ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES:: RAJAMPET

(An Autonomous Institution)

DEPARTMENT OF MECHANICAL ENGINEERING

LECTURE NOTES

POWER PLANT ENGINEERING [20A37IT]

Title of the Course Power Plant Engineering

Category PEC

Course Code 20A37IT

Year IV B. Tech Semester I Semester Branch ME

Lecture Hours	Tutorial Hours	Practice Hours	Credits
3	0	0	3

Course Objectives:

- To understand the student present day energy demand.
- To understand the working and combustion phenomenon in steam power plant.
- To gain knowledge on the concept and the working of diesel power plants and gas turbines.
- To understand the function and operation of the basic components of a hydro-electric power plant & nuclear power station.
- To learn the concept of non-conventional sources and factors affecting the site selection for a power plant and concept of base load plant and peak load plant.

Unit 1 Introduction

9

Introduction to the Sources of Energy - Resources and Development of Power in India.

Steam Power Plant: Plant Layout, Working of different Circuits, Fuel and handling equipment's, types of coals,

coal handling, choice of handling equipment, coal storage, Ash handling systems.

Learning Outcomes: At the end of the unit, the student will be able to

- Discuss the various sources of energy and functions of the components of power plant. (L2)
- Identify and explains the coal handling and ash handling units. (L2)

Unit 2 Steam Power Plant -Combustion

Process

Properties of coal - overfeed and underfeed fuel beds, travelling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and draught system, cyclone furnace, design and construction, Dust collectors, cooling towers and heat rejection. Corrosion and feed water treatment.

Learning Outcomes: At the end of the unit, the student will be able to

- Explain the various combustion processes. (L2)
- Identify the components of water treatment process. (L2)

Unit 3 Internal Combustion Engine Plant-Diesel Power

Plant 9

Introduction - IC Engines, types, construction- Plant layout with auxiliaries - fuel supply system, air starting equipment, super charging.

Gas Turbine Plant: Introduction - classification - construction - Layout with auxiliaries - Principles of working of closed and open cycle gas turbines. Combined Cycle Power Plants and comparison.

Learning Outcomes: At the end of the unit, the student will be able to

- Describe the functions of the components of diesel power plant and concepts of fuel supply system.
 (L2)
- Classify and explain the functions of various gas turbine power plants. (L2)

Unit 4 Hydro Electric Power

Plant 10

Hydro Electric Power Plant: Water power - Hydrological cycle / flow measurement - drainage area characteristics - Hydrographs - storage and Pondage - classification of dams and spill ways.

Hydro Projects And Plant: Classification – Typical layouts – plant auxiliaries – plant operation pumped storage plants.

Nuclear Power Station: Nuclear fuel - breeding and fertile materials - Nuclear reactor - reactor operation- radioactive waste disposal.

Boiling water reactor - Pressurized water reactor - Gas cooled reactor - Fast breeder reactor - Liquid metal cooled reactor-reactor materials - Radiation shielding

Learning Outcomes: At the end of the unit, the student will be able to

- Demonstrate the functioning of Hydro-electric power plants and concepts of hydro projects. (L3)
- Describe the working principles of various nuclear reactors. (L2)

Unit 5 Power From Non-Conventional Sources

6

Power From Non-Conventional Sources: Utilization of Solar Collectors- Principle of Working, Wind Energy -

types - HAWT, VAWT - Tidal Energy.

Power Plant Economics And Environmental Considerations: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, Load curves, and load duration curve. Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor - related exercises. Effluents from power plants and Impact on environment - pollutants and pollution standards - Methods of Pollution control. **Learning Outcomes:** At the end of the unit, the student will be able to

- Describe the concept of non-conventional sources of Solar, wind and tidal energy. (L2)
- Examine about power plant economics and the concept of pollutants and pollution standards. (L4)

Prescribed Text Books:

- 1. P.K.Nag, Power Plant Engineering. TMH, 4 th Ed.2014.ISBN 10: 9339204042ISBN 13: 9789339204044.
- P.C.Sharma, Power Plant Engineering. S.K.Kataria&sons, 2014. ISBN-10: 9350143844, ISBN-13: 978-9350143841.

Reference Books:

- 1. Rajput. R.K., A Text Book of Power Plant Engineering. Laxmi Publications;, 2016, 5th Ed. ISBN-10:8131802558ISBN-13:978-8131802557.
- Hegde R.K. Power Plant Engineering. Pearson Education India, 2015. ISBN-10: 9332534101ISBN-13: 978-9332534100
- 3. Arora and S. Domkundwar.A Course in Power Plant Engineering Dhanpat Rai& Co. (P) Limited, 6th Ed. 2016. ISBN-10: 8177001957, ISBN-13: 978-8177001952.

Course Outcomes:

A str	Blooms Level	l of	
1.	Summarize the different energy sources, fuel and ash handling systems in steam power plant.		L2
2.	Summarize the combustion process, Dust collectors, cooling towers and feed		12
	water treatment in steam power plant.		
3.	Summarize the working of diesel engine, gas turbine power plants and its auxiliaries.	L2	
4.	Summarize the working of hydroelectric power plant and nuclear power plants.		L2
5.	Calculate the operating costs of steam power and highlight the power production		1
	from various non-conventional sources.		_

CO-PO-PSO Mapping:

СО	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PS01	PS02
20A37IT.1	2	2	1	2	-	-	-	-	-	-	-	-	2	2
20A37IT.2	2	2	1	2	-	-	-	-	-	-	-	-	2	2
20A37IT.3	2	2	1	2	-	-	-	-	-	-	-	-	2	2
20A37IT.4	2	2	1	2	-	-	-	-	-	-	-	-	2	2
20A37IT.5	3	3	1	2	-	-	-	-	-	-	-	-	2	2

Power plant:-

It is an industrial facility that generates electricity from becomend everba.

most power plants use one or more generators that convert mechanical energy into electrical energy in older to supply power to the electrical good for society's electrical needs.

power plant engineering :-

The branch of engineering where in the Various machines, machinery of space of power plant is discussed is called

PPE is one of the techniques of axt that I we can study, we repair preserve, operate & place in the machines & equipment of the power plant.

PPE also discusses power generation, transmission, distribution

In addition to protecting the balance of the environment Ex making mode profit at a lover cost is also a mother of

what is the power plant? It refers to a certer or organization where electricity is produced by use of mechanical energy.

The where the parer is generated by the conversion of energy through a so of instruments & this power is transmitted to the nearest of fax distances following the mecessary steps is called PP.

It is also known as pp, power station , generating station of power house.

power plant Types: It Can be divided into the following Categolies bosed on convexion of energy from different energy into power. -> steam power plant hydro elateric " " chese! " nuclear 1) Gras " Sold " wind Taxbine " -s steam pour plants, diesel pour plants, gas textine power plants of muchan power plants are called treland power plants because they convert heat into electrical -> Also based on noture sy location of the load, the PP is also divided into following sections. -> for example, depending on the motive of load, the pp is divided into two pasts. 1) loose load pares plant a) peak " " " The PP is dided into two pasts boyed on location, revely it central power plant 2) Isolated 1 1

The socionic "

fuel cells power plants

photo voltaic solar cells power system

MHP PP

Firsion Resets power system

Biogns, biomoss energy power system.

Breothernal energy.

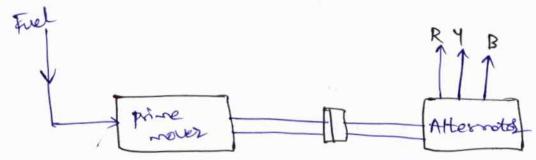
wind early power system

Clean theheat energy conversation

work of tidd wave

energy plantation where.

Power plant procedures:


At the Cole of the power plant, there is a generator that converts mechanical energy into electrical energy by creating an interplay between the conductor of the magnetic field.

The most power plants, one or more generators are used to convert mechanical energy into electrical power.

> The power generated at a power plant is conveniently sent to the nearest or far off for doing the necessary work by stepup & step down.

-> In addition to generately at power stations, transformers, switch gears, starting notes, controlling with etc ale eyed.

-> The following figure shows the power generation method of a typical power plant.

sucho turns the prime mover into a paver station, first with an energy source or fiel?

The prime makes then turns on the alternated of the

since the shaft of the prime maker Couplings to the shaft of the generated, the generated also votates when the prime maker votates.

And this sotation generates electricity from the generated.

- sAt a power station, a generated is votated to a specific rpm for a fixed frequency.

This generates a certain amount of voltage at the output of the generated of this voltage is praided to the retional grid by Step up of step down with the transformer.

Non Renewable Geo thermal energy flore calty's dut, Cracks, Reserve It is the energy derived from are seplenished at a higher siste than they are consumed. -> sunlight & wind. for example, are such sources that are constartly being seplenished. -> Renewable energy sources are plentiful & all around us. => Solar, wind, Hydro, Tidal, Geothernel & biomass energy. = A resource that can be used repeatedly so does not our out because it is notionally replaced.

Non Rememble Energy:

The energy comes from sources that will run out of will not be replenished in our lifetimes.

-> Carbon is the main element in fossil fuels.

-> examples -> des, Rocks as resources.

Easth's Resources :-

Resources come from the easth, either in the saw form of

as noterial used to make new products.

-> easth's resources "include organisms, air, water of soil of well as materials such as oil, gas, & des that are remared from the ground for processing.

main classification of Resources; -

1) Renewable resources

Plant.

	S) NOW "	,	
-	Criteria	Non-rememble energy resoules	Renewble energy Resources
	1) Repetitively used energy Sources	One time use Varish one day	Can use agains,
	2) Peopetual sousces 3) too friendly Sources	enits gasses & pollete the environment	Perpetal use. So not enit gues So does not pollete
	4) Avability	firsted quantity	the environment colimited quantity
	5) production cost 6) maintenance cost	bw	low high
	7) production quarti >> Large la Spale Alor remired for	end area is ->	less landarea is
	- Duren por	the fewer required	for its pares plant

installation

Commercial & Non Commercial energy Sources:

Energy sources like cool, oil, gay, uranium 4 hydel power are known as commercial energy sources, because they are directly used to produce electricity.

- -> theregy sources like wood, dung, waste etc are known as non commercial energy sources.
- -> These are mainly used as fuel for Cooking & are also used in cottage "inclustries. Leg snithy)
- -> In sugar mills also non commercial energy sources are utilised.
- The energy sources available can also be classified into 3 major types based on yield of their energy.

They are :- 1) primary energy sources

2) Selondary

3) supplementary 4

1) primary energy sources:

The energy source which provides a net supply of energy is called primary energy source.

ex- cod, notural gas, uranium, al etc.

- -> The energy to be expended to obtain these quels is very much less than the energy that can be obtained from them by combustion of muclear reaction.
- 2) secondary energy sources:

from the " " , the yield of energy is less than the finget.

ex: solar eresgy, wind energy, tidal energy, water energy etc.

(3) Supplementary energy sources:

If the net energy yield provided by the energy source is zero, it is called supplementary energy source.
ex: Thermal insulation.

Non-renewable energy sources:The different ran-renewable sources of energy are:
1) Fossil Fuels 2) nuclear energy.

(1) Fossil fuels:-

The fossil Fuels are classified into 3 major types.

- 1) solid fuels cool including anthracite, bituminous & brown coal, lightes & peats.
- 2) jiquid frets petroleum products.
- 3) Graseous " cool gas, votusel gas.

(1) solid Fuels:

Cod is obtained as the result of decomposition of Vegetable nattex busied under easth for thousands of years, in absence of oxygen.

- -> About 33% of wolds energy need is not by cool.
- -> cool is used in power plants of the producing steam in process of chemical industries.
- -> It is used for iron of steel making.
- -> chemical industries such as festilizers, plastics, paints depend on the by products of God.
 - (2) Liquid fuels (oil/petrol)
 Nearly 40% of world's energy need is not by oil.

- -> After refining the oil fuels are used in I.C. engines.,
 diesel power plants & furnaces.
 - -> The by products are useful in fatrochemical industries
 like festilizer, synthetic subber, synthetic fibre, medicine,
 lubricants etc.

-> Groseous Fuels (gas)

The gaseous fuels are classified as notural gas & prepared gas.

It is a mixture of Various compounds of hydrogen & Carbon & Small amount of ron hydroGarbons existing in the gaseous phase.

They are: - (a) Associated gas - It is the gas evolved from fields producing both liquid & gaseous hydroGarbons.

(b) Non Associated gas - It is the gas evolved from fields producing by gaseous hydroGarbons.

(b) Non Associated gas - It is the gas evolved from fields producing liquid & gaseous hydro Carbons separately.

(ii) prepared gas :-

The gases are obtained as by products of some processes. ex: cool gas, blast furnace gas, produces gas, water gas.

Renewable Frengy sources:-

(1) Hydel Doner;

Hydel power is obtained from the water, when it is allowed to fall under the force of gravity.

- -> It is mostly used in the generation of electricity.
- -> It is an indirect we of solar energy.

-> The potential energy of water is convexted into mechanical energy by using hydraulic turbines.

Advantage: - Hydel plants is the low operating cost, since no fuel is necessary.

-> Hydel power accounts for about 20% of total power generated in the Country.

Solar energy:

It is one of the major sources of renewable energy.

- -> The past of the heat energy radiated from the sun is collected by means of different types of solar collectors.
- -> Then this heat energy is used to generate steam, which is used to sun the turbines, so hence the generate's to generate electricity.
 - -> The temp range of around 5000°C.

Applications :-

Solar water heating Heating & cooling of buildings.

Solar Cookess

- " furrace
 - " refrigeration
 - " ponds
 - " electric power generation.
- -> solar energy is used for upter heating in a no of private sects projects by using available collectors.

t ye iyakêkî bi ki kurbê

-> In small power generating systems, photo voltaic cells are used.

Wind Energy :-

It can be used for the generation of electricity.

It is created by two main factors. They are s-

- 1) Heating of cooling of the admosphere which creates convention currents.
- 2) The votation of easth, relative to the atmosphere, &
- -> The energy obtained from the wind is used to rotate the wind will, which in turn drives the generator to produce electricity.
- -> Two main types of wind-ill. They are :-
 - 1) Horizontal axis type multi blade type windwill, sail type windwill, propeller type windwill.
 - 2) Vertical axis type savoring type mindwill, darrieng type windwill.

Biomass trergy:

biomass means organic matter produced by plants (grown both on land & water) & their desiratives.

There are three types:

1) wood & agricultural residue: - trergy is obtained by direct combustion.

Sugarcane , straw, euclyptus, Casuarina.

2) Biomass converted into liquid fuels: - (Thermochemical Conversion) othyl alcohol & mothyl alcohol.

These fuels can be used in engines.

- (3) Biogas is produced by the fermentation of biomass: biomass resources include harvested biomass (wood,
 agricultural crops, algae, etc). municipal refuse, sewage,
 industrial waste, arinal of human waste.
- It is used for cooking of lighting. It is also used for ouring It engines.
- -> wet cow dung is mainly used to produce biogay.

 Ocean trebonal Energy:-

The solar radiation emitted by the sun is absolved by the sea water sq "its temperature is raised.

- . The upper layers of sea water act or a stolage device for heat.
- -> Then this heat is used to generate vepours from any organic third that has a law boiling point.
- -> Then the Vapours are used to run a heat engine.
 Tidal Energy:-

Tides occur as result of the gravitational attraction of the sun &

- -> It is defined as the periodic rise of tall of the sealerd.

 -> Tides are of two different types.
 - when the water level in the sea is above the mean sea level, then the tide is called high tide or flood tide.
 - (ii) low tide (Ebb tide) ushen the water level is below the mean sea level, then the water level is below tide.

Geo-Thermal Frergy:-

The heat energy which is stored inside the earth can be used to generate power

This heat energy obstained from the easth is called the geo-thermal energy.

This heat is absorbed by working fluid of steam is generated, which in turn is used to produce electricity.

Resources and development of power in India:

Non Renewable Toll approviously [Rememble erely)

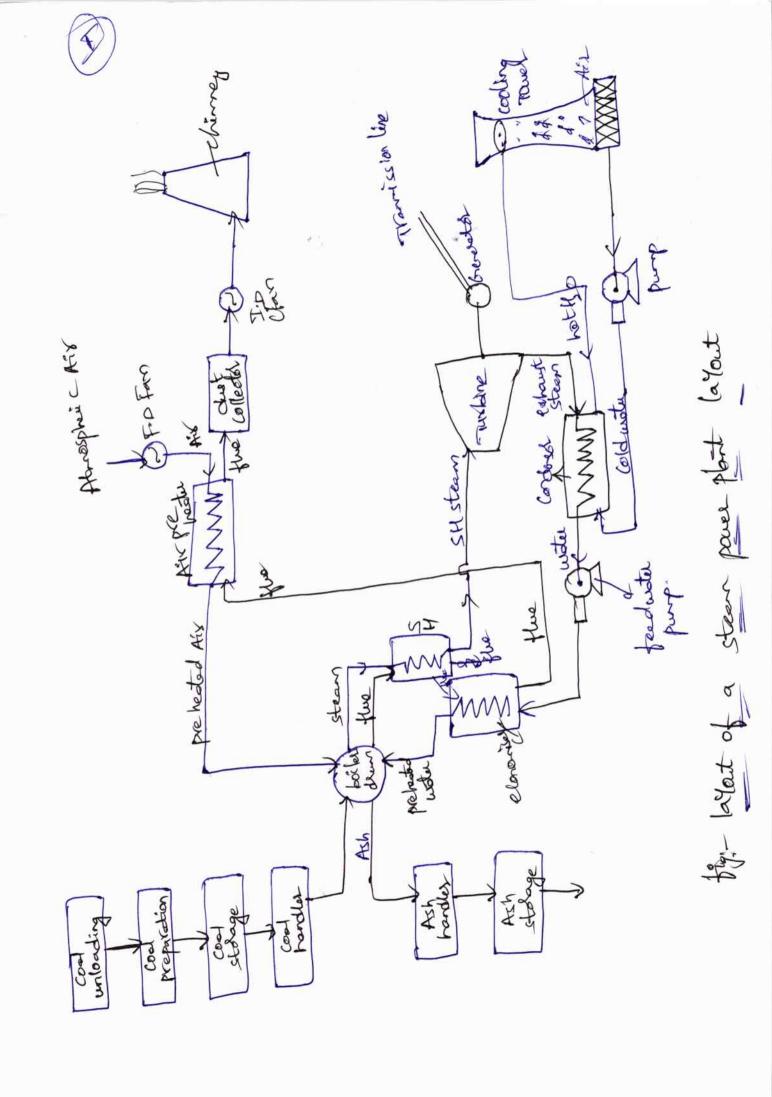
Non Renewable Toll approviously [Rememble erely)

energy sources

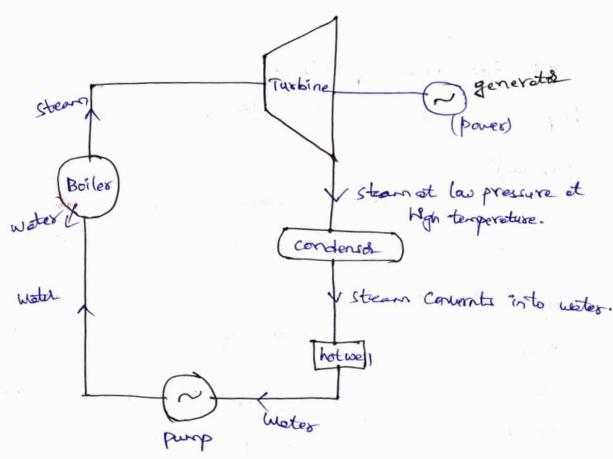
fossil fells — diesel — tiquids.

biology toll

(ad gas (d)


coal

Coal


In wold wise , finding is the 4th largest country.

Latter of the your co

a grand Land - L

Boiler - burning of freed will be moved to worker of then its converts into steam at required pressure as well as temperature.

The steam is then expanded in a turbline to do work.

Tarbine - A Turbine is a machine that transforms rotational energy from a fluid that is picked up by a rotal system into wable work of energy.

Turbines achieve this ether through mechanical gearing (d) electromagnetic induction to produce electricity.

-> The Tustine drives a generated to produce electric paves.

-> The enpanded steam is then passed through the condensal.

Condensed -> muse are heat exchangers which convert steam from its great to its liquid state at a pr below strosphere pr.

Hot well: A Tank of reservoir in which hot auter of collected before being recilculated. It stoke Torray of water. tump - from the pump, water flows in to the boiler. Introduction :-Steam is an important medium for producing mechanical energy. -> It is used to drive steam engines of steam turbines. Steam advantages: 1) Steam can be saised quickly from water which is available in plenty. 2) It does not react much with members materials of the equipment used in power plants. (3) It is stable at temperatures required in the plant. 7 Sized cool exhaust gases Ash handles

1

God unloading > removing foleign (dust) particles.

It prepare permanent stares.

Cool preparation -> "All Cool should be in Sized Cools.

coal stolege -> The cool is sized by crushess, breaker exe

Cool stolage -> The sized coal is then stoled in coal stolage (Stock Yard)

coal handles -> From the stock yard, the coal is transferred to the boiler furnace by means of conveyors, elevatorete.

Bales furnale > The Cool is burnt in the boiles furnace & ash is formed by burning of Cool.

Ash hardler -> Ash coming out of the furnace will be too hot, dusty 4 accomparied by some poisonous gases.

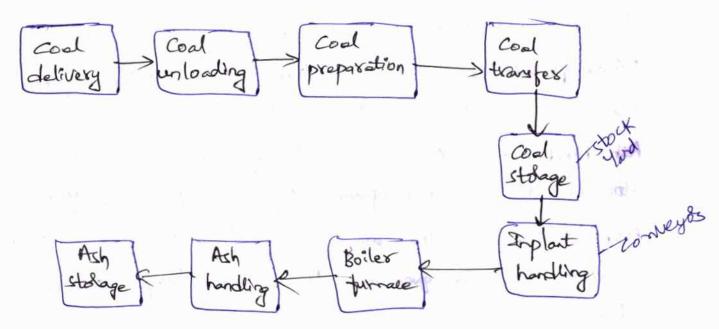
Ash stolage > The ash is transferred to ash stolage.

-> The ash is querebed to reduced temp, corrolision s, dust content.

Equipment of a steam power plant:

A steam power plant must have the following equipment.

1) A furnace for burning the firet.


- 2) A steam generated of bales for steam generation.
- 3) A pover unit like an engine of turbine to convert heat energy into mechanical energy.

4) A generated to convext mechanical E into electrical E.
5) piping system to carry steam & water.

in fair circuits.

- 1) Fuel (Coal) & ash circuit
- 2) water of steam circuit
- 3) Air & the gas "
- 4) cooling water flow "

1) Fuel (cool) & ash circuit :-

This includes cool delivery, preparation, cool hardling, boiler furnace, ash hardling of out stolage.

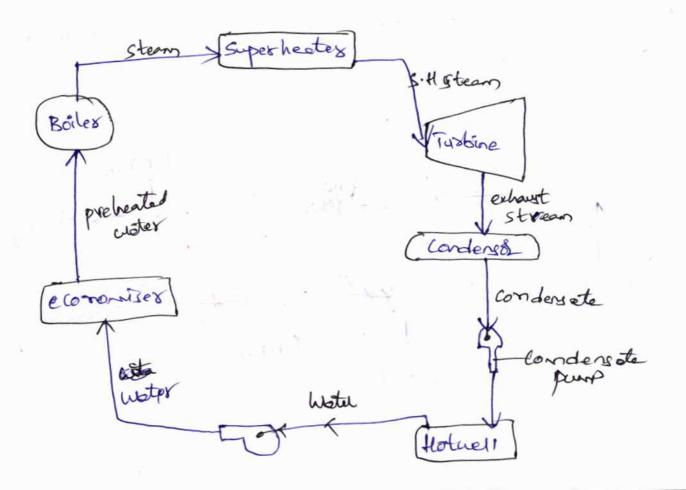
The coal from coal mines is deliqued by ships, noil a by trucks to the povexitation.

Thes cool is sized by crushess, breaker etc. The sized cool is then stided in cool stolage Cotock Yard.

From the stock Yard, the cool is transferred to the boiler furnace by means of conveyor, elevators etc.

The cool is burnt in the boiles furnace & osh is flowed by burning of coal.

Ash coming out of the furnace will be too hot, dusty & accompanied by some poisonous gover.

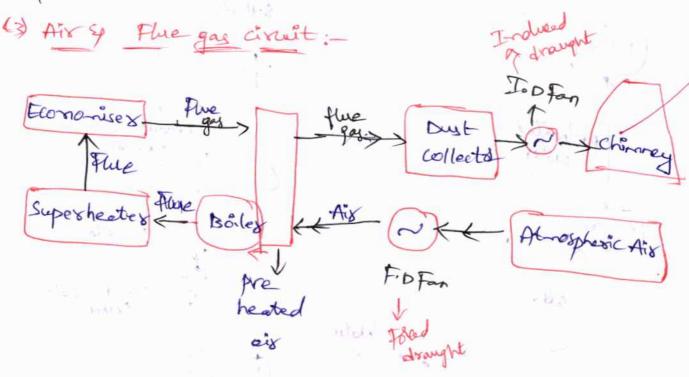

The ash is transferred to ash stolage.

usually, the ash is quenched to reduced temperature, corrosions,

There are different mothods employed for the disposed of och.
They are hydroulic system, water jetting, ash sluice ways,
phereumotic system etc.

In large power plants hydraudic system is used. In this system, ash falls from the furnace grate into high velocity water stream.

It is then carried to the slumps.



It consists of feed pump, economises, boiler drum, , Superheater, turbine, condensal etc.

Feed water is pumped to the economises from the hot well, This water is preheated by the flue gases in the economiser. This preheated water is then supplied to the boiler down. Heat is transferred to the water by the burning of God. Due to this water is converted in to steam.

- Superheater. It is superheated by the flue gazes.
- -> The Super heated steam is then expanded in a tarkine to do work.
- -> The taxbine drives a generated to produce electric power.

 -> The expanded (exhaust) steam is then passed through
 the condensal
- In the Condensol, the steam is condensed into weter greensulated.

9

It consists of torced drought for, air preheater, boiler furnace, superheaters, economiser, dust collectal, induced drought for, chemosy etc.

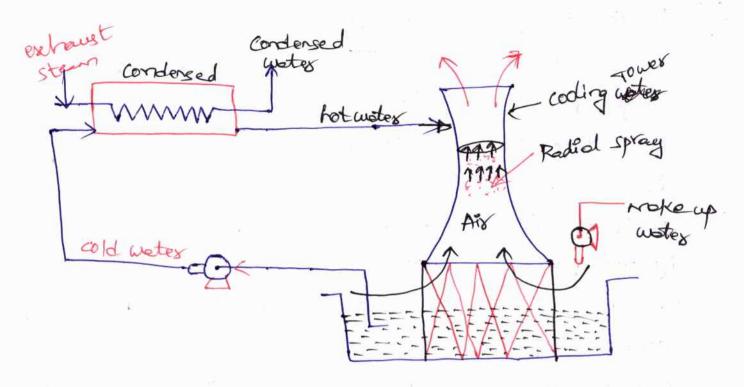
As is taken from the atmosphere by the action of a folded drought fan.

It is passed through an air pre-heater. The air is pre-heated by the flue gases in the pre-heater.

This preheated air is supplied to the furnace to aid the combustion of fiel.

Due to combustion of fuel, hot gases (the gases) are formed.

The flue gases from the furnace pass over boiler takes & superheater takes. (In boiler, wet steam is generated & in superheater the wet stream is superheated by the flue gases).


-> Then the flue gases pass through economises to heat the feed water.

After that it passes though the air pre-heater to pre-heat the incoming air.

It is then possed through a dust Catching device (dust collected).

Finally it is exhausted to the obsosphese through chimney.

(4) Cooling water circuit :-

This crownit includes a pump, condenses, Cooling towes etc. The exhaust steem from the textire is condensed in a cordenses.

In the condenser, Cold water is circulated to condense the steem into water.

The stream is condensed by losing its latest head to
the circulatory cold water.

West is absolved it released
dang a phase change of a

Thus the circulating water is heated. This hot water is then taken to a cooling tower.

In cooling tower, the woter is sprayed in the form of droplets through nozzels.

one othospheric air enters the cooling tower from the openings provided at the bottom of the bues.

This air remaks heat from water.

cooled water is collected in a pond known as a cooling pond.

This cold water is again circulated through the pump, cordered & cooling tower.

mus the cycle is repeated again & again.

Some amount of mater may be lost during the circulation due to vapolisation etc.

Hence make up water is added to the pond by

This water is obtained from a river of lake.

Types of coals :-

Cool: - Its main constituents are Carbon, hydrogen, oxygen, nitrogen, Sulphur, noisture sp ash.

Cool passes through different stages during its formation from Vegetation.

These stages are enumerated & discussed below glade good.

Sub-Bituminous Cool
Bituminous Cool-Serie Bituminous Cool-Serie anthracite Cool
Athracite Cool-graphite.

Peat: It is the first stage in the formation of coal from wood.

It contains huge amount of moisture of therefore it is died the obert 1-to 2 moiths before it is put to use.

-> It is used as a donestic first in europe of for power generation in Russia.

In India it does not come in the categories of good Fuels.

They have a woody or often a clay like appearance associated with high moisture, high ash of low heat contents.

-> Lignites are usually amorphous in character & Impose transport difficulties as they break easily.

-> They burn with a smoky flame . some of this type are suitable to local use only.

(3) Bitumikay Cool: - It bourns with long Yellow so smoken of bunes & high percentages of voltaile mother. It was died to be average Caldific volue of bituminay cool is about 3 stad maken of the may be of two types, manely caking of mon-caking.

It may be of two types, manely caking of mon-caking.

(4) Semi bituminay cool: - It is a type of control which when health in anaprobic conditions leaves afterlier

It is softer than the arthrecite. when he ded in knowle corditions
It burns with a very snell amount of smoke.

It contains 15 to 20% of Voltaile notter & has a tendency to break into small sizes during stolage of transportation.

(5) seni arthracite :-

It has less fixed carbon & less lustre as Compared to true arthroacite & gives out longer & more luminous flomes when by mot.

(6) Anthracite: It is very hard cool of has a shiring black lustre.

It ignites slowly unless the furnace temperature is high.

It is now cating of hes high percentage of fixed carbon.

It burns eitnes with very short blue flames of without flames.

The caldific value of this fire! is high to the tune of

35500 KJ/kg of as such is very situable for steem generation.

(7) wood charlood;

It is obtained by destructive distillation of wood.

during the process the volable metter & weter are expelled.

The physical propostes of the residue (Chascool) however depends upon the rate of heating & temperature.

(8) coke: It consists of Carbon, mineral matter with 2%. Sulphus & small quantities of hydrogen, nitrogen & phosphosous.

It is solid residue left after the destructive distillation of certain kinds of cods.

It is smokeless of clear fuel of Can be produced by several processes.

It is mainly used in blast furnace, to produce heat & at the same time to reduce the iron ole.

fuel Handling :-

Three types of fuels can be burnt in any type of steam generating plants

- 1) Solid Fuel such of cool.
- 2) tiqued " of.
- 3) Boseous " " ges.

Supply of these quels to the power plants from various Sources is one of the important considerations to a power plant

The hardling of these quels is an important aspect.

The following factors should be considered in selecting the fuel handling system.

- 1) plant fuel vote.
- 2) plant location in respect of fuel shipping
- 3) stolage area available.

Fuel handling plant needs extra attention while designing a thermal power station, as almost 30 to 60%. of total operating cost consists of fuel purchasing so handling.

Fuel system is designed in accordance with the type of mouture of fuel.

Continuously increasing demand for power at lower cost.
Calls for setting up of higher Capacity power stations.

- -> Pise on capacity of the plant poses a problem in cool supply system from cool nines to the power stations.

 -> The cool from cool nines may be transported by
 - the following means ;-
 - 1) Warsportation by sea of river.
 - 2) " by seil
 - 3) " " sope ways
 - 4) " voad
 - 5) of God by pipeline.

The pipeline coal transport system offers the following advantages:-

(1) It provides simplicity in installation & increased safety in operation.

(2) more economical than other modes of transport when dealing with large volume of coal over long distances.

(3) This system is continuous as it remains unabfected by the Vagasies of climate & weather

(4) high degree of reliability.

(5) loss of coal during transport due to theft of pilterage is totally oliminated.

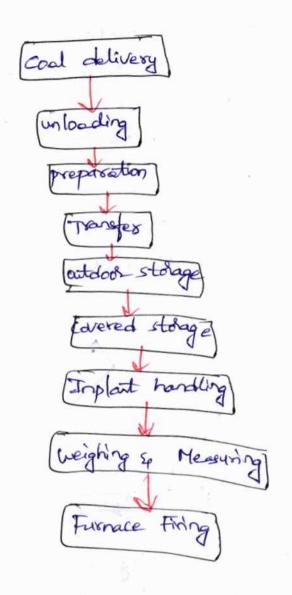
(6) manpours requirement is low.

Requirements of Good cool Hardling plant:

- 1) It should need minimum maintenance.
- 2) It should be reliable.
- 3) It should be simple & sound.
- 4) It should require a minimum of operatives.
- 5) It should be able to deliver requisite quantity of Goal at the destination diving peak periods.
- 6) There should be minimum wear in running the equipment due to obsidive action of coal particles.

cool Hardling systems:

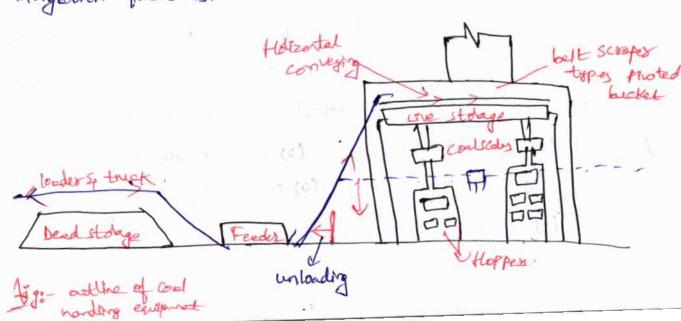
Mechanical handling of cool is preferred over manual handling due to following reasions.


1) Higher reliability.

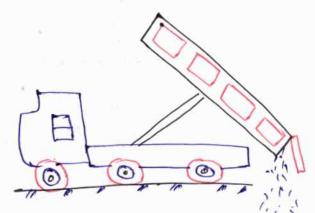
- 2) less labour required.
- 3) Eterrarical tot medium & large capacity plants.
- 4) operation is easy of smooth.
- 5) Can be easily started as can be economically adjusted according to the need.
 - 6) with reduced labour, management & Control of Plant belongs easy of smooth.
- 7) minimum labour is put to unhealthy condition.
- 8) losses in transport are minimised.

Disaduantages!

- 1) Needs continuous maintenance so repair.
- 2) Capital cost of the plant is increased.
- 3) In nechanical handling some power generated is weally consumed , resulting in less not power available to supply to consumers.


coal Handling:

(1) coal delivery:


From the supply points the coal may be delieuered to power station through rail, road, river of sea.

-> plants situated mean the river of sea may make use of navigation facilities.

- -> stations which cannot make use of navigation Facilities may be supplied cool either by rail or trucks.
- are not far off or when the necessary rolling facilities are not available.
- In Case soil transport is to be adopted, the necessary siding for receiving the cool should be brought as near the station as possible.

(3) unloading:

The type of coal anloading equipment used in plant depends upon the type of out plant handling mode as soud, sail of ship.

If coal is delieuered by trucks, there is no need of unleading device as the trucks may dump the coal to the outdoor stolage.

Cool is easily handled if the lift trucks with scoop are used.

—> when the cool is transported by sea, the unloading equipment normally used is given below:

(1). potable conveyor (2) coal accelerators
(3) coal towers (4) unloading bridges
(5) self unloading boots

(3) preparation: If the Cool when delivered is in the form of lumps, the Cool preparation may be carried out by:

(1) Breakers (2) Crushers (3) sizers (4) dryers

(5) magnetic separatos.

(4) Transfers: Transfers means the hardling of coel by the unloading point sy the final stoage point from where it is discharged to the firing equipment.

The following equipment may be used to transfer of cool.

1) Belt conveyors
(3) Vee bucket elevators
conveyor

5) Grab bucket "

- 7) Skip hoists
- 9) Chutes

(2) Screw conveyor

4) proted backet conveyor

6) Fleat conveyor

6) flight conceyous

8) mass flow conveyor

(i) Belt conveyor:

Tripper idless Carriers discharge discharge

It is very suitable mens of transporting large quantities of cool der large distances.

It consists of an endless beit (made of subsper, convey of balota).

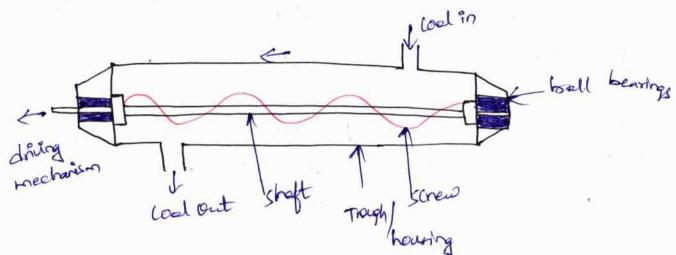
Surving wes a pair of end drums or pulleys & supported by a series of sollers (known as idless) praided at regular intervals.

The return idless which support the empty bett are plain rollers & are spaced wide apart.

The initial cost of system is not high.

The inclination of which cool can be successfully elevoted by beit conveyed is about 20.

Average speed of belt conveyor is 60 to 60 m permin. -> The land Carrying Capacity of the belt may vary from so to loo tonnes / hour of it can easily be transferred through 400m.


It is used in medium & large power plants.

Advantages:

- 1) most economical method of coal transport in medium & large capacity plants.
- 2) Its operation is smooth & clear.
- 3) Repair & maintenance costs minhoun.
- 4) large quantities of coal Can be discharged quickly & Continuously.
- 5) pover consumption is minimum.
- 6) The rate of cool transfer can be easily harried by just varying the belt speed.
- 7) Cool being transferred is proteted

Disaduantages:

1) Not suitable for greates heights & short distances. (ii) screw conveyor:

It consists of an endless helicoid screw fitted to a shaft.

The driving mechanism is connected to one end of shaft a other end of shaft is apported in an enclosed ball bearings.

The screw while votating in a trough / howing transfers Cool from one end to other end.

The following pasticulars relate to this conveyor.

diameter of screw - 15 to 50 cm.

speed - 70 to 120 pm max capacity - 125 tonnes/hours

(iii) Vee bucket elevated:

In this type of elevotor, sted V-shaped buckets are rigidly fatered to an endless chain going sound sprockets.

The buckets are equally spaced on the chain a receive their load by dipping into Coal pocket at lawrend of the System.

The material elevated in V buckets is discharged either by Centrifugal followed top of elevated of by drowing back the buckets on discharged side.

Adjustages 5

1) less power is required for operating the equipment.
2) Coral can be discharged at elevated places.

3) less foot area is required.

disaduartages :-

It is not suitable for large apacity stations.

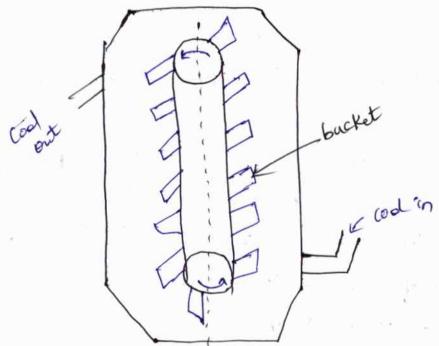


fig shows which is used for moderate lifts.

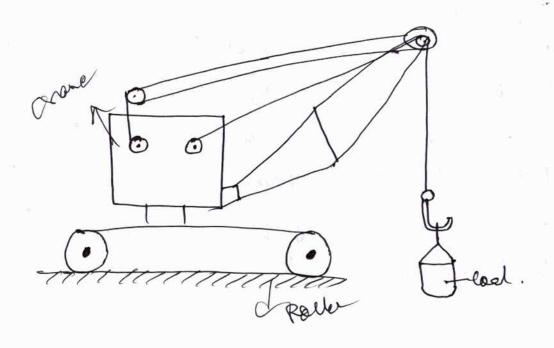
The material is continuously handled & Can be both housted & conveyed.

('IV) pivoted bucket conveyor:

This conveyor consists of molleable iron buckets suspended by pivots midway by the joints of two endless chains, which are driven by a moter located of some convenient point, usually of the top of a vertical vise.

while travelling horizontally, buckets maintain their position due to gravity of support the joints.

The conveyor is loaded by passing below a crusher.
The cool is charged into bunker by a tripping device.

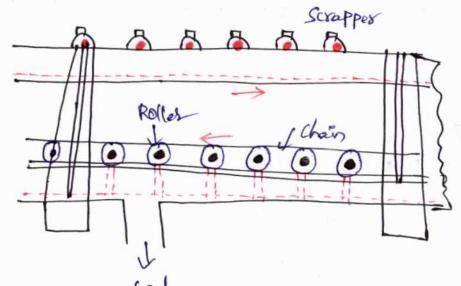

Advantages in low operational cost

high Capacity

less floor area requirement

dicadvantages in high initial cost of the equipment.

(V) Greb bucket conveyed: - Costly role - hr- 50 Tornes Capaci


It is a form of hoist which lifts & transfers the load on a single sail or track from one point to another.

This is a costly machine of is justified only when other assurgements are not possible.

Capacity of a grab bucket way be about 50 Tonnes per hays.

(Vi) Flight Conveyed (d) scrapes:

It is generally used for transfer of God when filling of No of stolage bins situated under conveyor is required.

It consists of one of two strands of chain, to which steel scrapers are ottached.

The scrapes scraps the cool through a trough of the look

-> Capacity of a conceyor of the type may songe from)
lo to loo tonnes per hour.

It is used extensively to conveying coal holizontellys

Advantages:

It has a sugged construction.

It can be used for transfer of coal as well as osh.
Its speed can be easily regulated.

It needs small headman.

Disaduantages:excessive used due to dragging action.

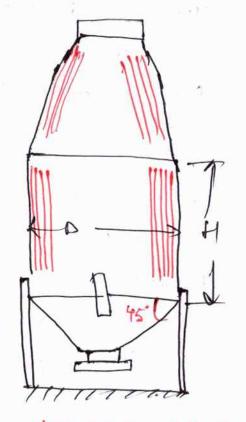
high weinterance cost.

The speed is United to 30m/min to reduce the abrasive action of natorial hardled.

pavel consumption is note.

(VII) Stop hoist :-It is used to high lifts & handling is hon continuous. -> This assargement is Simple & Cheap & operation Costs including labour Se maintenance are low. -> It is oldest & Simplest means of eleveting load of osh sy is favourite of engineers pasticularly in out hardling.

(5) stolage of cool;


It is very essential that adequate quantity of coal should be stoled.

stolage of God gives protection against the interruption of God supplies when here is delay in transportation of God or due to strikes in God mines.

1) There should be no standing winter near the stolage area. 2) Stolage area should be solid & not loose & poras.

(3) Corrical piling should be avoided.

Sunkers made of steel of technical converte are used to stole the coal, from here the coal is transferred to boiler grotes.

(6) Implant hardling: (nown of cool for one plate to another.

1) Cool hardling 6/w find stolage & firing equipment.

2) A conveying system to feed cool from any bunker section to any firing unit & to make cool from one bunker section to another.

Implant hardling may mean no mode than chetes to direct flow into individual firing with & gotes of values to control the flow.

It may include the equipment such as belt conveyor, screw conveyors, bucket elevated ate to transfer the Cool.

The weigh lowings, hoppers & automotic scales are used to record-top quantity of coal deliceweed to the furnace.

(1) weighing a Measuring: To weigh the quantity of Cael tre following equipment is used

1) neigh bridge 2) bett scale
3) 11 loony 4) Autorotic scale

(8) Firele pring: Refer to cool delieuxy, unlanding.

harant of a fiel Hardling earipment in wagon

touel toppers

Longer borler hoppers

Longer borler hoppers

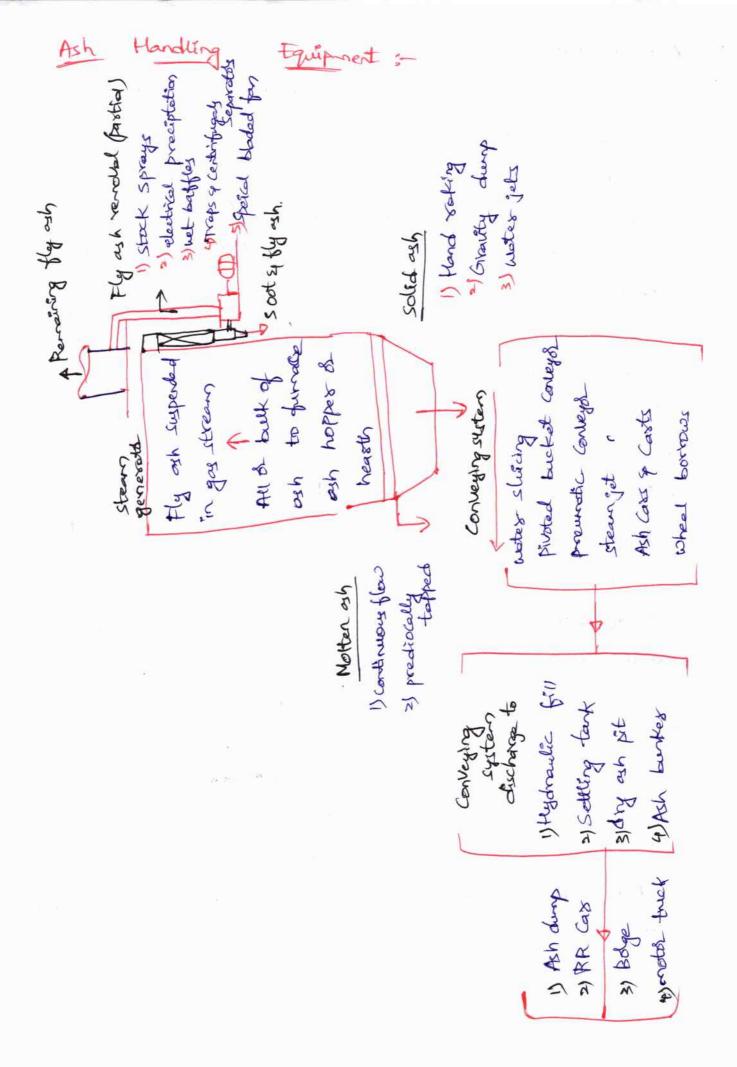
Longer borler hoppers

Longer bourged

- Cool is supplied to the power plant in railway ungors.
- -> After weighing or wegon balance the Coal is then unloaded underground hoppers of bankers.
- -s The wagon can be whended extre manually of torrough rotary wagon tipplets.
 - -> from the bunkers, the cool is lifted by conveyor to transfer to. from where it can be delieved either to the fuel stole of by a conveyor to a crusher.
- -> The God is then passed through the magnetic Separators of screens of crished in crishers into pieles at to 30 mm in size for stokes firing of 6 to 20 mm, when pulseished field is fixed in boild furnales.
- The crushed coal in letter care is willed to a fine powder by then sit is Carried through automotic weigher to a transfer tower where fuel is lifted of distributed both boiler he ppers by a centeryol.

A huge quantity of ash is produced in central stations, sometimes being as much as 10 to 20% of total quantity of cool burnt in a day.

flundreds of Tonnes of ash may have to be hardled every day in large power stations of mechanical device become imdispensable.


A station using low grade fuel has to deal with large quartities of ash.

Handling of ash includes:-

- 1) Its removal from the furnace.
- a) loading on the conteyers of delivery to the fill of dump from where it can be disposed off by sale of otherwise.

Handling of ash is a problem because ash coming out of furnace is too hot, it is dusty & irritating to handle & is accompained by some poisonous gas.

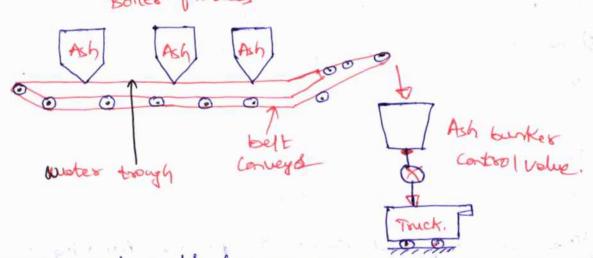
- -> Ash needs to be quenched before hardling due to following reasons:
 - 1) quereling reduces corrosion action of ash.
 - 2) It reduces the dust accompanying the ash.
 - 3) " " temperature of ash.
 - 4) Ash forms clinkers by fusing in large lungs so by quenching clinkers will disintegrate.

- 1) It should have enough capacity to cope with the volume of ash that may be produced in a station.
- 2) It should be able to hardle large clinkers, boiler refuse, soot etc. with little personal attention of the workmen.
 - 3) It should be able to hardle hot & wet ash effectively so with good speed.
- 4) It should be possible to minimise the corrosive of abrasive action of ashes & dust misance should not exist.
- 5) The plant should not cost much.
- 6) The operation charges should be minimum possible.
- 1) a " of plant should be noiseless as much as possible.
- 8) The plant should be able to operate effectively under all variable load conditions.
- 1) In case of addition of wits, "it should meed minimum changes in original loyant of plant.
- 10) me plant should have high rate of handling.

The Commonly used equipment to ash handling in large sy medium size plants may comprise of:

- 1) Bucket elevetel
- 2) (1 Conveyor
- 31 belt 11
- 4) premetic "
- 5) hydraulic sluiding equipment
- 6) Toollies of vail Can etc

Ash handling systems:


are mainly classified The modern ash handling systems ento 4 groups.

- 1) Mechanical hondling system.
- 2) Hydraudic System
- 3) prewratic "
- 4) Steam jet "

1) Mechanical handling system:-

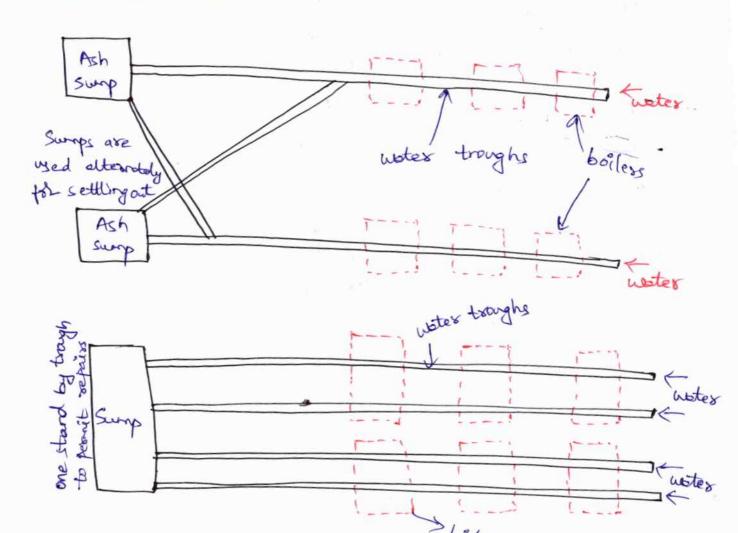
Fig shows a nechanical hondling system. This system is

Boiler furnaces

generally employed to low apacity power plants using coolar fuel.

The hot ash released from the boiler purnaces is made to full des the best conveyor after cooling it through water sea -> This cooled ash is transported to an ash burker

through the belt conveyed.


from ash bunker the 1sh is remared to the durping site through trucks.

In this system ash is carried with the flow of water with high velocity through a channel of finally duraped in the Swap.

This system is subdivided as follows:

- a) Low pressure system
- b) high "
- (a) Low pressure system:-

In this system, a trough of drain is provided below the boiless of the water is made to flow through the trough.

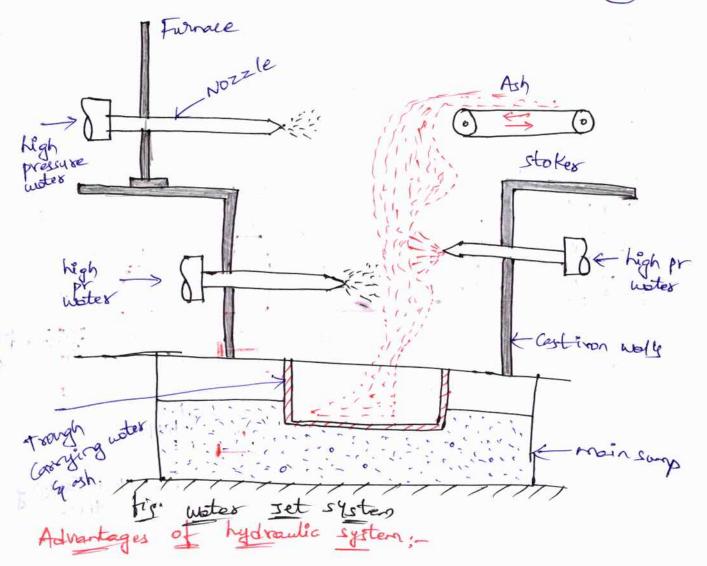
The ash directly falls into the troughs of is Carried by water to surps.

In the sump the ash so water are made to pass through a screen so that water is separated from ash, this water is pumped back to the trough for reuses ash is removed to the dumping yard.

> The ash Carrying Capacity of this system is 50 tonnes/ 48 system is 50 tonnes/ 48

(b) High pressure system ;-

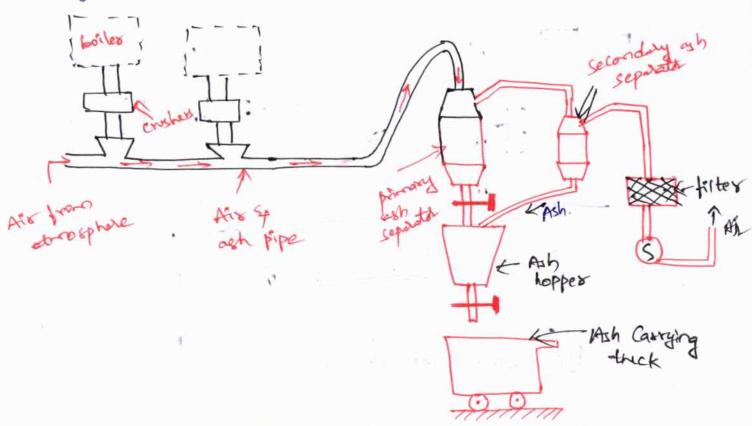
The hoppers below the boilers are fitted with water nozzels at the top & on the sides.


me top Nozzels quench the ash while the side over provide the driving take the ash.

The cooled ash is carried to the sump through the trough

The water is again separated from ash sy recirculated.

The ash carrying capacity of this system is as large as


120 tomes per hour of the distance covered is as large
as loop-netres.

- 1) The system is clear & healthy.
- 2) It can also be used to handle stream of mother out.
- 3) cooking pasts do not come into contact with the ash.
- \$) It is dustless of totally closed.
- 5) It can discharge the ash at a considerable distance (1000m) from the power plant.
- 6) The unhealthy aspects of ordinary out basement work is eliminated.
- 7) Its out carrying apacity is considerably large, hence suitable for large Thermal power plants.

(3) preumetic systems;

It shows the schematic of a premotic ash handling System.

This system can handle abrasine ash as well as fine dusty materials such as fly ash so soot.

It is preferable for the boiler plants from which as h & soot must be transported some far off distance for final disposal.

The exhauster provided at the discharge of creates a high velocity stream which picks up out of dust from all discharge points of then these are Carried in conveyd pipe to the point of delievery.

large out pasticles are generally chyhed to small sizes through mobile coupling with which are fed from the furnace out hopper & discharge into the conveyor pipe

to the point of delivery.

large out particles are generally consted to small sizes through mobile counting with which are fed from turnace out hopper a discharge into conveyed pipe which terminates into a separator at the delivery end.

The separated working on cyclone principle removes dust if out which pass at in to the out hopper at the bottom while clem are is discharged from the top.

The exhauster may be nechanical of it may use steam jet (d) water jet to its operation.

when a mechanical exhauster is used it is bywelly essential to use a filter of washer to ensure that the acharater handles clear air.

Such type of exhauster may be used in large station as

Steam exhauster may be used in small & medium size stations.

where large quartities of mater are easily & cheaply available water exhauster is preferred.

The ash Carrying Capacity of system varies from 25 to 15 tonnes per hour.

Advantages :-

- 1) NO spillage & rehardling
- 2) high flexibility
- 3) There is no chance of ash freezing of sticking in the Stolage bin sy mll can be discharged freely by gravity.

4) The dustless operation is passible as the moterials are hardled totally in an enclosed condut.

55 The cost of plant per tome of osh discharged is less in compassion to other systems.

Diaduatages: -

Homeve is a large amount of wear in pipe work at high maintenance charges.

2) more raisy than the other systems.

(4) steam jet system :-

In this case, steam at sufficiently high velocity is passed through a pipe & dry solid meterials of considerable size are. Carried along with it.

In a high pr steam jet system a jet of high pr steam is possed in direction of ash travel through a conveying pipe in which ash from the ballet ash hopper is ted.

The ash is deposited in ash hopper.

This system can remove elonomically the agh through a holizartal distance of 200m of through a nortical distance of 30m.

Advantages :-

- 1) less space requirement
- 2) " Capital Cost in compassion to other systems
- 3) Auxiliary drive is not required
- position too.

pisadvantages:

- 1) Noticy operation
- 2) This system necessitates continuous operation since its capacity is United to about tomes per hour.
- 3) Due to abrasive action of ash the pipes undorgo greates wear and to reduce this wearing action the pipes are liked with Ni alloy.

UNIT-IL

Steam power plant - Combustion process

Since the source of heat is the combustion of a fuel, a working unit must have whatever equipment is necessary to receive the fuel of air, proportioned to each other of to the boiler steam demand, mix, ignite of perform any other special combustion duties such as distillation of voltaile from coal prior to ignition of fluid Fuels are handled by burness, solid lump fuels, by stokers.

Since so many different principles are used in Conduction equipment, "it has been prepared to summarize the more impostant currently manufactured types of stokers used for solid fuels.

Classification of combustion system :-

(stokers)

Crushed finely

Sized cod

over feed

under feed tool

Southing South Slopping retall agitated wen feed Greates Reports for coal beauty STule, Conster Horizontal setat Confertion system eyed stakes JANA C Lump lead (stokess) ranelling grate olves feed Stokes Mechanial manydung grate over Throw Agi The deticed closefreation Stokes Targestial Coughed finely Sized coal High trub Shot 3

Combustion equipment for steam Boiless Solid Fuel Fising Stoker Pylverised feed full fired overfeed system Stokers Stokers Travelling gode Single retort notest solid fuel - coal - stokers

liquid fuel - petro, diesel buskers

Combustion process:

proposties of cod:

The properties of coal are broadly classified as :-

- 1) physical properties
- 2) chemical "

O physical properties:-

proximate Analysis;

Proximate Analysis indicate the persentage by weight of the fixed Carbon, voltailes, as n is moisture content in Cool. The amounts of fixed Carbon is voltaile condustible mother directly contribute to the heating value of cool.

The Garbon acts as a main heat generated during burning.

- -> high voltaile matter content indicates easy ignition of quel.
- The ash context is important in the design of the furnace grate, combustion volume, pollution control equipment so ash handling systems of a furnace.

Significance of various parameters in proximate Andaysis:

1) Fixed Carbon: It is the solid fuel left in the furnace efter voltaile matter is distilled off.

It consists mostly of Carbon but also contains some hydrogen, ourgen , suphur & nitrogen not driven off with the gases.

-> fixed avoor gives a rough estimate of heating value of cool.

(2) voltaile matter: These are the methane, hydrolarbons, hydrogen & Carbon mono oride and incombustible gases like Carbon dioside. & Nitrogen found in cod. -> They the voltaile matter is an index of the gaseous fuels present. -> Typical range of voltaile notter is 20 to 35%. voltaile matter -> proportionately increases the flame length so helps in easier ignition of God. -> sets minimum limit on the premace height & volume. - Influences secondaly air requirement & distribution spects. > Influences secondary oil support. (3) Ash costert: - Ash is an "upurity that will not burn. Typical songe is 5 to 40% of ash. Reduces handling & burning capacity Increases handling costs Affects Conduction efficiency & boiles efficiency. Causes clinkering a slagging indeved old when rocks are heali (4) Moisture context: > Load Stepho Bush services a Dogo. moisture in coal must be transported, handleds, stoled. Since it replaces combustile natter, it decreases to heat content perky of God. Typical sange is 0.5 to 10% moisture. Increases heat loss, due to evapolation of superheating of Vopow.

helps to a limit in binding fines. Aids radiation heat transfer.

(5) Sulphyr contest ;-

Typical range is 0.5 to 0.8%, mornelly.

Sulphur -> Affects clinkering & slagging tendencies

Coxyodes chimney & other equipment such as air
hesters & economisers.

Limits exit the gay temp.

Cheraid properties:

cultimate Andaysis:-

It indicates the various elemental chemical constituents

Such as C, 41015 lete. It is useful in determining the

Mantity of als required for the Conductioning the Volume

& composition of the conduction gases.

This information is sequenced to the Calculation of flame temp & flue duet design etc.

3) 2

In small boilers, the grate is stationary so coal is fed manually by shovels.

But to note within operating condition, higher burning rate & greater efficiency, maing grates of stokers are employed.

-> stokes may be of following types:-

- 1) Travelling grate stoker
- 2) Chain
- 3) Spreader "
- 4) Vibrating 1
- 5) understead

Rear ignition

Sec Hopper

Sec Hopper

The gases front ignition arch

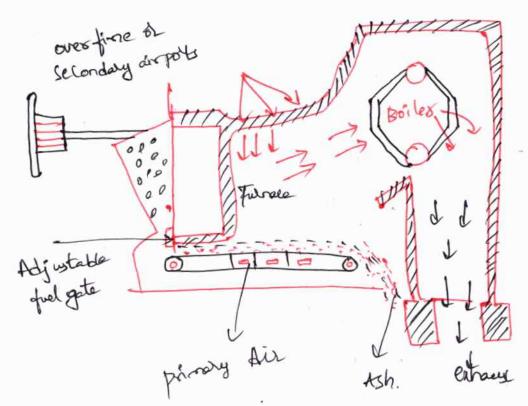
PA PA PA

To shipt Rear controlled by driven by a Variable damper specket

Speed motor

The grate susface is made up of a series of Cast iron bass joined together by links to flur an endless belt runing are two sets of sprocket wheels with a susface as wide as maded.

-> A coal gate at the rear of the coal hopper regulates the depth of fuel bed.


The gote can be raised or lowered as needed.

Simultaneous adjustment of grate speed, fuel bed thickness and air flow controls the burning rate so that mothing but ash remains on the grate by the time it reaches the furnace rear.

The ush folls into the ash pit as the grate terms on the reas sprocket to noke return top.

- As the saw of green coal on the grate entex the furnace , the surface cool gets ignited from heat of the furnace flame of thom sodiant heat ways reflected by ignition arch.
- -> The fiel bed becomes things toward the furnace rear as the combustible mitter burns off.
- -> under grate air pressures are varied by dampers from front to rear of stokes to admit greducity reduced quantity of primary air ted by Fo Fan.
- -> The secondary air aids in mixing gayes & supplies oxygen to complete combustion.

A travelling type chain grate is shown in tig.

It consists of an ordless chain which forms a support to the

The chain travels over two sprocket wheels one it the front of other at the sear of famace as shoon in tig.

The front sprocket is connected to a variable speed drive

The cool is fed by gravity from a hopper located in front of the stoker.

The depth of fuel on grate is segulated by hard adjusted gate as shown in tig.

The speed of grate varies at rate at which the coal is fed to the turnace.

The combustion control automotically regulates the speed of

- grate to maintain the required steam generation rate.

 The ash containing a small amount of combustile matter is

 Carried also the rear end of the stoker of depoisted in the ash. pit as shown in tig.
 - The air required for Combustion is supplied through the air rulets situated below the grate.
 - provided in furnace wall above the grote of shown in tig.
 - -> The combination of primaly air & alex fixe air supplied provide turbulence required to topic combustion.
 - "It is foled through the upper grate.
 - The air duets under the stoker are divided into sections, so that air supply to different pasts of stoker is regulated to meet the changing demand.
 - -> The air openings in grate depend upon the kind of coal burned to vary from 20 to 401/2 of total grate area.
 - -> Air dampers are provided to control the air supply to the Various zones.
 - The air dangers enable the operated to control the sate of burning in diff zones. The air dangers enable the operated to control the rate of burning in diff zones by reduce to a minimum the cake Carry dres into the ash pit.

If the satisfactory operation cannot be a composished by adjusting these dampers, then the control is achieved by adjusting the fuel bed depth.

The coal supplied to the grate is regulated by two ways, as by varying the depth of coal on grate with the help of grate value & by varying the rate of grate travel.

These grates are suitable for low rating of feel because the door of the because

the fuel must be burnt before it reaches the rear end of furale.

-> The rate of burning with this stokes is 200 to 300 kg permit per hour when folced draught is used.

-> Any type of fuel except Caking bituminous cool Con be used with chain grote stoker.

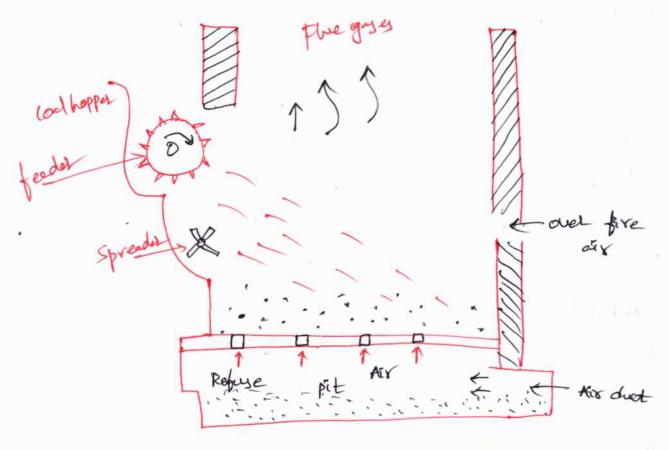
of fines results in increased carbon loss.

Advantages :-

- I) It is simple in Construction & its initial cost is law.
- 2) It is self cleaning stoker.
- 3) It is more reliable in service
- 4) maintenance charges are law.
- 5) The heat release rates can be controlled just by "the controlling of speed of Chain
- 9 It gives high next release roles per unit volume of the furnace.

Disadvantages

1) The amount of Cool Carried on grate is small as the increase in grate size creates additional problems.


This Cannot be used too high Capacity boilers (200 tomplas)

3) The temp of preheated are is brited to 180°C

4) The chocker troubles are very Common.

5) Ignition arches are required.

(3) Spreader stokes:

A spreader stokes is shown in tig, In this stokes the coal from the hopper is fed on to a feeder which measures the coal in a clordance to the requirements.

Feeder is a votating down fitted with blades.

It can be reciprocating rams, endless belts, spiral wouns etc. From the feeder the coal drops on the spreader dictributor which spread the coal are the turnace.

6 5

The spreader system should distribute the cool evenly des the entire grate area.

me spreader speed depends on size of coal.

Advantages :-

- Its operation cost is low.

A trin fuel bed on grate is helpful in meeting the fluctuoting loads.

(4) vibrating grate stoker:

The stoker shokes the fuel bed intermittently, the frequency of amplitude of vibration depending on boiler load. In the fuel bed is inclined so that the fuel moves towards the rear of the boiler by gravity with the progress of combustion of the fells into the ash pit. The greate is water cooled to prevent slagging.

Method of Feeding coal to combustion chamber:

In case of overfeed stokes the coal is fed on to the grate above the point of air admissions as shown in tig.

-> The Mechanics of Comboustion in overfeed stokes is given below:

1) The pressurised as loning from F.D for exters tunder the bottom of the grate.

The air passing through the greate is heated by absorbing the heat from the ash sy grate attent, where as the ash sy grate are cooled.

The hot air then passes through a bed of incandescent coke. As the hot air passes through incandescent coke, the oz reacts with c to form Cog.

The vote of carbon oxidation in this past of the bed depends destirely on vote of air supply.

Generally for a fiel of 8 cm deep, all the of in the oir disappears in the incandesent region.

incandescent zone & forms CO, Co, & Hz.

Past of co, thened reacts with a passing through

imandescent zoen & contests into Co.

The gases leaving the incordescent region of feel bed consists of N2 Co2 Co 112 & 40.

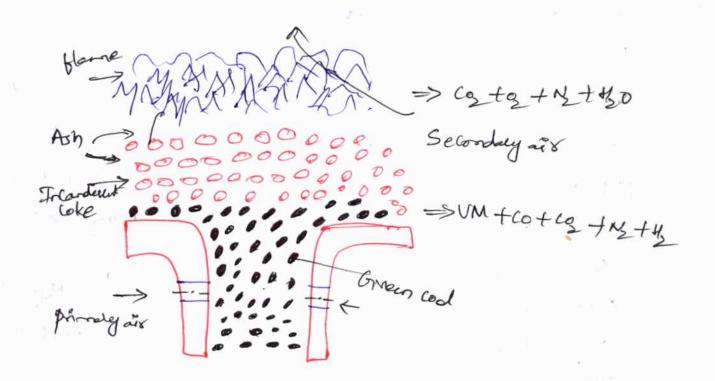
of the bed. here it loses its voltaile matter by distillation.

The heat required for the distillation of God is 6 given by incandescent coke below the fresh fuel, hot gay es diffusing through the surface of bed & hot gays & flame in the furnace above.

me ignition zone lies directly below the row feel undergoing distillation.

(3) The gases leaving the upper susface of finel bed contain combustible voltaile matter formed from the row bel, No Coz 1 Hz & Hzo.

Additional secondary air is supplied at a very high speed to create turbulence which is required for complete combustion of unburned gases.


The combustion of the beneating combustible gage is completed in the combustion chamber.

(4) The burned gayes entering the boiler contain by Co of Set the se some co if burning is incomplete.

(5) during incandescene, the fuel continuously loses its. Carbon by oxidation cutil only the osh remains. The primary air supplied from the bottom cooks cooks the osh until it rests on a plane immediately adjalent to the grate.

(2) under feed stoker:

In this type of stokess, the fuel of air more in the same direction. The mechanism of Combustion in under feed stokes is described below:

(1) Air after passing through the holes in the grate or shown in tig. meets the cool.

As it diffuses through the bed of row cool, it meets with the volatile matter generated by the new-cool.

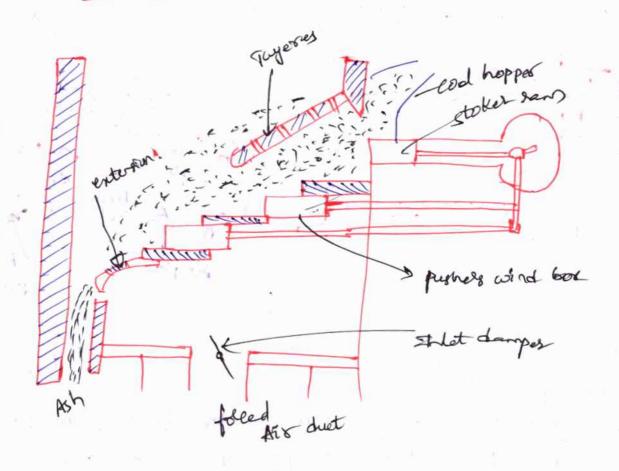
The heat for distillation comes by conduction from the mass of incandescent fuel bed which exists above the row Cod.

me air rixes with the found voltaile matters of passes through the ignition zone of then enters into the region of incandescent coke.

(2) The reactions which take place in the imcandescent zone of under feed stakes are exactly the same as in the incandescent zone of ever feed stakes except some breaking of the noteular structure of voltable matter takes place of part of the broken volatile matter renets with the oxygen of sir.

(3) The gases coming out of raw fuel bed pass through a region of incandescent och on the susface of the quel & finally discharged to the furnace with the constituents like ad feed stoker. (4) The supply of secondary as is required in this case as the gases coming out of feel bed also contain combustile metter. (5) The ash left at the bottom of the stokes is at a highes temp from ones feed stokes. (a) single retail stoker:-) It all as a stationary part quelt as a stationary part quelt as a 2000000 Toyers (a Nozzle through which over is fored into smelter turde]. year fig single solot stokes fig sigle retort type stokes discharge The averagement of single retall stoker is shown in bigs in form of two views. The fuel is placed in large hopper on the front of the furnice, of then it is fishes fed by secipoleting som a sisew Conveyor into the bottom of holizontal trough. The air is supplied through the tayers provided along the upper edge of grate as shaon in fig (6)

The ash of clinkers are collected on the ash plate provided.


The cool feeding capacity of a single setout stoker varies from loo to 2000 kg per hour.

The increase of capacity in an underfeed cannot be obtained simply by building larger single retalt stoker.

The size of setot for increasing the Capacity is limited by vistue of inability of obtaining even as distribution from the sides of setots.

multi retalt stokers are generally used for increasing the burning apacity of the stoker.

(b) Multi setat stokes:

A multi setalt stokes is shown in fig. The coal falling from the hopper is pushed followed during inward stroke of stokes warn.

will any and burners

me distributing rams (pushess) then slowly move the extire cool bed down the length of stokes.

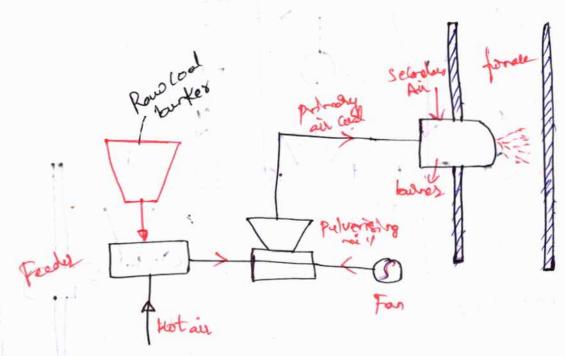
The length of stroke of pushess can be unied as desired.

The slope of stroke helps is moving the fuel bed in this fuel bed in this fuel bed movement Keeps it sightly agitated to break up clinker foundation.

> The primary air enters the fund bed from main wind box sirtuated below the stoker.

-> pastly burnt coal moves on to the entersion grate.

A Thinnes fuel bed on extension grate requires lower aix
pressure under it.


extension grate wind box is regulated by an air danger.

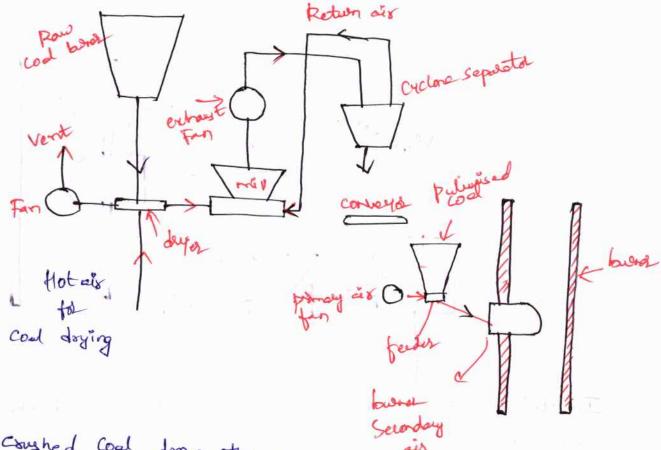
As sufficient amount of coal always remains on the grate, this stokes can be used under larges borlets up to (27000 kg/hor appetly) to obtain high rates of can be used and rates of can be supply to obtain high rates of can bushession.

-> but to thick full bed the air supplied from the main wind box should be at higher pressure.

I and the plant fred from

cool is followed into five particles pulverized fuel Burning system & its components: Coal is pulverized (powdered) to increase its susface exposure they permitting rapid combustion. efficient use of God depends greatly on combustion process employed. For larger scale generation of every the efficient metrod of burning of cool is confined still to pulverized cool combustion. It is obtained by grinding the Yew cool in pulurising mills. Raw God porony onsher & from how Coal dired with hot exhaut d -> cool dinex Vare. que gas a Cool burkers Cetral & big writ system scale pulverises Pulveises central bon Feeder burness tig components of pulseized freel burns

In this system the raw coal from the coal burker drops on to the feeder.


Hot aix is passed trough cool in the feeder to dry the cool. The coal is then transferred to the pulvenising mill whose it is pulvenised.

- -> primary air is supplied to the mill, by the fan.
- > The mixture of pullerised cool of primary air then flows to brown whole secondary air is added.
 - > The unit system is so called from the fact that each burner to or a burner group & pulveriser constitute a unit.

Advantages :-

The system is simple & cheaper than the control system.

2) There is direct control of combustion from the pulverising mill 3) God rearsportation system is simple.

Coushed Coal from the saw Coal bunker is fed by gravity to a dryes where hot air is passed through the Coal to dry it.

The dryes may we waste flue gasses, preheated as of bleeder steam as drying agent.

The dry coal is then transferred to the pulverising will.

The pulverised coal obtained is transferred to the pulverised coal burker (bin).

The Transporting air is separated from the coal in the cyclone separated.

The primary our is nived with the Coal of the feeder 4 minuture is supplied to the burne.

- (1) The pulverising will grinds the cool of a steady rate irrespective of boiler feed.
- eccasional break down in the God supply will not affect the God feed to the burner.
- 3) For a given boiler Capacity pulverising will of small capacity will be required as compared to wit system. Disadvantages:
 - I) The initial cost of the system is high 2) Cool Transportation system is quite complicated 3) The system requires note space.

Dust Collectors:

It is a system used to enhance the quality of oir released from industrial of commercial processes by collecting dust of other impurities from oir of gas.

- I designed to trasple high volume dust loads, a dust collected system consists of a blower, dust filter, a filter-clearing system of a dust releptable of dust removal system.
- -> It is distinguished from our cleaners, which we disposable filters to remove durt.
- > Five main types of industrial dust collectors are :-
 - 2) Febric filters
 3) wet scrubbers
 4) wit collectes
 5) electrostatic precipitals

1) Inestial separatos: It separate dust from gas streams using a combination of folces such as certifugal, gravitational & investigal. -> These forces more the dust to an area where the folces exested by the gas stream are minimal. -> The separated dust is moved by gravity in to a hopper, where it is temporarily stoled. > The three primary types of inestid separators are :-1) settling characters 2) Baffle " 3) Certifyed collector -> Neither settling chambers not boffle chambers are commonly used in the ninerals processing industry. -> however neir principles of operation are often incorpolated into the design of more efficient dust collectors. a) Fabric Filters: Clean Aix

fig - Bag Have Commonly known as bug house, fabric collectes are filtration to separate dust posticulates from dusty goses.

-> They are one of the most efficient & cost effective types of

Draught of draft ;-

Definition: The difference between atmospheric pressure and the pressure existing in the furnace (ob) flue gases passage of a boiler is termed as draft of draught.

-> It is measured in my of water.

-> canbustion needs & purpose of drought:

In a boiler the conduction of

the fuel requires supply of

sufficient quantity of air of

removal of exhaust gases of

this is achieved by draught system.

- -> The drought is one of the most essential systems of the theronal power plant.
 - martity of es for consistion & remove the burnt production from the system.
- produce a flow of hot gases, tribugh a boiles, economisers, preheaters & chinney requires a pressure difference.

 passage creetes compared to strospholic pressure celled drought.
- -> drought can be obtained by use of chimney, form, steamed jet of Combination of these.

set serte

elonomizer: It is also known as foodwater heater. In which waste heat of
the grant billied the heating the feed to.

Air pre heater — It is used to incre Air pire heater - It is used to invege tre tempor air befole it enders into draught gerale. Natural draught Arriafial draught (produced by chimney) (equipment add for der flow of flue gazer) Steamjet Mechanical (produced by Steam) produced by fan 1 bowles freed Balanced foleed Trabelad Notural draught: If only chimney is used to produce the drought, it is called rotated drought. heart exhaut used for heating the feed water befole it extentinto boiley olonomises There are had exhaugh that wanterned in tig. The chinney is a vertical tubular majority streetile of reinfolded concrete.

It is constructed for enclosing a column of exhaust gases to produce the draught.

It discharges the gases high enough to prevent air pollution. The drought is produced by this tell chimney due to the temperature difference of hot gains in the chimney of cold external air outside the chimney.

-> due to this pressure difference (p), the atmospheric air flows through the furnace grate of the flue gayes flow brough the chirmney.

The pressure difference can be increased by increasing the height of the channey of reducing the density of hot gases.

Ments:

1) No external power is required to creating the draught.

2) Air pollution is prevented since the gases are discharged at a higher level.

312t has longer life.

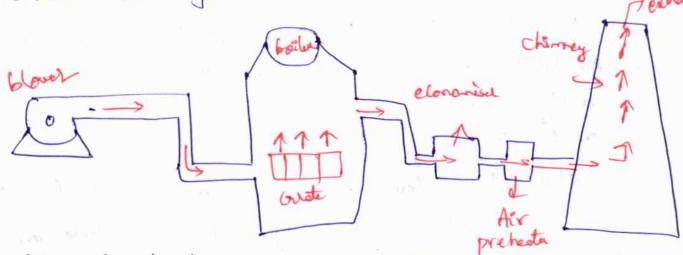
4) Capital cost is less than that of an aritifical drought.

spinisherance cost is practically will since there are no
somechanical pasts.

Dements:

- I transimum pressure available for producing draught by
- 2) The gases have to be discharged at higher temperature since draught increases with increase in temp of free gases.

3) flest cannot be extracted from the flue gases for economiser, super heater, Air preheater etc. Since effective drought will be reduced if the temp of flue gases is decreased.


4) overall efficiency of the plant is decreased since the five gases are discharged at higher temp.

Applications:-

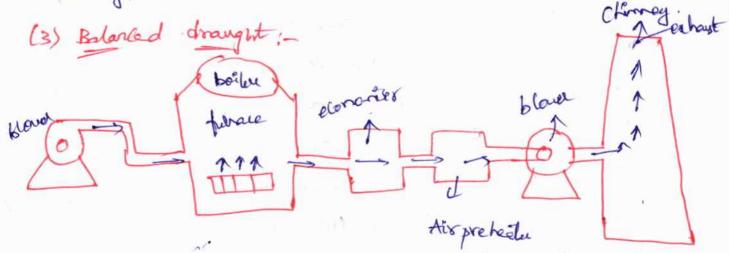
It is used only in small capacity boilers of it is not used in high capacity - hound plants.

Aritafiel draught If the draught is preduced by steam jet of fan it is known as Aritafical draught

boluer or steam get.

In a fored drought system, a blower is installed mean the base of the boiler of air is fored to pass through the furnace, thus, economises, air preheater of to the stack.

This draught system is known as positive draught system on freed draught system because the pressure & air is toked to flow through the system.


me action of "induced draught is similar to the action of the chimney.

me draught produced is independent of the temperature of hot gases may be discharged as lost of possible after recovering as much heat as possible in air preheater & economiser.

This drought is used goverely when economises & wis preheated are incorpolated in the system.

me for should be located at such a place that the temperature of the gas hardled by me from is lowest.

The chinney is also used in the system of its function is similar as mentioned in folled draught but total draught produced in induced draught system is sun of of the draughts produced by the fan of chinney.

It is always preferable to use a continction of forced draught is included draught instead of folded or induced draught slone.

The arrangement of system is shown in tig. A stack or chimney is also used in this system as shown in tig but its function is to discharge goses high in the othersphere to prevent the contamination.

It is not much significant for producing draught is height of chimney may not be very much

tre system by a fan.

(2) Induced draught: - The office is drawn (sucked) through

the system by a fan.

(boile)

forsee

111

elonorises

erpreheate

111

In this system, the blower is located near the base of the chimney instead of near the grote.

The air is sucked in the system by reducing the pressure through the system below strasphere

The induced drought from sucks the burned gases from the furnace of the pressure inside the furnace is reduced below atmosphere of induces the streethere

The "induced draught fan sucks the burned gazes from the furnace so the pressure inside the quirace is reduced below stanesphere of indules the stanesphere air to flow through the farrele.

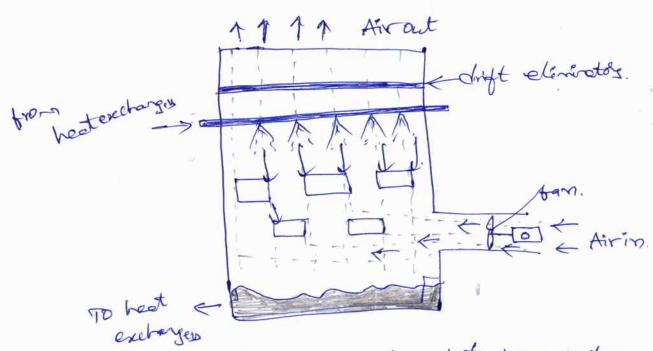
- Je the induced draught is used done, then also furnace cannot be opened either for fining a inspection because cold air will try to ough into the furnace as the pressure inside the furnace is below atmospheric pressure. This reduces the effective draught of dilutes the Conduction.
 - The folked drought avercance the resistance of fuel bed therefole subficient air is supplied to the fuel bed for proper & complete combestion
 - The induced draught for removes the gases from the furnace maintaining the pressure in furnace just below standsphase.

mis helps to prevent the blow off of flames when doods are opened as the leakage of air is included.

"Cooling rowers -> These are the heat rejection devices used to transfer weste heat to the stroughere through the cooling of a water steam. ye of cT to remove heat absorbed in the circulating cooling water Systems used in PP, petroleum refineries, petro chemial plants, notural gas processing Plants, food processing Plants & other industrial facilities. work (d) principle: - evapolative cooling to cool a Continuous flow of water. -> That are defined by how water of als pass Arraigh tens. 3 purpose of a Cooling Tower To reduce the temp of circulating hot water to reme this custer again in the boiler. This hot the is coming from the condensal tak. V hot brings 4:8 water spray system - Ally Supports from condensal cold foto

Top of ct , forms are used to lift air from bottom to the top. belowe of slow speed & more contact area of water, it mokes a good connection blu is & hot theo. The process will reduce the temp of water by evapolation process & cooled notes is collected at soften of looking tower & this cooled water is used again in the boiler. > cooling Town are of two types:-1) Notwood draft Cooling Tower; -Fan in not used for circulating air but here i by enclosing the heated air in the chinney & it will create pressure difference blo heated our sp syrrounding air. -> because of this pressure difference air enters in to the It requires large hyperbolic tower, so Capital cost is high but operating last is low belowse of absence of electrical for. Rectargilar Tember Tomer > reinforced concrete hyberbolic tower.

for is used to circulate the air.


To notate for, it uses motal with speed around loop spee.

To notate for, it uses motal with speed around loop spee.

The witing principle is some as notwell drought coding tower, only differences is that that I have for here form is mounted on coding tower.

To for is mounted at top of twee is called as included drought CT which is nost popular to very induced drought CT which is nost popular to very large capacity of for.

To FDCT contains horizontal shoft to be for a it is placed at bottom of tower a induced drought coding tower placed at bottom of tower a induced drought coding tower contains welliced shoft a it is placed at top of TCT.

drift eliminated -> It is not allowed to pays water.

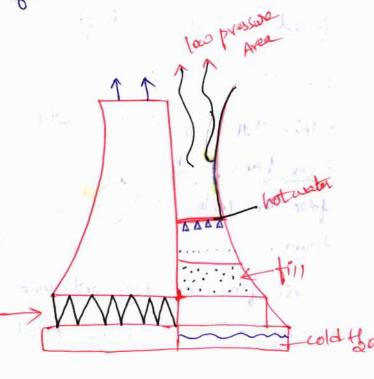
It is placed at top of tower, from which only hot air

Can pays.

These are specialized hest exchangers that remove heat from water mainly by means of latest heat loss from evapolation while coming into contact with an disstream.

-> Aside from enepolative cooling, water is also cooled by sensible heet transfer due to temperature difference Hu

-> Cooling towers are basically heat exchangers but instead of usual conduction-convection of shell Equation of plate heat exchangess, it generates cooling by bringing waters, our into contact.

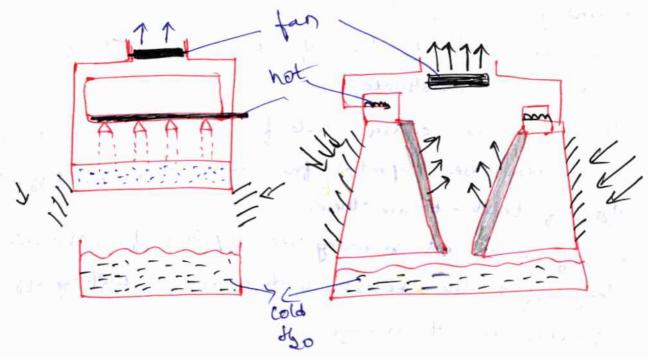

Types of Gooling Towers:

1) Aix flow Greneration: - cooling towers vary on how aix flow is introduced into the system.

This may be by natural, mechanical, or hybrid draft.

-> Mechanish draft coding towers are fretree divided into foled draft & enduced draft.

1) Natural draft -



Natural draft cooling towers utilize no nechanical drivers of fors to create as flow through the cooling tower. -> This cooling tower takes advantage of difference in ambient air densities below so above the tower. -> Air flow is created as the denses air at the bottom of the tower travels to a lovel preview area above the tower. -> These towers are inexpersive but an only be installed autooos. Also these towers have lover reliability as they are onde affected by aunbient wind & temperature changes. 2) Mechanial draft: These towers we either single of multiple forms to generate ais flow through the tours. Mechanical dreft Tooling towers are note raliable & stable than natural draft towers since air flows can be manipulated according to the coding load required. Mechanical draft coding towers can be further classified as forced or induced draft. 1) Forced dright: This type of cooling mate yes for & blaves to force air to to coding tower. -> Air flow how high entrance velocity as it is being folled by the blower.

As it passes tomough the tower, air flow slows down. They performance is loss stable compared to included draft towers due to recirculation.

-> These are used in "Indoor applications whore high static pressure is a concern.

2) Induced draft :-

These have their forsolocated at the top that draws air from the air intake louvers at the bottom of sides of the tower.

contrary to folled draft cooling towers, this astrongenent has low entrance a hight exit velocity, which results in reduled recipalation.

-> used in industrial plants requiring stable performe

control or Star & from it is

the abox and half the

Feed water Treatment; -

Feed water in power plant next be pure of they should not contain any type of impurities in it.

water is the important moterial used in power plant by this, there are many effects cause in power plant if we are not eliminating the impurities.

There are different types of impurities in water gases, salts, acids, wholes etc.

Impure water caused scale formations; corrasion etc.

To reduce these impurities from water there are different
types of treatments are there.

-> If we are not remaining the impurities from the widow - they affect the boilers, a decreases the working efficiency so makes them to damage.

Different types of water Treatments:-

They are ;-

1) Mechanical Treatment: - This method is done by filtration of coagulation by this treatment the solid particles in water is removed.

2) Chemical Treatment :-

by the help of Calcium hydroxide & sodium Carbonate.

This is called Unne soda softening process.

The hardness of water Can be removed, this is done by the exchanging the arians of Cations of Zedite with feed water. This is alled the for exchange process. Not is one compand of saftening cold, and the compand of saftening cold, and the compand of saftening cold, and the containers was follows. The outhapper was follows.

In this method, water is heated up to 16'c, by this the dissolved oxygen is removed.

This is done by converting the water into vapour from by this distilled water is occured.

-> Impure water effects in boiler:-

1) Scale foundien - It reduces heat than for & increases the temp of the metal wall, overheating & suptiming.

- 2) Corrosion by these pits, cracks, groover are followd.
- 3) Carryout his increases the tube noted temp, this reduces efficioney.

collected

Advartages ;-

1) The process takes place at a faster rate

2) refficiency is high

3) Very fine pasticles can also be seposted. Disadvantages:-

1) energy input is mole.

2) large amount of air has to be introduced.

3) Requires special equipment.

Applications :-

1) It is used for the separation of solids from liquids (liquid cyclore).

7) It Can also be used for the separation of fines & dust posticles from coasse posticles.

3) used for separation of crystal magna such as lactose & sodius bisulfate.

Electrical dust collected:

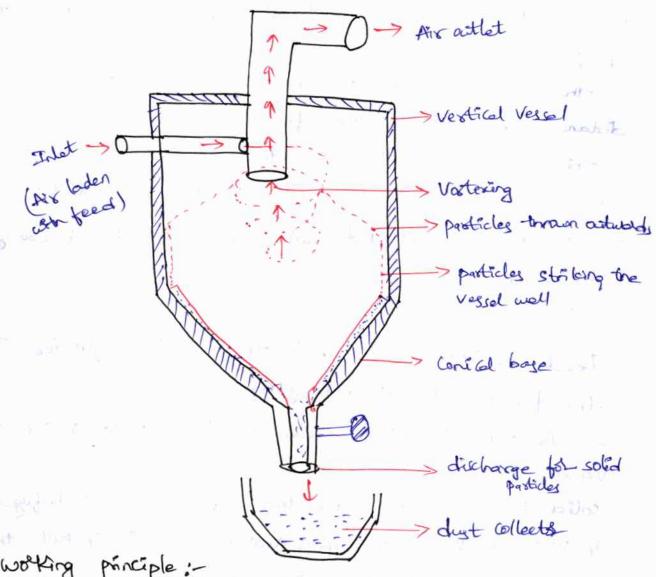
Electrostatic precipitatos:-

This type also colled cottrell precipitates works

effectively on first Flue dusts. > easily ellow Tryllotos s 440V150H313 & supply high voltage Control Rectifies transphred that transfer Et from one Ac circuit to one of more other armit. that consents Ac which period ally reverse directo direct allet

Fig shows the basic elements of an electrostatic pracipitate.

These are:-


- 1) Source of high voltage
- 2) Ionizing & collecting electrodes
- 3) dust remaral mechanism
- 4) shell to have the elements.
- me precipitatos has two sets of electrades, insulated from each other, that maintain an electrastatic field blu them at high voltage.
- -> me field "orizes dust pasticles that pass through it, attracting than to the electrode of opposite charge.
- -> the high voltage system maintains a negative potential of 30,000 to 60,000 volts with the collecting electrodes grounded.
 - -> The collecting electrodes have a large contact susface.
 - -> Accountlated dust fells of the electrode when it is sapped unechanically.
 - -7 A wet type of this wit removes dust by a water film flowing down on inner side of collecting electrode.
 - -> These with home collection efficiency of order of 90%.

Advantages:

- 1) easy operation.
- 2) It can effectively remove very small particles like smoke, mist & flyash.
- 3) The draught loss is quite less.
- 4) most effective for high dust loaded gay.
- disadvantges: 1) space requirement is mole.

 *Capital cast of equipment is high

separatol :-

working principle:

Contribugation is the main principle involved in the Separation of solids from fluids through cyclone separated. -> such separation is done on basis of pasticle size as well as particle density.

-> larger particles with greater density under the influence of certifugal fole are twown out wards & are collected first then successive posticles with relatively less size of density are collected.

Construction :-

It consists of a vestical cylindes which is conical at the bottom.

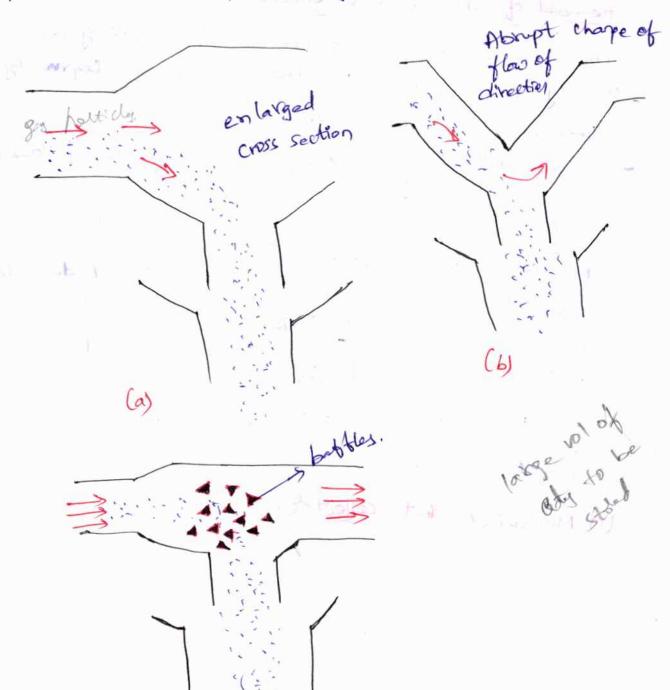
- The equipment possesses on inlet for feed (solid & air mixture) towards the lateral side & on air outlet on the top polion.
- -> The air outlet extends in to the separator for certain distance much below the feed inlet.
 - -> This assurgement prevents the air from short circuiting directly from the feed inlot to the air autlet.
 - -> me bose is provided with an outlet for recovery of the solids.

working :-

Feed is introduced into the vertical Cylinder through the feed inlet at a very high volocity.

-> As a result, sotary movement takes place inside the vessel.

solid particles are under the influence of centrifugal force is voltaxing force (as spins around very fast so pulls the solid particles into its empty centre).


- Larger particles with greater density are thrown autwards, they strike the vessel wall & or the velocity is reduced they fall to the base of the vessel.
- Vessel through the solid outlet into a hopper of Chute.
- density are collected successively.

Air leaves the Vessel traigh the air autlet at the top.

(a) Enlarging the duet cross sectional area to slow down the gas gives the heavier particles a chance to settle out.

b) when a gas motes a sharp changes in flow direction, the heavier particles tend to Keep going in the original direction & so settle out.

c). Impirgement bootfles have more effect on solid pasticles been the gay, helping them to settle out

The products of combustion of coal-fed fires contain particles of solid motter floating in suspension. This may be snoke or dust.

Remard of snoke :-

Snoke is produced due to the incomplete combustion of fuels.

sonke pasticles are less than I million in size.

Removal of dust & dust collectors - a small piece of partly bringed The removal of dust & circless from the gayes can usually be effected to the required degree by commerical dust collectos.

-> The dust Collector may be classified on follows ;-

Mechanical dust collectos

Eladrical dust callecter

dry type

plate >6 raitational type type

Ls Cyclore Separatos

- Impirgement "

(1) Mechanical dust collectors:

operate with water sprays to auch dust from the air.

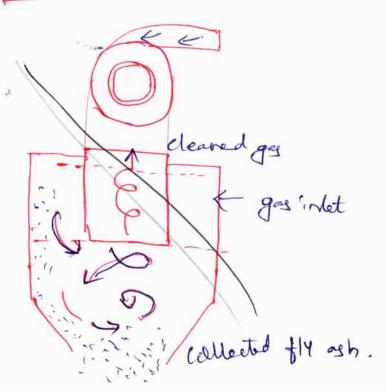
Such large quartities of wash water are needed took

Central sys station gay washing that this system is

Seldem used.

The do produces a waite water that may require Chemical mentalization befole it Can be discharged into motured bodies of water.

ii) dry type dut collector:


It is a commonly used dust collecter

(a) Gravitational separates: These calletes and by slowing down gas flow so that particles remain in a chamber long enough to settle to the bottom.

They are not very switable because of large Chamber volume needed.

[9) of to be stoled

b) Cyclone Separatos:

The Cyclone is a separating chamber where in high speed gas votation is generated for the purpose of Certifuging the pasticles from the carrying gases. -> weally there is an outer downward flowing vestex which turn into an inward flowing vertex. -> Involute inlets & sufficient velocity head pressure are used to produce the vortices. -> As neutiple, small diameter vortices evita high pressure drops appear to have high cleaning efficiency, that type is now being exploited. -> skinning cyclones shave off the dust at the peripherry of the voltex dong with a small portion of gas flas. - This concentrated flow is then led to a secondary Chambes for final separation.

Advertages of a nermal power plant:

- 1) The unit Capacity of a Theornal power plant is more.

 The cost of unit decreases with the increase in unit Capacity.

 2) Life of plant is more (25-30/ears) as Compared to diesel Plant (2-5/ears)
 - 3) Repair 4 maintenance cost is low when compared with diesel plant.
 - 4) Initial cost of plant is less than nuclear plants.
 - 5) suitable for varying load conditions.
 - 6) No harmful radio active waster are produced as in the Case of nuclear plant.
 - 1) unskilled operators an operate the plant.
 - 8) The paux generation does not depend on water stolage.
 - 9) There are no tramission losses since they are located near load centres.

Disadvantages of Thermal power plants:

- 1) Thermal plants are less efficient than diesel plants.
- 2) starting up the plant & bringing into service takes more time.
- 3) Gooding water required is more.
 - 4) Space required is more.
 - stolage required is note.
 - 6) " " for feel is note.

Which handling is a big problem.

8) Not economical in area which are remote from cod fields.

The transposition, handling & stolege charges are more.

(b) number of persons for operating the plant is more than that of mudent plants. This increases operation cost.

- the same that a guidance is

1) For large with, the Capital cost is mole.

Tritial expenditure on structural naterials, piping, stolage mechanism is mode.

Introduction :-

A heat engine is a device which converts chemical energy of fuel into thermal energy which is then utilized to perform mechanical work (useful work).

Heat engines

External Combustion engine

Internal Combustion

(1) External Combustion Engine :-

The Combustion of fuel by air tokes place outside the engine whereas in the Case of an int

(2) Internel Combustion Engine:The combustion of fuel spair takes place inside the engine.

Example:

In a steam engine of steam twitine, the heat produced due to burning of fuel is utilised to generate high pressure in a boiler.

classification of IC engines:-

Ic engines can be classified on the basis of the following features.

1) design of the engine Reciproceding engines & rotary

which produces sotary notion of which test a notating hart.

that us as lot mode (up's down)
pistons in addedo larvet or into
potatio motion

2) wolking cycle :-

engines working on otto cycle are termed as spark
ignition engines & those working on diesel cycle are termed
as compression ignition engine.

3) No of strokes -

Four stroke & two stroke engines (both SI & CI engines)

4) Fuel Wed -

Gasoline (petro), compressed Noticed gas (CNG), LPG, dissel oil, free oil alcohols.

- 5) Fuel supply & injection teld combuter engine to making our with a fire a) Carburetted type-fuel supplied through Carburettos
 - b) Injection type free supplied trough an injectal.
 - 6) Method of cooling water cooled sp air cooled
 - 7) Cylindes assurgement

In line engine, V-engine, radial engine, opposed piston engine, opposed cylinder engine 4 delta type engine.

8) Value & pot location

classification based on value location to design is applicable only that 4 stroke engines where as classification based on pot design & location is applicable at only the design & location is applicable at only the design of location is applicable at only the design.

45 - over head (I head) & side Velves (L head)
25 - cross scaverging, without scaverging & loop
scaverging.

That exhaust value

cylindes head

cylindes head

cylindes pin

connecting rod

crark Case

the pasts of an Ic engine

1) cylinder: - It is a cylindrical space of container inside which the piston executes reciprocating motion.

-> The cylinder is supported in the cylinder block.

-> The top of the cylinder is covered by cylinder head.

2) piston:

It is a cylindrical shaped component that fits perfectly into the cylinder providing a gas tight pace i.e it does not allow the gases of combustion to pass from the top side of combustion chamber to the bottom side.

-> The space formed blue the cylinder head of top of the piston during the precess of combustion is known as combustion chamber.

3) Inlet Manifold: - The duct of pipe through which the air full mixture passes in to the Cylinder is called inlat manifold.

4) Exhaust Manifold:

They are provided either on the cylinder head of on the side of the cylinder for the purpose of charging the Cylinder (inlet value) of for discharging the products of Combustion from Cylinder (exhaust value)

5) spark plug :-

It is a component fitted on the cylinder head to institute the spark for igniting the charge inside the Cylinder.

It is used only in S.I engines.

(6) Connecting rod:

It connects the piston of crankshaft, there by transmitting the followersted on the piston to the crankshaft.

(7) crankshaft:

It convexts the reciprolating motion of the pistors in to the rotary motion of the output shaft. It is enclosed in the crankcase.

(8) piston rings :-

They are fitted into the groover provided around the piston.
They provide a gas light seal the the piston of the cylinder wall there by preventing the leakage of gases

Combustion.

9) piston pin:

It controls the opening & closing of values. The drive for courshaft is taken from the crankshaft

through timing geass. This shaft also provides drive to the ignition system.

10) am sheft; -

It controls the opening of closing of values. The drive to the counshaft is taken from the coankshaft trinough timing gears. -> This shaft also provides drive to the ignition system

(11) Caros :-

It is a machine element designed in such a way as to open the values at the convect instant & also to keep them open for sequired time interval.

They are integral pasts of the Cornshaft.

12) Flywheel:

It is a heavy wheel mounted on the crankshoult. It stokes the excess energy delivered by the engine during power stroke & supplies the energy needed during other strokes.

> Thuy it keeps the fluctuations in the crankshaft speed within desired limits.

13) push rod & Rocker arm;

The motion of the Can is transmitted to the value through the pushrod of socker arm.

These are together known as Value gear.

14) Crankcase:-

It forms the base of the engine block which supports the Glinder of the crarkshapt.

It serves as a reservois of sump for lubricating al.

4

Engine Nomenclature:

- 1) Cylinder bore The montral inside dia of Cylinder is Called bole.
- 2) Stroke (L) The max distance travelled by the piston inside the cylinder in one direction is known as stroke.

3) Dead Centre -

me position of the piston in the Cylinder at the moment its direction of motion is reversed is known as dead certire.

There are two dead contres in an engine.

1) Top pead centre- It is the dead Centre when the piston is located firstnest from the countshaft.

It is also called as inner dead centre (Ix) in his zortal orgines.

ii) Botton Dead Centre:-

It is the dead cother when the piston is located meanest to the crankshaft. It is also called as after dead centure in holizontal engines.

4) Swept volume - It is the volume swept by piston during its travel from one dead carrie to another.

5) clearance volume - The volume of the space Har Cylinder head of top of the piston when piston is at the TDC is collected clearance volume.

6) Correvession ratio -It is vatio of total Cylinder volume to the clearer volume.

Four stroke diesel engine:

There are distinctly 4 strokes, suction, stroke; compression stroke; expansion stroke, exhaust stroke for different operations in a cycle.

The internal combustion engines are classified as fourstroke que two stroke engines.

In the 4 stroke engine, there is one power stroke in every four strokes of during two variations of the crank.

-> The 4 stroke eigines are further classified as 4 stroke petrol eigine & 4 stroke diesel eigine according to the type of fuel used in the eigine.

Four stroke cycle engine:

1) suction engine - during suction stroke, the inlet value (I) opens of the exhaust value (E) remains closed.

The pisten travely downwards from TDC.

Air is drawn in, from outside to extent the Glinder through the inlet value that the piston reaches BDC.

The inlet value that the piston reaches BDC.

The air taken in is at attrasphasic pressure.

2) compression stroke -

At the end of the suction stroke, both inlet & exhaust Values service closed.

The piston knows upwards from BOC to TOC.

The air sucked in during suction stroke is compressed to a high pr & temperature with a decrease in a volume.

3) expansion of power stroke

Just before the beginning of this stroke, the diesel is

halout of ciesed power plant;-

6

Diesel poner plant - diagram - pasts - working, Advantages & disadvantages.

Into duction :-

This is a fossil fuel plant since diesel is a fossil freel.

Diesel engine power plants are installed where supply of coal of water is not available in sufficient of coal of water is not available in sufficient.

1) mere plants produce the power in range of 2 to 50 mw.

They are used as stand by sets for continuity of supply such as hospitals, telephone exchanges, radio stations, cinnerna treatres sy industries.

- (3) They are suitable for mobile power generation & widely used in vailways & ships.
- (4) They are reliable compared to other plants.
- (5) biesel power plants are becoming more popular because of difficulties experienced in construction of new hydel plants & thermal plants.

The essential Components of diesel power plant are:

1) Diesel engine 2) Airfilter & super charges 3) engine

Starting system 4) fuel system 5) Lubrication system

6) Cooling system 7) Grovering system 3 exchanges system.

(1) Diesel Engine:

this is the main component of a diesel power plant. The engines are classified as two stroke engines, four stroke engines.

engines are generally directly coupled to the generator

for developing power.

In diesel engines aix admitted in to the cylinder is compressed.

At the end of Compression stroke, fuel is injected

- -> The fuel is burned & burning gases expand & do work on the piston.
- -> The shaft of engine is directly coupled to the generator.
- to the atmosphere.

(2) Air filter & super Charger 1-

The Air filter is used to remove the dut from the air which is taken by the engine.

Air filters may be of dry type, which is made up of felt, wool or cloth.

In oil both type of filters, the air is swept over a both of oil so that dust particles get Coated.

-> The function of supercharges is to increase the pressure of aix supplied to the engine of there by the power of engine is increased.

Engine Starting system:

Diesel engine used in diesel power plants is not Self starting.

It includes air compressed & starting air tent.

-> this is used to start the engine in cold conditions by supplying the air.

(3) Fuel system:

It includes the stolage tank, fuel pump, buel transfor pump, strainers & heaters.

pump draws diesel from the stodage tank & supplies it to the small day tank through the filter.

Day tank supplies the daily fuel meed for the engine. The day tank is usually placed high so that diesel flows to engine under gravity.

Diesel is again filtered before being injected into the organe by fuel injection purp. -> The fuel injection system peoplars the following functions: I filter the fuel 2) mites the correct quantity of feel to be injected. 3) Time the injection process. 4) Regulate the fuel supply. 5) secure fine atomization of fuel of oil. 6) distribute the storized feel proposty in combustion Chamber. -> The fiel is supplied to engine according to load on the plant. (3) lubracation system :- Air filter silecener filter fuel filter

It includes oil pumps, oil tanks, coolers of piper.

The is used to reduce the friction of moving pasts of reduce wears of the engine pasts such as cylinder walls of piston.

-> lubrication oil which gets heated due to friction of moing pasts is cooled before se circulation.

-> In the lubrication system the oil is pumped from the lubricating tark through the oil cooles where oil is cooled by the cold water entering the engine.

-> The not o'll after cooling the moving pasts return to the lubracting o'll tank.

(4) Cooling system:

The temp of burning fuel inside the engine cylinder is in the o'der of 1500°C to 2000°C.

In order to lover his temperature water is circulated around the eight.

me water envelopes (water jacket) the engine, the heat from the cylinder, piston, combustion chamber etc, is Carried by the circulating water.

me not water leaving the jacket is passed tomagh the heat exchanges.

The heat from the heat excharges is Carried away by the sow water circulated through the heat excharger & is cooled in the coding tower.

(5) Grovering system:

It is used to regulate the speed of the agine.
This is done by varying the fuel supply according to
the engine load.

(6) Exhaust system:

The exhaust gases coming out of the engine is very moisy.

In older to reduce the noise a silences (mutiles) is used.

The cir & fuel mixture act as a working medium in desel eigens pauer plants

The admosphere air enters inside the Combustion Chamber during Suction stroke of fuel is injected through the injection pump.

The dist of feel is mixed inside the engine of charge is ignited due to high compression inside the engine cylindar.

The bosic principle in diesel engine is that the thermal energy is converted into mechanical energy is to this mechanical energy to produce the power by using generator of determator.

Applications :-

1) peak load plant -> Diesal plants can be used in Combination with thermal or hydro plants as peak load units.

mey can be easily started or stopped of a short notice to meet peak demand.

2) mobile plant -> biesel plants mounted on trailers can be used for temporary of emergency purposes such as for supplying power to large civil engineering works.

3) stand by wit: If the main wit fails of Cannot cope up with the demand, a diesal plant can supply the necessary power.

For example: "if notes available in a hydro plant is not adequately available due to less vainfull, the diesel station can operate in parallel to generate the short fell in power.

4) emergency plant -

during power interruption in a virtal unit like a key industrial plant of a hospital, a diesel electric plant can be used to generate the needed power.

5) Mixey station :-

In the absence of main grid, a diesel plant can be installed to supply power in a small town.

In course of time , when electricity from main grid belones available in the town, the diesel wit can be shifted to some other area which needs power on a small scale.

Such a diesel plant is called newsery station

6) starting stations:

Diesel units can be used to sun the auxiliaries (like FD & ID Fons 1 BFD, etc) for starting a large Steam power plant.

7) central stations:

It can be used as central station where capacity required is and.

Advartages:

- It is easy to design & install these electric stations.
- (2) They are easily available in standard Capacities.
- (3) There are loss standby losses.

(4) They ochpy less space.

Homey can be started a stopped quickly.

(6) They require less cooling tower.

- (1) Capital Cost is less.
- (8) less operating a superising a staff of required.
- (a) high efficiency of energy conversion from fuel to electricity.
- lo) efficiency at past loads is also higher.
- 1) less of civil engineering work is required.
- 12) They can be located near the load centre.
 - 13) There is no osh hardling problem.
 - 14 engier lubrication system.

- 1) High operating cost
- 2) high mointenance of lubrication cost
- 3) Noise problem.
- 4) Carnot supply are load.
- 5) Capacity is restricted. Cannot be of very big size. 6) unhygeric enissions.
- T) The life of diesel power plant is less (7 to 10 Years) of lampared to that of a steam power plant which has a life span of 25 to 45 Years.

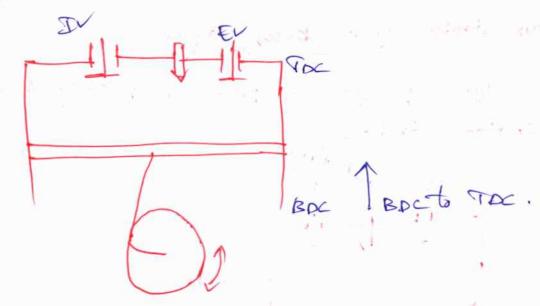
The edificioncy of dissel plant decress to less than by. after 16 life period.

Four stroke cycle doesn't signe :-

This type of engine comprises of following 4 strokes.

TIME -> Conbustion Chamber correctly rad 1 crack shoft

with the movement of the piston from TOC to BDC. during this stroke, the inlet value opens & air at atmospheric pressure is drawn inside the engine Cylinder the exhaust Value remains closed.

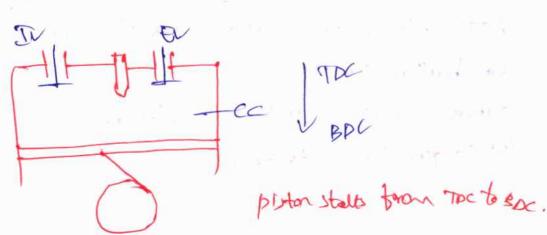

-> In Case of Compression ignation (CI) By diesel engine only is has first compressed & then fiel is injected.

-> In Case of spark ignition (SI) of petrol engine, both Aix & feel mixture has to enters in to the Combustion Chambes.

They suction stroke completed.

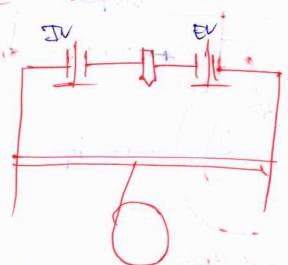
(a) congression stroke:

and the second of the second o

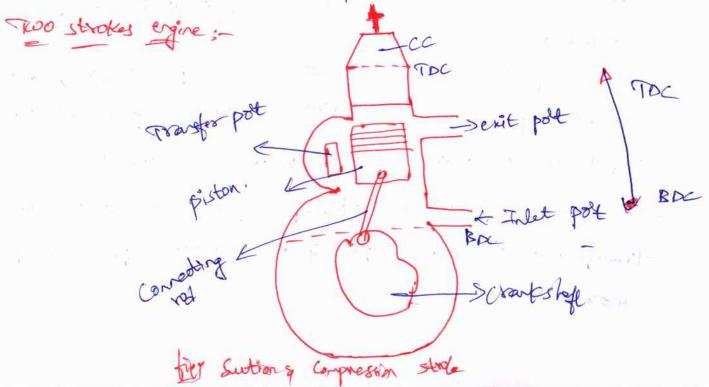

In Case of all engine, the air has to be compressed more manner nearly 12:1 (8) (6:1(0)) 22:11:

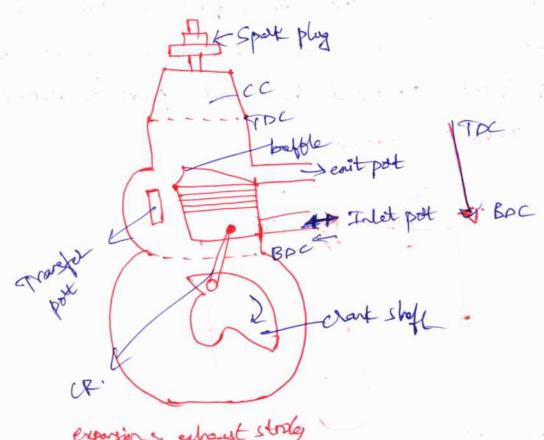
-> In case of SI engine both Air & fee mixture has to be occured.

-> piston moves from Box to TDC, Inlet & exhaust Value closed.


The minimum compression occurred in I ergine is compression occurred in I ergine is

(3) expansion (d) power stroke:


fuel Frjecter tran Combustion occurs through parel then pictor moves boroused is Called Pd E.


In SI engine, the air sq freel rivature has to be token then piston moves downward then at the time of spark produced is called power of expansion stroke.

the piston moves from RAC to TAC of exhaust gases escape to the atmosphere through exhaust volve. When piston reaches the TAC 1 the exhaust value closes of cycle is completed.

Inlet volve is closed, exhaust whe is opened, set to gove to the stroughere.

exposion of exhaust stroley

working;

The operations whatever worked in four stroke ergine
the same operations repeated in two stroke edgo.

In the name itself two stroke the piston has
to works in two strokes the four processes (a) operations
like suction (congression, expansion of exhaust stroke

completed.

There pots are to be considered for "enlet of addet to entering the fuel mixture of waste goses addet.

-> but in 4 stroke engine , values are used.

-> Another past is transfer post "It has to be transferred to the field air mixture from one place to

- -) first of all the airsy feel mixture has to be enters chronigh inlet port the edvecty the feel mixture on top of piston has to be compressed.
- -> At a time both section of Congression both has to be completed. Thus one stroke Completed.
- There piston moves from Box to TOC 100e Stroke Completed.
- -> by using spack plug the combustion has to be occurred amon spack occurred in petrol engine then pictor moves that BAC then expansion of power has to be produced at the same time the waste gages has to be remared out by exit polt.
- -> so hale pista makes Tex to ROZ then another stocke completed of both expansion & exhaust stroke.
- That post opered the same process seperal,

 Advantages over by stroke to thoke of piston duling

 one crark sheft serdletten.
- > height power to reight todio.

Fair stroke

Two stroke

- (1) The Cylle is Completed in 4 strokes of the piston of the Crankshoft. Thus one power stroke is obtained in every two revolutions of the Crank Shoft
- 2) Turning moment is not so uniform & hence heavier Hywheel is needed.
- Again belance of one power stroke for two sevolutions, power produced for same size of engine is small or for the same power tre engine is heavy so bulky.
- (4) Because of one power stroke in two revolutions lesser cooling & labritation requirements.

 Lesser rate of wear of tear.

- The cycle is completed in two stookes of the picton of in one verolution of the CR.

 Thus one power stroke is obtained in each revolution of the CR.
- a) more uniform tuenty moment movement of hence lighter flywheel is needed.
- (3) Because of one power stroke
 for one revolution, power produced
 for some size of engine in more
 of for the same power the
 engine is light of compact.
- (4) Because of one power stroke
 for one revolution , power

 produced for some size of

 engine in rade, greater

 Cooling & lubritation

 requirement. Greater rate of

 Cear & tear.

- (5) The four stroke engine (5) Two stroke engines have no volves but only conting volue & volue mechanism.
- 6) Because of heavy weight & (6) Because of light weight & Complication of Value mechanism, simplicity due to absence of value mechanism, Cheaper higher is the mittal cost. in his bid cost.
- To volumetric efficiery (7) volumetric efficiency mole one to move time of less due to lesser time for induction. enduction.
- (8) mernd efficiency higher, (8) Thermal efficioney land, past load efficiency better past load eff lever than than two stroke cycle eight, four stroke cycle eight.
 - 1) Applications Cass 1 bayes, trucks, tractors, acroplane, poul guerotos, Industrial endors. entroper trains a land

laur maiers / scooters, motel cycles .

Petrol Engine

Diesel Engine (3)

- (1) Air petrol mixture is Sucked in the engine Cylinder during Suction Stroke.
- (1) only air is sucked during suction stroke.
- (2) Spark plug is used.
- (3) power is produced by spark ignition.
- (4) Thermad efficiency up to
- (5) occupies less space.
- (6) more running cost
- (1) Light in weight.
- (2) Fuel (petro) costtex
- 1 petrol being volotile is dangerous.
- (6) pre-ignition possible.
- (1) works on othe cycle.
- (12) less dependable
- (13) used in Cars &

- (a) Employs an injector.
- (3) power is produced by Compression ignition.
- (4) Thermal efficiency up to 40%.
- (5) occupies more space.
- (6) less suring cost.
- (7) Heavy in weight.
- (e) fuel (diesel) chespes.
 - (9) Diesel is not dangerous
 as it is non-voltaile.
 - (10) pre-ignation not possible.
 - (11) works on diesel Cycle.
 - (12) more dependable.
 - (13) wed in heavy duty Vehicles like trucks, buses of heavy machinery.

The coding medium wed in the coding system can be air of water. -> There are two types of coding systems.

(1) Liquid & indirect cooling systems (2) As & direct "

1) Liquid cooling systems:-

This system can be classified under three types.

1) Notural circulation type or thermo syphon system.

2) Flored cilulation system

3) Thermartatic coding system.

a) Natural or Thermo syphon cooling system:

Radidor

With the first three points of the cook

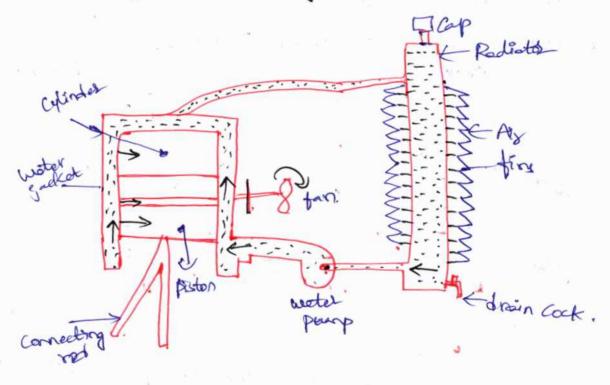
biston

biston

drain cock

This system is based on the principle that water on being heated rises up due to decrease in its density & cold water consequently comes down thus establishing a notural circulation.

-> The cold water comes in contact with the engine cylinder treve by taking away it heat.


> Thus I'm density decreases of it sises up 1 & enters the radiator where it losses it heat to the encoming air

(due to followed motion of the vehicle) they becoming velotively cool.

Then this cold water once again extens the engine cylinder of this process is repeated.

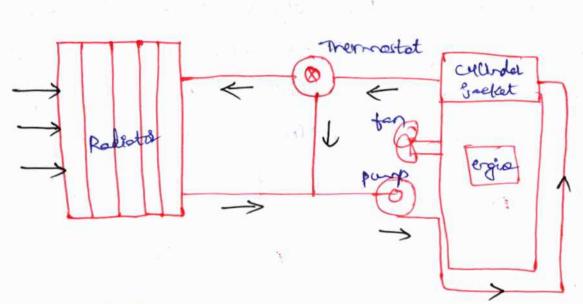
This system is advantageous in the sense that it is simple. however it is not alle to meet the requirement of high output vergines which require a large flow rate of water for dissipating large amounts of heat. The process of circulation is slow in this system.

b) Forced circulation cooling system :-

This system is used in automobiles like Cars, buyes & heavy trucks.

As in-the natural circulation system, water of codart is

Kept circulated, around the Cylinder, in the cylinder jackets.


The main difference blue natural circulation systems of forced circulation systems is that in the forced circulation system,

the circulation is achieved mainly by a contribugal pump driven by the engine.

The water on receiving the heat from the engine glinder, gets heated up, rises up 4 then enters the radiates where it is cooled by on coming air.

The pump draws water from the lawer part of radiated of foled line cold water to the bottom part of water jacket for father circulation.

c) Thermostatic cooling system :-

The reed for thermostatic cooling system is to start the eight easily in Old weather.

It is necessary to have a minimum water temp around the engine for starting.

It helps to dehicle his purpose.

It consists of following parts.

In automotive regines, the pump, wouldy of the Centrifugal type, is attached on frost end of the

Cylinder block & is driven by the engine through a belt.

The main function of pump is to circulate the waters

through the water jackets to senare the heat from the

engine of through the redicted, where water is cooled by

the flow of air one the redicted.

The cooled water enters the pump of cycle is repeated.

2) Radiatol -

The purpose of radiatal is to disspirate the heat from hot auster received from water jacket of the orgine.

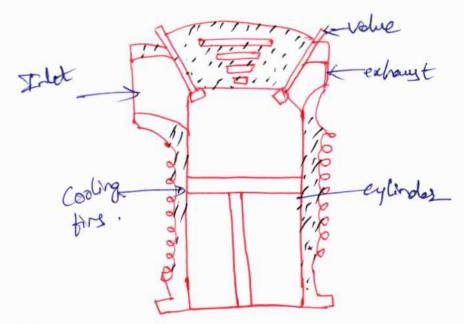
It is basciely a heat exchanges where energy from custum flowing twough the radiated tubes is transferred to the air flowing around the oradiated tubes.

The six flow is the to flowed motion of webside & bue to fon.

C) Thermostat-

It is wolly present in upper hose connection.

Thermactoric values are two in no of they automatically mointain the minimum water temps, help in quick awany of engine often stalling.


during wown up period. · during starting of engine team cold the tremoutatic values are closed of pump caralletes the custer timosely cylinder mater jacket only.

when would operating temp is reached to the value opens of water circulates through the radiated.

2 (19

At low vehicle speeds, sufficient amount of cooling our must be provided a freed through the Rodictor coe in odder to sufficiently the Good water.

2) Air cooling system -

In this system, a stream of oir is made to blow over the outside of the cylinder.

providing firs which are also brown as extended surfaces.

The is used in motol victor, small case, air places are, where followed relacity of cohicle is high waysh to evenle a good citerbation of air ground the engine cultida for Coding.

- fire are 25-50mm log,

Gas Turbine Plant:

Introduction ;_

-> Air standard cycle for gas turbine plants is Brayton cycle.

-> Gas Turbines are used mostly for electricity generation in

the periods of peck electricity demand.

Gos Turbine Plant: And

It is working principle similar to steam Turbine.

A generating station which employs gas turbine as the prime moves to the generation of electrical energy "is known as a GTPP.

Notural Sources > prime notes > mechanical energy.

"A Gos Turbine is a comburtion engine with in a power plant that can convert motoral gay coll other liquid fuels to mechanical energy!

energy that makes along power lines to homes of business.

The fundamental working principle of a CIPP is same as that of SIPP. The only difference is there that in

Steen Tustine power plant we use compressed steam to sotate the Turbine 1 but in gos Turbine power plant we use compressed

Atir to turn the turbure.

the state of

classification of GIPP:-

The GTPP may be classified according to the following criteria.

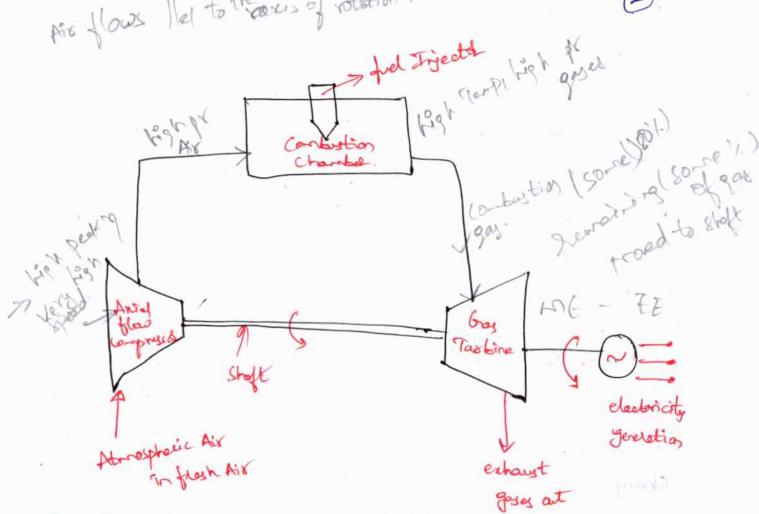
- 1) By application;
- 1) In Aid creft a) Jet propulsion b) propijet
- ii) Locanotives iii) Marines iv) Transport.
- 2) By Cycle; 1) open cycle 2) closed cycle
 3) Sem closed cycle

open - closed cycles -> constant pressure combustion gay Turbine.

Seri closed cycle -> ", whene "

- 3) A/c to Arrangement:
 - i) simple ii) single shoft iii) multi shaft iv) Inter Goled v) Reheat 6) Regenerative 7) Combination
- 4) A/c to combustion:
 - i) continuous combustion ii) Intermittent combustion
 - 5) by fuel:-
 - "ill bayeous feel "il liquid feel "il soled feel

Construction;


The Gay Turbine Components mainly include. Compresson, shoft, combustion Chamber, exhaust.

The working of this Turbine includes different processes like suction, compression, combustion, turbine & electricity generation.

-> The GTParts & their functions are explained below;

Año flows led to treavers of notation.

) suction, In suction process, the Turbine sucks the air from the atmosphere to the compression chamber then the air is transmitted to the compressor.

a) Compression: In the compression process, once the air comes into the compresse, then it reduces the air of changes the energy from kinotic to pressure. After this, the energy Changes the air "into high pressure Air.

3) Conbustion:

After the process of compression, the compressed as makes into the combustion chamber. This Chamber includes an injector that rigeds feel into the conduction chamber so rives the fuel with air once moving is done, the chamber ignities the mixture of our of fuel. This mixture changes into high Temps, high-pr gases because of the ignition process.

4) Taxbine: As the Combuted gay enters into the Taxbine

Section, some energy of this gas transforms into mechanical

energy of some energy is exhausted. At the combustion gas

expands through the Tuxbine, it rotates the Taxbine blades.

The rotating blades have a dual function:

1) They run the Compressor to down in more air for

operation purpose.

2) And also drive a gas generator connected with the

5) Electricity generation:

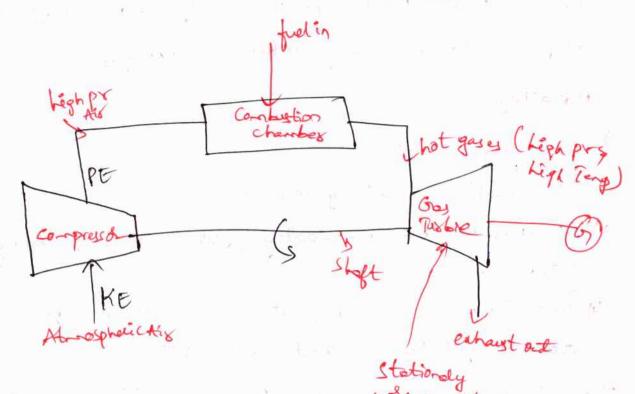
Tusting.

It is connected through the shift of the turbine, so the generator gets mechanical energy from the Turbine of Changes into electrical power.

working of operation principle:

The Gos Turbine working principle mainly depends on the bray ton cycle (8) Jaule Cycle.

"The brayton cycle states that it is a cycle that explains a pasticular heatergine operation that gas (or) air or its working fluid.


sometimes it is also called soule cycle.

Throughout this braighton cycle the mindure of dir fuel is burned, pressurized of supplied through a turbline of discharged.

-> once the air exters in to the "inlet of the Turbine,
the Compressor in the Turbine increases the pressure of

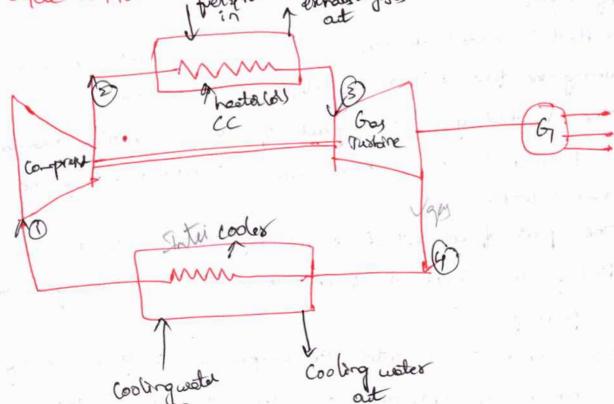
- 1) Try are small in size, weigh less & have law initial cost percent output.
- 2) They are easy to install within short periods.
- 3) " " quick starting & smooth runing.
- generation as well as by supplying compressed air to process needs.
- 5) auter Consumption is less compared to steam PP.
- 1) An electric motor of an IR engine is necessary for stooting
- 2) It will have less vibrations when compared twith reciprocating engines of same speed.

Components: 1) Compressor 2) Combastion Chamber
3) Gas Tuxbro 41 Shoft 5) General.

-> The Compressed takes the ambient Air & baises its pressure by Compression.

-> Heat is added to the air in the combustion chamber by burning the fuel q increasing the air temperature.

then passed to the Turbine where it expands doing the mechanical work.


-> me part of generated power by turbine is utilized in diving the Compressor of other accessors of remaining is used to power generations.

-> since ambient aix enters the compressed of gases coming out of turbine are exhausted in to the atmosphers one working and medium must be replaced continuously.

-> This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.
This type of Cycle is known as open Cycle gas.

Advantages:

-) low weight & size.
- >) It occupies relatively less space.
- 3) It does not sequire cooling water except for having an
 - 4) once Tustine stasted, "it will accordenate from cold stast to full load without warm up time.
- 5) Almost any hydrocarbon quel from high octane gasoline to heavy diesel oils can be used in the Combustion chamber.
- (2) closed cycle GTPP:- (principle of working of closed cycle GTPP):- prelight perhaust gases art gases

- The working fluid may be air of any other situable gas coming out from compressed with high pressure is heated in a heater by an external source at constant pressure.
- -> The high temp of high prais coming out from the CC are passed through gas Turbine where it expands doing the mechanical work.
- The fluid coming at from the Turbines is cooled to the original temperature in the cooler owing an external cooling source before passing to the compression.
- The working fluid is continuously used in system without its change in phase of the required heat is given to working fluid in the heat exchanger.
- => Atmospheric Air is drawn in to the compressed so co-pressed to high pr.
- -> The Compressed Air is supplied to the CC where heat is added to the oir by burning the fiel & raising the temperature.
- -> The hot gas caring out from the CC is then passed to Tuxbone where "it expands during mechanical work.
- > part of power developed by the T is used to three the Compressor of other auxiliary equipment so the remaining is used for power generation.
- -> The gas coming at of the Publine is exhausted into the atmosphere. This cycle is brown as open cycle Gropp

-> If the gay coming out from the Turbine is Cooled to its original temp in a cooler, then it is recirculated to the compressor fol doing work such a Cycle is known as closed Cycle pp.

ate of the transfer and

Advantages:

-) No Contenination
- 2) higher Thermal efficiency
- 3) Improved load past efficiency
- 4) No loss of cooking medium
- 5) expensive fuel
- 6) Reduced size
 - 1) Freproved heat Transission
 - e) less fluid friction
 - 1) Greater output

 - 1) Complicated in design.
 - >) The high Initial cost of plant
 - 3) It regions a high quantity of cooling water
 - 4) poor responer to a load variations.
 - It requires a very big heat exchanger.

we get a contract of the first

Jan - The second of the second

Taring Programmer Taring to the section of

There is a second of the second

Fael Supply System: Fuel Injection system in SI (petro) engine: firel teed Cranksheft Main Components of fuel Injection system: 1) Feel tank 2) Feel feed pump 3) Feel filter. 4) Air filter 5) Calbutto 6) spart play working process: fuel from the tank enters the feel -> In this feed pump. presure of feel is increased. feed

-> Then the fuel is enters in to the fuel filter where all the dust posticles are remared. -> from the fifter the file enters into the carbutter. -> In air the dust particles are removed by air fitter. -> The filtered our extens to the Carburetter me honogenous, mittere of our of feel is prepared in the Casterettal of free mature is supplied in to the engine cylinder during suction stroke. Full Frection System in CI (diesel) Engine: free! main components of solid Frection system

main components of solid freetion system

1) Fuel tank 2) Fuel feed pump 3) Fuel filter

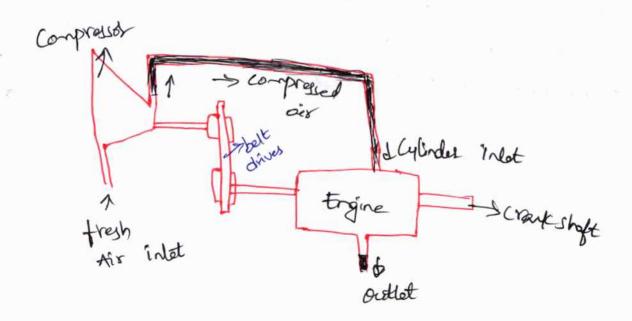
4 Fuel Trieded pump 5) Trieds

working process:

In this the fuel from the fuel tank enters the fuel feed pump.

In full feed pump the pressure of the feed is partielly encreased.

Then the field is enters into the fuel filter where all the dust particles are removed.


stron the filter the fuel enters into the "vijection pump where pressure of fuel is increased above the pressure of air in the cylinder at the end of compressions.

-> At high pressure fuel is sprayed in to the engine Cylinder by means of fuel Injected.

-> Any spill over fuel in the Injected is returned to the fuel filter.

-> The fuel is injected by injected at the end of the compression stroke in 4 stroke diesel engine.

Super charging of I. c. engine;

A Supercharger is an air compressed which increases the pressure of air supplied to an internal Combustion engine Cylinder.

This supply each suction stroke of the engine more oxygen, due to this It but more fuel & do more work, they increasing the power output.

working:

super charges are bascially congressors which takes as from atmosphere & compresses it & pushes it into engine.

-> The compressod is drive from eigene power.

> The addition of extra amount of air fuel mireture in to the Cylinder increases the mean effective pressure of the engine.

-> An increment in MED makes the regime produce more power.

Advantages:

- 1) better Ais feel misture
- 2) higher power output
- 3) Snooth & complete combustion
- 4) less exhaust snokes
- 5) nechanical of is improved.

disadvantaga

- 1) Increased heat lassache to increased tellbhonce.
 - engine is high
 - 3) Irrereased tholand Stressy

compassion of blu open yele and closed yele gry Pystines: Pastiulars

) operation yele

open cycle gas husbine

expension it is discharge to the The fresh charge is supplied to 1) The same wolking fluid is not each cycle so after combustion so bectrulated again 4 aprin. Sprosphose

2) Att fluid misdage

pint Rithan (2

3 Manual ht

3) Fuel is directly mined with Air, direct heat supply & heat is generated in CC "trey.

4) It sequires high grately of oil Cost gaseous fuel Contrastion occurs Enthers by

rant to adRL (H

S) officiency

closed yele ger Marbine

secondsted again of again. is me with fluid is

abgong helium 1 la wholeve etc favourable properties flow air. 2) The working fund ans (8) Cen be used which nove ony other suitable gas as

medium of heat produced by fuel is transfer to working their through 3) feel is not nined with wolfing

HE. HAY type of free Can be wead belange heat is transfer

5 Kepher Thelene ? atenelly.

5) lover Thermal of

Advantages of GTPP:-

- I They are small in size rowigh less so have low initial cost per ount output.
- 2) They are easy to install within short periods.
- 3) They are quick-starting so smooth ouring.
- 4) water consumption is less compared to SPP.
- They offer flexibility by supplying electricity for power generation or well as by supplying compressed air for process needs. They are applied of ving a range of liquid or gaseous field including

bisadvantages of 6:TPP !-

Syntratic quels.

- An electric motal of an IC engine is necessary to starting the plant. The starting motal must bring the compressed well towards the specialing speed.
- 2) GTPlants have less vibrations

Combined power cycles: del control with a property of the state of comp To 2 electricity dun dun pertont steam Aib up super heater

Up emphasize

Up emphasize

Up super heater

Up boiler

Up boiler

Up deaexacts

Condensate

Pump

Deacy

D HRSON HRSh had Reverded LPC L

LPC L

LPC L out has treed as fig: layant of Cambrid power Cycle These are generally arranged with one of more gas Turbines with each Turbine driving a dedicated electrical -> The exhaust gas from the gas Tuxbine is directed -through an HRSG that generates steam at one of more pressure levels. -> The steam is fed to a steam Taxbine that driver a dedicated electrical generated, -> with this arrangement, the gas Tarbine can de decompled from the operation of steam Turbine allowing for steam Turbine Shutdown with continued gay Turble operation.

-> Gros Turbine - generators, HRSGIS & steem Turbine-generators Can be assurged in many different combinations depending on the size of a GiT generators, the electrical generation. registements of the project of the project economics. -> Another configuration that an be used is to install the one gas turbine, one steam turbine & one generated using a single shoft.

This astrongement can be lower in capital cart because one generated on one stop up transformer is altiminated & a single foundation can be utilized. however, operation is limited to conservent operation of the gas testione so steen Taxbine, unless steem Taxbine Can be decoupled from the generalth through a clitch.

an in a first and the first of the second The Property of the Control of the C

and the state of t and the state of the state of the state of

The state of the s

grand of the section of the section

a transfer on the second of the following

Hydro power plant:

It is an electricity-producing plant in which water is an essential fuel, the PE is being converted into KE 4 KE is further converted into ME & in to EE with the help of a turbine & motol.

Construction of HPP:-

1) Reservoir of Head pond :-

There is one reservoir which is having a large area in which a huge amount of water is being stoled here. so the energy here is in the found PE.

2) Control gate :-

There are having multiple control gotes in a single hydro power plant.

The work of control gate is to regulate the flow of cubites.

when the control gote is fully opened the speed of center flowing is maximum.

3) Pen stock :-

me penstock is also Called pipe.

The mater stoled at the dans or head pond is being released by the control gate, the water starts moung to the turbine.

The head pond is harry high heights & the turbines

is situated below.

so the speed of witer get increased belowe of the gravitational fole.

The moterial of penstock is hardsteel being wed.

4) Value & Nozzle:

The value work is similar to the control gate so Mozzle work is striking water in a specific direction. (pr is high) that is a turbine blade.

5) surge tank :-

It is an additional q essential component which is used to accumulate the water which is in pipe when we want to close the turbine working of it is used to avoiding the pipe burit.

6) Turbine :-

It is a device used for generation of electricity.

Trythne work is the fluid having KE is being converte.

Typhone work is the fluid having KE is being converted "into notational energy.

The high KE water Comes through the penstock to the Nozzle & strikes the tribine blades.

The twoine blades stast soluting, so the solutional energy.
Can also be called mechanical energy.

7) Dright tube:-

It is a mechanical component which is used for enlarging the area of pipe for sending maximum fluid to the otral side.

8) Tail Race :-

It carries notes away from the plant. heree notes is sent to the sher.

9) Transmission line:

The Transmission line Carries power from the power unit of transferrer of transfers of supplies from one source to the another. It is made up of conductor.

10) Generator:

when the tustine buckets starts rotating, the turbine shafts also rotating, the motor are attached to the turbine shafts which is also rotating a generated is attached to them. I which generates relectivity.

11) Transford ,-

The Transforms is attached to the generals. The electricity generated is now Controlled by the transformer. The work of transformer is to set up on set down the voltage.

12) power house :-

It means there is a house in which porced is being stoded & released to the transformers so on.

working,

Gross head

Gross head

Pen stock

Teil-visio.

In a large amount of water is qualible. The water is being stoled in the reservoir which is in the form of PE. I with the use of control gote, the water is being released & water starts flowing into the penstock.

- -> here two components are attached.

 Distrige tank 21 value of Nozzle.
- Tritially the value is closed, but when the water reaches up to the max level that Can create high pressure in to the values.
- -> The water with high pressure starts flowing & strikes to the turbine blades through the nozzle.
- -> The Taxbolne blodes start rotating so the now, we observed the water which is having pt is now converting into KE.
- -> In the turbine blode, an electric motor is attached to the turbine shafts.

so votation of turbine blodes also votates the textime shafts, which also votates the electric motal.

hence KE into ME 4 than further it is convolted into EE.

- -> The energy generated is sent to the power house, transmission line.
- > The notes which is soloting the turbine blody is now sent to the sivel via a tail sace.
- -> The HPP is constructed to stole the water in a large amount.
- when the wotel reaches up to max level then it is

being released which also causes the flood in some over.

-> HPP site selection :-

The footor which includes for selection of HAP are:

- 1) environmental effect hazards & chanical effects.
- 2) water availability It is needed for votating tentine bledos se generating electricity.
- 3) water stdage stole water in a dem.
- 4) Head of aute to increase flow of water from dans to tulbine bleds.
- 5) site Accessibility It should have transpotation facility be soud of thair
- 6) distance from load center If there is note distance Hw pp to load center transition Cable is wed mode q hence last will be increased.
- 7) Types of land of site needs note face, land is cheap.
- I) water pollution plants should be free from water pollution, then laws of loss of equipment is much.
- 9) Gelogical Investigation It Can witnestand notwel Colonifies like thunderstone & easthquakq etc

Advantages ;-

- 1) supply of electric power is maintained consistently. 2) The water can be stoled by used when the demand is high.
- 3) The flydro electric pover generation is renewable sp elo friendry.

pisadvartages !-

- its in a large scale of his to be well protected.
- 2) At time of building a hydro elatric popular, the hobitants in y around the area are moved out of their houses of the business. This creats a disturbance.
- 3) downs create a kind of disturbance with reighbouring states of countries which connects the rivers.

since dams are created by blocking the vites while creates an parrigula supply of 40.

Application

- -> It also helps in flood Risk management.
- > The the francient is used to Agricultural Arrigation facility.
- -> Trey help in creating recreational facilities.

Hydrology :-

4

It may be defined as the science which deals with the depletion & replenishment of water resources.

It deals with surface weater as well as the ground water. It is also concerned with the transportation of water from one place to another, so from one form to another.

It helps us in determining the occurrence of auxilobility of water.

Hydrologic Cycle:

Rein, snow, heart, sleet sets from vegetations and the sets of the state of the sets of th

most of the earth's moter sources such as rivers, lakes coceans & underground sources ete get trais supplies from rains cubile rain moter itself is the emphasion

easter is the lost to the atmosphere as uppour from easter, which is then precipitated back in the form of sain, snow, hail, dew, sleet of frost etc.

This evapolation is precipitation continues to ever so there by a balance is maintained by the two.

This process is known as hydrologic cycle.

It can be represented graphically as shown in tig. -> hydrologic eq is expressed as follows:

P=R+E

where p = precipitation

R= Run off

E = Evapolation.

precipitation: _ It includes all the water that falls from atmosphere to east susface.

It is of 2 types. 1) Liqued proceptation (rain four)

Run off & susfale run off :-

There are two different terras & should not be confused.

It includes all the water flowing in stream channel et any given section.

-s while systale an off "includes only the water that reaches the stream channel without first percolating down to the water tookle.

Run off can i also be named of Lichalge of stream flow Rainfall duration, its intersity to a real distribution influence the sate & volume of run off. evapolation -> transfel of the from liquid to upone state is Colled Z. The process by which the is released to Transpiration > be strosphere by plants is called tran hydrograph: ms sa seport No J Fan A It is defined as a graph showing discharge of flowing the wire to the fol a specified the. -> discharge graphs are from a flood of new off graphy. -> The period for discharge are hour of day, weetor Hydrograph of stream of river will depend on the characteristics of the Catchment & precipitation due the Exterment. It will access the flood flow of sivers hence it is

essential that articipated hydrograph could be drawn for siver for a given storm.

It indicates the power available from the stream of different times of day, week of Year.

classification of dams & spill ways:-

Darge Can be classified toged on their purpose, structule &

1) purpose -> Irvigitation dans
hydroelectric power dans
flood control dans
water stoage "

2) structure > concrete dans contrete dans contrete dans concrete dans contrete dans precity of

3) Size - Small medienn large

-> Skiewers can also be classified based on their structure; -

siphon ",
morning Globy ",
bell moth "
Chute "
Turnel "

6

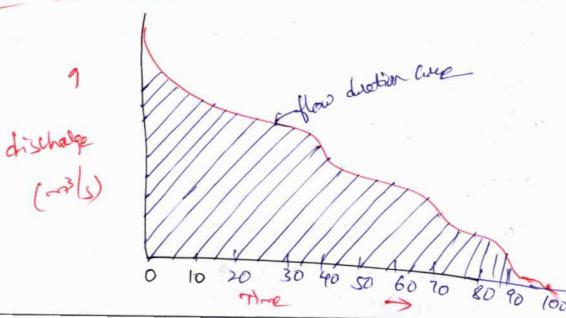
Drainage Area Characteristics:-

It is generally used to study the hydrographs, flow direction curve, mass curve for estimation of stolage capacity of a reservoir.

There are three types of streams based on nature of flow.

- 1) steady flow sivers
- 2) floshy " "
- 3) perennel flow.
- 1) steady flow rivers :-

If the Variation of discharge is less for a considerable time such streams are termed as steady streams.

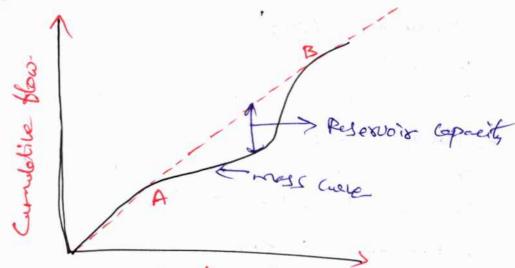

2) Flashy Flow; -

In certain areas where soil surfaces are impervious (solid), irregular distribution of slape.

3) perennial streams:

The streams in the geographical areas of monsoon lands generally river flow levels are low in summer so high during monsoon time. such streams are called as peremial stream. Twentisep)

I Plow duction we :-



It is a polt of discharge versus percentage of time for which the discharge is available.

It is obtained from hydrograph date The flow of discharge can be expressed by Cubic meters per second, per week of wit of time.

The flow dutation were is also known as power dutation

Mass aute :

It is a plot of cumulative volume of water that can be stoled from a stream flow vexus time in days, weeks of months.

It shows a moss curve , maximum intercept between line AB & mass curve is known as reservoir capacity.

Slope of mass Curve at a point gives the vote of inflavot

Stolage;

The collection of water in a reservoir upstream of the plant - so increasing to capacity of stream for a long period of time is called a stolage.

stolage plants work as bose load stations.

bose load plants are of high capacity of takes the load on the bose postion of the load cured.

peak load plants are designed for taking Gare of peak loads.

pordage :-

Fol a short period of time the pordage increases the stream capacity behind a dam ned the plant.

pond permits to stole worth during off peak hours of this could be used during peak hours of the same day.

-> If there is a considerable distance the plant of the viservoir , pond is needed at the plant to regulate the flow.

That value

Toil rate

Toil rate

Total ra

- 1) Catcherent Area: The Catcherent Area of a hydro plant is the whole area behind the dam, draining in to a stream of river across which the dam has been built at a suitable place.
- 2) Reservoir: whole of the available from the Catchnet area is collected in a reservoir behind the dans.

 The purpose of storing of the in the reservoir is to get a chifdren power output throughout the Year.

 It can be extree noticed of artifical.

It is a loke on high mountains as an attificed reservoir is made by constructing a down across the result.

3) down: - It is built across a river for two functions. to impound the river water for stolage so to create the head of the.

dains may be classified according to treis structured meterials such as Timber, steel, earth, rock filled and mayoring.

Timber & steel are used for dems of height 6-10 12m only.

eath dams are built for larger heights up to about 100m.

4) Spill ways :-

when the water enters the reservoir basin level of water rises.

To relieve of this excess water a structure is provided in the body of dam of near the dam of on the peripherent of the dam.

The safeguarding structure is called spin ways.

5) Corduits ;-

A headrace is a channel which leads water to a turbine of a tail race is a channel which conducts water from the wheels.

It may be open of close.

open conduit - canols of flowney

closed " - Tunnels, pipelines

6) Suge Tarks :-

It is a small regervoir of tank in which the water level rises of felly to neduce the pressure swings so that they are not transmitted in full to a closed citient.

Pressure Tuney

Perstact

Toil rece

To leave to the same of the text into

It convexts the energy of water into mt & future into Et.
They are classified into impulse & reaction turbine.

8) dreft tube: _ It serves two purposes.

It ellows the turbire to be set above their water here! without loss of head.

It regains by diffuser action, for majority of KE delieved to "it from the sund. 9) power house :-It is a building in which the turblus, alternators & the auxiliary plant are housed. classification of dams :-1) majority dans 2) Fill dans 9) gravity dans i) eath fill dang ii) battress .. ii) Rock from " iii) Arch > dan is a concrete of stone majority barries to raise water for stolege & also hydraulic head. The dan nest felfir two fundamental functions. 1) It develops a reservoir which has a copiety to stole water. I) " builds up head if thus potential fid he sivel ine water head -> different types of days. I mosonly dans >) fin , \$) Throat " Masonry dams: This dans is constituted using majority concrete. It is busky & massive than, other types. Sand rock foundation is required. The height of dam is limited by the strength of the base The design is simple but it consume beaut noterless. The dang are made elemental at small viter velley. These dans provide safe & elonomical Spillway facilities.

classification of dams :- Artificell Dans is a concrete of stone masonry barrier to raise water for stolage & also hydraulic head. -> down must fulfil two fundamental functions 1) It develops a reservoir which has a Capacity to stole water. 2) It builds up head of their potential fol the hier iz water head. -> different types of dans: - and & sand Unasony dans 2) Fill dens 3) Three dans -> masony dans are classified into 3 cetegolies. 1) solid gravity don 2) buttress don 3) Arch dens. > Negotivan Masonry dans ;a) solid gravity dam: - Green Ydam to mogalyside It is constructed using majority concrete. It is bulky & massive than other types. Sound rock foundation is required. the height of dem is the United by the strength of the baye. The design is simple but it consume heavy noterials. - S This type of dams are note economical at small Vicel Welleys. These dans praide safe & elonomile spillway facilities. b) Arch dems :- > > consugated place nollow These are wired in plane. Steveture is aread upstream. rentain (_) ner

This type of dans are note elonomical of stronger tran gravity dams. his type of dans are only suitable for morow velleys with steep slopes of solid rock to support the actuald thrust of the structure. (C) Buttress dans: no of grates will be the polaristant polaristant for they are also known by hollow grainty dans inclined upstream face so that the pressure of the laws of the pressure of the pressure of the laws of the pressure of the laws of the pressure of the laws large damened fole which praides stability of sliding & over turning. me fole of is transmitted to a now of buttness. They are also safe against eastiquoker. Hence Countries loke Japan & Italy are going to these deng. It requires by red of motorial required for solid gravity dans. rige dams are generally triangular in shape. fill Paras :-Death fill dears: - wild (sand) - Annembehoro project It is generally used to small capacity power plants. Advantages :-Cheepel tran wasony dans. Can be built at any locations.

It is suitable for relatively pervious foundation. gets stronger with age. Can be erested quickly. disaduantages 1) requires note moinentance 2) Splin way is required 3) fails suddenly without any wolning of subjected to existing flood damage of bridge in beight. #sil dam ;-Rock fell dem: [Old villages] Those done are eventually constructed in maintaneous regions where bock is rather than earth is autilosse. -> Theodory: This are gully block that es It Constitute of de used both to slow the flow of the Ose vock fill deconstream & to create pods. Spill ways: - They are found just begide one. It is used when down is full, to pass floodunter safely of in a controlled may one a down, abound it. The past of the dawn which discharges the flood flow to The down stream side is collect as spillway. It act as a sofety volve to a down. mey are proceed on dons to avoid demage to dany they keep the reserroil level below the predetermined max buel, proudded as a Safe passage. It must always be

Types:

1) add all fill ways:

This is the shaples?

This is the simplest, low in cost & suitable toll concrete downs.

when dem reaches full reservore lovel stream overflows from the top.

True may be gote central et the top of the dens.

2) Chute spin ways -upstream flow of yo to down stream flowy. It is a channel made of rehipted Centrete tot. The water is dischaged into steep sloped open channel Called Chite.

Simple in design & suitable totals foundations.

3) shoft spin ways

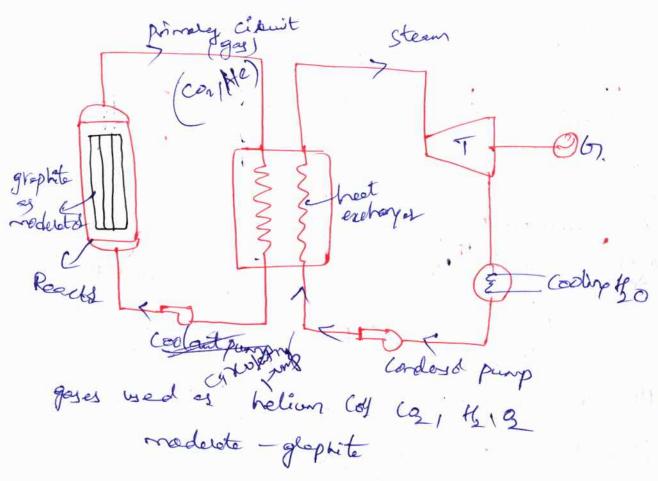
In this I wother drops through westired shaft of passes through a conduct holizantally a sends the Bo woth down stream.

When there is a very United Space to Aplanary this tope of adopted.

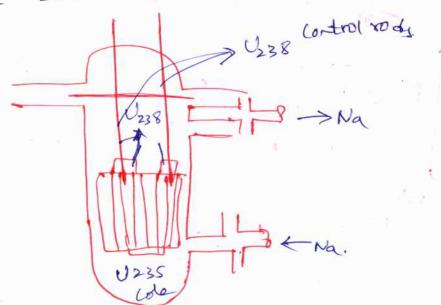
4) Side channel

-> remployed at maskow golgswords > very less , this type is employed.

Isophen: when all air is remained in siphen the space gets filled with the, eigher acts of the stady flashe ordinal of the sign continue with reserved level belonged four.


Arch dans: -

eath fill damy stone pirtching extn & glave) Rock over foll & solid glowith spire way. det his high flood level FRE full Resolvable later bucket love hos 2) 8ide Chand Spill Way. Step Rejello Siphon spiceage) & de charrel &


contrados to stop the process Boiling water reactor :-(3) to control the temp? geoletor Sotweted steem Tuetoine Jexhaust steam core condensate Realtd board pump. Here we cannot use steam generated. pressurred water Reactof 1:-3) generated Recetor Tuebire worse conday ? ~ cooling water water Melinal Shield Chulding fed pump pressure vessel, Reactd Trumel shield, free elemy main polts: Control 80 ds, best exchangel, Tulotre, querette, Cardesol

Gas cooled reactor:

Fost Breeder Reactor; -

here power generation will generate maximum.

we convot used for modulation (d) heat exchanges.

only used as reactor cole once generated steam directly

drives the steam Turbble.

-> hele sadium (Na) will as used to generate heart of inlet moterial. If you are using control rooks then USES will generate fission process & firely produce power minimum (d) otherwise if you are pull out control rods man power produce vin be maximum belowe of max fission process here drawback is find consumption is very high. liquid metal cooled Reacted: Primary secondary (Nat) steambhuidt Princey Statement Alek Codant pump pump note disposal: It is Common in every industry, wastes from atomic

energy inetallations are radioactive, create radioactive has a require strong control to ensure the radio activity is not released into the atmosphere to avoid atmosphere pollution.

The wester produced in a newled power plant may be in the four of liquid, gos of solid of each is Freeted of a a different mand.

- i) liquid waste me disposal of liquid wastes is done
- i) Dilution: The liquid waster are diluted with large quantities of the of the released into the ground.
 This method suffers from the drawback that there is a chance of contamination of underground water if the dilution facted is not adequate.
- ii) Concentration to small volumes of stolage ;

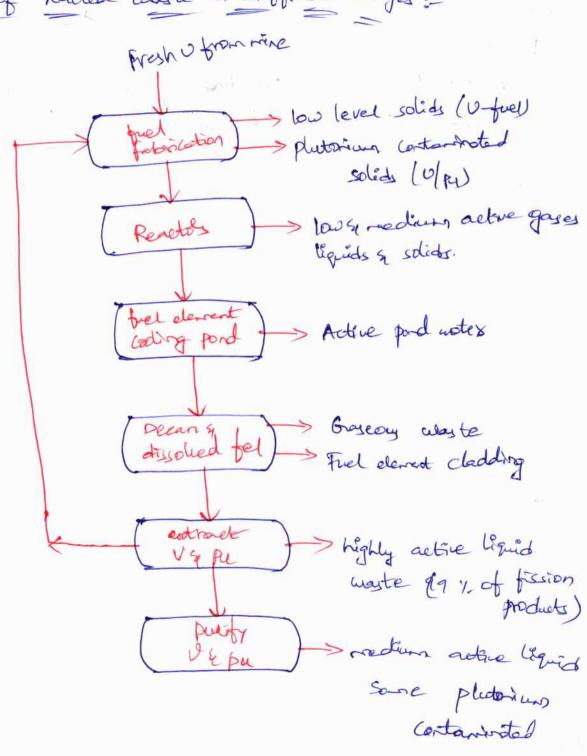
when the dilution of sadioactive liquid wastes is not desirable due to amount of noture of isotopes, the liquid wastes are concentrated to small volumes of stoled in larder ground tarks.

The tenks should be of assued long terms strength & leakage of liquid from the tarks should not take place obscuring leakage on contents, from the tarks may lead to otherwise leakage on contents, from the tarks may lead to significant underground water contamination.

iii) Gostove weste;-

It can most easily result in atmospheric pollution. Goseous mosts are generally diluted with air, passed -through filter of then released to atmosphere through large stocks (chirmeys).

*v) solid weste:


It consists of screp noterial of dislorded objects contaminated with redioactive mother.

These wasty of Carbustile are burnt of the redioactive another.

These wastes if converte , are downed & shipped to

Non combustible solids anestes are durays by ried deep in the ground.

Types of nucleal waste on different stages:

The realto is a source of interse redicactivity. These redicactivity, these redicactivity.

It requires strong central to ensue that this redioactivity is not released in 5 the atmosphere to avoid atmospheric pollution.

A thick concrete shielding to a pressure visual are provided to pretent the estape of those redition to atmosphere.

Contest. Possible packets

parts packets

but packets

Batsy

is hit

UNIT-IV Hydro projects and plant classification; Hydro electric power plant Availability of quantity of water notice of load Head (forkand) LISTO avoilable Ly Rendf seet > low head from Plant without pordage -> high (Pi) (Books) >> Runoff rivel plant with pordage 770 LISA -> stodage type - S pump stolage -> rainis micro tydro plant

Hydro projects and plant: Classification of Hydraulic Tyrbines:-

The hydraulic turbines are classified according to the type of energy available at the inlet of the Parbine, direction of flow through the vanes, head at the inlot of the Tustine & specific speed of the Tystanes.

Impolant classifications of the Tyskines:

- 1) According to the type of energy of inlet
- a) Impulse Taxbine b) Reaction Taxbine
- 2) According to the direction of flow through sumer.
 - a) Tangestid flow Turbine b) Redial flow T
 - c) Axid " " d) wined " "
- 3) According to the head at the inlot of Turbine
 - a) high head Turbine b) medium head Turbine
 - c) low "
- 4) According to the specific speed of the Taxbine.
 - a) Low specific speed Turbine b) medium specific speed Turbine
 - c) High v " "

Impulse Turbine: - If of the inlet of the Turbine, the energy avoilable is only K.E. the Tustine is known by Impulse Tustine. (Pettor whole)

Reaction Taxtine: - As the water flow over the Vanes, the pressure is stonospheric from inlet to outlet of the

It at the Turbine, the water possesses KE as well as PE, the Turbine is known as Reaction Tarbine.

(Kalpan & Francis Tueboline)

of the time is got to be tell Targertial flow Turbine:-If the water flows dog the target of the runer, the Tustaine is known as Radial flow Turbine :-If the water flows in the radial direction through the sures, the Turbine is known es Irward Radiol flow Turkine: If the water flows from outwards to inwards, redeally the Tuxbine is known as i outnerd Radial flow Taxbine:water flows radially from inwards to outwards, the Turbine is known of Axial flow Tustoine: If the water flows through the summer along the direction parellel to the axis of rotation of the runos, 4.59 Mixed flow Turbine ;-

If the notes flows through the sumes in the radial direction but leaves in direction // to axis of the sotation of the surver, the Tusbine is called

The state of the s

a the part of the contract of the contract of

The state of the s

-> thy dro plants are classified according to the head of water under which they work. 1) high head power plant is when the operating head of water exceeds Tom, the plant is known as high head power plat -> pettonn Turbine is used as prime mover in such pp. 2) medium head plant: when the head of water varges from 15to 70m then the power plant is known as medeum head plant. -> Francis Turbine. 3) Low head plant :cohen the head is less than 15m the plant is oraned as law head plant. -> Francis of Kalpan Turbre. HPP is classified based on :-1) Avoilability of water flow 2) 11 Head

3) According to load type. -> based on Availability of water flows-This is of 3 types. They are I) Run of & River power plant without pondage plays a very important In this type, the water evailability when these is enough mostes here PP works only since there is no stolage of pordage facility abollable.

me facility is placed whose those is connectivity diseasely to the such a fond me development cost of true plant is to utilise excessive notes dung thoo stration of sany sevenes, Ron off Five pooling plants with porralige 5-It is used as stoage for the water along with increasing in its capacity. It is used mostly during fluctuating load period depending on pordage size These types of PP sale Consessation of Coal. flow of the peck loads) (tigh demand) pumped stolage plants: 1 Langueld upper , L pens tock laslevel Subore: Heed of \$20 during pumping low elactricity (on base load) Puraped stolage projects is a types of hydro power projects which nove water blus two reservoirs located at different elevations to stole energy & generate electricity. -> This project worth is pumped back to the upper reservois esith the help of pump.

4

Pumped stolage plant will depend on two conditions,

1) peak load condition
21 base

on peak load condition, the flow of water flows down to generate electricity on high demand. The flow of water passey towough perstock to low high level reservoir to low level reservoir.

H= Hg. by Hg= 600000 head.

he= 4x5x1xv2 where V= velocity of flow on perstock

d project of perstock

Head loss

Med loss

D= diameter "

-> on base load landition, the flow of the pumping from low level reservoir to high level reservoir when the electricity on low demand.

Advan 1) low operating cost & long service life

2) Revended a sustainable: 3) Controlling 4) low losses

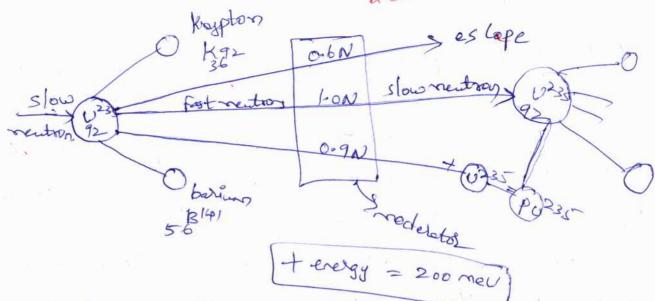
3) high efficiency.

disad is everyy loses as high cost relative to other technology 3) high capital cost 4) large unit sizes. A nuclear power plant is very similar to a conventional steam power plant except how that every is evolved.

The heat is produced in the muclear power plant by fission,

where as in steam of gos turbine plants, the heat is produced by combustion in the furnece.

nucled reacted acts as a furnace where nuclear enough is evolved by splitting & fiscioning of the nucleus of fiscionable notionals like unaim U235.


It can claim that Ikg U235 can spondule as much heat everyy that can be produced by burning 4500 towns of high grade coal of 1700 tons of oil.

I muled every is desired from splitting (d) fissioning of the muleus of fissionable natorials like cranium U235.

-> usarium has several isotopes (Frotopes are atoms of some element having different atomic masses) such as U234, U2353.
U238 of several isotopes.

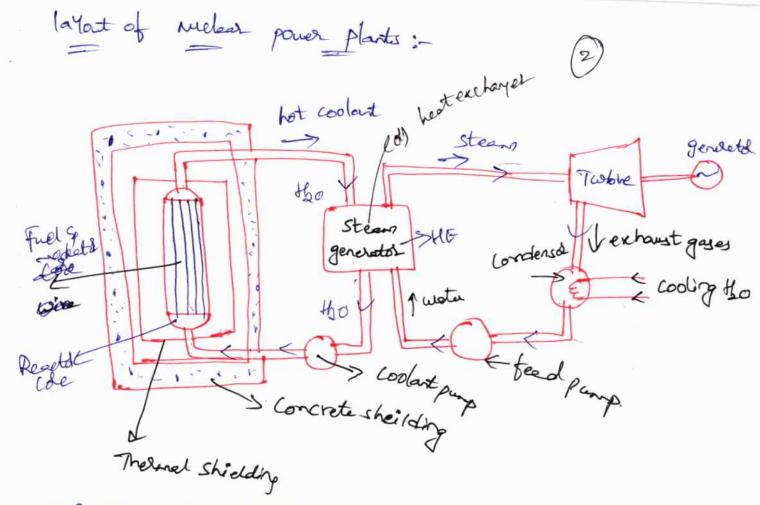
1235 is the most unstable isotope which is easily fissionable of here used as but in an atomic recent.

Miled fission (d) fission energy

when a neutron extess the nucleus of an unstable U235, the needens splits into two equal fragments (psyptonsy barsium) and also releases 2.5 fast moving neutrons with a velocity of 1.5 x10 m/s of along with this produces a large amount of energy, really 200 million electro-volts. This is Called nuclear fiscion.

Breeding & fertile noteriols:

> nucleal freels are mainly classified into two groups.


1) Breeding of fissionable materials: These are the material which is capable of sustaining a fission chain reaction.

V-235 is the only fissionable isotope found in noture.

2) Fertile materials:

These are non-fissionable moterials that Can be converted into fissionable moterials.

U-238 & Th-232 Can be converted into fissionable moterials

main components of NPP:—

1) materials:— In any chain reaction, the neutrons produced are fast moving neutrons. These are less effective in Causing fission of v^235 sq trey try to escape from the reactor. It is they emplicit—trat speed of traje reutron must be reduced if traje effectiveness is Carrying out fission is to be increased.

This is done by making these neutrons collide with lighter neutrons of other materials, which does not absolb these neutrons but simply scatter them.

Each Collision causes

Nuclear power plant :-

It is a facility that converts atomic energy into usable power.

The heats produced by a reactor is generally used to drive a turbine which in town drives an electric generated.

N pp Layout ;-

Mucheal Reportion:

ruded reaction is like splitting the main stary which release KE of future used for power generation.

(drappin)

working :-

there is a concrete shield, Cheve uswim otems are bomboasding to produce enough amount of heat that heats comes to contect with water quotes gets heated of converted into steem. of

now from heat excharger device the steem sends to the twobine for soleting blades & generating electricity with the we of govertor & some amount of steam which is not used comes through the condensal where it loss the heat proposty as goes to the heat encharges & then again water sends to coverete shield for repeating the process.

main pasts!-

1) nucleal Reactor > These are used at nuclear power plants for the generation of electricity of in nuclear marks propulsies.

The heat generates from nuclear fission is passed to a cooking fluid which is (water or gos) which in turns sung through steem turns.

mere estrer dive a ships propellers a turn electrical generals

muclear generated steem can be used for industrial process beet & some reactors are used to preduce isotopes for medical of industrial use or production of weepons - grede plutonium.

Coolant circulating pump:

It circulates the custor which is further going to be heated &

fleat exchanges: It sends the cuested from condensed to heat exchanges a from these by the use of a circulating pump it sends to the concrete shield system.

condensed: It is the conjunent that is used for extracting the heat from the working flied of in simple You can say of cools tree working flied because it is having a law temp.

Turbine: If is a device that is used for power greation, Here fluid strikes to terbine block which is father converted to the into me into Ex. Grenerator

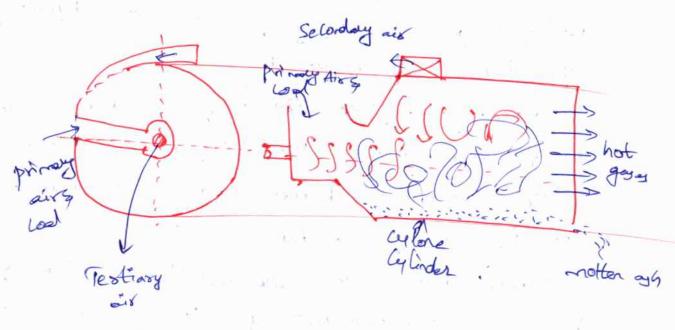
It is further used by concerting in to the sy do he got is powed.

4

working: - The heat is generated in a reactor by the fission reaction.

The coolant in the primary cirruit gets heated by observing the heat of extens into the heat exchanges.

In the, tre feed water is heated of concerted in to steem by the not coolant using heat thousfer.


- -> The steem from the HE will exter in the historie to sotate turbine blades of generates power.
- -s The steem ofter doing the work of others into the condensor of converted into the which is pumped again to the HE by the feed pump.
 - > The hot Coolent gets Cold in the heat exchanges is reclimated into reacted by the coolent circulating pump. In the cycle is repeated continuously to greation of paux. Advantages:
- (1) It requires less space of compared to other pacel plants
- (3) It gives better performance at high load factor 80 to 80!
- (a) less fuel consumption a no fuel handling.
- (5) The thansportation cost of freel is very less
 - 6 Incressed reliability of spection.
 - 7) water regulard is less.
 - 8) The high capacity of plant can be installed.
 - of Simple in maintenance.

disaduantajes; 1) It has high initial Cost 2) The darger of radioactivity hazards is always possibly 3) Not witable to larging load conditions. 4) The disperol of fission products is a big problem 5) The maintenance cost is always ligher. 6) working Condition is always detrimental to the health of the cookes. Applications: 1) generating a good amount of electricity 2) It now provides about UY. of wold's electricity from about 450 paver reactors. 3) which will be transformed in to mt of the In Irdia locations 1) prohaloshtra 2) Rojastnon Themil Nedu

Karrotoka bujelet Penil Molde

utter proden

cyclone business: (b) Cyclone furnaces:

Two mein disadvantages associated with pulverised coeffining are: - 1) high cost

requires esopensive dust collectors in flue goses poth.

These disadvantages are offset by a cyclone burner. SIn a cyclone burner cool is coushed to a maximum size of 6mm of blows in to a cylindrical cyclone fromace.

-> The fuel is quickly consumed of liberated ash forms a mater film flowing over the inner woll of the cylinder.

-> owing to inclination of the furnace, the molter of thous to an appropriate disposal system.

- The description of a cyclone burnes is given below. It consists of a hosizontal Cylindrical drum
 having a diameter varying from 2 to 40m depending
 upon the Capacity of the boiler.
- -> depending upon the Capacity of the burnes the Mo of cyclone burness used may be one of more.
- the diameter of each burner is less.
- These burness are attached to the side of the furnace well & have vents for primary air, conshed. Coal (6min dia max size) & selondary air.
- burnes is slightly deflected towards the boiler.
- In primary air (at 80cm water pressure) at left end.
 - Surface of the cylindrical furnace.
- -> Secondary air enters the furnace through targential posts at the upper edge at high speed & creates a strong & highly turbluent vostex.
- -> extremely high heat liberation rate & use of preheated air Cause high temperature to the tune of 2000'c in the Cyclone.
- -> The fuel supplied is quickly consumed & liberated ash forms a motten film thowing over the inner well of a cylinder.

-due to hosizontal axis of the burnes being tilted the mater ash flows to an appropriate disposal system.

The Cyclone furnace gives best results with low grade fuels.

Advartages: -

- -> high furrace temperatures are obtained.
- > Simplified cool existing equipments can be used instead of costly pulvenised will.
- -> The cyclone burners reduce the 1. of direxcess air wed.
- -> boiler efficiency is increased.

UNIT-Y Actually solar energy is wed into two ways: 1) Solar Thermal energy " photo voltaic cells I collector (dy solar Thermal energy collectos: It is an equipment in which the solar energy is collected by observing a radiation in an observer & then transferring to a florid. These gree two types of collectors. 1) Plat plate collectes (d) non concentrating type collected (or) focusing type of collects. 2) concentrating type collectes (&) focusing type of collectes. 1) Flat plate collectes (d) Non concentrating type collectes: It is a heat exchanger device which convert the solar energy into hest energy. It is a device which is used to collect the heat from solar radiation. -> The main function of collected is to collect the heat from sun radiation. we use the heat energy for domestic purpose. -> It is used for below 90c. It has sectangular in shape. It absolute both direct & diffuse sociation. Direct radiation: - when radiation of sun directly reachs to earth known as direct rediction. Diffuse rediction: when rediction reaches to parth i.a scatter some past of its reflect back & some past of it

Merce are too types of flat plate collector

I) liquid heating collector 2) As heating collector

Construction of liquid heating collector

Transparent glass

hading chambers

coating on plate

Absolver plate

Absolver plate

Absolver plate

Transparent glass

Transparent glass

Absolver plate

Transparent glass

Transparent glass

Absolver plate

Transparent glass

Trans

-> ator susface of collector is made up of transparent glass.

It consists of absolver plate is made up of copper (2) Aluminium.

2, it is coated with black cold.

heat from sun radiation.

-> Tubes are ottached with absolver plate consists of diameter zero sq these tubes are insulated by insulating material of foarn, glass wood are used as insulating material.

-> me main function of insulation is to mointain the temperature around tubes

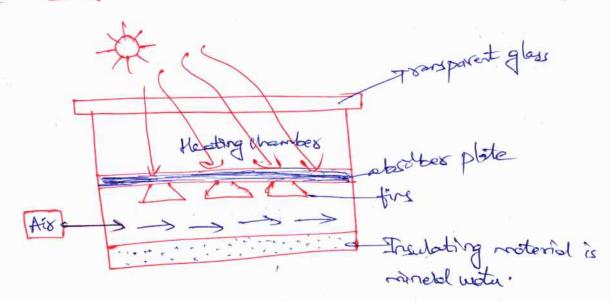
-> Insulation is mointained at hickness of 5 to locar.
All components are arranged in sectongular Container.

working:-

From sun the solar radiation receives the absorber plate which contains directly diffuse radiation.

-> Temp of absorber plate increases by absorbing the heat

Inother why heat stoled in heating chamber do not get heat outside.


-> Insulation is also maintains the heat which does not despipiete outside.

-> Tube is attached with absorber plate so tube will also heat.

Diquied is started to heat inside the hot tube spotenge increases.

After that hot notes is used for dancitic propose.

2) Air heating collector;

Almost wolting & construction is similar to the liquid heating collector.

The main difference is that tubes are not attached with absolver plate instead of that firs are used.

-> It is used to increase the contact area.

-> As a insulation rectained mineral wool is used which mointains the heat of does not desipate outside.

making:

when direct of diffuse radiation directly incident on the absorber plate.

men absorber plate absorb the rediction for that first is also attached then fins temp increases.

-> when air flow along fine air is heated due to high temp 4 we was that the hot air to general purpose.

-> There are two types of this heating collector.

1) porous type 2) Non porous type.

It has mon poraus

Air heated by flasing with porous absorber plate

Absorber plate.

Air will not flow with obsorber plate.

Applications:

- I) Heating buildings
- 2) Drying agricultural produce & burnber
- 3) Hesting green house
 - 4) Air conditioning buildings
 - 5) Solar Cooking
 - e) (1 getting
 - 7) " heating

Advantages: -

- (1) Flat plate collector ye both been of diffuse radiates
- 2) They do not require orientation towards the en:
- 3) They require little maintenance.
- 4) They are simple than the concentrating reflector, absolving surfaces & orientation devices of following Collector.

Wind Energy :-

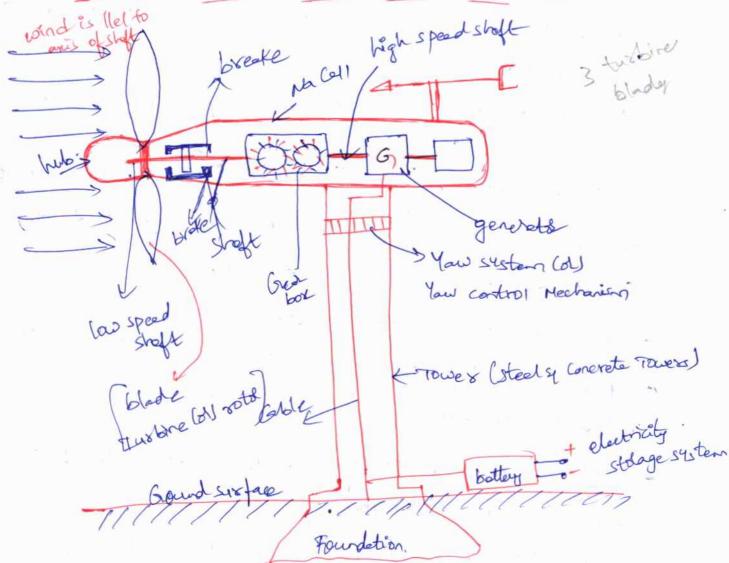
It is a form of solar energy, wind energy of wind paux describes the process by which wind is used to generate -> wind turbines convext the knetic energy in the wind into mechanical power.

A generator can convert mechanical power on to electricity.

wind turbines -> KE > mechanical power -> electricity.

- -> The motion of air along that is parellel to the Surface of the easth is collect aind.
- -> maing air is called wind.
- -> Air moves from the regions of high pressure to the region low pressure:
- -> It is one of the main factors responsible for the air movement in straphere.
- -> The KE possessed by air due to its velocity is called winderedgy.

Elassification of wind Turbines:


It is classified into two categories.

-> when the axis of sotation is parellel to the ass stream is holizontal, the turbine is said to be a holizontal Axis estend Turbine (HAWT) &

when it is perpendicular to the air streem in vertical it is said to be a vertical Axis wind Turbine (VAWT).

-> The size of the rotal of the speed depends on rotating of the turbine

Holizontal Axis wind Taxbine (HAWT):

4

HAWT is a urique Technology.

It is produce the electricity with the help of some mechanism from the wind.

It has three turbine blades. The mechanism system are set horizontal.

Uses:-

-> generate electricity for sque the electricity for future.

-> It nostly used in usban areas.

Construction; -

Musbine blades:

These are made of high density wood (or) glass fibre &

-> blades have an air foil type of cross section.

-> In addition to certrifugal force of fotigue due to Continuous vibrations, many forces axising from wind turbulence, gravitational forces of directional changes in the wind.

-> The diameter of the rold is loom.

The certical solid portion of the rotal wheel is known as hub.

All blades are attached to the hub. The mechanism for fitch angle control is provided inside the hub.

3) Nacelle: - It placed on the top of the towers it contains the generated, brakes , break box, electricity Cartroller.

- 4) Great box: Spir geat is used of it is connected to the step planetoly gear box while votates from low speed box to high speed box from 50 to 80 spm to produce electricity.
- 5) high speed shaft in It drives the generated
- 6) low speed shift: The rotor turns the low speed shift of speed of 30 to 60 pms.
- or bookes: A disc type of broke is applied electrically, or energery.
- 8) Rota: me blades & hubs together is Celled the rotal.

 The rotal having longer blades Ceptures higher relacity of wind
- 9) Tower :- It is made up of steel & concrete to support on the

Amenometers: To measure the wind speed(rpm) in certain direction you control creekarisms:

The mechanism to adjust the macellel around the vertical axis to keep it facing the wind is provided at the base of the macelle!

in the direction of wind.

working :-

when the blody cold turbline rotos are rotated when then wind is passes are the rotos in passelled direction with axis of shaft. The rotos rotate with the holp of but

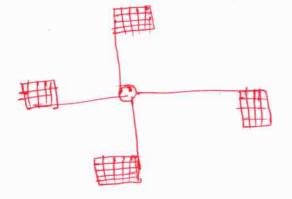
The hub sotates by low speed sheft at a speed of 30 to 60 ypm. Break box which is connects to the generator. High speed sheft which drives the generator.

The Cable which is connected finally to the bettery to generate the electrical power. Finally convert wind energy into Tapes of sotos in HAWT:

Mechanical every.

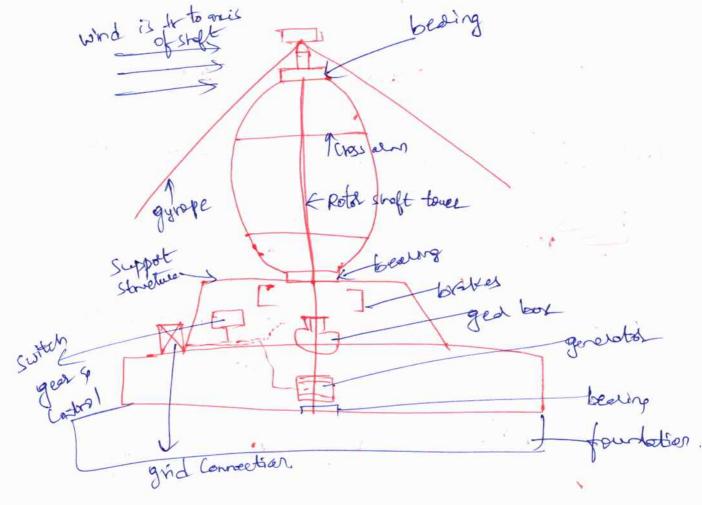
(a) single blade (b) Two blades

(c) Three blody


(d) sailwhy rotal

(e) chalk multi blede

(5) Averican multiblade


(g) dutch type blode

For vertical Axis wind Turbine (VAWT):-

VAWT'S are in the development stage of many models are endergoing field toial. The main attractions of a VAWTORE of It can accept wind from any direction, eliminating the need of You central.

2) The gearbox, generated etc are located at the ground, true eliminating the heavy nacelle at the top of the 3) tower they simplifying the design 4 Installation of the whole structure, including the tower 3) the inspection & maintenance also gets laries &

4) It also reduces the arrell cost.

Construction (d) Components:

The construction details of a vertical axis, wind (darriers)_ type rotal are shown in tig.

The details of main Components are as follows :-1) Tower (d) Rotal shaft: -The tower is a hollow vestical sotal shaft, which

rotates about the vestical axis blue top & bottom beelings.

It is installed above the structure.

-> The upper past of the tower is supported by guyropey The height of the tower is ground loom.

It has 2 do other worked blades shaped that mininger the bending stress award by centrifugal folee.

The blodes is having airfoil cross section.

Support stretue It is provided at the ground to support the weight of the votal.

Great box , generated , broker , electrical switch gears & centrals are housed with in this structure.

They are advocated us being capable of Catching the wind from all directions of do not need. You drive,

Maccalle.

Their electrical generators can be positioned close to the ground for conviewent way.

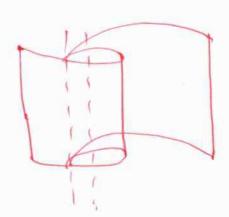
Actually in VAWT the wind is to the blade.

It meriterance cost is low & occupy to large space.

-> The rost Commonly used in VAWT is durrieous type of savarious type of votal height 94 in of diameter 65 mg produce 3-8-atv.

The nower is reinfold with my wire fol supporting

here blades trade from composite fibre glass stainly steel & light weight Abuninhan are entrenely strong, florible.


The main working is from any wines it should be soleted then sold shaft notates then the set of welestrical grounds (bearing, ged box, brakes) wolfs her tways and connection then pare quelde.

VANT Types:

1) up type blade :-

2) Savorious votot

3) darrieou rotal

Advantages of wind energy.

- 1) It is Renewable & available free of cost
- 2) helpful for supplying the evergy in Revolutions
 - 3) wind does not require any transportation it operates
 - 4) elonarially competitive

disadvantages; -

- I) Available in low power density metaly varieble with powers
- 2) It used only in remote areas
- 3) The tramission loss are mode
- 4) It produle roise pollution
- 5) wind Carnot be stoled as a Connectional Scale

HAWT

VAWT

- Tower required

-> NO Tanes

- grobe speed

Jow speed

- mole cost

- less cost

- s Need note maintenance

- less maintailerse

- Require You control

- You control / not required

-less power pereloter

mode pour generation

-Sp Cpoud coefficient is

> CP4 TJR I low.

is liga

UNIT-V

Economics of power plants:

Basic definations:

1) Connected load (CL):-

It is the total sum of ratings (in Kw) of equipment installed in the consumers premises.

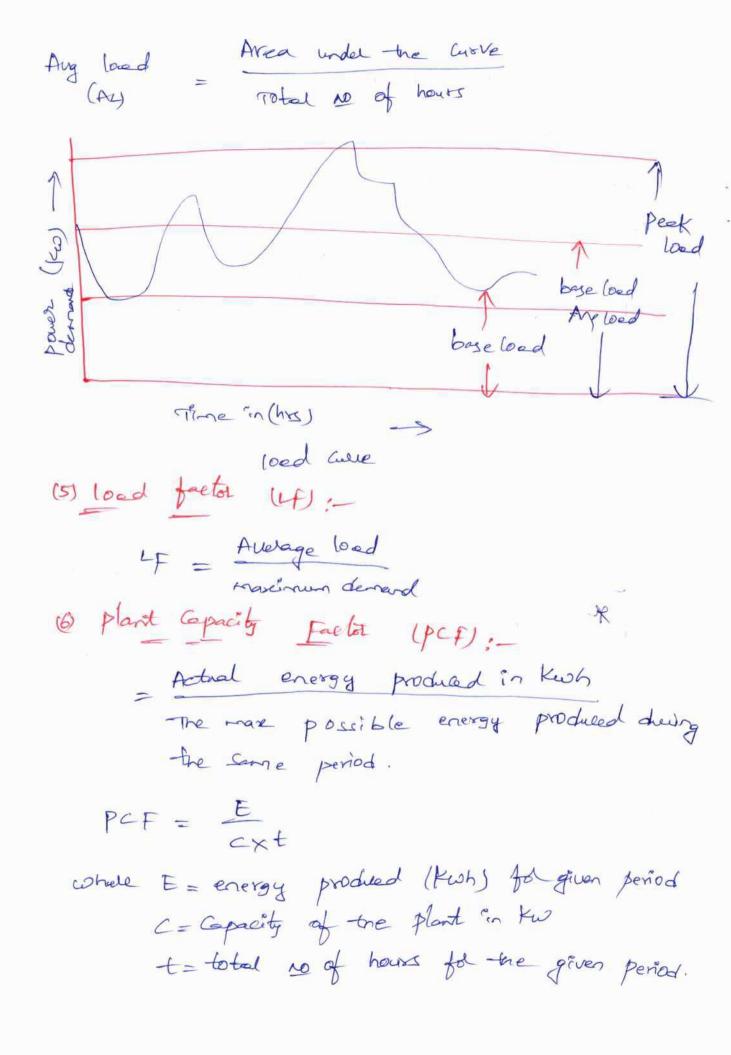
Suppose if a consumer has connections for 5 powers
pasts of 200 w each sy one electric heater consuming
lloow, then the total connected load of the consumers.

= 5×200 +1100 = 2100 W.

2) max demand: - (MD):- *

It is the maximum load which a consumer uses of any time of it can be less than cold equal to . Connecting load.

3) demand Fretor (PF):- *


DF = MD

45 Coad Curve :- +

It is the graphical representation blow load in (Kw) & time (in his) "it shows the Variations of loads on power stations.

1) Doily load Certe
2) Arnud " "

1 -1 19

The many possible energy during the actual so of plant operation

= E cxt,

where ti = Adud to of hours plant operated.

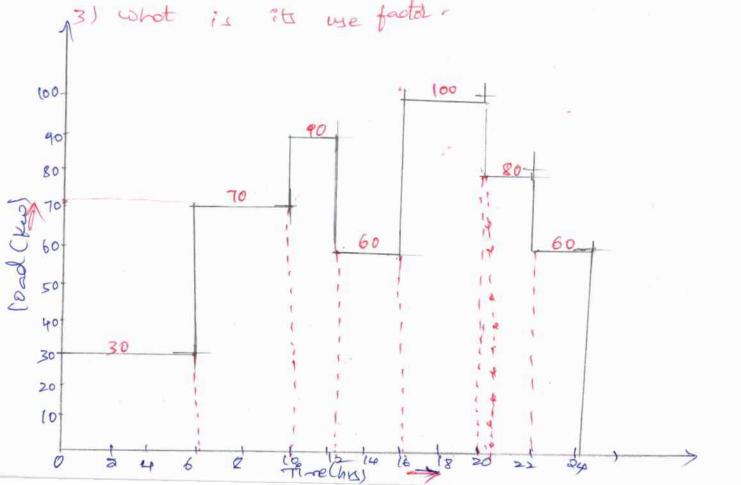
8) Diversity Facted: - +

Sum of individual wax demand

Simultaneous max demand of a system

9) glood curre; [ood (fo)]

It is a graph relold showing the power demands for every instant during the intervals.


b) load dustion Curve:

It represents the re arrangement of all the load elements of chronological load were in older of descending magnitude - This Come is defined from the chronological load were.

-> A power plant supplies the following loads to the

Frac in hours	0-6	6-10	10-12	12-16	16-27	20-22/20
loed in Mw	30	70	90	60	100	20-22 24

element as what is the load factor of a stand by equipment of 30MW capacity if it takes up all loads above 70mw.

Area under the curve indicates the energy generated. $= (6\times30) + (4\times70) + (2\times90) + (4\times60) + (4\times60) + (2\times80) + (2\times60)$ (2×60)

= 1560mwh.

Average load = Area under the Cause

- 1560 = 65 MW

from the given data, wax demand = 100 mw.

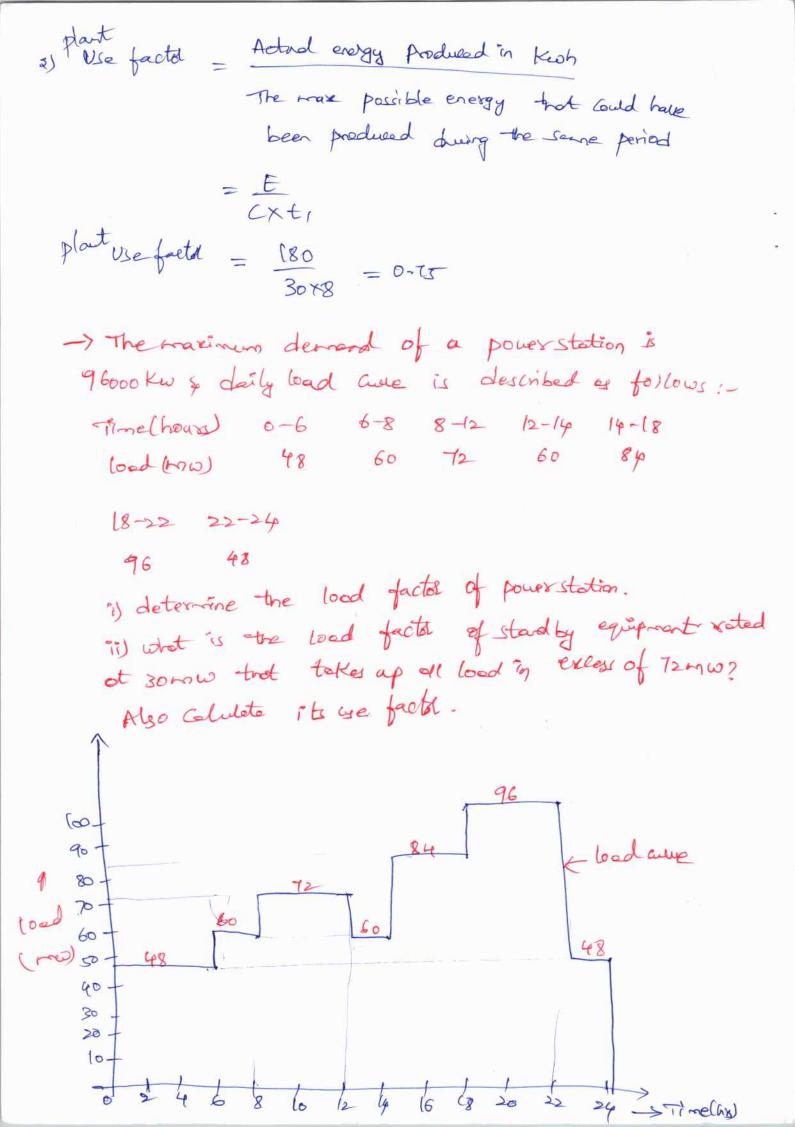
lood facted = Aug load = 65 = 0.65.

If the load above Tomw is supplied by the stand by equipment of 30mw apacity, then the energy generated by it i-(80-70) = 10mw for 2hrs

(90-70) = 20mw for 2hrs

(100-70) = 30mw for 4 hs

Time taken by the stand by equipment for operation 2+2+4=8hs


= (lox2) + box2) + (30x4)

= 180 mwh.

Average load = energy genelated by stand by equipment Time taken

= \frac{180}{8} = 22.5 mw.

load factor = Any load = 22.5 = 0.75

4

theory generated = area under the load cure = $48 \times 6 + 60 \times 2 + 72 \times 4 + 60 \times 2 + 84 \times 4 + 496 \times 4 + 488 \times 2$ = 1632×10^3 Kwh.

1) loed factor:
Any loed = 1632×10 = 68000 Kw.

max demand = 96000 Kw. (given)

load facted = Aug load = 88000 max demand = 96000

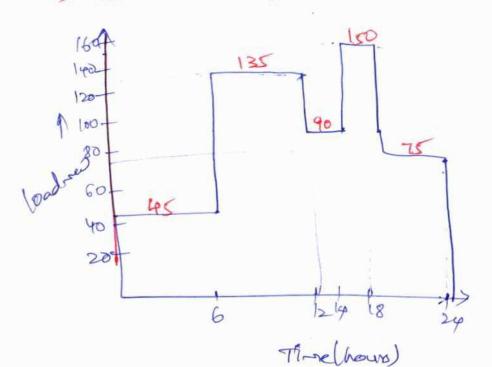
plant use factor = E CXt!

2) load factor of stand by equipment: -84-72 = 12 mer for 4 hours (14-18) 96-72 = 24 mw " (18-22)

- energy generated by stand by equipment $= (12\times49 + 24\times4) \times 10^{3}$ $= 144\times10^{3} \text{ Kigh}.$

Time to which stand by equipment remains in operation = 4+4 = 8 hours

Average = (44×103 km.

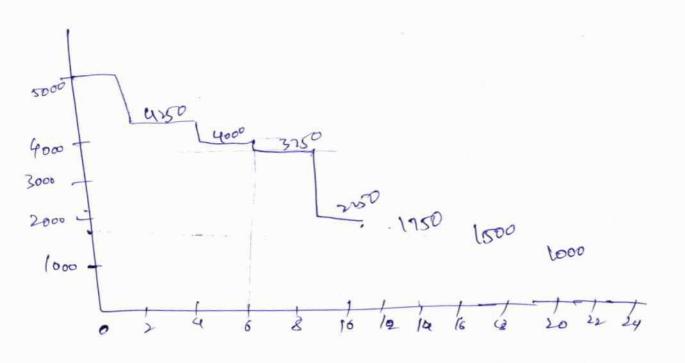

loed factor = 18×103 = 0.75

plant use factor =
$$\frac{E}{C \times E^{1}}$$
= $\frac{144 \times 10^{3}}{30 \times 10^{3} \times 8}$
= 0.6

3) A power station has to supply load as follows:
time(hours) 0-6 6-12 12-14 14-18 18-24
load (now) 45 135 90 150 75

1) drow load aute Generating Station Ty rates
2) 11 load dustries are

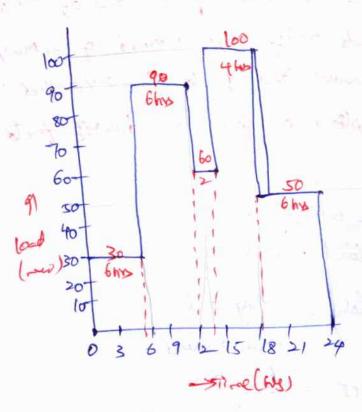
- 3) choose suitable generating units to supply the bad
- 4) Colubte the load factor
- 3) Columbte the plant Espacity factor.

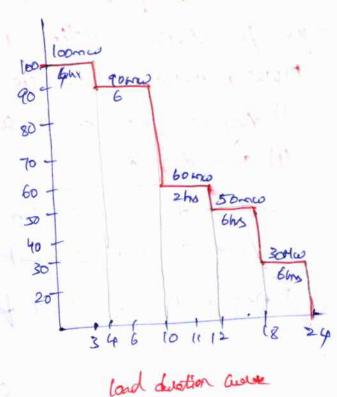


energy generated = $45 \times 6 + 135 \times 6 + 90 \times 2 + 150 \times 4 + 75 \times 6$

= 2310 m wh.

Aug leed = 2310×103 Km. = 96250 Km


traximum demand = 150×103 = 15 × 104 Kms load facted - Any load max demand = 0-69 = E CX ty plant capacity factor = 2310×103 =0.49 4) A generating station has a maximum demand of 5000kw s - the doily load on station is as follows :loed (m) looo 1750 4000 1500 fine 11 posts 8 Am GAMES AM 8 to 12 pm 12pm to 1pm bed (mw) 3150 430 5000 threlhous) | Anto 5 to TAn 7 to 9pm 9 to 11pm. 1) draw load was 2) draw load dustion Cues 3) Select to size & no of generated with what deserve plant would be necessary, 5) load freto 6) plant (apacity fretal 4000 3000 2000 1000



1) A power station has to supply load as follows:
Time(hours) 0-6 6-12 12-14 14-18 18-26

(and knw) 30 90 60 (00 50

drow I load curve 2) load devotion curve of Calculate iii) load factor iv) Capacity of the plant of plant capacity factor.

Conduce

1) load factor :- Area what the Cutter $= 30 \times 6 + 90 \times 6 + 60 \times 2 + 100 \times 4 + 50 \times 6$ = 1540 MWh.Average load = $\frac{1540}{34 \text{ MW}} = 64.167 \text{ MW}$

load factor = Aug load = 64.167

= 0.64 (67

copacity plant C = 100 MV plant copacity factor = Actual energy produced per day $= \frac{E}{cxt} = \frac{1540}{100 \times 24} = 0.64167$ 2) A bother power station has an annual pack load of some The powerstation supplies loads having more demand of 20MW, TIWW, long, a Mw. The arrued load factal is only find 1) try (oad 2) energy supplied per year 3) diversity factor 4) dervard freter. Capacity of power station = 60 Mw man demand (d) pook load =5000. 1) Ang load , coad factor = Ang load mod demand 0-45 = Angload Ang load = 50 × 0.45 = 5>.54 w= Ay 2) energy supplied polyer = Angload × 10 of hours in 1 year = (22.5×103) × (365×24) = 197.1×106/40h. 3) divergity factor = sun of individuals max demand Simultaneous rock deraid = 20+17+10+9 W dervard facts = max demand Corrected load = 50 20 117 10 19

= 0.89

Installed Capacity = (1×200 + 2×100) = 400 Mw.

load factor = Ang load arax demand

Aug load = Total energy in load

Come for the period $\frac{1}{1000}$ There(hx)

Total so of hours in the period $\Delta = \frac{1}{2}$ th $= (80 \times 8760) + \frac{1}{2} \times 8760 \times (800 - 80)$ $= (80 \times 8760) + \frac{1}{2} \times 8760 \times (800 - 80)$

80

2) load factor = 190MW = 0.633

365×24 =8760

3) max demand = 300 Mw

4) whilization factor = $\frac{\text{reax local}}{\text{Roted Capacity of free plant}}$ $= \frac{300}{400} = 0.75$

5) plant factor = Avo load
Capacity of the plant $= \frac{190}{400} = 0.475$

- "N) depreciation cost v) Insurance
- 2) operational cost

 i) Fuel cost ii) operating labour cost iii) supplies
 iv) montanerance cost v) supervision vi) operating taxes.
 - 1) A generating station has a maximum demand of 30Mw, a load frotol of 0.6, a plant Capacity of 0.48 & a plant use feets of 0.82, find i) the deally energy produced ii) The seserve Capacity of the plant iii) the maximum energy that could be produced if the plant were runing at the time iv) he max energy that could be produced be produced of the produced deily, if the plant when runing according to the operating schedule use fully loaded.

max derivand = 30 Mw; load facted = 0.6; plant capacity = 0.48; plant use facted = 0.82; load facted = Aug Coad max derivant

That denout = $30\times0.6 = 18\,\text{MW}$ = $18000\,\text{KeV}$ =1 deily energy produced = Ang demand \times NO of hours = $18000\,\text{XeV} = 4.32\,\text{XeV}\,\text{KeSh}$.

Tritalled agreety = 31500 Kw.

"(ii) Reverse Equality of the plant = Installed Equality - mark demand = 31500 - 30,000 = 7500 KW.

Maximum deily everyy produced when suring all the time = 4.32×105 kwh.

iv) max energy that could be produced, operating as per operating schedule = Adual energy produced

plant use factor

=> 5.268×605 Kwh.

Depreciation Methods:

1) straight line method;

life of equipment = loyed (Assumption);

Cost of equipment = 12 lakks

Solvage volue after 104eals = 1 lakh.

Armed depreciation = 12-1 = 11 = 1-1 llaku/4el

2) pellentage not nod 6-

different 1. of deteriotation is considered to the equipment from Year to Year.

M. redules for Successive Years.

3) Sinking fund method: -

 $A = P-2 \left(\frac{1}{1+i}m-1\right)$

A = Annuals Inking fund

N = life of the plant

S = Saluege value of the end of plant life

i = Annel rate Compand Interest on Capital.

P= initial investment

4) unit method; In this method some feetot is taken as standard one 4 depreciation is measured by trot standard. 2) determine the Annual cost of a feed water from the tollowing date? cost = 96000/ , Salvage Value = 5%, life = lolears, Annal repair & maintainage cost = 3000/ Armel cost of chemicals - 6000/ , labour cost / with - 360/ Interest on sinking found = 5%. Capital cost P = Rs 96000 Solvage Velie 5 = 5 × 96000 - 4800/ Rote of Interest , i=5%. 60.05 afe n=10 Years Arnual Stacking find payment A = (P-s) (1+150-1) $= 96000 - 4800) \left(\frac{0.05}{(1+0.05)^{10}-1} \right) = RS 7250.8$ Total cost per Year; Around sinking fund = Rs 7250.8 Annual repair & malutarle = Rs 3000 Arranal Cost of Chemicals = Ro 6000 Annual labore cost = (360 x/2) = 4320 B. Total cost/year = 7250-8 + 3000 + 600 + 4320 = Re 20570.8 3) From the following date, Calculate the cost of generation Per anit delievered from the pavel plant. Installed appearing = 200 Mw; Annual load factor = 0-4 apital cat of paul plant = 1280 lakes, Annual cost of fel,

oil, salatier, taxetion - 960 lakes, Interest & depreciation = 13%.

Job Installed Capacity = 200 Mw = 200×10 Kw load factor = 0-4 Assuring wax demand = Detalled Capacity

Assuming max demand = Distelled Capacity

Potal writing evoluted per annum = MDXLFX 365 X26

= 700-8 X106 KWh.

Capital Cost = Rs 28/x106

Annual interest of depreciation = Ps 280 × 106 × 13 (00)

= Ps 3-64×106

Annual cost of fuel, salaries, Taxations - Rs 60 x606 Total Annual cost = 3-64 x106 +6x106 = Rs 9-64 x106

Generating Cost = Total Annual Cost

Total curits generated per annuary

= 9.64 × 106

700.8 × 106

= 1.37 P8 / Ruch.

પશ્ચિમ પાસ્કા લા લા લાકે કરવા છે. તે લાકે

the state of the s

=0.0137 Pg