
1

Prepared by M.Nandini,

Assistant professor AIDS.

UNIT-1

INTRODUCTION TO INTELLIGENT AGENTS

Definition and Characteristics of Agents. Types of Agents: Reactive, Deliberative,

Hybrid, Learning.Agent Architectures: Subsumption, BDI, Layered.

Environments: Deterministic/Stochastic, Episodic/Sequential, Rationality and

Autonomy, Simple Agent Programming Models.

DEFINITION AND CHARACTERISTICS OF AGENTS

WHAT IS AN AGENT?

Definition:

An agent is anything that can perceive its environment through its sensors and act upon

that environment through its effectors. In the context of Artificial Intelligence, an agent

is a system that can perceive its surroundings, make decisions, and take actions to

achieve its specific goals.

Characteristics of Agents:

• Autonomy:

The ability to operate independently and make decisions without constant human

oversight.

• Reactivity:

The capability to respond to environmental stimuli and changes.

• Proactivity:

The ability to exhibit goal-directed behavior, anticipate future states, and plan

actions to achieve long-term objectives.

• Social Ability:

For multi-agent systems, this involves the capacity to interact, coordinate, or

compete with other agents to achieve goals.

• Rationality:

An agent is rational if it chooses actions that maximize its expected outcome or

performance.

• Adaptability/Learning:

Some agents can learn from past experiences and refine their behavior to improve

performance over time.

2

Prepared by M.Nandini,

Assistant professor AIDS.

Structure of an Agent:

An AI agent has a fundamental structure composed of the following components:

1. Sensors:

These are the agent's perception devices that gather information from the

environment. For a human, these could be eyes, ears, or skin, while for a robotic agent,

they might be cameras or infrared sensors.

2. Actuators (Effectors):

These are the mechanisms that enable the agent to act on its environment. For a robot,

these could be motors or other parts that move the robot.

3. Agent Program:

This is the "brain" of the agent, an internal process that takes the percept sequence

(perceptions over time) and determines the agent's next action. It's the function that

maps perceptions to actions.

3

Prepared by M.Nandini,

Assistant professor AIDS.

Diagram of an Agent:

The diagram illustrates the agent's operational flow:

• The Environment is the external world in which the agent exists.

• Percept’s: are the information gathered by the agent's Sensors from the

environment.

• The Agent Program processes these percepts, using its internal logic and

knowledge, to decide on an action.

• The Actuators then execute the chosen action in the Environment.

• This process is continuous, with the agent continuously perceiving and acting,

ideally in a rational and autonomous manner.

Advantages of Single Agents

1. Simplicity

o Easier to design, implement, and maintain compared to multi-agent

systems.

o No need for coordination or negotiation protocols.

2. Low Resource Requirement

o Requires fewer computational resources (no inter-agent communication

overhead).

3. Efficiency for Simple Tasks

o Works very well when the environment is predictable and tasks are

independent.

o Example: a thermostat agent controlling room temperature.

4

Prepared by M.Nandini,

Assistant professor AIDS.

4. Faster Decision-Making

o Decisions are made locally without waiting for other agents.

5. Cost-Effective

o Lower development and deployment costs compared to MAS.

6. Easier Deployment

o No complex distributed architecture; can run on a single device.

Disadvantages of Single Agents

1. Limited Scalability

o Not suitable for very large, complex, or distributed problems.

o Example: traffic management across a city cannot be solved by a single

agent.

2. No Collaboration

o Cannot share tasks or coordinate with other agents → may fail in

dynamic environments that need teamwork.

3. Brittleness

o If the single agent fails, the entire system fails (no redundancy).

4. Limited Adaptability

o Cannot adapt well to highly uncertain or changing environments.

5. Restricted Problem-Solving

o Only works effectively for local tasks, not global or cooperative

problems.

6. Performance Bottleneck

o All decision-making and actions depend on one entity, which can

become overloaded.

APPLICATIONS OF SINGLE AGENTS:

1. Personal Assistants

• Examples: Siri, Alexa, Google Assistant.

• Perform tasks like answering questions, setting reminders, controlling devices.

2. Recommendation Systems

• Single agent analyzes user behavior → recommends products, music, or

movies.

• Example: Netflix recommender agent, Amazon shopping suggestions.

5

Prepared by M.Nandini,

Assistant professor AIDS.

3. Game Playing Agents

• Autonomous players in video games (NPCs, chess-playing AI).

• Example: AlphaZero (single-agent reinforcement learning).

4. Robotics (Standalone Robots)

• A robot working alone with sensors/actuators.

• Examples: vacuum cleaning robots (Roomba), warehouse pick-up robots.

5. Information Retrieval Agents

• Single agent searches, filters, and delivers relevant data from the web.

• Example: a web crawler or news aggregator bot.

6. Monitoring & Control Systems

• Single agent monitors a system and takes corrective actions.

• Examples:

o Temperature controller in an AC.

o Intrusion detection agent in cybersecurity.

7. Finance & Trading

• A trading agent that makes buy/sell decisions in stock or crypto markets.

• Works standalone, optimizing based on its strategy.

8. Healthcare Applications

• Diagnostic agent that suggests possible diseases from symptoms.

• Virtual nurse agents monitoring patient vitals.

9. Customer Support Chatbots

• A chatbot agent answering user queries on a website.

• Works independently to resolve common issues.

10. Simulation & Training

• A single agent simulating an entity in training environments.

• Example: a pilot training simulator agent.

6

Prepared by M.Nandini,

Assistant professor AIDS.

Types of Agents:

1. REACTIVE AGENTS:

Definition:

7

Prepared by M.Nandini,

Assistant professor AIDS.

A Reactive Agent is an intelligent system that responds directly to environmental

stimuli without relying on internal models or extensive reasoning about the

future. It follows a sense-act paradigm, where actions are determined by current

perceptions rather than past history or planning.

Characteristics of Reactive Agents:

1. Stimulus-Response Behavior

o They directly map perceptions (inputs) to actions (outputs).

o Example: “If obstacle detected → turn left.”

2. No Internal Memory / State

o They don’t keep a history of past actions or world models.

o Decisions are made based only on the current situation.

3. No Deliberation / Planning

o They do not perform reasoning, prediction, or long-term goal planning.

o Actions are immediate and local.

4. Fast Response

o Because they don’t think or plan, they react quickly → highly efficient

in dynamic environments.

5. Simplicity

o Easy to implement using simple rules (rule-based systems, finite state

machines).

6. Robustness in Dynamic Environments

o Can adapt instantly to changes, since they only care about current input.

7. Limited Intelligence

o Cannot solve complex problems that require memory, prediction, or

cooperation.

8. Decentralization

o Often used in swarms or groups (e.g., ant colony, robotic swarm), where

simple agents collectively show intelligent behavior.

9. Emergent Behavior

o Even though each agent is simple, many reactive agents together can

show complex global patterns (self-organization).

Advantages:

1. Fast Response – Immediate reactions due to lack of complex reasoning.

2. Simplicity – Easy to design and implement.

8

Prepared by M.Nandini,

Assistant professor AIDS.

3. Low Computational Cost – No need for planning or storing large state

information.

4. Robustness – Performs reliably in dynamic environments.

Disadvantages:

1. No Learning or Planning – Cannot adapt beyond predefined rules.

2. Short-Sighted – Only considers current inputs, ignoring future

consequences.

3. Limited Problem-Solving Ability – Struggles with complex tasks requiring

memory or long-term strategy.

4. Poor Handling of Unforeseen Situations – Ineffective when encountering

unknown scenarios.

Applications

• Robotics – Autonomous vacuum cleaners (e.g., Roomba) that avoid

obstacles.

• Video Games – Non-Player Characters (NPCs) that respond to player actions

in real-time.

• Industrial Automation – Assembly line robots reacting to sensor input.

• Traffic Systems – Reactive agents for signal control responding to vehicle

flow.

• Surveillance Systems – Security systems that trigger alarms when motion is

detected.

DELIBERATIVE AGENTS:

Definition:

A Deliberative Agent is an intelligent system that uses an internal model of the

world and reasoning processes to plan its actions. It operates on a sense–plan–

act paradigm, meaning it perceives the environment, reasons about possible

actions, and then executes the best one based on future outcomes.

Characteristics of Deliberative Agents

1. Internal Representation (World Model)

o Maintain a knowledge base / beliefs about the environment.

o Can represent goals, plans, and the current state of the world.

9

Prepared by M.Nandini,

Assistant professor AIDS.

2. Planning Capability

o Decide actions after reasoning about different alternatives.

o Use AI planning, search, or decision-making algorithms.

3. Goal-Oriented

o Not just reactive → they pursue long-term objectives.

o Example: “Plan route from home to office considering traffic.”

4. Memory & Learning

o Store past states, events, and experiences.

o Can adapt behavior based on history.

5. Slower Response

o Because of reasoning overhead, deliberative agents react slower than

reactive ones.

6. Complex Problem-Solving

o Can handle tasks that require coordination, foresight, or optimization.

7. Higher Computational Cost

o Require more CPU, memory, and complex algorithms compared to

reactive agents.

8. Symbolic Reasoning

o Often based on symbolic AI (logic, rules, decision trees).

o Example: BDI (Belief-Desire-Intention) architecture.

Advantages:

1. Goal-Oriented – Can plan to achieve long-term objectives.

2. Handles Complexity – Suitable for dynamic and uncertain environments.

3. Adaptable – Can modify plans based on new information.

4. Better Problem-Solving – Can reason through multiple possible actions.

Disadvantages:

1. Slower Response Time – Requires significant computation for planning.

2. Complex Implementation – Designing reasoning and planning algorithms

is harder.

3. High Resource Usage – Needs more memory and processing power.

4. May Fail Under Time Constraints – Not ideal for real-time decision-

making.

Applications:

10

Prepared by M.Nandini,

Assistant professor AIDS.

• Autonomous Vehicles – Planning optimal routes and avoiding obstacles.

10

Prepared by M.Nandini,

Assistant professor AIDS.

• Robotics – Robots performing complex tasks like warehouse management.

• Space Exploration – Mars rovers planning movements and scientific

experiments.

• Healthcare AI – Decision-making systems for diagnosis and treatment

planning.

• Smart Assistants – AI assistants scheduling meetings or planning tasks.

Hybrid Agents:

Definition:

A Hybrid Agent combines the features of Reactive and Deliberative Agents to achieve

both fast responses and goal-oriented planning. It uses multiple layers where reactive

behaviors handle immediate situations, while deliberative reasoning manages complex

decision-making and long-term planning.

Characteristics of Hybrid Agents

1. Layered Architecture

o Usually structured in layers:

▪ Reactive layer → quick stimulus–response.

▪ Deliberative layer → reasoning, planning, goal management.

▪ Sometimes a middle coordination layer manages conflicts.

2. Balanced Decision-Making

o Can act immediately when quick response is needed.

o Can plan strategically when time and resources allow.

10

Prepared by M.Nandini,

Assistant professor AIDS.

3. Flexibility

11

Prepared by M.Nandini,

Assistant professor AIDS.

o Works in both dynamic environments (reactive part handles changes)

and complex tasks (deliberative part does planning).

4. Emergent + Goal-Oriented Behavior

o Simple actions can emerge from reactive parts, while the deliberative

layer ensures long-term goals are achieved.

5. Increased Complexity

o More complex to design and implement than pure reactive or

deliberative agents.

6. Resource Aware

o Can prioritize reactive responses when computation is expensive.

o Example: In robotics, avoiding collision (reactive) is prioritized over

long-term navigation (deliberative).

Advantages:

1. Balanced Performance – Combines speed of reactive agents with intelligence

of deliberative agents.

2. Adaptability – Can handle both simple and complex tasks effectively.

3. Improved Robustness – Can respond to emergencies while still following

strategic plans.

4. Scalability – Suitable for dynamic and unpredictable environments.

Disadvantages:

1. Complex Design – Integrating both paradigms requires sophisticated

architecture.

2. Higher Resource Requirements – More computation and memory than pure

reactive systems.

3. Coordination Issues – Conflicts may arise between reactive and deliberative

layers.

4. Debugging Difficulty – Harder to test and validate due to multiple control

layers.

Applications:

• Autonomous Vehicles – Reactive layer handles sudden obstacles; deliberative

layer plans routes.

12

Prepared by M.Nandini,

Assistant professor AIDS.

• Robotics – Industrial robots reacting to sensor data while optimizing task

sequences.

• Military & Rescue Robots – Quick responses to hazards while following

mission plans.

• Smart Home Systems – Immediate reaction to emergencies (fire, intrusion) plus

energy-saving strategies.

• Space Exploration – Rovers using hybrid control to handle both immediate

dangers and scientific goals.

4. Learning Agents:

Definition:

A Learning Agent is an intelligent system capable of improving its performance over

time by learning from past experiences, feedback, or data. It uses a feedback loop to

evaluate its actions and adjust future behavior accordingly.

Characteristics of Learning Agents

• Adaptability → can adjust behavior to new environments.

• Improvement Over Time → performance increases with more experience.

• Autonomy → requires less human intervention as it learns.

13

Prepared by M.Nandini,

Assistant professor AIDS.

• Exploration vs Exploitation → balance between trying new actions and using

known successful actions.

• Memory-based → learns from past experiences or datasets.

Advantages

1. Improves Over Time – Performance gets better with more experience.

2. Adaptability – Can handle changing environments and new situations.

3. Handles Complex Problems – Suitable for tasks where pre-programmed rules

are insufficient.

4. Can Discover Patterns – Finds hidden insights from data to make informed

decisions.

Disadvantages

1. Requires Large Data – Learning depends on sufficient quality data.

2. High Computational Cost – Training and updating models can be resource-

intensive.

3. Risk of Overfitting – May perform poorly on unseen scenarios if not trained

well.

4. Complex Implementation – Designing effective learning algorithms is

challenging.

Applications:

• Recommendation Systems – Netflix, YouTube, and Amazon suggesting

content/products.

• Autonomous Vehicles – Learning from driving experiences to improve

navigation.

• Game AI – Improving gameplay strategies through reinforcement learning.

• Fraud Detection – Systems learning new fraud patterns to improve accuracy.

• Healthcare – AI models improving diagnosis by learning from patient data.

14

Prepared by M.Nandini,

Assistant professor AIDS.

AGENT ARCHITECTURES:

Description:

An Agent Architecture is the structural design that defines how an intelligent
agent perceives its environment, processes information, and takes actions to
achieve its goals. It specifies how different components (sensing, reasoning,
learning, acting) interact to produce intelligent behaviour.

1. Subsumption Architecture:

• Introduced by Rodney Brooks (1986) for reactive robotics.
• It’s a layered architecture where agents (or robots) behave using simple,

reactive behaviors stacked in layers.
• Higher layers can subsume (suppress or inhibit) the outputs of lower layers

when needed.

Key Principles

• Layered Behavior Modules:

15

Prepared by M.Nandini,

Assistant professor AIDS.

The architecture is built from layers, with each layer implementing a specific

level of behavioral competence, such as "avoid an object" at a low level or

"explore the world" at a higher level.

• Bottom-Up Design:

Complex behaviors are built by composing and integrating simpler, underlying

behaviors, rather than by detailed planning.

• Subsumption (Overriding):

Higher-level behaviors can suppress or inhibit lower-level behaviors. For

example, an "avoid obstacle" layer can take precedence over a "wander" layer to

ensure the robot doesn't hit something while trying to explore.

• Parallel Processing:

All layers process sensory information in parallel and generate outputs

concurrently.

• Reactive Control:

Behavior is driven by sensory inputs, emphasizing quick, reflexive responses to

stimuli rather than relying on explicit mental representations.

• No Centralized Control or Explicit Knowledge:

The architecture distributes control and avoids a centralized representation of

knowledge about the world.

16

Prepared by M.Nandini,

Assistant professor AIDS.

Characteristics

• Reactive: Focus on immediate response to environment.

• Robust: Works well in dynamic, noisy environments.

• Layered: Higher-level tasks built on lower-level tasks.

• Distributed Control: No single decision-maker; each layer handles specific

tasks.

• Simple Implementation: Easy to implement with sensors and actuators.

Advantages vs Disadvantages

Aspect Advantages Disadvantages

Simplicity Easy to build & implement Limited reasoning abilities

Robustness
Handles dynamic/unpredictable

environments
No long-term planning

Scalability

Layers can be added incrementally
Becomes complex if too many

layers

Speed
Very fast reaction (no heavy

computation)

No learning/memory, purely

reactive

Reliability

Decentralized, fault-tolerant
Hard to guarantee optimal

behavior

⚡ In short:

The Subsumption Architecture is a layered, reactive control model where higher-

level behaviors can subsume lower ones. It’s widely used in robotics (like insect-like

robots) where real-time reaction is more important than long-term reasoning.

2. BDI (Belief-Desire-Intention) Architecture:

The BDI architecture is one of the most influential models in agent systems. It is based

on the way humans make decisions using beliefs, desires, and intentions.

1. BELIEFS (B)

• Represent the knowledge or information the agent has about the world.

• Can be incomplete, uncertain, or incorrect.

17

Prepared by M.Nandini,

Assistant professor AIDS.

• Example: “The bus arrives at 8:00 AM.”

18

Prepared by M.Nandini,

Assistant professor AIDS.

2. DESIRES (D)

• The objectives, goals, or states of the world the agent would like to achieve.

• Represent motivational attitudes (what the agent wants).

• Example: “I want to reach the office on time.”

3. INTENTIONS (I)

• The commitments that the agent has chosen to pursue among its desires.

• Intentions guide the agent’s plans and actions.

• Example: “I will take the 7:45 AM bus to reach office by 8:30.”

How It Works (BDI Reasoning Cycle)

1. Perception / Input: Agent perceives environment and updates its beliefs.

2. Deliberation: Agent evaluates desires and chooses which ones to pursue.

3. Intention Formation: Agent commits to a subset of desires as intentions.

4. Planning & Action: Agent executes plans to achieve those intentions.

5. Re-evaluation: Beliefs are updated continuously, and intentions may change if

needed.

Characteristics of BDI Agents

• Rational (they make decisions based on goals).

• Reactive (respond to environment changes).

• Proactive (take initiative to fulfill goals).

• Flexible (revise goals/plans when beliefs change).

19

Prepared by M.Nandini,

Assistant professor AIDS.

Advantages of BDI Agents

1. Human-like reasoning → Mimics how humans make decisions (beliefs, goals, and

commitments).

2. Goal-directed behavior → Agents don’t just react; they plan and commit to

achieving objectives.

3. Flexibility → Can adapt actions when beliefs change (new information).

4. Commitment handling → Prevents agents from constantly switching goals (avoids

"thrashing").

5. Clear design model → Separation into beliefs, desires, and intentions helps structure

complex agent logic.

6. Interoperability → Many MAS frameworks (like JADE, Jason) support BDI.

Disadvantages of BDI Agents

1. Computationally expensive → Requires reasoning and planning; slower than simple

reactive agents.

2. Complex design → Harder to program and maintain compared to rule-based or

reactive agents.

3. Scalability issues → Managing large numbers of BDI agents with complex plans is

resource-intensive.

4. Incomplete decision-making → BDI doesn’t guarantee optimal solutions (depends

on designer’s plan library).
5. Dynamic environment challenges → May fail if beliefs update too slowly in fast-

changing environments.

1

10

Prepared by M.Nandini,

Assistant professor AIDS.

Applications of BDI Agents

1. Robotics

o Robots that need planning and adaptability (e.g., service robots, autonomous

drones).

2. Virtual Assistants & Chatbots

o Goal-oriented conversational systems (e.g., scheduling, troubleshooting).

3. Simulation & Training

o Military, traffic, and crowd simulations where agents need realistic decision-

making.

4. Autonomous Systems

o Self-driving cars, UAVs, industrial automation.

5. Multi-Agent Systems

o Cooperative problem solving (disaster rescue, smart grids, logistics).

6. Game AI

o Non-player characters (NPCs) with believable human-like behavior.

LAYERED ARCHITECTURE:

Definition: Combines reactive and deliberative approaches by organizing

functionality into layers, where lower layers handle immediate responses and higher

layers handle planning.

A layered architecture is an agent design approach where the control system is divided

into layers, each handling a different level of reasoning or behavior.

It’s often used to balance reactive behavior (fast responses) and deliberative reasoning
(planning).

20

Prepared by M.Nandini,

Assistant professor AIDS.

Types of Layered Architectures

1. Horizontal Layering

• All layers have direct access to sensors and effectors.

• Each layer can independently perceive and act.

• Decision arbitration mechanism is required (to resolve conflicts if two layers

want to act).

Example:

• Reactive layer sees an obstacle → stop.

• Planning layer decides long-term route → go left.

• Need arbitration to decide final action.

✅ Pros: Fast response + flexibility.

❌ Cons: Complex arbitration, possible conflicts.

2. Vertical Layering

• Layers are stacked like a hierarchy.

• Lower layers handle sensing and reactive control.

• Higher layers handle planning, reasoning, and decision-making.

• Communication flows up and down the hierarchy.

21

Prepared by M.Nandini,

Assistant professor AIDS.

Example:

• Reactive layer avoids obstacles.

• Middle layer selects a sub-goal.

• Deliberative layer plans the full path.

✅ Pros: Cleaner control, less conflict.

❌ Cons: Slower responses (higher layers must process info).

• Advantages:

o Balances fast response and high-level reasoning.

o Modular design simplifies updates and maintenance.

o Suitable for complex and dynamic environments.

• Disadvantages:

o More complex to design than single-approach architectures.

o Higher computational and resource requirements.

o Coordination between layers can be difficult.

• Applications:

o Self-driving cars (reactive layer for emergency braking, deliberative layer

for route planning).

o Service robots in healthcare or hospitality.

o Space exploration robots combining hazard avoidance and mission

planning.

TYPES OF ENVIRONMENTS

An environment in artificial intelligence is the surrounding of the agent. The
agent takes input from the environment through sensors and delivers the output to
the environment through actuators. There are several types of environments:
• Fully Observable vs Partially Observable
• Deterministic vs Stochastic
• Competitive vs Collaborative
• Single-agent vs Multi-agent
• Static vs Dynamic

22

Prepared by M.Nandini,

Assistant professor AIDS.

• Discrete vs Continuous

23

Prepared by M.Nandini,

Assistant professor AIDS.

• Episodic vs Sequential
• Known vs Unknown

24

Prepared by M.Nandini,

Assistant professor AIDS.

1) Fully Observable vs Partially Observable

• When an agent sensor is capable to sense or access the complete state of an

agent at each point in time, it is said to be a fully observable environment else

it is partially observable.

• Maintaining a fully observable environment is easy as there is no need to keep

track of the history of the surrounding.

• An environment is called unobservable when the agent has no sensors in all

environments.

• Examples:

o Chess - the board is fully observable, and so are the opponent's

moves.

o Driving - the environment is partially observable because what's

around the corner is not known.

2. Deterministic vs Stochastic

• When a uniqueness in the agent's current state completely determines the next

state of the agent, the environment is said to be deterministic.

• The stochastic environment is random in nature which is not unique and cannot

be completely determined by the agent.

• Examples:

o Chess - there would be only a few possible moves for a chess piece

at the current state and these moves can be determined.

o Self-Driving Cars- the actions of a self-driving car are not unique, it

varies time to time.

3. Competitive vs Collaborative

• An agent is said to be in a competitive environment when it competes against

another agent to optimize the output.

• The game of chess is competitive as the agents compete with each other to win

the game which is the output.

• An agent is said to be in a collaborative environment when multiple agents

cooperate to produce the desired output.

• When multiple self-driving cars are found on the roads, they cooperate with

each other to avoid collisions and reach their destination which is the output

desired.

4. Single-agent vs Multi-agent

• An environment consisting of only one agent is said to be a single-agent

environment.

• A person left alone in a maze is an example of the single-agent system.

25

Prepared by M.Nandini,

Assistant professor AIDS.

• An environment involving more than one agent is a multi-agent environment.

26

Prepared by M.Nandini,

Assistant professor AIDS.

• The game of football is multi-agent as it involves 11 players in each team.

5. Dynamic vs Static

• An environment that keeps constantly changing itself when the agent is up with

some action is said to be dynamic.

• A roller coaster ride is dynamic as it is set in motion and the environment keeps

changing every instant.

• An idle environment with no change in its state is called a static environment.

• An empty house is static as there's no change in the surroundings when an agent

enters.

6. Discrete vs Continuous

• If an environment consists of a finite number of actions that can be deliberated

in the environment to obtain the output, it is said to be a discrete environment.

• The game of chess is discrete as it has only a finite number of moves. The

number of moves might vary with every game, but still, it's finite.

• The environment in which the actions are performed cannot be numbered i.e. is

not discrete, is said to be continuous.

• Self-driving cars are an example of continuous environments as their actions

are driving, parking, etc. which cannot be numbered.

7. Episodic vs Sequential

• In an Episodic task environment, each of the agent's actions is divided into

atomic incidents or episodes. There is no dependency between current and

previous incidents. In each incident, an agent receives input from the

environment and then performs the corresponding action.

• Example: Consider an example of Pick and Place robot, which is used to

detect defective parts from the conveyor belts. Here, every time robot(agent)

will make the decision on the current part i.e. there is no dependency between

current and previous decisions.

• In a Sequential environment, the previous decisions can affect all future

decisions. The next action of the agent depends on what action he has taken

previously and what action he is supposed to take in the future.

• Example:

o Checkers- Where the previous move can affect all the following

moves.

8. Known vs Unknown

• In a known environment, the output for all probable actions is given. Obviously,

in case of unknown environment, for an agent to make a decision, it has to gain

knowledge about how the environment works.

27

Prepared by M.Nandini,

Assistant professor AIDS.

RATIONALITY AND AUTONOMY:

In Multi-Agent Systems (MAS), rationality refers to an agent's ability to make optimal
decisions to achieve its goals, while autonomy means agents can act independently,
controlling their own internal states and behaviors to achieve those goals within their
environment. The core challenge is to enable these autonomous, rational agents to
coordinate and collaborate effectively to achieve complex, shared system goals that no
single agent could accomplish alone, often through the use of communication, norms,
and orchestration.

Autonomy in Multi-Agent Systems

• Independent Operation:

Each agent can make decisions and act without direct human intervention or

constant supervision.

• Internal State & Control:

Agents possess control over their own internal states, allowing them to manage

their decisions and behaviors.

• Sense-Plan-Act Cycle:

This cycle is fundamental to autonomy, where agents perceive their environment,

plan actions, and then execute those actions.

• Environmental Interaction:

Agents are "situated" because they can sense, perceive, and manipulate their

environment.

Rationality in Multi-Agent Systems

28

Prepared by M.Nandini,

Assistant professor AIDS.

• Goal-Oriented Decision-Making:

29

Prepared by M.Nandini,

Assistant professor AIDS.

Rational agents select the actions that best achieve their goals given the available

information.

• Preference Orderability:

A rational agent can consistently rank alternatives, ensuring logical and consistent

choices when faced with multiple options.

• Defining Rationality:

The concept of rationality can be subjective, meaning agents can be motivated by

various goals, such as altruism or group concern, not just profit.

• Social Rationality:

In MAS, rationality often extends beyond individual goals to group goals,

involving concepts like social intelligence and cooperation.

The Interplay: Achieving Collective Rationality

• Coordination and Collaboration:

Autonomy necessitates coordination mechanisms, communication protocols, and

organizational structures to ensure agents work together effectively and align with

overall system goals.

• Emergent Behavior:

By coordinating autonomous agents, MAS can achieve complex global

phenomena or solve problems that individual agents cannot.

• Addressing Dilemmas:

Autonomous agents must navigate dilemmas, such as choosing between

individual benefit and responsible, ethical actions, which is a key aspect of

emergent responsibility in MAS.

• Orchestration:

This process enables independent agents to work together toward common goals,

leading to more complex tasks being managed and executed efficiently.

Advantages

Rationality

• Ensures agents act toward optimal outcomes.

• Improves efficiency and goal achievement.

• Enables agents to adapt to dynamic environments.

• Reduces errors and wasted resources.

2

10

Prepared by M.Nandini,

Assistant professor AIDS.

Autonomy

• Agents operate independently, reducing need for human intervention.

• Scales well in distributed systems (MAS).

• Increases flexibility in complex and uncertain environments.

• Enables agents to self-correct and adapt without external commands.

Disadvantages

Rationality

• Requires complete or reliable information (not always available).

• High computational cost for reasoning and optimization.

• May conflict with human values or preferences (rational ≠ desirable).

Autonomy

• Loss of human control → risk of undesired behaviors.

• Difficult to predict outcomes in highly autonomous systems.

• Needs robust fault tolerance (autonomous errors can cascade).

• Security risks (autonomous malicious agents).

Applications

1. Robotics – Autonomous navigation (drones, self-driving cars).

2. Virtual Assistants – Siri, Alexa act autonomously and rationally.

3. Finance – Trading agents making rational investment decisions.

4. Healthcare – Monitoring patients, autonomous diagnosis support.

5. Multi-Agent Systems (MAS) – Smart grids, logistics, traffic control.

6. Military & Defense – Autonomous surveillance and decision-making.

7. Gaming & Simulations – NPCs with rational and autonomous behaviors.

“A RATIONLA AGENGT IS AUTONOMUS”

SINGLE AGENT PROGRAMING MODELS:

Artificial Intelligence (AI) agents are the foundation of many intelligent systems

which helps them to understand their environment, make decisions and take actions

to achieve specific goals. These agents vary in complexity from simple reflex-based

systems to advanced models that learn and adapt over time. Let's see different types

of AI agents and their unique characteristics.

https://www.geeksforgeeks.org/artificial-intelligence/agents-artificial-intelligence/

2

11

Prepared by M.Nandini,

Assistant professor AIDS.

1. Simple Reflex Agents

Simple Reflex Agent Working

Simple reflex agents act solely on the current percept using predefined condition–

action rules, without storing or considering any history. They are fast and easy to

implement, making them suitable for fully observable, stable environments with

clear and simple rules. However, they tend to fail in dynamic or partially observable

situations because they lack memory and deeper reasoning capabilities.

Key Characteristics:

• Reactive: These agents respond immediately to inputs without consideration for

prior events or predicting future outcomes.

• Limited Scope: They excel in predictable environments where tasks are

straightforward and the relationships between actions and results are well

understood.

• Quick Response: Since decisions are made based only on immediate input, it

can react without delay.

• No Learning: These agents cannot improve or change their behavior based on

past experiences.

When to Use: They are ideal in controlled, well-defined environments such as basic

automation like home automation systems or real-time reactive systems like sensors

or switches.

Example: Traffic light control systems that change signals based on fixed timing.

https://www.geeksforgeeks.org/artificial-intelligence/simple-reflex-agents-in-ai/

2

12

Prepared by M.Nandini,

Assistant professor AIDS.

2) Model-Based Reflex Agents

Model-Based Reflex Agent Working

Model-based reflex agents enhance the simple reflex approach by maintaining an

internal state or model of the world, that tracks aspects of the environment not

directly observable at each moment. This enables them to deal with partial

observability and dynamic changes more effectively, although their decisions are

still largely reactive and dependent on the accuracy of the model they maintain.

Key Characteristics:

• Internal State: By maintaining an internal model of the environment, these

agents can handle scenarios where some aspects are not directly observable thus

it provides more flexible decision-making.

• Adaptive: They update their internal model based on new information which

allows them to adapt to changes in the environment.

• Better Decision-Making: The ability to refer to the internal model helps agents

make more informed decisions which reduces the risk of making impulsive or

suboptimal choices.

• Increased Complexity: Maintaining an internal model increases computational

demands which requires more memory and processing power to track changes in

the environment.

https://www.geeksforgeeks.org/artificial-intelligence/model-based-reflex-agents-in-ai/

30

Prepared by M.Nandini,

Assistant professor AIDS.

When to Use: They are beneficial in situations where the environment is dynamic

and not all elements can be directly observed at once. Autonomous driving, robotics

and surveillance systems are good examples.

Example: Robot vacuum cleaners that map rooms and tracks cleaned areas.

3) Goal-Based Agents

Goal-Based Agents Working

Goal-based agents select actions by considering future states relative to explicit

goals. They are capable of planning sequences of actions to reach these goals rather

than just reacting to the current state which enables more flexible and intelligent

problem-solving. However, they require well-defined goals and effective planning

algorithms to perform well in complex domains.

Key Characteristics:

• Goal-Oriented: They have explicit goals and make decisions based on how well

their actions align with these objectives.

• Planning and Search: They often use planning algorithms that explore multiple

possible actions to find the most effective sequence of steps that lead to their

goal.

• Flexible: If conditions change or new information arises, it can re-plan and

adjust their strategies to stay on track toward their objective.

• Future-Oriented: Unlike reflex agents,they think ahead and predict future

outcomes to find the best course of action.

https://www.geeksforgeeks.org/artificial-intelligence/goal-based-ai-agents/

31

Prepared by M.Nandini,

Assistant professor AIDS.

When to Use: They are important in applications that require strategic decision-

making and planning such as robotics (pathfinding), project management (task

scheduling) and AI in games (character decision-making).

Example: Logistics routing agents that find optimal delivery routes based on factors

like distance and time. They continuously adjust to reach the most efficient route.

4) Utility-Based Agents:

Utility-Based Agent Working

Utility-based agents extend goal-based reasoning by considering not only whether a

goal is met but also how valuable or desirable a particular outcome is. They use a

utility function to quantify preferences and make trade-offs between competing

objectives, enabling nuanced decision-making in uncertain or resource-limited

situations. Designing an appropriate utility function is crucial for their effectiveness.

Key Characteristics:

• Multi-Criteria Decision Making: These agents fin multiple factors like cost,

benefits, risk, time, etc to find the best possible course of action.

• Trade-Offs: They can make decisions by balancing competing goals and

preferences often finding the best "compromise."

• Subjectivity: They are customizable to reflect subjective preferences or goals,

making them more adjustable to individual or organizational needs.

• Increased Complexity: Finding utility functions for different factors can be

https://www.geeksforgeeks.org/artificial-intelligence/utility-based-agents-in-ai/

32

Prepared by M.Nandini,

Assistant professor AIDS.

computationally intensive and complex.

33

Prepared by M.Nandini,

Assistant professor AIDS.

When to Use: They are ideal for tasks where multiple criteria need to be evaluated

simultaneously such as financial planning, resource management or personal

recommendation systems.

Example: Financial portfolio management agents that evaluate investments based

on factors like risk, return and diversification operate by choosing options that

provide the most value.

5. Learning Agents

Learning Agent Working

Learning agents improve their performance over time by learning from experience

and updating their internal models, strategies or policies. They can adapt to changes

in the environment and often outperform static agents in dynamic contexts. Learning

may involve supervised, unsupervised or reinforcement learning techniques and

these agents typically contain both a performance element (for acting) and a learning

element (for improving future actions).

Key Characteristics:

• Adaptive Learning: It improve their decision-making through continuous

feedback from their actions.

• Exploration vs. Exploitation: These agents balance exploring new actions that

may lead to better outcomes with exploiting known successful strategies.

https://www.geeksforgeeks.org/artificial-intelligence/learning-agents-in-ai/

34

Prepared by M.Nandini,

Assistant professor AIDS.

• Flexibility: They can adapt to a wide variety of tasks or environments by

modifying their behavior based on new data.

• Generalization: It can apply lessons learned in one context to new, similar

situations enhancing their versatility.

When to Use: They are well-suited for dynamic environments that change over time

such as recommendation systems, fraud detection and personalized healthcare

management.

Example: Customer service chatbots can improve response accuracy over time by

learning from previous interactions and adapting to user needs.

6) Multi-Agent Systems (MAS)

Multi-Agent System Working

Multi-agent systems operate in environments shared with other agents, either

cooperating or competing to achieve individual or group goals. These systems are

decentralized, often requiring communication, negotiation or coordination protocols.

They are well-suited to distributed problem solving but can be complex to design

due to emergent and unpredictable behaviors. Types of multi-agent systems:

• Cooperative MAS: Agents work together toward shared objectives.

• Competitive MAS: Agents pursue individual goals that may conflict.

• Mixed MAS: Agents cooperate in some scenarios and compete in others.

Key Characteristics:

https://www.geeksforgeeks.org/artificial-intelligence/what-is-a-multi-agent-system-in-ai/

35

Prepared by M.Nandini,

Assistant professor AIDS.

• Autonomous Agents: Each agent acts on its own based on its goals and

knowledge.

• Interactions: Agents communicate, cooperate or compete to achieve individual

or shared objectives.

• Distributed Problem Solving: Agents work together to solve complex problems

more efficiently than they could alone.

• Decentralization: No central control, agents make decisions independently.

When to Use: They are ideal for decentralized environments like traffic control,

robotics or large-scale simulations where agents need to collaborate or make

decisions independently.

Example: A warehouse robot might use:

• Model-based reflexes for navigation

• Goal-based planning for task sequencing

• Utility-based decision-making for prioritizing tasks

• Learning capabilities for route optimization

7) Hierarchical agents

Hierarchical Agent Working

Hierarchical agents organize behavior into multiple layers such as strategic, tactical

and operational. Higher levels make abstract decisions that break down into more

36

Prepared by M.Nandini,

Assistant professor AIDS.

specific subgoals for lower levels to execute. This structure improves scalability,

37

Prepared by M.Nandini,

Assistant professor AIDS.

reusability of skills and management of complex tasks, but requires designing

effective interfaces between layers.

Key Characteristics:

• Structured Decision-Making: Decision-making is divided into different levels

for more efficient task handling.

• Task Division: Complex tasks are broken down into simpler subtasks.

• Control and Guidance: Higher levels direct lower levels for coordinated action.

When to Use: They are useful in scenarios where tasks can be broken into distinct

stages such as robotics or industrial automation.

Example: Drone delivery systems in which fleet management is done at top level

and individual navigation at lower level.

Prepared by M.Nandini,

Assistant professor AIDS.

UNIT-II

MULTI AGENT SYSTEMS FUNDAMENTALS

DEFINITION AND PROPERTIES OF MULTI-AGENT SYSTEMS(MAS)

DEFINITION:

A multi agent systems is a group of individual ,independent, interactive
,intelligent programs(called agents) that work together or individually to solve
complex problems, make decisions , or complete tasks. Each agent can act its
own and also communicate with each other.

Or

A multi-agent system (MAS) in artificial intelligence is a system composed of
multiple, autonomous agents that interact to solve problems or achieve common
or individual goals. These agents can be software programs, robots, or other
computational entities, each with its own capabilities and potentially unique
goals. MAS leverages the distributed nature of these agents to tackle complex
tasks, enhance adaptability, and improve robustness compared to single-agent
systems.

How it works:

MAS systems enable complex tasks to be broken down and distributed among
specialized agents. Agents can have local views of the system and adapt their
behaviour based on interactions with other agents and the environment.

Prepared by M.Nandini,

Assistant professor AIDS.

Properties of MAS:

1. Autonomy: Each agent acts independently, making its own decisions based on
its perceptions and goals. They can control their actions and internal state, though
they may be influenced by other agents or a central controller.

2. Communication: Agents exchange information through defined protocols and
mechanisms. This allows them to coordinate their actions, share knowledge, and
resolve conflicts.

3. Cooperation: Agents work together to achieve shared goals. This can involve
dividing tasks, coordinating efforts, and negotiating solutions.

4. Heterogeneity: Agents can possess different capabilities, knowledge, and
roles. This diversity enables MAS to tackle complex problems and adapt to
various situations.

5. Distributed Local View: In many MAS, no single agent has a complete global
view of the environment. Instead, each agent has a partial view and limited
information, and the global intelligence emerges from the interaction and
coordination of these agents.

6. Scalability and Flexibility: MAS can be scaled by adding more agents,
allowing them to handle changing environments and complex tasks. They can
also adapt to new situations by reallocating tasks or introducing new agents.

7. Adaptability: The ability to learn and adapt is crucial for MAS, enabling them
to adjust to changing environments and improve their performance over time.

8. Specialization: Agents can be specialized for specific tasks, enhancing their
efficiency and effectiveness.

Prepared by M.Nandini,

Assistant professor AIDS.

9. Centralized vs. Decentralized Architectures: MAS can have centralized
architectures (where a central entity coordinates agents) or decentralized
architectures (where agents interact directly).

10. Collaboration and Competition: MAS can be designed for either
cooperative or competitive interactions, or a combination of both.

These properties allow MAS to tackle complex problems in various domains,
including traffic management, logistics, customer service, and more.

EXAMPLE: SMART HOME

Agent Role in the MAS

Thermostat Agent
: Controls heating/cooling; adjusts temperature based on occupancy
and preferences.

Motion Sensor Agent :Detects presence in rooms; informs other agents about occupancy.

Window Agent
:Detects open/closed status; interacts with HVAC to avoid energy
loss.

Lighting Agent :Adjusts lights based on presence, time, and ambient light.

Energy Monitor

Agent

:Monitors energy consumption; suggests or enforces energy-saving
actions.

User Preference Agent :Learns and applies user behavior and routines.

Security Agent :Coordinates door locks, cameras, and alarms.

Weather Agent
 :Retrieves external temperature data to optimize indoor climate

settings.

• AI agents can control various devices in a smart home, such as lighting,

temperature, and security systems.

Prepared by M.Nandini,

Assistant professor AIDS.

• They can learn user preferences and automate tasks to improve comfort
and energy efficiency.

ADVANTAGEOUS/BENEFITS/PRO’S OF MAS:

1. Distributed Problem Solving

• MAS can solve complex problems that are too large or complex for a single
agent or monolithic system.

• Tasks are divided among agents, increasing efficiency and scalability.

2. Robustness and Fault Tolerance

• If one agent fails, others can continue working—making the system more
resilient than centralized ones.

3. Scalability

• New agents can be added without major restructuring.
• Systems can grow and adapt more easily.

4. Parallelism

• Multiple agents can operate concurrently, reducing computation time and
improving performance.

5. Autonomy and Flexibility

• Each agent operates independently, enabling local decision-making.
• Good for dynamic, uncertain, or partially known environments.

6. Modularity

• Easier to design and test individual components before integrating them.
• Encourages reusable components.

7. Emergent Behaviour

• MAS can exhibit intelligent global behaviour from simple local rules—used
in fields like swarm robotics and market simulations.

LIMITATIONS/DIS-ADVANTAGEOUS/CON’S OF MAS

1. Complex Design and Implementation

Prepared by M.Nandini,

Assistant professor AIDS.

• Designing coordination, communication, and negotiation strategies among
agents is challenging.

• Requires careful planning of agent roles, protocols, and behaviours.

2. Communication Overhead

• Frequent inter-agent communication can slow down performance or lead to
congestion in large systems.

3. Unpredictable Behaviour

• Emergent behaviours are hard to control or predict, which may lead to
instability or unexpected outcomes.

4. Debugging and Testing Difficulty

• Hard to isolate faults in distributed settings.
• System behaviour may vary with each run due to nondeterminism or

environmental changes.

5. Security and Trust Issues

• Agents may have conflicting goals or act maliciously (especially in open
MAS).

• Trust management and security protocols are essential but complex.

6. Resource Management

• Resource contention among agents may require conflict resolution strategies
or arbitration mechanisms.

APPLICATIONS:

1. Automated Manufacturing Lines:

• AI agents can monitor equipment, predict maintenance needs, and schedule

repairs, minimizing downtime.

• Different agents can handle tasks like predictive maintenance, order
rescheduling, and inventory management.

2. Smart Grids:

• One agent can monitor weather patterns, while another predicts energy

demand based on that data, optimizing energy distribution.

Prepared by M.Nandini,

Assistant professor AIDS.

• Agents can collaborate to manage energy consumption and distribution
efficiently.

3. Autonomous Vehicles:

• AI agents control various aspects like navigation, collision avoidance, and

communication with other vehicles or infrastructure.

• Agents can work together to ensure safe and efficient navigation.

4. Healthcare Coordination:

• Agents can represent different specialists, collaborating to diagnose patients,

design treatment plans, and coordinate care.

• This can lead to faster diagnosis, more effective treatment, and improved

patient outcomes.

5. Supply Chain Management:

• Agents can track inventory, predict demand, and optimize order fulfillment.

• They can also monitor supplier performance and adjust resource allocation
as needed.

6. Transportation Systems:

• AI agents can optimize routes for public transportation, manage traffic flow,

and improve navigation.

• This can lead to more efficient and reliable transportation networks.

7. Customer Service Platforms:

• AI agents can handle different aspects of customer support, such as

answering questions, resolving issues, and processing refunds.

• They can work together to provide a seamless and efficient customer

experience.

8. Financial Trading:

• AI agents can analyze market data, identify trading opportunities, and execute

trades automatically.

• They can also collaborate to manage risk and optimize trading strategies.

9. Game AI:

• In multiplayer games, AI agents can compete against each other or cooperate

to achieve in-game goals.

• This can create more challenging and engaging gameplay experiences.

Prepared by M.Nandini,

Assistant professor AIDS.

10. Disaster Response:

• AI agents can be used to coordinate rescue efforts, manage resources, and

provide situational awareness during disasters.

• They can help to optimize response efforts and minimize the impact of
disasters.

AGENT COMMUNICATION LANGUAGES(ACLs):

In Multi-Agent Systems (MAS), multiple agents work together by
communicating, often over a network. ACLs are formal languages designed to
enable agents to exchange messages in a way that both sides can interpret
correctly and act upon.

These languages are not about syntax alone—they also encode intentions, goals,

and actions, enabling semantic understanding and coordinated decision-

making.

TYPES:

KQML (KNOWLEDGE QUERY AND MANIPULATION LANGUAGE):

KQML (Knowledge Query and Manipulation Language) is a language and protocol
used for communication between software agents and knowledge-based systems,
enabling them to share information and knowledge. It's designed to facilitate
interoperability between different AI systems, allowing them to exchange
information and collaborate on complex tasks.

KQML is not tied to a specific content syntax or ontology, making it flexible for
various applications.

Key Features of KQML:

• Message Format and Protocol:

Prepared by M.Nandini,

Assistant professor AIDS.

KQML serves as both a message format and a message-handling protocol,

enabling agents to communicate with each other using standardized message

types.

• "Performatives":

KQML utilizes a set of pre-defined "performatives" that specify the type of

communication, such as asking a question (ask-one), making a statement (tell),

or requesting a service (subscribe).

• Extensible:

The set of performatives in KQML is designed to be extensible, allowing

communities of agents to define and use new performatives for specific tasks or

domains.

• Independent of Content and Transport:

KQML is designed to be independent of the specific content being exchanged

(e.g., the actual knowledge being communicated) and the underlying transport

mechanism (e.g., TCP/IP, email).

• Facilitates Interoperability:

KQML enables different AI systems and agents to communicate and

collaborate, even if they were developed using different technologies.

How KQML Works:

1. Message Creation:

When an agent wants to communicate with another, it creates a KQML message,

including a performative indicating the type of communication and the content to

be exchanged.

2. Message Handling:

The KQML message is then handled by a message-handling protocol, which might

involve routing the message to the appropriate recipient agent or using a facilitator

agent to help find a suitable receiver.

3. Message Interpretation:

The receiving agent interprets the KQML message based on the performative and

the content, and then responds accordingly.

Prepared by M.Nandini,

Assistant professor AIDS.

Performatives:

Information Sharing Performatives

Performative Description

tell
Inform the receiver that a certain
proposition is true.

deny
Inform the receiver that a certain
proposition is not true.

untell Withdraw a previously sent tell.

subscribe
Ask to be notified whenever a certain
proposition becomes true or changes.

Querying Performatives

Performative Description

ask-if Ask whether a prop
true or false.

ask-all
Ask for all answ
satisfy the query.

ask-one
Ask for a single answ
query.

Ask for a stream of
stream-all as they become avail

osition is

ers that

er to the

answers
able.

Action-Oriented Performatives

Prepared by M.Nandini,

Assistant professor AIDS.

Performative Description

achieve Ask the receiver to achieve a goal or perform an action.

unachieve Cancel a previously requested achieve goal.

recommend-one Ask for a single recommendation on how to achieve a goal.

recommend-all Ask for all recommendations on how to achieve a goal.

Communication Management Performatives

Performative Description

register Register interest in a specific kind of message or service.

unregister Remove a previous registration.

advertise Inform others about the capabilities or services an agent provides.

subscribe Request continuous updates about a specific condition.

Negotiation and Meta-Level Performatives

Performative Description

broker-one Ask another agent to find a third-party agent to satisfy a query.

broker-all Ask for all agents that can satisfy the query.

forward Forward a message to another agent.

sorry Used to decline a request politely.

error Notify the sender that an error occurred processing a message.

SYNTAX:

(<performative>

:sender <agent-name>

:receiver <agent-name>

:content <expression>

:language <language-name>

:ontology <ontology-name>

:reply-with <message-id>

:in-reply-to <message-id>

:conversation-id <id>

)

Prepared by M.Nandini,

Assistant professor AIDS.

EXAMPLE:

(tell

:sender agentA

:receiver agentB

:content "(temperature room1 25)"

:language LISP

:ontology climate-control)

Field Meaning

tell

Performative – The type of message. Here, it's used to
inform the receiver of a fact (a proposition).

:sender agentA The agent sending the message (agentA).

:receiver agentB The agent receiving the message (agentB).

:content "(temperature

room1 25)"

The proposition or fact being told: temperature in
room1 is 25.

:language LISP The language used to write the content (syntax format).

:ontology climate-

control

Defines the domain vocabulary, so both agents
understand what “temperature” means in this context.

Another example:

(subscribe

:sender agentA

:receiver agentB

:content "(temperature room1 ?t)"

:language LISP

Prepared by M.Nandini,

Assistant professor AIDS.

:ontology climate-control)

Field Explanation

subscribe Performative requesting ongoing updates.

:sender agentA Agent sending the subscription request (Agent A).

:receiver agentB Agent expected to send updates (Agent B).

:content "(temperature

room1 ?t)"

The query pattern — any temperature value ?t in
room1. Agent A wants to know when this changes.

:language LISP Syntax format used for content expression (LISP here).

:ontology climate-

control

Shared domain knowledge specifying concepts
(temperature, room1).

KQML has around 6 main types of performatives:

Type Examples Purpose

Information Sharing tell, deny, untell Provide facts or retract them

Querying

ask-if, ask-one, ask-all,

stream-all

Request knowledge

Goal Management

achieve, unachieve

Request execution of goals or
actions

Subscription/Notification

subscribe, monitor,

register

Receive updates when facts
change

Brokerage/Forwarding

broker-one, broker-all,

forward

Help find or connect to other
agents

Error/Control

sorry, error, ready,

standby

Manage communication or
signal problems

Put two performatives inside a single parentheses block, which is invalid in

KQML. Each performative message must be its own separate s-expression (its own

parentheses group).

Prepared by M.Nandini,

Assistant professor AIDS.

TWO PERFORMATIVES IN ONE CONDITION POSSIBLE:

(tell

:sender fire-sensor-agent ; Agent sending the message

:receiver control-center-agent ; Agent receiving the message

:content (fire-detected room3) ; The actual fact being communicated

:language KIF ; Content is expressed in Knowledge Interchange Format

:ontology fire-ontology ; The domain or vocabulary for interpreting the content

)

(achieve

:sender fire-sensor-agent ; Agent requesting the action

:receiver control-center-agent ; Agent expected to perform the action

:content (activate sprinkler room3) ; The goal/action to be achieved

:language KIF ; Content expressed in Knowledge Interchange Format

:ontology fire-ontology ; Domain vocabulary for interpreting the content

)

FIPA (Foundation for Intelligent Physical Agents) Agent

Communication Language (ACL):

FIPA (Foundation for Intelligent Physical Agents) Agent Communication Language
(ACL) is a standardized language used by AI agents to communicate and interact
within multi-agent systems. It provides a structured way for agents to exchange
information and coordinate activities, using a set of communicative acts like
"inform," "request," and "query". FIPA-ACL is built on speech act theory, defining
the structure and semantics of messages, ensuring clear and unambiguous
communication.

Key aspects of FIPA-ACL:

• Structured Communication:

FIPA-ACL defines a specific message structure with sender, receiver, and

content parameters, similar to a well-structured business letter, ensuring clear

communication.

• Communicative Acts:

Prepared by M.Nandini,

Assistant professor AIDS.

It employs communicative acts (like "inform," "request," "query," "propose") to

define the intent behind messages, allowing agents to understand the purpose of

communications.

• Semantics:

FIPA-ACL uses formal semantics to define the meaning of messages, ensuring

agents can interpret them accurately and understand the intended implications.

• Interoperability:

It promotes interoperability between different agent platforms by providing a

common communication protocol.

• Dynamic Systems:

FIPA-ACL supports dynamic, open systems, allowing agents to interact

effectively even with previously unknown agents.

How FIPA-ACL works:

1. 1. Message Creation:

An agent formulates a message according to the FIPA-ACL standard, including

the sender, receiver, and a communicative act (e.g., "request") with a specific

content.

2. 2. Message Transmission:

The message is transmitted to the receiving agent, potentially through an

intermediary agent or directly.

3. 3. Message Interpretation:

The receiving agent parses the message and interprets the communicative act

and content, understanding the sender's intention.

4. 4. Response:

Based on the message, the receiving agent can perform an action, send a new

message, or initiate a more complex interaction.

FIPA IN AI AND MULTI-AGENT SYSTEMS

• Multi-agent systems (MAS) consist of multiple autonomous agents that
interact to solve problems collaboratively or competitively.

• FIPA provides standard specifications that cover:
o Agent communication (how agents talk to each other).
o Agent management (creating, deleting, locating agents).
o Interaction protocols (structured sequences of communication).
o Ontologies and content languages.

Prepared by M.Nandini,

Assistant professor AIDS.

1. accept-proposal — Accept an offer or proposal.

2. agree — Agree to perform a requested action.

3. cancel — Cancel a previously made request or proposal.

4. cfp (call for proposals) — Request proposals for a task.

5. confirm — Confirm a proposition or fact is true.

6. disconfirm — Deny a proposition or fact.

7. failure — Inform that a requested action failed.

8. inform — Provide information or state a fact.

9. inform-if — Inform whether a proposition is true.

10. inform-ref — Provide information about a referent or object.

11. not-understood — Indicate the message was not understood.

12. propose — Propose a plan or action.

13. proxy — Ask another agent to perform an action.

14. query-if — Ask whether a proposition is true.

15. query-ref — Request information about a referent or object.

16. refuse — Refuse to perform a requested action or proposal.

17. reject-proposal — Reject a proposal or offer.

18. request — Request an action to be performed.

19. request-when — Request action when a condition becomes true.

20. request-whenever — Request action whenever a condition is true.

21. subscribe — Subscribe to receive notifications or updates.

22. propagate — Forward information to other agents.

Prepared by M.Nandini,

Assistant professor AIDS.

SYNTAX:

(<performative>

:sender <sender-agent-name>

:receiver <receiver-agent-name-or-list>

:content <content-expression>

[:language <content-language>]

[:ontology <ontology-name>]

[:protocol <interaction-protocol>]

[:conversation-id <conversation-identifier>]

[:reply-with <message-identifier>]

[:in-reply-to <message-identifier>]

[:reply-by <deadline>]

)

Explanation of key fields:

• <performative> — The communicative act, e.g., inform, request, agree, etc.
• :sender — The name of the agent sending the message.
• :receiver — The recipient agent(s). Can be a single agent or a list.

• :content — The actual message content or proposition (often in a formal
language like KIF, SL, or plain text).

Prepared by M.Nandini,

Assistant professor AIDS.

• :language (optional) — Specifies the language used in the content (e.g., KIF,
SL).

• :ontology (optional) — The ontology that defines the vocabulary in the
content.

• :protocol (optional) — Specifies the interaction protocol (e.g., FIPA-
Request).

• :conversation-id (optional) — Unique ID to correlate messages belonging to
the same conversation.

• :reply-with, :in-reply-to (optional) — Used to link replies with original
messages.

• :reply-by (optional) — Deadline for reply.

EX:

(request

:sender fire-sensor-agent

:receiver sprinkler-controller-agent

:content (activate sprinkler room3)

:language KIF

:ontology fire-safety

:protocol FIPA-request

:conversation-id conv001

:reply-with msg001

)

request: The performative — asking to activate the sprinkler.

:sender: The agent sending the request (fire-sensor-agent).

:receiver: The agent expected to perform the action (sprinkler-controller-agent).

:content: The actual request content (activate sprinkler in room3).

:language: Specifies the content language used (KIF).

:ontology: The domain vocabulary or knowledge base (fire-safety).

1. Semantics

Prepared by M.Nandini,

Assistant professor AIDS.

:protocol: The interaction protocol being used (FIPA-request).

:conversation-id: Unique ID for this conversation.

:reply-with: Message ID for matching replies.

DIFFERENCE :

Feature
KQML (Knowledge Query

and Manipulation Language)

FIPA ACL (Foundation for

Intelligent Physical Agents

ACL)

Developed by
DARPA Knowledge Sharing

Initiative (early 1990s)

FIPA (Foundation for

Intelligent Physical Agents)

Standardization Informal, research-based Officially standardized by FIPA

Purpose
Messaging protocol for agent

communication

Standard ACL with formal

semantics for interoperable

agents

Message Format
LISP-like syntax with

performatives and parameters

Similar LISP/XML syntax with

performatives and metadata

Performatives ~40 (e.g., tell, ask, achieve)
22 well-defined performatives

(e.g., inform, request)

Semantics
Only partially defined

(pragmatic use)

Formally defined using speech

act theory

Content

Language
Flexible (KIF, Prolog, etc.)

Also flexible (SL, KIF, RDF),

but usually more structured

Ontology

Support
Manual, optional

Explicitly supported via

:ontology parameter

Protocol

Support

None defined (handled

separately)

Built-in support for interaction

protocols (ACPs)

Used in
Early agent systems, research

tools

JADE, FIPA-compliant

systems, industrial MAS

Purpose of Interaction Protocols:

Prepared by M.Nandini,

Assistant professor AIDS.

• KQML: Semantics are loosely defined — focuses more on message transport
and structure.

• FIPA ACL: Uses formal semantics based on speech act theory

(illocutionary force, preconditions, effects).

2. Interaction Protocols

• KQML: Doesn’t define interaction protocols — left to the developer.
• FIPA ACL: Defines structured interaction protocols like Request, Contract

Net, Subscribe.

3. Standardization

• KQML: Evolved informally through research.
• FIPA ACL: Internationally standardized with consistent implementation

guidelines.

In Short

• KQML is older, more flexible but less formal.
• FIPA ACL is newer, more formal, and standardized, making it ideal for

building interoperable multi-agent systems.

AGENT INTERACTION PROTOCALS:

Interaction protocols in multi-agent systems (MAS) are sets of rules that govern how
agents communicate and coordinate their actions to achieve common goals. They
define the structure of interactions, ensuring agents can exchange information, make
decisions, and coordinate their actions effectively. These protocols are crucial for
building coherent and efficient MAS, especially when agents need to interact in
complex or dynamic environments.

Prepared by M.Nandini,

Assistant professor AIDS.

• Communication:

Protocols facilitate the exchange of information between agents, enabling them

to share knowledge, requests, and results.

• Coordination:

They define how agents synchronize their actions and decisions to avoid

conflicts and achieve a shared objective.

• Collaboration:

Protocols allow agents to work together, potentially dividing tasks, sharing

resources, and combining their expertise.

• Negotiation:

Protocols can enable agents to negotiate terms of cooperation or task

assignment, leading to more flexible and efficient solutions.

• Conflict Resolution:

Protocols can incorporate mechanisms for handling disagreements and conflicts

that may arise during interactions.

Key Concepts:

• Initiator and Participant:

Many protocols involve one agent initiating an interaction (the initiator) and

another agent responding (the participant).

• Message Sequence:

Protocols define the order and types of messages that agents exchange.

• Performatives:

These are the types of actions or messages that agents can send, such as requests,

proposals, or acknowledgments.

• States:

Protocols can be represented as state machines, where each state represents a

stage in the interaction and the transitions between states are triggered by

messages.

Prepared by M.Nandini,

Assistant professor AIDS.

TYPES:

CONTRACT NET PROTOCOL (CNP)

The Contract Net Protocol (CNP) is a crucial interaction protocol used in multi-agent

systems for task allocation and coordination. It enables agents to negotiate and

distribute tasks in a decentralized manner, mimicking the process of awarding

contracts. In essence, one agent (the "manager") announces a task, potential agents

(the "contractors") bid on it, and the manager selects the best bid.

Features:

1. Roles:

• Manager: The agent initiating a task and seeking bids.

• Contractor: The agent that receives the task announcement and submits bids.

2. Phases:

1. Task Announcement:

The manager agent initiates the process by broadcasting a "call for proposals"

(CFP) to a group of potential participants. The CFP includes details about the task,

such as its requirements, deadline, and any relevant parameters.

2. Evaluation and Negotiation:

Prepared by M.Nandini,

Assistant professor AIDS.

Agents assess the task and decide if they can fulfil it. If an agent is interested, it

submits a "proposal" (or bid) to the manager, outlining how it will perform the task

and potentially including a cost estimate or other relevant information.

3. Selection and Award:

The manager reviews all the proposals received and selects the most appropriate

one based on predefined criteria (e.g., cost, efficiency, reputation).

4. Communication of Results:

The manager informs all participating agents about the outcome of the selection

process, either awarding the task to the chosen agent or indicating that no suitable

proposal was received.

5. Task Execution and Completion:

The agent awarded the task proceeds to execute it according to the agreed-upon

terms and reports its completion to the manager.

In FIPA-ACL, when using standard interaction protocols like

Contract Net, you should include the “:protocol” parameter to indicate which

interaction protocol is being followed. This helps agents interpret and manage the

sequence of messages correctly.

3. Ex:

(communicative-act cfp

:sender AgentA

:receiver AgentB

:content "(task deliver package zoneA)"

:language fipa-sl

:ontology logistics

:protocol fipa-contract-net

:conversation-id conv123

:reply-by "2025-07-21T16:00:00Z"

)

Prepared by M.Nandini,

Assistant professor AIDS.

Field Meaning

communicative-act cfp

The speech act (also called performative) to call for
proposals.

:sender AgentA The agent requesting the task (initiator / manager).

:receiver AgentB
The agent receiving the CFP (can be multiple agents).

:content

The task to perform (e.g., deliver a package to Zone
A).

:language fipa-sl

The content is written in FIPA Semantic Language

(SL).

:ontology logistics

The domain of discourse (vocabulary/knowledge of
tasks, locations, etc).

:protocol fipa-contract-net
Indicates the use of the Contract Net Protocol.

:conversation-id conv123
Identifier to link all related messages in this
conversation.

:reply-by "2025-07-
21T16:00:00Z"

Deadline for agent to reply with a proposal or refusal.

Prepared by M.Nandini,

Assistant professor AIDS.

Applications:

Robotics: Multiple robots coordinating delivery or search tasks.

Smart Grids: Power sources bidding to fulfill demand requests.

Distributed Sensor Networks: Selecting the best sensor node for a task.

Manufacturing Systems: Scheduling jobs among machines or agents.

AUCTION INTERACTION PROTOCOLS :

In multi-agent systems, auction interaction protocols define the rules and structure
for how agents, acting as buyers and sellers, communicate and negotiate during an
auction to allocate resources or services. These protocols dictate the message types,
sequences, and conditions for bidding, acceptance, and rejection, ensuring orderly
and efficient interaction among agents.

Auction-based protocols are another crucial category of interaction mechanisms.
These protocols mirror real-world auction dynamics, with agents playing roles as
auctioneers and bidders. Two primary variants have emerged: the English auction,
where agents incrementally increase their bids, and the Dutch auction, where prices
decrease until an agent accepts. These mechanisms are particularly effective in
scenarios involving resource allocation and market-based decision making.

Key aspects of auction interaction protocols in MAS:

• Purpose:

These protocols replicate real-world auctions within multi-agent environments,

enabling agents to negotiate and allocate resources efficiently without

centralized control.

Roles:

Prepared by M.Nandini,

Assistant professor AIDS.

• Auctioneer Agent: Initiates the auction, announces prices, and decides

winners.

• Bidder Agents: Compete by submitting bids based on their valuations or

capabilities.

•

Message Types:

Protocols define the specific messages agents can send and receive, such as

"bid," "accept," "reject," or "request".

Sequencing of Messages:

Protocols specify the order in which messages are exchanged and the conditions

under which certain messages are sent or received.

AUCTION TYPES:

Common auction types include English (ascending price) and Dutch

(descending price) auctions.

• English Auction:

A common protocol where the price increases until a single bidder remains,

winning the item.

Prepared by M.Nandini,

Assistant professor AIDS.

• Dutch Auction:

A protocol where the price starts high and decreases until a bidder accepts,

winning the item.

┌───────────────┐

│ Agent A │

│ (Auctioneer) │

└──────┬────────┘

│

1. CFP (call for proposals)

│─────────────────────────────►

│ ┌─────────────┐

│ │ Agent B │

│ │ (Bidder) │

│ └─────────────┘

│ ┌─────────────┐

│ │ Agent C │

│ │ (Bidder) │

│ └─────────────┘

2. Propose (bid with increasing values) ◄─────────────────────────────

│ │

│ │

│ │

3. Announce highest bid & call for higher bids

Prepared by M.Nandini,

Assistant professor AIDS.

│─────────────────────────────►

4. Repeat bids until no higher bids

5. Accept highest proposal and reject others

│───────────────► Agent B (accept-proposal)

│───────────────► Agent C (reject-proposal)

6. Winner (Agent B) performs task and sends inform

│◄─────────────── inform (task done)

Explanation:

1. Agent A (Auctioneer) sends a cfp (call for proposals) to all bidders.

2. Agent B and Agent C respond with increasing bids (propose messages).

3. Agent A updates bidders about the current highest bid and requests higher

bids.

4. Bidding continues until no agent offers a higher bid.

5. Agent A accepts the highest bid and rejects others.

6. The winning agent completes the task and informs the auctioneer.

Applications:

• Task Allocation (Robots/Drones)

→ Assign tasks like delivery or cleaning to the best-suited agent.

• Resource Allocation (Cloud/Edge Computing)

→ Distribute CPU, bandwidth, or memory among competing agents.

• Smart Grid Energy Trading

→ Buy/sell electricity between producers and consumers via bids.

• E-Commerce & Online Auctions

→ Agents bid for products, ads, or stocks dynamically.

Prepared by M.Nandini,

Assistant professor AIDS.

• Sensor Networks

→ Select best sensor nodes for data collection tasks.

• Traffic & Mobility Systems

→ Dispatch taxis or delivery vehicles based on agent bids.

• Healthcare Scheduling

→ Allocate equipment or specialists using bidding among departments.

• Wireless Network Management

→ Allocate frequencies or channels to avoid interference.

AUCTION PROTOCOL IN FIPA ACL:

Step 1: Call for Proposal (CFP)

(communicative-act cfp
:sender AgentA
:receiver (set AgentB AgentC)
:content "(task deliver-package zoneA)"
:language fipa-sl
:ontology logistics
:protocol fipa-english-auction
:conversation-id auction123
:reply-by "2025-07-21T15:00:00Z"
)

 Step 2: Bidder Proposes

(communicative-act propose
:sender AgentB
:receiver AgentA
:content "(bid 20)"
:language fipa-sl
:protocol fipa-english-auction
:conversation-id auction123

)

 Step 3: Auctioneer Accepts

(communicative-act accept-proposal
:sender AgentA

Prepared by M.Nandini,

Assistant professor AIDS.

:receiver AgentB
:content "(task assigned)"
:language fipa-sl
:protocol fipa-english-auction
:conversation-id auction123

)

 Step 4: Inform Result

lisp
CopyEdit
(communicative-act inform
:sender AgentB
:receiver AgentA
:content "(task completed)"
:language fipa-sl
:protocol fipa-english-auction
:conversation-id auction123

)

Key Differences Between CNP and Auction Protocol:

Feature Contract Net Protocol (CNP) Auction Protocol

Purpose Task allocation and coordination
Resource or task allocation

through competitive bidding

Initiator Role
Manager agent sends task offers

(Call for Proposals - CFP)
Auctioneer initiates the auction

Responder

Role

Contractor agents submit

proposals (bids)
Bidder agents submit price bids

Selection

Criteria

Based on proposal quality (e.g.,

cost, time, capability)

Based mostly on price or utility

value

Bidding

Content

Functional proposals (e.g., "I can

do this in X time")
Numeric bids (e.g., "$5")

Interaction

Style

Collaborative; may include

negotiation

Competitive; aims to maximize

gain

Flexibility
More flexible — proposals can

include rich task info

Usually less flexible — focuses

on pricing

Prepared by M.Nandini,

Assistant professor AIDS.

Feature Contract Net Protocol (CNP) Auction Protocol

Common Use

Case

Distributed task allocation (e.g.,

robotics)

Resource allocation,

marketplaces, bandwidth

auctions

AGENT COORDINATION TECHNIQUES:

AGENT COORDINATING TECHNIQUES:

In multi-agent systems (MAS), coordination techniques enable multiple agents to

work together, communicate, and adjust their actions to achieve a common

Prepared by M.Nandini,

Assistant professor AIDS.

goal. These techniques are crucial for ensuring agents cooperate effectively, avoid

conflicts, and optimize overall system performance. Key coordination techniques

include intentional coordination, market-based coordination, hierarchical

coordination, and social network-based coordination. Additionally, centralized,

decentralized, and hybrid approaches offer different trade-offs in terms of

complexity, scalability, and fault tolerance.

Centralized Coordination

Description:

A central agent (or controller) manages the actions of all other agents.

Distributed Coordination

Description:

Agents coordinate locally with peers without a central controller. Each agent makes

decisions based on local information and interactions.

Market-Based (Economy-Inspired) Coordination

Description:

Agents act like economic agents, negotiating or bidding for tasks/resources using

auctions or price mechanisms.

Plan-Based Coordination

Description:

Agents share and synchronize plans or intentions. Coordination is achieved by

aligning or merging their plans.

Communication-Based Coordination

Description:

Coordination through message passing (e.g., using agent communication languages

like FIPA ACL or KQML).

Prepared by M.Nandini,

Assistant professor AIDS.

Learning-Based Coordination

Description:

Agents use machine learning (e.g., reinforcement learning or multi-agent learning)

to learn coordination policies from interaction.

BLACK BOARD:

In multi-agent systems (MAS), blackboard coordination techniques involve agents

sharing information and collaborating through a central data repository, the

"blackboard," instead of direct communication. This shared knowledge base allows

agents to post and retrieve information, facilitating asynchronous collaboration,

particularly useful for complex, incremental problem-solving.

Features:

1. The Blackboard:

• A central data repository, the blackboard, acts as a shared knowledge base for

all agents.

https://www.google.com/search?sca_esv=a500fe4c35fb992d&rlz=1C1CHBD_enIN1128IN1128&cs=0&q=multi-agent%2Bsystems%2B%28MAS%29&sa=X&ved=2ahUKEwiLgIWPpdWOAxXFVmwGHc31Ix8QxccNegQIAhAB&mstk=AUtExfAGmrtRKH89aqO4C8PFn8bfguCCBc9nq70XtErAY_tC2mI82dYcfL-Cyts3dmE4PC7OnG5DIMSh8Qamv8ftlu6pKigd0lZEEozdLM2_Ijp43ldJIIyVd95ocbqvqsCSeZw&csui=3

Prepared by M.Nandini,

Assistant professor AIDS.

• Agents can post information, hypotheses, and partial solutions to the

blackboard.

• Other agents can access and utilize this information to contribute to the overall

solution.

2. Agents (Knowledge Sources):

• Specialized agents, also known as knowledge sources (KSs), are designed to

solve specific sub-problems.

• They read information from the blackboard, process it, and potentially write

new information back to the blackboard.

• Agents can be designed to be reactive to changes on the blackboard, triggering

actions when relevant information is available.

3. Control Component:

• A control component manages the overall process, deciding which agent should

act at a given time based on the blackboard's state.

• This component ensures efficient and coordinated problem-solving by

prioritizing tasks and guiding agent actions.

Example:

Problem: Solve a simple arithmetic expression step-by-step:

Expression:3+5*2

Each agent has limited capability:

• Agent A can perform addition

• Agent B can perform multiplication

The blackboard holds the current state of the expression and the agents update it

when they can act.

• The blackboard starts with the full expression.

• Agent B handles multiplication first (because of operator precedence).

• The updated result is written back to the blackboard.

• Agent A then performs addition.

• Once only one element is left in the blackboard, it is the final result.

.

Advantages of Blackboard Systems:

Prepared by M.Nandini,

Assistant professor AIDS.

• Flexibility:

Blackboard systems can handle complex, dynamic problems by allowing

agents to contribute in an opportunistic and flexible manner.

• Modularity:

The modular nature of the system allows for easy addition or removal of

agents as needed.

• Adaptability:

The system can adapt to changing situations and adjust its problem-solving

approach based on the blackboard's state.

Challenges:

• Control Complexity:

Managing the blackboard and coordinating the actions of multiple agents can

be complex.

• Potential for Inefficiency:

Poorly chosen actions by knowledge sources early in the process can lead to

wasted effort and computational resources.

• Scalability:

As the number of agents and the complexity of the problem increase, the

blackboard system might face scalability challenges.

MEDIATOR

In the fundamentals of multi-agent systems (MAS), a Mediator is a type of agent

that helps manage, coordinate, or resolve interactions between other agents.

Unlike a broker (which connects agents), a mediator often adds logic or decision-

making to help agents work together more effectively.

What Is a Mediator?

A Mediator Agent is an intelligent entity that coordinates or manages interactions

among agents to:

• Resolve conflicts

• Negotiate agreements

• Organize collaboration

• Guide communication patterns

Prepared by M.Nandini,

Assistant professor AIDS.

It encapsulates interaction logic so other agents can focus on their own goals.

Workflow of a Mediator

1. Agents Register with the mediator.

2. Agents Make Requests or submit goals.

3. Mediator Coordinates by:

o Handling communication

o Ensuring protocols (e.g., negotiation, auctions)

o Preventing conflicts (e.g., shared resource access)

4. Mediator Delivers Results or controls outcomes (e.g., selects winner in

auction).

Prepared by M.Nandini,

Assistant professor AIDS.

Benefits:

Benefit Description

✅ Centralized coordination

logic

Easier to manage complex interactions.

✅ Conflict management
Mediator can prevent or resolve deadlocks and

clashes.

✅ Flexible protocols
Mediator can support negotiation, auctions,

voting, etc.

✅ Encapsulation Reduces complexity in individual agents.

Limitations:

Prepared by M.Nandini,

Assistant professor AIDS.

Limitation Description

 Central point of

failure

If the mediator fails, coordination breaks.

 Scalability limits
One mediator handling many agents can become a

bottleneck.

 Increased

dependency

Agents rely on the mediator for coordination.

BROKER

In the fundamentals of multi-agent systems (MAS), the Broker Coordination

Technique is a decentralized coordination model where a broker agent helps

facilitate communication and task allocation among other agents. It is commonly

used for dynamic service discovery, task distribution, and resource

matchmaking.

Component Description

Broker

Agent

An intermediary that matches service requesters with service

providers. It does not perform the task but coordinates between

agents.

Requester Agent :Requests a service or resource.

Provider AgeNT
:Offers a service or

resource.

How It Works:

1. Request: A requester agent sends a task or service

request to the broker.

2. Search/Match: The broker searches for suitable

provider agents that can handle the request.

Prepared by M.Nandini,

Assistant professor AIDS.

(optional).

3. Forward: The broker connects or redirects the requester

to the selected provider(s).

4. Execution: The requester and provider communicate

directly to complete the task.

5. Update: The broker may be updated on the task status

:

Provider Agent Broker Agent Requester Agent

| | |

1. Register service -------->| |

| | |

|<------ Service info updated |

| | |

|< ------ Request Task -- 2. Send request

| |

3. Find matching provider --| |

| ------ Provider info ->|

| |

|<----- Task request/response (optional) --- >|

| | |

Requester Agent ─────┐

▼

[BROKER AGENT]

▲

Provider Agent ◄─────┘

Prepared by M.Nandini,

Assistant professor AIDS.

(Executes task and returns result)

Pros:

1. Decouples Agents

o Brokers act as intermediaries, so agents don’t need to know about each
other directly.

o Simplifies agent discovery and dynamic connection.

2. Scalability

o Facilitates large-scale systems by managing service registries and

matchmaking efficiently.

3. Flexibility

o Allows dynamic joining/leaving of agents without disrupting the system.

o Supports heterogeneous and evolving agent populations.

4. Reduced Communication Overhead

o Brokers reduce the need for all agents to broadcast service requests.

CONS:

Single Point of Failure

• If the broker is centralized and goes down, matchmaking fails.

• May become a bottleneck under heavy load.

Latency Overhead

• Additional step in communication can introduce delays.

Limited Control

• Broker only matches agents; does not manage or control their interactions

after connection.

• Coordination conflicts may arise after matchmaking.

Complexity in Broker Design

• Maintaining up-to-date registries and efficient matchmaking can be

challenging.

DIFFERENCE:

BLACK BOARD:

Prepared by M.Nandini,

Assistant professor AIDS.

Agents read from and write to the Blackboard.

- Coordination happens indirectly via the shared blackboard.

MEDIATOR:

Agents communicate **through** the mediator.

- Mediator actively resolves conflicts and synchronizes actions.

BROKER:

Broker matches agents and then they communicate directly.

DISTRIBUTED PROBLEM SOLVING CONCEPTS:

Distributed problem solving (DPS) in multi-agent systems (MAS) involves breaking

down complex problems into smaller, manageable sub-problems that can be solved

concurrently by multiple agents. These agents then cooperate and coordinate to

achieve a common goal, with interactions and information sharing being crucial

aspects.

Distributed Problem Solving involves multiple agents working cooperatively to

solve a global problem by dividing it into subproblems, solving those locally, and

combining the results.

Features:

• Problem Decomposition:

The core of DPS is dividing a large problem into smaller, more manageable

sub-problems that can be tackled by individual agents.

• Agent Specialization:

Agents can be specialized to handle specific sub-problems or tasks based on

their expertise or capabilities.

• Collaboration and Coordination:

Agents need to communicate and coordinate their actions to ensure a consistent

and coherent overall solution.

• Distributed Search and Optimization:

Algorithms like DCSPs and DCOPs are used to find optimal solutions in a

distributed manner, where agents may have different constraints or objectives.

Prepared by M.Nandini,

Assistant professor AIDS.

• Communication and Negotiation:

Agents interact through communication protocols, negotiation mechanisms,

and other coordination strategies to share information, resolve conflicts, and

reach agreements.

TWO PROMINENT MODELS IN DPS ARE

• Distributed Constraint Satisfaction Problems (DCSPs) and

• Distributed Constraint Optimization Problems (DCOPs).

Distributed Constraint Satisfaction Problems (DCSPs):

A Distributed Constraint Satisfaction Problem (DCSP) is a fundamental
problem-solving framework in multi-agent systems (MAS) where multiple agents
collaboratively assign values to variables such that all constraints are satisfied.

Unlike centralized CSPs, the variables and constraints in a DCSP are distributed

across agents, and agents must work together — often asynchronously — to find a
solution.

DCSP Components

1. Agents

o Each agent owns and controls one or more variables.
2. Variables

o Variables have domains: a set of values that can be assigned.
3. Constraints

o Constraints define permitted combinations of values among variables.
o Can be intra-agent (local) or inter-agent (between agents).

4. Communication

o Agents must communicate to share variable assignments and enforce
constraints.

Goal of a DCSP

Find a complete and consistent assignment to all variables such that all

constraints are satisfied — using only distributed communication and local

computation.

DCSP Workflow in MAS

1. Model problem: Define agents, variables, domains, constraints.
2. Local search or backtracking: Each agent proposes variable values.
3. Constraint checking: Agents communicate and check consistency.
4. Backtrack if necessary: If a conflict is detected, backtrack or change

assignments.

Prepared by M.Nandini,

Assistant professor AIDS.

5. Converge to solution: A globally consistent solution is eventually found (if
one exists).

Example:

Three agents (A1, A2, A3) want to schedule a meeting.

Each agent has a preferred time slot, and the meeting can only happen if all three

are available at the same time.

Component Description

Agents A1, A2, A3

Variables x₁ (A1's time), x₂ (A2's time), x₃ (A3's time)

Domains {9am, 10am, 11am} for each variable

Constraints

x₁ = x₂ = x₃ (they
must all agree on the
same time)

How It Works Visually:

• Each agent proposes a value (e.g.,A1 proposes 10am)
• They communicate and check whether their proposed values

are equal

• If x₁ = x₂ = x₃, the solution is valid
• If there's a mismatch, agents backtrack or revise their choice

DCSP Applications in Multi-Agent Systems (Short)

• Meeting Scheduling: Finding a common available time for
multiple agents.

• Resource Allocation: Assigning shared resources without
conflicts (e.g., bandwidth, machines).

• Multi-Robot Coordination: Avoiding collisions by assigning
non-overlapping paths or time slots.

Prepared by M.Nandini,

Assistant professor AIDS.

• Distributed Sensor Networks: Coordinating sensor activation
times to avoid overlap.

• Distributed Scheduling: Assigning tasks or shifts ensuring no
conflicts in assignments.

• Traffic Signal Control: Synchronizing lights to avoid
conflicting signals.

Distributed Constraint Optimization Problems (DCOPs):

A Distributed Constraint Optimization Problem (DCOP) is a framework used to
model and solve optimization problems in multi-agent systems where:

• Multiple agents control variables.
• Variables have possible values (domains).
• Constraints define costs or utilities over combinations of variable

assignments.
• The agents coordinate to find assignments to variables that optimize (usually

minimize) the total cost or maximize the total utility of the system.

Key Concepts:

• Agents:

Independent entities in a system, each holding variables and constraints.

• Variables:

Represent choices or decisions agents can make, each with a domain of

possible values.

• Constraints:

Relationships between variables that define what combinations of values are

acceptable or desirable.

• Optimization:

The goal is to find a combination of variable assignments that minimizes the

overall cost or maximizes the overall utility

Prepared by M.Nandini,

Assistant professor AIDS.

WORKFLOW:

1. Problem Definition:

DCOPs are defined by a set of agents, variables, domains, constraints, and an

assignment function that maps variables to agents.

2. 2. Distributed Nature:

Agents operate independently, but they need to coordinate to find a solution

that satisfies the global constraints and optimizes the objective function.

3. 3. Communication:

Agents communicate with each other, exchanging information about their

variables and constraints to coordinate their decisions.

4. 4. Constraint Satisfaction and Optimization:

Agents aim to find a combination of variable assignments that satisfy all the

constraints (e.g., all constraints are met) while also optimizing the global

objective (e.g., minimizing the total cost).

EXAMPLE:

Three agents—A1, A2, A3—need to schedule a meeting.
Each agent controls a variable representing their meeting time choice:

• x1 for A1

• x2 for A2

• x3 for A3

Each variable can take values from the domain: {9am, 10am, 11am}.

What makes this a DCOP (not just DCSP)?

• Agents have preferences (soft constraints) over meeting times rather than
strict requirements.

• For example:
o A1 prefers 9am (cost 0), less likes 10am (cost 1), dislikes 11am (cost

3).
o A2 prefers 10am (cost 0), dislikes 9am (cost 2), and 11am (cost 2).
o A3 prefers 11am (cost 0), dislikes 9am (cost 3), and 10am (cost 1).

• The constraint: They want to meet at the same time (otherwise cost is very
high).

Step 1: Model the problem

Prepared by M.Nandini,

Assistant professor AIDS.

Variable Domain Owner Agent

x1

{9,10,11}

A1

x2 {9,10,11} A2

x3 {9,10,11} A3

Define costs (local preferences)

 Time Cost

A1 9am 0

A1 10am 1

A1 11am 3

A2 9am 2

A2 10am 0

A2 11am 2

A3 9am 3

A3 10am 1

A3 11am 0

Step 3: Define constraints between variables

• If x1 ≠ x2, add a large penalty cost (e.g., 10)

• If x2 ≠ x3, add a large penalty cost (10)

• If x1 ≠ x3, add a large penalty cost (10)

Step 4: Goal

• Find assignments to x1, x2, and x3 minimizing the sum of preference costs

+ constraint penalties.

Step 5: Solution (Intuition)

• If they all meet at 10am:

Prepared by M.Nandini,

Assistant professor AIDS.

o A1 cost: 1
o A2 cost: 0
o A3 cost: 1
o Constraints: 0 (all equal)
o Total = 2

• At 9am:
o A1: 0
o A2: 2
o A3: 3
o Total = 5

• At 11am:
o A1: 3
o A2: 2
o A3: 0
o Total = 5

So 10am is the optimal meeting time with minimum total cost.

DCOP Applications in Multi-Agent Systems (Short)

• Smart Grids: Optimize energy distribution and demand response.
• Sensor Networks: Schedule sensors to save energy and maximize coverage.
• Multi-Robot Systems: Assign tasks and plan collision-free paths.
• Traffic Control: Coordinate traffic lights to reduce congestion.
• Distributed Scheduling: Manage shifts, tasks, and shared resources.
• Supply Chain: Optimize inventory and deliveries across warehouses.

• Telecommunications: Assign frequencies and balance network loads.

ROLES AND TEAMWORK IN MULTI AGENT SYSTEMS:

A multi-agent system consists of multiple interacting agents, which are
autonomous entities capable of perceiving their environment and acting to
achieve individual or collective goals.

Prepared by M.Nandini,

Assistant professor AIDS.

Roles:

Roles in Multi-Agent Systems

Role in MAS defines a set of responsibilities, behaviours, and interactions expected
from an agent within the system. Roles help organize the agents’ functions and
coordinate their activities.

• Definition: A role is a specification of a behavior or function that an agent
can perform in the context of the MAS.

• Purpose: Helps to structure the system by dividing tasks and responsibilities.
• Examples of Roles:

o Leader: Coordinates the group, makes high-level decisions.
o Follower: Executes tasks as instructed by the leader.
o Mediator: Resolves conflicts between agents.
o Scout: Explores environment and gathers information.
o Worker: Performs specific tasks or actions to achieve goals.

Teamwork in Multi-Agent Systems

Teamwork refers to how agents collaborate, coordinate, and communicate to
achieve shared or individual goals effectively.

• Cooperation: Agents work together by sharing knowledge, resources, and
tasks.

• Coordination: Managing dependencies and timing of agents’ actions to
avoid conflicts and optimize outcomes.

• Communication: Exchange of information through protocols or messages.
• Joint Intentions: Agents share common goals or plans and commit to

achieving them collaboratively.
• Task Allocation: Distributing tasks dynamically or statically among agents

based on their roles, capabilities, or availability.

Prepared by M.Nandini,

Assistant professor AIDS.

• Conflict Resolution: Mechanisms for agents to handle disagreements or
competition over resources or goals.

How Roles and Teamwork Interact

• Roles help define who does what.
• Teamwork defines how agents collaborate and interact.
• Together, they allow MAS to be organized, scalable, and flexible in

dynamic environments.

Prepared by M.Nandini,

Assistant professor AIDS.

Prepared by M.Nandini,

Assistant professor AIDS.

UNIT III

COOPERATION, NEGOTIATION, AND LEARNING

Cooperative And Non-Cooperative Agents, Negotiation Techniques: Bidding,
Bargaining, Argumentation, Game Theory: Basics And Applications In MAS,
Reinforcement Learning In Multi-Agent Settings, Case Studies: Multi-Robot
Coordination, Resource Allocation, Conflict Resolution And Consensus Building.

COOPERATIVE AND NON COOPERATIVE AGENTS IN MULTI AGENT

SYSTEMS:

In multi-agent systems (MAS), agents can exhibit either cooperative or non-cooperative

behavior. Agents can interact in a variety of ways depending on their goals,

environment, and design. One of the most fundamental distinctions is between

cooperative and non-cooperative agents.

COOPERATIVE AGENTS

In multi-agent systems, cooperative agents are those that work together towards a

shared goal, collaborating and coordinating their actions to achieve a common

objective. This contrasts with competitive agents that act in opposition to each

other. Cooperative agents rely on mechanisms like resource sharing, joint decision-

making, and effective communication to maximize the group's success.

Key aspects of cooperative agents:

Shared Goal:

• Cooperative agents are united by a common objective, and their actions are

directed towards achieving this shared goal.

Collaboration:

• They interact and coordinate their actions to optimize performance and achieve

the shared goal effectively.

Resource Sharing:

• Agents may share resources, information, or knowledge to facilitate joint

decision-making and task completion.

Communication:

Prepared by M.Nandini,

Assistant professor AIDS.

• Effective communication is crucial for coordination and ensuring that agents are

aware of each other's actions and intentions.

Joint Decision-Making:

• Agents may engage in joint decision-making processes to determine the best

course of action for the group.

EXAMPLE :

Autonomous Drone Swarm for Disaster Rescue Operations

• A swarm of drones (agents) cooperates to search for survivors in a disaster-hit

area (earthquake, flood, etc.).

• Each drone is equipped with sensors (cameras, infrared, GPS) and actuators

(rotors, payload mechanisms).

• They communicate with each other to share mapping data, avoid collisions, and

coordinate search patterns.

• The shared goal is to locate survivors efficiently and deliver aid.

ADVANTAGES:

1. Improved Problem-Solving Capability

Prepared by M.Nandini,

Assistant professor AIDS.

• Multiple agents can handle complex tasks that a single agent cannot solve alone.

• Example: Distributed search and rescue, smart grid management.

2. Scalability

• The system can be scaled by adding more agents without redesigning the entire

architecture.

• Supports large and dynamic environments.

3. Fault Tolerance & Robustness

• If one agent fails, others can take over its task.

• Ensures system reliability and continuity.

4. Faster Task Execution

• Parallel processing through task distribution among multiple agents.

• Speeds up operations like data collection, monitoring, or collaborative

transportation.

5. Resource Sharing & Optimization

• Agents can share information, resources, and capabilities to achieve optimal

performance.

• Reduces redundancy and increases efficiency.

6. Flexibility & Adaptability

• Cooperative agents can adapt to dynamic changes in the environment or task

conditions.

• Example: Autonomous vehicle fleets rerouting in traffic.

7. Decentralized Decision-Making

• Eliminates the need for a central controller.

• Enhances scalability, robustness, and reduces communication bottlenecks.

DISADVANTAGEOUS:

1. Complexity in Coordination

Prepared by M.Nandini,

Assistant professor AIDS.

• Designing efficient communication and coordination protocols is challenging.

• Synchronizing actions among multiple agents without conflicts is difficult.

2. High Communication Overhead

• Continuous message passing between agents can consume bandwidth and lead

to delays.

• Increases network load, especially in large-scale systems.

3. Scalability Issues in Dense Systems

• Although scalable, dense agent environments may lead to performance

bottlenecks due to overcrowded communication or resource contention.

4. Conflict Resolution

• Agents may have conflicting goals or actions, requiring complex conflict

detection and resolution strategies.

• Deadlocks and priority inversion are possible.

5. Security Risks

• Communication between agents can be susceptible to cyber-attacks (e.g., data

interception, spoofing).

• Trust and authentication mechanisms are required.

Applications of Cooperative Agents (In Short):

1. Disaster Management – Drone swarms for search & rescue.

2. Autonomous Vehicles – Coordinated traffic flow & platooning.

3. Smart Grids – Load balancing & energy optimization.

4. Industrial Automation – Collaborative warehouse & factory robots.

5. Telecom Networks – Dynamic routing & load distribution.

6. Healthcare – Patient monitoring via cooperative devices.

7. Environmental Monitoring – Distributed sensors for pollution & wildlife.

8. Defense Systems – Coordinated UAV/UGV missions.

Prepared by M.Nandini,

Assistant professor AIDS.

9. E-commerce – Automated trading & dynamic pricing agents.

10. Smart Cities – Traffic management, resource allocation.

NON COOPERATIVE AGENTS:

In Multi-Agent Systems (MAS), Non-Cooperative Agents are agents that pursue

their own individual goals and do not collaborate with other agents, even if their

actions impact others. They are typically self-interested, competitive, or even

adversarial.

CHARACTERISTICS:

1. Self-Interested Behavior

• Each agent acts to maximize its own utility or goal, without considering the

overall system performance.

2. No Coordination or Collaboration

• Agents do not share plans, resources, or intentions with others.

• They act independently, even if their actions affect others.

3. Competitive or Adversarial Interactions

• Often involved in competition for resources, tasks, or rewards.

• Can exhibit adversarial behavior (e.g., sabotage, blocking opponents).

4. Strategic Decision-Making

• Agents may use tactics like negotiation, bluffing, deception, or alliances to

achieve personal objectives.

• Decision-making is influenced by predictions of other agents’ strategies.

5. Game-Theoretic Behavior

• Their interactions are modeled using game theory concepts (e.g., Nash

Equilibrium, Prisoner’s Dilemma).

• Agents assume that others are also acting in self-interest.

6. Conflicts & Resource Contention

Prepared by M.Nandini,

Assistant professor AIDS.

• High chances of conflict or competition over shared resources.

• Conflict resolution mechanisms (like auctions or arbitration) are often required.

7. Partial or No Trust Among Agents

• Agents may act maliciously or deceptively.

• Systems must handle trust, authentication, and verification issues.

8. Global Sub-Optimality

• System-wide efficiency is not guaranteed as agents pursue individual goals.

• May lead to selfish behaviors that degrade overall system performance.

Advantages of Non-Cooperative Agents:

1. Realistic Modeling of Competitive Scenarios

• Many real-world environments (markets, auctions, games) are inherently

competitive, making non-cooperative agents suitable for simulating such

systems.

2. Encourages Strategic Decision-Making

• Agents develop strategies (game theory, negotiation, deception) to maximize

individual benefits, leading to intelligent and adaptive behaviors.

3. Promotes Innovation and Optimization

• Competition can drive agents to innovate, find efficient solutions, and

optimize resource usage to outperform rivals.

4. Scalable in Open Environments

Prepared by M.Nandini,

Assistant professor AIDS.

• Non-cooperative systems can easily accommodate new agents without

requiring extensive coordination protocols.

5. No Dependency on Cooperation Mechanisms

• Simplifies agent design by avoiding complex coordination, synchronization,

or cooperation algorithms.

DISADVANTAGES:

1. Lack of Global Optimality

• Agents act selfishly, which can lead to sub-optimal outcomes for the entire

system (e.g., congestion, inefficiency).

2. Conflict and Deadlock Risks

• High chances of conflicts over resources, leading to deadlocks, collisions, or

unfair resource distribution.

3. Increased Complexity in Conflict Resolution

• Requires mechanisms like auctions, negotiations, or arbitration to resolve

disputes between agents.

4. Trust and Security Issues

• Agents may engage in deceptive, malicious, or adversarial behavior, leading to

security vulnerabilities.

5. High Computational Overhead

• Strategic reasoning and predicting opponents' actions can be computationally

expensive, especially in large systems.

APPICATIONS:

1. Online Auctions – Bidding bots competing for the best price.

2. Stock Trading Systems – Trading agents maximizing profits.

3. Market Competition – Autonomous agents representing rival companies.

4. Adversarial Robotics – Competing robots in games (e.g., RoboCup Soccer).

5. Selfish Network Routing – Agents minimizing their own latency.

Prepared by M.Nandini,

Assistant professor AIDS.

6. Cybersecurity – Simulating attacker-defender scenarios.

7. Negotiation Systems – Automated negotiation between conflicting interests.

8. Competitive Transport Systems – Selfish vehicle routing for shortest path.

NEGOTIATION TECHNIQUES MULTI-AGENT SYSTEM:

Negotiation is an important approach for agents to co-operate and reach agreement

in multi- agent systems (MAS).

In multi-agent systems, negotiation techniques enable autonomous agents to

interact, communicate, and reach agreements on shared goals or resources. These

techniques are crucial for resolving conflicts, allocating resources, and coordinating

actions within the system. Various approaches, including auctions, contract

nets, and argumentation, are employed to facilitate these interactions.

• Autonomy: Agents act independently but can interact and negotiate with each

other.

• Cooperation: Agents work together to achieve common objectives, often

through negotiation.

• Conflict: Agents may have conflicting interests or priorities, necessitating

negotiation to resolve disagreements.

• Communication: Agents exchange information and proposals during the

negotiation process.

• Agreement: The goal of negotiation is to reach a mutually acceptable solution

or outcome.

https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=contract%2Bnets&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=contract%2Bnets&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=argumentation&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIBhAC&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Autonomy&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIDhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Cooperation&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIEhAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Conflict&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIERAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Communication&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIEBAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3
https://www.google.com/search?sca_esv=bbf5a8ec84850240&rlz=1C1VDKB_enIN1134IN1137&cs=0&q=Agreement&sa=X&ved=2ahUKEwj5w5aD--uOAxXA2TgGHRCrIskQxccNegQIDxAB&mstk=AUtExfCeilY2-dTVzj2t6jbKm-a0JhGFfLjsZlzXWETetIBRGEvByA24ifkQ4TEjwfZgbBv6-_yVzq7Y0ArBlpnKsYEsGOQpW0gGbCEo7f84HvMuSsT5M6Pg8kEe-Rji6hRclLg&csui=3

Prepared by M.Nandini,

Assistant professor AIDS.

BIDDING:

Bidding is a competitive negotiation technique where multiple agents place offers

(bids) to acquire a task, resource, or service. The agent offering the best bid (according

to predefined criteria) wins the negotiation.

Key Features:

1. Competitive Interaction: Agents compete to win by submitting bids.

2. Centralized or Decentralized Auctions: Can involve a centralized auctioneer

(auction-based systems) or distributed bidding (peer-to-peer).

3. Autonomous Decision-Making: Agents decide their bidding strategies based on

local goals and environment knowledge.

4. Efficient Resource Allocation: Common in task allocation, service trading,

cloud resource management, etc.

Prepared by M.Nandini,

Assistant professor AIDS.

Advantages of Bidding Negotiation in MAS:

1. Efficient Task and Resource Allocation

• Bidding ensures that tasks/resources are allocated to the most suitable or

competitive agent, maximizing system efficiency.

2. Scalability

• Supports a large number of agents as the auctioneer can manage multiple bids

without direct coordination among all agents.

3. Decentralized Decision Making

• Agents independently decide their bids based on local knowledge, reducing the

need for centralized control.

4. Flexibility in Dynamic Environments

• Suitable for environments where tasks/resources are dynamic and agents

continuously join/leave.

5. Promotes Competition and Fairness

• Encourages agents to bid fairly based on their capabilities, ensuring transparent

competition.

Prepared by M.Nandini,

Assistant professor AIDS.

6. Simple & Well-Understood Mechanisms

• Auction and bidding protocols (like English, Dutch, Sealed-Bid) are simple to

implement and widely used.

7. Reduces Communication Overhead

• Bidding interactions are often concise, requiring minimal message exchange

compared to complex negotiation dialogues.

Disadvantages of Bidding Negotiation in MAS:

1. High Computational Cost for Bidding Strategy

• Agents may require complex algorithms to decide optimal bids, especially in

dynamic or competitive environments.

2. Potential for Suboptimal Global Solutions

• Agents act selfishly to win bids, which may not always result in globally optimal

task allocation.

3. Winner’s Curse

• The winning agent may overbid (underestimate the task's cost or overestimate its

capability), leading to inefficient execution or failure.

4. Susceptible to Strategic Manipulation

• Agents might engage in dishonest bidding, collusion, or price-fixing, especially

in open systems.

5. Centralized Auctioneer Bottleneck

• In centralized auctions, the auctioneer can become a communication and

computation bottleneck if too many agents are bidding.

6. Resource-Rich Agents Dominate

• Agents with more resources or better information may consistently win bids,

leading to imbalance and unfairness.

Applications :

1. Task Allocation in Multi-Robots – Robots bid for tasks like delivery or area

coverage.

Prepared by M.Nandini,

Assistant professor AIDS.

2. Cloud Resource Allocation – Bidding for processing/storage resources in data

centers.

3. E-Commerce Auctions – Buyer/seller agents bid for products/services.

4. Supply Chain & Logistics – Agents bid for order fulfillment and delivery tasks.

5. Spectrum Allocation – Telecom agents bid for frequency bands.

6. Smart Grids Energy Trading – Real-time energy bids between

producers/consumers.

7. Manufacturing Scheduling – Machines bid to execute jobs in smart factories.

8. Edge/Fog Computing – Devices bid to process IoT tasks efficiently.

BARGAINING:

Bargaining in multi-agent systems (MAS) involves autonomous agents agreeing on

terms for shared goals or resource allocation through structured protocols like auctions

and contract nets, employing strategies like argumentation, deep reinforcement learning

to adapt to opponents, and building trust through transparency to ensure successful

collaboration and robust system performance.

In multi-agent systems (MAS), bargaining is a type of automated negotiation where two or

more autonomous agents with conflicting interests try to reach a mutually acceptable

agreement.

It’s similar to human bargaining (e.g., two people negotiating the price of a car), but here the
negotiators are software agents.

Prepared by M.Nandini,

Assistant professor AIDS.

Key Aspects of Bargaining in MAS

• Autonomous Agents:

Agents operate independently, possessing their own goals and knowledge, and thus require

negotiation to coordinate and resolve conflicts.

• Mutual Agreement:

The primary goal is to find a compromise or deal that satisfies all participating agents, or at

least meets a minimum acceptable threshold.

• Exchange of Offers:

The core mechanic involves agents submitting proposals and counter-proposals, with each

party making concessions to move towards an agreement.

• Conflicting Preferences:

In many scenarios, agents have different priorities or preferences over various issues (e.g.,

price, quantity), making negotiation necessary to bridge these differences.

• Negotiation Protocols:

The entire process is governed by specific rules and procedures that dictate how offers are

made, how agents communicate, and when the negotiation concludes.

Advantages of Bargaining in MAS

• Decentralized decision-making – no need for a central authority.

• Flexibility – agents can negotiate on multiple issues (price, time, quality, resources).

• Conflict resolution – helps agents with conflicting interests find a compromise.

• Adaptability – can work in dynamic and uncertain environments (e.g., changing

resources).

• Scalability – can be applied in large distributed systems.

• Fairness potential – game-theoretic approaches (e.g., Nash bargaining) can ensure

equitable outcomes.

Disadvantages of Bargaining in MAS

• Computationally expensive – complex strategies and learning models need high

resources.

• Time-consuming – may require many rounds of offers and counteroffers.

• Risk of deadlock – negotiations may fail if agents don’t compromise.

• Incomplete information – agents may hide preferences, leading to suboptimal

agreements.

Prepared by M.Nandini,

Assistant professor AIDS.

• Communication overhead – frequent message exchanges increase system load.

• Strategic manipulation – selfish agents may exploit cooperative ones.

Applications of Bargaining in MAS

1. E-Commerce & Online Marketplaces

o Buyer and seller agents negotiate prices, delivery terms, or bundles.

2. Resource Allocation

o Agents bargain for CPU time, bandwidth, memory, or energy in distributed

computing and cloud systems.

3. Supply Chain Management

o Companies’ software agents negotiate contracts, delivery schedules, and prices.

4. Smart Grids & Energy Trading

o Household/producer agents bargain for energy buying/selling at dynamic prices.

5. Wireless Networks

o Devices negotiate for spectrum allocation and bandwidth sharing.

6. Task Allocation in Robotics

o Robots negotiate who does which task in multi-robot systems.

7. Transportation & Logistics

o Agents bargain for vehicle routing, cargo allocation, and scheduling.

Bargaining in MAS is powerful for decentralized conflict resolution and resource distribution, but

it comes with challenges like time, complexity, and risk of deadlock.

ARGUMENTATION:

What is Argumentation in MAS?

• Argumentation is a negotiation technique where agents don’t just exchange offers (like in

bargaining), but also justify, explain, and persuade using arguments.

• An argument is a piece of reasoning supporting or attacking a proposal.

• It’s inspired by human reasoning — instead of just saying “I want X”, an agent says “I
want X because Y”.

Prepared by M.Nandini,

Assistant professor AIDS.

Key Components & Processes

• Arguments:

Agents express claims or positions supported by justifications or beliefs, which are

structured to support or refuse a standpoint.

• Argument Structure:

Arguments often take the form of "support ◊ conclusion," with different types

including:

• Informational: Beliefs -> Belief (e.g., If it's cloudy, it might rain).

• Motivational: Beliefs/Desires -> Desire (e.g., You don't want to get wet if it's

cloudy).

• Practical: Belief/Sub-goals -> Goal (e.g., Put on a raincoat if it's cloudy and you

have one).

• Argumentation Dialogue:

Prepared by M.Nandini,

Assistant professor AIDS.

This involves a structured exchange where agents present arguments, rebut

opposing arguments, and provide reasons for accepting or rejecting claims.

• Argumentation Frameworks:

These frameworks provide a formal structure for representing arguments and their

relationships (like attacks or support) to determine which arguments are

acceptable.

• Acceptability and Inference:

Agents use rules and inference mechanisms to evaluate the strength and

acceptability of arguments, often employing computational logic to guide their

reasoning.

Why Argumentation is Used?

• Conflict Resolution:

It provides mechanisms for agents to negotiate and find common ground when their

individual goals or beliefs conflict.

• Knowledge Sharing and Coordination:

Agents can share information and coordinate actions by persuading others of a

particular point of view or strategy.

• Decision-Making:

Argumentation enables collaborative or collective decision-making processes,

especially when agents have partial knowledge and need to reach a consensus.

• Internal Reasoning:

It serves as a powerful mechanism for modeling an agent's own internal reasoning

process and justifying its choices.

In essence, argumentation in multi-agent systems creates a formalized way for
autonomous entities to communicate and interact, much like humans do when debating,
negotiating, and persuading, to achieve a consistent and reasoned outcome.

Prepared by M.Nandini,

Assistant professor AIDS.

Advantages of Argumentation in MAS

• Richer negotiation → goes beyond offers, includes reasons and justifications.

• Transparency & trust → agents explain their choices, improving cooperation.

• Better conflict resolution → agents can attack, defend, and refine arguments.

• Flexibility → supports complex, multi-issue disputes.

• Knowledge sharing → agents reveal hidden constraints, preferences, or context.

• Consensus building → promotes cooperative decision-making, not just compromise.

Prepared by M.Nandini,

Assistant professor AIDS.

Disadvantages of Argumentation in MAS

• Computationally expensive → reasoning, evaluating, and generating arguments takes

resources.

• Communication overhead → many more messages than simple bargaining.

• Risk of manipulation → agents may give misleading or strategic arguments.

• Ontology/knowledge alignment needed → agents must share common understanding of

concepts.

• Slower negotiation → compared to quick offer-based bargaining.

Applications of Argumentation in MAS

1. E-Government & Policy Making

o Agents argue for/against policies, regulations, and resource allocation.

2. Legal & Dispute Resolution Systems

o AI mediators use argumentation for conflict resolution and legal reasoning.

3. E-Commerce Negotiation

o Buyer/seller agents justify prices, delivery times, or service conditions.

4. Healthcare Decision Support

o Agents argue about treatment options or medical resource distribution.

5. Collaborative Robotics / Multi-Robot Systems

o Robots justify why they should take certain tasks or routes.

6. Smart Grids & Energy Management

o Household/producer agents argue over energy usage, pricing, and distribution.

7. Multi-agent Collaboration Platforms

o Research, planning, and knowledge sharing where justification matters.

DIFFERENCE BETWEEN BIDDING,BARGAINING, ARGUMENTATION:

Aspect Bidding Bargaining Argumentation

Definition

Agents submit offers

(bids) in a

competitive process,

usually in auctions.

Agents exchange

offers &

counteroffers until

they reach

agreement.

Agents exchange not only offers

but also reasons, justifications,

and counter-arguments.

Interaction

Style

Competitive (auction-

style).

Compromising

(concession-based).
Persuasive (reasoning-based).

Focus
Selecting the best bid

(price, cost, task).

Finding a mutually

acceptable deal.

Persuading others by explaining

preferences/constraints.

Communication
Minimal (bid values

only).

Medium (offers &

counteroffers).

High (offers +

explanations/arguments).

Prepared by M.Nandini,

Assistant professor AIDS.

Aspect Bidding Bargaining Argumentation

Outcome

Allocation of

resource/task to

highest/lowest

bidder.

Agreement after

concessions.

Agreement based on reasoning

and persuasion.

Example in

MAS

Contract Net Protocol

(CNP) – agents bid
for tasks.

Buyer-seller agents

negotiating price.

Agents in policy-making or

healthcare justifying choices.

In short:

• Bidding → competition through bids (auctions, task allocation).

• Bargaining → negotiation with offers & counteroffers (price, time, resources).

• Argumentation → negotiation with reasons & persuasion (explaining why).

GAME THEORY: BASICS AND APPLICATIONS IN MAS

Game theory is a mathematical framework for analyzing strategic interactions among

rational decision-makers. When applied to Multi-Agent Systems (MAS), it provides the

foundational principles for designing autonomous agents that can cooperate, compete,

and negotiate effectively in complex environments.

Prepared by M.Nandini,

Assistant professor AIDS.

Game theory: The basics

Key concepts

• Players: The decision-makers whose outcomes are interdependent. In a MAS, these

are the autonomous agents.

• Strategies: The complete plan of action that a player will take for every possible

situation that might arise during a game.

o Pure strategy: A deterministic plan of action.

o Mixed strategy: A probabilistic plan of action, where a player chooses between

several pure strategies randomly.

• Payoffs: The utility or reward a player receives for a particular outcome, which can

be quantified in any form, such as money, time, or a numerical score.

• Equilibrium: A stable state in a game where no player has an incentive to

unilaterally change their strategy.

o Nash Equilibrium: A state where each player's strategy is the best response to

the strategies of all other players. The Prisoner's Dilemma is a classic example of

how a Nash Equilibrium can lead to a collectively suboptimal outcome.

Types of games

• Cooperative vs. Non-cooperative: Cooperative games involve players forming

enforceable agreements to maximize collective payoffs, while non-cooperative

games involve self-interested players who cannot make binding agreements.

• Zero-sum vs. Non-zero-sum: In a zero-sum game, one player's gain is equivalent

to another's loss, making the net change in wealth zero. Non-zero-sum games, such

as business partnerships, allow for all participants to gain or lose.

• Simultaneous vs. Sequential: In simultaneous games, players make decisions at

the same time without knowing the other's moves. In sequential games, players take

turns, with later players having knowledge of previous moves.

Prepared by M.Nandini,

Assistant professor AIDS.

Advantages of Game Theory in MAS

1. Structured Decision-Making

o Provides a mathematical framework to model agent interactions.

2. Strategic Behaviour Modelling

o Captures competition, cooperation, and conflict between agents.

3. Predictability

o Equilibrium concepts (like Nash equilibrium) predict possible outcomes.

4. Fairness & Efficiency

o Solutions like Nash Bargaining or Pareto optimality ensure fairness.

5. Wide Applicability

o Can be applied to economics, resource allocation, robotics, networks, etc.

6. Supports Both Competition & Cooperation

o Works for zero-sum (conflict) and non-zero-sum (cooperation) settings.

7. Encourages Rational Decision-Making

o Assumes agents maximize utility, leading to logically consistent outcomes.

Disadvantages of Game Theory in MAS

1. Strong Assumptions

o Assumes agents are fully rational and always maximize utility (not always

realistic).

2. Information Requirements

o Often requires complete knowledge of preferences and payoffs, which agents may

not share.

3. Computational Complexity

Prepared by M.Nandini,

Assistant professor AIDS.

o Finding equilibria in large, dynamic games can be computationally expensive.

4. Multiple Equilibria Problem

o Some games have multiple equilibria → hard to predict which one agents will

choose.

5. Static Nature (in some models)

o Many models assume fixed payoffs, while real environments are dynamic.

6. Risk of Strategic Manipulation

o Agents may exploit others using strategic misrepresentation.

7. Communication Overhead

o Reaching cooperative solutions may require extensive negotiation.

Applications in Multi-Agent Systems (MAS)

Game theory provides a vital framework for designing and analyzing MAS, especially

where agents are self-interested and operate in decentralized environments.

Cooperative MAS

Game theory can be used to design systems where agents collaborate to achieve a

common goal, even when they have individual incentives.

• Incentive alignment: Mechanism design, a subfield of game theory, is the science of

designing rules and incentives so that self-interested agents are motivated to act in a way that

achieves a desired collective outcome.

• Cooperative robotics: In applications like search-and-rescue, multiple robots can use game

theory to coordinate and share resources to complete the mission efficiently.

• Resource management: Game theory can be applied to problems like dynamic channel

allocation in wireless networks, where cells must cooperate to share channels and minimize

call drops.

Competitive MAS

For systems where agents compete for resources, game theory helps predict opponents'

strategies and design effective countermeasures.

Prepared by M.Nandini,

Assistant professor AIDS.

• Online auctions: Multiple bidders in an auction can be modeled as a competitive game. Game

theory helps agents devise optimal bidding strategies to maximize their chances of winning

while minimizing costs.

• Traffic management: Autonomous vehicles and traffic lights can be modeled as agents in a

competitive system. Game-theoretic algorithms can be used to minimize congestion and

reduce travel time.

• Blockchain networks: In blockchain, miners' strategies for validating transactions can be

analyzed using game theory to prevent selfish mining and other attacks.

Hybrid and learning MAS

More advanced MAS combine game theory with machine learning to navigate dynamic,

real-world environments.

• Multi-Agent Reinforcement Learning (MARL): This field combines game theory with

reinforcement learning, allowing agents to learn optimal behaviors through trial and error in

multi-agent environments. Game theory provides the theoretical foundation for understanding

concepts like best-response dynamics and equilibrium-guided learning.

• LLM-based agents: Large Language Model (LLM) agents can use game theory for strategic

communication and negotiation. This enables systems where agents plan, adapt, and coordinate

transparently without a central authority.

REINFORCEMENT LEARNING IN MULTI-AGENT SETTINGS (MARL)

Definition

Reinforcement Learning (RL) in multi-agent settings is a learning framework where
multiple agents interact with a shared environment and with each other.
Each agent learns a policy (strategy) that maximizes its cumulative reward,
considering both the environment dynamics and the actions of other agents.

Prepared by M.Nandini,

Assistant professor AIDS.

Example

• Traffic Signal Control

o Each traffic light is an agent.

o Actions = changing signal (green/red).

o Reward = reducing traffic congestion.

o Multiple traffic lights learn together to optimize city-wide traffic flow.

Key Aspects of MARL

• Shared Environment:

Prepared by M.Nandini,

Assistant professor AIDS.

Multiple agents operate and learn within the same environment.

• Individual Goals & Rewards:

Each agent is motivated by its own rewards and pursues its own interests, which

can be aligned or opposed to other agents' interests.

• Interactions:

Agents' actions influence not only the environment's state but also each other,

leading to complex group dynamics and coordination requirements.

• Non-Stationarity:

The learning environment is non-stationary from the perspective of any single

agent, as the other agents are also learning and adapting simultaneously.

Advantages

• Models realistic interactions → cooperation, competition, or both.

• Scalable decision-making → works in distributed, decentralized systems.

• Adaptability → agents learn and adapt dynamically.

• Flexibility → works in cooperative, competitive, and mixed settings.

• Autonomous learning → no central controller required.

Disadvantages

• Non-stationarity → environment keeps changing as agents learn.

• Scalability issues → more agents → huge state-action space.

• Credit assignment problem → hard to know which agent’s action led to reward.

• Partial observability → agents may not know others’ strategies.

• High computational cost → training multiple agents requires lots of data.

Applications of MARL

1. Traffic Management → adaptive traffic lights, autonomous driving.

2. Robotics → swarm robotics, cooperative multi-robot teams.

3. Smart Grids & Energy → demand-response, distributed energy trading.

Prepared by M.Nandini,

Assistant professor AIDS.

4. E-Commerce & Auctions → dynamic pricing, competitive trading.

5. Telecommunications → spectrum allocation, bandwidth sharing.

6. Games & Simulations → StarCraft, Dota, poker agents.

7. Security & Defense → attacker-defender strategies, patrolling.

CASE STUDIES: MULTI-ROBOT COORDINATION

What is mean by case study:

A case study in Multi-Agent Systems (MAS) is a detailed examination of a real-world

or simulated scenario where an MAS is designed, implemented, and evaluated to solve

a specific problem, demonstrating the effectiveness of agent-based approaches for

complex, distributed, and autonomous control and decision-making tasks. These studies

typically show how autonomous agents collaborate and communicate to achieve shared

goals, highlighting the architecture, agent roles, communication protocols, and the

overall performance and benefits of the MAS in a practical application, such as energy

management, industrial control, or logistics.

DEFINITION:

Multi-robot coordination is when multiple autonomous robots work together to
complete tasks that are too complex, risky, or large for a single robot.This is a practical
application of multi-agent systems (MAS) where each robot is treated as an intelligent
agent.

Prepared by M.Nandini,

Assistant professor AIDS.

Case Studies

1. Warehouse Automation (Amazon Robotics / Kiva Systems)

• Scenario: Robots coordinate to move shelves and deliver items to human

packers.

• Technique Used:

o Task allocation via auction-based mechanisms (bidding for tasks).

o Path planning to avoid collisions.

• Outcome: Faster order fulfillment, reduced human workload.

2. Search and Rescue (Swarm Robotics)

• Scenario: A team of drones or ground robots explores disaster zones to locate

survivors.

• Technique Used:

o Cooperative Multi-Agent Reinforcement Learning (MARL).

o Distributed coverage algorithms (spreading robots to cover more area).

• Outcome: Faster area coverage, resilience if some robots fail.

3. Agricultural Robots

• Scenario: Multiple robots coordinate for seeding, weeding, and harvesting.

Prepared by M.Nandini,

Assistant professor AIDS.

• Technique Used:

o Task partitioning (dividing fields among robots).

o Cooperative scheduling to optimize farming operations.

• Outcome: Higher efficiency, lower labor cost, reduced pesticide usage.

4. Multi-Robot Exploration (Mars Rovers / Space Missions)

• Scenario: Teams of robots explore planetary surfaces.

• Technique Used:

o Consensus algorithms for map sharing.

o Role assignment (scout robots explore, others analyze samples).

• Outcome: Robust exploration with redundancy and adaptability.

5. Transportation & Delivery (Autonomous Vehicles / Drones)

• Scenario: Delivery drones or autonomous vehicles coordinate to deliver

packages.

• Technique Used:

o Coordination protocols for route planning.

o Collision avoidance using decentralized communication.

• Outcome: Efficient, scalable delivery systems.

Advantages

• Scalability → many robots can handle large tasks together.

• Robustness → system keeps working even if some robots fail.

• Faster task completion → tasks are done in parallel.

• Flexibility → robots adapt to dynamic environments.

• Cost-effectiveness in long term → automation reduces human labor needs.

Disadvantages

• High communication overhead → robots need continuous coordination.

• Complex algorithms → planning, task allocation, and collision avoidance are

difficult.

• Resource conflicts → redundant or conflicting actions may occur.

• Expensive setup → costly hardware, sensors, and maintenance.

• Uncertainty → performance may degrade in unpredictable environments.

Prepared by M.Nandini,

Assistant professor AIDS.

Applications

1. Warehouses & Logistics → Amazon Robotics (shelf-moving robots).

2. Disaster Response → drones for search and rescue.

3. Agriculture → crop monitoring, automated harvesting.

4. Space Exploration → Mars rovers and lunar exploration teams.

5. Transportation & Delivery → self-driving vehicles, delivery drones.

6. Military & Security → surveillance, patrolling, mine detection.

RESOURCE ALLOCATION IN MULTI-AGENT SYSTEMS (MAS)

Definition

Resource allocation in MAS is the process of distributing limited resources (e.g.,

bandwidth, energy, time, tasks, money) among multiple agents in a system, such that

the distribution is fair, efficient, and goal-oriented.

Resource allocation is the strategic process of assigning and managing available

resources to achieve organizational goals effectively and efficiently. It ensures that

assets such as time, money, equipment, and personnel are distributed to the right tasks

and projects at the right time, preventing waste and maximizing productivity.

Example

• Cloud Computing: Multiple users (agents) request CPU, memory, and storage.

The cloud provider allocates resources dynamically to maximize efficiency and

fairness.

• Multi-Robot System: Robots share tasks and battery power to complete a

mission cooperatively.

Prepared by M.Nandini,

Assistant professor AIDS.

Workflow of Resource Allocation in MAS

Steps

1. Resource Request → Agents request resources from the environment (e.g.,

CPU, bandwidth, tasks).

2. Resource Discovery → System identifies available resources.

3. Negotiation / Allocation Strategy → Agents use methods (auction, bargaining,

priority rules, optimization, RL, etc.) to decide allocation.

4. Resource Assignment → Resources are distributed among agents.

5. Execution → Agents perform tasks using allocated resources.

6. Monitoring & Feedback → Performance is monitored; reallocation happens if

needed.

Workflow Example: Cloud Computing Resource Allocation

๡ Steps in Action

1. Resource Request

Prepared by M.Nandini,

Assistant professor AIDS.

o Users (agents) request CPU, memory, storage, or bandwidth for their

applications.

2. Resource Discovery

o The cloud resource manager checks available servers, VMs, and

network capacity.

3. Negotiation / Strategy

o Allocation strategy is applied:

▪ Auction-based (highest bidder gets more resources).

▪ Priority-based (critical tasks served first).

▪ Optimization / Reinforcement Learning (maximize efficiency).

4. Resource Assignment

o Resources are allocated to users dynamically (e.g., VM instances

launched).

5. Execution

o Applications run on allocated servers (web apps, ML models, databases).

6. Monitoring & Feedback

o System monitors usage → if overload happens, resources are reallocated
(autoscaling).

Advantages:

• Fairness → resources distributed fairly among agents.

• Efficiency → maximizes utilization of limited resources.

• Scalability → works for small and large MAS.

• Autonomy → agents can self-manage and adapt.

• Flexibility → supports dynamic environments (e.g., cloud, networks).

Disadvantages

• Complexity → harder as number of agents/resources increases.

• Conflict resolution → competition among agents may cause disputes.

• Communication overhead → requires coordination among agents.

• Uncertainty → unpredictable environments may disrupt allocation.

• Cost → implementing algorithms and infrastructure can be expensive.

Prepared by M.Nandini,

Assistant professor AIDS.

Applications

1. Cloud Computing → allocating CPU, memory, and storage (e.g., AWS, Azure).

2. Telecommunications → bandwidth and spectrum allocation.

3. Multi-Robot Systems → task and battery allocation in teams of robots.

4. Smart Grids → distributing electricity fairly and efficiently.

5. Transportation → air traffic control, ride-sharing optimization.

6. Healthcare → scheduling doctors, patients, and medical resources.

Conflict Resolution and Consensus Building in Multi-Agent Systems (MAS)

What is Conflict in MAS?

In a Multi-Agent System (MAS), many agents work together.
Sometimes, they disagree because:

• They want the same limited resource (e.g., bandwidth, energy).
• They have different goals or preferences (e.g., robot A wants to go left, robot B

wants to go right).
• They have incomplete or wrong information.

ඪ Example: Two delivery robots want to use the same narrow hallway at the same

time → conflict.

Conflict Resolution Methods

Once a conflict is detected, agents use resolution techniques:

1. Negotiation

o Agents exchange offers/counteroffers until they agree.
o Example: Robot A says “I will take this path now, you wait,” and Robot

B agrees.
2. Mediation / Arbitration

o A third-party agent (mediator) decides the fair outcome.

o Example: A traffic controller assigns priority to one car.
3. Game Theory

o Agents use mathematical strategies to minimize loss and maximize
payoff.

o Example: Both cars adjust speeds to avoid collision while minimizing
delay.

Prepared by M.Nandini,

Assistant professor AIDS.

4. Argumentation

o Agents share reasons and try to convince each other.
o Example: Robot A argues it has a high-priority task, so Robot B gives

way.

ඪ At this stage, the conflict is resolved, but agents still need to agree on a final joint

decision.

Consensus Building

Once disputes are handled, the system must align all agents toward a shared solution.

Methods of Consensus Building:

• Voting → Agents vote on the best option; majority wins.
• Contract Net Protocol → A leader agent assigns tasks after collecting bids.

• Distributed Algorithms → Each agent updates its decision repeatedly until all
agree (e.g., average sensor values in a network).

• Learning Approaches → Agents adapt over time to align behaviors (e.g.,
reinforcement learning).

ඪ Example: A swarm of drones agrees on the same flying formation using

distributed consensus.

Prepared by M.Nandini,

Assistant professor AIDS.

Advantages

• Conflict Resolution

o Prevents deadlocks & failures in MAS.
o Ensures fairness among competing agents.
o Allows cooperation even with conflicting goals.
o Improves stability in dynamic environments.

• Consensus Building

o Produces a shared decision accepted by all.
o Increases coordination & trust among agents.
o Suitable for distributed, decentralized systems.
o Helps in scalability (agents can join/leave without chaos).

Disadvantages

• Conflict Resolution

o High communication overhead (many messages exchanged).
o May be slow if many agents are involved.
o Risk of selfish/manipulative agents exploiting the system.
o Sometimes requires a mediator → adds complexity.

• Consensus Building

o Time-consuming in large networks.
o Needs reliable communication among agents.
o May lead to suboptimal solutions (majority rule not always best).

o Vulnerable to malicious/faulty agents influencing decisions.

Applications

1. Robotics → Multi-robot coordination (warehouse robots, drones, rescue
missions).

2. Smart Grids → Power distribution agreements among consumers/producers.
3. Sensor Networks → Sensors agreeing on environmental values (e.g.,

temperature).
4. Autonomous Vehicles → Conflict resolution in traffic + consensus on right of

way.
5. Distributed AI Systems → Agents agreeing on a joint plan in healthcare, e-

commerce, logistics.

Prepared by M.Nandini,

Assistant professor AIDS.

Comparison Table: Conflict Resolution vs Consensus Building

Aspect Conflict Resolution Consensus Building

Definition

Process of solving disagreements

when agents have conflicting goals,

resources, or beliefs.

Process of reaching a common

decision or agreement among

agents after conflicts are

managed.

Goal
Remove disputes and restore

cooperation.

Ensure all agents align on a

shared decision.

When Used
When conflict occurs (competition,

contradiction).

After conflict resolution, to

finalize agreement.

Techniques

- Negotiation

- Mediation/Arbitration

- Game Theory

- Argumentation

- Voting

- Contract Net Protocol

- Distributed Algorithms

- Learning methods

Focus
Managing differences between

agents.

Achieving a unified agreement

among agents.

Outcome

Conflict minimized or solved.
Common decision/plan accepted

by all agents.

Advantages
Prevents deadlocks, promotes

fairness.

Enables cooperation, stability,

and teamwork.

Disadvantages

Time-consuming, risk of

manipulation, high communication

overhead.

May be slow in large MAS,

requires trust and reliable

communication.

Applications

Traffic management, multi-robot

collision avoidance, resource

allocation conflicts.

Sensor networks, smart grids,

drone swarm coordination,

distributed AI decisions.

Prepared by M.Nandini,

Assistant professor AIDS.

In short:

• Conflict Resolution = "How do we settle disagreements?"
• Consensus Building = "How do we all agree on one plan after disagreements

are handled?"

Prepared by M.Nandini,

Assistant professor AIDS.

UNIT-IV

AGENT-ORIENTED SOFTWARE ENGINEERING

AGENT-BASED SYSTEM DESIGN METHODOLOGIES

Agent-baesd System design methodologies" refer to structured approaches used to

plan, design, and implement complex systems. These methodologies help teams

manage complexity, ensure requirements are met, and build systems that are scalable,
maintainable, and efficient.

A Multi-Agent System (MAS) is a system where multiple agents interact, cooperate,

or compete to achieve goals. Designing such systems requires methodologies

(structured approaches) to ensure clarity, correctness, and efficiency.

These methodologies extend software engineering into the agent-oriented paradigm

by defining:

• Agents (what they do)
• Roles (their responsibilities)
• Interactions (how they communicate)

• Environment (where they operate)

Properties of Agent-Based Design Methodologies

1. Autonomy Support

o The methodology should allow agents to operate independently without

constant human or system intervention.

o Each agent must have control over its internal state and decision-making.

2. Proactivity & Reactivity

o Proactive: Agents can take initiative (set goals, plan actions).

o Reactive: Agents can respond dynamically to changes in the environment.

o A good methodology supports both.

3. Communication & Coordination

o Methodology should define how agents interact and collaborate (e.g., via

messages, protocols).

o Ensures smooth cooperation in distributed environments.

4. Modularity

o The system should be broken into well-defined, independent agents.

o Increases reusability, scalability, and ease of maintenance.

5. Scalability

o Ability to handle increasing numbers of agents and tasks without performance

issues.

Prepared by M.Nandini,

Assistant professor AIDS.

o Important for large-scale MAS like traffic simulations or e-commerce

systems.

6. Flexibility & Adaptability

o Agents should adapt to dynamic environments (e.g., market changes,
network failures).

o Methodology should support designing agents that learn and evolve.
7. Goal-Oriented Design

o Agents should be designed with clear goals and roles.

o Methodology must provide a way to capture and align agent goals with
system objectives.

8. Abstraction Levels

o Good methodologies support multiple design levels:
▪ Organizational level (roles, groups)
▪ Agent level (beliefs, desires, intentions)
▪ Interaction level (protocols, coordination)

9. Formalism & Verification

o Should provide formal models (e.g., AUML, logic-based) to specify and
verify agent behavior.

o Helps in reducing ambiguity and ensuring correctness.
10. Domain Independence

o Methodology should be applicable across domains (e.g., robotics, e-
commerce, healthcare).

o Increases reusability and standardization.

GAIA:

One such methodology is GAIA MAS, which is used specifically in the context of

Multi-Agent Systems (MAS).

GAIA Methodology for Multi-Agent Systems (MAS)

GAIA was proposed by Wooldridge, Jennings, and Kinny (2000) as a structured way

to analyze and design agent-based systems.

GAIA is an agent-oriented software engineering (AOSE) methodology used to
design multi-agent systems. It focuses on roles, interactions, and organizational

structure rather than just classes and objects (like in OOP).

Prepared by M.Nandini,

Assistant professor AIDS.

Key Concepts of GAIA:

1. Agent-Oriented: Focuses on autonomous agents that can act independently and
interact with each other.

2. Organizational Perspective: Emphasizes the system as an organization
composed of interacting roles and agents.

3. Early to Late Phase Design: Covers analysis and design phases, from

identifying roles and responsibilities to specifying concrete agent types.

Phases of GAIA Methodology:

GAIA has two main phases:

1. Analysis Phase

o Focus: What the system should do (requirements & roles).

Prepared by M.Nandini,

Assistant professor AIDS.

o Describes the system without implementation details.
o Key Outputs:

▪ Roles Model: Defines different roles agents can take.

▪ Interaction Model: Specifies how roles (agents) communicate.

 Example (E-commerce MAS):

o Roles: Buyer, Seller, Broker
o Buyer ↔ Seller: Negotiate prices

o Buyer ↔ Broker: Search for products

2. Design Phase

o Focus: How the system should be built.
o Translates analysis models into concrete agent structures.
o Key Outputs:

▪ Agent Model: Mapping of roles to concrete agents.
▪ Services Model: Internal services provided by agents.

▪ Acquaintance Model: Communication/links among agents.

 Example (E-commerce MAS):

o Buyer agent provides services: placeOrder(), searchProduct()

o Seller agent provides services: provideQuote(), processPayment()

o Broker agent connects Buyer and Seller.

GAIA Models

1. Roles Model

o Defines responsibilities, permissions, activities, protocols for each role.

o Ensures every agent has a clear purpose.

Example (Buyer role):

o Responsibilities: Search products, negotiate, buy.
o Permissions: Access product database.

o Protocols: Request–Response with Seller, Query with Broker.

2. Interaction Model

o Specifies communication patterns between roles.

o Defines protocols, message types, ordering.

Example:

o Buyer → Seller: Request(quote)

o Seller → Buyer: Response(price)

Prepared by M.Nandini,

Assistant professor AIDS.

3. Agent Model

o Identifies actual agents and maps them to roles.

o One agent can perform multiple roles if needed.

Example:

o BuyerAgent → Buyer role
o SellerAgent → Seller role

o BrokerAgent → Broker role

4. Services Model

o Internal functionalities of agents.

o Supports reusability and modular design.

Example (SellerAgent services):

o checkStock()
o calculatePrice()

o generateInvoice()

5. Acquaintance Model

o Graph of which agents know each other.

o Defines possible communication links (not the details of interaction).

Example:

o BuyerAgent ↔ SellerAgent

o BuyerAgent ↔ BrokerAgent

ADVANTAGES OF GAIA

1. Structured and Systematic

o Provides a step-by-step framework: Roles → Interactions → Agents →
Services → Acquaintances.

o Easy to follow for both beginners and experts.
2. Role-Oriented Design

o Breaks down the system into roles and responsibilities, which makes the
system modular and clear.

3. Focus on Organizations

o Emphasizes organizational structure (roles, permissions, responsibilities)
which is useful for complex MAS.

4. Supports Both Analysis and Design

o Provides models for analysis (roles, interactions) and design (agents,

services, acquaintance).
5. Scalability

o Works well when the system has many agents and distributed tasks.

Prepared by M.Nandini,

Assistant professor AIDS.

DISADVANTAGES OF GAIA

1. No Implementation Guidance

o GAIA does not specify how to implement the agents (coding, platforms,
protocols).

2. Lacks Dynamic Modeling

o Limited support for modeling real-time changes, adaptability, or learning
behaviors.

3. Rigid

o Assumes roles and responsibilities are static, which may not work well in
adaptive systems (e.g., AI-driven environments).

4. Focus on Design More than Development

o Strong in conceptual design, weak in implementation and testing phases.
5. Not Fully Compatible with Modern AI/ML

o Does not consider machine learning agents or autonomous decision-

making explicitly.

APPLICATIONS OF GAIA

Because GAIA is good at handling large, structured multi-agent systems, it is applied

in:

1. Traffic Management Systems (Smart Cities)

o Managing traffic lights, vehicles, congestion, and emergency vehicle

priorities.

2. Supply Chain Management

o Agents for suppliers, warehouses, distributors, and retailers working together.

3. Distributed Robotics (Swarm Robotics)

o Each robot acts as an agent with defined roles and coordination.

4. Healthcare Systems

o Patient monitoring agents, hospital resource management, and emergency

handling.

5. Telecommunication Networks

o Network routing, bandwidth allocation, and fault recovery using distributed

agents.

6. Smart Grid / Energy Management

o Power generation, distribution, and consumption managed by multiple

cooperating agents.

7. E-commerce and Auctions

o Buyer, seller, and broker agents negotiating and managing online transactions.

EXAMPLE: GAIA MAS in a Smart Traffic System

Roles:

Prepared by M.Nandini,

Assistant professor AIDS.

• TrafficMonitor: Monitors vehicle flow.
• SignalController: Manages traffic lights.

• EmergencyHandler: Prioritizes emergency vehicles.

Interactions:

• TrafficMonitor → SignalController: Sends congestion data.

• EmergencyHandler → SignalController: Requests signal priority.

Agents:

• MonitorAgent, ControllerAgent, EmergencyAgent

Each agent plays one or more roles and uses services like analyzeTraffic(),

changeSignalState(), etc.

TROPOS

TROPOS Methodology inMulti-Agent Systems (MAS)

TROPOS is an agent-oriented software engineering (AOSE) methodology focused

heavily on requirements analysis and the intentions of system actors. It’s useful for
designing goal-driven, intelligent MAS (multi-agent systems), especially when

modeling complex stakeholder goals.

What is TROPOS?

TROPOS is built on the i* (i-star) modeling framework and emphasizes goals, plans,

dependencies, and actors from the earliest stages of software development.

Prepared by M.Nandini,

Assistant professor AIDS.

PROPERTIES OF TROPOS

1. Goal-Oriented

o Focuses on why the system is needed by analyzing goals (functional and non-
functional).

2. Actor & Dependency Modeling

o Models actors (agents, roles, organizations) and their dependencies

(goal, resource, task, soft-goal).

3. Covers Full Lifecycle

o Includes early requirements → late requirements → architectural

design → detailed design → implementation.
4. i* Framework Based

o Uses Strategic Dependency (SD) and Strategic Rationale (SR)

diagrams.

5. Flexible

o Can be applied to open, distributed, and adaptive environments.

1) Early Requirements Phase

• Objective: Understand the stakeholders, their goals, and dependencies.
• What is modeled:

o Who are the actors (people, systems, organizations)?
o What are their goals (functional & non-functional)?
o How do they depend on each other for tasks, resources, and goals?

Prepared by M.Nandini,

Assistant professor AIDS.

• Diagram used: Strategic Dependency (SD) diagram.

ඪ Example: In a hospital MAS, a Doctor depends on a Nurse for patient monitoring.

�)Late Requirements Phase

• Objective: Define the system-to-be (the software system as an actor).
• What is modeled:

o The system is introduced as a new actor.
o Its dependencies with other human/organizational actors are modeled.
o System functionalities and responsibilities are refined.

• Diagram used: SD + Strategic Rationale (SR) diagram (shows reasoning

behind goals).

ඪ Example: The hospital system (software) monitors patients and notifies doctors

automatically.

�.Architectural Design Phase

• Objective: Define the high-level structure of the system as a set of agents.
• What is modeled:

o Agents and their roles.
o How agents interact with each other.

o Allocation of goals/tasks to agents.

• Focus: "What agents will exist and how they are organized?"

ඪ Example: In the hospital MAS:

• Agent 1: Monitoring Agent → monitors patient vitals.

• Agent 2: Alert Agent → notifies doctors in emergencies.

�.Detailed Design Phase

• Objective: Refine agents’ internal structure, behavior, and interaction protocols.
• What is modeled:

o Each agent’s plans, beliefs, goals.
o Communication protocols between agents.

o Algorithms for decision-making.

• Focus: "How will agents behave and cooperate?"

ඪ Example:

• Monitoring Agent plan → check patient data every 10 seconds.

• Alert Agent plan → send SMS/email to doctor if heart rate > threshold.

Prepared by M.Nandini,

Assistant professor AIDS.

�.Implementation Phase

• Objective: Translate the design into actual code and deploy the MAS.
• What is modeled:

o Coding using agent frameworks (JADE, JACK, Jason, etc.).
o Integration with databases, IoT devices, or UIs.

• Focus: working software system.

ඪ Example: Implement hospital MAS using JADE agents (Java-based).

ADVANTAGES OF TROPOS

1. Full Development Lifecycle

o Unlike GAIA, Tropos covers requirements to implementation.
2. Goal-Oriented Approach

o Focuses on why a system is needed before how it should be built.
3. Handles Complex Systems

o Well-suited for distributed, open, adaptive MAS with many actors and
dependencies.

4. Flexibility

o Can adapt to changes in stakeholder goals or system environment.
5. Strong Requirements Engineering

o Links business goals with software design, ensuring traceability.

DISADVANTAGES OF TROPOS

1. Complex and Time-Consuming

o Modeling with i* and covering all phases requires a lot of effort.
2. Steep Learning Curve

o Understanding actors, dependencies, and diagrams can be difficult.
3. Lack of Tool Support

o Compared to UML, fewer tools exist for Tropos.
4. Abstract in Early Stages

o Focus on goals and dependencies may feel too abstract for practical
coding.

5. Not Lightweight

o May be overkill for small/simple MAS projects.

APPLICATIONS OF TROPOS

Tropos is widely used in goal-driven and complex agent-based systems:

1. Business Process Management Systems

o Capturing stakeholder goals, dependencies, and workflows.
2. Healthcare Systems

o Patient monitoring, medical staff coordination, and hospital management.

3. E-Governance

Prepared by M.Nandini,

Assistant professor AIDS.

o Modeling citizen, government, and service provider interactions.
4. Telecommunication Networks

o Modeling dependencies between service providers, operators, and
customers.

5. Smart Grids / Energy Systems

o Managing distributed power generation and consumption goals.

6. E-commerce Systems

o Buyer, seller, broker agents with goal dependencies.

TROPOS vs GAIA (Quick Comparison)

Aspect GAIA TROPOS

Focus Roles, interactions, structure Goals, intentions, dependencies

Origin Organization-based design Goal-based requirement analysis

Start Point System behavior Stakeholder goals

Modeling Depth Design-level From early requirements to design

Flexibility Moderate High (adaptive agents possible)

Agent UML (AUML): Notations and Modeling

Agent UML is an extension of the standard Unified Modeling Language (UML) (UML)

designed to model agent-oriented systems, or Multiagent Systems (MAS). It introduces

new notations and diagrams to represent key agent-specific concepts such as agents,

their roles, capabilities, services, and complex interaction protocols between agents,

which are beyond the scope of standard UML. Agent UML helps designers analyze,

design, and document agent-based systems using graphical models.

Why Use AUML?

Standard UML lacks constructs for modeling agents’ behaviors like beliefs, intentions,

and interactions between intelligent agents. AUML fills this gap by introducing

notations and diagrams tailored to multi-agent systems (MAS).

Key AUML Notations and Concepts

Here’s an overview of the main AUML extensions and diagrams used to model agents:

1) Agent Class Diagram:

Definition

An Agent Class Diagram is an extension of UML class diagrams that represents:

Prepared by M.Nandini,

Assistant professor AIDS.

• Agents (instead of objects)
• Their roles, attributes, capabilities, and services

• Relationships (communication, cooperation, inheritance, dependency)

It is the static structure view of a Multi-Agent System (MAS).

Purpose: Models the structure of agents, their capabilities, beliefs, and relationships.

AUML Extensions:

Element Description

<<agent>> stereotype Marks a class as an agent

beliefs, goals, plans compartments Describe the agent’s internal state

<<environment>> stereotype Represents the environment agent interacts with

Example:

+ +
| <<agent>> |
| DeliveryAgent |

+ +
| - beliefs: Map |
| - goals: DeliverParcel |
| - plans: Navigate, DropOff |

+ +
EXAMPLE:

Prepared by M.Nandini,

Assistant professor AIDS.

Here’s an AUML Agent Class Diagram for a simple Buyer–Seller–Broker MAS

scenario:

• Buyer Agent → Searches for products, requests quotes, accepts offers.
• Seller Agent → Provides quotes, negotiates, delivers products.
• Broker Agent → Matches buyers and sellers, forwards requests.

• Communication Links: Buyer ↔ Seller (negotiates), Buyer → Broker

(requests), Seller → Broker (advertises).

2. Agent Interaction (Sequence) Diagram

An Interaction Agent is an autonomous agent that focuses on exchanging
information, negotiating, and coordinating tasks with other agents (or users). It

ensures that agents in MAS do not act in isolation but rather work in a

collaborative or competitive environment.

Purpose: Shows communication and message passing between agents over time.

AUML Features:

• Agent lifelines: Represent individual agents.
• Speech-act labels: Use FIPA ACL types (e.g., request, inform, propose, accept).

• Nested interactions: Agents can invoke sub-interactions.

Example:

Here’s the AUML Interaction Diagram example for a Buyer-Seller negotiation.
It shows how agents exchange messages step by step:

Actors

Prepared by M.Nandini,

Assistant professor AIDS.

1. Buyer Agent → Seller Agent: Sends Request for Quote (RFQ).
2. Seller Agent → Buyer Agent: Responds with a Proposal (price, terms).

3. Buyer Agent → Seller Agent: Sends a Counter-Proposal.

4. Seller Agent → Buyer Agent: Finalizes with Final Agreement / No Deal.

This captures interaction protocols between agents in MAS using AUML.

3)Agent Activity Diagram

An Activity Diagram in AUML (Agent UML) is used to model the workflow /

internal activities of an agent or a group of agents.It shows sequences of actions,

decision points, concurrency, and coordination among agents.

 Notations in AUML Activity Diagram

• Rounded rectangles → Activities (tasks performed by an agent).
• Diamonds → Decisions (yes/no, choice of actions).
• Bars → Parallel activities (concurrency).
• Arrows → Control flow (order of execution).
• Swimlanes → Different agents (who is responsible for which activity).

• Start (●) and End (◎) nodes → Workflow beginning and completion.

Purpose: Describes the internal reasoning and behavior of an agent.

Elements:

Prepared by M.Nandini,

Assistant professor AIDS.

• Buyer Agent – wants to buy a product.

• Seller Agent – provides product offers.

Flow Explanation

1. Start

o The process begins when the Buyer Agent decides to purchase

something.

2. Buyer Sends RFQ (Request for Quotation)

o The Buyer Agent sends a message to the Seller Agent asking for product

details, price, and terms.

3. Seller Prepares Quotation

o The Seller Agent processes the request and prepares a quotation (price +

conditions).

4. Seller Sends Quotation

o The Seller Agent sends the quotation back to the Buyer Agent.

5. Buyer Evaluates Quotation

o The Buyer Agent checks whether the price and conditions are

acceptable.

o Decision Point (Branch):

▪ If quotation is acceptable → Go to “Send Purchase Order.”

▪ If not acceptable → Go to “Reject Offer.”

6. If Accepted → Buyer Sends Purchase Order

o Buyer confirms by sending a Purchase Order to the Seller Agent.

7. Seller Confirms Order

o Seller processes the order and confirms the deal.

o The transaction is completed successfully. ✅

8. If Rejected → Buyer Rejects Offer

o Buyer sends a rejection message to Seller.

o The interaction ends without a transaction. ❌

9. End

o Process terminates after either order confirmation or rejection.

4. AUML Protocol Diagram

Purpose: Defines allowed interaction protocols (e.g., contract net, auctions,

Elements:

Prepared by M.Nandini,

Assistant professor AIDS.

negotiations).

Prepared by M.Nandini,

Assistant professor AIDS.

• Interaction roles: Initiator, Participant
• Protocol steps: Speech acts with conditions

• Reusability: Can define protocols as templates

1. Initiation

• Buyer → Seller: RequestProduct(productName)

The Buyer starts the interaction by asking for a specific product.

�. Seller’s Response

• Seller → Buyer: ProvideDetails(price, availability)

The Seller replies with the product’s price and availability details.

�. Buyer’s Decision

• If satisfied:

o Buyer → Seller: AcceptOffer

The Buyer agrees to purchase at the given terms.

• If not satisfied:

o Buyer → Seller: RejectOffer

The Buyer refuses the offer (protocol ends).

4. Confirmation

Prepared by M.Nandini,

Assistant professor AIDS.

• If Buyer accepted:

o Seller → Buyer: ConfirmOrder(orderID, deliveryDetails)
The Seller confirms the order, assigns an order ID, and provides

delivery details.

5. Completion

• Protocol ends when either:

o An order confirmation is successfully exchanged (successful

interaction), or

o The Buyer rejects the offer (failed interaction).

Advantages (Pros of AUML)

1. Extension of UML

o Built on UML, so developers already familiar with UML can adapt

easily.

2. Agent-Oriented Features

o Supports modeling of agents, roles, organizations, and interactions,

which traditional UML cannot represent directly.

3. Standardized Communication

o AUML diagrams (protocol, interaction, activity) make agent-to-agent

communication explicit.

4. Supports Multi-Agent Interactions

o Clearly models complex conversations, negotiations, and cooperation

protocols between agents.

5. High-level Abstraction

o Focuses on roles, goals, and behaviors rather than just classes and

objects.

6. Integration with MAS Methodologies

o Can be used with Gaia, Tropos, MaSE, etc. for implementation.

Disadvantages (Cons of AUML)

1. Not Fully Standardized

o Unlike UML (widely accepted), AUML lacks a single official standard

— variations exist.

2. Complexity

o Diagrams for protocols and interactions can become very complex in

large MAS.

3. Tool Support is Limited

Prepared by M.Nandini,

Assistant professor AIDS.

o Fewer modeling tools and CASE tools support AUML compared to

standard UML.

4. Learning Curve

o Requires learning new notations beyond UML, especially for MAS-

specific concepts.

5. Gap to Implementation

o AUML models are high-level; turning them into actual MAS code

(JADE, JACK, etc.) still requires extra steps.

6. Scalability Issues

o For large-scale MAS with many agents, AUML diagrams become hard

to manage and maintain.

Conclusion

• Best for: Conceptual modeling, communication protocols, role definitions in

MAS.

• Limitations: Not enough tool support, not standardized, complex for very

large systems.

DESIGN PATTERNS & BEST PRACTICES IN MAS

Designing a Multi-Agent System (MAS) requires managing distributed intelligence,

autonomy, communication, and coordination. To make this manageable, developers use

design patterns and follow best practices adapted to agent-oriented systems.

What Are MAS Design Patterns?

Design patterns in MAS are reusable solutions to common agent-related problems like

task allocation, coordination, negotiation, etc.

Many of these patterns are adapted from or inspired by object-oriented patterns but are
tailored for autonomous, goal-driven agents that can perceive, reason, act, and

communicate.

Prepared by M.Nandini,

Assistant professor AIDS.

Design Patterns in MAS

Just like OOP has design patterns (Singleton, Observer, etc.), MAS has agent-

specific patterns to handle autonomy, communication, and collaboration.

1. Agent Creation Patterns

• Singleton Agent → ensures only one agent of a certain type (e.g., Directory

Facilitator in JADE).

• Factory Agent → one agent creates and manages other agents dynamically.

2. Interaction / Communication Patterns

• Mediator Pattern → a mediator agent coordinates communication between

agents to reduce complexity.

• Observer Pattern → agents subscribe to updates from another agent

(publish/subscribe).

• Contract Net Protocol → task allocation where one manager agent requests

bids and worker agents compete.

3. Coordination Patterns

• Broker Pattern → broker agent helps in finding and connecting agents.

• Facilitator Pattern → helps agents discover services (like a “yellow pages”).

Prepared by M.Nandini,

Assistant professor AIDS.

• Blackboard Pattern → multiple agents share a common knowledge space for

collaboration.

4. Behavioral Patterns

• Reactive Pattern → agents respond immediately to environment changes.

• Deliberative Pattern → agents plan before acting.

• Hybrid Pattern → combination of reactive + deliberative.

5. Organizational Patterns

• Role-based Pattern → agents are assigned roles (e.g., Buyer, Seller).

• Team Pattern → group of agents collaborate to achieve a shared goal.

Best Practices in MAS Design

1. Define Clear Roles and Responsibilities

o Assign agents specific roles (buyer, seller, broker, manager) to avoid

confusion.

2. Use Standard Communication Protocols

o Follow FIPA-ACL or AUML protocol diagrams for structured agent

communication.

3. Keep Agents Lightweight

o Avoid making one agent handle too many tasks → better to distribute

work.

Prepared by M.Nandini,

Assistant professor AIDS.

4. Encapsulation of Knowledge

o Each agent should keep its internal state private and communicate only

via messages.

5. Decentralization

o Avoid central bottlenecks → distribute intelligence among multiple

agents.

6. Scalability

o Design agents so new ones can join/leave the system dynamically

without breaking it.

7. Fault Tolerance

o Include recovery and redundancy → if one agent fails, others can

continue.

8. Modularity & Reusability

o Use patterns like Mediator, Observer, Broker so agents can be reused

in other MAS.

9. Testing with Simulation

o Before deployment, simulate MAS with tools (JADE, NetLogo,

AnyLogic) to test interactions.

10. Documentation with AUML

o Use Agent UML diagrams (class, interaction, protocol) for clear design

documentation.

In short:

• Design Patterns = re-usable solutions (Mediator, Observer, Contract Net,

Broker, etc.)

• Best Practices = role clarity, standard communication, modularity, scalability,

decentralization.

MAS Design Tools & Platforms

• JADE – Java Agent Development Framework

• Jason – BDI-style agents in AgentSpeak

• GAMA – Simulation of spatial MAS

• MASON – Fast MAS simulation framework

• AgentTool – Supports MaSE methodology

ONTOLOGIES & SEMANTIC WEB INTEGRATION IN MAS

Prepared by M.Nandini,

Assistant professor AIDS.

Definition

• Ontology: A formal, shared vocabulary that defines concepts, relationships,

and rules within a domain.

Example: In an e-commerce MAS, ontology may define Product, Price, Seller,

Buyer.

• Semantic Web: An extension of the World Wide Web that gives meaning to

data, enabling machines and agents to understand, share, and reuse

knowledge.

• Integration in MAS means:

Agents use ontologies to interpret information consistently and semantic web

technologies (RDF, OWL, SPARQL) to retrieve, reason, and communicate

knowledge.

Role of Ontologies in MAS

✔ Provide a common vocabulary for agents.

✔ Support interoperability between heterogeneous agents.

✔ Enable knowledge sharing and semantic reasoning.

✔ Reduce misunderstandings in communication.

Semantic Web Technologies Used

• RDF (Resource Description Framework): Represents data as triples
(Subject–Predicate–Object).

• OWL (Web Ontology Language): Defines rich ontologies with rules and
constraints.

• SPARQL: Query language for RDF/OWL knowledge bases.

• Reasoners (e.g., Pellet, HermiT): Infer new knowledge from existing facts.

Workflow of Integration

1. Define Ontology for the application domain.
2. Annotate Data (e.g., product info, service info) with RDF/OWL.
3. Agents Access Ontology to understand concepts and roles.
4. Use SPARQL Queries to fetch and reason over semantic data.

5. Agents Interact using shared semantic knowledge → no ambiguity.

Applications

• E-commerce: Buyer & seller agents understand product descriptions
semantically.

Prepared by M.Nandini,

Assistant professor AIDS.

• Healthcare: Agents share patient data using standard ontologies (e.g.,
SNOMED).

• Smart Grid / IoT: Devices (agents) use semantic knowledge for coordination.

• Semantic Web Services: Agents discover and use services dynamically.

✨ In short:

Ontologies = vocabulary

Semantic Web = framework ಷ
MAS Integration = intelligent, interoperable, and semantically aware agents

Benefits of Ontologies & Semantic Web in MAS

Benefit Description

Interoperability Agents from different domains can understand each other.

Reusability Ontologies can be reused across applications and systems.

Reasoning Enables logical inference, e.g., deducing that a Laptop is a Product.

Scalability Supports dynamic environments (e.g., smart cities, IoT).

Autonomy Agents can adapt based on new data and reasoning.

Real-World Example: Smart Healthcare MAS

• Agents: DoctorAgent, PatientAgent, PharmacyAgent
• Ontology: Defines diseases, symptoms, medications

• Semantic Web: Used to fetch treatment options from linked medical databases
(e.g., SNOMED CT)

• Reasoning: Used to suggest treatments based on symptoms + patient history

Prepared by M.Nandini,

Assistant professor AIDS.

MIDDLEWARE AND FRAMEWORKS FOR MAS:

Middleware in MAS acts as a software layer between the operating system/network

and the agents, providing:

• Communication support (message passing, negotiation, coordination).

• Interoperability among heterogeneous agents.

• Scalability for distributed environments.

• Abstraction from low-level details (network, protocols).

It helps agents focus on problem-solving rather than worrying about technical issues

like transport, synchronization, etc.

Common Middleware Features in Multi-Agent Systems (MAS)

1) Message Transport

• Provides the communication backbone for agents.

• Supports standard protocols like:

o FIPA-ACL (Agent Communication Language) → widely used standard.

o KQML (Knowledge Query and Manipulation Language) → used for

knowledge sharing.

• Ensures asynchronous / synchronous message delivery between agents.

2. Directory Services

Prepared by M.Nandini,

Assistant professor AIDS.

• Works like a “Yellow Pages” for agents.

• Agents can register, advertise, and discover each other dynamically.

• Example: JADE’s Directory Facilitator (DF) component.

• Enables flexible and scalable MAS where new agents can join anytime.

3. Security Services

• Provides authentication (verifying agent identity).

• Encryption for confidential communication.

• Authorization policies (what actions an agent is allowed to perform).

• Prevents malicious agents from disturbing the system.

4. Persistence & State Management

• Middleware keeps track of an agent’s state, goals, and behaviors.

• Supports fault tolerance → if an agent or server crashes, it can be restarted without

data loss.

• Useful in long-running systems like healthcare MAS, traffic MAS.

5. Monitoring & Debugging Tools

• Middleware often provides dashboards or logs to monitor agents.

• Tracks:

o Agent creation, movement, destruction.

o Message traffic between agents.

• Helps in debugging MAS during development and ensuring correct interaction

Prepared by M.Nandini,

Assistant professor AIDS.

WHAT IS MEAN BY FRAME WORK?

A framework in Multi-Agent Systems (MAS) is a ready-made software platform

that provides developers with tools, libraries, and services to design, implement, and

run agent-based applications.

Instead of building everything (communication, agent lifecycle, discovery, security)

from scratch, a framework gives you:

• Core agent model (how to create agents, their behaviors, and roles).

• Communication support (FIPA-ACL, KQML messaging).

• Agent lifecycle management (start, suspend, kill agents).

• Directory and discovery (how agents find each other).

• Integration support (connect to databases, ontologies, or external apps).

What is JADE?

JADE (Java Agent Development Framework) is one of the most widely used

frameworks for building Multi-Agent Systems (MAS).

It follows FIPA (Foundation for Intelligent Physical Agents) standards, making it

easier for agents to communicate, discover each other, and collaborate.

 Features of JADE

• Agent communication: Uses FIPA-ACL messages.

• Agent lifecycle management: Start, stop, suspend, resume agents.

• Directory facilitator (DF): "Yellow Pages" service for discovering agents.

Prepared by M.Nandini,

Assistant professor AIDS.

• Remote GUI tools: Monitor and control agents.

• Distributed execution: Agents can run on different machines (JADE platform

is distributed).

 JADE Agent Lifecycle

1. Init → Agent is created.

2. Setup() → Initialization (registers services, prints messages).

3. Behaviours → Tasks (e.g., sending/receiving messages).

4. TakeDown() → Cleanup when agent stops.

Applications of JADE:

• E-commerce (buyer-seller systems).

• Healthcare agents (doctor–patient–pharmacy).

• Smart grids (energy agents negotiating).

• Simulation environments.

What is SPADE?

• An open-source Python framework to develop, run, and manage MAS.

• It helps programmers create agents that can:

1. Communicate using messages (based on XMPP or other protocols).

2. Run behaviors (tasks, decisions, rules).

3. Work in distributed environments (different machines, networks).

SPADE (Smart Python Agent Development Environment)

• Language: Python

• Best for: AI/ML integration, rapid prototyping, research.

Prepared by M.Nandini,

Assistant professor AIDS.

• Strengths:

o Very easy to use (Python).

o Built-in support for XMPP messaging.

o Modern features (async/await, web dashboards).

o Easy to integrate with ML/DL libraries (TensorFlow, PyTorch, scikit-

learn).

• Weaknesses:

o Newer than JADE (smaller community).

o Fewer built-in advanced services compared to JADE.

 Main Features of SPADE

1. Agent-based programming → each agent is a Python class.

2. Behaviors → periodic, cyclic, or one-shot tasks.

3. Messaging → agents communicate via FIPA-ACL (standard agent

communication language).

4. XMPP support → uses chat-like messaging for agent communication.

5. Web dashboard → monitor and control agents in real time.

6. Integration with AI/ML → you can embed machine learning models inside

agents.

Quick Comparison Table

Framework Language Best Use Case Strengths Weaknesses

SPADE Python
AI/ML + MAS
research

Easy, async, ML
integration, dashboard

Smaller
community

JADE Java
Large enterprise
MAS

Mature, FIPA-
compliant, stable

Harder for
AI/ML, heavy

PADE Python
IoT, Smart
Grids

Lightweight, distributed
Less active, fewer
tools

MadKit Java
Social MAS
models

AGR model, research
flexibility

Niche, less AI
integration

SCALABILITY IN JADE VS SPADE

1. JADE (Java Agent Development Framework)

• Architecture:

o JADE uses a distributed container architecture.

o Agents run inside containers, and containers can be spread across different

JVMs and physical machines.

Prepared by M.Nandini,

Assistant professor AIDS.

o A central Main Container manages the system, but you can add multiple

distributed containers for scaling.

• Scalability Strengths:

✅ Can support tens of thousands of agents in large enterprise MAS.

✅ Built-in load distribution across JVMs.

✅ FIPA-compliant communication (standardized ACL) for interoperability.

✅ Mature tools (RMA, Sniffer) to monitor scaling.

• Scalability Weaknesses:

❌ Java agents are heavier → high memory usage per agent.

❌ Central Main Container may become a bottleneck if not designed carefully.

❌ More complex to deploy in cloud/microservices environments compared to

Python frameworks.

2. SPADE (Smart Python Agent Development Environment)

• Architecture:

o SPADE agents are Python processes that communicate using XMPP or

HTTP.

o Communication is asynchronous (asyncio), allowing many concurrent

lightweight tasks.

o Agents can run on different machines and connect via distributed messaging

servers.

• Scalability Strengths:

✅ Python + async → lightweight agents that handle many concurrent tasks.

✅ Easy to deploy in cloud-native systems (Docker, Kubernetes).

✅ Integrates well with AI/ML services (scale computation separately).

✅ No strict dependency on a single “main container” → fewer central bottlenecks.

• Scalability Weaknesses:

❌ Python’s GIL (Global Interpreter Lock) limits CPU-bound scalability in a

single process.

❌ Best for hundreds to a few thousand agents, not tens of thousands like JADE.

❌ Smaller ecosystem, fewer built-in enterprise-grade tools.

Comparison Table

Feature /

Framework
JADE SPADE

Language Java Python

Max Agents Very High (10k+) Medium–High (1k–5k typically)

Prepared by M.Nandini,

Assistant professor AIDS.

Feature /

Framework
JADE SPADE

Communication FIPA-ACL (standardized)
XMPP / HTTP (async,

lightweight)

Architecture Distributed containers (JVM-based)
Async tasks + distributed

messaging

Cloud Deployment Harder (JVM-heavy)
Easy (Docker/K8s,

microservices)

Strengths
Enterprise-scale, mature, stable,

FIPA tools

AI/ML integration, async, cloud-

native

Weaknesses
Heavy agents, complex, central

bottleneck
Python GIL limits, smaller scale

FAULT TOLERANCE IN MAS MIDDLEWARE

What it means:

• The ability of the system to continue operating properly in the event of

failures (agent crashes, network partitions, message loss).

Challenges:

• Agent failure detection: Detecting crashed or unresponsive agents reliably.

• Message loss: Guaranteeing message delivery or retrying in unreliable networks.

• Data consistency: Ensuring agents have consistent views of shared data or

environment.

• Recovery and redundancy: Restarting agents, replicating critical services.

What is Fault Tolerance?

Fault tolerance = the ability of a MAS to continue functioning even when some

agents, nodes, or communication channels fail.

In MAS, failures may happen at:

• Agent level → crash, hang, or misbehave.

• Communication level → lost/delayed messages.

• Middleware/framework level → server/container failure.

• Environment level → hardware, network outages.

Prepared by M.Nandini,

Assistant professor AIDS.

Fault Tolerance in MAS Middleware

Middleware in MAS = the layer that manages communication, agent life-cycle,

and coordination (e.g., JADE runtime, SPADE’s messaging backend).
Fault tolerance in middleware usually involves:

1. Redundancy

o Replicating critical services (directories, brokers, agent containers).

o Example: multiple “Directory Facilitator” services.

2. Failover Mechanisms

o If one container/server fails, agents migrate or restart on another.

3. Checkpointing

o Periodic state saving so agents can recover after crashes.

4. Self-healing Agents

o Agents detect failures in peers and reallocate tasks dynamically.

5. Decentralization

o Avoid single points of failure (P2P communication instead of central

broker).

Fault Tolerance in JADE

• Middleware Features:

o JADE has Main Container + distributed containers.

o If a non-main container fails, its agents are lost unless replicated.

o Main Container failure = critical (single point of failure).

• Fault Tolerance Mechanisms:

✅ Agents can migrate between containers for recovery.

✅ Developers can add redundant containers and checkpointing.

✅ Agent monitoring tools (Sniffer, Introspector) help detect failures.

❌ By default, no built-in high availability for the Main Container (needs

extensions).

• Research Extensions:

o Fault-tolerant JADE versions exist (e.g., FT-JADE) with replicated

main containers.

Fault Tolerance in SPADE

• Middleware Features:

o SPADE uses XMPP/HTTP servers for messaging.

o Agents are Python processes (can restart independently).

o No strict “main container” → more decentralized.

Prepared by M.Nandini,

Assistant professor AIDS.

• Fault Tolerance Mechanisms:

✅ Agents can reconnect if the server goes down and restarts.

✅ Async architecture → failures in one agent usually don’t crash others.

✅ Cloud-native → can rely on Docker/Kubernetes auto-restart for

resilience.

❌ If the XMPP server fails, communication halts (single point of failure

unless clustered).

❌ No built-in agent checkpointing (must implement in app logic).

• Best Practice:

o Deploy redundant XMPP servers.

o Use supervisors (e.g., Kubernetes) to restart failed agents.

Deployment Challenges in MAS Middleware

Common Challenges:

• Distributed deployment: Agents run on different machines/containers,

requiring network setup and firewall considerations.

• Configuration complexity: Middleware configurations (e.g., JADE containers,

XMPP servers) can be complex.

• Security: Securing inter-agent communication and authentication is critical,

especially in open environments.

• Version compatibility: Coordinating framework versions across nodes.

• Monitoring & debugging: Difficult to track distributed agents and their

interactions.

Deployment Challenges in MAS Middleware & Frameworks

Deploying Multi-Agent Systems (MAS) is harder than deploying a traditional

centralized system because MAS are:

• Distributed (agents across multiple machines/networks).

• Dynamic (agents appear/disappear at runtime).

• Communication-heavy (messages can overload networks).

• Heterogeneous (agents may run on different OS, devices, or even

programming languages).

Prepared by M.Nandini,

Assistant professor AIDS.

General Deployment Challenges in MAS Middleware

1. Scalability

o Running thousands of agents across multiple machines.

o Middleware must support load balancing and clustering.

2. Fault Tolerance

o Middleware must handle node, agent, or network failures gracefully.

3. Interoperability

o Agents from different platforms (JADE, SPADE, MadKit) may not

interoperate without common standards (FIPA, XMPP, HTTP).

4. Configuration Complexity

o Need to set up containers, message servers, and directories.

o Managing credentials (XMPP accounts, JVM configs) is non-trivial.

5. Monitoring & Debugging

o Hard to observe thousands of agents in distributed environments.

o Middleware must provide dashboards, logs, and tracing tools.

6. Cloud & Containerization

o Traditional frameworks (like JADE) were designed for JVMs, not

microservices.

o Modern frameworks (like SPADE) integrate better with

Docker/Kubernetes, but still require careful orchestration.

Deployment Challenges in JADE

• Main Container Bottleneck:

o All agents must register with the main container → single point of

failure.

• Distributed Container Setup:

o Deploying JADE across multiple JVMs requires careful networking

(RMI, hostnames, firewalls).

• Cloud Deployment Issues:

o Harder to deploy JADE in containerized microservices (not natively

cloud-ready).

• Monitoring:

o JADE provides RMA GUI, but scaling to thousands of agents makes it

less practical.

• Interoperability:

o Strong FIPA compliance, but integrating with non-JADE systems

requires adapters.

Prepared by M.Nandini,

Assistant professor AIDS.

Deployment Challenges in SPADE

• XMPP Server Dependency:

o All agents depend on XMPP/HTTP server → must be

replicated/clustered for reliability.

• Authentication Management:

o Each agent requires a valid XMPP account and password → difficult at

scale.

• Cloud Scaling:

o SPADE is easier to deploy in Docker/K8s, but distributed

logging/monitoring can be tricky.

• Fault Recovery:

o If the messaging server fails, agents can’t communicate until recovery.

• Interoperability:

o SPADE supports XMPP/HTTP (standard protocols), but lacks full

FIPA ACL support like JADE.

Prepared by M.Nandini,

Assistant professor AIDS.

Prepared by M.Nandini,

Assistant professor AIDS.

UNIT-V

ADVANCED TOPICS AND APPLICATIONS

EMERGENCE AND SELF-ORGANIZATION IN MAS:

Definition

• Emergence:

o Emergence is the appearance of global patterns, behaviors, or

structures in a system that arise from local interactions between agents.

o It is not explicitly programmed but arises naturally as agents follow

simple rules.

o Example: Traffic jams form even if no driver intends it; ant colonies

organize food collection without a leader.

• Self-Organization:

o Self-organization is the process by which a system reaches order and

coordination spontaneously, without any centralized control.

o Agents adapt to local information and feedback loops (positive and

negative).

o Example: Flocking of birds, peer-to-peer networks, adaptive routing in

the Internet.

ඪ Relation: Self-organization is the mechanism; emergence is the outcome.

Prepared by M.Nandini,

Assistant professor AIDS.

Properties of Emergence

1. Novelty – Global patterns are not directly coded into any agent.

2. Non-linearity – Small local changes can cause disproportionate global effects.

3. Global coherence – System behavior looks coordinated at the macro level.

4. Unpredictability – The exact emergent result is hard to forecast.

5. Irreducibility – Cannot be fully explained by just looking at individual agents.

Properties of Self-Organization

1. Decentralization – No single point of control; decisions are distributed.

2. Adaptivity – System can adjust to changes in environment or agent behavior.

3. Robustness – Resistant to failure of individual agents.

4. Scalability – Functions well even when number of agents increases.

5. Feedback mechanisms – Positive (reinforcing) and negative (stabilizing) loops

shape behavior.

6. Stochasticity – Randomness in interactions helps avoid rigidity and promotes

exploration.

WORKFLOW

1. Agents Setup

o Multiple autonomous agents are defined.

o Each agent has local rules (simple behaviors, sensing, actions).

2. Local Interactions

o Agents interact with neighbors and the environment.

o Communication is local, not global.𝗍

3. Feedback Loops

o Positive feedback amplifies successful actions (e.g., pheromone trails in

ants).

o Negative feedback balances the system (e.g., pheromone evaporation).

o Randomness ensures diversity and exploration.𝗍

4. Self-Organization (Process)

o Order arises spontaneously without central control.

o Agents adapt to changes and form patterns.𝗍

5. Emergence (Outcome)

o A global behavior/pattern appears (e.g., flocking, traffic flow, market

prices).

Prepared by M.Nandini,

Assistant professor AIDS.

o This behavior is novel, coherent, and irreducible to individual rules.

Applications / System Use

o The emergent behavior is applied in real-world tasks:

▪ Swarm robotics, traffic optimization, network routing, smart grids,

etc.

SimplifiedFlow:

Agents → Local Interactions → Feedback Loops → Self-Organization → Emergence

→ Applications

Advantages

1. Resilience – The system continues working even if some agents fail.

2. Flexibility – Can dynamically adapt to changes in environment or tasks.

3. Scalability – More agents can be added without redesigning the whole system.

4. Efficiency – Local decision-making reduces need for global computation.

5. Creativity – Sometimes novel, efficient solutions emerge that designers didn’t
foresee.

Prepared by M.Nandini,

Assistant professor AIDS.

6. Low-cost coordination – No need for expensive centralized control systems.

Disadvantages

1. Unpredictability – Emergent outcomes may be undesirable (e.g., traffic jams).

2. Design complexity – Hard to design local rules that guarantee good global

outcomes.

3. Debugging issues – Difficult to trace system errors back to agent interactions.

4. Stability concerns – Risk of chaotic or unstable emergent behavior.

5. Performance variability – May work well in some conditions, poorly in others.

6. Resource overhead – Extra communication among agents may increase costs.

Applications

1. Swarm Robotics – Drones or ground robots self-organize to search, map, or

rescue.

2. Traffic Systems – Adaptive traffic lights and vehicle-to-vehicle coordination.

3. Wireless Sensor Networks – Self-organizing nodes for energy-efficient

communication.

4. Smart Grids / Smart Cities – Decentralized control of energy, water, and

transport.

5. Economics & Markets – Price formation, auction systems, decentralized

trading.

6. Computer Networks – Peer-to-peer systems, load balancing, routing protocols.

7. Biological & Social Simulations – Modeling ecosystems, disease spread, group

behavior.

8. Crowd Simulation – Pedestrian flow modeling in public spaces.

In summary:

Emergence is the result (unexpected global behavior).

• Self-organization is the process (local interactions that create order).

• Together, they make MAS powerful, scalable, and adaptive, but also hard to

predict and control.

Prepared by M.Nandini,

Assistant professor AIDS.

SWARM INTELLIGENCE AND DISTRIBUTED OPTIMIZATION IN MAS

Definition

Swarm Intelligence (SI)

• A form of artificial intelligence inspired by natural swarms (ants, bees, birds,

fish).

• Collective behavior emerges from simple agents following local rules.

• No central control → yet the swarm solves complex problems (e.g., food

foraging, path finding).

• In MAS, SI is used to achieve coordination, exploration, and problem-

solving.

Distributed Optimization (DO)

• A process where multiple agents cooperatively solve an optimization problem

without relying on a central controller.

• Each agent has local information and works to optimize its part while

exchanging information with neighbors.

• The system converges to a globally optimal or near-optimal solution.

Prepared by M.Nandini,

Assistant professor AIDS.

WORKING:

problem Definition

• Define the global objective (e.g., minimize energy usage, maximize coverage,

optimize routing).

• Identify constraints (communication limits, agent capabilities, environment

dynamics).

• Determine whether agents are cooperative, competitive, or mixed

2. Agent Design

• Capabilities: sensing, processing, communication, movement.

• Knowledge: local view vs. shared global info.

• Behavior rules: bio-inspired (swarm) or mathematical (optimization).

3. Swarm Intelligence Layer

• Select a Swarm-inspired algorithm:

o Ant Colony Optimization (path finding, routing).

o Particle Swarm Optimization (continuous optimization).

o Artificial Bee Colony, Firefly, or Boids model (exploration, coverage).

• Implement local interaction rules:

o Pheromone deposition/evaporation.

o Velocity update in PSO.

o Neighbor influence (consensus).

4. Distributed Optimization Layer

• Choose a distributed optimization framework:

o Consensus-based: average consensus, distributed gradient descent.

o Game-theoretic: Nash equilibrium, cooperative bargaining.

o Distributed metaheuristics: parallel ACO/PSO with agent-based

execution.

• Ensure local decision-making contributes to global convergence.

5. Communication & Coordination

• Define communication protocol (direct neighbor-to-neighbor or broadcast).

• Handle limited bandwidth / latency / failures.

• Apply asynchronous or event-triggered updates to reduce overhead.

Prepared by M.Nandini,

Assistant professor AIDS.

6. Execution & Adaptation

• Agents run local computations (fitness evaluation, pheromone updates, gradient

steps).

• Agents share partial results with neighbors.

• System adapts dynamically to environment changes (failures, new agents,

changing objectives).

7. Convergence & Termination

• Define stopping criteria:

o Global convergence (agents’ states stabilize).

o Maximum iterations / time budget.

o Satisfactory near-optimal solution reached.

8. Evaluation Metrics

• Performance: speed of convergence, optimality gap.

• Scalability: how performance changes with more agents.

• Robustness: fault tolerance, adaptability to dynamic environments.

• Resource usage: energy, communication cost.

9. Applications & Deployment

• Map the designed workflow to real-world domains:

o Robotics swarms (UAV/UGV coordination).

o Smart grids (distributed energy optimization).

o Traffic control (adaptive signals, vehicle routing).

o Sensor networks (coverage, data aggregation).

SimplifiedView

Problem → Agent Modeling → Swarm Rules → Distributed Optimization →
Communication → Execution → Convergence → Evaluation → Application

ADVANTAGES

Swarm Intelligence

• Robust against failure of individual agents.

• Naturally adaptive and self-organizing.

• Suitable for dynamic and unknown environments.

• Simple agents → low implementation cost.

Prepared by M.Nandini,

Assistant professor AIDS.

Distributed Optimization

• No need for a powerful central controller.

• Can handle large-scale problems efficiently.

• Resilient to communication delays/failures.

• Parallelism reduces solution time.

DISADVANTAGES

Swarm Intelligence

• Behavior can be unpredictable.

• Difficult to control or guarantee optimal solutions.

• Risk of premature convergence to suboptimal solutions.

• Requires tuning of parameters (pheromone evaporation rate, learning factors,

etc.).

Distributed Optimization

• May converge slowly compared to centralized methods.

• Requires frequent communication among agents → overhead.

• Sensitive to network topology and agent connectivity.

• Ensuring global optimality is difficult.

Applications

Swarm Intelligence

1. Ant Colony Optimization (ACO) – Routing in networks, pathfinding,

scheduling.

2. Particle Swarm Optimization (PSO) – Continuous optimization problems.

3. Bee Algorithms – Task allocation, clustering.

4. Swarm Robotics – Collective mapping, foraging, rescue missions.

Distributed Optimization

1. Sensor Networks – Energy-efficient routing and data aggregation.

2. Smart Grids – Load balancing, distributed energy management.

3. Traffic Management – Distributed control of traffic lights.

4. Machine Learning – Training models in a decentralized way (federated

learning).

5. Telecommunication Networks – Distributed bandwidth allocation and routing.

3. Ethics in MAS

Prepared by M.Nandini,

Assistant professor AIDS.

TRUST ,PRIVACY AND ETHICSIN MAS

1. Trust in MAS

• Definition: Confidence in the reliability, honesty, and capability of other agents.

• Importance: Agents often rely on others for cooperation, information, and task

execution in uncertain environments.

• Mechanisms:

o Reputation systems (feedback, ratings, recommendations).

o Direct interactions (personal history).

o Probabilistic/Fuzzy models (likelihood of trustworthiness).

• Applications:

o Choosing reliable partners in e-commerce agents.

o Detecting malicious nodes in sensor networks.

o Ensuring cooperation in robotic swarms.

Challenge: Malicious agents may deceive (appear trustworthy before misbehaving).

2. Privacy in MAS

• Definition: Protecting sensitive agent data (personal info, strategies, locations,

preferences) from unauthorized access.

• Why it Matters:

o Agents often share information → risk of leaks.

o In domains like healthcare, finance, or military, privacy is critical.

• Techniques:

o Encryption & secure communication.

o Differential privacy (share useful data without revealing individuals).

o Access control policies (limit who sees what).

o Privacy-preserving distributed optimization (e.g., federated learning

in MAS).

• Example: In a smart grid MAS, household energy data must remain private

while still contributing to global optimization.

Challenge: Balancing privacy vs. utility → too much privacy may reduce cooperation

efficiency.

Interconnections BETWEEN ALL:

Prepared by M.Nandini,

Assistant professor AIDS.

• Definition: Ensuring agents’ actions align with human values, fairness, and

legal/social norms.

• Key Concerns:

o Fairness: No discrimination or bias in decision-making.

o Accountability: Who is responsible for harmful agent actions?

o Transparency: Agents should explain their decisions.

o Autonomy vs. Control: How much freedom agents should have in

critical domains (healthcare, finance, defense).

• Examples:

o A healthcare MAS must follow ethical rules about patient safety.

o A trading MAS must avoid manipulative or fraudulent behaviors.

o Autonomous robotic MAS in defense must comply with international

laws.

Challenge: Defining universal ethics → norms differ across cultures and contexts.

Prepared by M.Nandini,

Assistant professor AIDS.

• Trust & Privacy:

o Trust grows when agents respect privacy (not misusing shared data).

• Trust & Ethics:

o Ethical behavior fosters trust among agents and with humans.

• Privacy & Ethics:

o Protecting privacy is itself an ethical requirement.

Summary

• Trust ensures reliable cooperation.

• Privacy protects sensitive information.

• Ethics ensures MAS aligns with human values and fairness.

• Together, they form the foundation for secure, fair, and socially acceptable

MAS.

Key Differences

Aspect Trust Privacy Ethics

What it is

about

Confidence in reliability

& honesty

Protection of

sensitive data

Alignment with

fairness & norms

Main

Question
“Can I rely on them?” “Is my data safe?”

“Is this
right/fair/legal?”

Primary

Focus
Behavior of agents Information security Moral & social values

Challenge
Deceptive/malicious

agents

Balance between

sharing & hiding info

Different cultures,

laws, values

REAL-TIME EMBEDDED MAS APPLICATIONS

1. Autonomous Vehicles (Cars, Drones, UAVs)

• How MAS is used:

o Each vehicle acts as an agent, coordinating with others for traffic safety.
o Embedded systems handle sensor fusion (LiDAR, cameras, radar) in

real-time.
• Applications:

o Collision avoidance.

o Cooperative lane changing and platooning.

o Drone swarm coordination for delivery or search-and-rescue.

Prepared by M.Nandini,

Assistant professor AIDS.

2. Smart Grids & Energy Management

• How MAS is used:

o Each household, battery, or generator is an agent with embedded
controllers.

o Agents negotiate energy usage in real-time to balance supply & demand.
• Applications:

o Dynamic pricing & load balancing.
o Renewable energy integration (solar, wind).

o Fault detection & recovery in microgrids.

3. Industrial Automation (Industry 4.0)

• How MAS is used:
o Embedded agents on machines, robots, and sensors.
o Real-time decision-making for scheduling, production lines, and fault-

tolerance.
• Applications:

o Cooperative robots (cobots) on assembly lines.
o Predictive maintenance (agents detect anomalies early).

o Distributed factory optimization.

4. Healthcare Systems

• How MAS is used:

o Embedded medical devices (e.g., wearable monitors, infusion pumps,
surgical robots) act as agents.

o Agents cooperate for patient safety, real-time monitoring, and decision
support.

• Applications:
o Coordinated patient monitoring in ICUs.
o Remote telemedicine with real-time alerts.

o Robotic surgery assistance (multi-agent robotic arms).

Prepared by M.Nandini,

Assistant professor AIDS.

5. Defense & Security

• How MAS is used:
o Swarm robots or UAVs with embedded processors.
o Real-time coordination in dynamic and adversarial environments.

• Applications:
o Surveillance with drone swarms.
o Cooperative target tracking.

o Disaster response and battlefield logistics.

6. Environmental Monitoring

• How MAS is used:

o Sensor nodes with embedded processors form a distributed MAS.

o Real-time communication for detecting events (fire, pollution,
earthquakes).

• Applications:
o Wildlife tracking.
o Smart agriculture (soil & crop monitoring).

o Forest fire detection and response.

Prepared by M.Nandini,

Assistant professor AIDS.

7)Smart Homes & IoT

• Definition: Each device (thermostat, light, security camera, appliance) acts as
an agent with embedded processors.

• Applications:
o Energy-efficient heating/cooling.
o Security monitoring (real-time intrusion detection).

o Coordinated device scheduling (washing machine runs when solar
power is available).

8. Space Exploration

• Definition: Swarms of rovers, satellites, or drones collaborate as agents with
onboard embedded processors.

• Applications:

o Mars rover swarms exploring terrain.

Prepared by M.Nandini,

Assistant professor AIDS.

o Distributed satellite constellations (e.g., Starlink).

o Autonomous space debris monitoring.

9. Disaster Management

• Definition: MAS of drones, robots, and sensors embedded with real-time
communication.

• Applications:
o Search and rescue in collapsed buildings.
o Firefighting with robotic swarms.

o Coordinated evacuation guidance systems.

10. Intelligent Transportation Systems (ITS)

• Definition: Embedded MAS in vehicles, signals, and roadside sensors.
• Applications:

o Real-time traffic light optimization.
o Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communication.

o Smart parking guidance.

11. Agriculture (Smart Farming)

• Definition: Drones, soil sensors, and irrigation controllers as agents.
• Applications:

o Precision irrigation (water only where needed).

o Pest/disease detection using UAV swarms.

o Real-time crop monitoring.

12. Financial Trading Systems

• Definition: Trading bots as agents on real-time embedded financial platforms.
• Applications:

o Automated high-frequency trading.
o Fraud detection in real-time.

o Cooperative financial risk management.

MAS IN SMART GRIDS

Multi-agent systems (MAS) use autonomous, intelligent software or hardware agents

that communicate and cooperate to manage and control smart grid operations. This

decentralized approach enables real-time, flexible decision-making to enhance grid

reliability, optimize energy use, and balance supply and demand through functions

Prepared by M.Nandini,

Assistant professor AIDS.

like demand-side management, fault detection and restoration, and energy market

operations.

ຖ MAS in Smart Grids

1. What is a Smart Grid?

A smart grid is an intelligent electricity network that uses sensors, communication,

and automation to balance generation, distribution, and consumption in real-time.

MAS fits perfectly because each component (generator, consumer, storage,

controller) can act as an agent with autonomy and communication abilities.

2. Roles of Agents in Smart Grid

1. Generation Agents

o Represent power plants (renewable + traditional).

o Decide when and how much energy to produce.

o Coordinate with storage and distribution.

2. Consumer/Load Agents

o Represent households, industries, EVs, appliances.

o Optimize usage based on dynamic pricing.

o Shift loads to reduce peak demand.

3. Storage Agents

o Represent batteries, EVs, pumped hydro, etc.

o Decide when to store excess power (e.g., from solar/wind) and when to

release it.

4. Market Agents

o Handle real-time energy pricing and trading.

o Enable consumers to sell excess power back to the grid (prosumer

model).

5. Monitoring & Control Agents

o Embedded in sensors and substations.

o Detect faults, predict failures, reroute power.

Prepared by M.Nandini,

Assistant professor AIDS.

How Multi-Agent Systems Work in Smart Grids

• Autonomous Agents:

Each agent, such as a software program for a smart appliance or a hardware robot,

can perceive its environment, make decisions, and take actions to achieve its

objectives.

• Communication and Cooperation:

Agents interact with each other, exchanging information and coordinating their

actions to solve complex problems that are too difficult for a single agent to handle.

• Distributed Control:

MAS offers a decentralized control architecture, which is a good fit for the complex

and distributed nature of modern smart grids.

Key Applications in Smart Grids

• Demand-Side Management (DSM):

Agents can manage energy consumption in homes and businesses by dynamically

adjusting demand based on market prices, shifting loads from peak to off-peak hours

to reduce overall costs and smooth the load curve.

• Fault Detection and Restoration:

Prepared by M.Nandini,

Assistant professor AIDS.

MAS enables rapid detection, isolation, and restoration of power during outages by

coordinating agents to locate faults and implement backup protection, improving

grid reliability.

• Energy Market Operations:

Agents can participate in an energy market, with seller agents providing energy from

various sources (like renewable energy and storage) and buyer agents consuming

energy, enabling efficient resource allocation.

• Home Energy Management:

In smart homes, agents (e.g., smart appliances) can communicate and negotiate with

energy sources to optimize energy usage, balance consumer comfort, and reduce

electricity bills.

Applications and Benefits

• Energy Management:

Agents can optimize energy production and consumption, manage energy storage,

and integrate renewable energy sources like solar and wind power to improve

overall grid efficiency and flexibility.

• Demand-Side Management (DSM):

https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=Energy%2BManagement&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQIJhAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3
https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=Demand-Side%2BManagement&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQIKRAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3

Prepared by M.Nandini,

Assistant professor AIDS.

MAS facilitate demand response by enabling controllable devices to dynamically

adjust their energy usage in response to market changes or grid conditions,

reducing peak demand and operational costs.

• Fault Diagnosis and Restoration:

Agents can quickly detect, locate, and isolate faults in the power distribution

system, enabling autonomous and rapid power restoration to improve grid

reliability and stability.

• Resource Allocation and Scheduling:

MAS can manage resources efficiently, such as scheduling energy production and

allocating energy in ways that meet demand and minimize costs.

• Integration of Distributed Resources:

The distributed nature of MAS is ideal for integrating distributed generation (DG)

and managing the complex dynamics of hybrid microgrids.

Key Characteristics Enabling Smart Grid Applications

• Autonomy: Agents can act independently to achieve their goals.

• Intelligence: Agents are equipped with AI to make informed decisions.

• Communication: Agents exchange information with each other and with other

system components.

• Coordination: Agents can coordinate their actions to solve problems

collaboratively.

MAS IN IOT:

Multi-agent systems (MAS) enhance the Internet of Things (IoT) by using multiple

intelligent, autonomous agents to collaborate and achieve collective goals in dynamic

IoT environments. These systems bring distributed intelligence, autonomy, and

specialized communication to IoT devices and networks, enabling complex problem-

solving, real-time monitoring, automated decision-making, and collaborative defense

against threats like DDoS attacks. Key benefits include increased scalability, improved

efficiency through task division, and advanced context-awareness for smart applications

across various domains.

https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifNUZblGvZa3mUCUeYzZyVK4dgGFNw%3A1756081718657&q=demand%2Bresponse&sa=X&ved=2ahUKEwi-nICY2qSPAxWb1jgGHTX_GnYQxccNegQINxAB&mstk=AUtExfDczZAXMdXw-hIMFY25P1wJ_hK5CyuJW7IiO8RWcKc6mrBjs9FTEHcvkrrysDBIMChLD1UeFNU4YeM-X4e_YY8Es7719y6ECdrujDRW_JrPUP0pTR9d9g0VB6lIKY3snNEgDnxya9-tFesO_55BQpgZM-nNm6ue3lJDWitO_gGTx82GqrsEK5ZoDLR8VxbuA4iylGJ6dvf0wGQg0sukJbbxi1XogsEgA2R5oiG_zCfwrDm6hPZ-e2MplWIQ4xsEOsoJeZWwrCEc6qzmNSdU6u2TDVi_2LajHUFJyJoLr-xz3g&csui=3
https://www.google.com/search?sca_esv=f2c4a4e4626e1a00&rlz=1C1CHBD_enIN1056IN1056&cs=0&sxsrf=AE3TifPQqrtNrlPI1kPFT-LLKNEEiJaiRA%3A1756081838412&q=DDoS%2Battacks&sa=X&ved=2ahUKEwiw25bR2qSPAxUszDgGHf4TFF8QxccNegQIAxAB&mstk=AUtExfBlhkM_vawxGBCaJYGcBv0UjnfNdHD85vQ1QQBEP27aH1Xq097eiP0ecqG-HcVvEOF6Zl2245OM8OHCaQXOjX91BRgwa748CtFEoFIsrxiynZ2JOZjWs6RV776eGdO0B1bh9PK6jwK3KOrLvEJmAQL-yZgkTuQ657X0bniK9fQUFG0U5ezfXfv_h7lLcjGadYPubmCyjlhKRkx3rTW3fXJ_obGc6cb5RTkICgoQviTFZ3SwIBqDr4-YVq4bYiS0ROPNqq9Jpt6bxJAZoAUJMWQhO-dXrC1tTZRhD4rAXdK1tQ&csui=3

Prepared by M.Nandini,

Assistant professor AIDS.

Why MAS for IoT?

IoT consists of billions of heterogeneous devices (sensors, actuators, smart appliances,

wearables, vehicles, etc.).

Instead of centralized control, agents (autonomous software entities) are embedded in

these devices to:

• Make local decisions,

• Cooperate with other agents,

• Adapt dynamically to changes in the environment.

How Multi-Agent Systems Work with IoT

1. 1. Autonomous Agents:

In an IoT MAS, devices (like sensors, actuators, and control systems) are

represented by autonomous software agents. These agents are capable of making

decisions, learning, and reacting to their environment.

2. 2. Collaboration and Communication:

Prepared by M.Nandini,

Assistant professor AIDS.

Agents communicate with each other to share information and coordinate actions

to accomplish complex tasks that would be too difficult for a single agent or device

to handle.

3. 3. Decentralized Environment:

MAS operates in a decentralized environment where agents interact without a

single, central control point, making them well-suited for the distributed nature of

IoT networks.

4. 4. Specialized Roles:

Agents can have specific roles or expertise, such as user agents for preference

prediction or space agents to align device capabilities with user needs.

Key Applications in IoT

• Security and Defense:

MAS can monitor IoT networks and collaboratively detect and prevent attacks,

like Distributed Denial of Service (DDoS), offering more robust defense than

traditional, single-point systems.

• Smart Environments:

In smart homes or buildings, agents can coordinate various devices to optimize

energy consumption, manage lighting, and provide personalized user

experiences.

• Smart Cities:

MAS can be used for intelligent traffic management, optimizing resource

allocation, and improving urban services.

• Smart Agriculture:

Agents can monitor crop health, soil moisture, and livestock, leading to more

efficient resource use and higher yields.

• E-Health:

Agents can facilitate remote patient monitoring and personalized healthcare by

analyzing data from wearable devices and other sensors.

Benefits of Integrating MAS with IoT

• Scalability:

The distributed nature of MAS allows for easier integration of new devices and

services, enhancing the scalability of IoT systems.

• Efficiency and Robustness:

Prepared by M.Nandini,

Assistant professor AIDS.

Dividing tasks among specialized agents makes complex operations more

manageable and improves the overall efficiency and resilience of the system.

• Autonomy and Adaptability:

Agents can make decisions autonomously and learn from their experiences,

allowing IoT systems to adapt dynamically to changing conditions.

• Complexity Management:

MAS provides an effective framework for controlling highly dynamic and

complex systems that are characteristic of modern IoT deployments.

Applications of MAS in IoT

1. Smart Homes ൒

o Agents in lights, thermostats, appliances coordinate for energy efficiency.

o Example: AC agent negotiates with solar panel agent to use renewable

power.

2. Smart Cities ಭ

o Traffic light agents + vehicle agents reduce congestion.

o Waste-bin agents signal collection trucks when full.

3. Healthcare IoT ൗ

o Wearable health sensors as agents send real-time patient data.

o Hospital agents coordinate emergency response.

4. Industrial IoT (IIoT)

o Machines & robots as agents self-organize for predictive maintenance.

o Supply-chain agents optimize logistics.

5. Agriculture IoT ✆

o Soil & weather sensor agents optimize irrigation.

o Drone agents monitor crops & pests.

MAS IN TRAFFIC SYSTEM:

Multi-agent systems (MAS) enhance traffic systems by creating networks of

autonomous agents (e.g., traffic lights, vehicles, infrastructure) that communicate and

cooperate to optimize traffic flow, reduce congestion, and improve overall

mobility. These systems allow for distributed control, real-time data analysis, and the

simulation of "what-if" scenarios, leading to more efficient, responsive, and intelligent

urban transportation networks, especially for dynamic issues like emergency vehicle

priority and congestion management.

Prepared by M.Nandini,

Assistant professor AIDS.

How Multi-Agent Systems Work in Traffic

• Autonomous Agents:

Individual components of the traffic system, like traffic lights at intersections,

buses, or even specific road segments, are represented as independent agents.

• Real-Time Data and Communication:

Each agent collects and processes data in real-time from its environment and

communicates with other agents to share information and coordinate actions.

• Distributed Decision-Making:

Instead of a single central control system, agents make decisions locally and

cooperatively, allowing for more adaptive and responsive management of

complex traffic situations.

• Intelligent Control:

Agents use various AI techniques, such as machine learning and negotiation, to

make decisions that optimize their immediate tasks and contribute to global

system objectives.

Prepared by M.Nandini,

Assistant professor AIDS.

Benefits for Traffic Systems

• Reduced Congestion:

By coordinating traffic signals, rerouting vehicles, and managing flow at

intersections, MAS can significantly reduce traffic jams.

• Improved Efficiency:

Systems can prioritize public transport, optimize travel times, and improve the

regularity of bus services.

• Enhanced Safety:

MAS can manage traffic during emergencies or accidents, ensuring that

emergency vehicles have priority access to clear roads.

• Real-World Simulation:

Urban planners can simulate the impact of new policies or infrastructure changes

before implementation, avoiding costly real-world trials.

• Scalability and Flexibility:

MAS can adapt to various urban scales and complexities, from managing a single

intersection to an entire city's transportation network.

Examples of Application

• Dynamic Traffic Signal Control:

Prepared by M.Nandini,

Assistant professor AIDS.

Agents adjust traffic light timings in real-time based on local traffic conditions

to improve flow through intersections.

• Intelligent Route Guidance:

Agents provide drivers with real-time route alternatives to avoid congested areas,

balancing traffic load across the network.

• Public Transportation Management:

Agents ensure that buses and trams run on time, coordinating their passage

through intersections to maintain schedule reliability.

• Emergency Response Systems:

Agents grant immediate priority to emergency vehicles, creating clear pathways

by adjusting signals and managing other traffic.

Case Study: Amazon Robotics
A "case study" in the context of MAS Holdings refers to an in-depth analysis of a

specific organizational challenge, phenomenon, or situation within that company to

provide insights, develop strategies, or train individuals. For example, a MAS case

study might examine their ethical labor practices program to understand its

sustainability and recommend strategies to connect it to operational benefits.

Prepared by M.Nandini,

Assistant professor AIDS.

1. Introduction

Amazon Robotics (acquired from Kiva Systems in 2012) revolutionized e-commerce

logistics by deploying autonomous mobile robots (AMRs) in fulfillment centers.

These robots form a Multi-Agent System (MAS), where hundreds or thousands of

robots coordinate tasks like item picking, transport, and sorting.

MAS in Amazon Robotics

• Each robot is an agent that:

--→Senses the environment (QR codes on the floor, cameras, sensors).

→Acts autonomously (moves shelves, delivers items to humans/packing --

→stations).

Communicates with a central control system and sometimes with other robots.

• MAS helps achieve:

→Task allocation → robots decide who picks which shelf.

→Path planning → avoid collisions and congestion.

→Coordination → multiple robots work in parallel for efficiency.

Prepared by M.Nandini,

Assistant professor AIDS.

Here’s the Amazon Robotics MAS Workflow explained step by step:

1. Order Received

o Customer places an order online.

o Central MAS (Central Control Agent) analyzes the order.

2. Task Allocation

o MAS assigns a Robot Agent to fetch the required item.

o Decision is based on proximity, robot availability, and workload.

3. Navigation

o Robot uses Sensor Agents (QR codes on the floor, cameras, LiDAR) to

navigate safely.

o Robots avoid collisions and optimize routes.

4. Delivery

o Robot lifts and carries the shelf (storage pod) containing the item.

o Shelf is delivered to the Human Agent at the packing station.

5. Return

o After item pickup, robot returns the shelf to an optimal storage location.

o MAS ensures efficient placement for future retrieval.

Advantages of Amazon Robotics (Autonomous Robots in Warehouses)

1. Efficiency & Speed

o Robots quickly bring storage pods to human packers, reducing walking

time.

o Faster order fulfillment → improves customer satisfaction.

2. Cost Reduction

o Reduces labor costs for repetitive tasks.

o Optimizes warehouse space (shelves can be closer since humans don’t
walk between them).

3. 24/7 Operation

o Robots can work continuously without fatigue.

o Handles peak seasons (like Black Friday, Prime Day) efficiently.

4. Safety Improvements

o Minimizes human exposure to heavy lifting and dangerous warehouse

environments.

5. Scalability

o Easy to add more robots as order volume increases.

Disadvantages of Amazon Robotics

Prepared by M.Nandini,

Assistant professor AIDS.

1. High Initial Investment

o Installing robots, sensors, and AI systems costs millions.

2. Job Displacement

o Reduces demand for warehouse workers in picking and transporting.

3. System Failures

o A software bug or robot malfunction can halt operations.

4. Maintenance & Upgrades

o Requires constant servicing, software updates, and skilled technicians.

5. Limited Flexibility

o Robots excel at repetitive tasks but struggle with unpredictable or delicate

items.

Case Studies of Amazon Robotics

1. Kiva Systems Acquisition (2012)

• Amazon bought Kiva Systems (renamed Amazon Robotics) for $775 million.

• Robots replaced human pickers in moving shelves → orders processed faster.

• Impact: Boosted efficiency, helped Amazon dominate e-commerce logistics.

2. Prime Day & Holiday Season

• During high-demand events, robots work 24/7 moving shelves to packing

stations.

• Robots reduce delivery time → supports Amazon’s 1-day/2-day delivery

promise.

• Impact: Scalability during global sales peaks.

3. Amazon Fulfillment Centers

• Over 200,000+ robots deployed in warehouses worldwide.

• Collaborative system: robots move shelves → humans pack → AI tracks

inventory.

• Impact: Faster delivery, reduced costs, improved customer satisfaction.

Prepared by M.Nandini,

Assistant professor AIDS.

CASE STUDY:AUTONOMOS TRADING SYSTEM

Introduction

Autonomous Trading Systems (ATS) are AI-driven platforms that execute buy/sell

orders in financial markets without human intervention. They use multi-agent systems

(MAS), machine learning models, and algorithmic strategies to analyze market

trends, predict price movements, and manage portfolios in real-time.

Introduction

Autonomous Trading Systems (ATS) are AI-driven platforms that execute buy/sell

orders in financial markets without human intervention. They use multi-agent systems

(MAS), machine learning models, and algorithmic strategies to analyze market

trends, predict price movements, and manage portfolios in real-time.

How It Works (Workflow)

1. Market Data Collection → Agents gather live data from stock exchanges,

news feeds, and social media.

2. Data Analysis → AI/ML models detect trends, patterns, and anomalies.

Prepared by M.Nandini,

Assistant professor AIDS.

3. Decision-Making → Autonomous agents decide whether to buy, sell, or hold

assets.

4. Order Execution → System places trades automatically via API with

stock/crypto exchanges.

5. Risk Management → Portfolio-balancing agents monitor risk exposure and

adjust strategies.

6. Learning & Adaptation → The system continuously improves strategies

based on feedback.

Advantages of Autonomous Trading Systems

1. Speed & Efficiency

o Executes trades in microseconds, far faster than humans.

o Processes large datasets in real-time.

2. Emotion-Free Decisions

o Eliminates human bias (fear, greed, overconfidence).

o Ensures discipline by sticking to algorithms.

3. 24/7 Market Monitoring

o Can operate continuously across global markets.

o Takes advantage of opportunities even when humans are offline.

4. Backtesting & Optimization

o Algorithms can be tested on historical data before deployment.

o Helps refine strategies for better performance.

Prepared by M.Nandini,

Assistant professor AIDS.

5. Scalability

o Can handle thousands of trades and multiple strategies simultaneously.

Disadvantages of Autonomous Trading Systems

1. Over-Optimization Risk

o Algorithms may perform well in backtests but fail in real markets.

2. System Failures & Technical Risks

o Connectivity issues, software bugs, or hardware crashes can cause huge

losses.

3. Lack of Human Judgment

o Struggles in unprecedented market events (e.g., black swan events,

pandemics).

4. High Initial Setup Cost

o Requires advanced infrastructure, data feeds, and skilled developers.

5. Market Impact

o High-frequency trading (HFT) can cause market instability (flash

crashes).

Case Studies of Autonomous Trading Systems

1. Knight Capital (2012 Flash Crash)

• What happened: A software glitch in Knight Capital’s automated trading

system placed millions of erroneous trades within 45 minutes.

• Impact: Loss of $440 million in a single day, nearly bankrupting the firm.

• Lesson: Risk management and system safeguards are critical.

2. Renaissance Technologies (Medallion Fund)

• What happened: Uses advanced autonomous trading algorithms based on

statistical arbitrage and machine learning.

• Impact: Consistently achieved 30–40% annual returns (after fees).

• Lesson: Properly designed ATS can massively outperform human traders.

Prepared by M.Nandini,

Assistant professor AIDS.

3. Flash Crash (May 6, 2010)

• What happened: Automated trading systems contributed to a sudden 1,000-

point drop in the Dow Jones within minutes, followed by rapid recovery.

• Impact: Showed how ATS can amplify volatility.

• Lesson: Need for circuit breakers and regulatory oversight.

4. Two Sigma Investments

• What happened: Uses AI + machine learning for fully autonomous trading

decisions.

• Impact: Managing $60+ billion with data-driven autonomous strategies.

• Lesson: ATS can scale massively if combined with robust risk management.

