Operating system:
UNIT-1

Introduction:

What is an Operating System (OS)?

An Operating System (OS) is system software that acts as a bridge between the user and
computer hardware.
It manages hardware, software, memory, processes, and all other resources of the system.

Why Do We Need an Operating System?

e To make the hardware usable.

e To manage and allocate resources efficiently.
e To run applications and enable user interaction.
e To provide security and access control.

Basic Definition

“An Operating System is a software that manages the computer hardware and provides services
for computer programs.”

Main Roles of an Operating System

Resource Manager — Manages CPU, memory, I/O devices, etc.
Control Program — Controls the execution of programs.
Interface — Provides user interface (CLI/GUI).

Coordinator — Coordinates between software and hardware.

b NS

Examples of Operating Systems

e Windows (Microsoft)
e Linux (Open-source)

o macOS (Apple)
e Android (Mobile OS by Google)
e iOS (Apple mobile OS)

Types of Operating Systems

Type Description Example
Batch OS Executes batches of jobs with no user interaction Early IBM systems
Time-Sharing OS Allows multiple users at the same time UNIX
Distributed OS Runs on multiple computers working together ~LOCUS
Real-Time OS Responds instantly to input RTLinux, VxWorks
Mobile OS Designed for smartphones Android, i0S

Key Characteristics
e Multitasking: Run multiple tasks at once.
e Multiprogramming: Multiple programs reside in memory.

e Security & Protection: Ensures authorized access.
e Concurrency: Supports execution of multiple processes.

Conclusion

An Operating System is essential for the functioning of a computer system. It acts as the
backbone, managing hardware and software efficiently, ensuring users can run applications, and
enabling smooth and secure operations.

OS FUNCTIONS:

Functions of Operating System

The Operating System (OS) performs several important functions to manage the hardware and
software resources of a computer.

1. Process Management

o Handles the creation, scheduling, and termination of processes (programs in
execution).
e Ensures CPU time is fairly shared among all processes.
o Key Concepts:
o Multitasking: Run multiple processes at once.
o Process Scheduling: Decide which process runs next.
o Context Switching: Save and load process states.

2. Memory Management

Manages the system's RAM (main memory).
Allocates and deallocates memory to processes.
Keeps track of which part of memory is in use and by whom.
Techniques used:
o Paging
o Segmentation
o Virtual Memory

3. File System Management

o Controls how data is stored, accessed, and organized on storage devices.
e Functions include:

o Creating, reading, writing, deleting files and directories.

o Managing permissions and file naming.

o Ensuring data security and access control.

4. Device Management (I/O Management)

e Manages input/output devices like keyboards, printers, and hard drives.
e Uses device drivers to communicate with hardware.
o Ensures efficient data transfer between devices and system.

5. Security and Protection

e Prevents unauthorized access to system resources.
e Provides user authentication (e.g., passwords, login systems).
o Ensures that processes do not interfere with each other’s memory.

6. User Interface
e Provides an interface for user interaction with the system.
e Two main types:

o CLI (Command Line Interface) — e.g., Terminal
o GUI (Graphical User Interface) —e.g., Windows desktop

7. Job Scheduling and Resource Allocation

e Manages system resources like CPU, memory, and I/O devices.
o Uses schedulers to decide the order in which tasks are executed.
o Ensures fair and efficient use of resources.

8. Error Detection and Handling

e Continuously monitors the system for errors (e.g., hardware failures, software bugs).
o Takes appropriate action to maintain stability and security.

9. Communication Services

e Enables inter-process communication (IPC).
e Supports communication between processes on the same or different systems (in a
distributed OS).

OS OPEARIONS:

Operating System Operations

The Operating System (OS) is responsible for managing and coordinating the activities of
computer hardware and software. It ensures that the system operates efficiently and securely.

1. Interrupt-Driven Operation

e The OS is event-driven and responds to interrupts.
o Interrupt: A signal from hardware or software indicating an event that needs immediate
attention.
e Example:
o A keyboard press sends an interrupt to the CPU.
o Hardware devices (like printers) signal when tasks are complete.

D Types of Interrupts:

e Hardware interrupts (e.g., mouse click, disk ready)
o Software interrupts (e.g., system calls)

2. Dual-Mode Operation

e To protect the system, OS works in two modes:
o User Mode: Limited access; user programs run here.
o Kernel Mode: Full access; OS runs in this mode.

© Why Dual Mode?
To prevent user programs from performing unauthorized operations that may damage the
system.

3. Transition Between User and Kernel Mode

e Happens when:
o A system call is made (e.g., to access a file).
o An interrupt or exception occurs.
e The CPU switches from user mode to kernel mode to safely execute OS-level
instructions.

4. Timer Control

e The OS uses a timer to control program execution.
e Prevents a process from running too long and blocking others.
e Used in process scheduling and preemption.

5. I/0 Operations

OS handles input/output operations using device drivers.
Uses buffers and queues to manage data efficiently.
Examples:

o Reading data from disk

o Displaying output to screen

. Process and Memory Management

OS controls the creation, scheduling, and termination of processes.
Allocates memory to processes and handles virtual memory.

. System Calls and Exception Handling

System calls allow user programs to request OS services.
OS handles exceptions (errors) like division by zero or invalid memory access.

. Booting the System

On power-up, the system runs a bootstrap program (from ROM) that loads the OS into
memory.
This process is known as booting.

|:f Summary Table

Operation Description
Interrupt Handling Respond to hardware/software events
Dual-Mode User mode (limited) and Kernel mode (full access)
Timer Use Prevent infinite loops by setting execution limits

I/0O Management Handles input/output via drivers

System Calls Interface for programs to access OS services

Exception Handling Handles unexpected errors during execution

Booting Starts OS from power-on using bootstrap loader

COMPUTING ENVIRONMENT:

Computing Environments in Operating Systems

A computing environment refers to how computer systems are set up and used to perform
tasks. The Operating System (OS) is at the core of managing these environments, depending on
how users, applications, and hardware interact.

1. Traditional Computing

e Earlier model with standalone systems.
e One user per system; applications run locally.
o Examples: Personal desktops, early mainframe computers.

D Key Features:
e Batch processing
e Time-sharing

o Limited user access
e Minimal network dependency

2. Client-Server Computing
o Clients request services, and servers provide them.

e Clients can be PCs, tablets, or apps.
o Servers are powerful systems that handle multiple requests.

D Example:

e Web browser (client) requesting a webpage from a web server.
‘5@ OS Role:

e Manages communication, resource access, and security between clients and servers.

3. Peer-to-Peer (P2P) Computing

e All systems are equal (peers) and share resources directly.
e No central server required.

[T Example:
o File sharing apps like BitTorrent.

‘5@ OS Role:

o Enables device discovery, communication, and resource sharing.

4. Distributed Computing

e A group of computers work together to complete tasks as a single system.
o Systems may be geographically spread out.

D Example:

e Google Search backend
o SETI@Home

‘5@ OS Role:

e Coordinates communication and task allocation between systems.

5. Virtualization

e Running multiple operating systems on a single physical machine using a hypervisor.
o Each OS behaves like a separate computer (called a virtual machine).

D Example:

e Running Linux inside Windows using VirtualBox.

% OS Role:

e Host OS manages resources; guest OS runs in virtual environments.

6. Cloud Computing

e Provides on-demand resources (like storage, computing power) over the Internet.
o Users don’t manage the physical infrastructure.

[T Example:

e Google Drive, AWS, Microsoft Azure
&R 0S Role:

e Manages virtual machines, scaling, storage, and service delivery on cloud platforms.

7. Mobile Computing

o Computing through portable devices such as smartphones and tablets.
e Devices are connected via wireless networks.

[T Example:

e Android OS on smartphones, iOS on iPhones
% OS Role:

e Manages sensors, wireless communication, battery, and apps.

|:f Summary Table

Environment Description Example
Traditional Standalone systems Desktop PCs
Client-Server Clients request, servers respond Web browsing
Peer-to-Peer (P2P) Equal systems sharing resources File sharing (Torrent)
Distributed Multiple computers working as one Google data centers
Virtualization Multiple OSes on one machine VirtualBox, VMware

Cloud Computing Internet-based computing resources AWS, Google Cloud

Environment Description Example
Mobile Computing Portable devices with wireless access Android, iOS smartphones

Open-Source Operating Systems & System Structures:
Operating System Services

‘ 1. Open-Source Operating Systems

What is an Open-Source OS?

An open-source operating system is an OS whose source code is freely available for anyone
to view, modify, and distribute.

Key Features:

Free to use

Community-developed

Highly customizable

Encourages learning and innovation

Popular Examples:

Open-Source OS Description
Linux Most popular; used in servers, desktops, embedded systems
FreeBSD UNIX-like OS known for performance and security
Ubuntu User-friendly Linux distribution
Debian Stable and widely used Linux-based OS

Android (partially) Based on Linux kernel, open-source at core

Benefits:

Cost-effective
Transparency

No vendor lock-in

Large support communities

2. System Structures: Operating System Services

Operating System Services are the core functions provided by the OS to help both users and
programs perform essential tasks.

Types of OS Services:

Service Description
1. Program Execution OS loads programs into memory and executes them
2. I/0 Operations Handles input and output through devices (keyboard, printer, etc.)
3. Fll.e-Syst.em Allows programs and users to read, write, create, delete files
Manipulation
C Enables processes to exchange information (same or different
4. Communication
systems)
5. Error Detection Detects and handles errors (hardware and software)
6. Resource Allocation Manages CPU, memory, and I/O among multiple users/programs
7. Accounting Keeps track of system usage (who used what and for how long)

Controls access to system resources; ensures only authorized

8. Protection and Security acCess

User and Operating-System Interface

An interface is the point where interaction happens between the user and the operating system
(OS). The OS provides different types of interfaces to make it easier for users and applications
to use system resources.

Why Is an Interface Needed?

e Users and programs cannot interact with hardware directly.
e The OS provides a safe, user-friendly way to perform tasks like file access, program
execution, and device control.

@ Types of Interfaces in Operating Systems

1. Command-Line Interface (CLI)

e User types text commands to perform actions.
e Requires exact syntax and understanding of commands.

[T Examples:

e Windows Command Prompt (cmd)
e Linux Terminal (bash, sh)

‘ Advantages:

e Powerful and flexible
e Uses less system resources

' Disadvantages:

o Difficult for beginners
e Error-prone due to manual input

2. Graphical User Interface (GUI)

o Uses windows, icons, menus, and pointers (WIMP).
o Users interact using mouse, keyboard, or touchscreen.

D Examples:
e Windows OS
¢ macOS

e Ubuntu (GNOME, KDE)

. Advantages:

o User-friendly and easy to learn
e Visual and interactive

. Disadvantages:

e Requires more memory and processing power
e Less efficient for advanced users

3. Touchscreen Interface

e Used in mobile devices and tablets.
o Users interact directly by touching the screen.

[T Examples:

e Android OS
e 10S

4. Voice-based and Natural Language Interfaces (NLI)
e Allow interaction using voice commands or natural language.

[7 Examples:

o Siri, Google Assistant, Alexa

@ Programmer Interface: System Calls

When a program (application) needs to use hardware resources, it calls OS services using
System Calls.

What are System Calls?

o System Calls are the interface between user programs and the OS kernel.
e They provide access to OS services like:
o File operations
Process control
Device handling
Communication

o O O

[T Example:

c
CopyEdit
int fd = open("file.txt", O_RDONLY) ;

Here, open () is a system call in C to open a file.

D Summary Table

Interface Type Description Example

CLI Text-based command input Linux Terminal, cmd.exe
GUI Visual, icon-based interaction Windows, macOS
Touchscreen Direct touch interaction Android, 10S

Voice/NLI Voice or language-based interaction Alexa, Siri

System Calls Interface for programs to access OS read (), write() inC
‘

Types of System Calls

System calls are the programming interface between the user programs and the operating
system. They allow programs to request services from the OS kernel.

System calls are generally classified into the following types based on their functionality:

1. Process Control System Calls

e Manage processes (programs in execution).
o Examples of operations:

o Create and terminate processes

o Load and execute a program
o Wait for process completion
@)

Get process ID
Examples:
e fork() — create a new process
e exit () — terminate a process
e wait () — wait for a process to finish

2. File Management System Calls

e Handle file operations.
o Examples:

Create and delete files

(@]
o Open and close files
o Read from and write to files
o QGet file attributes
Examples:
e open() — open a file
e read() — read data from a file
e write() — write data to a file
e close() —close a file

3. Device Management System Calls

e Manage I/O devices.
o Examples:
o Request device
o Release device
o Read/write from device
o Get device attributes

Examples:
e ioctl() — control device parameters
e read() and write () — also used for devices

4. Information Maintenance System Calls

o Retrieve and set system information.
o Examples:

o Get system time and date

o Set system time and date

o Get process or file attributes

Examples:
e getpid() — get process ID
e alarm() — setalarm clock

5. Communication System Calls

e Support interprocess communication (IPC).
o Examples:
o Create and delete communication channels
o Send and receive messages between processes

Examples:
e pipe () — create a communication channel
e shmget () — get shared memory segment

6. Security System Calls (in some OS)

e Manage security and protection.
o Examples:

o Authenticate users

o Access control

D Summary Table

Type of System Call Purpose Example System Calls
Process Control Manage processes fork (), exit (), wait ()
File Management Handle file operations open (), read (), write ()
Device Management Control and access 1/O devices ioctl (), read (), write ()
Information Maintenance System info and attributes getpid (), alarm()
Communication Interprocess communication pipe (), shmget ()
Security User authentication and access (varies by OS)

System Programs in Operating Systems

System programs are a collection of programs provided by the operating system that help users
and programmers to perform common tasks related to managing files, processes, and system
resources.

They act as tools or utilities to simplify working with the system.

What Are System Programs?

e Programs designed to perform system-related tasks.

e They provide an environment to develop, test, and run application software.

o They offer basic functionality such as file management, program editing, and system
monitoring.

Categories of System Programs

Category Description Examples
File Management Programs to create, delete, copy, rename files cp, mv, rm, 1s

Status Information Display system info like CPU usage, memory, ps, top, df,

processes free
File Modification Text editors and tools to modify files Z;;{nano’ sed,
Programming Language Compilers, assemblers, debuggers for software b, mak
ccC maxke

Support development gee 9
Program Loading and Loaders and linkers that prepare programs for 14 (linker),
Execution execution loader

P Programs to communicate between systems or ssh, ftp,
Communication

Pprocesses telnet

Examples of Common System Programs

e File Commands:
o 1s— listfiles
o cp— copy files
o rm— remove files
o Text Editors:
o vim, nano — edit files
e System Monitoring:
o top — shows running processes
o df — shows disk space usage
e Compilers & Debuggers:
o gcc — compile C programs
o gdb — debug programs
e Networking Tools:
o ssh — secure remote login
o ping— test network connection

Why Are System Programs Important?

e They provide a user-friendly interface to perform system tasks.

o Help users and developers interact with the OS without needing to know hardware
details.

o Facilitate software development and system maintenance.

D Summary Table

System Program Type Function Example Commands
File Management Manage files and directories 1s, cp, rm
Status Information Show system and process status ps, top, df
File Modification Edit and modify files vim, nano
Programming Support Compile and debug programs gcc, gdb
Program Loading/Execution Load and execute programs 1d, loader
Communication Enable system communication ssh, ftp

Operating System Design and Implementation

Designing and implementing an operating system involves creating a system that efficiently
manages hardware resources while providing a reliable and user-friendly interface.

1. Design Goals of an Operating System

Goal Description
Efficiency Make best use of hardware and resources
Fairness Allocate resources fairly among users/programs
Reliability Ensure the system is stable and recovers from errors
Security Protect data and resources from unauthorized access
Portability Make OS easy to adapt to different hardware
Usability Easy to use interface for users and programmers

4 2.

Operating System Design Approaches

Approach Description
Monolithic Entire OS runs in a single large block of code (kernel). Fast but complex and
Design less modular. Example: Early UNIX.
Layered OS is divided into layers; each layer only interacts with the one below it.
Approach Easier to manage and debug.
Microkernel =~ Minimal kernel handling core functions (memory, IPC); other services run in
Design user space. Improves reliability and portability. Example: MINIX.
Modular OS is built from separate modules that can be loaded/unloaded dynamically.
Design Flexible and easy to extend.
Hybrid Design Combines monolithic and microkernel features. Example: Windows NT,

B4 3.

macOS.

Implementation of Operating System

Programming Languages: OS is usually implemented in low-level languages like C
(for performance and hardware control) and some parts in Assembly (for direct hardware
interaction).

Kernel: The core part of the OS that manages resources, memory, processes, devices,
and system calls.

System Libraries: Provide common functions for system calls.

Utilities: Additional programs that assist users and system administrators.

. Steps in OS Implementation

Requirement Analysis: Understand hardware features and user needs.
System Specification: Define OS functions and services.

Design: Choose architecture and modular organization.

Coding: Write kernel, device drivers, system programs.

Testing: Verify functionality, fix bugs.

Deployment: Install and maintain the OS on target machines.

. Challenges in OS Design

Managing hardware complexity.

Supporting multiprogramming and multiprocessing.
Ensuring security and fault tolerance.

Balancing performance with ease of use.

e Maintaining portability across different devices.

|:f Summary Table

Aspect Description
Design Goals Efficiency, fairness, reliability, security, portability, usability
Design Approaches Monolithic, Layered, Microkernel, Modular, Hybrid
glg[);ielrsnentatlon Kernel programming (C, Assembly), system libraries, utilities
Analysis — Specification — Design — Coding — Testing —
Steps
Deployment
Challenges Hardware management, security, pe

Operating System Structure

The structure of an operating system (OS) defines how the OS is organized internally to
manage hardware resources and provide services efficiently. Different OS designs use different
structures.

1. Simple Structure (Monolithic)

e The OS is a single large program.

e All components like process management, file management, device drivers, etc., run in
kernel mode.

o Easy to design but difficult to maintain and debug.

o Example: Early UNIX systems.

Advantages:
o Fast and efficient due to no modular separation.
Disadvantages:

o Complex, error in one module can crash the entire OS.
o Difficult to extend or modify.

2. Layered Structure

e OSis divided into layers, each built on top of the lower layers.
e The bottom layer interacts directly with hardware.
e Each layer communicates only with the layer below or above it.
o Simplifies debugging and system design.

Example: THE operating system (by Dijkstra).

Advantages:

e Clear structure and easy to debug.
e Layers can be replaced independently.

Disadvantages:

e Performance overhead due to layered communication.
o Difficult to define appropriate layers.

3. Microkernel Structure

e Only essential services (like communication, basic memory management) run in kernel
mode.
e Other services (file system, device drivers) run in user mode as separate processes.
e More secure and reliable because faults in user mode do not crash the kernel.
Examples: MINIX, Mach.
Advantages:

o Better modularity and security.
o Easier to extend and port.

Disadvantages:

o Performance overhead due to context switching between user and kernel mode.

4. Modular Structure

e OS is built with a core kernel and separate loadable modules.
e Modules can be dynamically loaded/unloaded (e.g., device drivers).
o Combines flexibility and efficiency.

Example: Modern Linux kernels.

Advantages:

o Easy to extend.
o Efficient because only needed modules run.

5. Client-Server Structure

e OS services are provided by servers (processes) that communicate via message passing.
o The client requests services from the server.
e Often used in distributed systems.

D Summary Table

OS Structure Description Advantages Disadvantages Example
Simple o Single large kernel Efficient, simple Hard to maintain, Farly UNIX
(Monolithic) program less secure
Layered OS divided into layers Easy debugging, Performance THE OS

modular overhead
. Minimal kernel, most Context switching ~ MINIX,
Microkernel . Secure, modular
services in user mode overhead Mach
Core kernel + loadable Flexible, easy to . . Linux
Modular modules extend Slight complexity Kernel
. OS services as separate G.OO(.i for Communication Distributed
Client-Server distributed
processes overhead oS
systems

Operating System Debugging

Debugging is the process of detecting, locating, and fixing errors or bugs in an operating
system during its development or maintenance.

Since an OS interacts directly with hardware and manages critical resources, debugging it is
complex and crucial.

Why is OS Debugging Important?

e Operating systems are complex software with many components running concurrently.
o Bugs can cause system crashes, data loss, or security vulnerabilities.
o Ensures system stability, reliability, and security.

Challenges in Debugging OS

e OS runs in kernel mode with full hardware access — errors can crash the entire system.
e Hard to isolate and reproduce bugs because of concurrency and hardware interaction.
o Debugging tools must be able to work at a low level (e.g., inspecting memory, registers).

Common Debugging Techniques in OS

Technique Description
Print Debugging Inslert print statements to output variable values or states (e.g.,
prlntf)
Kernel Debugger Special debugger tools that allow step-by-step execution and

inspection of kernel code (e.g., GDB, KGDB)
Log Files OS writes events/errors to logs for later analysis

Run OS on virtual machines or simulators to safely test and debug
without affecting real hardware

Memory Dump Analysis Analyze contents of memory after a crash (core dump) to find cause

Hardware Debugging Use hardware-level debuggers and logic analyzers to inspect
Tools processor and bus activity

Emulators/Simulators

Kernel Debuggers

o Allow developers to pause execution, examine memory/registers, and step through
kernel code.

e Can debug live systems or crash dumps.
o Examples: KGDB (Linux kernel debugger), WinDbg (Windows debugger).

Debugging Process

Reproduce the bug — Try to recreate the issue reliably.

Isolate the cause — Narrow down which part of the OS causes the problem.
Use debugging tools — Print debugging, breakpoints, or kernel debuggers.
Fix the bug — Modify the code to correct the issue.

Test thoroughly — Ensure the fix works and does not create new bugs.

MRS

Best Practices

e Use modular design to isolate and debug parts independently.

e Maintain good logging to trace issues.

e Test on virtual environments before deploying on real hardware.
o Use version control to track changes and fixes.

D Summary Table

Debugging Technique Purpose/Use Example Tools
Print Debugging Simple output of variable values printf
Kernel Debugger Step-through kernel debugging KGDB, WinDbg
Log Files Record system events/errors System logs
Emulators/Simulators Safe testing environment QEMU, VMware
Memory Dump Analysis Post-crash error analysis Core dump analyzers

Hardware Debugging Tools Low-level hardware inspection JTAG, logic analyzers

System Boot in Operating Systems

System Booting is the process of starting a computer and loading the operating system into the
main memory so that the system can begin operation.

What is Booting?

e Booting is the process that powers up the computer, initializes hardware, and loads
the OS.

e [t prepares the computer to run user programs and system processes.

e The program that initiates this process is called the bootstrap program or bootloader.

Types of Booting

Type Description
Cold Boot Starting the computer from a completely powered-off state (turning it on).
Warm Boot Restarting the computer without turning off the power (reboot or reset).

Steps in the Booting Process

1. Power-On Self Test (POST)
o When the computer is powered on, the BIOS (Basic Input Output System) or
UEFI firmware performs POST to check hardware like RAM, disk drives,
keyboard, etc.
o IfPOST fails, the system usually halts with error messages or beep codes.
2. Bootstrap Loader Execution
o After POST, BIOS/UEFI looks for the bootloader program in the bootable device
(e.g., hard drive, SSD, USB).
o The bootloader is a small program that loads the OS kernel into memory.
3. Loading the Operating System
o The bootloader loads the OS kernel into RAM.
o It sets up the initial environment and passes control to the OS.
4. Kernel Initialization
o The OS kernel initializes hardware and system processes.
o It sets up system services, device drivers, and user interfaces.
5. User Login / Ready to Use
o Once initialization is complete, the system displays the login prompt or desktop,
ready for user interaction.

Common Bootloaders

e GRUB (GRand Unified Bootloader) — used in Linux systems.

e NT Loader (NTLDR) — used in older Windows systems.
e Windows Boot Manager (BOOTMGR) — used in modern Windows.

|:f Summary Table

Step Description
Power-On Self Test (POST) Hardware checks and diagnostics
Bootstrap Loader Load bootloader from storage device
OS Loading Bootloader loads OS kernel into memory
Kernel Initialization OS sets up system services and drivers
User Interface System ready for user login and operations

UNIT -1l

PROCESS CONCEPT:

Process Scheduling in Operating Systems

Process Scheduling is the method by which an operating system decides the order in which
processes run on the CPU.

Since many processes compete for the CPU, scheduling helps manage multitasking efficiently.

Why is Scheduling Needed?

e CPU is a shared resource.
e Multiple processes may be ready to run.
e Scheduling ensures fairness, efficient CPU use, and responsiveness.

Process States

A process moves through various states:

sgl
CopyEdit
New — Ready — Running - Waiting — Terminated

e Ready: Process is ready to run, waiting for CPU.
e Running: Process is currently executing.
o Waiting: Process is waiting for some event (e.g., [/O).

e Terminated: Process has finished execution.

The scheduler selects a process from the ready queue to run.

Types of Scheduling
Type Description

Preemptive OS can interrupt a running process to schedule another (e.g., Round Robin).
Non-preemptive Process runs till completion or waits (e.g., FCFS).

Common Scheduling Algorithms

Algorithm How it Works Advantages Disadvantages
First-Come, First- Runs processes in order Simple, easy to Poor average wait time,
Served (FCFS) of arrival implement Convoy effect
Shortest Job Next Runs process with Minimizes average Difficult to predict burst
(SJN) shortest CPU burst next waiting time time, possible starvation

Each process gets a

Round Robin (RR) fixed time slice Fair, good for time-

. Context switching overhead
sharing systems

(quantum)
Priority Processes run based on Good for prioritizing Lower priority can starve
Scheduling priority important tasks p y

Terminology

o Context Switch: Saving the state of a running process and loading the state of another.

e Time Quantum (Time Slice): Fixed amount of CPU time given to each process in
Round Robin.

e Throughput: Number of processes completed per unit time.

e Turnaround Time: Total time taken from process submission to completion.

o Waiting Time: Time a process spends waiting in the ready queue.

Scheduler Types

e Long-term Scheduler: Decides which jobs enter the system.
e Short-term Scheduler (CPU Scheduler): Selects processes for CPU execution.
e Medium-term Scheduler: Temporarily removes processes from memory (swapping).

D Summary Table

Aspect

Description

Scheduling Purpose Efficient CPU utilization and fairness

Scheduling Types Preemptive and Non-preemptive

Algorithms
Key Terms

FCFS, SIN, Round Robin, Priority
Context switch, time quantum, waiting time

Operations on Processes

A process is a program in execution, and the operating system performs several key operations
on processes to manage them effectively.

Main Operations on Processes

1. Process Creation

o

@)
@)
O

A new process is created by an existing process (called the parent).
The newly created process is called a child process.
The OS allocates resources and initializes process control block (PCB).
Examples:

= fork() system call in Unix creates a new process.

2. Process Termination

o

o

o

A process finishes execution and is removed from the system.

It can terminate normally (successful completion) or abnormally (due to error or
kill).

Resources allocated to the process are released.

3. Process Suspension and Resumption

o A process can be suspended (temporarily stopped) to free CPU or resources.
o Suspended processes are stored in secondary memory.
o Later, the process can be resumed and moved back to ready state.
4. Process State Transitions

o Processes move through different states:

* New — Ready — Running — Waiting — Terminated
o Operations cause transitions, for example:

= Creation — New to Ready

» Scheduler picks process — Ready to Running

» Process waits for /O — Running to Waiting

= [/O completes — Waiting to Ready

* Process ends — Running to Terminated

Process Control Block (PCB)

e The OS maintains information about each process in a PCB.
o PCB stores:

Process ID

Process state

CPU registers and program counter

Memory limits

Scheduling information

/O status

O O O O O O

|:f Summary Table

Operation Description
Process Creation ~ Create a new process (parent-child relationship)
Process Termination End process and release resources
Process Suspension Temporarily stop process and swap out
Process Resumption Restart suspended process
State Transitions Change process state based on events

Inter-Process Communication (IPC)

Inter-Process Communication (IPC) is the mechanism that allows processes to exchange data
and coordinate their actions.

Since processes run independently and may be in different states or even on different machines,

IPC is essential for cooperation.

Why IPC is Needed?

e Processes may need to share data.

e Synchronize actions (e.g., producer-consumer problem).
e Coordinate resource sharing.

o Communicate in distributed systems.

Types of IPC

Type Description

Shared Processes share a common memory area for communication.
Memory Faster but requires synchronization.

Message Processes communicate by sending and receiving messages

Passing through the OS. Easier but slower due to kernel involvement.

Methods of IPC

1. Shared Memory
o A memory segment is shared between processes.
o Processes read/write data to this shared space.

Example

POSIX shared
memory

Pipes, message
queues

o Requires synchronization mechanisms (like semaphores) to avoid conflicts.

2. Message Passing
o Processes send discrete messages to each other.

o Messages can be synchronous (blocking) or asynchronous (non-blocking).
o Useful for communication between processes on different machines.

Common IPC Mechanisms

Mechanism Description

Pipes child).
Named Pipes
(FIFOs)

Like pipes but can be used between unrelated processes.

One-way communication channel between related processes (parent-

Mechanism Description

Store messages in queues; processes read/write messages
Message Queues £ q P &

asynchronously.
Semaphores Used to synchronize access to shared resources.
Sockets Communication over a network, used in client-server systems.

Example Scenario

e In a producer-consumer problem, producer and consumer processes use IPC to share
data buffer and synchronize actions to avoid conflicts.

|:f Summary Table

IPC Type Advantages Disadvantages
Shared Memory Fast data exchange Complex synchronization
needed
Message Simpler synchronization, works across Slower due to kernel
Passing machines involvement

Communication in Client-Server Systems
A client-server system is a distributed system architecture where:

o The client requests services or resources.
o The server provides these services or resources.

Communication between client and server is key to making the system work.

How Communication Happens

Clients and servers communicate over a network using standard protocols and techniques.

Common Communication Methods

Method Description
Remote Procedure Client calls a procedure on a remote server as if it were local. Hides
Calls (RPC) network communication complexity.

Low-level network communication endpoints for sending/receiving
data (TCP/UDP). Flexible and widely used.

Asynchronous communication where messages are sent to a queue and
processed later by the receiver.

Sockets

Message Queues

Clients use HTTP requests to interact with web servers (common in

HTTP/REST APIs .
web services).

Key Concepts

e Synchronous Communication: Client waits for the server to respond (e.g., RPC).

e Asynchronous Communication: Client sends request and continues without waiting;
server responds later (e.g., message queues).

o Connection-Oriented: Communication requires establishing a connection (e.g., TCP
sockets).

e Connectionless: No connection setup, just sending messages (e.g., UDP sockets).

Typical Communication Flow

Client sends request to server.

Server receives request, processes it.
Server sends response back to client.
Client receives response and continues.

il e

Example: Using Sockets

e The client creates a socket and connects to the server’s socket.
e They exchange data through the connection.
o After communication, sockets are closed.

D Summary Table

Communication Type Description Examples

RPC Remote function calls ONC RPC, XML-RPC
Sockets Network communication TCP, UDP sockets
Message Queues Asynchronous message passing RabbitMQ, MSMQ
HTTP/REST APIs Web-based client-server RESTful web services

Multithreaded Programming

A thread is a lightweight process — a unit of execution within a process. A process can have
multiple threads running concurrently.

n Multithreading Models

Model Description

Many-to-One Many u§er—level threads mapped to one kernel thread. Easy but no true
parallelism.
Each user thread maps to a kernel thread. Enables true parallelism but overhead

One-to-One . .
is higher.

Many-to- . .

Many Many user threads mapped to many kernel threads. Combines benefits of both.

E Thread Libraries

o Libraries provide APIs to create and manage threads.

Library Description
POSIX Threads (Pthreads) Standard threading library for Unix/Linux.
Windows Threads Thread APIs in Windows OS.
Java Threads Built-in thread support in Java language.

H Threading Issues

Issue Description

When threads access shared data concurrently without synchronization,

R iti . . .
ace Conditions leading to inconsistent results.

Two or more threads waiting indefinitely for each other to release

Deadlock
resources.
. Some threads never get CPU time because others monopolize
Starvation
resources.
gg::i’;;iwncmng Frequent switching between threads can degrade performance.

n Example (Pthreads in C)

c
CopyEdit

#include <pthread.h>
#include <stdio.h>

void* printHello (void* arg) {
printf ("Hello from thread!\n");
return NULL;

}

int main () {
pthread t thread;
pthread create(&thread, NULL, printHello, NULL);
pthread join(thread, NULL);
return 0;

2{ Process Scheduling

Process scheduling decides which process runs on the CPU and when.

n Basic Concepts

e CPU Scheduler: Selects a process from the ready queue.
o Context Switch: Saving and loading process states when switching processes.
o Preemptive vs Non-preemptive Scheduling

n Scheduling Criteria

Criterion Description
CPU Utilization Keep CPU as busy as possible (ideally 100%).
Throughput Number of processes completed per time unit.

Turnaround Time Time from submission to completion.
Waiting Time Time a process waits in the ready queue.
Response Time Time from submission until first response.

B Common Scheduling Algorithms

Algorithm Description Preemptive or Non-

preemptive
f‘l;lg;:s?)ome, First-Served ¢ 1 in order of arrival. Non-preemptive
Shortest Job First (SJF) Run shortest burst next. Can be preemptive or not
Round Robin (RR) Each process gets a fixed time Preemptive
quantum.
Priority Scheduling Based on process priority. Can be preemptive or not
Summary Table
Topic Key Points
Many-to-One,
Multithreading Models One-to-One,
Many-to-Many
Pthreads,
o Windows
Thread Libraries Threads, Java
Threads
Race conditions,
Threading Issues deadlock,
starvation
CPU utilization,
Scheduling Criteria throughput,
turnaround time
FCFS, SJF,
Scheduling Algorithms Round Robin,

Priority

Topic

Multiple Processor Scheduling

e Multiple Processor Scheduling deals with scheduling processes or
threads on systems with more than one CPU/core.

e Goals: Maximize CPU utilization, load balancing, and minimize
response time.

Types of Multiprocessor Scheduling:

Type Description
Asymmetric One processor schedules all processes; others execute
Scheduling only tasks assigned to them.
Symmetric Each processor runs its own scheduler and schedules
Scheduling processes independently.

J8 Thread Scheduling

e Threads are scheduled by the OS within processes.
e Scheduling can be:

o User-level threads: Managed by thread libraries, invisible to
OS scheduler.

o Kernel-level threads: Scheduled by the OS directly.
Thread Scheduling Examples:

e Round Robin: Threads get CPU for a fixed time quantum in a cyclic
order.

e Priority Scheduling: Threads with higher priority run first.

Inter-Process Communication
(IPC) Concepts

Key Points

Topic
n Race Conditions

e Occur when two or more processes or threads access shared data
concurrently, and the outcome depends on the order of execution.

o Example: Two threads incrementing the same counter simultaneously,
leading to incorrect results.

ﬂ Critical Regions

e A critical region is a code section where shared resources are
accessed.

e Only one process/thread should execute in this region at a time to
prevent race conditions.

H Mutual Exclusion Mechanisms
a) Busy Waiting

e Process continuously checks a condition to enter the critical region.
e Inefficient as CPU cycles are wasted spinning.

b) Sleep and Wakeup

e Processes go to sleep (block) if they cannot enter critical region and
get woken up when it’s available.
e More efficient than busy waiting.

n Semaphores

o A semaphore is a synchronization variable that can be used to solve
mutual exclusion and synchronization problems.
o Types:
o Binary semaphore (mutex): Takes only values 0 or 1.
o Counting semaphore: Can have any non-negative integer
value.
e Operations:

Key Points

Topic Key Points
o wait () or P(): Decrement semaphore, block if value is 0.
o signal() orv(): Increment semaphore, possibly waking a
blocked process.

H Mutexes

e A mutex is a locking mechanism to ensure mutual exclusion.

e Only one thread can own the mutex at a time.

o Mutex must be locked before entering critical section and unlocked
after leaving.

n Monitors

e A high-level synchronization construct that combines mutual
exclusion and condition variables.

e Only one process can be active inside the monitor.

e Monitors manage access automatically, simplifying synchronization.

Message Passing

e Processes communicate by sending and receiving messages.
e (Can be synchronous (blocking) or asynchronous (non-blocking).
o Useful for distributed systems.

n Barriers

e Synchronization point where multiple processes or threads must wait
until all have reached it.

o Useful for parallel computing to ensure all tasks complete a phase
before moving on.

Topic

:f Summary Table

Concept Description
Race .. Concurrent access causing errors
Conditions
Critical Code section needing mutual
Region exclusion
Busy Waiting Continuous checking (inefficient)
%Ziif; Block and wake processes

Semaphores ~ Synchronization variable

Mutexes Mutual exclusion lock
. Combined mutual exclusion +
Monitors .. .
condition variables
Message Exchange of messages between
Passing processes
Barriers Synchronization point for threads

Classical IPC Problems

Key Points

Example/Use Case

Shared counter
incrementing

Updating shared
variables

Spinlock

Blocking on resource
availability
Producer-consumer
problem

Thread-safe data access
High-level
synchronization
Client-server
communication

Parallel loop
synchronization

These problems illustrate challenges in process synchronization and inter-
process communication (IPC), mainly focusing on deadlock, starvation,

and mutual exclusion.

n Dining Philosophers Problem

Scenario:

o Five philosophers sit around a circular table.

o Between each pair is one fork (total 5 forks).
o To eat, a philosopher needs both forks on their left and right.
e Philosophers alternate between thinking and eating.

Topic Key Points
Problem:

o Ifevery philosopher picks up the fork on their left simultaneously, no
one can pick up the right fork — deadlock.
e Also, some philosophers might starve if others keep eating.

Solution Approaches:

e Resource hierarchy: Pick up forks in a certain order to avoid circular
wait.

e At most four philosophers can try to eat simultaneously to prevent
deadlock.

o Use semaphores or mutexes to control access to forks.

n Readers-Writers Problem

Scenario:

e Multiple processes can be readers or writers accessing a shared data.
e Readers can read simultaneously without issues.
e Writers need exclusive access (no other readers or writers).

Problems to solve:

e Prevent writers from writing while others read.

o Prevent readers from reading while a writer writes.

e Avoid writer starvation (writers waiting forever if readers keep
coming).

e Avoid reader starvation (if writers keep priority).

Variants:
o First Readers-Writers Problem: No reader kept waiting unless a
writer is already writing.
o Second Readers-Writers Problem: Once a writer is ready, no new

readers allowed (writer priority).

Synchronization:

Topic Key Points

o Use semaphores, mutexes, and counters to manage reader/writer
access.

~ 7 Summary Table

Common
Problem Key Issue Goal .
Solution
. . . E
Dining Deadlock & starvation - o< n? . Semaphores,
Philosophers of philosophers deadlock; fair resource ordering
access to forks
Synchronization Allow concurrent Semaphores,
Readers- . :
Writers between readers and reading, exclusive mutexes,
writers writing counters

Example Pseudo-code snippet for Dining Philosophers

(simplified):

wait (fork[i]); // Pick left fork

wait (fork[(i+1)%5]1); // Pick right fork

// Eat

signal (fork[i]); // Put down left fork
signal (fork[(i+1)%5]1); // Put down right fork

UNIT-III
Memory-Management Strategies

Memory management is crucial for efficient system operation. Think of it like a librarian
organizing books on a shelf to make sure they're easy to find and that there's enough space for
new books. The strategies below are the different ways the librarian might organize their shelves.

o Swapping is a core concept, but it's important to understand the swapping process itself.
A process is completely moved from RAM to disk and then brought back. This is
different from paging, where only parts of a process are moved. Swapping can be slow
because it involves a lot of I/O, but it's essential for handling processes that are too large

to fit in memory at the same time.

)
Operating System
_ Pl
User Space
« P2
S
Main Memory Backing Store

Contiguous Memory Allocation is simple but has a major drawback: external
fragmentation. Imagine you have a parking lot with two large, empty spots. A small car
comes and takes one. Another small car takes the other. Now, a bus arrives. There's
plenty of empty space, but it's in two separate blocks, so the bus can't park. This is
external fragmentation.

Operating System
L 5MB ‘L
1
_ 5MB '
Fixed Size T)
Partitions :[sMmB le—T || Process 2 (si 1)
:[' - | : .
5MB
{ Input Process
Queue
Main Memory

Paging solves external fragmentation. The process and memory are broken into fixed-
size chunks (pages and frames). The key is the page table, which acts as a lookup
dictionary. When the CPU needs to access a memory address, it looks up the page
number in the page table to find the corresponding frame number in physical memory.
This process is very fast, as the page table is often stored in a special hardware cache
called the Translation Lookaside Buffer (TLB).

BBYUS

16 KB 1 Frame — 1KB

P1 Frame size = Page size
P1
P1
P1
P5
P5
P5
P5
P3
P3
P3
P3
P5
P5
P5
P5

Main Memory
(Collection of Frames)

Process P1

Process P5

Process P3

))
)

Paging

o Segmentation is more aligned with how a programmer thinks. Instead of just numbers,
you have logical blocks like "code," "data," or "stack." This makes memory management
more intuitive. For example, a shared library could be its own segment, easily shared
among multiple processes without needing to be duplicated.

Virtual Memory Management

Virtual memory creates the illusion of a much larger memory space, decoupling logical memory
from physical memory. It's like having a backpack that feels bottomless because items are only
brought out when you need them.

e Demand Paging is the core of virtual memory. When a page fault occurs, it's not a
program error, but an intentional interrupt that tells the OS to fetch the needed page from
the disk. This is a very common and efficient way to handle memory. A key metric is the
page-fault rate; a high rate indicates that the system is spending too much time swapping
pages, which can lead to thrashing.

Copy-on-Write (COW) is a powerful optimization. It's most commonly seen when a
new process is created using the fork () system call in Unix-like systems. The parent and
child processes initially share the same pages in memory. Only when one of them tries to
write to a page is a copy made. This saves memory and speeds up process creation.

Page Replacement Algorithms are a critical component. The goal is to minimize page
faults. The Least Recently Used (LRU) algorithm is a good balance between
performance and complexity. It works by keeping track of the last time each page was
accessed. Another notable algorithm is Second-Chance, which is a more efficient
approximation of LRU.

frame valid-invalid bit

N/ <

page out
change victim
0 |i to invalid page
f |v y{j
@ f| victim G

reset page \
table for S
page table
new page ®page in
desired

page

physical
memory

Figure 9.10 Page replacement.

Thrashing is a severe performance issue. It's the point of diminishing returns in a
multitasking system. The solution is often to reduce the number of active processes or to
increase the amount of available physical memory. The working-set model is a way to
prevent thrashing by ensuring a process has all the pages it needs (its "working set") in
memory before it is allowed to run.

Thrashing

CPU Utilization

v

Degree of multi-programming

o Memory-Mapped Files provide a simple and elegant way to handle large files. Instead
of using traditional read () and write () system calls, you can simply access the file data
as if it were an array in memory. This is highly efficient for random access within a large

file.

o Kernel Memory Allocation is a specialized area. The kernel needs its own fast and
reliable memory allocator. For example, the buddy system allocator splits memory into
power-of-two sized blocks. When a request for memory comes in, it finds the smallest
block that fits and, if necessary, splits a larger block into two "buddies." This is efficient
at preventing fragmentation within the kernel's memory space.

UNIT-4

Deadlocks

A deadlock occurs when a set of processes are blocked because each process is holding a
resource and waiting to acquire a resource held by another process in the set.

Resources

A resource is anything a process needs to complete its task. Resources are categorized into two
types:

Reusable resources: Can be used by one process at a time and are not depleted (e.g.,
CPU, memory, files, devices).

Consumable resources: Can be created and destroyed (e.g., signals, messages,
interrupts).

Conditions for Resource Deadlocks

For a deadlock to occur, four conditions must be met simultaneously:

1.

Mutual Exclusion: A resource can only be used by one process at a time.
Hold and Wait: A process is holding at least one resource and is waiting to acquire
additional resources held by other processes.

3. No Preemption: A resource cannot be forcibly taken from a process holding it. It must
be released voluntarily.
4. Circular Wait: A set of processes are in a circular chain where each process is waiting
for a resource held by the next process in the chain.
Ostrich Algorithm

The Ostrich algorithm is a method for dealing with deadlocks by ignoring them. The name
comes from the saying "burying one's head in the sand." This is a practical approach for systems
where deadlocks are rare, as it is cheaper to simply reboot the system when one occurs than to
implement complex prevention or avoidance strategies.

Deadlock Detection and Recovery

Deadlock detection involves periodically checking the system's state to see if a deadlock has
occurred. This is often done using a resource-allocation graph. If a deadlock is detected, the
system must recover by:

Process Termination: Aborting one or more processes to break the circular wait. This
can be done by terminating all deadlocked processes or one by one.

Resource Preemption: Forcibly taking a resource from a process and giving it to
another.

Deadlock Avoidance

Deadlock avoidance requires the operating system to have prior information about the resources
a process will request. The system dynamically checks if a resource allocation will lead to an
unsafe state. A safe state is one where the system can allocate resources to each process in some
order without causing a deadlock. The Banker's algorithm is a well-known example of a
deadlock avoidance algorithm.

Deadlock Prevention

Deadlock prevention ensures that at least one of the four necessary conditions for a deadlock
can never occur.

e Mutual Exclusion: This is not always possible to prevent, as some resources are
inherently non-shareable.

o Hold and Wait: A process must request all its resources at once before it begins
execution, or it must release all its held resources before requesting new ones.

e No Preemption: The system can forcibly preempt a resource from a process.

e Circular Wait: Impose a total ordering of all resource types and require each process to
request resources in increasing order.

File Systems

A file system is a method and data structure used by an operating system to control how data is
stored and retrieved.

Files

A file is a named collection of related information stored on a secondary storage device. Files are
abstract data types that can be organized, accessed, and managed by the file system.

Directories

A directory is a specialized file that contains a list of other files and directories. It provides a
structured hierarchy for organizing and navigating the file system.

File System Implementation

File systems can be implemented in various ways. Key components include:

o Layers: A file system is often layered, with the file system interface providing an API for
user programs, and the storage layer managing physical disk blocks.
o Allocation Methods: How disk space is allocated to files.
o Contiguous Allocation: Each file occupies a set of contiguous blocks on the disk.
Simple but suffers from external fragmentation.
o Linked Allocation: Each file is a linked list of disk blocks. No fragmentation, but
slow random access.
o Indexed Allocation: A separate block (the index block) contains pointers to all
the blocks of a file. Provides fast random access but can have wasted space.

Management and Optimization

File system management and optimization techniques include:

o Free-Space Management: Keeping track of available disk blocks using a bit vector or a
linked list.

o Efficiency and Performance: Caching frequently accessed blocks in memory, using i-
nodes (a data structure in Unix-like systems that stores information about a file, such as
its location on disk) for quick access, and using different block sizes to balance
performance and waste.

o Journaling: A technique used to ensure file system consistency after a crash by logging
changes before they are made.

Secondary-Storage Structure

Secondary storage is non-volatile memory that retains data when the power is off. Hard disks are
a common type.

Overview of Disk Structure and Attachment

A magnetic disk consists of platters, each with two surfaces. Each surface is divided into
concentric circles called tracks, which are further divided into sectors. The set of tracks at the
same distance from the center on all surfaces is a cylinder. Disks are attached to a computer via
an I/O bus, such as SATA or SCSI.

Disk Scheduling

Disk scheduling algorithms determine the order in which disk I/O requests are serviced to
minimize seek time (the time it takes for the disk head to move to the correct track).

e FCFS (First-Come, First-Served): Simplest, but not very efficient.

e SSTF (Shortest Seek Time First): Services the request closest to the current head
position. Can lead to starvation for requests at the edges.

e SCAN: The disk arm moves from one end of the disk to the other, servicing requests
along the way.

e C-SCAN (Circular SCAN): Similar to SCAN, but the head sweeps in only one
direction, returning to the beginning to start the next sweep.

RAID Structure

RAID (Redundant Array of Independent Disks) is a technology that combines multiple physical
disks into a single logical unit to improve performance and/or provide redundancy for data

protection. Different RAID levels (e.g., RAID 0, RAID 1, RAID 5) offer various trade-offs
between speed, data integrity, and cost.

Stable Storage Implementation

Stable storage is a concept of storage that can withstand a single failure, such as a disk crash. It
is often implemented using a RAID level that provides redundancy (e.g., RAID 1 or RAID 5) or
by maintaining two physical copies of the data and carefully managing writes to both copies to
ensure data consistency.

UNIT-5

System Protection

System protection refers to mechanisms that control access to resources. Its primary goal is to
prevent processes from harming each other or the system itself.

Goals of Protection

The main goals are:

e Preventing misuse of resources.

o Ensuring data integrity and consistency.
o Preventing unauthorized access to data.
e Maintaining confidentiality and privacy.

Principles and Domain of Protection

The principle of least privilege is a fundamental concept: a process should only be given the
minimum rights it needs to perform its task. A domain of protection specifies the set of
resources that a process can access. Domains can be implemented as user IDs, process IDs, or a
combination of both.

Access Matrix

An access matrix is a model used to formalize protection. It's a two-dimensional table where
rows represent domains (who can access) and columns represent objects (what can be accessed).
Each cell in the matrix contains the access rights (e.g., read, write, execute) that the domain has
over the object.

Access Control

Access control is the practical implementation of the access matrix. It can be implemented in
two main ways:

e Access Control List (ACL): Each object has a list of which domains can access it and
what rights they have.
o Capability List: Each domain has a list of the objects it can access and what rights it has.

Revocation of Access Rights

The ability to revoke access is crucial. Revocation can be immediate or delayed. Common
methods include removing a capability from a list or deleting an entry from an access control list.

System Security

System security focuses on protecting a system from external and internal threats.

Introduction

The goal of security is to maintain confidentiality (preventing unauthorized data disclosure),
integrity (preventing unauthorized data modification), and availability (ensuring resources are
accessible to authorized users).

Program Threats

These are malicious programs designed to harm a system. Examples include:

e Viruses: Attach to legitimate programs and spread.

e Worms: Self-replicating programs that spread across networks.

o Trojan Horses: Disguised as legitimate software to trick users.

o Logic Bombs: Code that activates when a specific condition is met.

System and Network Threats

These target the operating system or network infrastructure. Examples include:

o Denial-of-Service (DoS) Attacks: Overloading a system to make it unavailable.

e Man-in-the-Middle Attacks: An attacker secretly relays and possibly alters
communication between two parties.

e Port Scanning: Searching for open network ports to find vulnerabilities.

Cryptography as a Security Tool

Cryptography is the science of secure communication. It's used to:

e Encrypt data to ensure confidentiality.
« Digitally sign data to ensure integrity and authenticity.
o Hash data for secure storage and comparison.

User Authentication

Authentication verifies a user's identity. Common methods include:

e Passwords: The most common method.
e Biometrics: Using unique physical characteristics (e.g., fingerprints, facial recognition).
o Tokens: Using a physical device or a one-time password generator.

Implementing Security Defenses

Effective security requires a layered approach:

o Firewalling: Controlling network traffic.

e Intrusion Detection Systems (IDS): Monitoring for malicious activity.
e Anti-virus Software: Detecting and removing malware.

o Regular Patching: Keeping software up to date to fix vulnerabilities.

Firewalling to Protect Systems and Networks

A firewall is a network security system that monitors and controls incoming and outgoing
network traffic based on predefined security rules. Firewalls can be packet-filtering (based on
IP addresses and ports), stateful (aware of the context of a connection), or application-level
(inspecting traffic at the application layer).

Computer Security Classification

Governments and organizations use classification levels (e.g., Confidential, Secret) to manage
access to sensitive information. The Orange Book (formally the Trusted Computer System
Evaluation Criteria or TCSEC) is a historical standard for evaluating computer systems'
security features.

Case Studies: Linux and Microsoft Windows

Both Linux and Windows have robust protection and security features, but they approach them
differently.

Linux

Protection: Linux uses a Discretionary Access Control (DAC) model, where the owner
of a file can set permissions for other users (read, write, execute). It also supports
Mandatory Access Control (MAC) through modules like SELinux and AppArmor,
which enforce a more rigid set of rules regardless of the file owner.

Security: The open-source nature of Linux means many eyes can find and fix
vulnerabilities quickly. It is often seen as more secure by default due to its permissions
model and fewer users running with root (administrator) privileges.

Microsoft Windows

Protection: Windows uses an ACL-based protection model. Every file and object has an
Access Control List that defines permissions for different users and groups.

Security: Windows has invested heavily in security features, including built-in firewalls,
encryption tools (e.g., BitLocker), and robust user authentication (e.g., Active Directory).
Its widespread use makes it a more frequent target for attackers, but also means there is a
large industry dedicated to securing it.

	What is an Operating System (OS)?
	✅ Why Do We Need an Operating System?
	✅ Basic Definition
	✅ Main Roles of an Operating System
	✅ Examples of Operating Systems
	✅ Types of Operating Systems
	✅ Key Characteristics
	✅ Conclusion
	Functions of Operating System
	✅ 1. Process Management
	✅ 2. Memory Management
	✅ 3. File System Management
	✅ 4. Device Management (I/O Management)
	✅ 5. Security and Protection
	✅ 6. User Interface
	✅ 7. Job Scheduling and Resource Allocation
	✅ 8. Error Detection and Handling
	✅ 9. Communication Services

	Operating System Operations
	✅ 1. Interrupt-Driven Operation
	✅ 2. Dual-Mode Operation
	✅ 3. Transition Between User and Kernel Mode
	✅ 4. Timer Control
	✅ 5. I/O Operations
	✅ 6. Process and Memory Management
	✅ 7. System Calls and Exception Handling
	✅ 8. Booting the System

	📝 Summary Table
	Computing Environments in Operating Systems
	✅ 1. Traditional Computing
	✅ 2. Client-Server Computing
	✅ 3. Peer-to-Peer (P2P) Computing
	✅ 4. Distributed Computing
	✅ 5. Virtualization
	✅ 6. Cloud Computing
	✅ 7. Mobile Computing

	📝 Summary Table
	Open-Source Operating Systems & System Structures: Operating System Services
	🟢 1. Open-Source Operating Systems
	✅ What is an Open-Source OS?
	✅ Key Features:
	✅ Popular Examples:
	✅ Benefits:

	🏗️ 2. System Structures: Operating System Services
	✅ Types of OS Services:

	User and Operating-System Interface
	✅ Why Is an Interface Needed?

	🔹 Types of Interfaces in Operating Systems
	✅ 1. Command-Line Interface (CLI)
	✅ 2. Graphical User Interface (GUI)
	✅ 3. Touchscreen Interface
	✅ 4. Voice-based and Natural Language Interfaces (NLI)

	🔹 Programmer Interface: System Calls
	✅ What are System Calls?

	📝 Summary Table
	Types of System Calls
	1. Process Control System Calls
	2. File Management System Calls
	3. Device Management System Calls
	4. Information Maintenance System Calls
	5. Communication System Calls
	6. Security System Calls (in some OS)

	📝 Summary Table
	System Programs in Operating Systems
	✅ What Are System Programs?
	✅ Categories of System Programs
	✅ Examples of Common System Programs
	✅ Why Are System Programs Important?

	📝 Summary Table
	Operating System Design and Implementation
	✅ 1. Design Goals of an Operating System
	✅ 2. Operating System Design Approaches
	✅ 3. Implementation of Operating System
	✅ 4. Steps in OS Implementation
	✅ 5. Challenges in OS Design
	📝 Summary Table

	Operating System Structure
	✅ 1. Simple Structure (Monolithic)
	✅ 2. Layered Structure
	✅ 3. Microkernel Structure
	✅ 4. Modular Structure
	✅ 5. Client-Server Structure

	📝 Summary Table
	Operating System Debugging
	✅ Why is OS Debugging Important?
	✅ Challenges in Debugging OS
	✅ Common Debugging Techniques in OS
	✅ Kernel Debuggers
	✅ Debugging Process
	✅ Best Practices
	📝 Summary Table

	System Boot in Operating Systems
	✅ What is Booting?
	✅ Types of Booting
	✅ Steps in the Booting Process
	✅ Common Bootloaders
	📝 Summary Table

	Process Scheduling in Operating Systems
	✅ Why is Scheduling Needed?
	✅ Process States
	✅ Types of Scheduling
	✅ Common Scheduling Algorithms
	✅ Terminology
	✅ Scheduler Types
	📝 Summary Table

	Operations on Processes
	✅ Main Operations on Processes
	✅ Process Control Block (PCB)
	📝 Summary Table

	Inter-Process Communication (IPC)
	✅ Why IPC is Needed?
	✅ Types of IPC
	✅ Methods of IPC
	✅ Common IPC Mechanisms
	✅ Example Scenario
	📝 Summary Table

	Communication in Client-Server Systems
	✅ How Communication Happens
	✅ Common Communication Methods
	✅ Key Concepts
	✅ Typical Communication Flow
	✅ Example: Using Sockets
	📝 Summary Table

	Multithreaded Programming
	1️⃣ Multithreading Models
	2️⃣ Thread Libraries
	3️⃣ Threading Issues
	4️⃣ Example (Pthreads in C)

	⏳ Process Scheduling
	1️⃣ Basic Concepts
	2️⃣ Scheduling Criteria
	3️⃣ Common Scheduling Algorithms
	Summary Table
	Memory-Management Strategies
	Virtual Memory Management
	Deadlocks
	Resources
	Conditions for Resource Deadlocks
	Ostrich Algorithm
	Deadlock Detection and Recovery
	Deadlock Avoidance
	Deadlock Prevention

	File Systems
	Files
	Directories
	File System Implementation
	Management and Optimization

	Secondary-Storage Structure
	Overview of Disk Structure and Attachment
	Disk Scheduling
	RAID Structure
	Stable Storage Implementation

	System Protection
	Goals of Protection
	Principles and Domain of Protection
	Access Matrix
	Access Control
	Revocation of Access Rights

	System Security
	Introduction
	Program Threats
	System and Network Threats
	Cryptography as a Security Tool
	User Authentication
	Implementing Security Defenses
	Firewalling to Protect Systems and Networks
	Computer Security Classification

	Case Studies: Linux and Microsoft Windows
	Linux
	Microsoft Windows

