Prepared by M.Nandini,
Assistant professor AIDS.

UNIT-1
INTRODUCTION TO INTELLIGENT AGENTS

Definition and Characteristics of Agents. Types of Agents: Reactive, Deliberative,
Hybrid, Learning.Agent Architectures: Subsumption, BDI, Layered.
Environments: Deterministic/Stochastic, Episodic/Sequential, Rationality and
Autonomy, Simple Agent Programming Models.

DEFINITION AND CHARACTERISTICS OF AGENTS
WHAT IS AN AGENT?
Definition:

An agent is anything that can perceive its environment through its sensors and act upon
that environment through its effectors. In the context of Artificial Intelligence, an agent
i1s a system that can perceive its surroundings, make decisions, and take actions to
achieve its specific goals.

Characteristics of Agents:
e Autonomy:

The ability to operate independently and make decisions without constant human
oversight.

« Reactivity:
The capability to respond to environmental stimuli and changes.
o Proactivity:

The ability to exhibit goal-directed behavior, anticipate future states, and plan
actions to achieve long-term objectives.

« Social Ability:

For multi-agent systems, this involves the capacity to interact, coordinate, or
compete with other agents to achieve goals.

« Rationality:

An agent is rational if it chooses actions that maximize its expected outcome or
performance.

o Adaptability/Learning:

Some agents can learn from past experiences and refine their behavior to improve
performance over time.

Prepared by M.Nandini,
Assistant professor AIDS.

Structure of an Agent:

ﬁGENT =

Pertormance

St :Tda rd

- - a m—
Critic M Sensors

feedback | l

changes Environment
Learning Performance
element |knowledge element
Learning gﬂalsl
Problem experiments
Generator = actions
Effectors *

& 4 | .

An Al agent has a fundamental structure composed of the following components:

1. Sensors:

These are the agent's perception devices that gather information from the
environment. For a human, these could be eyes, ears, or skin, while for a robotic agent,
they might be cameras or infrared sensors.

2. Actuators (Effectors):

These are the mechanisms that enable the agent to act on its environment. For a robot,
these could be motors or other parts that move the robot.

3. Agent Program:

This is the "brain" of the agent, an internal process that takes the percept sequence
(perceptions over time) and determines the agent's next action. It's the function that
maps perceptions to actions.

Prepared by M.Nandini,
Assistant professor AIDS.

Diagram of an Agent:

Percepts g%,
Sensors < 5
Agent \
What the'wor!d
is right now
m
=
s
=
©
A 4 -
Condition- | What action | g
action rules "l should do now 3
Actuators
\ /Actions
N

The diagram illustrates the agent's operational flow:
o The Environment is the external world in which the agent exists.

o Percept’s: are the information gathered by the agent's Sensors from the
environment.

o The Agent Program processes these percepts, using its internal logic and
knowledge, to decide on an action.

o The Actuators then execute the chosen action in the Environment.

o This process is continuous, with the agent continuously perceiving and acting,
ideally in a rational and autonomous manner.

Advantages of Single Agents

1. Simplicity
o Easier to design, implement, and maintain compared to multi-agent
systems.
o No need for coordination or negotiation protocols.
2. Low Resource Requirement
o Requires fewer computational resources (no inter-agent communication
overhead).
3. Efficiency for Simple Tasks
o Works very well when the environment is predictable and tasks are
independent.
o Example: a thermostat agent controlling room temperature.

Prepared by M.Nandini,
Assistant professor AIDS.

4. Faster Decision-Making

o Decisions are made locally without waiting for other agents.
5. Cost-Effective

o Lower development and deployment costs compared to MAS.
6. Easier Deployment

o No complex distributed architecture; can run on a single device.

Disadvantages of Single Agents

1. Limited Scalability
o Not suitable for very large, complex, or distributed problems.
o Example: traffic management across a city cannot be solved by a single
agent.
2. No Collaboration
o Cannot share tasks or coordinate with other agents — may fail in
dynamic environments that need teamwork.
3. Brittleness
o If the single agent fails, the entire system fails (no redundancy).
4. Limited Adaptability
o Cannot adapt well to highly uncertain or changing environments.
5. Restricted Problem-Solving
o Only works effectively for local tasks, not global or cooperative
problems.
6. Performance Bottleneck
o All decision-making and actions depend on one entity, which can
become overloaded.

APPLICATIONS OF SINGLE AGENTS:

1. Personal Assistants

o Examples: Siri, Alexa, Google Assistant.
o Perform tasks like answering questions, setting reminders, controlling devices.

2. Recommendation Systems

« Single agent analyzes user behavior — recommends products, music, or
movies.
o Example: Netflix recommender agent, Amazon shopping suggestions.

Prepared by M.Nandini,
Assistant professor AIDS.

3. Game Playing Agents

e Autonomous players in video games (NPCs, chess-playing Al).
o Example: AlphaZero (single-agent reinforcement learning).

4. Robotics (Standalone Robots)

e A robot working alone with sensors/actuators.
o Examples: vacuum cleaning robots (Roomba), warehouse pick-up robots.

5. Information Retrieval Agents

» Single agent searches, filters, and delivers relevant data from the web.
o Example: a web crawler or news aggregator bot.

6. Monitoring & Control Systems

» Single agent monitors a system and takes corrective actions.
o Examples:

o Temperature controller in an AC.

o Intrusion detection agent in cybersecurity.

7. Finance & Trading

o A trading agent that makes buy/sell decisions in stock or crypto markets.
o Works standalone, optimizing based on its strategy.

8. Healthcare Applications

« Diagnostic agent that suggests possible diseases from symptoms.
o Virtual nurse agents monitoring patient vitals.

9. Customer Support Chatbots

o A chatbot agent answering user queries on a website.
o Works independently to resolve common issues.

10. Simulation & Training

o A single agent simulating an entity in training environments.
« Example: a pilot training simulator agent.

Prepared by M.Nandini,
Assistant professor AIDS.

Types of Agents:
Types of Al Agents
Reactive Deliberate Hybrid Utility Learning
@
. .
Task Automation Reasoning based Immediate Maximize RL agent to maximize rewards
on goals Response and Long performance based
Term Planning on utility

Deliberative
agents

Reactive

AGENT m
= [Evtaton.

! .
Se o <

1. REACTIVE AGENTS:

Definition:

Prepared by M.Nandini,
Assistant professor AIDS.

A Reactive Agent is an intelligent system that responds directly to environmental
stimuli without relying on internal models or extensive reasoning about the
future. It follows a sense-act paradigm, where actions are determined by current
perceptions rather than past history or planning.

Characteristics of Reactive Agents:

1. Stimulus-Response Behavior
o They directly map perceptions (inputs) to actions (outputs).
o Example: “If obstacle detected — turn left.”
2. No Internal Memory / State
o They don’t keep a history of past actions or world models.
o Decisions are made based only on the current situation.
3. No Deliberation / Planning
o They do not perform reasoning, prediction, or long-term goal planning.
o Actions are immediate and local.
4. Fast Response
o Because they don’t think or plan, they react quickly — highly efficient
in dynamic environments.
5. Simplicity
o Easy to implement using simple rules (rule-based systems, finite state
machines).
6. Robustness in Dynamic Environments
o Can adapt instantly to changes, since they only care about current input.
7. Limited Intelligence
o Cannot solve complex problems that require memory, prediction, or
cooperation.
8. Decentralization
o Often used in swarms or groups (e.g., ant colony, robotic swarm), where
simple agents collectively show intelligent behavior.
9. Emergent Behavior
o Even though each agent is simple, many reactive agents together can
show complex global patterns (self-organization).

Advantages:

1. Fast Response — Immediate reactions due to lack of complex reasoning.
2. Simplicity — Easy to design and implement.

Prepared by M.Nandini,
Assistant professor AIDS.

3. Low Computational Cost — No need for planning or storing large state

information.

4. Robustness — Performs reliably in dynamic environments.

Disadvantages:
1. No Learning or Planning — Cannot adapt beyond predefined rules.
2. Short-Sighted — Only considers current inputs, ignoring future
consequences.
3. Limited Problem-Solving Ability — Struggles with complex tasks requiring
memory or long-term strategy.
4. Poor Handling of Unforeseen Situations — Ineffective when encountering
unknown scenarios.
Applications
o Robotics — Autonomous vacuum cleaners (e.g., Roomba) that avoid
obstacles.
o Video Games — Non-Player Characters (NPCs) that respond to player actions
in real-time.
o Industrial Automation — Assembly line robots reacting to sensor input.
o Traffic Systems — Reactive agents for signal control responding to vehicle
flow.
o Surveillance Systems — Security systems that trigger alarms when motion is
detected.
DELIBERATIVE AGENTS:
Definition:

A Deliberative Agent is an intelligent system that uses an internal model of the

world and reasoning processes to plan its actions. It operates on a sense—plan—

act paradigm, meaning it perceives the environment, reasons about possible
actions, and then executes the best one based on future outcomes.

Characteristics of Deliberative Agents

1. Internal Representation (World Model)

o Maintain a knowledge base / beliefs about the environment.
o Can represent goals, plans, and the current state of the world.

Prepared by M.Nandini,
Assistant professor AIDS.

2. Planning Capability
o Decide actions after reasoning about different alternatives.
o Use Al planning, search, or decision-making algorithms.
3. Goal-Oriented
o Not just reactive — they pursue long-term objectives.
o Example: “Plan route from home to office considering traffic.”
4. Memory & Learning
o Store past states, events, and experiences.
o Can adapt behavior based on history.
5. Slower Response
o Because of reasoning overhead, deliberative agents react slower than
reactive ones.
6. Complex Problem-Solving
o Can handle tasks that require coordination, foresight, or optimization.
7. Higher Computational Cost
o Require more CPU, memory, and complex algorithms compared to
reactive agents.
8. Symbolic Reasoning
o Often based on symbolic Al (logic, rules, decision trees).
o Example: BDI (Belief-Desire-Intention) architecture.

Advantages:

Goal-Oriented — Can plan to achieve long-term objectives.

Handles Complexity — Suitable for dynamic and uncertain environments.
Adaptable — Can modify plans based on new information.

Better Problem-Solving — Can reason through multiple possible actions.

=

Disadvantages:

1. Slower Response Time — Requires significant computation for planning.

2. Complex Implementation — Designing reasoning and planning algorithms
is harder.

3. High Resource Usage — Needs more memory and processing power.

4. May Fail Under Time Constraints — Not ideal for real-time decision-
making.

Applications:

Prepared by M.Nandini,
Assistant professor AIDS.

o Autonomous Vehicles — Planning optimal routes and avoiding obstacles.

1C

Prepared by M.Nandini,
Assistant professor AIDS.

o Robotics — Robots performing complex tasks like warehouse management.

o Space Exploration — Mars rovers planning movements and scientific
experiments.

o Healthcare AI — Decision-making systems for diagnosis and treatment
planning.

o Smart Assistants — Al assistants scheduling meetings or planning tasks.

Hybrid Agents:
Definition:

A Hybrid Agent combines the features of Reactive and Deliberative Agents to achieve
both fast responses and goal-oriented planning. It uses multiple layers where reactive
behaviors handle immediate situations, while deliberative reasoning manages complex
decision-making and long-term planning.

Hybrid Agent Functionality

Reactive and Goal-Oriented [g |

Components |2 | \

9=,

Learning and Adaptation ' i &

U

-

Collaboration in Multi-Agent
Systems

Characteristics of Hybrid Agents

1. Layered Architecture
o Usually structured in layers:
= Reactive layer — quick stimulus—response.
= Deliberative layer — reasoning, planning, goal management.
= Sometimes a middle coordination layer manages conflicts.
2. Balanced Decision-Making
o Can act immediately when quick response is needed.
o Can plan strategically when time and resources allow.

10

Prepared by M.Nandini,
Assistant professor AIDS.

3. Flexibility

10

Prepared by M.Nandini,
Assistant professor AIDS.

o Works in both dynamic environments (reactive part handles changes)
and complex tasks (deliberative part does planning).
4. Emergent + Goal-Oriented Behavior
o Simple actions can emerge from reactive parts, while the deliberative
layer ensures long-term goals are achieved.
5. Increased Complexity
o More complex to design and implement than pure reactive or
deliberative agents.
6. Resource Aware
o Can prioritize reactive responses when computation is expensive.
o Example: In robotics, avoiding collision (reactive) is prioritized over
long-term navigation (deliberative).

Advantages:

1. Balanced Performance — Combines speed of reactive agents with intelligence
of deliberative agents.

2. Adaptability — Can handle both simple and complex tasks effectively.

3. Improved Robustness — Can respond to emergencies while still following
strategic plans.

4. Scalability — Suitable for dynamic and unpredictable environments.

Disadvantages:
1. Complex Design — Integrating both paradigms requires sophisticated
architecture.

2. Higher Resource Requirements — More computation and memory than pure
reactive systems.

3. Coordination Issues — Conflicts may arise between reactive and deliberative
layers.

4. Debugging Difficulty — Harder to test and validate due to multiple control
layers.

Applications:

o Autonomous Vehicles — Reactive layer handles sudden obstacles; deliberative
layer plans routes.

11

Prepared by M.Nandini,
Assistant professor AIDS.

e Robotics — Industrial robots reacting to sensor data while optimizing task

sequences.

o Military & Rescue Robots — Quick responses to hazards while following

mission plans.

o Smart Home Systems — Immediate reaction to emergencies (fire, intrusion) plus

energy-saving strategies.

o Space Exploration — Rovers using hybrid control to handle both immediate

dangers and scientific goals.

4. Learning Agents:

Definition:

A Learning Agent is an intelligent system capable of improving its performance over
time by learning from past experiences, feedback, or data. It uses a feedback loop to
evaluate its actions and adjust future behavior accordingly.

Learning Agent

Performance standard

|
v

ia Percepts
Critic < Sensors «
Feediback
v
! Changes
Learning element —— performance
Learninlg goals Knowledge element EnVIl‘Onment
]
Problem generator '
Experiments
v
Effectors
Actions
Agent L

Characteristics of Learning Agents

O SIMFORM

o Adaptability — can adjust behavior to new environments.
o Improvement Over Time — performance increases with more experience.

e Autonomy — requires less human intervention as it learns.

12

Prepared by M.Nandini,
Assistant professor AIDS.

Exploration vs Exploitation — balance between trying new actions and using
known successful actions.
Memory-based — learns from past experiences or datasets.

Advantages
1. Improves Over Time — Performance gets better with more experience.
2. Adaptability — Can handle changing environments and new situations.
3. Handles Complex Problems — Suitable for tasks where pre-programmed rules
are insufficient.
4. Can Discover Patterns — Finds hidden insights from data to make informed
decisions.
Disadvantages
1. Requires Large Data — Learning depends on sufficient quality data.
2. High Computational Cost — Training and updating models can be resource-
intensive.
3. Risk of Overfitting — May perform poorly on unseen scenarios if not trained
well.
4. Complex Implementation — Designing effective learning algorithms is
challenging.
Applications:

Recommendation Systems — Netflix, YouTube, and Amazon suggesting
content/products.

Autonomous Vehicles — Learning from driving experiences to improve
navigation.

Game Al — Improving gameplay strategies through reinforcement learning.
Fraud Detection — Systems learning new fraud patterns to improve accuracy.

Healthcare — Al models improving diagnosis by learning from patient data.

13

Prepared by M.Nandini,
Assistant professor AIDS.

AGENT ARCHITECTURES:

What is Agent Architecture

f

Perception) (Reasoning] Interaction

World knowledge memory

f
» INSCECIT ¢

Description:

An Agent Architecture is the structural design that defines how an intelligent
agent perceives its environment, processes information, and takes actions to
achieve its goals. It specifies how different components (sensing, reasoning,
learning, acting) interact to produce intelligent behaviour.

1. Subsumption Architecture:

e Introduced by Rodney Brooks (1986) for reactive robotics.

e [t’s alayered architecture where agents (or robots) behave using simple,
reactive behaviors stacked in layers.

e Higher layers can subsume (suppress or inhibit) the outputs of lower layers
when needed.

Key Principles
o Layered Behavior Modules:

14

Prepared by M.Nandini,
Assistant professor AIDS.

The architecture is built from layers, with each layer implementing a specific
level of behavioral competence, such as "avoid an object" at a low level or
"explore the world" at a higher level.

o Bottom-Up Design:

Complex behaviors are built by composing and integrating simpler, underlying
behaviors, rather than by detailed planning.

o Subsumption (Overriding):

Higher-level behaviors can suppress or inhibit lower-level behaviors. For
example, an "avoid obstacle" layer can take precedence over a "wander" layer to
ensure the robot doesn't hit something while trying to explore.

o Parallel Processing:

All layers process sensory information in parallel and generate outputs
concurrently.

¢ Reactive Control:

Behavior is driven by sensory inputs, emphasizing quick, reflexive responses to
stimuli rather than relying on explicit mental representations.

o No Centralized Control or Explicit Knowledge:
The architecture distributes control and avoids a centralized representation of
knowledge about the world.

|
|
—P> Level 3 i -

EEEEE— Level 2

 E— Level 1

EE— Level O

Sensors Actuators

1 !

Environment

15

Prepared by M.Nandini,
Assistant professor AIDS.

Characteristics

o Reactive: Focus on immediate response to environment.

e Robust: Works well in dynamic, noisy environments.

o Layered: Higher-level tasks built on lower-level tasks.

« Distributed Control: No single decision-maker; each layer handles specific
tasks.

o Simple Implementation: Easy to implement with sensors and actuators.

Advantages vs Disadvantages

Aspect Advantages Disadvantages
Simplicity Easy to build & implement Limited reasoning abilities

Handles d i ictabl
Robustness andles dynamic/unpredictable No long-term planning

environments

B lex if't
Scalability Layers can be added incrementally eoOfnes cottipiex 1106 many

layers
Speed Very fast reaction (no heavy No learning/memory, purely
pee computation) reactive

Hard to guarantee optimal

Reliability Decentralized, fault-tolerant .
behavior

% In short:

The Subsumption Architecture is a layered, reactive control model where higher-
level behaviors can subsume lower ones. It’s widely used in robotics (like insect-like
robots) where real-time reaction is more important than long-term reasoning.

2. BDI (Belief-Desire-Intention) Architecture:

The BDI architecture is one of the most influential models in agent systems. It is based
on the way humans make decisions using beliefs, desires, and intentions.

1. BELIEFS (B)

« Represent the knowledge or information the agent has about the world.
o Can be incomplete, uncertain, or incorrect.

16

Prepared by M.Nandini,
Assistant professor AIDS.

o Example: “The bus arrives at 8:00 AM.”

17

Prepared by M.Nandini,
Assistant professor AIDS.

2. DESIRES (D)

o The objectives, goals, or states of the world the agent would like to achieve.

« Represent motivational attitudes (what the agent wants).
o Example: “I want to reach the office on time.”

3. INTENTIONS (I)

o The commitments that the agent has chosen to pursue among its desires.
« Intentions guide the agent’s plans and actions.
o Example: “I will take the 7:45 AM bus to reach office by 8:30.”

How It Works (BDI Reasoning Cycle)

Perception / Input: Agent perceives environment and updates its beliefs.
Deliberation: Agent evaluates desires and chooses which ones to pursue.
Intention Formation: Agent commits to a subset of desires as intentions.
Planning & Action: Agent executes plans to achieve those intentions.

A S e

needed.

Characteristics of BDI Agents

« Rational (they make decisions based on goals).

« Reactive (respond to environment changes).

« Proactive (take initiative to fulfill goals).

o Flexible (revise goals/plans when beliefs change).

Re-evaluation: Beliefs are updated continuously, and intentions may change if

18

Prepared by M.Nandini,
Assistant professor AIDS.

BELIEFS

Knowledge about
the world

e

DESIRES

Objectives or goals

-~

INTENTIONS

Committed actions

Advantages of BDI Agents

1. Human-like reasoning — Mimics how humans make decisions (beliefs, goals, and
commitments).

2. Goal-directed behavior — Agents don’t just react; they plan and commit to
achieving objectives.

3. Flexibility — Can adapt actions when beliefs change (new information).

4. Commitment handling — Prevents agents from constantly switching goals (avoids
"thrashing").

5. Clear design model — Separation into beliefs, desires, and intentions helps structure
complex agent logic.

6. Interoperability — Many MAS frameworks (like JADE, Jason) support BDI.

Disadvantages of BDI Agents

1. Computationally expensive — Requires reasoning and planning; slower than simple
reactive agents.

2. Complex design — Harder to program and maintain compared to rule-based or
reactive agents.

3. Scalability issues — Managing large numbers of BDI agents with complex plans is
resource-intensive.

4. Incomplete decision-making — BDI doesn’t guarantee optimal solutions (depends
on designer’s plan library).

5. Dynamic environment challenges — May fail if beliefs update too slowly in fast-
changing environments.

19

Prepared by M.Nandini,
Assistant professor AIDS.

Applications of BDI Agents

1. Robotics
o Robots that need planning and adaptability (e.g., service robots, autonomous
drones).

2. Virtual Assistants & Chatbots
o Goal-oriented conversational systems (e.g., scheduling, troubleshooting).
3. Simulation & Training
o Military, traffic, and crowd simulations where agents need realistic decision-
making.
4. Autonomous Systems
o Self-driving cars, UAVs, industrial automation.
5. Multi-Agent Systems
o Cooperative problem solving (disaster rescue, smart grids, logistics).
6. Game Al
o Non-player characters (NPCs) with believable human-like behavior.

LAYERED ARCHITECTURE:

Definition: Combines reactive and deliberative approaches by organizing
functionality into layers, where lower layers handle immediate responses and higher
layers handle planning.

A layered architecture is an agent design approach where the control system is divided
into layers, each handling a different level of reasoning or behavior.

It’s often used to balance reactive behavior (fast responses) and deliberative reasoning
(planning).

Prepared by M.Nandini,
Assistant professor AIDS.

Layered Architectures

Horizontal Vertical
Deliberative Deliberative
4 N a l ™
Reactive Reactive
e N (~ l)
Sensors Sensors

Types of Layered Architectures

1. Horizontal Layering

o All layers have direct access to sensors and effectors.
« Each layer can independently perceive and act.

o Decision arbitration mechanism is required (to resolve conflicts if two layers

want to act).
Example:

« Reactive layer sees an obstacle — stop.
« Planning layer decides long-term route — go left.
o Need arbitration to decide final action.

4 Pros: Fast response +

X Cons: Complex arbitration, possible conflicts.

2. Vertical Layering

o Layers are stacked like a hierarchy.

o Lower layers handle sensing and reactive control.

» Higher layers handle planning, reasoning, and decision-making.
o Communication flows up and down the hierarchy.

flexibility.

20

Prepared by M.Nandini,
Assistant professor AIDS.

Example:

o Reactive layer avoids obstacles.
o Middle layer selects a sub-goal.
o Deliberative layer plans the full path.

4 Pros: Cleaner control, less
X Cons: Slower responses (higher layers must process info).
o Advantages:
o Balances fast response and high-level reasoning.
o Modular design simplifies updates and maintenance.
o Suitable for complex and dynamic environments.

o Disadvantages:

o More complex to design than single-approach architectures.

o Higher computational and resource requirements.
o Coordination between layers can be difficult.

o Applications:

conflict.

o Self-driving cars (reactive layer for emergency braking, deliberative layer

for route planning).

o Service robots in healthcare or hospitality.

o Space exploration robots combining hazard avoidance and mission

planning.

TYPES OF ENVIRONMENTS

An environment in artificial intelligence is the surrounding of the agent. The
agent takes input from the environment through sensors and delivers the output to
the environment through actuators. There are several types of environments:

o Fully Observable vs Partially Observable
o Deterministic vs Stochastic

o Competitive vs Collaborative

« Single-agent vs Multi-agent

o Static vs Dynamic

21

Prepared by M.Nandini,
Assistant professor AIDS.

o Discrete vs Continuous

22

Prepared by M.Nandini,
Assistant professor AIDS.

« Episodic vs Sequential
o Known vs Unknown

g.g. eyes, .

ears, i
camera, LT Agent | eeee-- B0, Motors
range finder . a- P body parts
g !uuuu-uuuuuuui c
: ! code § t]
: (agent pro- : L | ke
E : : a
s i gram) and ¢
! data (know- i |t
r : :
: ledge base) : e
5 i : r
— 1

e.g. send message
say sentence
draw image
move 40 deg ccw

e.q. visual signals,
keystrokes,
file contents,
network packets

1

Prepared by M.Nandini,
Assistant professor AIDS.

1) Fully Observable vs Partially Observable

4.

When an agent sensor is capable to sense or access the complete state of an
agent at each point in time, it is said to be a fully observable environment else
it is partially observable.

Maintaining a fully observable environment is easy as there is no need to keep
track of the history of the surrounding.

An environment is called unobservable when the agent has no sensors in all
environments.

Examples:

o Chess - the board is fully observable, and so are the opponent's
moves.
o Driving - the environment is partially observable because what's
around the corner is not known.
Deterministic vs Stochastic
When a uniqueness in the agent's current state completely determines the next
state of the agent, the environment is said to be deterministic.
The stochastic environment is random in nature which is not unique and cannot
be completely determined by the agent.
Examples:
o Chess - there would be only a few possible moves for a chess piece
at the current state and these moves can be determined.
o Self-Driving Cars- the actions of a self-driving car are not unique, it
varies time to time.

. Competitive vs Collaborative

An agent is said to be in a competitive environment when it competes against
another agent to optimize the output.

The game of chess is competitive as the agents compete with each other to win
the game which is the output.

An agent is said to be in a collaborative environment when multiple agents
cooperate to produce the desired output.

When multiple self-driving cars are found on the roads, they cooperate with
each other to avoid collisions and reach their destination which is the output
desired.

Single-agent vs Multi-agent

An environment consisting of only one agent is said to be a single-agent
environment.

A person left alone in a maze is an example of the single-agent system.

24

Prepared by M.Nandini,
Assistant professor AIDS.

« An environment involving more than one agent is a multi-agent environment.

25

Prepared by M.Nandini,
Assistant professor AIDS.

The game of football is multi-agent as it involves 11 players in each team.

5. Dynamic vs Static

An environment that keeps constantly changing itself when the agent is up with
some action is said to be dynamic.

A roller coaster ride is dynamic as it is set in motion and the environment keeps
changing every instant.

An idle environment with no change in its state is called a static environment.
An empty house is static as there's no change in the surroundings when an agent
enters.

6. Discrete vs Continuous

If an environment consists of a finite number of actions that can be deliberated
in the environment to obtain the output, it is said to be a discrete environment.
The game of chess is discrete as it has only a finite number of moves. The
number of moves might vary with every game, but still, it's finite.

The environment in which the actions are performed cannot be numbered i.e. is
not discrete, is said to be continuous.

Self-driving cars are an example of continuous environments as their actions
are driving, parking, etc. which cannot be numbered.

7.Episodic vs Sequential

In an Episodic task environment, each of the agent's actions is divided into
atomic incidents or episodes. There is no dependency between current and
previous incidents. In each incident, an agent receives input from the
environment and then performs the corresponding action.
Example: Consider an example of Pick and Place robot, which is used to
detect defective parts from the conveyor belts. Here, every time robot(agent)
will make the decision on the current part i.e. there is no dependency between
current and previous decisions.
In a Sequential environment, the previous decisions can affect all future
decisions. The next action of the agent depends on what action he has taken
previously and what action he is supposed to take in the future.
Example:

o Checkers- Where the previous move can affect all the following

moves.

8. Known vs Unknown

In a known environment, the output for all probable actions is given. Obviously,
in case of unknown environment, for an agent to make a decision, it has to gain
knowledge about how the environment works.

26

Prepared by M.Nandini,
Assistant professor AIDS.

RATIONALITY AND AUTONOMY:

In Multi-Agent Systems (MAS), rationality refers to an agent's ability to make optimal
decisions to achieve its goals, while autonomy means agents can act independently,
controlling their own internal states and behaviors to achieve those goals within their
environment. The core challenge is to enable these autonomous, rational agents to
coordinate and collaborate effectively to achieve complex, shared system goals that no
single agent could accomplish alone, often through the use of communication, norms,
and orchestration.

Rationality and Autonomy
in Intelligent Agents

Rationality Autonomy
Intelligent
| Agent |
Acts achieve Acts
the best independently

outcomes

Autonomy in Multi-Agent Systems

Independent Operation:

Each agent can make decisions and act without direct human intervention or
constant supervision.

Internal State & Control:

Agents possess control over their own internal states, allowing them to manage
their decisions and behaviors.

Sense-Plan-Act Cycle:

This cycle is fundamental to autonomy, where agents perceive their environment,
plan actions, and then execute those actions.

Environmental Interaction:
Agents are "situated" because they can sense, perceive, and manipulate their
environment.

Rationality in Multi-Agent Systems

27

Prepared by M.Nandini,
Assistant professor AIDS.

e Goal-Oriented Decision-Making:

28

Prepared by M.Nandini,
Assistant professor AIDS.

Rational agents select the actions that best achieve their goals given the available
information.

Preference Orderability:

A rational agent can consistently rank alternatives, ensuring logical and consistent

choices when faced with multiple options.

Defining Rationality:

The concept of rationality can be subjective, meaning agents can be motivated by

various goals, such as altruism or group concern, not just profit.

Social Rationality:
In MAS, rationality often extends beyond individual goals to group goals,
involving concepts like social intelligence and cooperation.

The Interplay: Achieving Collective Rationality

Coordination and Collaboration:

Autonomy necessitates coordination mechanisms, communication protocols, and
organizational structures to ensure agents work together effectively and align with
overall system goals.

Emergent Behavior:

By coordinating autonomous agents, MAS can achieve complex global
phenomena or solve problems that individual agents cannot.

Addressing Dilemmas:

Autonomous agents must navigate dilemmas, such as choosing between
individual benefit and responsible, ethical actions, which is a key aspect of
emergent responsibility in MAS.

Orchestration:
This process enables independent agents to work together toward common goals,
leading to more complex tasks being managed and executed efficiently.

Advantages

Rationality

» Ensures agents act toward optimal outcomes.

o Improves efficiency and goal achievement.

« Enables agents to adapt to dynamic environments.
o Reduces errors and wasted resources.

29

Prepared by M.Nandini,
Assistant professor AIDS.

Autonomy

o Agents operate independently, reducing need for human intervention.
o Scales well in distributed systems (MAS).

o Increases flexibility in complex and uncertain environments.

o Enables agents to self-correct and adapt without external commands.

Disadvantages

Rationality

o Requires complete or reliable information (not always available).
o High computational cost for reasoning and optimization.
o May conflict with human values or preferences (rational # desirable).

Autonomy

o Loss of human control — risk of undesired behaviors.

« Difficult to predict outcomes in highly autonomous systems.

o Needs robust fault tolerance (autonomous errors can cascade).
o Security risks (autonomous malicious agents).

Applications

Robotics — Autonomous navigation (drones, self-driving cars).
Virtual Assistants — Siri, Alexa act autonomously and rationally.
Finance — Trading agents making rational investment decisions.
Healthcare — Monitoring patients, autonomous diagnosis support.
Multi-Agent Systems (MAS) — Smart grids, logistics, traffic control.
Military & Defense — Autonomous surveillance and decision-making.

NS =

Gaming & Simulations — NPCs with rational and autonomous behaviors.
“A RATIONLA AGENGT IS AUTONOMUS”

SINGLE AGENT PROGRAMING MODELS:

Artificial Intelligence (AI) agents are the foundation of many intelligent systems
which helps them to understand their environment, make decisions and take actions
to achieve specific goals. These agents vary in complexity from simple reflex-based
systems to advanced models that learn and adapt over time. Let's see different types
of Al agents and their unique characteristics.

https://www.geeksforgeeks.org/artificial-intelligence/agents-artificial-intelligence/

Prepared by M.Nandini,
Assistant professor AIDS.

1. Simple Reflex Agents

Simple Reflex Agent Working

Simple reflex agents act solely on the current percept using predefined condition—

action rules, without storing or considering any history. They are fast and easy to

implement, making them suitable for fully observable, stable environments with

clear and simple rules. However, they tend to fail in dynamic or partially observable
situations because they lack memory and deeper reasoning capabilities.

Key Characteristics:

« Reactive: These agents respond immediately to inputs without consideration for
prior events or predicting future outcomes.

o Limited Scope: They excel in predictable environments where tasks are
straightforward and the relationships between actions and results are well
understood.

e Quick Response: Since decisions are made based only on immediate input, it
can react without delay.

o No Learning: These agents cannot improve or change their behavior based on
past experiences.

When to Use: They are ideal in controlled, well-defined environments such as basic
automation like home automation systems or real-time reactive systems like sensors
or switches.

Example: Traffic light control systems that change signals based on fixed timing.

https://www.geeksforgeeks.org/artificial-intelligence/simple-reflex-agents-in-ai/

Prepared by M.Nandini,
Assistant professor AIDS.

2) Model-Based Reflex Agents

Model-Based Reflex Agent Working

Model-based reflex agents enhance the simple reflex approach by maintaining an

internal state or model of the world, that tracks aspects of the environment not

directly observable at each moment. This enables them to deal with partial

observability and dynamic changes more effectively, although their decisions are
still largely reactive and dependent on the accuracy of the model they maintain.
Key Characteristics:

Internal State: By maintaining an internal model of the environment, these
agents can handle scenarios where some aspects are not directly observable thus
it provides more flexible decision-making.

Adaptive: They update their internal model based on new information which
allows them to adapt to changes in the environment.

Better Decision-Making: The ability to refer to the internal model helps agents
make more informed decisions which reduces the risk of making impulsive or
suboptimal choices.

Increased Complexity: Maintaining an internal model increases computational
demands which requires more memory and processing power to track changes in
the environment.

https://www.geeksforgeeks.org/artificial-intelligence/model-based-reflex-agents-in-ai/

Prepared by M.Nandini,
Assistant professor AIDS.

When to Use: They are beneficial in situations where the environment is dynamic
and not all elements can be directly observed at once. Autonomous driving, robotics
and surveillance systems are good examples.

Example: Robot vacuum cleaners that map rooms and tracks cleaned areas.

3) Goal-Based Agents

Goal-Based Agents Working

Goal-based agents select actions by considering future states relative to explicit

goals. They are capable of planning sequences of actions to reach these goals rather

than just reacting to the current state which enables more flexible and intelligent

problem-solving. However, they require well-defined goals and effective planning
algorithms to perform well in complex domains.

Key Characteristics:

e Goal-Oriented: They have explicit goals and make decisions based on how well
their actions align with these objectives.

o Planning and Search: They often use planning algorithms that explore multiple
possible actions to find the most effective sequence of steps that lead to their
goal.

» Flexible: If conditions change or new information arises, it can re-plan and
adjust their strategies to stay on track toward their objective.

o Future-Oriented: Unlike reflex agents,they think ahead and predict future
outcomes to find the best course of action.

30

https://www.geeksforgeeks.org/artificial-intelligence/goal-based-ai-agents/

Prepared by M.Nandini,
Assistant professor AIDS.

When to Use: They are important in applications that require strategic decision-
making and planning such as robotics (pathfinding), project management (task
scheduling) and Al in games (character decision-making).

Example: Logistics routing agents that find optimal delivery routes based on factors
like distance and time. They continuously adjust to reach the most efficient route.

4) Utility-Based Agents:

Utility-Based Agent Working

Utility-based agents extend goal-based reasoning by considering not only whether a
goal is met but also how valuable or desirable a particular outcome is. They use a

utility function to quantify preferences and make trade-offs between competing

objectives, enabling nuanced decision-making in uncertain or resource-limited

situations. Designing an appropriate utility function is crucial for their effectiveness.

Key Characteristics:

o Multi-Criteria Decision Making: These agents fin multiple factors like cost,
benefits, risk, time, etc to find the best possible course of action.

o Trade-Offs: They can make decisions by balancing competing goals and
preferences often finding the best "compromise."

o Subjectivity: They are customizable to reflect subjective preferences or goals,
making them more adjustable to individual or organizational needs.

o Increased Complexity: Finding utility functions for different factors can be

31

https://www.geeksforgeeks.org/artificial-intelligence/utility-based-agents-in-ai/

Prepared by M.Nandini,
Assistant professor AIDS.

computationally intensive and complex.

32

Prepared by M.Nandini,
Assistant professor AIDS.

When to Use: They are ideal for tasks where multiple criteria need to be evaluated
simultaneously such as financial planning, resource management or personal
recommendation systems.

Example: Financial portfolio management agents that evaluate investments based
on factors like risk, return and diversification operate by choosing options that
provide the most value.

5. Learning Agents

Learning Agent Working

Learning agents improve their performance over time by learning from experience

and updating their internal models, strategies or policies. They can adapt to changes

in the environment and often outperform static agents in dynamic contexts. Learning

may involve supervised, unsupervised or reinforcement learning techniques and

these agents typically contain both a performance element (for acting) and a learning

element (for improving future actions).

Key Characteristics:

o Adaptive Learning: It improve their decision-making through continuous
feedback from their actions.

« Exploration vs. Exploitation: These agents balance exploring new actions that
may lead to better outcomes with exploiting known successful strategies.

33

https://www.geeksforgeeks.org/artificial-intelligence/learning-agents-in-ai/

Prepared by M.Nandini,
Assistant professor AIDS.

o Flexibility: They can adapt to a wide variety of tasks or environments by
modifying their behavior based on new data.

o Generalization: It can apply lessons learned in one context to new, similar
situations enhancing their versatility.

When to Use: They are well-suited for dynamic environments that change over time

such as recommendation systems, fraud detection and personalized healthcare

management.

Example: Customer service chatbots can improve response accuracy over time by

learning from previous interactions and adapting to user needs.

6) Multi-Agent Systems (MAS)

Multi-Agent System Working

Multi-agent systems operate in environments shared with other agents, either
cooperating or competing to achieve individual or group goals. These systems are
decentralized, often requiring communication, negotiation or coordination protocols.
They are well-suited to distributed problem solving but can be complex to design
due to emergent and unpredictable behaviors. Types of multi-agent systems:

o Cooperative MAS: Agents work together toward shared objectives.

o Competitive MAS: Agents pursue individual goals that may conflict.

o Mixed MAS: Agents cooperate in some scenarios and compete in others.

Key Characteristics:

34

https://www.geeksforgeeks.org/artificial-intelligence/what-is-a-multi-agent-system-in-ai/

Prepared by M.Nandini,
Assistant professor AIDS.

o Autonomous Agents: Each agent acts on its own based on its goals and
knowledge.

o Interactions: Agents communicate, cooperate or compete to achieve individual
or shared objectives.

o Distributed Problem Solving: Agents work together to solve complex problems
more efficiently than they could alone.

o Decentralization: No central control, agents make decisions independently.

When to Use: They are ideal for decentralized environments like traffic control,

robotics or large-scale simulations where agents need to collaborate or make

decisions independently.

Example: A warehouse robot might use:

o Model-based reflexes for navigation

o Goal-based planning for task sequencing

» Utility-based decision-making for prioritizing tasks

o Learning capabilities for route optimization

7) Hierarchical agents

Hierarchical Agent Working

Hierarchical agents organize behavior into multiple layers such as strategic, tactical
and operational. Higher levels make abstract decisions that break down into more

35

Prepared by M.Nandini,
Assistant professor AIDS.

specific subgoals for lower levels to execute. This structure improves scalability,

36

Prepared by M.Nandini,
Assistant professor AIDS.

reusability of skills and management of complex tasks, but requires designing

effective interfaces between layers.

Key Characteristics:

o Structured Decision-Making: Decision-making is divided into different levels
for more efficient task handling.

o Task Division: Complex tasks are broken down into simpler subtasks.

o Control and Guidance: Higher levels direct lower levels for coordinated action.

When to Use: They are useful in scenarios where tasks can be broken into distinct

stages such as robotics or industrial automation.

Example: Drone delivery systems in which fleet management is done at top level

and individual navigation at lower level.

Prepared by M.Nandini,
Assistant professor AIDS.

UNIT-1I
MULTI AGENT SYSTEMS FUNDAMENTALS

DEFINITION AND PROPERTIES OF MULTI-AGENT SYSTEMS(MAS)
DEFINITION:

A multi agent systems is a group of individual ,independent, interactive
,intelligent programs(called agents) that work together or individually to solve
complex problems, make decisions , or complete tasks. Each agent can act its
own and also communicate with each other.

Or

A multi-agent system (MAS) in artificial intelligence is a system composed of
multiple, autonomous agents that interact to solve problems or achieve common
or individual goals. These agents can be software programs, robots, or other
computational entities, each with its own capabilities and potentially unique
goals. MAS leverages the distributed nature of these agents to tackle complex
tasks, enhance adaptability, and improve robustness compared to single-agent
systems.

How it works:

MAS systems enable complex tasks to be broken down and distributed among
specialized agents. Agents can have local views of the system and adapt their
behaviour based on interactions with other agents and the environment.

Agentll
; i Clieat) -
[tz ‘ .

Manager

e

- .
‘ Agent | __
L I ---."'.n_ u,
T, T
e] o
i B [nfammation Fool

e
o
A

Communicatnr e

.
-
|
Agentn -’

Prepared by M.Nandini,
Assistant professor AIDS.

Single Agent Multi Agent

Supervisor
Agent

|
T ® o o

© © o

|

Properties of MAS:

1. Autonomy: Each agent acts independently, making its own decisions based on
its perceptions and goals. They can control their actions and internal state, though
they may be influenced by other agents or a central controller.

2. Communication: Agents exchange information through defined protocols and
mechanisms. This allows them to coordinate their actions, share knowledge, and
resolve conflicts.

3. Cooperation: Agents work together to achieve shared goals. This can involve
dividing tasks, coordinating efforts, and negotiating solutions.

4. Heterogeneity: Agents can possess different capabilities, knowledge, and
roles. This diversity enables MAS to tackle complex problems and adapt to
various situations.

5. Distributed Local View: In many MAS, no single agent has a complete global
view of the environment. Instead, each agent has a partial view and limited
information, and the global intelligence emerges from the interaction and
coordination of these agents.

6. Scalability and Flexibility: MAS can be scaled by adding more agents,
allowing them to handle changing environments and complex tasks. They can
also adapt to new situations by reallocating tasks or introducing new agents.

7. Adaptability: The ability to learn and adapt is crucial for MAS, enabling them
to adjust to changing environments and improve their performance over time.

8. Specialization: Agents can be specialized for specific tasks, enhancing their
efficiency and effectiveness.

Prepared by M.Nandini,
Assistant professor AIDS.

9. Centralized vs. Decentralized Architectures: MAS can have centralized
architectures (where a central entity coordinates agents) or decentralized
architectures (where agents interact directly).

10. Collaboration and Competition: MAS can be designed for either
cooperative or competitive interactions, or a combination of both.

These properties allow MAS to tackle complex problems in various domains,
including traffic management, logistics, customer service, and more.

Muli-agent Systems
Independent Cooperative
Discrete Emergent Cooperation Communicating | [Non-communicating
Deliberative Negotiating

EXAMPLE: SMART HOME

Role in the MAS

: Controls heating/cooling; adjusts temperature based on occupanc
and preferences.

Agent

Thermostat Agent

Motion Sensor Agent :Detects presence in rooms; informs other agents about occupancy.

:Detects open/closed status; interacts with HVAC to avoid energy

Window Agent
loss.
Lighting Agent :Adjusts lights based on presence, time, and ambient light.
Energy Monitor :Monitors energy consumption; suggests or enforces energy-saving
Agent actions.

User Preference Agent :Learns and applies user behavior and routines.

Security Agent :Coordinates door locks, cameras, and alarms.

:Retrieves external temperature data to optimize indoor climate

Weather Agent seftings.

« Al agents can control various devices in a smart home, such as lighting,
temperature, and security systems.

Prepared by M.Nandini,
Assistant professor AIDS.

« They can learn user preferences and automate tasks to improve comfort
and energy efficiency.

ADVANTAGEOUS/BENEFITS/PRO’S OF MAS:
1. Distributed Problem Solving

« MAS can solve complex problems that are too large or complex for a single
agent or monolithic system.
« Tasks are divided among agents, increasing efficiency and scalability.

2. Robustness and Fault Tolerance

« If one agent fails, others can continue working—making the system more
resilient than centralized ones.

3. Scalability

« New agents can be added without major restructuring.
« Systems can grow and adapt more easily.

4. Parallelism

o Multiple agents can operate concurrently, reducing computation time and
improving performance.

5. Autonomy and Flexibility

« Each agent operates independently, enabling local decision-making.
« Good for dynamic, uncertain, or partially known environments.

6. Modularity

« Easier to design and test individual components before integrating them.
« Encourages reusable components.

7. Emergent Behaviour

o MAS can exhibit intelligent global behaviour from simple local rules—used
in fields like swarm robotics and market simulations.

LIMITATIONS/DIS-ADVANTAGEOUS/CON’S OF MAS

1. Complex Design and Implementation

Prepared by M.Nandini,
Assistant professor AIDS.

« Designing coordination, communication, and negotiation strategies among
agents is challenging.
« Requires careful planning of agent roles, protocols, and behaviours.

2. Communication Overhead

« Frequent inter-agent communication can slow down performance or lead to
congestion in large systems.

3. Unpredictable Behaviour

« Emergent behaviours are hard to control or predict, which may lead to
instability or unexpected outcomes.

4. Debugging and Testing Difficulty

« Hard to isolate faults in distributed settings.
« System behaviour may vary with each run due to nondeterminism or
environmental changes.

5. Security and Trust Issues

« Agents may have conflicting goals or act maliciously (especially in open
MADS).
« Trust management and security protocols are essential but complex.

6. Resource Management

« Resource contention among agents may require conflict resolution strategies
or arbitration mechanisms.

APPLICATIONS:

1. Automated Manufacturing Lines:
« Al agents can monitor equipment, predict maintenance needs, and schedule
repairs, minimizing downtime.
« Different agents can handle tasks like predictive maintenance, order
rescheduling, and inventory management.

2. Smart Grids:

« One agent can monitor weather patterns, while another predicts energy
demand based on that data, optimizing energy distribution.

Prepared by M.Nandini,
Assistant professor AIDS.

« Agents can collaborate to manage energy consumption and distribution
efficiently.

3. Autonomous Vehicles:

« Al agents control various aspects like navigation, collision avoidance, and
communication with other vehicles or infrastructure.
« Agents can work together to ensure safe and efficient navigation.
4. Healthcare Coordination:

« Agents can represent different specialists, collaborating to diagnose patients,
design treatment plans, and coordinate care.

o This can lead to faster diagnosis, more effective treatment, and improved
patient outcomes.

5. Supply Chain Management:

« Agents can track inventory, predict demand, and optimize order fulfillment.

« They can also monitor supplier performance and adjust resource allocation
as needed.

6. Transportation Systems:

« Al agents can optimize routes for public transportation, manage traffic flow,
and improve navigation.

« This can lead to more efficient and reliable transportation networks.
7. Customer Service Platforms:

o Al agents can handle different aspects of customer support, such as
answering questions, resolving issues, and processing refunds.

o They can work together to provide a seamless and efficient customer
experience.

8. Financial Trading:

« Alagents can analyze market data, identify trading opportunities, and execute
trades automatically.

« They can also collaborate to manage risk and optimize trading strategies.
9. Game AI:

o Inmultiplayer games, Al agents can compete against each other or cooperate
to achieve in-game goals.

« This can create more challenging and engaging gameplay experiences.

Prepared by M.Nandini,
Assistant professor AIDS.

10. Disaster Response:

« Al agents can be used to coordinate rescue efforts, manage resources, and
provide situational awareness during disasters.

o They can help to optimize response efforts and minimize the impact of
disasters.

AGENT COMMUNICATION LANGUAGES(ACLs):

In Multi-Agent Systems (MAS), multiple agents work together by
communicating, often over a network. ACLs are formal languages designed to
enable agents to exchange messages in a way that both sides can interpret
correctly and act upon.

These languages are not about syntax alone—they also encode intentions, goals,
and actions, enabling semantic understanding and coordinated decision-

making.
A
&y
| |
(n AL
St |J =
Hrl"']_ rr i
‘ \-r."ﬂ-'? | \ D
TYPES:

KQML (KNOWLEDGE QUERY AND MANIPULATION LANGUAGE):

KQML (Knowledge Query and Manipulation Language) is a language and protocol
used for communication between software agents and knowledge-based systems,
enabling them to share information and knowledge. It's designed to facilitate
interoperability between different Al systems, allowing them to exchange
information and collaborate on complex tasks.

KQML is not tied to a specific content syntax or ontology, making it flexible for
various applications.

Key Features of KQML:

o Message Format and Protocol:

Prepared by M.Nandini,
Assistant professor AIDS.

KQML serves as both a message format and a message-handling protocol,
enabling agents to communicate with each other using standardized message

types.

e "Performatives':

KQML utilizes a set of pre-defined "performatives" that specify the type of
communication, such as asking a question (ask-one), making a statement (tell),
or requesting a service (subscribe).

o Extensible:

The set of performatives in KQML is designed to be extensible, allowing
communities of agents to define and use new performatives for specific tasks or
domains.

o Independent of Content and Transport:

KQML is designed to be independent of the specific content being exchanged
(e.g., the actual knowledge being communicated) and the underlying transport
mechanism (e.g., TCP/IP, email).

o Facilitates Interoperability:
KQML enables different Al systems and agents to communicate and
collaborate, even if they were developed using different technologies.

How KQML Works:

1. Message Creation:

When an agent wants to communicate with another, it creates a KQML message,
including a performative indicating the type of communication and the content to
be exchanged.

2. Message Handling:

The KQML message is then handled by a message-handling protocol, which might
involve routing the message to the appropriate recipient agent or using a facilitator
agent to help find a suitable receiver.

3. Message Interpretation:
The receiving agent interprets the KQML message based on the performative and
the content, and then responds accordingly.

Prepared by M.Nandini,
Assistant professor AIDS.

KOQML KOQML
strings objects

—
o Agent
o

o

= \ r

= Metwork Function

connections calls
Performatives:

Information Sharing Performatives

Performative Description

tell B Inform. ‘Ehe %receiver that a certain
proposition 1s true.

, Inform the receiver that a certain
proposition is not true.

untell > Withdraw a previously sent tell.

deny -

Ask to be notified whenever a certain
proposition becomes true or changes.

subscribe >

Querying Performatives

Performative Description

ask-if —” Ask whether a prop sition is
true or false.

Ask for all answers that
satisfy the query.

Ask for a single ansver to the
query.

» Ask for a stream of answers
stream-all as they become avai gp|e.

ask-all >

ask-one

Action-Oriented Performatives

Prepared by M.Nandini,
Assistant professor AIDS.

Performative Description

achieve Ask the receiver to achieve a goal or perform an action.
unachieve Cancel a previously requested achieve goal.
recommend-one Ask for a single recommendation on how to achieve a goal.
recommend-all Ask for all recommendations on how to achieve a goal.

Communication Management Performatives

Performative Description

register Register interest in a specific kind of message or service.
unregister Remove a previous registration.

advertise Inform others about the capabilities or services an agent provides.
subscribe Request continuous updates about a specific condition.

Negotiation and Meta-L.evel Performatives

Performative Description
broker-one Ask another agent to find a third-party agent to satisfy a query.
broker-all Ask for all agents that can satisfy the query.

forward Forward a message to another agent.

sorry Used to decline a request politely.

error Notify the sender that an error occurred processing a message.
SYNTAX:

(<performative>

:sender <agent-name>
:receiver <agent-name>
:content <expression>
:language <language-name>
:ontology <ontology-name>
:reply-with <message-id>
:in-reply-to <message-id>

:conversation-id <id>

Prepared by M.Nandini,
Assistant professor AIDS.

EXAMPLE:
(tell
:sender agentA
:receiver agentB
:content "(temperature room1 25)"
:language LISP

:ontology climate-control)

Field Meaning
Performative — The type of message. Here, it's used to
tell . . o
inform the receiver of a fact (a proposition).
:sender agentA The agent sending the message (agentA).
:receiver agentB The agent receiving the message (agentB).

:content "(temperature The proposition or fact being told: temperature in
rooml 25)" rooml is 25.

:language LISP The language used to write the content (syntax format).
:ontology climate- Defines the domain vocabulary, so both agents
control understand what “temperature” means in this context.

Another example:

(subscribe
:sender agentA
:receiver agentB
:content "(temperature room1 ?t)"

:language LISP

Prepared by M.Nandini,
Assistant professor AIDS.

:ontology climate-control)

Field Explanation

subscribe Performative requesting ongoing updates.

:sender agentA Agent sending the subscription request (Agent A).
:receiver agentB Agent expected to send updates (Agent B).

:content '"'(temperature The query pattern — any temperature value ?t in
rooml ?t)" rooml. Agent A wants to know when this changes.
:language LISP Syntax format used for content expression (LISP here).
:ontology climate- Shared domain knowledge specifying concepts
control (temperature, room1).

KQML has around 6 main types of performatives:

Type Examples Purpose
Information Sharing tell, deny, untell Provide facts or retract them

ask-if, ask-one, ask-all

eryin > Request knowledge
Querying stream-all qu wicdg
. . R 1 f |
Goal Management achieve, unachieve equest execution of goals or
actions
Subscription/Notification sub.scrlbe, monitor, Receive updates when facts
register change

broker-one, broker-all, Help find or connect to other

Brokerage/Forwarding forward agents

sorry, error, ready, Manage communication or

Error/Control standby signal problems

Put two performatives inside a single parentheses block, which is invalid in
KQML. Each performative message must be its own separate s-expression (its own
parentheses group).

Prepared by M.Nandini,
Assistant professor AIDS.

TWO PERFORMATIVES IN ONE CONDITION POSSIBLE:

(tell

:sender fire-sensor-agent ; Agent sending the message

:recetver control-center-agent ; Agent receiving the message

:content (fire-detected room3) ; The actual fact being communicated
:language KIF ; Content is expressed in Knowledge Interchange Format

:ontology fire-ontology ; The domain or vocabulary for interpreting the content

)

(achieve
:sender fire-sensor-agent ; Agent requesting the action
:receiver control-center-agent ; Agent expected to perform the action

:content (activate sprinkler room3) ; The goal/action to be achieved
:language KIF ; Content expressed in Knowledge Interchange Format

:ontology fire-ontology ; Domain vocabulary for interpreting the content

FIPA (Foundation for Intelligent Physical Agents) Agent
Communication Language (ACL):

FIPA (Foundation for Intelligent Physical Agents) Agent Communication Language
(ACL) is a standardized language used by Al agents to communicate and interact
within multi-agent systems. It provides a structured way for agents to exchange
information and coordinate activities, using a set of communicative acts like
"inform," "request," and "query". FIPA-ACL is built on speech act theory, defining
the structure and semantics of messages, ensuring clear and unambiguous
communication.

Key aspects of FIPA-ACL:

e Structured Communication:

FIPA-ACL defines a specific message structure with sender, receiver, and
content parameters, similar to a well-structured business letter, ensuring clear
communication.

o Communicative Acts:

Prepared by M.Nandini,
Assistant professor AIDS.

nn nn

It employs communicative acts (like "inform," "request," "query," "propose") to
define the intent behind messages, allowing agents to understand the purpose of
communications.

Semantics:

FIPA-ACL uses formal semantics to define the meaning of messages, ensuring
agents can interpret them accurately and understand the intended implications.

Interoperability:

It promotes interoperability between different agent platforms by providing a
common communication protocol.

Dynamic Systems:
FIPA-ACL supports dynamic, open systems, allowing agents to interact
effectively even with previously unknown agents.

How FIPA-ACL works:

1.

1. Message Creation:

An agent formulates a message according to the FIPA-ACL standard, including
the sender, receiver, and a communicative act (e.g., "request") with a specific
content.

2. Message Transmission:

The message is transmitted to the receiving agent, potentially through an
intermediary agent or directly.

3. Message Interpretation:

The receiving agent parses the message and interprets the communicative act
and content, understanding the sender's intention.

4. Response:
Based on the message, the receiving agent can perform an action, send a new
message, or initiate a more complex interaction.

FIPA IN AI AND MULTI-AGENT SYSTEMS

o Multi-agent systems (MAS) consist of multiple autonomous agents that
interact to solve problems collaboratively or competitively.
o FIPA provides standard specifications that cover:
o Agent communication (how agents talk to each other).
o Agent management (creating, deleting, locating agents).
o Interaction protocols (structured sequences of communication).
o Ontologies and content languages.

Prepared by M.Nandini,
Assistant professor AIDS.

1. accept-proposal — Accept an offer or proposal.

2. agree — Agree to perform a requested action.

3. cancel — Cancel a previously made request or proposal.

4. cfp (call for proposals) — Request proposals for a task.

5. confirm — Confirm a proposition or fact is true.

6. disconfirm — Deny a proposition or fact.

7. failure — Inform that a requested action failed.

8. inform — Provide information or state a fact.

9. inform-if — Inform whether a proposition is true.
10.inform-ref — Provide information about a referent or object.
11.not-understood — Indicate the message was not understood.
12.propose — Propose a plan or action.

13.proxy — Ask another agent to perform an action.

14. query-if — Ask whether a proposition is true.

15.query-ref — Request information about a referent or object.
16.refuse — Refuse to perform a requested action or proposal.
17.reject-proposal — Reject a proposal or offer.

18.request — Request an action to be performed.
19.request-when — Request action when a condition becomes true.
20.request-whenever — Request action whenever a condition is true.
21.subscribe — Subscribe to receive notifications or updates.

22.propagate — Forward information to other agents.

Prepared by M.Nandini,
Assistant professor AIDS.

Begin message structure
Communicative act type ¢ p(request

:sender materials agent
:receiver design agent
Parameter expression 'Y P :ontology ECN status
:language FIPA-SL
:protocol fipa-request
:contept
| "((action" E
: (agent-identifier: design agent) !
Message content expression ¢ b (ECN status: date of completion) E
i :
)
SYNTAX:
(<performative>

:sender <sender-agent-name>

:receiver <receiver-agent-name-or-list>
:content <content-expression>
[:language <content-language>]

[:ontology <ontology-name>]

[:protocol <interaction-protocol>]
[:conversation-id <conversation-identifier>]
[:reply-with <message-identifier>]
[:in-reply-to <message-identifier>]
[:reply-by <deadline>]

Explanation of key fields:

o <performative>— The communicative act, e.g., inform, request, agree, etc.

o :sender — The name of the agent sending the message.

« :receiver — The recipient agent(s). Can be a single agent or a list.

o :content — The actual message content or proposition (often in a formal
language like KIF, SL, or plain text).

Prepared by M.Nandini,
Assistant professor AIDS.

:language (optional) — Specifies the language used in the content (e.g., KIF,

SL).

« :ontology (optional) — The ontology that defines the vocabulary in the
content.

« :protocol (optional) — Specifies the interaction protocol (e.g., FIPA-
Request).

« :conversation-id (optional) — Unique ID to correlate messages belonging to
the same conversation.

o :reply-with, :in-reply-to (optional) — Used to link replies with original

messages.

:reply-by (optional) — Deadline for reply.

EX:

(request
:sender fire-sensor-agent
:receiver sprinkler-controller-agent
:content (activate sprinkler room3)
:language KIF
:ontology fire-safety
:protocol FIPA-request
:conversation-id conv001

:reply-with msg001

~ request: The performative — asking to activate the sprinkler.

1 :sender: The agent sending the request (fire-sensor-agent).

:receiver: The agent expected to perform the action (sprinkler-controller-agent).
:content: The actual request content (activate sprinkler in room3).

:language: Specifies the content language used (KIF).

:ontology: The domain vocabulary or knowledge base (fire-safety).

Prepared by M.Nandini,
Assistant professor AIDS.

~ :protocol: The interaction protocol being used (FIPA-request).
1 :conversation-id: Unique ID for this conversation.

-1 :reply-with: Message ID for matching replies.

DIFFERENCE :

KQML (Knowledge Query FIPA ACL (Foundation for

Feature and Manipulation Language) Intelligent Physical Agents
ACL)
Developed b DARPA Knowledge Sharing FIPA (Foundation for
CVEOPEEDY nitiative (early 1990s) Intelligent Physical Agents)
Standardization Informal, research-based Officially standardized by FIPA
Messaging protocol for agent Standard “ACL with _formal
Purpose EME P & semantics for interoperable

Message Format

communication
agents

LISP-like syntax with Similar LISP/ XML syntax with
performatives and parameters performatives and metadata

22 well-defined performatives

Performatives ~40 (e.g., tell, ask, achieve) (e.2.. inform, request)
Semantics Only . partially defined Formally defined using speech
(pragmatic use) act theory

Content) Also flexible (SL, KIF, RDF),

Language Flexible (KIF, Prolog, etc.) but usually more structured

Ontology Manual, optional Explicitly supported via

Support :ontology parameter

Protocol None defined (handled Built-in support for interaction

Support separately) protocols (ACPs)

Used i Early agent systems, research JADE, FIPA-compliant
sedm tools systems, industrial MAS

1. Semantics

Prepared by M.Nandini,
Assistant professor AIDS.

« KQML: Semantics are loosely defined — focuses more on message transport
and structure.

« FIPA ACL: Uses formal semantics based on speech act theory
(illocutionary force, preconditions, effects).

2. Interaction Protocols

« KQML: Doesn’t define interaction protocols — left to the developer.
« FIPA ACL: Defines structured interaction protocols like Request, Contract
Net, Subscribe.

3. Standardization

« KQML: Evolved informally through research.
« FIPA ACL: Internationally standardized with consistent implementation
guidelines.

In Short

« KQML is older, more flexible but less formal.
o FIPA ACL is newer, more formal, and standardized, making it ideal for
building interoperable multi-agent systems.

AGENT INTERACTION PROTOCALS:

Interaction protocols in multi-agent systems (MAS) are sets of rules that govern how
agents communicate and coordinate their actions to achieve common goals. They
define the structure of interactions, ensuring agents can exchange information, make
decisions, and coordinate their actions effectively. These protocols are crucial for
building coherent and efficient MAS, especially when agents need to interact in
complex or dynamic environments.

MULTIAGENT COMMUNICATION
PROTOCOLS

MESSAGE

Purpose of Interaction Protocols:

Prepared by M.Nandini,
Assistant professor AIDS.

Communication:

Protocols facilitate the exchange of information between agents, enabling them
to share knowledge, requests, and results.

Coordination:

They define how agents synchronize their actions and decisions to avoid
conflicts and achieve a shared objective.

Collaboration:

Protocols allow agents to work together, potentially dividing tasks, sharing
resources, and combining their expertise.

Negotiation:

Protocols can enable agents to negotiate terms of cooperation or task
assignment, leading to more flexible and efficient solutions.

Conflict Resolution:
Protocols can incorporate mechanisms for handling disagreements and conflicts
that may arise during interactions.

Key Concepts:

Initiator and Participant:

Many protocols involve one agent initiating an interaction (the initiator) and
another agent responding (the participant).

Message Sequence:
Protocols define the order and types of messages that agents exchange.
Performatives:

These are the types of actions or messages that agents can send, such as requests,
proposals, or acknowledgments.

States:

Protocols can be represented as state machines, where each state represents a
stage in the interaction and the transitions between states are triggered by
messages.

Prepared by M.Nandini,
Assistant professor AIDS.

TYPES:
CONTRACT NET PROTOCOL (CNP)

The Contract Net Protocol (CNP) is a crucial interaction protocol used in multi-agent
systems for task allocation and coordination. It enables agents to negotiate and
distribute tasks in a decentralized manner, mimicking the process of awarding
contracts. In essence, one agent (the "manager") announces a task, potential agents
(the "contractors") bid on it, and the manager selects the best bid.

Manager Agent

[

[T e [Publie

Y

Environment
task task
SO O g hLT(]lTIl'.G'I B

bidding
pherom ong
ry task
herom ang;

hidding
herom ong

bidding
3 lask heromeone task
‘ki’"m : 'y eromong,
) h 4 Y
Contractor Agent Contractor Agent Contractor Agent

Features:

1. Roles:

o Manager: The agent initiating a task and seeking bids.

o Contractor: The agent that receives the task announcement and submits bids.
2. Phases:
1. Task Announcement:

The manager agent initiates the process by broadcasting a "call for proposals"
(CFP) to a group of potential participants. The CFP includes details about the task,
such as its requirements, deadline, and any relevant parameters.

2. Evaluation and Negotiation:

Prepared by M.Nandini,
Assistant professor AIDS.

Agents assess the task and decide if they can fulfil it. If an agent is interested, it
submits a "proposal" (or bid) to the manager, outlining how it will perform the task
and potentially including a cost estimate or other relevant information.

3. Selection and Award:

The manager reviews all the proposals received and selects the most appropriate
one based on predefined criteria (e.g., cost, efficiency, reputation).

4. Communication of Results:

The manager informs all participating agents about the outcome of the selection
process, either awarding the task to the chosen agent or indicating that no suitable
proposal was received.

5. Task Execution and Completion:
The agent awarded the task proceeds to execute it according to the agreed-upon
terms and reports its completion to the manager.

In FIPA-ACL, when using standard interaction protocols like

[

Contract Net, you should include the “:protocol” parameter to indicate which

interaction protocol is being followed. This helps agents interpret and manage the
sequence of messages correctly.

3.Ex:
(communicative-act cfp
:sender AgentA
:receiver AgentB
:content "(task deliver package zoneA)"
:language fipa-sl
:ontology logistics
:protocol fipa-contract-net
:conversation-id conv123
:reply-by "2025-07-21T16:00:00Z"
)

Prepared by M.Nandini,
Assistant professor AIDS.

Field
communicative-act cfp
:sender AgentA
:receiver AgentB

:content

:language fipa-sl

:ontology logistics
:protocol fipa-contract-net

:conversation-id conv123

:reply-by
21T16:00:00Z"

Meaning

The speech act (also called performative) to call for
proposals.

The agent requesting the task (initiator / manager).
The agent receiving the CFP (can be multiple agents).

The task to perform (e.g., deliver a package to Zone
A).

The content is written in FIPA Semantic Language
(SL).

The domain of discourse (vocabulary/knowledge of
tasks, locations, etc).

Indicates the use of the Contract Net Protocol.

Identifier to link
conversation.

all related messages in this

"2025-07-

Deadline for agent to reply with a proposal or refusal.

Agent A |
(Manager) |

Agent B

I 1
| |
| (Contractor) |
| 1

| CFP: Task to perform

| <

Agent C

| 1
| |
| (Contractor) |
| 1

]
| CFP: Task to perform

v

Decide to propose

F———— Propose: "%18, 38 min”

v

Manager Ewvaluates

v

Decide to refuse

|
> |

F———— Refuse: "Busy"
L

Prepared by M.Nandini,
Assistant professor AIDS.

Manager Evaluates

I
b—— Accept-Proposal ————— P Agent B
L—— Reject-Proposal ———— P Agent C
v

Agent B performs task

|

L—— Inform: "Task completed" — M Manager

Applications:

-1 Robotics: Multiple robots coordinating delivery or search tasks.

-1 Smart Grids: Power sources bidding to fulfill demand requests.

-1 Distributed Sensor Networks: Selecting the best sensor node for a task.

-1 Manufacturing Systems: Scheduling jobs among machines or agents.

AUCTION INTERACTION PROTOCOLS :

In multi-agent systems, auction interaction protocols define the rules and structure
for how agents, acting as buyers and sellers, communicate and negotiate during an
auction to allocate resources or services. These protocols dictate the message types,
sequences, and conditions for bidding, acceptance, and rejection, ensuring orderly
and efficient interaction among agents.

Auction-based protocols are another crucial category of interaction mechanisms.
These protocols mirror real-world auction dynamics, with agents playing roles as
auctioneers and bidders. Two primary variants have emerged: the English auction,
where agents incrementally increase their bids, and the Dutch auction, where prices
decrease until an agent accepts. These mechanisms are particularly effective in
scenarios involving resource allocation and market-based decision making.

Key aspects of auction interaction protocols in MAS:

. Purpose:
These protocols replicate real-world auctions within multi-agent environments,
enabling agents to negotiate and allocate resources efficiently without
centralized control.

1 Roles:

Prepared by M.Nandini,
Assistant professor AIDS.

« Auctioneer Agent: Initiates the auction, announces prices, and decides

winners.
« Bidder Agents: Compete by submitting bids based on their valuations or
capabilities.
Call for Bids
Bidder 1 Auctioneer A
I
|
Bidder 2 :
1
I
: Adds
|
Bidder 3 :
|
- y" -
7 < AN
Cost(b) | Delivery time (dt) | |* Reliability (r) \\
/
» Bid 1 10€ 900s 1l 95% "I
i |
WBid2 | 15¢€ 600 s || 929% |
i
o Bid3 | 20€ 500's ' | 73% ,;‘
N b - - ” *
Message Types:

Protocols define the specific messages agents can send and receive, such as
"bid," "accept," "reject," or "request”.

Sequencing of Messages:

Protocols specify the order in which messages are exchanged and the conditions
under which certain messages are sent or received.

AUCTION TYPES:

Common auction types include English (ascending price) and Dutch
(descending price) auctions.

o [English Auction:

A common protocol where the price increases until a single bidder remains,
winning the item.

Prepared by M.Nandini,
Assistant professor AIDS.

e Dutch Auction:

A protocol where the price starts high and decreases until a bidder accepts,
winning the item.

| Agent A |

| (Auctioneer) |

1. CFP (call for proposals)

| | Agent B |

| | (Bidder) |

| | Agent C |

| | (Bidder) |

2. Propose (bid with increasing values) <

3. Announce highest bid & call for higher bids

Prepared by M.Nandini,
Assistant professor AIDS.

4. Repeat bids until no higher bids

5. Accept highest proposal and reject others

| » Agent B (accept-proposal)

| » Agent C (reject-proposal)

6. Winner (Agent B) performs task and sends inform

| < inform (task done)

Explanation:

1. Agent A (Auctioneer) sends a cfp (call for proposals) to all bidders.

2. Agent B and Agent C respond with increasing bids (propose messages).

3. Agent A updates bidders about the current highest bid and requests higher
bids.

4. Bidding continues until no agent offers a higher bid.

. Agent A accepts the highest bid and rejects others.

6. The winning agent completes the task and informs the auctioneer.

D

Applications:

° Task Allocation (Robots/Drones)
— Assign tasks like delivery or cleaning to the best-suited agent.

. Resource Allocation (Cloud/Edge Computing)
— Distribute CPU, bandwidth, or memory among competing agents.

. Smart Grid Energy Trading
— Buy/sell electricity between producers and consumers via bids.

. E-Commerce & Online Auctions
— Agents bid for products, ads, or stocks dynamically.

Prepared by M.Nandini,
Assistant professor AIDS.

° Sensor
— Select best sensor nodes for data collection tasks.

. Traffic & Mobility
— Dispatch taxis or delivery vehicles based on agent bids.

. Healthcare
— Allocate equipment or specialists using bidding among departments.

o Wireless Network
— Allocate frequencies or channels to avoid interference.

AUCTION PROTOCOL IN FIPA ACL:
Step 1: Call for Proposal (CFP)

(communicative-act cfp

:sender AgentA

:receiver (set AgentB AgentC)

:content "(task deliver-package zoneA)"
:language fipa-sl

:ontology logistics

:protocol fipa-english-auction
:conversation-id auction123

:reply-by "2025-07-21T15:00:00Z2"

¢ Step 2: Bidder Proposes

(communicative-act propose
:sender AgentB

:receiver AgentA

:content "(bid 20)"

:language fipa-sl

:protocol fipa-english-auction
:conversation-id auction123

¢ Step 3: Auctioneer Accepts

(communicative-act accept-proposal
:sender AgentA

Networks

Systems

Scheduling

Management

Prepared by M.Nandini,
Assistant professor AIDS.

:receiver AgentB

:content "(task assigned)"
:language fipa-sl

:protocol fipa-english-auction
:conversation-id auction123

¢ Step 4: Inform Result

lisp
CopyEdit

(communicative-act inform

:sender AgentB

:receiver AgentA

:content "(task completed)"
:language fipa-sl

:protocol fipa-english-auction
:conversation-id auction123

)

Key Differences Between CNP and Auction Protocol:

Feature

Purpose

Initiator Role

Responder
Role

Selection
Criteria

Bidding
Content

Interaction
Style

Flexibility

Contract Net Protocol (CNP) Auction Protocol

Resource or task allocation

Task allocation and coordination through competitive bidding

Manager agent sends task offers

(Call for Proposals - CFP) Auctioneer initiates the auction

Contractor agents submit

proposals (bids) Bidder agents submit price bids

Based on proposal quality (e.g., Based mostly on price or utility
cost, time, capability) value

Functional proposals (e.g., "I can

do this in X time") Numeric bids (e.g., "$5")

Collaborative; may include Competitive; aims to maximize
negotiation gain

More flexible — proposals can Usually less flexible — focuses
include rich task info on pricing

Prepared by M.Nandini,
Assistant professor AIDS.

Feature Contract Net Protocol (CNP) Auction Protocol
. : Resource allocation
Common Use Distributed task allocation (e.g., L
) marketplaces, bandwidth
Case robotics) :
auctions
CONTRACT NET PROTOCOL AUCTION PROTOCOL
F Copy & Edit
Manager (Task Cuwner) Auctioneer (Resource Owner)
[|
| Call for Proposals (CFP) | Starts Auction
[
I |
+
I [I I
.
| Contractor A |Contractor B| | Bidder A | | Bidder B |
+
| | | I
Proposal: "I can do it Proposal: "I can Bid: %1e Bid: $12
in 5 min for %10 do it faster™ | |
| | +
-
Manager selects best Auctioneer selects highest bid
based on capability g based on price/value

AGENT COORDINATION TECHNIQUES:
AGENT COORDINATING TECHNIQUES:

In multi-agent systems (MAS), coordination techniques enable multiple agents to
work together, communicate, and adjust their actions to achieve a common

Prepared by M.Nandini,
Assistant professor AIDS.

goal. These techniques are crucial for ensuring agents cooperate effectively, avoid
conflicts, and optimize overall system performance. Key coordination techniques
include intentional coordination, market-based coordination, hierarchical
coordination, and social network-based coordination. Additionally, centralized,
decentralized, and hybrid approaches offer different trade-offs in terms of
complexity, scalability, and fault tolerance.

Centralized Coordination

Description:

A central agent (or controller) manages the actions of all other agents.
Distributed Coordination

Description:

Agents coordinate locally with peers without a central controller. Each agent makes
decisions based on local information and interactions.

Market-Based (Economy-Inspired) Coordination
Description:

Agents act like economic agents, negotiating or bidding for tasks/resources using
auctions or price mechanisms.

Plan-Based Coordination
Description:

Agents share and synchronize plans or intentions. Coordination is achieved by
aligning or merging their plans.

Communication-Based Coordination
Description:

Coordination through message passing (e.g., using agent communication languages
like FIPA ACL or KQML).

Prepared by M.Nandini,
Assistant professor AIDS.

Learning-Based Coordination
Description:

Agents use machine learning (e.g., reinforcement learning or multi-agent learning)
to learn coordination policies from interaction.

BLACK BOARD:

In multi-agent systems (MAS), blackboard coordination techniques involve agents
sharing information and collaborating through a central data repository, the

"blackboard," instead of direct communication. This shared knowledge base allows
agents to post and retrieve information, facilitating asynchronous collaboration,
particularly useful for complex, incremental problem-solving.

i T
_’r,,—f-’f—-" (.ﬂngtﬁtz —

Blackboard - . (—:
o Agent 3

=

(o

Control -

-l
- 1

Features:

1. The Blackboard:

« A central data repository, the blackboard, acts as a shared knowledge base for
all agents.

https://www.google.com/search?sca_esv=a500fe4c35fb992d&rlz=1C1CHBD_enIN1128IN1128&cs=0&q=multi-agent%2Bsystems%2B%28MAS%29&sa=X&ved=2ahUKEwiLgIWPpdWOAxXFVmwGHc31Ix8QxccNegQIAhAB&mstk=AUtExfAGmrtRKH89aqO4C8PFn8bfguCCBc9nq70XtErAY_tC2mI82dYcfL-Cyts3dmE4PC7OnG5DIMSh8Qamv8ftlu6pKigd0lZEEozdLM2_Ijp43ldJIIyVd95ocbqvqsCSeZw&csui=3

Prepared by M.Nandini,
Assistant professor AIDS.

o Agents can post information, hypotheses, and partial solutions to the
blackboard.

« Other agents can access and utilize this information to contribute to the overall
solution.
2. Agents (Knowledge Sources):

« Specialized agents, also known as knowledge sources (KSs), are designed to
solve specific sub-problems.

o They read information from the blackboard, process it, and potentially write
new information back to the blackboard.

« Agents can be designed to be reactive to changes on the blackboard, triggering
actions when relevant information is available.
3. Control Component:

« A control component manages the overall process, deciding which agent should
act at a given time based on the blackboard's state.

o This component ensures efficient and coordinated problem-solving by
prioritizing tasks and guiding agent actions.
Example:

Problem: Solve a simple arithmetic expression step-by-step:

Expression:3+5%2
Each agent has limited capability:

o Agent A can perform addition
« Agent B can perform multiplication

The blackboard holds the current state of the expression and the agents update it
when they can act.

o The blackboard starts with the full expression.

« Agent B handles multiplication first (because of operator precedence).
o The updated result is written back to the blackboard.

o Agent A then performs addition.

« Once only one element is left in the blackboard, it is the final result.

Advantages of Blackboard Systems:

Prepared by M.Nandini,
Assistant professor AIDS.

Flexibility:

Blackboard systems can handle complex, dynamic problems by allowing
agents to contribute in an opportunistic and flexible manner.

Modularity:

The modular nature of the system allows for easy addition or removal of
agents as needed.

Adaptability:
The system can adapt to changing situations and adjust its problem-solving
approach based on the blackboard's state.

Challenges:

Control Complexity:

Managing the blackboard and coordinating the actions of multiple agents can
be complex.

Potential for Inefficiency:

Poorly chosen actions by knowledge sources early in the process can lead to
wasted effort and computational resources.

Scalability:
As the number of agents and the complexity of the problem increase, the
blackboard system might face scalability challenges.

MEDIATOR

In the fundamentals of multi-agent systems (MAS), a Mediator is a type of agent

that helps manage, coordinate, or resolve interactions between other agents.
Unlike a broker (which connects agents), a mediator often adds logic or decision-

making to help agents work together more effectively.

What Is a Mediator?

A Mediator Agent is an intelligent entity that coordinates or manages interactions
among agents to:

Resolve conflicts

Negotiate agreements
Organize collaboration

Guide communication patterns

Prepared by M.Nandini,
Assistant professor AIDS.

It encapsulates interaction logic so other agents can focus on their own goals.

Workflow of a Mediator

1. Agents Register with the mediator.
2. Agents Make Requests or submit goals.
3. Mediator Coordinates by:
o Handling communication
o Ensuring protocols (e.g., negotiation, auctions)
o Preventing conflicts (e.g., shared resource access)
4. Mediator Delivers Results or controls outcomes (e.g., selects winner in
auction).

Prepared by M.Nandini,
Assistant professor AIDS.

MEDIATOR
COORDINATION TECHNIQUE

AGENT B

REGISTER RESULTS

Benefits:

Benefit Description

</ Centralized coordination . . .
Easier to manage complex interactions.

logic

Mediator can prevent or resolve deadlocks and

<7 Conflict management
clashes.

Mediator can support negotiation, auctions,

</ Flexible protocols .
voting, etc.

</ Encapsulation Reduces complexity in individual agents.

Limitations:

Prepared by M.Nandini,
Assistant professor AIDS.

Limitation Description

L. Central point of If the mediator fails, coordination breaks.

failure
o One mediator handling many agents can become a
1. Scalability limits
bottleneck.
! Increased Agents rely on the mediator for coordination.
dependency
BROKER

In the fundamentals of multi-agent systems (MAS), the Broker Coordination
Technique is a decentralized coordination model where a broker agent helps
facilitate communication and task allocation among other agents. It is commonly
used for dynamic service discovery, task distribution, and resource
matchmaking.

Component Description

An intermediary that matches service requesters with service
Broker _providers. It does not perform the task but coordinates between
Agent agents.

Requester Agent :Requests a service or resource.

. :Offers a service or
Provider AgeNT
resource.

How It Works:

1. Request: A requester agent sends a task or service
request to the broker.

2. Search/Match: The broker searches for suitable
provider agents that can handle the request.

Prepared by M.Nandini,
Assistant professor AIDS.

3. Forward: The broker connects or redirects the requester
to the selected provider(s).

4. Execution: The requester and provider communicate
directly to complete the task.

5. Update: The broker may be updated on the task status

Requester Agent ——

v
[BROKER AGENT]
A

Provider Agent €4———!

Provider Agent Broker Agent Requester Agent

1. Register service -------- >| |

|<-mmmmm Request Task -- 2. Send request

3. Find matching provider --| |

[— Provider info ->|

|<-mmmm Task request/response (optional) --- >|

Prepared by M.Nandini,
Assistant professor AIDS.

(Executes task and returns result)
Pros:

1. Decouples Agents
o Brokers act as intermediaries, so agents don’t need to know about each
other directly.
o Simplifies agent discovery and dynamic connection.
2. Scalability
o Facilitates large-scale systems by managing service registries and
matchmaking efficiently.
3. Flexibility
o Allows dynamic joining/leaving of agents without disrupting the system.
o Supports heterogeneous and evolving agent populations.
4. Reduced Communication Overhead
o Brokers reduce the need for all agents to broadcast service requests.

CONS:
-1 Single Point of Failure

o Ifthe broker is centralized and goes down, matchmaking fails.
« May become a bottleneck under heavy load.

-1 Latency Overhead
« Additional step in communication can introduce delays.
-1 Limited Control

« Broker only matches agents; does not manage or control their interactions
after connection.
o Coordination conflicts may arise after matchmaking.

-1 Complexity in Broker Design

o Maintaining up-to-date registries and efficient matchmaking can be
challenging.

DIFFERENCE:
BLACK BOARD:

Prepared by M.Nandini,
Assistant professor AIDS.

Agents read from and write to the Blackboard.

- Coordination happens indirectly via the shared blackboard.

MEDIATOR:

Agents communicate **through** the mediator.

- Mediator actively resolves conflicts and synchronizes actions.

BROKER:

Broker matches agents and then they communicate directly.

DISTRIBUTED PROBLEM SOLVING CONCEPTS:

Distributed problem solving (DPS) in multi-agent systems (MAS) involves breaking
down complex problems into smaller, manageable sub-problems that can be solved
concurrently by multiple agents. These agents then cooperate and coordinate to
achieve a common goal, with interactions and information sharing being crucial
aspects.

Distributed Problem Solving involves multiple agents working cooperatively to
solve a global problem by dividing it into subproblems, solving those locally, and
combining the results.

Features:

Problem Decomposition:

The core of DPS is dividing a large problem into smaller, more manageable
sub-problems that can be tackled by individual agents.

Agent Specialization:

Agents can be specialized to handle specific sub-problems or tasks based on
their expertise or capabilities.

Collaboration and Coordination:

Agents need to communicate and coordinate their actions to ensure a consistent
and coherent overall solution.

Distributed Search and Optimization:

Algorithms like DCSPs and DCOPs are used to find optimal solutions in a
distributed manner, where agents may have different constraints or objectives.

Prepared by M.Nandini,
Assistant professor AIDS.

o Communication and Negotiation:

Agents interact through communication protocols, negotiation mechanisms,
and other coordination strategies to share information, resolve conflicts, and
reach agreements.

TWO PROMINENT MODELS IN DPS ARE

e Distributed Constraint Satisfaction Problems (DCSPs) and
e Distributed Constraint Optimization Problems (DCOPs).

Distributed Constraint Satisfaction Problems (DCSPs):

A Distributed Constraint Satisfaction Problem (DCSP) is a fundamental
problem-solving framework in multi-agent systems (MAS) where multiple agents
collaboratively assign values to variables such that all constraints are satisfied.

Unlike centralized CSPs, the variables and constraints in a DCSP are distributed
across agents, and agents must work together — often asynchronously — to find a
solution.

DCSP Components

1. Agents
o Each agent owns and controls one or more variables.
2. Variables
o Variables have domains: a set of values that can be assigned.
3. Constraints
o Constraints define permitted combinations of values among variables.
o Can be intra-agent (local) or inter-agent (between agents).
4. Communication
o Agents must communicate to share variable assignments and enforce
constraints.

Goal of a DCSP

Find a complete and consistent assignment to all variables such that all
constraints are satisfied — using only distributed communication and local
computation.

DCSP Workflow in MAS

Model problem: Define agents, variables, domains, constraints.

Local search or backtracking: Each agent proposes variable values.
Constraint checking: Agents communicate and check consistency.
Backtrack if necessary: If a conflict is detected, backtrack or change
assignments.

b=

Prepared by M.Nandini,
Assistant professor AIDS.

5. Converge to solution: A globally consistent solution is eventually found (if
one exists).

Example:

Three agents (Al, A2, A3) want to schedule a meeting.
Each agent has a preferred time slot, and the meeting can only happen if all three
are available at the same time.

Component Description
Agents Al, A2, A3
Variables x: (Al's time), X2 (A2's time), X3 (A3's time)
Domains {9am, 10am, 11am} for each variable
X1 = X2 = Xs (they
Constraints must all agree on the

same time)
How It Works Visually:

« Each agent proposes a value (e.g.,A1 proposes 10am)

o They communicate and check whether their proposed values
are equal

o Ifx1=x2=Xs, the solution is valid

o Ifthere's a mismatch, agents backtrack or revise their choice

| Diagram

[Agent Al] [Agent A2] [Agent A3]

Domain of Xa, X2, X3! {%am, 18am, 1lam}

DCSP Applications in Multi-Agent Systems (Short)

o Meeting Scheduling: Finding a common available time for
multiple agents.

« Resource Allocation: Assigning shared resources without
conflicts (e.g., bandwidth, machines).

« Multi-Robot Coordination: Avoiding collisions by assigning
non-overlapping paths or time slots.

Prepared by M.Nandini,
Assistant professor AIDS.

Distributed Sensor Networks: Coordinating sensor activation
times to avoid overlap.

Distributed Scheduling: Assigning tasks or shifts ensuring no
conflicts in assignments.

Traffic Signal Control: Synchronizing lights to avoid
conflicting signals.

Distributed Constraint Optimization Problems (DCOPs):

A Distributed Constraint Optimization Problem (DCOP) is a framework used to
model and solve optimization problems in multi-agent systems where:

Multiple agents control variables.

Variables have possible values (domains).

Constraints define costs or utilities over combinations of variable
assignments.

The agents coordinate to find assignments to variables that optimize (usually
minimize) the total cost or maximize the total utility of the system.

Key Concepts:

Agents:
Independent entities in a system, each holding variables and constraints.
Variables:

Represent choices or decisions agents can make, each with a domain of
possible values.

Constraints:

Relationships between variables that define what combinations of values are
acceptable or desirable.

Optimization:
The goal is to find a combination of variable assignments that minimizes the
overall cost or maximizes the overall utility

Prepared by M.Nandini,
Assistant professor AIDS.

WORKFLOW:
1. Problem Definition:

DCOPs are defined by a set of agents, variables, domains, constraints, and an
assignment function that maps variables to agents.

2. 2. Distributed Nature:

Agents operate independently, but they need to coordinate to find a solution
that satisfies the global constraints and optimizes the objective function.

3. 3. Communication:

Agents communicate with each other, exchanging information about their
variables and constraints to coordinate their decisions.

4. 4. Constraint Satisfaction and Optimization:
Agents aim to find a combination of variable assignments that satisfy all the
constraints (e.g., all constraints are met) while also optimizing the global
objective (e.g., minimizing the total cost).

EXAMPLE:

Three agents—Al, A2, A3—need to schedule a meeting.
Each agent controls a variable representing their meeting time choice:

e x1 for Al
e Xx2 for A2
e x3for A3

Each variable can take values from the domain: {9am, 10am, 11am}.

What makes this a DCOP (not just DCSP)?

« Agents have preferences (soft constraints) over meeting times rather than
strict requirements.
o For example:
o Al prefers 9am (cost 0), less likes 10am (cost 1), dislikes 11am (cost
3).
o A2 prefers 10am (cost 0), dislikes 9am (cost 2), and 11am (cost 2).
o A3 prefers 11am (cost 0), dislikes 9am (cost 3), and 10am (cost 1).
o The constraint: They want to meet at the same time (otherwise cost is very
high).

Step 1: Model the problem

Prepared by M.Nandini,
Assistant professor AIDS.

Variable Domain Owner Agent

x1 9,10,11} Al
) 9,10,11} A2
X3 9,10,11} A3

Define costs (local preferences)

Time Cost
Al 9am 0
Al 10am 1
Al Ilam 3
A2 9am 2
A2 10am 0
A2 l1am 2
A3 9am 3
A3 10am 1
A3 Ilam 0

Step 3: Define constraints between variables

o Ifx1 #x2, add a large penalty cost (e.g., 10)
o Ifx2 #x3, add a large penalty cost (10)
o Ifx1 #x3, add a large penalty cost (10)

Step 4: Goal

o Find assignments to x1, x2, and x3 minimizing the sum of preference costs
+ constraint penalties.

Step S: Solution (Intuition)

o Ifthey all meet at 10am:

Prepared by M.Nandini,
Assistant professor AIDS.

o Al cost: 1

o A2cost: 0
o A3cost: 1
o Constraints: 0 (all equal)
o Total=2
9am:

o Al: 0
o A2:2

o A3:3

o Total 5
11a

o

o

So 10am is the optimal meeting time with minimum total cost.
DCOP Applications in Multi-Agent Systems (Short)

o Smart Grids: Optimize energy distribution and demand response.

« Sensor Networks: Schedule sensors to save energy and maximize coverage.
o Multi-Robot Systems: Assign tasks and plan collision-free paths.

o Traffic Control: Coordinate traffic lights to reduce congestion.

o Distributed Scheduling: Manage shifts, tasks, and shared resources.

o Supply Chain: Optimize inventory and deliveries across warehouses.

o Telecommunications: Assign frequencies and balance network loads.

ROLES AND TEAMWORK IN MULTI AGENT SYSTEMS:

A multi-agent system consists of multiple interacting agents, which are
autonomous entities capable of perceiving their environment and acting to
achieve individual or collective goals.

Prepared by M.Nandini,
Assistant professor AIDS.

How Does a Multi-Agent System Function?

Agent Environment As
The Container Communication

=R

ocan ere

@ ©
Agents As Components Research Coordination

@i SoluLab

Roles:
Roles in Multi-Agent Systems

Role in MAS defines a set of responsibilities, behaviours, and interactions expected
from an agent within the system. Roles help organize the agents’ functions and
coordinate their activities.

« Definition: A role is a specification of a behavior or function that an agent
can perform in the context of the MAS.

o Purpose: Helps to structure the system by dividing tasks and responsibilities.
o Examples of Roles:

o Leader: Coordinates the group, makes high-level decisions.

o Follower: Executes tasks as instructed by the leader.

o Mediator: Resolves conflicts between agents.

o Scout: Explores environment and gathers information.

o Worker: Performs specific tasks or actions to achieve goals.

Teamwork in Multi-Agent Systems

Teamwork refers to how agents collaborate, coordinate, and communicate to
achieve shared or individual goals effectively.

o Cooperation: Agents work together by sharing knowledge, resources, and
tasks.

o Coordination: Managing dependencies and timing of agents’ actions to
avoid conflicts and optimize outcomes.

o Communication: Exchange of information through protocols or messages.

o Joint Intentions: Agents share common goals or plans and commit to
achieving them collaboratively.

o Task Allocation: Distributing tasks dynamically or statically among agents
based on their roles, capabilities, or availability.

Prepared by M.Nandini,
Assistant professor AIDS.

o Conflict Resolution: Mechanisms for agents to handle disagreements or
competition over resources or goals.

How Roles and Teamwork Interact

« Roles help define who does what.

o Teamwork defines how agents collaborate and interact.

o Together, they allow MAS to be organized, scalable, and flexible in
dynamic environments.

e e LT +
F A
o N
Fommmmome- e e A +
| broker] | | Mediator| | Worker | | manager
Fommmmmmemd foooooe- e +
\ | | /
\ | | /
\ | | /
Fomm e +
Teamwork Layer
- Coordination

Task Allocation
- Conflict Resolution

| |
| |
| - Communication |
| |
| |

Agents cooperate to
achieve common goals

Prepared by M.Nandini,
Assistant professor AIDS.

Prepared by M.Nandini,
Assistant professor AIDS.

UNIT III
COOPERATION, NEGOTIATION, AND LEARNING

Cooperative And Non-Cooperative Agents, Negotiation Techniques: Bidding,
Bargaining, Argumentation, Game Theory: Basics And Applications In MAS,
Reinforcement Learning In Multi-Agent Settings, Case Studies: Multi-Robot
Coordination, Resource Allocation, Conflict Resolution And Consensus Building.

COOPERATIVE AND NON COOPERATIVE AGENTS IN MULTI AGENT
SYSTEMS:

In multi-agent systems (MAS), agents can exhibit either cooperative or non-cooperative
behavior. Agents can interact in a variety of ways depending on their goals,
environment, and design. One of the most fundamental distinctions is between
cooperative and non-cooperative agents.

COOPERATIVE AGENTS

In multi-agent systems, cooperative agents are those that work together towards a
shared goal, collaborating and coordinating their actions to achieve a common
objective. This contrasts with competitive agents that act in opposition to each
other. Cooperative agents rely on mechanisms like resource sharing, joint decision-
making, and effective communication to maximize the group's success.

Key aspects of cooperative agents:

Shared Goal:

e Cooperative agents are united by a common objective, and their actions are
directed towards achieving this shared goal.

Collaboration:

e They interact and coordinate their actions to optimize performance and achieve
the shared goal effectively.

Resource Sharing:

e Agents may share resources, information, or knowledge to facilitate joint
decision-making and task completion.

Communication:

Prepared by M.Nandini,
Assistant professor AIDS.

e Effective communication is crucial for coordination and ensuring that agents are
aware of each other's actions and intentions.

Joint Decision-Making:

e Agents may engage in joint decision-making processes to determine the best
course of action for the group.

[Shared Goal]

/ Task
Communication comrunication
Agent 1 Agent 2
[Sensors] r Sensors]
[Actuators] [Actuators]
= 3
Agent 3
_
Environment

Cooperative Aaents

EXAMPLE :
Autonomous Drone Swarm for Disaster Rescue Operations

« A swarm of drones (agents) cooperates to search for survivors in a disaster-hit
area (earthquake, flood, etc.).

« Each drone is equipped with sensors (cameras, infrared, GPS) and actuators
(rotors, payload mechanisms).

o They communicate with each other to share mapping data, avoid collisions, and
coordinate search patterns.

o The shared goal is to locate survivors efficiently and deliver aid.
ADVANTAGES:

1. Improved Problem-Solving Capability

Prepared by M.Nandini,
Assistant professor AIDS.

« Multiple agents can handle complex tasks that a single agent cannot solve alone.
« Example: Distributed search and rescue, smart grid management.
2. Scalability

o The system can be scaled by adding more agents without redesigning the entire
architecture.

e Supports large and dynamic environments.
3. Fault Tolerance & Robustness
« Ifone agent fails, others can take over its task.
o Ensures system reliability and continuity.
4. Faster Task Execution
o Parallel processing through task distribution among multiple agents.

o Speeds up operations like data collection, monitoring, or collaborative
transportation.

5. Resource Sharing & Optimization

« Agents can share information, resources, and capabilities to achieve optimal
performance.

« Reduces redundancy and increases efficiency.
6. Flexibility & Adaptability

« Cooperative agents can adapt to dynamic changes in the environment or task
conditions.

« Example: Autonomous vehicle fleets rerouting in traffic.
7. Decentralized Decision-Making

« Eliminates the need for a central controller.

« Enhances scalability, robustness, and reduces communication bottlenecks.
DISADVANTAGEOUS:

1.Complexity in Coordination

Prepared by M.Nandini,
Assistant professor AIDS.

« Designing efficient communication and coordination protocols is challenging.
» Synchronizing actions among multiple agents without conflicts is difficult.
2. High Communication Overhead

« Continuous message passing between agents can consume bandwidth and lead
to delays.

« Increases network load, especially in large-scale systems.
3. Scalability Issues in Dense Systems

o Although scalable, dense agent environments may lead to performance
bottlenecks due to overcrowded communication or resource contention.

4. Conflict Resolution

o Agents may have conflicting goals or actions, requiring complex conflict
detection and resolution strategies.

o Deadlocks and priority inversion are possible.
5. Security Risks

o Communication between agents can be susceptible to cyber-attacks (e.g., data
interception, spoofing).

o Trust and authentication mechanisms are required.
Applications of Cooperative Agents (In Short):

1. Disaster Management — Drone swarms for search & rescue.
Autonomous Vehicles — Coordinated traffic flow & platooning.

Smart Grids — Load balancing & energy optimization.

Sl

Industrial Automation — Collaborative warehouse & factory robots.
Telecom Networks — Dynamic routing & load distribution.
Healthcare — Patient monitoring via cooperative devices.

Environmental Monitoring — Distributed sensors for pollution & wildlife.

R

Defense Systems — Coordinated UAV/UGYV missions.

Prepared by M.Nandini,
Assistant professor AIDS.

9. E-commerce — Automated trading & dynamic pricing agents.

10.Smart Cities — Traffic management, resource allocation.

NON COOPERATIVE AGENTS:

In Multi-Agent Systems (MAS), Non-Cooperative Agents are agents that pursue
their own individual goals and do not collaborate with other agents, even if their
actions impact others. They are typically self-interested, competitive, or even
adversarial.

CHARACTERISTICS:
1.Self-Interested Behavior

o Each agent acts to maximize its own utility or goal, without considering the
overall system performance.

2. No Coordination or Collaboration

« Agents do not share plans, resources, or intentions with others.

o They act independently, even if their actions affect others.
3. Competitive or Adversarial Interactions

« Often involved in competition for resources, tasks, or rewards.

« Can exhibit adversarial behavior (e.g., sabotage, blocking opponents).
4. Strategic Decision-Making

« Agents may use tactics like negotiation, bluffing, deception, or alliances to
achieve personal objectives.

« Decision-making is influenced by predictions of other agents’ strategies.
5. Game-Theoretic Behavior

o Their interactions are modeled using game theory concepts (e.g., Nash
Equilibrium, Prisoner’s Dilemma).

« Agents assume that others are also acting in self-interest.

6. Conflicts & Resource Contention

Prepared by M.Nandini,
Assistant professor AIDS.

« High chances of conflict or competition over shared resources.

o Conflict resolution mechanisms (like auctions or arbitration) are often required.
7. Partial or No Trust Among Agents

o Agents may act maliciously or deceptively.

« Systems must handle trust, authentication, and verification issues.
8. Global Sub-Optimality

« System-wide efficiency is not guaranteed as agents pursue individual goals.

o May lead to selfish behaviors that degrade overall system performance.

NON-COOPERATIVE

[Agent 1] LAgent3]

competition

competition

Advantages of Non-Cooperative Agents:
1. Realistic Modeling of Competitive Scenarios

o« Many real-world environments (markets, auctions, games) are inherently
competitive, making non-cooperative agents suitable for simulating such
systems.

2. Encourages Strategic Decision-Making

o Agents develop strategies (game theory, negotiation, deception) to maximize
individual benefits, leading to intelligent and adaptive behaviors.

3. Promotes Innovation and Optimization

o Competition can drive agents to innovate, find efficient solutions, and
optimize resource usage to outperform rivals.

4. Scalable in Open Environments

Prepared by M.Nandini,
Assistant professor AIDS.

« Non-cooperative systems can easily accommodate new agents without
requiring extensive coordination protocols.

5. No Dependency on Cooperation Mechanisms

« Simplifies agent design by avoiding complex coordination, synchronization,
or cooperation algorithms.

DISADVANTAGES:
1.Lack of Global Optimality

o Agents act selfishly, which can lead to sub-optimal outcomes for the entire
system (e.g., congestion, inefficiency).

2. Conflict and Deadlock Risks

« High chances of conflicts over resources, leading to deadlocks, collisions, or
unfair resource distribution.

3. Increased Complexity in Conflict Resolution

o Requires mechanisms like auctions, negotiations, or arbitration to resolve
disputes between agents.

4. Trust and Security Issues

« Agents may engage in deceptive, malicious, or adversarial behavior, leading to
security vulnerabilities.

5. High Computational Overhead

« Strategic reasoning and predicting opponents' actions can be computationally
expensive, especially in large systems.

APPICATIONS:
1. Online Auctions — Bidding bots competing for the best price.
Stock Trading Systems — Trading agents maximizing profits.
Market Competition — Autonomous agents representing rival companies.

Adversarial Robotics — Competing robots in games (e.g., RoboCup Soccer).

A

Selfish Network Routing — Agents minimizing their own latency.

Prepared by M.Nandini,
Assistant professor AIDS.

6. Cybersecurity — Simulating attacker-defender scenarios.
7. Negotiation Systems — Automated negotiation between conflicting interests.

8. Competitive Transport Systems — Selfish vehicle routing for shortest path.

NEGOTIATION TECHNIQUES MULTI-AGENT SYSTEM:

Negotiation is an important approach for agents to co-operate and reach agreement
in multi- agent systems (MAS).

In multi-agent systems, negotiation techniques enable autonomous agents to
interact, communicate, and reach agreements on shared goals or resources. These
techniques are crucial for resolving conflicts, allocating resources, and coordinating
actions within the system. Various approaches, including auctions, contract
nets, and argumentation, are employed to facilitate these interactions.

« Autonomy: Agents act independently but can interact and negotiate with each
other.

o Cooperation: Agents work together to achieve common objectives, often

through negotiation.

o Conflict: Agents may have conflicting interests or priorities, necessitating
negotiation to resolve disagreements.

o Communication: Agents exchange information and proposals during the

negotiation process.

o Agreement: The goal of negotiation is to reach a mutually acceptable solution
or outcome.

https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=contract%2Bnets&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=contract%2Bnets&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=argumentation&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAC&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Autonomy&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIDhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Cooperation&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIEhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Conflict&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIERAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Communication&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIEBAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Agreement&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIDxAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3

Prepared by M.Nandini,
Assistant professor AIDS.

(NEGOTIATION IN MAS

[Agent A Ji PROPOSAL —>[Agent B J
COUNTER-PROPOSAL ——-]

!
[INITIATION]
|
[l

[AGREEMENTJ [FAILURE J

BIDDING:

Bidding is a competitive negotiation technique where multiple agents place offers
(bids) to acquire a task, resource, or service. The agent offering the best bid (according
to predefined criteria) wins the negotiation.

Key Features:
1. Competitive Interaction: Agents compete to win by submitting bids.

2. Centralized or Decentralized Auctions: Can involve a centralized auctioneer
(auction-based systems) or distributed bidding (peer-to-peer).

3. Autonomous Decision-Making: Agents decide their bidding strategies based on
local goals and environment knowledge.

4. Efficient Resource Allocation: Common in task allocation, service trading,
cloud resource management, etc.

Prepared by M.Nandini,
Assistant professor AIDS.

[AUCTIONEER]

call for bids
L
bid 1 AGENT 1 bid 2
bid 3
 J

AGENT 1 | AGENT 2 l AGENT 3

Advantages of Bidding Negotiation in MAS:
1. Efficient Task and Resource Allocation

o Bidding ensures that tasks/resources are allocated to the most suitable or
competitive agent, maximizing system efficiency.

2. Scalability

o Supports a large number of agents as the auctioneer can manage multiple bids
without direct coordination among all agents.

3. Decentralized Decision Making

o Agents independently decide their bids based on local knowledge, reducing the
need for centralized control.

4. Flexibility in Dynamic Environments

o Suitable for environments where tasks/resources are dynamic and agents
continuously join/leave.

5. Promotes Competition and Fairness

« Encourages agents to bid fairly based on their capabilities, ensuring transparent
competition.

Prepared by M.Nandini,
Assistant professor AIDS.

6. Simple & Well-Understood Mechanisms

« Auction and bidding protocols (like English, Dutch, Sealed-Bid) are simple to
implement and widely used.

7. Reduces Communication Overhead

« Bidding interactions are often concise, requiring minimal message exchange
compared to complex negotiation dialogues.

Disadvantages of Bidding Negotiation in MAS:
1. High Computational Cost for Bidding Strategy

« Agents may require complex algorithms to decide optimal bids, especially in
dynamic or competitive environments.

2. Potential for Suboptimal Global Solutions

o Agents act selfishly to win bids, which may not always result in globally optimal
task allocation.

3. Winner’s Curse

o The winning agent may overbid (underestimate the task's cost or overestimate its
capability), leading to inefficient execution or failure.

4. Susceptible to Strategic Manipulation

« Agents might engage in dishonest bidding, collusion, or price-fixing, especially
n open systems.

5. Centralized Auctioneer Bottleneck

o In centralized auctions, the auctioneer can become a communication and
computation bottleneck if too many agents are bidding.

6. Resource-Rich Agents Dominate

o Agents with more resources or better information may consistently win bids,
leading to imbalance and unfairness.

Applications :

1. Task Allocation in Multi-Robots — Robots bid for tasks like delivery or area
coverage.

Prepared by M.Nandini,
Assistant professor AIDS.

2. Cloud Resource Allocation — Bidding for processing/storage resources in data
centers.

3. E-Commerce Auctions — Buyer/seller agents bid for products/services.
4. Supply Chain & Logistics — Agents bid for order fulfillment and delivery tasks.
5. Spectrum Allocation — Telecom agents bid for frequency bands.

6. Smart Grids Energy Trading — Real-time energy bids between
producers/consumers.

7. Manufacturing Scheduling — Machines bid to execute jobs in smart factories.
8. Edge/Fog Computing — Devices bid to process IoT tasks efficiently.
BARGAINING:

Bargaining in multi-agent systems (MAS) involves autonomous agents agreeing on
terms for shared goals or resource allocation through structured protocols like auctions
and contract nets, employing strategies like argumentation, deep reinforcement learning
to adapt to opponents, and building trust through transparency to ensure successful
collaboration and robust system performance.

In multi-agent systems (MAS), bargaining is a type of automated negotiation where two or
more autonomous agents with conflicting interests try to reach a mutually acceptable
agreement.

It’s similar to human bargaining (e.g., two people negotiating the price of a car), but here the
negotiators are software agents.

Bargaining in Multi-Agent Systems (MAS)

Bargaining =
Negotiation via offers & counteroffers
between agents with conflicts

e S

Process Goal Form
Exchange of offers & counteroffers Mutual agreement (utility maximization) Often muilti-issue (price, time, etc.)
Example: Buyer agent & Seller agent
bargain over resource price until agreement

Prepared by M.Nandini,
Assistant professor AIDS.

Key Aspects of Bargaining in MAS

e Autonomous Agents:

Agents operate independently, possessing their own goals and knowledge, and thus require
negotiation to coordinate and resolve conflicts.

¢ Mutual Agreement:

The primary goal is to find a compromise or deal that satisfies all participating agents, or at
least meets a minimum acceptable threshold.

o Exchange of Offers:

The core mechanic involves agents submitting proposals and counter-proposals, with each

party making concessions to move towards an agreement.

e Conflicting Preferences:

In many scenarios, agents have different priorities or preferences over various issues (e.g.,

price, quantity), making negotiation necessary to bridge these differences.

e Negotiation Protocols:
The entire process is governed by specific rules and procedures that dictate how offers are

made, how agents communicate, and when the negotiation concludes.

Advantages of Bargaining in MAS

e Decentralized decision-making — no need for a central authority.

o Flexibility — agents can negotiate on multiple issues (price, time, quality, resources).

o Conlflict resolution — helps agents with conflicting interests find a compromise.

e Adaptability — can work in dynamic and uncertain environments (e.g., changing
resources).

e Scalability — can be applied in large distributed systems.

o Fairness potential — game-theoretic approaches (e.g., Nash bargaining) can ensure
equitable outcomes.

Disadvantages of Bargaining in MAS

o Computationally expensive — complex strategies and learning models need high
resources.

¢ Time-consuming — may require many rounds of offers and counteroffers.

e Risk of deadlock — negotiations may fail if agents don’t compromise.

o Incomplete information — agents may hide preferences, leading to suboptimal
agreements.

Prepared by M.Nandini,
Assistant professor AIDS.

e Communication overhead — frequent message exchanges increase system load.
e Strategic manipulation — selfish agents may exploit cooperative ones.

Applications of Bargaining in MAS

1. E-Commerce & Online Marketplaces
o Buyer and seller agents negotiate prices, delivery terms, or bundles.
2. Resource Allocation
o Agents bargain for CPU time, bandwidth, memory, or energy in distributed
computing and cloud systems.
3. Supply Chain Management
o Companies’ software agents negotiate contracts, delivery schedules, and prices.
4. Smart Grids & Energy Trading
o Household/producer agents bargain for energy buying/selling at dynamic prices.
5. Wireless Networks
o Devices negotiate for spectrum allocation and bandwidth sharing.
6. Task Allocation in Robotics
o Robots negotiate who does which task in multi-robot systems.
7. Transportation & Logistics
o Agents bargain for vehicle routing, cargo allocation, and scheduling.

Bargaining in MAS is powerful for decentralized conflict resolution and resource distribution, but
it comes with challenges like time, complexity, and risk of deadlock.

ARGUMENTATION:
What is Argumentation in MAS?

e Argumentation is a negotiation technique where agents don’t just exchange offers (like in
bargaining), but also justify, explain, and persuade using arguments.

e Anargument is a piece of reasoning supporting or attacking a proposal.

e It’s inspired by human reasoning — instead of just saying “/ want X, an agent says “/
want X because Y.

Prepared by M.Nandini,
Assistant professor AIDS.

Key Components & Processes

Arguments:

Agents express claims or positions supported by justifications or beliefs, which are
structured to support or refuse a standpoint.

Argument Structure:

Arguments often take the form of "support ¢ conclusion," with different types
including:
Informational: Beliefs -> Belief (e.g., If it's cloudy, it might rain).

Motivational: Beliefs/Desires -> Desire (e.g., You don't want to get wet if it's
cloudy).

Practical: Belief/Sub-goals -> Goal (e.g., Put on a raincoat if it's cloudy and you
have one).
Argumentation Dialogue:

Prepared by M.Nandini,
Assistant professor AIDS.

This involves a structured exchange where agents present arguments, rebut
opposing arguments, and provide reasons for accepting or rejecting claims.

Argumentation Frameworks:

These frameworks provide a formal structure for representing arguments and their
relationships (like attacks or support) to determine which arguments are
acceptable.

Acceptability and Inference:

Agents use rules and inference mechanisms to evaluate the strength and
acceptability of arguments, often employing computational logic to guide their
reasoning.

Why Argumentation is Used?

Conflict Resolution:

It provides mechanisms for agents to negotiate and find common ground when their
individual goals or beliefs conflict.

Knowledge Sharing and Coordination:

Agents can share information and coordinate actions by persuading others of a
particular point of view or strategy.

Decision-Making:

Argumentation enables collaborative or collective decision-making processes,

especially when agents have partial knowledge and need to reach a consensus.

Internal Reasoning:
It serves as a powerful mechanism for modeling an agent's own internal reasoning
process and justifying its choices.

In essence, argumentation in multi-agent systems creates a formalized way for
autonomous entities to communicate and interact, much like humans do when debating,
negotiating, and persuading, to achieve a consistent and reasoned outcome.

Prepared by M.Nandini,
Assistant professor AIDS.

Multi-Agent System

Argumentation Schemes

Argumentation in Multi-Agent Systems (MAS)

Agents negotiate by exchanging
reasons, explanations, and Justifications

Persuasive Communication Knowledge Sharing Conflict Resolution
(offers with reasons) T (reveal constraints, preferences) T (attack/defend arguments)
Advantages Disadvantages
Richer negotiation - Computationally complex
- Transparency & trust - Communication overhead

Flexibility & cooperation - Risk of manipulation

Advantages of Argumentation in MAS

e Richer negotiation — goes beyond offers, includes reasons and justifications.

o Transparency & trust — agents explain their choices, improving cooperation.

o Better conflict resolution — agents can attack, defend, and refine arguments.

o Flexibility — supports complex, multi-issue disputes.

o Knowledge sharing — agents reveal hidden constraints, preferences, or context.

¢ Consensus building — promotes cooperative decision-making, not just compromise.

Prepared by M.Nandini,
Assistant professor AIDS.

Disadvantages of Argumentation in MAS

o Computationally expensive — reasoning, evaluating, and generating arguments takes

resources.

e Communication overhead — many more messages than simple bargaining.

¢ Risk of manipulation — agents may give misleading or strategic arguments.
e Ontology/knowledge alignment needed — agents must share common understanding of

concepts.

e Slower negotiation — compared to quick offer-based bargaining.

Applications of Argumentation in MAS

1. E-Government & Policy Making
o Agents argue for/against policies, regulations, and resource allocation.

2. Legal & Dispute Resolution Systems

o Al mediators use argumentation for conflict resolution and legal reasoning.

3. E-Commerce Negotiation

o Buyer/seller agents justify prices, delivery times, or service conditions.

4. Healthcare Decision Support

o Agents argue about treatment options or medical resource distribution.
5. Collaborative Robotics / Multi-Robot Systems
o Robots justify why they should take certain tasks or routes.

6. Smart Grids & Energy Management
o Household/producer agents argue over energy usage, pricing, and distribution.
7. Multi-agent Collaboration Platforms
o Research, planning, and knowledge sharing where justification matters.

DIFFERENCE BETWEEN BIDDING,BARGAINING, ARGUMENTATION:

Aspect

Definition

Interaction
Style

Focus

Communication

Bidding

Agents submit offers

(bids) in a

competitive process,

usually in auctions.

Competitive (auction-

style).

Selecting the best bid

(price, cost, task).

Minimal (bid values
only).

Bargaining
Agents exchange
offers &
counteroffers until
they reach
agreement.
Compromising
(concession-based).
Finding a mutually
acceptable deal.
Medium (offers &
counteroffers).

Argumentation

Agents exchange not only offers
but also reasons, justifications,
and counter-arguments.

Persuasive (reasoning-based).

Persuading others by explaining
preferences/constraints.

High (offers +
explanations/arguments).

Prepared by M.Nandini,
Assistant professor AIDS.

Aspect Bidding Bargaining Argumentation
Allocation of
resource/task to Agreement after Agreement based on reasoning
Outcome . . .
highest/lowest concessions. and persuasion.
bidder.

Contract Net Protocol
(CNP) — agents bid
for tasks.

Example in
MAS

Buyer-seller agents ~ Agents in policy-making or
negotiating price. healthcare justifying choices.

In short:

e Bidding — competition through bids (auctions, task allocation).
e Bargaining — negotiation with offers & counteroffers (price, time, resources).
e Argumentation — negotiation with reasons & persuasion (explaining why).

Difference between Bidding, Bargaining, and Argumentation in MAS

Bidding Bargaining

Agreement via

Competitive offers value exchange Offers & counteroffers
(Auctions, CNP) Compromise-based
Low communication Medium communication

All are negotiation
techniques in MAS

Competitive reasoning Explaining reasons
with justification while exchanging offers

Reasons & persuasion
Explanations/justifications
High communication

Argumentation

GAME THEORY: BASICS AND APPLICATIONS IN MAS

Game theory is a mathematical framework for analyzing strategic interactions among
rational decision-makers. When applied to Multi-Agent Systems (MAS), it provides the
foundational principles for designing autonomous agents that can cooperate, compete,
and negotiate effectively in complex environments.

Prepared by M.Nandini,
Assistant professor AIDS.

Game theory: The basics

Key concepts

Players: The decision-makers whose outcomes are interdependent. In a MAS, these
are the autonomous agents.

Strategies: The complete plan of action that a player will take for every possible
situation that might arise during a game.

o Pure strategy: A deterministic plan of action.

o Mixed strategy: A probabilistic plan of action, where a player chooses between
several pure strategies randomly.

Payoffs: The utility or reward a player receives for a particular outcome, which can
be quantified in any form, such as money, time, or a numerical score.

Equilibrium: A stable state in a game where no player has an incentive to
unilaterally change their strategy.

o Nash Equilibrium: A state where each player's strategy is the best response to
the strategies of all other players. The Prisoner's Dilemma is a classic example of
how a Nash Equilibrium can lead to a collectively suboptimal outcome.

Types of games

Cooperative vs. Non-cooperative: Cooperative games involve players forming
enforceable agreements to maximize collective payoffs, while non-cooperative
games involve self-interested players who cannot make binding agreements.

Zero-sum vs. Non-zero-sum: In a zero-sum game, one player's gain is equivalent
to another's loss, making the net change in wealth zero. Non-zero-sum games, such
as business partnerships, allow for all participants to gain or lose.

Simultaneous vs. Sequential: In simultaneous games, players make decisions at
the same time without knowing the other's moves. In sequential games, players take
turns, with later players having knowledge of previous moves.

Prepared by M.Nandini,
Assistant professor AIDS.

Game Theory in Multi-Agent Systems (MAS)

Basics: Study of decision-making where W
agents' outcomes dept?d on each other

Applications in MAS
Key Concepts
Resource allocation {bandwidth, CPU)
Pl (ts) - Auctions & e-commerce
5(a‘yeas E:QE;\Sn) - Conflict resolution & negotiation
SRUTRIED O IRcrons - Security & trust (attacker-defender)
Payoffs {utilities) Smart gnds & energy pricing
Nash equilibrium, Pareto optimality - Traffic & transportation systems
Multi-robot coordination
& J

Advantages of Game Theory in MAS

1. Structured Decision-Making

o Provides a mathematical framework to model agent interactions.
2. Strategic Behaviour Modelling

o Captures competition, cooperation, and conflict between agents.
3. Predictability

o Equilibrium concepts (like Nash equilibrium) predict possible outcomes.
4. Fairness & Efficiency

o Solutions like Nash Bargaining or Pareto optimality ensure fairness.
5. Wide Applicability

o Can be applied to economics, resource allocation, robotics, networks, etc.
6. Supports Both Competition & Cooperation

o Works for zero-sum (conflict) and non-zero-sum (cooperation) settings.
7. Encourages Rational Decision-Making

o Assumes agents maximize utility, leading to logically consistent outcomes.

Disadvantages of Game Theory in MAS

1. Strong Assumptions
o Assumes agents are fully rational and always maximize utility (not always
realistic).
2. Information Requirements
o Often requires complete knowledge of preferences and payoffs, which agents may
not share.
3. Computational Complexity

Prepared by M.Nandini,
Assistant professor AIDS.

o Finding equilibria in large, dynamic games can be computationally expensive.
4. Multiple Equilibria Problem
o Some games have multiple equilibria — hard to predict which one agents will
choose.
5. Static Nature (in some models)
o Many models assume fixed payoffs, while real environments are dynamic.
6. Risk of Strategic Manipulation
o Agents may exploit others using strategic misrepresentation.
7. Communication Overhead
o Reaching cooperative solutions may require extensive negotiation.

Applications in Multi-Agent Systems (MAS)

Game theory provides a vital framework for designing and analyzing MAS, especially
where agents are self-interested and operate in decentralized environments.

Cooperative MAS

Game theory can be used to design systems where agents collaborate to achieve a
common goal, even when they have individual incentives.

e Incentive alignment: Mechanism design, a subfield of game theory, is the science of
designing rules and incentives so that self-interested agents are motivated to act in a way that

achieves a desired collective outcome.

o Cooperative robotics: In applications like search-and-rescue, multiple robots can use game
theory to coordinate and share resources to complete the mission efficiently.

¢ Resource management: Game theory can be applied to problems like dynamic channel
allocation in wireless networks, where cells must cooperate to share channels and minimize

call drops.

Competitive MAS

For systems where agents compete for resources, game theory helps predict opponents'
strategies and design effective countermeasures.

Prepared by M.Nandini,
Assistant professor AIDS.

e Online auctions: Multiple bidders in an auction can be modeled as a competitive game. Game
theory helps agents devise optimal bidding strategies to maximize their chances of winning
while minimizing costs.

e Traffic management: Autonomous vehicles and traffic lights can be modeled as agents in a
competitive system. Game-theoretic algorithms can be used to minimize congestion and
reduce travel time.

e Blockchain networks: In blockchain, miners' strategies for validating transactions can be
analyzed using game theory to prevent selfish mining and other attacks.

Hybrid and learning MAS

More advanced MAS combine game theory with machine learning to navigate dynamic,
real-world environments.

e Multi-Agent Reinforcement Learning (MARL): This field combines game theory with
reinforcement learning, allowing agents to learn optimal behaviors through trial and error in
multi-agent environments. Game theory provides the theoretical foundation for understanding
concepts like best-response dynamics and equilibrium-guided learning.

e LLM-based agents: Large Language Model (LLM) agents can use game theory for strategic
communication and negotiation. This enables systems where agents plan, adapt, and coordinate
transparently without a central authority.

REINFORCEMENT LEARNING IN MULTI-AGENT SETTINGS (MARL)

Definition

Reinforcement Learning (RL) in multi-agent settings is a learning framework where
multiple agents interact with a shared environment and with each other.

Each agent learns a policy (strategy) that maximizes its cumulative reward,
considering both the environment dynamics and the actions of other agents.

Prepared by M.Nandini,
Assistant professor AIDS.

(%Sl
ey Y A -
* i3
Acoent Sverend
(il iyl
'y A [A A
Seang [« N L e e corall Mo Biamn
1 v ‘l'__H
Environment
e -
Example

o Traffic Signal Control
o Each traffic light is an agent.
o Actions = changing signal (green/red).
o Reward =reducing traffic congestion.
o Multiple traffic lights learn together to optimize city-wide traffic flow.

Reinforcement Learning in Multi-Agent Settings (MARL)

Environment

Agents learn policies to maximize rewards
while interacting with environment & each other

Key Aspects of MARL

e Shared Environment:

Prepared by M.Nandini,
Assistant professor AIDS.

Multiple agents operate and learn within the same environment.
o Individual Goals & Rewards:

Each agent is motivated by its own rewards and pursues its own interests, which
can be aligned or opposed to other agents' interests.

o Interactions:

Agents' actions influence not only the environment's state but also each other,
leading to complex group dynamics and coordination requirements.

o Non-Stationarity:
The learning environment is non-stationary from the perspective of any single
agent, as the other agents are also learning and adapting simultaneously.

Advantages

o Models realistic interactions — cooperation, competition, or both.

« Scalable decision-making — works in distributed, decentralized systems.
« Adaptability — agents learn and adapt dynamically.

« Flexibility — works in cooperative, competitive, and mixed settings.

o Autonomous learning — no central controller required.
Disadvantages

« Non-stationarity — environment keeps changing as agents learn.

o Scalability issues — more agents — huge state-action space.

o Credit assignment problem — hard to know which agent’s action led to reward.
« Partial observability — agents may not know others’ strategies.

o High computational cost — training multiple agents requires lots of data.
Applications of MARL

1. Traffic Management — adaptive traffic lights, autonomous driving.
2. Robotics — swarm robotics, cooperative multi-robot teams.

3. Smart Grids & Energy — demand-response, distributed energy trading.

Prepared by M.Nandini,
Assistant professor AIDS.

E-Commerce & Auctions — dynamic pricing, competitive trading.
Telecommunications — spectrum allocation, bandwidth sharing.

Games & Simulations — StarCraft, Dota, poker agents.

NS R

Security & Defense — attacker-defender strategies, patrolling.

CASE STUDIES: MULTI-ROBOT COORDINATION

What is mean by case study:

A case study in Multi-Agent Systems (MAS) is a detailed examination of a real-world
or simulated scenario where an MAS is designed, implemented, and evaluated to solve
a specific problem, demonstrating the effectiveness of agent-based approaches for
complex, distributed, and autonomous control and decision-making tasks. These studies
typically show how autonomous agents collaborate and communicate to achieve shared
goals, highlighting the architecture, agent roles, communication protocols, and the
overall performance and benefits of the MAS in a practical application, such as energy
management, industrial control, or logistics.

DEFINITION:

Multi-robot coordination is when multiple autonomous robots work together to
complete tasks that are too complex, risky, or large for a single robot.This is a practical
application of multi-agent systems (MAS) where each robot is treated as an intelligent
agent.

Prepared by M.Nandini,
Assistant professor AIDS.

Case Studies: Multi-Robot Coordination

Search & Rescue
(Swarm Drones)

Warehouse Automation
(Amazon Robotics)

ace Exploration

Agricultural Rol S ars Rovers)

Delivery & Transport
(Drones/Vehicles)

Case Studies

1. Warehouse Automation (Amazon Robotics / Kiva Systems)

o Scenario: Robots coordinate to move shelves and deliver items to human
packers.
o Technique Used:
o Task allocation via auction-based mechanisms (bidding for tasks).
o Path planning to avoid collisions.
o Outcome: Faster order fulfillment, reduced human workload.

2. Search and Rescue (Swarm Robotics)

o Scenario: A team of drones or ground robots explores disaster zones to locate
SUrvivors.
o Technique Used:
o Cooperative Multi-Agent Reinforcement Learning (MARL).
o Distributed coverage algorithms (spreading robots to cover more area).
o Outcome: Faster area coverage, resilience if some robots fail.

3. Agricultural Robots

« Scenario: Multiple robots coordinate for seeding, weeding, and harvesting.

Prepared by M.Nandini,
Assistant professor AIDS.

o Technique Used:
o Task partitioning (dividing fields among robots).
o Cooperative scheduling to optimize farming operations.
« Outcome: Higher efficiency, lower labor cost, reduced pesticide usage.

4. Multi-Robot Exploration (Mars Rovers / Space Missions)

o Scenario: Teams of robots explore planetary surfaces.
o Technique Used:

o Consensus algorithms for map sharing.

o Role assignment (scout robots explore, others analyze samples).
o Outcome: Robust exploration with redundancy and adaptability.

5. Transportation & Delivery (Autonomous Vehicles / Drones)

o Scenario: Delivery drones or autonomous vehicles coordinate to deliver
packages.
o Technique Used:
o Coordination protocols for route planning.
o Collision avoidance using decentralized communication.
o Outcome: Efficient, scalable delivery systems.

Advantages

+ Scalability — many robots can handle large tasks together.

« Robustness — system keeps working even if some robots fail.

o Faster task completion — tasks are done in parallel.

+ Flexibility — robots adapt to dynamic environments.

o Cost-effectiveness in long term — automation reduces human labor needs.

Disadvantages

o High communication overhead — robots need continuous coordination.

o Complex algorithms — planning, task allocation, and collision avoidance are
difficult.

o Resource conflicts — redundant or conflicting actions may occur.

« Expensive setup — costly hardware, sensors, and maintenance.

o Uncertainty — performance may degrade in unpredictable environments.

Prepared by M.Nandini,
Assistant professor AIDS.

Applications

Warehouses & Logistics — Amazon Robotics (shelf-moving robots).
Disaster Response — drones for search and rescue.

Agriculture — crop monitoring, automated harvesting.

Space Exploration — Mars rovers and lunar exploration teams.
Transportation & Delivery — self-driving vehicles, delivery drones.
Military & Security — surveillance, patrolling, mine detection.

ANl

RESOURCE ALLOCATION IN MULTI-AGENT SYSTEMS (MAS)

Definition

Resource allocation in MAS is the process of distributing limited resources (e.g.,
bandwidth, energy, time, tasks, money) among multiple agents in a system, such that
the distribution is fair, efficient, and goal-oriented.

Resource allocation is the strategic process of assigning and managing available
resources to achieve organizational goals effectively and efficiently. It ensures that
assets such as time, money, equipment, and personnel are distributed to the right tasks
and projects at the right time, preventing waste and maximizing productivity.

Example

o Cloud Computing: Multiple users (agents) request CPU, memory, and storage.
The cloud provider allocates resources dynamically to maximize efficiency and
fairness.

o Multi-Robot System: Robots share tasks and battery power to complete a
mission cooperatively.

Prepared by M.Nandini,
Assistant professor AIDS.

Workflow of Resource Allocation in MAS

Workflow of Resource Allocation in MAS

")
1. Resource Request
(Agents request resources)
= s =
2. Resource Discovery
(Identify available resources)
= A Y
3. Negotiation / Strategy
(Auction, Bargaining, RL, etc.)
- z ™
4. Resource Assignment
(Resources allocated to agents)
r~ A N
5. Execution
(Agents perform tasks)
= A ==Y
6. Monitoring & Feedback
(Adjust / Reallocate if needed)
- 4

Steps

1. Resource Request — Agents request resources from the environment (e.g.,
CPU, bandwidth, tasks).

2. Resource Discovery — System identifies available resources.

3. Negotiation / Allocation Strategy — Agents use methods (auction, bargaining,
priority rules, optimization, RL, etc.) to decide allocation.

4. Resource Assignment — Resources are distributed among agents.

Execution — Agents perform tasks using allocated resources.

6. Monitoring & Feedback — Performance is monitored; reallocation happens if
needed.

(9]

Workflow Example: Cloud Computing Resource Allocation

Q Steps in Action

1. Resource Request

Prepared by M.Nandini,
Assistant professor AIDS.

o Users (agents) request CPU, memory, storage, or bandwidth for their
applications.
2. Resource Discovery
o The cloud resource manager checks available servers, VMs, and
network capacity.
3. Negotiation / Strategy
o Allocation strategy is applied:
= Auction-based (highest bidder gets more resources).
= Priority-based (critical tasks served first).
= Optimization / Reinforcement Learning (maximize efficiency).
4. Resource Assignment
o Resources are allocated to users dynamically (e.g., VM instances
launched).
5. Execution
o Applications run on allocated servers (web apps, ML models, databases).
6. Monitoring & Feedback
o System monitors usage — if overload happens, resources are reallocated
(autoscaling).

Advantages:

« Fairness — resources distributed fairly among agents.

« Efficiency — maximizes utilization of limited resources.

o Scalability — works for small and large MAS.

« Autonomy — agents can self-manage and adapt.

« Flexibility — supports dynamic environments (e.g., cloud, networks).

Disadvantages

o Complexity — harder as number of agents/resources increases.

o Conflict resolution — competition among agents may cause disputes.
o Communication overhead — requires coordination among agents.

o Uncertainty — unpredictable environments may disrupt allocation.

o Cost — implementing algorithms and infrastructure can be expensive.

Prepared by M.Nandini,
Assistant professor AIDS.

Applications

Cloud Computing — allocating CPU, memory, and storage (e.g., AWS, Azure).
Telecommunications — bandwidth and spectrum allocation.

Multi-Robot Systems — task and battery allocation in teams of robots.

Smart Grids — distributing electricity fairly and efficiently.

Transportation — air traffic control, ride-sharing optimization.

Healthcare — scheduling doctors, patients, and medical resources.

AN e

Conflict Resolution and Consensus Building in Multi-Agent Systems (MAS)
What is Conflict in MAS?

In a Multi-Agent System (MAS), many agents work together.
Sometimes, they disagree because:

o They want the same limited resource (e.g., bandwidth, energy).

o They have different goals or preferences (e.g., robot A wants to go left, robot B
wants to go right).

o They have incomplete or wrong information.

(3 Example: Two delivery robots want to use the same narrow hallway at the same
time — conflict.

Conflict Resolution Methods

Once a conflict is detected, agents use resolution techniques:

1. Negotiation
o Agents exchange offers/counteroffers until they agree.
o Example: Robot A says “I will take this path now, you wait,” and Robot
B agrees.
2. Mediation / Arbitration
o A third-party agent (mediator) decides the fair outcome.
o Example: A traffic controller assigns priority to one car.
3. Game Theory
o Agents use mathematical strategies to minimize loss and maximize
payoff.
o Example: Both cars adjust speeds to avoid collision while minimizing
delay.

Prepared by M.Nandini,
Assistant professor AIDS.

4. Argumentation

o Agents share reasons and try to convince each other.

o Example: Robot A argues it has a high-priority task, so Robot B gives

way.

(3 At this stage, the conflict is resolved, but agents still need to agree on a final joint

decision.

Consensus Building

Once disputes are handled, the system must align all agents toward a shared solution.

Methods of Consensus Building:

« Voting — Agents vote on the best option; majority wins.

o Contract Net Protocol — A leader agent assigns tasks after collecting bids.
« Distributed Algorithms — Each agent updates its decision repeatedly until all

agree (e.g., average sensor values in a network).

o Learning Approaches — Agents adapt over time to align behaviors (e.g.,
reinforcement learning).

(3 Example: A swarm of drones agrees on the same flying formation using

distributed consensus.

Workflow: Conflict Resolution vs Consensus Building in MAS

55 Conflict Resolution [] Consensus Building
Definition: Definition:

Solving disputes among agents Agents agreeing on a common
with conflicting goals/resources. decision after conflict resolution.
Techniques: Techniques:

- Negotiation - Voting
- Mediation - Contract Net
- Game Theory - Distributed Algorithms
- Argumentation - Learning
Outcome: Outcome
Conflict minimized, fairness ensured. Unified agreement, cooperation, stability.
Applications:

Roboticp « Smart Grids * Sensor Networks « Autonomous Cars « Distriputed Al

Prepared by M.Nandini,
Assistant professor AIDS.

Advantages

Conflict Resolution

o

o

o

o

Prevents deadlocks & failures in MAS.

Ensures fairness among competing agents.
Allows cooperation even with conflicting goals.
Improves stability in dynamic environments.

Consensus Building

o

Produces a shared decision accepted by all.
Increases coordination & trust among agents.

@)

o Suitable for distributed, decentralized systems.

o Helps in scalability (agents can join/leave without chaos).
Disadvantages

Conflict Resolution

@)

o

@)

@)

High communication overhead (many messages exchanged).
May be slow if many agents are involved.

Risk of selfish/manipulative agents exploiting the system.
Sometimes requires a mediator — adds complexity.

Consensus Building

@)

o

@)

o

Time-consuming in large networks.

Needs reliable communication among agents.

May lead to suboptimal solutions (majority rule not always best).
Vulnerable to malicious/faulty agents influencing decisions.

Applications

1.

W

Robotics — Multi-robot coordination (warehouse robots, drones, rescue
missions).
Smart Grids — Power distribution agreements among consumers/producers.

. Sensor Networks — Sensors agreeing on environmental values (e.g.,

temperature).

. Autonomous Vehicles — Conflict resolution in traffic + consensus on right of
way.
. Distributed AI Systems — Agents agreeing on a joint plan in healthcare, e-

commerce, logistics.

Prepared by M.Nandini,
Assistant professor AIDS.

Comparison Table: Conflict Resolution vs Consensus Building

Aspect

Definition

Goal

When Used

Techniques

Focus

Outcome

Advantages

Disadvantages

Applications

Conflict Resolution

Process of solving disagreements
when agents have conflicting goals,
resources, or beliefs.

Remove disputes and restore
cooperation.

When conflict occurs (competition,
contradiction).

- Negotiation

- Mediation/Arbitration
- Game Theory

- Argumentation

Managing differences between
agents.

Conflict minimized or solved.

Prevents deadlocks, promotes
fairness.

Time-consuming, risk of
manipulation, high communication
overhead.

Traffic management, multi-robot
collision avoidance, resource
allocation conflicts.

Consensus Building

Process of reaching a common
decision or agreement among
agents after conflicts are
managed.

Ensure all agents align on a
shared decision.

After conflict resolution, to
finalize agreement.

- Voting

- Contract Net Protocol
- Distributed Algorithms
- Learning methods

Achieving a unified agreement
among agents.

Common decision/plan accepted
by all agents.

Enables cooperation, stability,
and teamwork.

May be slow in large MAS,
requires trust and reliable
communication.

Sensor networks, smart grids,
drone swarm coordination,
distributed Al decisions.

Prepared by M.Nandini,
Assistant professor AIDS.

In short:

« Conflict Resolution = "How do we settle disagreements?"

o Consensus Building = "How do we all agree on one plan after disagreements
are handled?"

Prepared by M.Nandini,
Assistant professor AIDS.

UNIT-1IV

AGENT-ORIENTED SOFTWARE ENGINEERING

AGENT-BASED SYSTEM DESIGN METHODOLOGIES

Agent-baesd System design methodologies" refer to structured approaches used to
plan, design, and implement complex systems. These methodologies help teams
manage complexity, ensure requirements are met, and build systems that are scalable,
maintainable, and efficient.

A Multi-Agent System (MAS) is a system where multiple agents interact, cooperate,
or compete to achieve goals. Designing such systems requires methodologies
(structured approaches) to ensure clarity, correctness, and efficiency.

These methodologies extend software engineering into the agent-oriented paradigm
by defining:

o Agents (what they do)

e Roles (their responsibilities)

e Interactions (how they communicate)
« Environment (where they operate)

Properties of Agent-Based Design Methodologies

1. Autonomy Support
o The methodology should allow agents to operate independently without
constant human or system intervention.
o Each agent must have control over its internal state and decision-making.
2. Proactivity & Reactivity
o Proactive: Agents can take initiative (set goals, plan actions).
o Reactive: Agents can respond dynamically to changes in the environment.
o A good methodology supports both.
3. Communication & Coordination
o Methodology should define how agents interact and collaborate (e.g., via
messages, protocols).
o Ensures smooth cooperation in distributed environments.
4. Modularity
o The system should be broken into well-defined, independent agents.
o Increases reusability, scalability, and ease of maintenance.
5. Scalability
o Ability to handle increasing numbers of agents and tasks without performance
issues.

Prepared by M.Nandini,
Assistant professor AIDS.

o Important for large-scale MAS like traffic simulations or e-commerce
systems.
6. Flexibility & Adaptability
o Agents should adapt to dynamic environments (e.g., market changes,
network failures).
o Methodology should support designing agents that learn and evolve.
7. Goal-Oriented Design
o Agents should be designed with clear goals and roles.
o Methodology must provide a way to capture and align agent goals with
system objectives.
8. Abstraction Levels
o Good methodologies support multiple design levels:
= Organizational level (roles, groups)
= Agent level (beliefs, desires, intentions)
= Interaction level (protocols, coordination)
9. Formalism & Verification
o Should provide formal models (e.g., AUML, logic-based) to specify and
verify agent behavior.
o Helps in reducing ambiguity and ensuring correctness.
10. Domain Independence
o Methodology should be applicable across domains (e.g., robotics, e-
commerce, healthcare).
o Increases reusability and standardization.

GAIA:

One such methodology is GAIA MAS, which is used specifically in the context of
Multi-Agent Systems (MAS).

GAIA Methodology for Multi-Agent Systems (MAS)

GAIA was proposed by Wooldridge, Jennings, and Kinny (2000) as a structured way
to analyze and design agent-based systems.

GAIA is an agent-oriented software engineering (AOSE) methodology used to
design multi-agent systems. It focuses on roles, interactions, and organizational
structure rather than just classes and objects (like in OOP).

Prepared by M.Nandini,
Assistant professor AIDS.

Collection of
Requirements

Requirements

Environmental
/ Model \
) Preliminary Preliminary
Analysis Role Model Interaction Model
h J
\AI Organizational
Rules
> Orgamzatlonal
Architectural tructure
Design
Y Y
Role Interaction
Model Model

Dets:iiled Agent Services

Design Model Model

Implementation 1 1
Key Concepts of GAIA:

1. Agent-Oriented: Focuses on autonomous agents that can act independently and
interact with each other.

2. Organizational Perspective: Emphasizes the system as an organization
composed of interacting roles and agents.

3. Early to Late Phase Design: Covers analysis and design phases, from
identifying roles and responsibilities to specifying concrete agent types.

Phases of GAIA Methodology:
GAIA has two main phases:

1. Analysis Phase
o Focus: What the system should do (requirements & roles).

Prepared by M.Nandini,
Assistant professor AIDS.

o Describes the system without implementation details.
o Key Outputs:
= Roles Model: Defines different roles agents can take.
= Interaction Model: Specifies how roles (agents) communicate.

Example (E-commerce MAS):

o Roles: Buyer, Seller, Broker
o Buyer < Seller: Negotiate prices
o Buyer <> Broker: Search for products

2. Design Phase
o Focus: How the system should be built.
o Translates analysis models into concrete agent structures.
o Key Outputs:
= Agent Model: Mapping of roles to concrete agents.
= Services Model: Internal services provided by agents.
= Acquaintance Model: Communication/links among agents.

Example (E-commerce MAS):

o Buyer agent provides services: placeOrder(), searchProduct()
o Seller agent provides services: provideQuote(), processPayment()
o Broker agent connects Buyer and Seller.

GAIA Models

1. Roles Model
o Defines responsibilities, permissions, activities, protocols for each role.
o Ensures every agent has a clear purpose.

Example (Buyer role):

o Responsibilities: Search products, negotiate, buy.
o Permissions: Access product database.
o Protocols: Request—Response with Seller, Query with Broker.

2. Interaction Model
o Specifies communication patterns between roles.
o Defines protocols, message types, ordering.

Example:

o Buyer — Seller: Request(quote)
o Seller — Buyer: Response(price)

Prepared by M.Nandini,
Assistant professor AIDS.

3. Agent Model
o Identifies actual agents and maps them to roles.
o One agent can perform multiple roles if needed.

Example:

o BuyerAgent — Buyer role
o SellerAgent — Seller role
o BrokerAgent — Broker role

4. Services Model
o Internal functionalities of agents.
o Supports reusability and modular design.

Example (SellerAgent services):

o checkStock()
o calculatePrice()
o generatelnvoice()

5. Acquaintance Model
o Graph of which agents know each other.
o Defines possible communication links (not the details of interaction).

Example:

o BuyerAgent < SellerAgent
o BuyerAgent < BrokerAgent

ADVANTAGES OF GAIA

1. Structured and Systematic
o Provides a step-by-step framework: Roles — Interactions — Agents —
Services — Acquaintances.
o Easy to follow for both beginners and experts.
2. Role-Oriented Design
o Breaks down the system into roles and responsibilities, which makes the
system modular and clear.
3. Focus on Organizations
o Emphasizes organizational structure (roles, permissions, responsibilities)
which is useful for complex MAS.
4. Supports Both Analysis and Design
o Provides models for analysis (roles, interactions) and design (agents,
services, acquaintance).
5. Scalability
o Works well when the system has many agents and distributed tasks.

Prepared by M.Nandini,
Assistant professor AIDS.

DISADVANTAGES OF GAIA

l.

No Implementation Guidance

o GAIA does not specify how to implement the agents (coding, platforms,
protocols).

Lacks Dynamic Modeling

o Limited support for modeling real-time changes, adaptability, or learning
behaviors.

. Rigid

o Assumes roles and responsibilities are static, which may not work well in
adaptive systems (e.g., Al-driven environments).

Focus on Design More than Development

o Strong in conceptual design, weak in implementation and testing phases.

Not Fully Compatible with Modern AI/ML

o Does not consider machine learning agents or autonomous decision-
making explicitly.

APPLICATIONS OF GAIA

Because GAIA is good at handling large, structured multi-agent systems, it is applied

m:

l.

D

Traffic Management Systems (Smart Cities)
o Managing traffic lights, vehicles, congestion, and emergency vehicle
priorities.
Supply Chain Management
o Agents for suppliers, warehouses, distributors, and retailers working together.

. Distributed Robotics (Swarm Robotics)

o Each robot acts as an agent with defined roles and coordination.

Healthcare Systems

o Patient monitoring agents, hospital resource management, and emergency
handling.

. Telecommunication Networks

o Network routing, bandwidth allocation, and fault recovery using distributed
agents.
Smart Grid / Energy Management
o Power generation, distribution, and consumption managed by multiple
cooperating agents.
E-commerce and Auctions
o Buyer, seller, and broker agents negotiating and managing online transactions.

EXAMPLE: GAIA MAS in a Smart Traffic System

Roles:

Prepared by M.Nandini,
Assistant professor AIDS.

o TrafficMonitor: Monitors vehicle flow.
o SignalController: Manages traffic lights.
o EmergencyHandler: Prioritizes emergency vehicles.

Interactions:

o TrafficMonitor — SignalController: Sends congestion data.
e EmergencyHandler — SignalController: Requests signal priority.

Agents:
« MonitorAgent, ControllerAgent, EmergencyAgent

Each agent plays one or more roles and uses services like analyzeTraffic(),
changeSignalState(), etc.

TROPOS

TROPOS Methodology inMulti-Agent Systems (MAS)

TROPOS is an agent-oriented software engineering (AOSE) methodology focused
heavily on requirements analysis and the intentions of system actors. It’s useful for
designing goal-driven, intelligent MAS (multi-agent systems), especially when
modeling complex stakeholder goals.

What is TROPOS?

TROPOS is built on the i* (i-star) modeling framework and emphasizes goals, plans,
dependencies, and actors from the earliest stages of software development.

Prepared by M.Nandini,
Assistant professor AIDS.

Tropos Methodology Phases

Early Requirements
Identify actors & goals (SD diagram)

Late Reqgirements
Define system-to-be] (SD + SR diagrams)

(@ N\
Architectutal Design
Define agent rolgs & interactions
. R
Detaile#Design
Specify agent behlviors & protocols
r Y
Implem‘ntation
Build & deploy MA$ (JADE, JACK, etc.)
& v
PROPERTIES OF TROPOS

1. Goal-Oriented
o Focuses on why the system is needed by analyzing goals (functional and non-
functional).
2. Actor & Dependency Modeling
o Models actors (agents, roles, organizations) and their dependencies
(goal, resource, task, soft-goal).
3. Covers Full Lifecycle
o Includes early requirements — late requirements — architectural
design — detailed design — implementation.
4. i* Framework Based
o Uses Strategic Dependency (SD) and Strategic Rationale (SR)
diagrams.
5. Flexible
o Can be applied to open, distributed, and adaptive environments.

1)Early Requirements Phase

o Objective: Understand the stakeholders, their goals, and dependencies.
o What is modeled:
o Who are the actors (people, systems, organizations)?
o What are their goals (functional & non-functional)?
o How do they depend on each other for tasks, resources, and goals?

Prepared by M.Nandini,
Assistant professor AIDS.

o Diagram used: Strategic Dependency (SD) diagram.

(3 Example: In a hospital MAS, a Doctor depends on a Nurse for patient monitoring.
2)Late Requirements Phase

e Objective: Define the system-to-be (the software system as an actor).
« What is modeled:
o The system is introduced as a new actor.
o Its dependencies with other human/organizational actors are modeled.
o System functionalities and responsibilities are refined.
o Diagram used: SD + Strategic Rationale (SR) diagram (shows reasoning
behind goals).

(3 Example: The hospital system (software) monitors patients and notifies doctors
automatically.

3.Architectural Design Phase

o Objective: Define the high-level structure of the system as a set of agents.
« What is modeled:

o Agents and their roles.

o How agents interact with each other.

o Allocation of goals/tasks to agents.
o Focus: "What agents will exist and how they are organized?"

(3 Example: In the hospital MAS:

o Agent 1: Monitoring Agent — monitors patient vitals.
o Agent 2: Alert Agent — notifies doctors in emergencies.

4.Detailed Design Phase

e Objective: Refine agents’ internal structure, behavior, and interaction protocols.
« What is modeled:

o Each agent’s plans, beliefs, goals.

o Communication protocols between agents.

o Algorithms for decision-making.
e Focus: "How will agents behave and cooperate?"

(3 Example:

o Monitoring Agent plan — check patient data every 10 seconds.
o Alert Agent plan — send SMS/email to doctor if heart rate > threshold.

Prepared by M.Nandini,
Assistant professor AIDS.

S.Implementation Phase

e Objective: Translate the design into actual code and deploy the MAS.
« What is modeled:

o Coding using agent frameworks (JADE, JACK, Jason, etc.).

o Integration with databases, [oT devices, or Uls.
e Focus: working software system.

(3 Example: Implement hospital MAS using JADE agents (Java-based).
ADVANTAGES OF TROPOS

1. Full Development Lifecycle

o Unlike GAIA, Tropos covers requirements to implementation.
2. Goal-Oriented Approach

o Focuses on why a system is needed before how it should be built.
3. Handles Complex Systems

o Well-suited for distributed, open, adaptive MAS with many actors and

dependencies.

4. Flexibility

o Can adapt to changes in stakeholder goals or system environment.
5. Strong Requirements Engineering

o Links business goals with software design, ensuring traceability.

DISADVANTAGES OF TROPOS

1. Complex and Time-Consuming
o Modeling with 1* and covering all phases requires a lot of effort.

2. Steep Learning Curve

o Understanding actors, dependencies, and diagrams can be difficult.
. Lack of Tool Support

o Compared to UML, fewer tools exist for Tropos.
. Abstract in Early Stages

o Focus on goals and dependencies may feel too abstract for practical

coding.

. Not Lightweight

o May be overkill for small/simple MAS projects.

(98]

N

n

APPLICATIONS OF TROPOS
Tropos is widely used in goal-driven and complex agent-based systems:

1. Business Process Management Systems

o Capturing stakeholder goals, dependencies, and workflows.
2. Healthcare Systems

o Patient monitoring, medical staff coordination, and hospital management.
3. E-Governance

Prepared by M.Nandini,
Assistant professor AIDS.

o Modeling citizen, government, and service provider interactions.
4. Telecommunication Networks
o Modeling dependencies between service providers, operators, and
customers.
5. Smart Grids / Energy Systems
o Managing distributed power generation and consumption goals.
6. E-commerce Systems
o Buyer, seller, broker agents with goal dependencies.

TROPOS vs GAIA (Quick Comparison)

Aspect GAIA TROPOS

Focus Roles, interactions, structure |Goals, intentions, dependencies
Origin Organization-based design |Goal-based requirement analysis
Start Point System behavior Stakeholder goals

Modeling Depth | Design-level From early requirements to design
Flexibility Moderate High (adaptive agents possible)

Agent UML (AUML): Notations and Modeling

Agent UML is an extension of the standard Unified Modeling Language (UML) (UML)
designed to model agent-oriented systems, or Multiagent Systems (MAS). It introduces
new notations and diagrams to represent key agent-specific concepts such as agents,
their roles, capabilities, services, and complex interaction protocols between agents,
which are beyond the scope of standard UML. Agent UML helps designers analyze,
design, and document agent-based systems using graphical models.

Why Use AUML?

Standard UML lacks constructs for modeling agents’ behaviors like beliefs, intentions,
and interactions between intelligent agents. AUML fills this gap by introducing
notations and diagrams tailored to multi-agent systems (MAS).

Key AUML Notations and Concepts

Here’s an overview of the main AUML extensions and diagrams used to model agents:

1)Agent Class Diagram:
Definition

An Agent Class Diagram is an extension of UML class diagrams that represents:

Prepared by M.Nandini,
Assistant professor AIDS.

e Agents (instead of objects)
o Their roles, attributes, capabilities, and services
o Relationships (communication, cooperation, inheritance, dependency)

It is the static structure view of a Multi-Agent System (MAS).

Purpose: Models the structure of agents, their capabilities, beliefs, and relationships.

AUML Extensions:
Element Description
<<agent>> stereotype Marks a class as an agent

beliefs, goals, plans compartments | Describe the agent’s internal state

<<environment>> stereotype Represents the environment agent interacts with
Example:
S S +
| <<agent>> |
| DeliveryAgent |
S TSR +

| - beliefs: Map |
| - goals: DeliverParcel |
| - plans: Navigate, DropOff |

T +
EXAMPLE:
AUML Agent Class Diagram: Buyer-Seller-Broker Example
T avoker
77777 ré’-’(rjlstrry 7

+ fee
+ matchBuyerSeller()
+ forwardRequest()

<<agent>> <=<agent>>
Buyer Seller
+ name negotiate:s + id
+ budget e e v + inventory
+ searchProduct() + provideQuote()
+ requestQuote() + negotiate()
+ acceptOffer() + deliverProduct()

Prepared by M.Nandini,
Assistant professor AIDS.

Here’s an AUML Agent Class Diagram for a simple Buyer—Seller—-Broker MAS
scenario:

« Buyer Agent — Searches for products, requests quotes, accepts offers.

e Seller Agent — Provides quotes, negotiates, delivers products.

« Broker Agent — Matches buyers and sellers, forwards requests.

e Communication Links: Buyer < Seller (negotiates), Buyer — Broker
(requests), Seller — Broker (advertises).

2. Agent Interaction (Sequence) Diagram

An Interaction Agent is an autonomous agent that focuses on exchanging
information, negotiating, and coordinating tasks with other agents (or users). It
ensures that agents in MAS do not act in isolation but rather work in a
collaborative or competitive environment.

Purpose: Shows communication and message passing between agents over time.
AUML Features:

o Agentlifelines: Represent individual agents.
o Speech-act labels: Use FIPA ACL types (e.g., request, inform, propose, accept).
o Nested interactions: Agents can invoke sub-interactions.

Example:

Buyer Agent A N L Seller Agent
AUML Interaction Diagram: Buyer-Seller Negotiation

Request for Quote (RFQ)

Proposal (Price, Terms)

Counter-Proposal !

Final Agreement / No Deal

Here’s the AUML Interaction Diagram example for a Buyer-Seller negotiation.
It shows how agents exchange messages step by step:

Prepared by M.Nandini,
Assistant professor AIDS.

=

Buyer Agent — Seller Agent: Sends Request for Quote (RFQ).

Seller Agent — Buyer Agent: Responds with a Proposal (price, terms).
Buyer Agent — Seller Agent: Sends a Counter-Proposal.

Seller Agent — Buyer Agent: Finalizes with Final Agreement / No Deal.

This captures interaction protocols between agents in MAS using AUML.

3)Agent Activity Diagram

An Activity Diagram in AUML (Agent UML) is used to model the workflow /
internal activities of an agent or a group of agents.It shows sequences of actions,

decision points, concurrency, and coordination among agents.

¢ Notations in AUML Activity Diagram

Rounded rectangles — Activities (tasks performed by an agent).
Diamonds — Decisions (yes/no, choice of actions).

Bars — Parallel activities (concurrency).

Arrows — Control flow (order of execution).

Swimlanes — Different agents (who is responsible for which activity).

Start () and End (©) nodes — Workflow beginning and completion.

Purpose: Describes the internal reasoning and behavior of an agent.

Actors

AUML Activity Diagram - Buyer & Seller Interaction

Buyer: Send RFQ

(Seller: Receive RFQ)

!

(Seller: Send Proposal)

(Buyer: Evaluate Proposal]

|

Decision?

Accept Proposal (Reject/Counter Proposal)

No Deal

Deal Confirmed

Prepared by M.Nandini,
Assistant professor AIDS.

o Buyer Agent — wants to buy a product.
e Seller Agent — provides product offers.

Flow Explanation
1. Start
o The process begins when the Buyer Agent decides to purchase
something.

2. Buyer Sends RFQ (Request for Quotation)
o The Buyer Agent sends a message to the Seller Agent asking for product
details, price, and terms.
3. Seller Prepares Quotation
o The Seller Agent processes the request and prepares a quotation (price +
conditions).
4. Seller Sends Quotation
o The Seller Agent sends the quotation back to the Buyer Agent.
5. Buyer Evaluates Quotation
o The Buyer Agent checks whether the price and conditions are
acceptable.
o Decision Point (Branch):
= If quotation is acceptable — Go to “Send Purchase Order.”
= If not acceptable — Go to “Reject Offer.”
6. If Accepted — Buyer Sends Purchase Order
o Buyer confirms by sending a Purchase Order to the Seller Agent.
7. Seller Confirms Order
o Seller processes the order and confirms the deal.

o The transaction is completed successfully. &7

8. If Rejected — Buyer Rejects Offer
o Buyer sends a rejection message to Seller.

o The interaction ends without a transaction. X

9. End
o Process terminates after either order confirmation or rejection.

4. AUML Protocol Diagram

Purpose: Defines allowed interaction protocols (e.g., contract net, auctions,

Elements:

Prepared by M.Nandini,
Assistant professor AIDS.

negotiations).

Elements:

Prepared by M.Nandini,
Assistant professor AIDS.

o Interaction roles: Initiator, Participant
e Protocol steps: Speech acts with conditions
e Reusability: Can define protocols as templates

AUML Protocol Diagram: Buyer-Seller Negotiation

Buyer

Quotation (Sg¢ller —» Buyer)

Confirmation / En

1. Initiation

Agent

Seller Agent

)
RequestQuote (Buyer — Seller)

A

A

(Seller —» Buyer)

e T e e e

A 4

AcceptOffer / Reject¢ffer (Buyer — Seller)

e Buyer — Seller: RequestProduct(productName)
The Buyer starts the interaction by asking for a specific product.

2. Seller’s Response

e Seller — Buyer: ProvideDetails(price, availability)
The Seller replies with the product’s price and availability details.

3. Buyer’s Decision

o If satisfied:

o Buyer — Seller: AcceptOffer
The Buyer agrees to purchase at the given terms.

o Ifnot satisfied:

o Buyer — Seller: RejectOffer
The Buyer refuses the offer (protocol ends).

4. Confirmation

Prepared by M.Nandini,
Assistant professor AIDS.

o IfBuyer accepted:
o Seller — Buyer: ConfirmOrder(orderID, deliveryDetails)
The Seller confirms the order, assigns an order ID, and provides
delivery details.

5. Completion

o Protocol ends when either:
o An order confirmation is successfully exchanged (successful
interaction), or
o The Buyer rejects the offer (failed interaction).

Advantages (Pros of AUML)

1. Extension of UML
o Builton UML, so developers already familiar with UML can adapt
easily.
2. Agent-Oriented Features
o Supports modeling of agents, roles, organizations, and interactions,
which traditional UML cannot represent directly.
3. Standardized Communication
o AUML diagrams (protocol, interaction, activity) make agent-to-agent
communication explicit.
4. Supports Multi-Agent Interactions
o Clearly models complex conversations, negotiations, and cooperation
protocols between agents.
5. High-level Abstraction
o Focuses on roles, goals, and behaviors rather than just classes and
objects.
6. Integration with MAS Methodologies
o Can be used with Gaia, Tropos, MaSE, etc. for implementation.

Disadvantages (Cons of AUML)

1. Not Fully Standardized
o Unlike UML (widely accepted), AUML lacks a single official standard
— variations exist.
2. Complexity
o Diagrams for protocols and interactions can become very complex in
large MAS.
3. Tool Support is Limited

Prepared by M.Nandini,
Assistant professor AIDS.

o Fewer modeling tools and CASE tools support AUML compared to
standard UML.
4. Learning Curve
o Requires learning new notations beyond UML, especially for MAS-
specific concepts.
5. Gap to Implementation
o AUML models are high-level; turning them into actual MAS code
(JADE, JACK, etc.) still requires extra steps.
6. Scalability Issues
o For large-scale MAS with many agents, AUML diagrams become hard
to manage and maintain.

Conclusion

« Best for: Conceptual modeling, communication protocols, role definitions in
MAS.

« Limitations: Not enough tool support, not standardized, complex for very
large systems.

DESIGN PATTERNS & BEST PRACTICES IN MAS

Designing a Multi-Agent System (MAS) requires managing distributed intelligence,
autonomy, communication, and coordination. To make this manageable, developers use
design patterns and follow best practices adapted to agent-oriented systems.

What Are MAS Design Patterns?

Design patterns in MAS are reusable solutions to common agent-related problems like
task allocation, coordination, negotiation, etc.

Many of these patterns are adapted from or inspired by object-oriented patterns but are
tailored for autonomous, goal-driven agents that can perceive, reason, act, and
communicate.

Prepared by M.Nandini,
Assistant professor AIDS.

Design Patterns in Multi-Agent Systems (MAS)

Blackboard Pattern

Broker Pattern Observer Pattern

Auction Pattern
MAS Design Patterns

Contract Net Protocol

Mediator Pattern
Role Pattern

Design Patterns in MAS

Just like OOP has design patterns (Singleton, Observer, etc.), MAS has agent-

specific patterns to handle autonomy, communication, and collaboration.

1. Agent Creation Patterns

« Singleton Agent — ensures only one agent of a certain type (e.g., Directory

Facilitator in JADE).

« Factory Agent — one agent creates and manages other agents dynamically.

2. Interaction / Communication Patterns

o Mediator Pattern — a mediator agent coordinates communication between

agents to reduce complexity.

e Observer Pattern — agents subscribe to updates from another agent
(publish/subscribe).

o Contract Net Protocol — task allocation where one manager agent requests

bids and worker agents compete.

3. Coordination Patterns

o Broker Pattern — broker agent helps in finding and connecting agents.

« Facilitator Pattern — helps agents discover services (like a “yellow pages”).

Prepared by M.Nandini,
Assistant professor AIDS.

e Blackboard Pattern — multiple agents share a common knowledge space for
collaboration.

4. Behavioral Patterns

o Reactive Pattern — agents respond immediately to environment changes.
e Deliberative Pattern — agents plan before acting.

o Hybrid Pattern — combination of reactive + deliberative.

5. Organizational Patterns

« Role-based Pattern — agents are assigned roles (e.g., Buyer, Seller).
o Team Pattern — group of agents collaborate to achieve a shared goal.

Best Practices in MAS Design

Best Practices in Multi-Agent Systems (MAS)

Scalability

Documentation

Security

ror Handling & Recover: v
Testing & Validation

MAS Best Practices

Modularity

Performance Optimization

Interoperability sabiity

1. Define Clear Roles and Responsibilities

o Assign agents specific roles (buyer, seller, broker, manager) to avoid
confusion.

2. Use Standard Communication Protocols
o Follow FIPA-ACL or AUML protocol diagrams for structured agent
communication.
3. Keep Agents Lightweight

o Avoid making one agent handle too many tasks — better to distribute
work.

Prepared by M.Nandini,
Assistant professor AIDS.

4. Encapsulation of Knowledge
o Each agent should keep its internal state private and communicate only
via messages.
5. Decentralization
o Avoid central bottlenecks — distribute intelligence among multiple
agents.
6. Scalability
o Design agents so new ones can join/leave the system dynamically
without breaking it.
7. Fault Tolerance
o Include recovery and redundancy — if one agent fails, others can
continue.
8. Modularity & Reusability
o Use patterns like Mediator, Observer, Broker so agents can be reused
in other MAS.
9. Testing with Simulation
o Before deployment, simulate MAS with tools (JADE, NetLogo,
AnyLogic) to test interactions.
10. Documentation with AUML
o Use Agent UML diagrams (class, interaction, protocol) for clear design
documentation.

In short:

« Design Patterns = re-usable solutions (Mediator, Observer, Contract Net,
Broker, etc.)

o Best Practices = role clarity, standard communication, modularity, scalability,
decentralization.

MAS Design Tools & Platforms

o JADE —Java Agent Development Framework
o Jason — BDI-style agents in AgentSpeak

o« GAMA - Simulation of spatial MAS

o« MASON - Fast MAS simulation framework

o AgentTool — Supports MaSE methodology

ONTOLOGIES & SEMANTIC WEB INTEGRATION IN MAS

Prepared by M.Nandini,
Assistant professor AIDS.

Definition

e Ontology: A formal, shared vocabulary that defines concepts, relationships,
and rules within a domain.

Example: In an e-commerce MAS, ontology may define Product, Price, Seller,
Buyer.

o Semantic Web: An extension of the World Wide Web that gives meaning to
data, enabling machines and agents to understand, share, and reuse
knowledge.

o Integration in MAS means:

Agents use ontologies to interpret information consistently and semantic web
technologies (RDF, OWL, SPARQL) to retrieve, reason, and communicate
knowledge.

Role of Ontologies in MAS

v Provide a common vocabulary for agents.
v Support interoperability between heterogeneous agents.
v Enable knowledge sharing and semantic reasoning.

v Reduce misunderstandings in communication.

Semantic Web Technologies Used

o RDF (Resource Description Framework): Represents data as triples
(Subject—Predicate—Object).

e OWL (Web Ontology Language): Defines rich ontologies with rules and
constraints.

e« SPARQL: Query language for RDF/OWL knowledge bases.

e Reasoners (e.g., Pellet, HermiT): Infer new knowledge from existing facts.

Workflow of Integration

Define Ontology for the application domain.

Annotate Data (e.g., product info, service info) with RDF/OWL.
Agents Access Ontology to understand concepts and roles.

Use SPARQL Queries to fetch and reason over semantic data.
Agents Interact using shared semantic knowledge — no ambiguity.

N

Applications

o E-commerce: Buyer & seller agents understand product descriptions
semantically.

Prepared by M.Nandini,
Assistant professor AIDS.

o Healthcare: Agents share patient data using standard ontologies (e.g.,
SNOMED).

e Smart Grid/ IoT: Devices (agents) use semantic knowledge for coordination.

o Semantic Web Services: Agents discover and use services dynamically.

+! In short:
Ontologies = vocabulary =

Semantic Web = framework &
MAS Integration = intelligent, interoperable, and semantically aware agents

Benefits of Ontologies & Semantic Web in MAS

Benefit Description

Interoperability | Agents from different domains can understand each other.
Reusability Ontologies can be reused across applications and systems.
Reasoning Enables logical inference, e.g., deducing that a Laptop is a Product.
Scalability Supports dynamic environments (e.g., smart cities, [oT).
Autonomy Agents can adapt based on new data and reasoning.

Real-World Example: Smart Healthcare MAS

o Agents: DoctorAgent, PatientAgent, PharmacyAgent

o Ontology: Defines diseases, symptoms, medications

o Semantic Web: Used to fetch treatment options from linked medical databases
(e.g., SNOMED CT)

o Reasoning: Used to suggest treatments based on symptoms + patient history

Prepared by M.Nandini,
Assistant professor AIDS.

DoctorAgent PatientAgent PharmacyAgent

l

Semantic Web

l

Reasoning

l

Applications

MIDDLEWARE AND FRAMEWORKS FOR MAS:

Middleware in MAS acts as a software layer between the operating system/network
and the agents, providing:

« Communication support (message passing, negotiation, coordination).
« Interoperability among heterogeneous agents.

o Scalability for distributed environments.

e Abstraction from low-level details (network, protocols).

It helps agents focus on problem-solving rather than worrying about technical issues
like transport, synchronization, etc.

Common Middleware Features in Multi-Agent Systems (MAS)

1)Message Transport

e Provides the communication backbone for agents.
e Supports standard protocols like:
o FIPA-ACL (Agent Communication Language) — widely used standard.
o KQML (Knowledge Query and Manipulation Language) — used for
knowledge sharing.
o Ensures asynchronous / synchronous message delivery between agents.

2. Directory Services

Prepared by M.Nandini,
Assistant professor AIDS.

o Works like a “Yellow Pages” for agents.

e Agents can register, advertise, and discover each other dynamically.
o Example: JADE’s Directory Facilitator (DF) component.

o Enables flexible and scalable MAS where new agents can join anytime.

3. Security Services

e Provides authentication (verifying agent identity).

e Encryption for confidential communication.

o Authorization policies (what actions an agent is allowed to perform).
e Prevents malicious agents from disturbing the system.

4. Persistence & State Management

o Middleware keeps track of an agent’s state, goals, and behaviors.

e Supports fault tolerance — if an agent or server crashes, it can be restarted without
data loss.

e Useful in long-running systems like healthcare MAS, traffic MAS.

5. Monitoring & Debugging Tools

e Middleware often provides dashboards or logs to monitor agents.
e Tracks:
o Agent creation, movement, destruction.
o Message traffic between agents.
e Helps in debugging MAS during development and ensuring correct interaction

MIDDLEWARE FEATURES

[Message Transport J (Directory Services)
Security Services Persistence &
¥ State Management

(Monitoring & Debugging Tool%

NETWORK / INFRASTRUCTURE

Prepared by M.Nandini,
Assistant professor AIDS.

WHAT IS MEAN BY FRAME WORK?

A framework in Multi-Agent Systems (MAS) is a ready-made software platform
that provides developers with tools, libraries, and services to design, implement, and
run agent-based applications.

Instead of building everything (communication, agent lifecycle, discovery, security)
from scratch, a framework gives you:

e Core agent model (how to create agents, their behaviors, and roles).

o Communication support (FIPA-ACL, KQML messaging).

o Agentlifecycle management (start, suspend, kill agents).

o Directory and discovery (how agents find each other).

« Integration support (connect to databases, ontologies, or external apps).

\
Application layer
Agent layer
. MAS
framework
Middleware
Platform
w

What is JADE?

JADE (Java Agent Development Framework) is one of the most widely used
frameworks for building Multi-Agent Systems (MAS).

It follows FIPA (Foundation for Intelligent Physical Agents) standards, making it
easier for agents to communicate, discover each other, and collaborate.

¢ Features of JADE
o Agent communication: Uses FIPA-ACL messages.

o Agent lifecycle management: Start, stop, suspend, resume agents.
« Directory facilitator (DF): "Yellow Pages" service for discovering agents.

Prepared by M.Nandini,
Assistant professor AIDS.

« Remote GUI tools: Monitor and control agents.
o Distributed execution: Agents can run on different machines (JADE platform

| want to buy

a laptop
BuyerAgent || SellerAgent .
Laptop avai- -
lable at $1000

1s distributed).

¢ JADE Agent Lifecycle

Init — Agent is created.

Setup() — Initialization (registers services, prints messages).
Behaviours — Tasks (e.g., sending/receiving messages).
TakeDown() — Cleanup when agent stops.

ol

Applications of JADE:

e E-commerce (buyer-seller systems).

e Healthcare agents (doctor—patient—pharmacy).
o Smart grids (energy agents negotiating).

« Simulation environments.

Whatis SPADE?

e An open-source Python framework to develop, run, and manage MAS.
o It helps programmers create agents that can:
1. Communicate using messages (based on XMPP or other protocols).
2. Run behaviors (tasks, decisions, rules).
3. Work in distributed environments (different machines, networks).

SPADE (Smart Python Agent Development Environment)

o Language: Python
o Best for: AI/ML integration, rapid prototyping, research.

Prepared by M.Nandini,
Assistant professor AIDS.

e Strengths:
o Very easy to use (Python).
o Built-in support for XMPP messaging.
o Modern features (async/await, web dashboards).
o Easy to integrate with ML/DL libraries (TensorFlow, PyTorch, scikit-
learn).
o Weaknesses:
o Newer than JADE (smaller community).
o Fewer built-in advanced services compared to JADE.

¢ Main Features of SPADE

1. Agent-based programming — each agent is a Python class.

2. Behaviors — periodic, cyclic, or one-shot tasks.

3. Messaging — agents communicate via FIPA-ACL (standard agent
communication language).

4. XMPP support — uses chat-like messaging for agent communication.

hdl

Web dashboard — monitor and control agents in real time.
6. Integration with AI/ML — you can embed machine learning models inside
agents.

Quick Comparison Table

Framework Language Best Use Case Strengths Weaknesses
SPADE Python er;Is/elzlrIghjL M Eliz}:tsiﬁ? ’dle\t/;}I;board S(?:lilllllq(:nity

R R/ St PR
PADE Python ggésmart Lightweight, distributed {;eoslss active, fewer
W SANAS | ACKmot e Nt

SCALABILITY IN JADE VS SPADE
1. JADE (Java Agent Development Framework)

e Architecture:
o JADE uses a distributed container architecture.
o Agents run inside containers, and containers can be spread across different
JVMs and physical machines.

Prepared by M.Nandini,
Assistant professor AIDS.

o A central Main Container manages the system, but you can add multiple
distributed containers for scaling.
+ Scalability Strengths:

</ Can support tens of thousands of agents in large enterprise MAS.
</ Built-in load distribution across JVMs.
<« FIPA-compliant communication (standardized ACL) for interoperability.

</ Mature tools (RMA, Sniffer) to monitor scaling.
+Scalability Weaknesses:

X Java agents are heavier — high memory usage per agent.
X Central Main Container may become a bottleneck if not designed carefully.

X More complex to deploy in cloud/microservices environments compared to
Python frameworks.

2. SPADE (Smart Python Agent Development Environment)

e Architecture:

o SPADE agents are Python processes that communicate using XMPP or
HTTP.

o Communication is asynchronous (asyncio), allowing many concurrent
lightweight tasks.

o Agents can run on different machines and connect via distributed messaging
servers.

+Scalability Strengths:

</ Python + async — lightweight agents that handle many concurrent tasks.
</ Easy to deploy in cloud-native systems (Docker, Kubernetes).
<« Integrates well with AI/ML services (scale computation separately).

< No strict dependency on a single “main container” — fewer central bottlenecks.
+ Scalability Weaknesses:

X Python’s GIL (Global Interpreter Lock) limits CPU-bound scalability in a
single process.

X Best for hundreds to a few thousand agents, not tens of thousands like JADE.

X Smaller ecosystem, fewer built-in enterprise-grade tools.

Comparison Table

Feature /

JADE SPADE
Framework

Language Java Python
Max Agents Very High (10k+) Medium—High (1k—5k typically)

Prepared by M.Nandini,
Assistant professor AIDS.

Feature / JADE SPADE
Framework
XMPP /HTTP
Communication FIPA-ACL (standardized) : . (asyne,
lightweight)
A tasks + distributed
Architecture Distributed containers (JVM-based) Syne 'as s astibute
messaging
Easy (Docker/K8s,
Cloud Depl t Harder JVM-h ; :
oud Deploymen arder (eavy) microservices)
Strengths Enterprise-scale, mature, stable, AI/.ML integration, async, cloud-
FIPA tools native
Heavy agents, complex, central .
Weaknesses Python GIL limits, smaller scale

bottleneck
FAULT TOLERANCE IN MAS MIDDLEWARE

What it means:

e The ability of the system to continue operating properly in the event of
failures (agent crashes, network partitions, message loss).

Challenges:

o Agent failure detection: Detecting crashed or unresponsive agents reliably.

e Message loss: Guaranteeing message delivery or retrying in unreliable networks.

« Data consistency: Ensuring agents have consistent views of shared data or
environment.

« Recovery and redundancy: Restarting agents, replicating critical services.

What is Fault Tolerance?

Fault tolerance = the ability of a MAS to continue functioning even when some
agents, nodes, or communication channels fail.
In MAS, failures may happen at:

o Agent level — crash, hang, or misbehave.

o Communication level — lost/delayed messages.

o Middleware/framework level — server/container failure.
o Environment level — hardware, network outages.

Prepared by M.Nandini,
Assistant professor AIDS.

Fault Tolerance in MAS Middleware

Middleware in MAS = the layer that manages communication, agent life-cycle,
and coordination (e.g., JADE runtime, SPADE’s messaging backend).
Fault tolerance in middleware usually involves:

1. Redundancy
o Replicating critical services (directories, brokers, agent containers).
o Example: multiple “Directory Facilitator” services.
2. Failover Mechanisms
o If one container/server fails, agents migrate or restart on another.
3. Checkpointing
o Periodic state saving so agents can recover after crashes.
4. Self-healing Agents
o Agents detect failures in peers and reallocate tasks dynamically.
5. Decentralization

o Avoid single points of failure (P2P communication instead of central
broker).

Fault Tolerance in JADE

o Middleware Features:
o JADE has Main Container + distributed containers.
o Ifanon-main container fails, its agents are lost unless replicated.
o Main Container failure = critical (single point of failure).
e Fault Tolerance Mechanisms:
</ Agents can migrate between containers for recovery.
</ Developers can add redundant containers and checkpointing.
</ Agent monitoring tools (Sniffer, Introspector) help detect failures.
X By default, no built-in high availability for the Main Container (needs
extensions).
« Research Extensions:

o Fault-tolerant JADE versions exist (e.g., FT-JADE) with replicated
main containers.

Fault Tolerance in SPADE

o Middleware Features:
o SPADE uses XMPP/HTTP servers for messaging.
o Agents are Python processes (can restart independently).
o No strict “main container” — more decentralized.

Prepared by M.Nandini,
Assistant professor AIDS.

Fault Tolerance Mechanisms:

</ Agents can reconnect if the server goes down and restarts.

</ Async architecture — failures in one agent usually don’t crash others.
</ Cloud-native — can rely on Docker/Kubernetes auto-restart for
resilience.

X If the XMPP server fails, communication halts (single point of failure
unless clustered).

X No built-in agent checkpointing (must implement in app logic).

Best Practice:

o Deploy redundant XMPP servers.
o Use supervisors (e.g., Kubernetes) to restart failed agents.

Deployment Challenges in MAS Middleware

Common Challenges:

Distributed deployment: Agents run on different machines/containers,
requiring network setup and firewall considerations.

Configuration complexity: Middleware configurations (e.g., JADE containers,
XMPP servers) can be complex.

Security: Securing inter-agent communication and authentication is critical,
especially in open environments.

Version compatibility: Coordinating framework versions across nodes.
Monitoring & debugging: Difficult to track distributed agents and their
interactions.

Deployment Challenges in MAS Middleware & Frameworks

Deploying Multi-Agent Systems (MAS) is harder than deploying a traditional

centralized system because MAS are:

Distributed (agents across multiple machines/networks).
Dynamic (agents appear/disappear at runtime).
Communication-heavy (messages can overload networks).
Heterogeneous (agents may run on different OS, devices, or even
programming languages).

Prepared by M.Nandini,
Assistant professor AIDS.

General Deployment Challenges in MAS Middleware

1. Scalability
o Running thousands of agents across multiple machines.
o Middleware must support load balancing and clustering.
2. Fault Tolerance
o Middleware must handle node, agent, or network failures gracefully.
3. Interoperability
o Agents from different platforms (JADE, SPADE, MadKit) may not
interoperate without common standards (FIPA, XMPP, HTTP).
4. Configuration Complexity
o Need to set up containers, message servers, and directories.
o Managing credentials (XMPP accounts, JVM configs) is non-trivial.
5. Monitoring & Debugging
o Hard to observe thousands of agents in distributed environments.
o Middleware must provide dashboards, logs, and tracing tools.
6. Cloud & Containerization
o Traditional frameworks (like JADE) were designed for JVMs, not
microservices.
o Modern frameworks (like SPADE) integrate better with
Docker/Kubernetes, but still require careful orchestration.

Deployment Challenges in JADE

o Main Container Bottleneck:
o All agents must register with the main container — single point of
failure.
« Distributed Container Setup:
o Deploying JADE across multiple JVMs requires careful networking
(RMI, hostnames, firewalls).
e Cloud Deployment Issues:
o Harder to deploy JADE in containerized microservices (not natively
cloud-ready).
e Monitoring:
o JADE provides RMA GUI, but scaling to thousands of agents makes it
less practical.
o Interoperability:
o Strong FIPA compliance, but integrating with non-JADE systems
requires adapters.

Prepared by M.Nandini,
Assistant professor AIDS.

Deployment Challenges in SPADE

« XMPP Server Dependency:
o All agents depend on XMPP/HTTP server — must be
replicated/clustered for reliability.
o Authentication Management:
o Each agent requires a valid XMPP account and password — difficult at
scale.
e Cloud Scaling:
o SPADE is easier to deploy in Docker/K8s, but distributed
logging/monitoring can be tricky.
o Fault Recovery:
o Ifthe messaging server fails, agents can’t communicate until recovery.
o Interoperability:
o SPADE supports XMPP/HTTP (standard protocols), but lacks full
FIPA ACL support like JADE.

Prepared by M.Nandini,
Assistant professor AIDS.

[MAS Middleware]

- m . R

Architecture Architecture

v Main Container (SPOF) v No strict main node

v Distributed JVM v Python async agents
v FIPA ACL Messaging v XMPP/HTTP Messaging
Scalability Scalability

v 10k+ agents supported v Cloud-native (Docker)
v Load balancing in JVMs v Al/ML integration

v Mature FIPA tools v Async = concurrency
Fault Tolerance Fault Tolerance

% Agent migration
% Redundant containers
% Needs FT-JADE for HA

Deployment Challenges
Main container SPOF RMI/host=ar:

amadlc ccvmaalan. UHawvd alaiid lwdaaa

v Agents auto-reconnect
ST CIETEM v Docker/K8s restart
S v Needs clustered XMPP

Deployment Challenges
X XMPP auth mgmt ILogingrmc:

A\ NMawbieal nnwianv dac ANa Lolim..

Prepared by M.Nandini,
Assistant professor AIDS.

UNIT-V
ADVANCED TOPICS AND APPLICATIONS
EMERGENCE AND SELF-ORGANIZATION IN MAS:

Definition

« Emergence:
o Emergence is the appearance of global patterns, behaviors, or
structures in a system that arise from local interactions between agents.
o It is not explicitly programmed but arises naturally as agents follow
simple rules.
o Example: Traffic jams form even if no driver intends it; ant colonies
organize food collection without a leader.
e Self-Organization:
o Self-organization is the process by which a system reaches order and
coordination spontaneously, without any centralized control.
o Agents adapt to local information and feedback loops (positive and
negative).
o Example: Flocking of birds, peer-to-peer networks, adaptive routing in
the Internet.

(& Relation: Self-organization is the mechanism; emergence is the outcome.

Emergence Self-Organization
(Global Behavior) - - (Local Process)
Properties: Properties:

* Novelty * Decentralization
* Non-linearity « Adaptivity
* Global coherence * Robustness
v

Prepared by M.Nandini,
Assistant professor AIDS.

Properties of Emergence

Al S e

Novelty — Global patterns are not directly coded into any agent.

Non-linearity — Small local changes can cause disproportionate global effects.
Global coherence — System behavior looks coordinated at the macro level.
Unpredictability — The exact emergent result is hard to forecast.
Irreducibility — Cannot be fully explained by just looking at individual agents.

Properties of Self-Organization

k=

Decentralization — No single point of control; decisions are distributed.
Adaptivity — System can adjust to changes in environment or agent behavior.
Robustness — Resistant to failure of individual agents.

Scalability — Functions well even when number of agents increases.

Feedback mechanisms — Positive (reinforcing) and negative (stabilizing) loops
shape behavior.

Stochasticity — Randomness in interactions helps avoid rigidity and promotes
exploration.

WORKFLOW

1.

Agents Setup
o Multiple autonomous agents are defined.
o Each agent has local rules (simple behaviors, sensing, actions).

Local Interactions
o Agents interact with neighbors and the environment.
o Communication is local, not global.t

. Feedback Loops

o Positive feedback amplifies successful actions (e.g., pheromone trails in
ants).

o Negative feedback balances the system (e.g., pheromone evaporation).

o Randomness ensures diversity and exploration.t

Self-Organization (Process)
o Order arises spontaneously without central control.
o Agents adapt to changes and form patterns.t

. Emergence (Outcome)

o A global behavior/pattern appears (e.g., flocking, traffic flow, market
prices).

Prepared by M.Nandini,
Assistant professor AIDS.

o This behavior is novel, coherent, and irreducible to individual rules.
Applications / System Use

o The emergent behavior is applied in real-world tasks:
= Swarm robotics, traffic optimization, network routing, smart grids,
etc.

SimplifiedFlow:
Agents — Local Interactions — Feedback Loops — Self-Organization — Emergence
— Applications

Workflow of Emergence & Self-Organization in MAS

Agents Setup
Multiple autonomous agents
with simple local rules.

Local Interactions
Agents interact with neighbors
and environment locally.

1

Feedback Loops
Positive feedback (reinforcement)
Negative feedback (stability)
Stochasticity (exploration).

(™
Self-Organization
Spontaneous order emerges
without central control.

!

r 3
Emergence

Global behavior appears:
novel, coherent, irreducible.J
"

i

Applications
Swarm robotics, traffic systems,
networks, smart cities, markets.

-

Advantages
1. Resilience — The system continues working even if some agents fail.
2. Flexibility — Can dynamically adapt to changes in environment or tasks.
3. Scalability — More agents can be added without redesigning the whole system.
4. Efficiency — Local decision-making reduces need for global computation.
5. Creativity — Sometimes novel, efficient solutions emerge that designers didn’t

foresee.

Prepared by M.Nandini,
Assistant professor AIDS.

6. Low-cost coordination — No need for expensive centralized control systems.
Disadvantages

1. Unpredictability — Emergent outcomes may be undesirable (e.g., traffic jams).

2. Design complexity — Hard to design local rules that guarantee good global
outcomes.

3. Debugging issues — Difficult to trace system errors back to agent interactions.

4. Stability concerns — Risk of chaotic or unstable emergent behavior.

5. Performance variability — May work well in some conditions, poorly in others.

6. Resource overhead — Extra communication among agents may increase costs.

Applications

1. Swarm Robotics — Drones or ground robots self-organize to search, map, or
rescue.

2. Traffic Systems — Adaptive traffic lights and vehicle-to-vehicle coordination.

3. Wireless Sensor Networks — Self-organizing nodes for energy-efficient
communication.

4. Smart Grids / Smart Cities — Decentralized control of energy, water, and
transport.

5. Economics & Markets — Price formation, auction systems, decentralized
trading.

6. Computer Networks — Peer-to-peer systems, load balancing, routing protocols.

7. Biological & Social Simulations — Modeling ecosystems, disease spread, group
behavior.

8. Crowd Simulation — Pedestrian flow modeling in public spaces.

In summary:

Emergence is the result (unexpected global behavior).

Self-organization is the process (local interactions that create order).
Together, they make MAS powerful, scalable, and adaptive, but also hard to
predict and control.

Prepared by M.Nandini,
Assistant professor AIDS.

SWARM INTELLIGENCE AND DISTRIBUTED OPTIMIZATION IN MAS
Definition
Swarm Intelligence (SI)

e A form of artificial intelligence inspired by natural swarms (ants, bees, birds,
fish).

e Collective behavior emerges from simple agents following local rules.

e No central control — yet the swarm solves complex problems (e.g., food
foraging, path finding).

e In MAS, SI is used to achieve coordination, exploration, and problem-
solving.

Distributed Optimization (DO)

e A process where multiple agents cooperatively solve an optimization problem
without relying on a central controller.

o Each agent has local information and works to optimize its part while
exchanging information with neighbors.

e The system converges to a globally optimal or near-optimal solution.

Swarm Intelligence & Distributed Optimization in MAS

Swarm Intelligence Distributed Optimization
(Nature-inspired collective behavior) (Cooperative problem solving)

| |

— Applications:
Applications: « Sensor Networks
« Ant Colony Optimization « Smart Grids
« Particle Swarm Optimization « Traffic Control
+ Swarm Robotics « Machine Learning

Prepared by M.Nandini,
Assistant professor AIDS.

WORKING:

problem Definition

« Define the global objective (e.g., minimize energy usage, maximize coverage,
optimize routing).

o Identify constraints (communication limits, agent capabilities, environment
dynamics).

o Determine whether agents are cooperative, competitive, or mixed

2. Agent Design

« Capabilities: sensing, processing, communication, movement.
o Knowledge: local view vs. shared global info.
o Behavior rules: bio-inspired (swarm) or mathematical (optimization).

3. Swarm Intelligence Layer

o Select a Swarm-inspired algorithm:

o Ant Colony Optimization (path finding, routing).

o Particle Swarm Optimization (continuous optimization).

o Atrtificial Bee Colony, Firefly, or Boids model (exploration, coverage).
o Implement local interaction rules:

o Pheromone deposition/evaporation.

o Velocity update in PSO.

o Neighbor influence (consensus).

4. Distributed Optimization Layer

e Choose a distributed optimization framework:
o Consensus-based: average consensus, distributed gradient descent.
o Game-theoretic: Nash equilibrium, cooperative bargaining.

o Distributed metaheuristics: parallel ACO/PSO with agent-based
execution.

o Ensure local decision-making contributes to global convergence.
5. Communication & Coordination

e Define communication protocol (direct neighbor-to-neighbor or broadcast).
o Handle limited bandwidth / latency / failures.
o Apply asynchronous or event-triggered updates to reduce overhead.

Prepared by M.Nandini,
Assistant professor AIDS.

6. Execution & Adaptation

o Agents run local computations (fitness evaluation, pheromone updates, gradient
steps).

o Agents share partial results with neighbors.

o System adapts dynamically to environment changes (failures, new agents,
changing objectives).

7. Convergence & Termination

o Define stopping criteria:
o Global convergence (agents’ states stabilize).
o Maximum iterations / time budget.
o Satisfactory near-optimal solution reached.

8. Evaluation Metrics

« Performance: speed of convergence, optimality gap.

o Scalability: how performance changes with more agents.

« Robustness: fault tolerance, adaptability to dynamic environments.
o Resource usage: energy, communication cost.

9. Applications & Deployment

o Map the designed workflow to real-world domains:
o Robotics swarms (UAV/UGV coordination).
o Smart grids (distributed energy optimization).
o Traffic control (adaptive signals, vehicle routing).
o Sensor networks (coverage, data aggregation).

Simplified View
Problem — Agent Modeling — Swarm Rules — Distributed Optimization —
Communication — Execution — Convergence — Evaluation — Application

ADVANTAGES
Swarm Intelligence

« Robust against failure of individual agents.

o Naturally adaptive and self-organizing.

e Suitable for dynamic and unknown environments.
o Simple agents — low implementation cost.

Prepared by M.Nandini,
Assistant professor AIDS.

Distributed Optimization

e No need for a powerful central controller.

e Can handle large-scale problems efficiently.
o Resilient to communication delays/failures.

o Parallelism reduces solution time.

DISADVANTAGES
Swarm Intelligence

o Behavior can be unpredictable.

« Difficult to control or guarantee optimal solutions.

« Risk of premature convergence to suboptimal solutions.

o Requires tuning of parameters (pheromone evaporation rate, learning factors,
etc.).

Distributed Optimization

o May converge slowly compared to centralized methods.

o Requires frequent communication among agents — overhead.
« Sensitive to network topology and agent connectivity.

« Ensuring global optimality is difficult.

Applications
Swarm Intelligence

1. Ant Colony Optimization (ACO) — Routing in networks, pathfinding,
scheduling.

2. Particle S warm Optimization (PSO) — Continuous optimization problems.

Bee Algorithms — Task allocation, clustering.

W

4. Swarm Robotics — Collective mapping, foraging, rescue missions.
Distributed Optimization

Sensor Networks — Energy-efficient routing and data aggregation.

Smart Grids — Load balancing, distributed energy management.

Traffic Management — Distributed control of traffic lights.

Machine Learning — Training models in a decentralized way (federated

Ll .

learning).
5. Telecommunication Networks — Distributed bandwidth allocation and routing.

Prepared by M.Nandini,
Assistant professor AIDS.

TRUST ,PRIVACY AND ETHICSIN MAS
1. Trust in MAS

« Definition: Confidence in the reliability, honesty, and capability of other agents.
« Importance: Agents often rely on others for cooperation, information, and task
execution in uncertain environments.
e Mechanisms:
o Reputation systems (feedback, ratings, recommendations).
o Direct interactions (personal history).
o Probabilistic/Fuzzy models (likelihood of trustworthiness).
« Applications:
o Choosing reliable partners in e-commerce agents.
o Detecting malicious nodes in sensor networks.
o Ensuring cooperation in robotic swarms.

Challenge: Malicious agents may deceive (appear trustworthy before misbehaving).
2. Privacy in MAS

« Definition: Protecting sensitive agent data (personal info, strategies, locations,
preferences) from unauthorized access.
« Why it Matters:
o Agents often share information — risk of leaks.
o In domains like healthcare, finance, or military, privacy is critical.
e Techniques:
o Encryption & secure communication.
o Differential privacy (share useful data without revealing individuals).
o Access control policies (limit who sees what).
o Privacy-preserving distributed optimization (e.g., federated learning
in MAS).
o Example: In a smart grid MAS, household energy data must remain private
while still contributing to global optimization.

Challenge: Balancing privacy vs. utility — too much privacy may reduce cooperation
efficiency.

3. Ethics in MAS

Prepared by M.Nandini,
Assistant professor AIDS.

o Definition: Ensuring agents’ actions align with human values, fairness, and
legal/social norms.
« Key Concerns:
o Fairness: No discrimination or bias in decision-making.
o Accountability: Who is responsible for harmful agent actions?
o Transparency: Agents should explain their decisions.
o Autonomy vs. Control: How much freedom agents should have in
critical domains (healthcare, finance, defense).
o Examples:
o A healthcare MAS must follow ethical rules about patient safety.
o A trading MAS must avoid manipulative or fraudulent behaviors.
o Autonomous robotic MAS in defense must comply with international
laws.

Challenge: Defining universal ethics — norms differ across cultures and contexts.

Trust, Privacy, and Ethics in MAS

Trust &
Privacy

Privacy
& Ethics

Fvunae ~la ~eve ramante amacranamuiarea tacana awviet_laaciirme

Interconnections B'laf’f"W']'ﬁfN'KﬂL:

Prepared by M.Nandini,
Assistant professor AIDS.

e Trust & Privacy:

o Trust grows when agents respect privacy (not misusing shared data).
e Trust & Ethics:

o Ethical behavior fosters trust among agents and with humans.
o Privacy & Ethics:

o Protecting privacy is itself an ethical requirement.

Summary

o Trust ensures reliable cooperation.

« Privacy protects sensitive information.

o Ethics ensures MAS aligns with human values and fairness.

o Together, they form the foundation for secure, fair, and socially acceptable

MAS.
Key Differences
Aspect Trust Privacy Ethics
Whatitis Confidence inreliability Protection of Alignment with
about & honesty sensitive data fairness & norms
Main “Is this
(13 f)’) [13 f))’
Question Can I rely on them? Is my data safe? right/fair/legal?”
Il:zlclll::ry Behavior of agents Information security Moral & social values
Deceptive/malicious Balance between Different cultures,
Challenge . e
agents sharing & hiding info laws, values

REAL-TIME EMBEDDED MAS APPLICATIONS
1. Autonomous Vehicles (Cars, Drones, UAVs)

o How MAS is used:
o Each vehicle acts as an agent, coordinating with others for traffic safety.
o Embedded systems handle sensor fusion (LiDAR, cameras, radar) in
real-time.
o Applications:
o Collision avoidance.
o Cooperative lane changing and platooning.
o Drone swarm coordination for delivery or search-and-rescue.

Prepared by M.Nandini,
Assistant professor AIDS.

2. Smart Grids & Energy Management

« How MAS is used:

o Each household, battery, or generator is an agent with embedded

controllers.

o Agents negotiate energy usage in real-time to balance supply & demand.
o Applications:

o Dynamic pricing & load balancing.

o Renewable energy integration (solar, wind).

o Fault detection & recovery in microgrids.

3. Industrial Automation (Industry 4.0)

« How MAS is used:
o Embedded agents on machines, robots, and sensors.
o Real-time decision-making for scheduling, production lines, and fault-
tolerance.
« Applications:
o Cooperative robots (cobots) on assembly lines.
o Predictive maintenance (agents detect anomalies early).
o Distributed factory optimization.

4. Healthcare Systems

o« How MAS is used:
o Embedded medical devices (e.g., wearable monitors, infusion pumps,
surgical robots) act as agents.
o Agents cooperate for patient safety, real-time monitoring, and decision
support.
o Applications:
o Coordinated patient monitoring in ICUs.
o Remote telemedicine with real-time alerts.
o Robotic surgery assistance (multi-agent robotic arms).

Prepared by M.Nandini,
Assistant professor AIDS.

f

Smart Grids
& Energy

é

Autonomous

Vehicles

Real-Time
Embedded

@

Healthcare
Systems

9

Defense
& Security

Environmental
Monitoring

5. Defense & Security

e How MAS is used:
Swarm robots or UAV's with embedded processors.

O
Real-time coordination in dynamic and adversarial environments.

o

o Applications:
o Surveillance with drone swarms.

o Cooperative target tracking.

o Disaster response and battlefield logistics.

6. Environmental Monitoring

o« How MAS is used:
Sensor nodes with embedded processors form a distributed MAS.

Real-time communication for detecting events (fire, pollution,

earthquakes).

o Applications:
o Wildlife tracking.
o Smart agriculture (soil & crop monitoring).

o Forest fire detection and response.

o

o

Prepared by M.Nandini,
Assistant professor AIDS.

Real-Time Embedded Systems sam ® .
Practical Applications

Wearables and implantable devices,
diagnostic tools and equipment (MRl and CT
+ Healthcare g quip (
scanners, ultrasound scans), laboratory
analytical applications

A Transportation GPS trac.kers and control systems, transport
telematics

Industrial robots, monitoring sensors,
predictive analytics

® .
h Manufacturing

Smart lighting, heating and air conditioning,
@)} Smart homes smart parking, communication systems,
and cities digital signage with multimedia content,

surveillance systems

7)Smart Homes & IoT

« Definition: Each device (thermostat, light, security camera, appliance) acts as
an agent with embedded processors.
« Applications:
o Energy-efficient heating/cooling.
o Security monitoring (real-time intrusion detection).
o Coordinated device scheduling (washing machine runs when solar
power is available).

8. Space Exploration

o Definition: Swarms of rovers, satellites, or drones collaborate as agents with
onboard embedded processors.
o Applications:
o Mars rover swarms exploring terrain.

Prepared by M.Nandini,
Assistant professor AIDS.

o Distributed satellite constellations (e.g., Starlink).
o Autonomous space debris monitoring.

9. Disaster Management

o Definition: MAS of drones, robots, and sensors embedded with real-time
communication.
o Applications:
o Search and rescue in collapsed buildings.
o Firefighting with robotic swarms.
o Coordinated evacuation guidance systems.

10. Intelligent Transportation Systems (ITS)

o Definition: Embedded MAS in vehicles, signals, and roadside sensors.
« Applications:
o Real-time traffic light optimization.
o Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication.

o Smart parking guidance.

11. Agriculture (Smart Farming)

o Definition: Drones, soil sensors, and irrigation controllers as agents.
« Applications:

o Precision irrigation (water only where needed).

o Pest/disease detection using UAV swarms.

o Real-time crop monitoring.

12. Financial Trading Systems

o Definition: Trading bots as agents on real-time embedded financial platforms.
o Applications:

o Automated high-frequency trading.

o Fraud detection in real-time.

o Cooperative financial risk management.

MAS IN SMART GRIDS

Multi-agent systems (MAS) use autonomous, intelligent software or hardware agents
that communicate and cooperate to manage and control smart grid operations. This
decentralized approach enables real-time, flexible decision-making to enhance grid
reliability, optimize energy use, and balance supply and demand through functions

Prepared by M.Nandini,
Assistant professor AIDS.

like demand-side management, fault detection and restoration, and energy market
operations.

£ MAS in Smart Grids

1. What is a Smart Grid?

A smart grid is an intelligent electricity network that uses sensors, communication,
and automation to balance generation, distribution, and consumption in real-time.

MAS fits perfectly because each component (generator, consumer, storage,
controller) can act as an agent with autonomy and communication abilities.

2. Roles of Agents in Smart Grid

1. Generation Agents
o Represent power plants (renewable + traditional).
o Decide when and how much energy to produce.
o Coordinate with storage and distribution.
2. Consumer/Load Agents
o Represent households, industries, EVs, appliances.
o Optimize usage based on dynamic pricing.
o Shift loads to reduce peak demand.
3. Storage Agents
o Represent batteries, EVs, pumped hydro, etc.
o Decide when to store excess power (e.g., from solar/wind) and when to
release it.
4. Market Agents
o Handle real-time energy pricing and trading.
o Enable consumers to sell excess power back to the grid (prosumer
model).
5. Monitoring & Control Agents
o Embedded in sensors and substations.
o Detect faults, predict failures, reroute power.

Prepared by M.Nandini,
Assistant professor AIDS.

------- Information Flow
Microgrid

Control Center Energy Flow

Wind Turbines

Smart-home

1111

. Energy Storage System

Smart-building

L

Photovoltaic Panels

Smart-factory

I,
I

Main Grid

How Multi-Agent Systems Work in Smart Grids

e Autonomous Agents:

Each agent, such as a software program for a smart appliance or a hardware robot,
can perceive its environment, make decisions, and take actions to achieve its
objectives.

e« Communication and Cooperation:

Agents interact with each other, exchanging information and coordinating their
actions to solve complex problems that are too difficult for a single agent to handle.

o Distributed Control:
MAS offers a decentralized control architecture, which is a good fit for the complex
and distributed nature of modern smart grids.

Key Applications in Smart Grids
« Demand-Side Management (DSM):

Agents can manage energy consumption in homes and businesses by dynamically
adjusting demand based on market prices, shifting loads from peak to off-peak hours
to reduce overall costs and smooth the load curve.

o Fault Detection and Restoration:

Prepared by M.Nandini,
Assistant professor AIDS.

MAS enables rapid detection, isolation, and restoration of power during outages by
coordinating agents to locate faults and implement backup protection, improving

grid reliability.
o Energy Market Operations:

Agents can participate in an energy market, with seller agents providing energy from
various sources (like renewable energy and storage) and buyer agents consuming

energy, enabling efficient resource allocation.

o« Home Energy Management:

In smart homes, agents (e.g., smart appliances) can communicate and negotiate with
energy sources to optimize energy usage, balance consumer comfort, and reduce

electricity bills.

fes

Generation
Agents

‘ : | N
~ Consumer/
oad Agenty

MAS in
Smart Grid

Storage
Agents

Monitoring
Control

A

Applications and Benefits

e Energy Management:

Agents can optimize energy production and consumption, manage energy storage,

and integrate renewable energy sources like solar and wind power to improve

overall grid efficiency and flexibility.
o Demand-Side Management (DSM):

https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=Energy%2BManagement&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQIJhAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3
https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=Demand-Side%2BManagement&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQIKRAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3

Prepared by M.Nandini,
Assistant professor AIDS.

MAS facilitate demand response by enabling controllable devices to dynamically
adjust their energy usage in response to market changes or grid conditions,

reducing peak demand and operational costs.
Fault Diagnosis and Restoration:

Agents can quickly detect, locate, and isolate faults in the power distribution
system, enabling autonomous and rapid power restoration to improve grid
reliability and stability.

Resource Allocation and Scheduling:

MAS can manage resources efficiently, such as scheduling energy production and
allocating energy in ways that meet demand and minimize costs.

Integration of Distributed Resources:
The distributed nature of MAS is ideal for integrating distributed generation (DG)
and managing the complex dynamics of hybrid microgrids.

Key Characteristics Enabling Smart Grid Applications

Autonomy: Agents can act independently to achieve their goals.
Intelligence: Agents are equipped with Al to make informed decisions.

Communication: Agents exchange information with each other and with other
system components.

Coordination: Agents can coordinate their actions to solve problems
collaboratively.

MAS IN IOT:

Multi-agent systems (MAS) enhance the Internet of Things (IoT) by using multiple
intelligent, autonomous agents to collaborate and achieve collective goals in dynamic

[oT environments. These systems bring distributed intelligence, autonomy, and

specialized communication to IoT devices and networks, enabling complex problem-

solving, real-time monitoring, automated decision-making, and collaborative defense
against threats like DDoS attacks. Key benefits include increased scalability, improved

efficiency through task division, and advanced context-awareness for smart applications

across various domains.

https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=demand%2Bresponse&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQINxAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3
https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifPQqrtNrlPI1kPFT-LLKNEEiJaiRA%3A1756081838412&q=DDoS%2Battacks&sa=X&ved=2ahUKEwiw25bR2qSPAxUszDgGHf4TFF8QxccNegQIAxAB&mstk=AUtExfBlhkM_vawxGBCaJYGcBv0UjnfNdHD85vQ1QQBEP27aH1Xq097eiP0ecqG-HcVvEOF6Zl2245OM8OHCaQXOjX91BRgwa748CtFEoFIsrxiynZ2JOZjWs6RV776eGdO0B1bh9PK6jwK3KOrLvEJmAQL-yZgkTuQ657X0bniK9fQUFG0U5ezfXfv_h7lLcjGadYPubmCyjlhKRkx3rTW3fXJ_obGc6cb5RTkICgoQviTFZ3SwIBqDr4-YVq4bYiS0ROPNqq9Jpt6bxJAZoAUJMWQhO-dXrC1tTZRhD4rAXdK1tQ&csui=3

Prepared by M.Nandini,
Assistant professor AIDS.

MAS in loT

—t
User/Interface Agents
(|

' ik
- (<)
Smart Homes Smart Cities Healthcare lot
|
" 1 5

c=H oo I

Gateway/Edge Service/s/Cloud Industrial loT

Agents Agents (lloT)
Device Sensor Actuator Agriculturee
Agents
Why MAS for IoT?

[oT consists of billions of heterogeneous devices (sensors, actuators, smart appliances,
wearables, vehicles, etc.).
Instead of centralized control, agents (autonomous software entities) are embedded in
these devices to:

o Make local decisions,
o Cooperate with other agents,
e Adapt dynamically to changes in the environment.

How Multi-Agent Systems Work with IoT

1. 1. Autonomous Agents:

In an IoT MAS, devices (like sensors, actuators, and control systems) are
represented by autonomous software agents. These agents are capable of making
decisions, learning, and reacting to their environment.

2. 2. Collaboration and Communication:

Prepared by M.Nandini,
Assistant professor AIDS.

Agents communicate with each other to share information and coordinate actions
to accomplish complex tasks that would be too difficult for a single agent or device
to handle.

3. 3. Decentralized Environment:
MAS operates in a decentralized environment where agents interact without a
single, central control point, making them well-suited for the distributed nature of
[oT networks.

4. 4. Specialized Roles:
Agents can have specific roles or expertise, such as user agents for preference
prediction or space agents to align device capabilities with user needs.

Key Applications in IoT

Security and Defense:

MAS can monitor IoT networks and collaboratively detect and prevent attacks,
like Distributed Denial of Service (DDoS), offering more robust defense than
traditional, single-point systems.

Smart Environments;

In smart homes or buildings, agents can coordinate various devices to optimize
energy consumption, manage lighting, and provide personalized user
experiences.

Smart Cities:

MAS can be used for intelligent traffic management, optimizing resource
allocation, and improving urban services.

Smart Agriculture:

Agents can monitor crop health, soil moisture, and livestock, leading to more
efficient resource use and higher yields.

E-Health:
Agents can facilitate remote patient monitoring and personalized healthcare by
analyzing data from wearable devices and other sensors.

Benefits of Integrating MAS with IoT

Scalability:

The distributed nature of MAS allows for easier integration of new devices and
services, enhancing the scalability of [oT systems.

Efficiency and Robustness:

Prepared by M.Nandini,
Assistant professor AIDS.

Dividing tasks among specialized agents makes complex operations more
manageable and improves the overall efficiency and resilience of the system.

« Autonomy and Adaptability:

Agents can make decisions autonomously and learn from their experiences,
allowing IoT systems to adapt dynamically to changing conditions.

« Complexity Management:
MAS provides an effective framework for controlling highly dynamic and
complex systems that are characteristic of modern IoT deployments.

Applications of MAS in IoT

1. Smart Homes ft
o Agents in lights, thermostats, appliances coordinate for energy efficiency.
o Example: AC agent negotiates with solar panel agent to use renewable
power.

o Traffic light agents + vehicle agents reduce congestion.
o Waste-bin agents signal collection trucks when full.
3. Healthcare IoT &
o Wearable health sensors as agents send real-time patient data.
o Hospital agents coordinate emergency response.
4. Industrial IoT (IloT)
o Machines & robots as agents self-organize for predictive maintenance.
o Supply-chain agents optimize logistics.
5. Agriculture IoT ©
o Soil & weather sensor agents optimize irrigation.
o Drone agents monitor crops & pests.

MAS IN TRAFFIC SYSTEM:

Multi-agent systems (MAS) enhance traffic systems by creating networks of
autonomous agents (e.g., traffic lights, vehicles, infrastructure) that communicate and
cooperate to optimize traffic flow, reduce congestion, and improve overall
mobility. These systems allow for distributed control, real-time data analysis, and the
simulation of "what-if" scenarios, leading to more efficient, responsive, and intelligent
urban transportation networks, especially for dynamic issues like emergency vehicle
priority and congestion management.

Prepared by M.Nandini,
Assistant professor AIDS.

Smart City
Control
Room

How Multi-Agent Systems Work in Traffic

Autonomous Agents:

Individual components of the traffic system, like traffic lights at intersections,
buses, or even specific road segments, are represented as independent agents.

Real-Time Data and Communication:

Each agent collects and processes data in real-time from its environment and
communicates with other agents to share information and coordinate actions.

Distributed Decision-Making:

Instead of a single central control system, agents make decisions locally and
cooperatively, allowing for more adaptive and responsive management of
complex traffic situations.

Intelligent Control:

Agents use various Al techniques, such as machine learning and negotiation, to
make decisions that optimize their immediate tasks and contribute to global
system objectives.

Prepared by M.Nandini,
Assistant professor AIDS.

et -
— - -

y P p—=—"}
@ 4 ! | \
[Actuator \ \} —>] <¢/> U
[L
S ffic ligh Cloud management Control
MACL AL AR LS platform applications
-~}
.
10 mph
Problem
detection

AN

Road-surface

Sensors

Benefits for Traffic Systems
« Reduced Congestion:

By coordinating traffic signals, rerouting vehicles, and managing flow at
intersections, MAS can significantly reduce traffic jams.

« Improved Efficiency:

Systems can prioritize public transport, optimize travel times, and improve the
regularity of bus services.

« Enhanced Safety:

MAS can manage traffic during emergencies or accidents, ensuring that
emergency vehicles have priority access to clear roads.

« Real-World Simulation:
Urban planners can simulate the impact of new policies or infrastructure changes
before implementation, avoiding costly real-world trials.

o Scalability and Flexibility:
MAS can adapt to various urban scales and complexities, from managing a single
intersection to an entire city's transportation network.

Examples of Application

o Dynamic Traffic Signal Control:

Prepared by M.Nandini,
Assistant professor AIDS.

Agents adjust traffic light timings in real-time based on local traffic conditions
to improve flow through intersections.

o Intelligent Route Guidance:

Agents provide drivers with real-time route alternatives to avoid congested areas,
balancing traffic load across the network.

e Public Transportation Management:

Agents ensure that buses and trams run on time, coordinating their passage
through intersections to maintain schedule reliability.

« Emergency Response Systems:
Agents grant immediate priority to emergency vehicles, creating clear pathways
by adjusting signals and managing other traffic.

Case Study: Amazon Robotics

A "case study" in the context of MAS Holdings refers to an in-depth analysis of a
specific organizational challenge, phenomenon, or situation within that company to
provide insights, develop strategies, or train individuals. For example, a MAS case
study might examine their ethical labor practices program to understand its
sustainability and recommend strategies to connect it to operational benefits.

Amazon Robotics as MAS

N

Robot Agents Central Human Agents
Control
=N\ B
o

Sensor Agents

Robot Agents

Prepared by M.Nandini,
Assistant professor AIDS.

1. Introduction

Amazon Robotics (acquired from Kiva Systems in 2012) revolutionized e-commerce
logistics by deploying autonomous mobile robots (AMRs) in fulfillment centers.
These robots form a Multi-Agent System (MAS), where hundreds or thousands of
robots coordinate tasks like item picking, transport, and sorting.

MAS in Amazon Robotics

Each robot 1s an agent that:
-->Senses the environment (QR codes on the floor, cameras, sensors).
- Acts autonomously (moves shelves, delivers items to humans/packing --
—>stations).

Communicates with a central control system and sometimes with other robots.

MAS helps achieve:
—->Task allocation — robots decide who picks which shelf.
—>Path planning — avoid collisions and congestion.

- Coordination — multiple robots work in parallel for efficiency.

Prepared by M.Nandini,
Assistant professor AIDS.

Here’s the Amazon Robotics MAS Workflow explained step by step:

1. Order Received
o Customer places an order online.
o Central MAS (Central Control Agent) analyzes the order.
2. Task Allocation
o MAS assigns a Robot Agent to fetch the required item.
o Decision is based on proximity, robot availability, and workload.
3. Navigation
o Robot uses Sensor Agents (QR codes on the floor, cameras, LiDAR) to
navigate safely.
o Robots avoid collisions and optimize routes.
4. Delivery
o Robot lifts and carries the shelf (storage pod) containing the item.
o Shelfis delivered to the Human Agent at the packing station.
5. Return
o After item pickup, robot returns the shelf to an optimal storage location.
o MAS ensures efficient placement for future retrieval.

Advantages of Amazon Robotics (Autonomous Robots in Warehouses)

1. Efficiency & Speed
o Robots quickly bring storage pods to human packers, reducing walking
time.
o Faster order fulfillment — improves customer satisfaction.
2. Cost Reduction
o Reduces labor costs for repetitive tasks.
o Optimizes warehouse space (shelves can be closer since humans don’t
walk between them).
3. 24/7 Operation
o Robots can work continuously without fatigue.
o Handles peak seasons (like Black Friday, Prime Day) efficiently.
4. Safety Improvements
o Minimizes human exposure to heavy lifting and dangerous warehouse
environments.
5. Scalability
o Easy to add more robots as order volume increases.

Disadvantages of Amazon Robotics

Prepared by M.Nandini,
Assistant professor AIDS.

1. High Initial Investment

o Installing robots, sensors, and Al systems costs millions.
2. Job Displacement

o Reduces demand for warehouse workers in picking and transporting.
3. System Failures

o A software bug or robot malfunction can halt operations.
4. Maintenance & Upgrades

o Requires constant servicing, software updates, and skilled technicians.
5. Limited Flexibility

o Robots excel at repetitive tasks but struggle with unpredictable or delicate

items.

Case Studies of Amazon Robotics
1. Kiva Systems Acquisition (2012)

o Amazon bought Kiva Systems (renamed Amazon Robotics) for $775 million.
« Robots replaced human pickers in moving shelves — orders processed faster.
o Impact: Boosted efficiency, helped Amazon dominate e-commerce logistics.

2. Prime Day & Holiday Season

o During high-demand events, robots work 24/7 moving shelves to packing
stations.

o Robots reduce delivery time — supports Amazon’s 1-day/2-day delivery
promise.

o Impact: Scalability during global sales peaks.

3. Amazon Fulfillment Centers

e Over 200,000+ robots deployed in warehouses worldwide.

o Collaborative system: robots move shelves — humans pack — AI tracks
inventory.

o Impact: Faster delivery, reduced costs, improved customer satisfaction.

Prepared by M.Nandini,
Assistant professor AIDS.

CASE STUDY:AUTONOMOS TRADING SYSTEM

Introduction

Autonomous Trading Systems (ATS) are Al-driven platforms that execute buy/sell

orders in financial markets without human intervention. They use multi-agent systems

(MAS), machine learning models, and algorithmic strategies to analyze market

trends, predict price movements, and manage portfolios in real-time.

Introduction

Autonomous Trading Systems (ATS) are Al-driven platforms that execute buy/sell
orders in financial markets without human intervention. They use multi-agent systems

(MAS), machine learning models, and algorithmic strategies to analyze market

trends, predict price movements, and manage portfolios in real-time.

BENEFITS: Juvercrnereed
4 CHALLENGES: J.....coovunennd
AUTOMATED |/
TRADING /-
DATA USED:
; / RISK
-“‘ MANAGEMENT /’
How It Works (Workflow)

ess 2 future profits - Backtesting is not a

1. Market Data Collection — Agents gather live data from stock exchanges,

news feeds, and social media.

2. Data Analysis — AI/ML models detect trends, patterns, and anomalies.

Prepared by M.Nandini,
Assistant professor AIDS.

3. Decision-Making — Autonomous agents decide whether to buy, sell, or hold
assets.

4. Order Execution — System places trades automatically via API with
stock/crypto exchanges.

5. Risk Management — Portfolio-balancing agents monitor risk exposure and
adjust strategies.

6. Learning & Adaptation — The system continuously improves strategies
based on feedback.

Autonomous Trading System Workflow

(Market Data Collection)

|

(Data Analysis (AlI/ML)]

|

(Decision Making (Buy/Sell/Hold))

|

(Order Execution (API))

|

(Risk Management]

|

(Learning & Adaptation)

Advantages of Autonomous Trading Systems

1. Speed & Efficiency
o Executes trades in microseconds, far faster than humans.
o Processes large datasets in real-time.
2. Emotion-Free Decisions
o Eliminates human bias (fear, greed, overconfidence).
o Ensures discipline by sticking to algorithms.
3. 24/7 Market Monitoring
o Can operate continuously across global markets.
o Takes advantage of opportunities even when humans are offline.
4. Backtesting & Optimization
o Algorithms can be tested on historical data before deployment.
o Helps refine strategies for better performance.

Prepared by M.Nandini,
Assistant professor AIDS.

5.

o

Scalability
Can handle thousands of trades and multiple strategies simultaneously.

Disadvantages of Autonomous Trading Systems

l.

Case

Over-Optimization Risk
o Algorithms may perform well in backtests but fail in real markets.
System Failures & Technical Risks
o Connectivity issues, software bugs, or hardware crashes can cause huge
losses.

. Lack of Human Judgment

o Struggles in unprecedented market events (e.g., black swan events,
pandemics).
High Initial Setup Cost
o Requires advanced infrastructure, data feeds, and skilled developers.

. Market Impact

o High-frequency trading (HFT) can cause market instability (flash
crashes).

Studies of Autonomous Trading Systems

1. Knight Capital (2012 Flash Crash)

What happened: A software glitch in Knight Capital’s automated trading
system placed millions of erroneous trades within 45 minutes.

Impact: Loss of $440 million in a single day, nearly bankrupting the firm.
Lesson: Risk management and system safeguards are critical.

2. Renaissance Technologies (Medallion Fund)

What happened: Uses advanced autonomous trading algorithms based on
statistical arbitrage and machine learning.

Impact: Consistently achieved 30—40% annual returns (after fees).

Lesson: Properly designed ATS can massively outperform human traders.

Prepared by M.Nandini,
Assistant professor AIDS.

3. Flash Crash (May 6, 2010)

« What happened: Automated trading systems contributed to a sudden 1,000-
point drop in the Dow Jones within minutes, followed by rapid recovery.

« Impact: Showed how ATS can amplify volatility.

o Lesson: Need for circuit breakers and regulatory oversight.

4. Two Sigma Investments

o What happened: Uses Al + machine learning for fully autonomous trading
decisions.

o Impact: Managing $60+ billion with data-driven autonomous strategies.

o Lesson: ATS can scale massively if combined with robust risk management.

