comparison, as comparison operators 

inherently produce a Boolean value. Python Example.  

Python 

    def is_positive(number): 

        return number > 0 # Directly returns the result of the comparison 

JavaScript Example. 

JavaScript 

    function isPositive(number) { 

        return number > 0; // The '>' operator returns a boolean directly 

    } 

3. Best Practices  

 Naming Conventions:  

Name your Boolean-returning functions with a prefix like "is", "has", or "can" 

to clearly indicate that they ask a question and answer with a True/False value. 

 def is_valid_user(username) 

 function has_permission(user) 

 Predicates:  

Functions that return a Boolean value are often called "predicate functions". 

4. Contexts where Boolean values are used 

 Conditional Statements: To control the flow of your program, 

like if and else statements.  

 Logical Operators: To combine or negate conditions. 

 Checking for Success or Failure: To indicate if an operation was 

successful or not, such as checking if a file was found or a database 

record exists.  

Functions and objects 



In programming, an object is a fundamental concept representing a collection of data 

(properties) and behaviors (methods) that can interact with each other. A function is a 

block of reusable code that performs a specific task, and in many languages 

like JavaScript, functions themselves are a special type of object, often called 

"function objects" or "first-class objects". This means they can be treated as values, 

assigned to variables, passed to other functions, and have properties and methods like 

other objects, but with the unique ability to be "called" or executed.  

Objects 

 Definition: A real-world or abstract entity modeled in a program.  

 Structure: A collection of properties (key-value pairs), where the value can be any 

data type, including another object or a function (which then becomes a method).  

 Examples: A "car" object might have properties like color and model, and a method 

like startEngine().  

Functions 

 Definition: A self-contained block of code designed to perform a specific task.  

 Purpose: To provide reusable logic, allowing you to avoid repeating code and 

organize your program into logical, manageable units.  

 Key Distinction: Unlike regular objects, functions are designed to be invoked or 

"called" to execute their defined actions.  

The Relationship: Functions are Objects (in JavaScript)  

 First-Class Objects:  

In languages like JavaScript, functions are "first-class citizens" or "first-class objects". This 

means they possess all the characteristics of other objects:  

 They can be assigned to variables.  

 They can be stored in data structures like arrays.  

 They can be passed as arguments to other functions (callback functions).  

 They can be returned from other functions.  

 Function-Specific Properties:  

As special objects, function objects have built-in properties and methods that regular objects 

don't. Examples include name, length, arguments, call, apply, and bind.  

 Methods vs. Functions:  

When a function is associated with an object and performs an action on or for that object, it is 

often called a method. In JavaScript, all methods are functions, but the term highlights their 

role within an object's structure.  

 

 

Tools for composing functions code 

Composing function code in R involves creating and structuring functions to 

perform specific tasks, often combining them to build more complex 

operations. Several tools and concepts facilitate this process: 

1. Integrated Development Environments (IDEs): 

 RStudio: The most widely used IDE for R, providing a comprehensive 

environment with a code editor, console, workspace viewer, plot viewer, 

and integrated tools for package development, version control (Git), and 

R Markdown reporting. 

2. Core R Language Features: 

 function() keyword: Used to define functions, specifying parameters and 

the function body. 
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    my_function <- function(arg1, arg2) { 

      # Function body 

      result <- arg1 + arg2 

      return(result) 

    } 

 Arguments: Inputs passed to functions, allowing for flexible and reusable 

code. 

 Return values: Functions can return results using the return() statement or 

by implicitly returning the last evaluated expression. 

 Scoping: Understanding how variables are accessed within functions 

(lexical scoping) is crucial for correct function composition. 

3. Functional Programming Concepts: 

 Anonymous functions:  

Functions defined without a name, often used for concise operations within 

other functions or functionals. 

 Functionals:  

Functions that take other functions as arguments 

(e.g., lapply, sapply, purrr::map). 

 Closures:  

Functions created by other functions, retaining access to variables from their 

enclosing environment. 

 Function operators:  

Functions that take functions as input and return modified functions as output.  

4. Packages for Enhanced Function Composition: 

 magrittr (and the base R pipe |>): Provides the pipe operator (%>% or |>) 

for chaining function calls, improving readability and reducing nested 

function calls. 
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    library(magrittr) 

    data %>% 

      filter(condition) %>% 

      mutate(new_variable = old_variable * 2) %>% 

      summarise(mean_value = mean(new_variable)) 

 dplyr:  

A key package for data manipulation, offering functions that are easily 

composable with the pipe operator for common data transformation tasks. 

 purrr:  

Part of the Tidyverse, it provides a consistent and powerful set of tools for 

working with functions and iterations, including mapping functions over lists 

and vectors. 

 devtools and roxygen2:  



Essential for developing and documenting R packages, which often involve 

composing multiple functions into a cohesive unit. 

5. Version Control: 

 Git and GitHub: Crucial for managing function code, tracking changes, 

collaborating with others, and ensuring reproducibility. RStudio offers 

excellent integration with Git. 

These tools and concepts collectively empower R users to write modular, 

reusable, and maintainable function code, facilitating complex data analysis and 

application development. 

 

Environment and scope issues 
Environment and scope issues include broad environmental problems such as climate change, 

biodiversity loss, and pollution, alongside specific concerns like waste management, resource 

depletion, and land degradation. The "scope" refers to the broad extent and nature of these 

issues, which are often interconnected and global in nature, impacting everyone from local 

ecosystems to the entire planet.  

Major Environmental Issues 
 Climate Change:  

Caused by global warming from fossil fuels, this includes rising sea levels and extreme 

weather events.  

 Pollution:  

This encompasses air pollution from industrial and vehicular sources, water pollution from 

various contaminants, plastic pollution, and soil degradation.  

 Biodiversity Loss:  

The loss of plant and animal species and the destruction of natural habitats due to 

deforestation and urbanization.  

 Waste Management:  

Issues like poor management of solid waste, plastic, and hazardous materials contribute to 

pollution and environmental degradation.  

 Resource Depletion:  

Growing demand from a rising global population leads to the depletion of land, water, and 

forest resources.  

Scope of Environmental Issues 

 Global Impact:  

Environmental problems are not confined to specific regions but affect the entire world, such 

as climate change and plastic pollution.  

 Interconnectedness:  

Issues like deforestation, biodiversity loss, and climate change are deeply linked, with actions 

in one area affecting others.  

 Regional Variations:  

While global in scale, specific issues like water scarcity, land degradation, and pollution have 

varying impacts and challenges across different regions.  

 Socio-Economic Factors:  

Environmental challenges are often driven by development and human activities, putting 

immense pressure on natural resources.  

Environmental Studies & Management 

 Multidisciplinary Approach:  

Environmental studies integrate various fields, including biology, chemistry, geology, 

engineering, sociology, and economics, to understand and address these complex issues.  
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 Public Awareness:  

Educating the public about environmental problems fosters sensitivity, encourages resource 

conservation, and promotes active participation in solutions.  

 Prevention and Management:  

Environmental studies and management focus on preventing pollution, conserving 

biodiversity, and managing natural resources sustainably.  

 

Writing Upstairs 
Writing upstairs" in the context of R programming refers to the practice of creating and 

managing R scripts and functions in a structured manner, often in separate files, rather than 

directly typing and executing code in the R console. This approach promotes organization, 

reusability, and easier debugging. 

Here's how to implement this in R: Create a New R Script. 

In RStudio, navigate to File > New File > R Script to open a new, blank script file. In other 

environments, you can use a text editor to create a new file and save it with a .R extension 

(e.g., my_script.R). Write Your R Code. 

Populate the R script with your code, including: 

 Functions: Define custom functions to encapsulate specific tasks. 

 Variable Assignments: Store data or results in variables. 

 Data Manipulation: Perform operations on your data. 

 Comments: Use the # symbol to add comments that explain your code and its 

purpose, improving readability. 

కోడ్ 

    # This is a sample R script for data analysis 

 

    # Define a function to calculate the mean 

    calculate_mean <- function(data_vector) { 

      mean_value <- mean(data_vector) 

      return(mean_value) 

    } 

 

    # Create a sample data vector 

    my_data <- c(10, 15, 20, 25, 30) 

 

    # Calculate the mean using the defined function 

    result_mean <- calculate_mean(my_data) 

 

    # Print the result 

    print(paste("The mean of the data is:", result_mean)) 

Save the R Script. 

Save the script file to a designated location on your computer. This allows you to easily 

access and reuse your code in the future. 

 Execute the Script: 

o In RStudio: You can execute individual lines or selected blocks of code by 

placing the cursor on the line/block and pressing Ctrl + Enter (or Cmd + 

Enter on macOS). To run the entire script, use the "Source" button or Ctrl + 

Shift + S. 

o From the R Console: Use the source() function to execute the entire script 

file. For example: 

కోడ్ 



        source("path/to/your/my_script.R") 

This method of "writing upstairs" promotes good programming practices in R by separating 

code logic from interactive console commands, facilitating project organization and 

collaboration. 

 

Recursion 
Recursion in R, as in other programming languages, is a technique where a function calls 

itself to solve a problem. This approach breaks down a complex problem into smaller, self-

similar subproblems until a simple base case is reached, which can be solved directly without 

further recursion. 

Key Components of a Recursive Function in R: 

 Base Case:  

This is the condition that stops the recursion. Without a proper base case, a recursive function 

would call itself indefinitely, leading to a stack overflow error. 

 Recursive Step:  

This is the part of the function where it calls itself with a modified input, typically moving 

closer to the base case. 

Example: Factorial Calculation using Recursion in R 

The factorial of a non-negative integer n is the product of all positive integers less than or 

equal to n. It can be defined recursively as: 

 0! = 1 (Base case) 

 n! = n * (n-1)! for n > 0 (Recursive step) 

Code 

factorial_recursive <- function(n) { 

  # Base case 

  if (n == 0 || n == 1) { 

    return(1) 

  } else { 

    # Recursive step 

    return(n * factorial_recursive(n - 1)) 

  } 

} 

 

# Example usage 

print(factorial_recursive(5)) 

# Output: 120 

print(factorial_recursive(0)) 

# Output: 1 

Advantages of Recursion: 

 Elegance and Readability:  

For problems that naturally have a recursive structure (like tree traversals or certain 

mathematical sequences), recursive solutions can be more concise and easier to understand 

than iterative ones. 

 Problem Decomposition:  

Recursion excels at breaking down complex problems into smaller, manageable subproblems. 

Disadvantages and Considerations: 

 Performance:  

Recursive calls involve overhead due to function call stack management, which can make 

them slower than iterative solutions for some problems, especially in R where function calls 

can be relatively expensive. 

 Memory Usage:  



Each recursive call adds a new frame to the call stack. Deep recursion can lead to excessive 

memory consumption and potentially stack overflow errors. 

 Debugging:  

Tracing the execution flow of a recursive function can be more challenging than with 

iterative loops. 

 

Replacement functions: 

In R, replacement functions are used to modify elements within vectors, lists, or data 

frames. The primary function for general replacement is replace(), but other functions 

like gsub() and direct indexing can also be used for specific replacement tasks. 

1. The replace() function: 

The replace() function is a versatile tool for replacing values at specified indices or based on 

conditions. 

Code 

replace(x, list, values) 

 x: The vector or object in which values are to be replaced. 

 list: An index vector specifying the positions of elements to be replaced. This can be a 

numeric vector of indices or a logical vector. 

 values: The replacement values. These values are recycled if list has more elements 

than values. 

Example: 

Code 

# Replacing elements by index 

my_vector <- c("apple", "orange", "grape", "banana") 

new_vector <- replace(my_vector, 2, "blueberry") 

print(new_vector) 

# Output: [1] "apple"     "blueberry" "grape"     "banana" 

 

# Replacing elements based on a condition 

numbers <- c(1, 2, 4, 4, 5, 7) 

updated_numbers <- replace(numbers, numbers > 4, 50) 

print(updated_numbers) 

# Output: [1] 1 2 4 4 50 50 

2. Direct Indexing for Replacement: 

You can directly assign new values to specific elements or subsets of an object using 

indexing. 

Code 

# Replacing a single element 

my_vector[2] <- "kiwi" 

print(my_vector) 

# Output: [1] "apple" "kiwi"  "grape" "banana" 

 

# Replacing multiple elements using a logical condition 

numbers[numbers == 4] <- 99 

print(numbers) 

# Output: [1] 1 2 99 99 50 50 

3. gsub() and sub() for String Replacement: 

For replacing patterns within character strings, gsub() (global substitution) and sub() (single 

substitution) are used. 

Code 



# Global substitution 

text <- "This is a test string. This test is repeated." 

new_text_gsub <- gsub("test", "sample", text) 

print(new_text_gsub) 

# Output: [1] "This is a sample string. This sample is repeated." 

 

# Single substitution 

new_text_sub <- sub("test", "sample", text) 

print(new_text_sub) 

# Output: [1] "This is a sample string. This test is repeated." 

Tools for string manipulation functions in r 

R provides several tools for string manipulation, primarily through 

base R functions and dedicated packages. 

1. Base R Functions: 

 paste() and paste0(): Concatenate strings. paste0() is a shortcut 

for paste(..., sep = ""). 

Code 

    paste("Hello", "World") # "Hello World" 

    paste0("Hello", "World") # "HelloWorld" 

 nchar(): Count the number of characters in a string. 

Code 

    nchar("R Programming") # 13 

 toupper() and tolower(): Convert strings to uppercase or 

lowercase. 

Code 

    toupper("hello") # "HELLO" 

    tolower("WORLD") # "world" 

 substr(): Extract a substring from a specified start and end 

position. 

Code 

    substr("R Programming", 1, 3) # "R P" 

 strsplit(): Split a string into a vector of substrings based on a 

delimiter. 

Code 

    strsplit("apple,banana,orange", ",") # list("apple", "banana", 

"orange") 

 grep(), grepl(), sub(), gsub(): Used for pattern matching and 

replacement, often with regular expressions. 

o grep(): Returns the indices of elements matching a pattern. 

o grepl(): Returns a logical vector indicating matches. 



o sub(): Replaces the first occurrence of a pattern. 

o gsub(): Replaces all occurrences of a pattern. 

Code 

    grep("a", c("apple", "banana")) # 1 2 

    gsub("a", "X", "banana") # "bXnXnX" 

2. stringr Package: 

The stringr package, part of the Tidyverse, offers a consistent and 

user-friendly interface for string manipulation. Its functions typically 

start with str_. 

 str_c(): Concatenate strings (similar to paste0()). 

 str_length(): Get the length of strings (similar to nchar()). 

 str_to_upper(), str_to_lower(), str_to_title(), str_to_sentence(): 

Case conversion. 

 str_sub(): Extract substrings (similar to substr()). 

 str_split(): Split strings (similar to strsplit()). 

 str_detect(), str_subset(), str_count(), str_extract(), str_replace():

 Powerful functions for pattern matching, extraction, and 

replacement using regular expressions. 

 str_trim(): Remove leading/trailing whitespace. 

 str_pad(): Pad strings to a certain length. 

3. stringi Package: 

The stringi package provides highly optimized and comprehensive 

string manipulation functionalities, often with better performance than 

base R functions for complex tasks. It's a powerful alternative 

to stringr for advanced use cases. 

Choosing the right tool: 

 For simple, one-off tasks, base R functions are often sufficient. 

 For consistent and readable code within the Tidyverse 

ecosystem, stringr is the preferred choice. 

 For performance-critical applications or advanced Unicode 

handling, stringi offers robust solutions. 

math and simulation in r 

R is a versatile programming language used extensively for 

mathematical computations and running simulations in 

various fields, from statistics to engineering. You can perform 

basic arithmetic and use built-in mathematical functions for 

complex calculations, as well as simulate random processes 



by generating data from different probability distributions or 

for specific equations. R's ability to create sophisticated 

graphs and handle computationally intensive tasks makes it a 

powerful tool for exploring "what-if" scenarios, testing 

hypotheses, and making data-driven decisions.  

Mathematical Computations in R 

 Arithmetic Operators:  

R uses standard operators (+, -, *, /, etc.) for performing basic 

mathematical operations.  

 Built-in Functions:  

R provides numerous built-in functions for mathematical 

tasks, such as:  

 sqrt() for square roots  

 abs() for absolute values  

 ceiling() for rounding up to the nearest integer  

 floor() for rounding down to the nearest integer  

 max() and min() for finding the highest and lowest 

values in a set  

 Integration:  

R can perform numerical integration using 

the integrate() function by specifying the function and the 

integration bounds.  

 Set Operations:  

R offers functions for set operations 

like union(), intersect(), setdiff(), and the membership 

operator %in%.  

Simulation in R 

 Generating Random Data:  

R can generate random numbers from various distributions 

using functions like rnorm() for normal distributions.  

 Running Multiple Simulations:  

You can use loops (e.g., for loops) or functions like sapply() to 

repeat simulations, allowing you to perform statistical analysis 

on the simulated results.  



 Simulating Equations:  

R can simulate equations by running them for numerous 

parameter values to understand how they behave under 

different conditions.  

 Setting a Seed:  

To ensure the reproducibility of your simulations, it is 

important to set the random seed outside of any loops 

or sapply statements.  

 Packages:  

Various R packages offer specialized functions for more 

complex simulation tasks.  

Applications of Math and Simulation in R 

 Data Analysis & Statistics:  

R is widely used for statistical computing and analysis, with 

simulation being a powerful tool for understanding complex 

systems and random processes.  

 Mathematical Modeling:  

Students and researchers can use R to create mathematical 

models, solve real-world problems, and visualize model 

behavior.  

 Hypothesis Testing:  

Simulations allow for testing hypotheses by analyzing system 

behavior under various simulated circumstances.  

 Parameter Estimation:  

By changing variables and running simulations, you can 

estimate the impact of these changes on outcomes, leading to 

more accurate parameter estimations.  

 Forecasting:  

You can leverage simulated data to predict future trends and 

behaviors, supporting informed decision-making.  

 
 

 



UNIT IV 

S3 class in R Programming 

S3 classes represent the most fundamental and widely used object-oriented programming 

system in R. They are characterized by their simplicity and lack of formal class definitions, 

making them highly flexible. 

Key characteristics of S3 classes: 

 Informal Definition:  

S3 classes do not have a formal class definition like S4 or Reference Classes. An object 

becomes an S3 object of a particular class simply by assigning a character vector to 

its class attribute. 

 List-based Structure:  

S3 objects are typically built upon lists, where the named components of the list serve as the 

object's "member variables" or attributes. 

 Generic Functions and Method Dispatch:  

S3 relies on generic functions (e.g., print(), summary(), plot()) and a mechanism called 

method dispatch. When a generic function is called with an S3 object, R looks for a specific 

method function named generic.classname() (e.g., print.myclass()) that corresponds to the 

object's class. 

 Polymorphism:  

This system allows for polymorphism, where the same generic function can behave 

differently depending on the class of the object it operates on. 

Creating an S3 Class and Object: 

 Create a list: Define a list containing the desired components for your object. 

CODE 

    my_data <- list(name = "Alice", age = 30, city = "New York") 

 Assign a class attribute: Set the class attribute of the list to a character string 

representing the class name. 

CODE 

    class(my_data) <- "Person" 

Now, my_data is an S3 object of class "Person". 

Creating S3 Methods: 

To make generic functions work specifically with your S3 class, you define methods using 

the generic.classname() naming convention. 



CODE 

print.Person <- function(x, ...) { 

  cat("Name:", x$name, "\n") 

  cat("Age:", x$age, "\n") 

  cat("City:", x$city, "\n") 

} 

Now, when you call print(my_data), it will use the custom print.Person method. 

Advantages: 

 Simplicity and Ease of Use:  

S3 is straightforward to learn and implement, contributing to its widespread use in R's base 

and many packages. 

 Flexibility:  

The informal nature allows for easy modification and extension of object structures. 

Disadvantages: 

 Lack of Formal Definition:  

The absence of formal class definitions can lead to less rigorous object structures and 

potential inconsistencies if not carefully managed. 

 Single Dispatch:  

Method dispatch is primarily based on the class of the first argument to the generic function, 

limiting multiple dispatch scenarios found in other OOP systems. 

Objects have attributes and the most common attribute related to an object is class. The 

command class is used to define a class of an object or learn about the classes of an object.  

Class is a vector and this property allows two things:  

  

 Objects are allowed to inherit from numerous classes 

 Order of inheritance can be specified for complex classes 

 

Example: Checking the class of an object  

  

# Creating a vector x consisting of type of genders 

x<-c("female", "male", "male", "female")  

# Using the command <code>class()</code>  

# to check the class of the vector 



class(x) 

Output:  

 [1] "character" 

S4 class in r programming 

S4 classes in R provide a formal and structured system for object-oriented programming, 

offering a more rigorous approach compared to S3 classes. They are particularly useful for 

developing complex data structures and R packages. 

Key Features of S4 Classes: 

 Formal Definition: S4 classes are explicitly defined using the setClass() function, 

specifying the class name and its slots (attributes) along with their respective data 

types. This formal definition ensures type safety and consistency. 

CODE 

    setClass( 

      "Person", 

      slots = list( 

        name = "character", 

        age = "numeric", 

        occupation = "character" 

      ), 

      prototype = list( 

        name = "Unknown", 

        age = NA_real_, 

        occupation = "Unemployed" 

      ) 

    ) 

 Object Creation: Objects of an S4 class are created using the new() function, 

providing the class name and initial values for the defined slots. 

CODE 

    john <- new("Person", name = "John Doe", age = 30, occupation = "Engineer") 

 Slot Access and Modification: Slots within an S4 object are accessed and modified 

using the @ operator. 

CODE 

    john@name # Access the 'name' slot 

    john@age <- 31 # Modify the 'age' slot 

 Generics and Methods: S4 classes leverage generic functions and methods for 

polymorphism. Generic functions (like show(), print()) define a general operation, 



while methods provide specific implementations of these generics for particular S4 

classes. This allows for customized behavior based on the object's class. 

CODE 

    setMethod("show", "Person", function(object) { 

      cat("Name:", object@name, "\n") 

      cat("Age:", object@age, "years old\n") 

      cat("Occupation:", object@occupation, "\n") 

    }) 

 

    john # Calling show(john) implicitly 

 Inheritance: S4 classes support inheritance, allowing new classes to extend existing 

ones, inheriting their slots and methods. This promotes code reuse and hierarchical 

organization. 

Advantages of S4 Classes: 

 Structure and Formalism: Enforces a clear structure and data types, reducing errors. 

 Multiple Dispatch: Can handle methods that depend on the classes of multiple 

arguments. 

 Package Development: Well-suited for building robust and maintainable R packages. 

 Readability and Maintainability: Promotes organized and understandable code. 

While S4 classes offer significant advantages for complex object-oriented programming, they 

can be more verbose than S3 classes. The choice between S3 and S4 depends on the specific 

needs and complexity of the project. 

S3 and S4 classes in r 

R provides two primary object-oriented programming systems for defining classes and 

methods: S3 and S4. They differ in their level of formality and structure. 

S3 Classes: 

 Informal Definition:  

S3 classes do not have a formal class definition. An object becomes an S3 object simply by 

assigning a class attribute to it, typically a character vector. 

 Method Dispatch:  

Method dispatch in S3 relies on generic functions and the naming 

convention generic.class. When a generic function (e.g., print()) is called on an S3 object, R 

looks for a method specifically named print.myclass() if the object's class is myclass. If no 

specific method is found, a default method (e.g., print.default()) is called. 



 Flexibility:  

S3 is known for its flexibility and ease of use, as it requires less boilerplate code. 

 Example: 

CODE 

    # Create an S3 object 

    my_s3_object <- list(name = "Alice", age = 30) 

    class(my_s3_object) <- "Person" 

 

    # Define an S3 method 

    print.Person <- function(x, ...) { 

      cat("Name:", x$name, "\n") 

      cat("Age:", x$age, "\n") 

    } 

 

    # Call the method 

    print(my_s3_object) 

S4 Classes: 

 Formal Definition:  

S4 classes have a formal definition using the setClass() function, which defines the 

class's slots (attributes) and their types. 

 Method Dispatch:  

Method dispatch in S4 uses the setMethod() function to define methods for generic functions 

based on the class of the arguments. This provides stronger type checking and more robust 

method dispatch. 

 Structure and Validation:  

S4 offers a more structured and rigorous approach to object-oriented programming, including 

features like inheritance and validation of slot types. 

 Example: 

CODE 

    # Define an S4 class 

    setClass("Employee", 

             slots = c(name = "character", employee_id = "numeric")) 

 

    # Create an S4 object 

    my_s4_object <- new("Employee", name = "Bob", employee_id = 12345) 

 



    # Define an S4 method for the 'show' generic 

    setMethod("show", "Employee", 

              function(object) { 

                cat("Employee Name:", object@name, "\n") 

                cat("Employee ID:", object@employee_id, "\n") 

              }) 

 

    # Call the method (implicitly by printing the object) 

    my_s4_object 

Key Differences: 

 Formal Definition: S4 has formal class definitions with slots, while S3 relies on 

attributes. 

 Method Definition: S4 uses setMethod() for defining methods, while S3 uses 

the generic.class naming convention. 

 Type Checking: S4 provides stronger type checking and validation of object slots. 

 Inheritance: S4 supports formal inheritance mechanisms. 

 Attribute Access: S3 objects use $ to access attributes, while S4 objects use 

 

Managing objects in R programming  

1. Creating and Assigning Objects: 

Objects are created by assigning values to a variable name using the assignment operator <-. 

code 

my_vector <- c(1, 2, 3, 4, 5) 

my_dataframe <- data.frame(Name = c("Alice", "Bob"), Age = c(25, 30)) 

2. Listing and Inspecting Objects: 

 Use ls() to list all objects in the current environment. 

 Use ls(pattern = "my_") to list objects matching a specific pattern. 

 Use exists("object_name") to check if an object exists. 

 Use class(object) to determine the class of an object (e.g., "numeric", "data.frame"). 

 Use str(object) to get a compact summary of an object's structure. 

 Use summary(object) to get a statistical summary of an object. 

3. Removing Objects: 

 Use rm(object_name) to remove a specific object. 



 Use rm(list = ls()) to remove all objects from the current environment. 

4. Saving and Loading Objects: 

 Use save(object1, object2, file = "my_objects.RData") to save selected objects to a 

file. 

 Use save.image(file = "my_workspace.RData") to save the entire workspace (all 

objects) to a file. 

 Use load("my_objects.RData") to load objects from a saved file back into the 

environment. 

5. Understanding Object-Oriented Programming (OOP) in R: 

R supports OOP concepts, primarily through S3 and S4 class systems: 

 S3 Classes:  

Informal and flexible, relying on generic functions that dispatch methods based on the 

object's class. 

 S4 Classes:  

More formal and structured, offering better encapsulation and method dispatch based on 

argument types. 

6. Memory Management:  

 R uses a garbage collector to automatically release memory used by objects that are 

no longer referenced. 

 Be mindful of creating large, unnecessary objects, as this can lead to increased 

memory consumption. 

 Understanding how R handles object replacement and modification can help avoid 

memory leaks. 

Input/output in r 

In R, input and output operations involve reading data into the R environment and displaying 

or saving results. 

Input: 

 From the console: 

o readline(): Reads a single line of text input from the user. The input is always 

treated as a character string and may require conversion to other data types 

(e.g., as.integer(), as.numeric()). 

code 



        name<-readline("Enteryourname:") 

        age <- as.integer(readline("Enter your age: ")) 

 scan(): Reads multiple values from the console or a file, into a vector or list. It can 

handle different data types and is useful for reading structured data. 

code 

        numbers <- scan(what = numeric()) # Reads numeric values 

 From files: 

o read.csv(), read.table(), read_csv() (from readr package): Functions for reading 

tabular data from CSV files and other delimited text files. 

o readRDS(), saveRDS(): Functions for saving and loading R objects in a binary 

format, preserving their structure and attributes. 

o Specialized functions: R also has packages and functions for reading various 

other data formats like Excel files, databases, JSON, XML, etc. 

Output: 

 To the console: 

o print(): Displays the value of an R object. 

o cat(): Concatenates and prints its arguments to the console, often used for 

displaying messages or formatted output. 

code 

        cat("Hello,", name, "! You are", age, "years old.\n") 

 sprintf(): Formats strings and variables similar to the C printf() function, returning a 

character vector. 

code 

        message <- sprintf("Your name is %s and your age is %d.", name, age) 

        print(message) 

 To files: 

o write.csv(), write.table(), write_csv() (from readr package): Functions for 

writing tabular data to CSV files and other delimited text files. 

o save(), save.image(): Functions for saving R objects or the entire workspace to 

a file. 

o sink(): Redirects R output (console output, messages, warnings) to a specified 

file. 

 



Accessing keyboard and monitor in r 

In R, interaction with the keyboard (for input) and the monitor (for output) is handled through 

a set of built-in functions. 

Accessing the Keyboard (Input): 

 readline(): This function reads a single line of input from the console as a character 

string. It can optionally display a prompt message to the user. 

code 

    name <- readline("Enter your name: ") 

    print(paste("Hello,", name)) 

 scan(): This function reads data into a vector or list from the console or a file. It can 

be used for reading numeric or character data. To terminate input from the console, 

press Enter twice.  

code 

    # Read numeric input 

    numbers <- scan(what = numeric()) 

    print(numbers) 

 

    # Read character input 

    words <- scan(what = character()) 

    print(words) 

Accessing the Monitor (Output): 

 print(): This function displays the value of an R object to the console. It is commonly 

used to show the contents of variables, data structures, or the results of computations. 

code 

    x <- 10 

    print(x) 

 cat(): This function concatenates its arguments and displays them to the console. It is 

useful for printing formatted output or combining multiple pieces of information. 

 code 

    cat("The value of x is:", x, "\n") 

These functions provide the fundamental tools for creating interactive R programs that can 

receive input from the user and display results on the screen. 

 

 



Reading and writing files in r programming 

R offers various functions for reading and writing data to and from files, supporting different 

file formats like CSV, text files, and R's own binary formats (RDA/RDS). 

1. Reading Files: 

 CSV Files: Use read.csv() to read comma-separated value files. 

code 

    my_data <- read.csv("path/to/your/file.csv") 

 Text Files: Use read.table() for general tabular data in text files, specifying the 

delimiter if it's not a space. readLines() can read a file line by line. 

code 

    my_data <- read.table("path/to/your/file.txt", header = TRUE, sep = "\t") 

    lines <- readLines("path/to/your/text_file.txt") 

 R Binary Files (RDA/RDS): 

o load() is used to load objects saved in .RData or .rda files (which can contain 

multiple R objects). 

o readRDS() is used to read a single R object saved in an .rds file. 

code 

    load("path/to/your/data.RData") # Loads objects directly into the environment 

    my_object <- readRDS("path/to/your/object.rds") 

2. Writing Files: 

 CSV Files: Use write.csv() to write data frames to CSV files. 

code 

    write.csv(my_dataframe, "path/to/output/file.csv", row.names = FALSE) 

(Setting row.names = FALSE prevents writing the R row names as a column in the CSV.) 

 Text Files: Use write.table() to write data frames to text files, specifying the 

delimiter.c 

code 

    write.table(my_dataframe, "path/to/output/file.txt", sep = "\t", row.names = FALSE) 

 R Binary Files (RDA/RDS): 

o save() is used to save one or more R objects to an .RData or .rda file. 

o saveRDS() is used to save a single R object to an .rds file. 



code 

    save(object1, object2, file = "path/to/output/data.RData") 

    saveRDS(my_object, "path/to/output/object.rds") 

3. Working Directory: 

 Get Current Working Directory: getwd() 

 Set Working Directory: setwd("path/to/your/directory") 

Accessing the internet in r 

You can access the internet in R using libraries like rvest for web scraping, httr for interacting 

with APIs, or through base R's socket facilities for lower-level network connections. For web 

scraping, install the rvest package and use functions like read_html() to fetch a webpage's 

content, and then use html_nodes() or html_text() to extract the data. For other tasks, you can 

use functions like download.file() to download files directly from a URL.  

Common tasks and packages 

 Web scraping:  

Use the rvest package to parse HTML and extract data from websites.  

 Install and load the package: install.packages("rvest"), library(rvest).  

 Read the webpage: webpage <- read_html("URL").  

 Extract data: Use functions like html_nodes() and html_text() to select and 

pull data from the HTML elements.  

 API interaction:  

The httr package is designed to work with APIs.  

 Install and load: install.packages("httr"), library(httr).  

 Use functions like GET() to make requests to APIs.  

 Downloading files:  

Use the download.file() function from base R to download files from a URL and save them to 

your local machine.  

 JSON data:  

The jsonlite package is useful for working with JSON data from APIs or other sources.  

 Low-level access:  

For more advanced network programming, R's socket facilities allow for direct interaction 

with the Internet's TCP/IP protocol.  

Troubleshooting common issues 



 Antivirus/firewall:  

Antivirus software can sometimes block R's internet access. If you are on a work computer, 

you may need to contact your IT department to "whitelist" R's executable or internet-related 

files.  

 Proxy settings:  

If you are behind a proxy, you may need to configure R's settings or use a package 

like RCurl or httr to handle the proxy connection.  

 Connection check:  

To check if you have an active internet connection from within R, you can use functions 

like curl::nslookup() which is often more reliable than curl::has_internet().  

string manipulation 

R provides a comprehensive set of functions for manipulating strings, which are sequences of 

characters used to store and represent textual data. 

Common String Manipulation Functions in R: 

 Concatenation: 

o paste(): Combines strings, optionally with a separator (sep) and collapsing 

elements of a vector (collapse). 

code 

    str1 <- "Hello" 

    str2 <- "World" 

    combined_str <- paste(str1, str2) # "Hello World" 

    vector_str <- paste(c("a", "b"), c("1", "2"), sep = "-") # "a-1" "b-2" 

    collapsed_str <- paste(c("apple", "banana"), collapse = ", ") # "apple, banana" 

 Case Conversion: 

o toupper(): Converts a string to uppercase. 

o tolower(): Converts a string to lowercase. 

code 

    my_string <- "R Programming" 

    uppercase_str <- toupper(my_string) # "R PROGRAMMING" 

    lowercase_str <- tolower(my_string) # "r programming" 

 Substring Extraction: 

o substr(x, start, stop): Extracts a portion of a string from a specified start to end 

position. 



 

code 

    text <- "R is fun" 

    sub_text <- substr(text, 1, 3) # "R i" 

 String Length: 

o nchar(): Counts the number of characters in a string. 

code 

    word <- "programming" 

    len <- nchar(word) # 11 

 Splitting Strings: 

o strsplit(x, split): Splits a string into a list of substrings based on a delimiter 

(regular expression). 

code 

    data <- "apple,banana,orange" 

    split_data <- strsplit(data, ",") # list("apple", "banana", "orange") 

 Searching and Replacing: 

o grep(pattern, x, value = FALSE): Finds matches of a regular expression 

pattern within a character vector x. If value = TRUE, returns the matching 

elements; otherwise, returns the indices of matching elements. 

o sub(pattern, replacement, x): Replaces the first occurrence of a pattern with a 

replacement string. 

o gsub(pattern, replacement, x): Replaces all occurrences of a pattern with a 

replacement string. 

code 

    sentence <- "The quick brown fox jumps over the lazy dog." 

    found_index <- grep("fox", sentence) # 1 

    new_sentence_sub <- sub("fox", "cat", sentence) # "The quick brown cat jumps over the 

lazy dog." 

    new_sentence_gsub <- gsub("the", "a", sentence) # "a quick brown fox jumps over a lazy 

dog." 

Overview of string manipulation function 

String manipulation functions are a set of operations used in programming to process, 

modify, and analyze textual data. These functions are fundamental across various 



programming languages and databases for tasks involving strings, which are sequences of 

characters. 

Here is an overview of common string manipulation functions and their purposes: 

1. Length and Size: 

 Functions like length(), size(), or strlen() return the number of characters in a string. 

2. Concatenation: 

 Functions like concat(), append(), or the + operator combine two or more strings into 

a single string. 

3. Substring Extraction: 

 Functions like substr(), slice(), or substring() extract a portion of a string based on 

starting and ending positions or length. 

4. Searching and Replacing: 

 Functions like find(), indexOf(), search(), replace(), sub(), or gsub() locate specific 

patterns or substrings within a string and/or replace them with other strings. 

5. Case Conversion: 

 Functions like upper(), lower(), toUpperCase(), toLowerCase(), or initcap() convert 

the case of characters within a string (e.g., all uppercase, all lowercase, or title case). 

6. Trimming and Padding: 

 Functions like trim(), ltrim(), rtrim(), or pad() remove leading/trailing whitespace or 

other specified characters, or add characters to the beginning or end of a string to 

reach a certain length. 

7. Splitting and Joining: 

 Functions like split() or explode() divide a string into an array of substrings based on 

a delimiter. 

 Functions like join() or implode() combine an array of strings into a single string 

using a specified delimiter. 

8. Character-level Operations: 

 Functions from libraries like ctype.h in C provide functionalities to check character 

types (e.g., islower(), isdigit()) or convert individual characters. 

These functions are crucial for tasks such as data cleaning, text processing, formatting output, 

parsing user input, and working with databases. The specific names and syntax of these 

functions may vary depending on the programming language (e.g., Python, Java, C++, 

JavaScript, R, SQL) or environment being used. 



Regular expressions 

In the context of regular expressions (regex), the character \r represents a carriage return. 

A carriage return is a control character that, in older systems and some modern contexts, 

signals the cursor to return to the beginning of the current line without advancing to the next 

line. Its behavior can vary slightly depending on the operating system and the environment 

where the regex is being applied. 

Key points about \r in regex: 

 Meaning: It specifically matches the carriage return character. 

 Platform Differences: 

o Mac OS 9 and earlier: \r was used as the sole new line character. 

o Unix and Mac OS X/macOS: \n (line feed) is the standard new line character. 

o Windows: \r\n (carriage return followed by line feed) is the standard new line 

sequence. 

 Usage in R: When using regular expressions in R, special characters like \r need to be 

escaped with an additional backslash, so you would write \\r in your R code to match 

a carriage return. 

Example: 

If you have a string containing a carriage return, you could use \\r in an R regex function 

like str_detect() (from the stringr package) to detect its presence: 

code 

library(stringr) 

text_with_cr <- "Line 1\rLine 2" 

str_detect(text_with_cr, "\\r") # Returns TRUE 

 use of string utilities in the edtdbg debugging tool 

The edtdbg debugging tool in R, particularly as described in "The Art of R Programming," 

heavily utilizes string utilities for its core functionality, which involves sending remote 

commands to a text editor like Vim. 

A primary example of this usage is the dbgsendeditcmd() function, which constructs and 

sends commands to Vim. This function leverages R's string manipulation capabilities to build 

the shell command that interacts with Vim. 

Consider the following simplified example: 

code 



dbgsendeditcmd<-function(cmd){ 

  vimserver <- "R_DEBUG_SERVER" # Assuming a pre-defined Vim server name 

  syscmd <- paste("vim --remote-send ", cmd, " --servername ", vimserver, sep="") 

  system(syscmd) 

} 

In this function: 

 String Concatenation (paste()):  

The paste() function is crucial for combining various string components into a single, 

executable shell command. It takes individual strings (like "vim --remote-send ", 

the cmd argument, " --servername ", and the vimserver variable) and concatenates them to 

form the complete command string. The sep="" argument ensures no spaces are inserted 

between the concatenated parts, creating a clean command. 

 Command Construction:  

The resulting syscmd string represents a command that can be executed in the system's 

shell. For instance, if cmd is "12G", and vimserver is "168", the syscmd would become "vim 

--remote-send 12G --servername 168". 

 System Execution (system()):  

The system() function then takes this constructed string and executes it as a shell command, 

effectively sending the desired instruction (e.g., moving the cursor to line 12) to the specified 

Vim instance. 

In essence, edtdbg relies on string utilities to dynamically generate and execute commands 

that control the external text editor, allowing for interactive debugging sessions where actions 

within the R debugger can be reflected in the editor 


