
P.Hari krishna

LECTURE NOTES ON

INTERNET OF THINGS

B. Tech (R23)

III YEAR I Semester

Prepared by

 P.HARI KRISHNA

 Assistant Professor M.TECH

P.Hari krishna

 UNIT-I

INTRODUCTION OF IOT

IoT comprises things that have unique identities and are connected to internet. By 2020 there will

be a total of 50 billion devices /things connected to internet. IoT is not limited to just connecting

things to the internet but also allow things to communicate and exchange data.

Definition:

A dynamic global n/w infrastructure with self configuring capabilities based on standard and

interoperable communication protocols where physical and virtual ―things‖ have identities,

physical attributes and virtual personalities and use intelligent interfaces, and are seamlessly

integrated into information n/w, often communicate data associated with users and their

environments.

Characteristics:

1) Dynamic & Self Adapting: IoT devices and systems may have the capability to

dynamically adapt with the changing contexts and take actions based on their operating

conditions, user‗s context or sensed environment.

Eg: the surveillance system is adapting itself based on context and changing conditions.

2) Self Configuring: allowing a large number of devices to work together to provide certain

functionality.

3) Inter Operable Communication Protocols: support a number of interoperable

communication protocols and can communicate with other devices and also with

infrastructure.

4) Unique Identity: Each IoT device has a unique identity and a unique identifier (IP

address).

5) Integrated into Information Network: that allow them to communicate and exchange

data with other devices and systems.

IoT − Key Features

The most important features of IoT include artificial intelligence, connectivity, sensors, active

engagement, and small device use. A brief review of these features is given below −

 AI − IoT essentially makes virtually anything “smart”, meaning it enhances every

aspect of life with the power of data collection, artificial intelligence algorithms, and

networks. This can mean something as simple as enhancing your refrigerator and

cabinets to detect when milk and your favorite cereal run low, and to then place an

order with your preferred grocer.

 Connectivity − New enabling technologies for networking, and specifically IoT
networking, mean networks are no longer exclusively tied to major providers. Networks

can exist on a much smaller and cheaper scale while still being practical. IoT creates
these small networks between its system devices.

 Sensors − IoT loses its distinction without sensors. They act as defining instruments
which transform IoT from a standard passive network of devices into an active system

capable of real-world integration.

 Active Engagement − Much of today's interaction with connected technology happens
through passive engagement. IoT introduces a new paradigm for active content,

product, or service engagement.

 Small Devices − Devices, as predicted, have become smaller, cheaper, and more
powerful over time. IoT exploits purpose-built small devices to deliver its precision,

scalability, and versatility.

P.Hari krishna

IoT − Advantages

The advantages of IoT span across every area of lifestyle and business. Here is a list of some

of the advantages that IoT has to offer −

 Improved Customer Engagement − Current analytics suffer from blind-spots and

significant flaws in accuracy; and as noted, engagement remains passive. IoT

completely transforms this to achieve richer and more effective engagement with

audiences.

 Technology Optimization − The same technologies and data which improve the

customer experience also improve device use, and aid in more potent improvements to

technology. IoT unlocks a world of critical functional and field data.

 Reduced Waste − IoT makes areas of improvement clear. Current analytics give us

superficial insight, but IoT provides real-world information leading to more effective

management of resources.

 Enhanced Data Collection − Modern data collection suffers from its limitations and
its design for passive use. IoT breaks it out of those spaces, and places it exactly where

humans really want to go to analyze our world. It allows an accurate picture of

everything.

IoT − Disadvantages

Though IoT delivers an impressive set of benefits, it also presents a significant set of
challenges. Here is a list of some its major issues −

 Security − IoT creates an ecosystem of constantly connected devices communicating
over networks. The system offers little control despite any security measures. This

leaves users exposed to various kinds of attackers.

 Privacy − The sophistication of IoT provides substantial personal data in extreme

detail without the user's active participation.

 Complexity − Some find IoT systems complicated in terms of design, deployment, and

maintenance given their use of multiple technologies and a large set of new enabling

technologies.

 Flexibility − Many are concerned about the flexibility of an IoT system to integrate
easily with another. They worry about finding themselves with several conflicting or

locked systems.

 Compliance − IoT, like any other technology in the realm of business, must comply

with regulations. Its complexity makes the issue of compliance seem incredibly

challenging when many consider standard software compliance a battle.

Applications of IoT:

1) Home

2) Cities

3) Environment

4) Energy

5) Retail

6) Logistics

7) Agriculture

8) Industry

9) Health & Life Style

P.Hari krishna

Physical Design of IoT

1) Things in IoT:

P.Hari krishna

The things in IoT refers to IoT devices which have unique identities and perform remote sensing,

actuating and monitoring capabilities. IoT devices can exchange data with other connected

devices applications. It collects data from other devices and process data either locally or

remotely.

An IoT device may consist of several interfaces for communication to other devices both wired

and wireless. These includes (i) I/O interfaces for sensors, (ii) Interfaces for internet connectivity

(iii) memory and storage interfaces and (iv) audio/video interfaces.

2) IoT Protocols:

a) Link Layer : Protocols determine how data is physically sent over the network‗s
physical layer or medium. Local network connect to which host is attached. Hosts on the
same link exchange data packets over the link layer using link layer protocols. Link layer
determines how packets are coded and signaled by the h/w device over the medium to
which the host is attached.

P.Hari krishna

Protocols:

 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the link layer.
Eg: 802.3 uses co-axial cable; 802.3i uses copper twisted pair connection; 802.3j uses

fiber optic connection; 802.3ae uses Ethernet over fiber.

 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN) communication

standards including extensive description of link layer. Eg: 802.11a operates in 5GHz

band, 802.11b and 802.11g operates in 2.4GHz band, 802.11n operates in 2.4/5GHz

band, 802.11ac operates in 5GHz band, 802.11ad operates in 60Ghzband.

 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards including
exclusive description of link layer. WiMax provide data rates from 1.5 Mb/s to 1Gb/s.

 802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate wireless
personal area network(LR-WPAN). Basis for high level communication protocols such as
ZigBee. Provides data rate from 40kb/s to250kb/s.

 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

B) Network/Internet Layer: Responsible for sending IP datagrams from source n/w to

destination n/w. Performs the host addressing and packet routing. Datagrams contains

source and destination address.

Protocols:

 IPv4: Internet Protocol version4 is used to identify the devices on a n/w using a

hierarchical addressing scheme. 32 bit address. Allows total of 2**32addresses.

 IPv6: Internet Protocol version6 uses 128 bit address scheme and allows 2**128

addresses.

P.Hari krishna

 6LOWPAN:(IPv6overLowpowerWirelessPersonalAreaNetwork)operates in

2.4 GHz frequency range and data transfer 250 kb/s.

C) Transport Layer: Provides end-to-end message transfer capability independent of the

underlying n/w. Set up on connection with ACK as in TCP and without ACK as in UDP.

Provides functions such as error control, segmentation, flow control and congestion control.

Protocols:

 TCP: Transmission Control Protocol used by web browsers(along with HTTP and

HTTPS), email(along with SMTP, FTP). Connection oriented and stateless protocol. IP

Protocol deals with sending packets, TCP ensures reliable transmission of protocols in

order. Avoids n/w congestion and congestion collapse.

 UDP: User Datagram Protocol is connectionless protocol. Useful in time sensitive
applications, very small data units to exchange. Transaction oriented and stateless

protocol. Does not provide guaranteed delivery.

D) Application Layer: Defines how the applications interface with lower layer protocols to
send data over the n/w. Enables process-to-process communication using ports.

Protocols:

 HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow request-
response model Stateless protocol.

 CoAP: Constrained Application Protocol for machine-to-machine (M2M) applications
with constrained devices, constrained environment and constrained n/w. Uses client-

server architecture.

 WebSocket: allows full duplex communication over a single socket connection.

 MQTT: Message Queue Telemetry Transport is light weight messaging protocol based
on publish-subscribe model. Uses client server architecture. Well suited for constrained

environment.

 XMPP: Extensible Message and Presence Protocol for real time communication and

streaming XML data between network entities. Support client-server and server-server

communication.

 DDS: Data Distribution Service is data centric middleware standards for device-to-device
or machine-to-machine communication. Uses publish-subscribe model.

 AMQP: Advanced Message Queuing Protocol is open application layer protocol for
business messaging. Supports both point-to-point and publish-subscribe model.

LOGICAL DESIGN of IoT

Refers to an abstract represent of entities and processes without going into the low level

specifies of implementation.

1) IoT Functional Blocks 2) IoT Communication Models 3) IoT Comm. APIs

1) IoT Functional Blocks: Provide the system the capabilities for identification, sensing,

actuation, communication and management.

http://www/

P.Hari krishna

 Device: An IoT system comprises of devices that provide sensing, actuation, monitoring
and control functions.

 Communication: handles the communication for IoTsystem.

 Services: for device monitoring, device control services, data publishing services and
services for device discovery.

 Management: Provides various functions to govern the IoT system.

 Security: Secures IoT system and priority functions such as authentication

,authorization, message and context integrity and data security.

 Application: IoT application provide an interface that the users can use to control and
monitor various aspects of IoT system.

2) IoT Communication Models:

1) Request-Response 2) Publish-Subscibe 3)Push-Pull4) ExclusivePair

1) Request-Response Model:

P.Hari krishna

In which the client sends request to the server and the server replies to requests. Is a

stateless communication model and each request-response pair is independent of others.

2) Publish-Subscibe Model:

Involves publishers, brokers and consumers. Publishers are source of data. Publishers send data

to the topics which are managed by the broker. Publishers are not aware of the consumers.

Consumers subscribe to the topics which are managed by the broker. When the broker receives

data for a topic from the publisher, it sends the data to all the subscribed consumers.

3) Push-Pull Model: in which data producers push data to queues and consumers pull data

from the queues. Producers do not need to aware of the consumers. Queues help in
decoupling the message between the producers and consumers.

P.Hari krishna

4) Exclusive Pair: is bi-directional, fully duplex communication model that uses a
persistent connection between the client and server. Once connection is set up it remains
open until the client send a request to close the connection. Is a stateful communication
model and server is aware of all the open connections.

3) IoT Communication APIs:

a) REST based communication APIs(Request-Response Based Model)

b) WebSocket based Communication APIs(Exclusive PairBased Model)
a) REST based communication APIs: Representational State Transfer(REST) is a set of

architectural principles by which we can design web services and web APIs that focus on a

system‗s resources and have resource states are addressed and transferred.

The REST architectural constraints: Fig. shows communication between client server with

REST APIs.

P.Hari krishna

Client-Server: The principle behind client-server constraint is the separation of concerns.

Separation allows client and server to be independently developed and updated.

Stateless: Each request from client to server must contain all the info. Necessary to understand

the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be implicitly

or explicitly labeled as cache-able or non-cacheable. If a response is cache-able, then a client

cache is given the right to reuse that response data for later, equivalent requests.

Layered System: constraints the behavior of components such that each component cannot see

beyond the immediate layer with which they are interacting.

User Interface: constraint requires that the method of communication between a client and a

server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to execute in their

context. This constraint is the only one that is optional.

Request-Response model used by REST:

P.Hari krishna

RESTful web service is a collection of resources which are represented by URIs. RESTful web

API has a base URI(e.g: http://example.com/api/tasks/). The clients and requests to these URIs

using the methods defined by the HTTP protocol(e.g: GET, PUT, POST or DELETE). A

RESTful web service can support various internet media types.

b) WebSocket Based Communication APIs: WebSocket APIs allow bi-directional, full

duplex communication between clients and servers. WebSocket APIs follow the

exclusive pair communication model.

IoT Enabling Technologies

IoT is enabled by several technologies including Wireless Sensor Networks, Cloud

Computing, Big Data Analytics, Embedded Systems, Security Protocols and architectures,

Communication Protocols, Web Services, Mobile internet and semantic search engines.

1) Wireless Sensor Network(WSN): Comprises of distributed devices with sensors which

are used to monitor the environmental and physical conditions. Zig Bee is one of the most

popular wireless technologies used byWSNs.

WSNs used in IoT systems are described as follows:

 Weather Monitoring System: in which nodes collect temp, humidity and other
data, which is aggregated and analyzed.

 Indoor air quality monitoring systems: to collect data on the indoor air quality and
concentration of various gases.

 Soil Moisture Monitoring Systems: to monitor soil moisture at variouslocations.

 Surveillance Systems: use WSNs for collecting surveillance data(motiondata
detection).

 Smart Grids : use WSNs for monitoring grids at variouspoints.

http://example.com/api/tasks/

P.Hari krishna

 Structural Health Monitoring Systems: Use WSNs to monitor the health of

structures(building, bridges) by collecting vibrations from sensor nodes deployed

at various points in the structure.

2) Cloud Computing: Services are offered to users in different forms.

 Infrastructure-as-a-service(IaaS):provides users the ability to provision computing

and storage resources. These resources are provided to the users as a virtual

machine instances and virtual storage.

 Platform-as-a-Service(PaaS): provides users the ability to develop and deploy

application in cloud using the development tools, APIs, software libraries and
services provided by the cloud service provider.

 Software-as-a-Service(SaaS): provides the user a complete software application or

the user interface to the application itself.

3) Big Data Analytics: Some examples of big data generated by IoT are

 Sensor data generated by IoT systems.

 Machine sensor data collected from sensors established in industrial and energy
systems.

 Health and fitness data generated IoT devices.

 Data generated by IoT systems for location and tracking vehicles.

 Data generated by retail inventory monitoring systems.

4) Communication Protocols: form the back-bone of IoT systems and enable network

connectivity and coupling to applications.

 Allow devices to exchange data over network.

 Define the exchange formats, data encoding addressing schemes for device and

routing of packets from source to destination.

 It includes sequence control, flow control and retransmission of lost packets.

5) Embedded Systems: is a computer system that has computer hardware and software

embedded to perform specific tasks. Embedded System range from low cost miniaturized

devices such as digital watches to devices such as digital cameras, POS terminals,

vending machines, appliances etc.,

IoT Levels and Deployment Templates

1) IoT Level1: System has a single node that performs sensing and/or actuation, stores data,

performs analysis and host the application as shown in fig. Suitable for modeling low

cost and low complexity solutions where the data involved is not big and analysis

requirement are not computationally intensive. An e.g., of IoT Level1 is Home

automation.

P.Hari krishna

2) IoT Level2: has a single node that performs sensing and/or actuating and local analysis

as shown in fig. Data is stored in cloud and application is usually cloud based. Level2 IoT

systems are suitable for solutions where data are involved is big, however, the primary

analysis requirement is not computationally intensive and can be done locally itself. An

e,g., of Level2 IoT system for Smart Irrigation.

3) IoT Level3: system has a single node. Data is stored and analyzed in the cloud

application is cloud based as shown in fig. Level3 IoT systems are suitable for solutions

where the data involved is big and analysis requirements are computationally intensive.

An example of IoT level3 system for tracking package handling.

P.Hari krishna

4) IoT Level4: System has multiple nodes that perform local analysis. Data is stored in the

cloud and application is cloud based as shown in fig. Level4 contains local and cloud

based observer nodes which can subscribe to and receive information collected in the

cloud from IoT devices. An example of a Level4 IoT system for Noise Monitoring.

5) IoT Level5: System has multiple end nodes and one coordinator node as shown in fig.

The end nodes that perform sensing and/or actuation. Coordinator node collects data from

theendnodesandsendstothecloud.Dataisstoredandanalyzedinthecloudand

P.Hari krishna

application is cloud based. Level5 IoT systems are suitable for solution based on wireless

sensor network, in which data involved is big and analysis requirements are

computationally intensive. An example of Level5 system for Forest Fire Detection.

6) IoT Level6: System has multiple independent end nodes that perform sensing and/or

actuation and sensed data to the cloud. Data is stored in the cloud and application is cloud

based as shown in fig. The analytics component analyses the data and stores the result in

the cloud data base. The results are visualized with cloud based application. The

centralized controller is aware of the status of all the end nodes and sends control

commands to nodes. An example of a Level6 IoT system for Weather Monitoring

System.

P.Hari krishna

DOMAIN SPECIFIC IoTs

1) Home Automation:

a) Smart Lighting: helps in saving energy by adapting the lighting to the ambient

conditions and switching on/off or diming the light when needed.

b) Smart Appliances: make the management easier and also provide status information

to the users remotely.

c) Intrusion Detection: use security cameras and sensors(PIR sensors and door sensors)

to detect intrusion and raise alerts. Alerts can be in the form of SMS or email sent to

the user.

d) Smoke/Gas Detectors: Smoke detectors are installed in homes and buildings to

detect smoke that is typically an early sign of fire. Alerts raised by smoke detectors

can be in the form of signals to a fire alarm system. Gas detectors can detect the

presence of harmful gases such as CO, LPGetc.,

2) Cities:
a) Smart Parking: make the search for parking space easier and convenient for drivers.

Smart parking are powered by IoT systems that detect the no. of empty parking slots

and send information over internet to smart application backends.

b) Smart Lighting: for roads, parks and buildings can help in saving energy.

c) Smart Roads: Equipped with sensors can provide information on driving condition,

travel time estimating and alert in case of poor driving conditions, traffic condition

and accidents.

d) Structural Health Monitoring: uses a network of sensors to monitor the vibration

levels in the structures such as bridges and buildings.

e) Surveillance: The video feeds from surveillance cameras can be aggregated in cloud

based scalable storage solution.

P.Hari krishna

f) Emergency Response: IoT systems for fire detection, gas and water leakage

detection can help in generating alerts and minimizing their effects on the critical

infrastructures.

3) Environment:
a) Weather Monitoring: Systems collect data from a no. of sensors attached and send

the data to cloud based applications and storage back ends. The data collected in

cloud can then be analyzed and visualized by cloud based applications.

b) Air Pollution Monitoring: System can monitor emission of harmful gases(CO2, CO,

NO, NO2 etc.,) by factories and automobiles using gaseous and meteorological

sensors. The collected data can be analyzed to make informed decisions on pollutions

control approaches.

c) Noise Pollution Monitoring: Due to growing urban development, noise levels in

cities have increased and even become alarmingly high in some cities. IoT based

noise pollution monitoring systems use a no. of noise monitoring systems that are

deployed at different places in a city. The data on noise levels from the station is

collected on servers or in the cloud. The collected data is then aggregated to generate

noise maps.

d) Forest Fire Detection: Forest fire can cause damage to natural resources, property

and human life. Early detection of forest fire can help in minimizing damage.

e) River Flood Detection: River floods can cause damage to natural and human

resources and human life. Early warnings of floods can be given by monitoring the

water level and flow rate. IoT based river flood monitoring system uses a no. of

sensor nodes that monitor the water level and flow rate sensors.

4) Energy:

a) Smart Grids: is a data communication network integrated with the electrical grids

that collects and analyze data captured in near-real-time about power transmission,

distribution and consumption. Smart grid technology provides predictive information

and recommendations to utilities, their suppliers, and their customers on how best to

manage power. By using IoT based sensing and measurement technologies, the health

of equipment and integrity of the grid can be evaluated.

b) Renewable Energy Systems: IoT based systems integrated with the transformers at

the point of interconnection measure the electrical variables and how much power is

fed into the grid. For wind energy systems, closed-loop controls can be used to

regulate the voltage at point of interconnection which coordinate wind turbine outputs

and provides power support.

c) Prognostics: In systems such as power grids, real-time information is collected using

specialized electrical sensors called Phasor Measurment Units(PMUs) at the

substations. The information received from PMUs must be monitored in real-time for

estimating the state of the system and for predicting failures.

5) Retail:

a) Inventory Management: IoT systems enable remote monitoring of inventory using

data collected by RFIDreaders.

P.Hari krishna

b) Smart Payments: Solutions such as contact-less payments

powered by technologies such as Near Field

Communication(NFC) and Bluetooth.

c) Smart Vending Machines: Sensors in a smart vending

machines monitors its operations and send the data to

cloud which can be used for predictive maintenance.

6) Logistics:
a) Route generation & scheduling: IoT based system backed

by cloud can provide first response to the route generation

queries and can be scaled upto serve a large transportation

network.

b) Fleet Tracking: Use GPS to track locations of vehicles inreal-time.

c) Shipment Monitoring: IoT based shipment monitoring

systems use sensors such as temp, humidity, to monitor the

conditions and send data to cloud, where it can be analyzed

to detect foods poilage.

d) Remote Vehicle Diagnostics: Systems use on-board IoT

devices for collecting data on Vehicle operations(speed,

RPMetc.,) and status of various vehicle subsystems.

7) Agriculture:

a) Smart Irrigation: to determine moisture amount in soil.
b) Green House Control: to improve productivity.

8) Industry:

a) Machine diagnosis and prognosis

b) Indoor Air Quality Monitoring

9) Health and LifeStyle:

a) Health & Fitness Monitoring
b) Wearable Electronics

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand,

Stamatis Karnouskos, David Boyle, ― From Machine-to-Machine to

the Internet of Things: Introduction to a New Age of Intelligence‖, 1st

Edition, Academic Press, 2014.

2. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On

Approach, Universities Press, 2014.

3. The Internet of Things, Enabling technologies and use cases – Pethuru

Raj, Anupama C. Raman, CRC Press.

4. Francis daCosta, ―Rethinking the Internet of Things: A Scalable

Approach to Connecting Everything‖, 1st Edition, Apress
Publications, 2013

5. Cuno Pfister, Getting Started with the Internet of Things, O‟Reilly

Media, 2011, ISBN: 9781- 4493- 9357-1

6. DGCA RPAS Guidance Manual, Revision 3 – 2020

P.Hari krishna

7. Building Your Own Drones: A Beginners' Guide to Drones,

UAVs, and ROVs, John Baich

P.HARI KRISHNA

UNIT 2

PROTOTYPING IOT OBJECTS USING MICRO PROCESSOR/MICRO CONTROLLER

Sensors and actuators are critical components of embedded systems. Sensors and actuators

differ primarily in their purpose; the sensor is utilized to track environmental changes using

measurands, whereas the actuator is utilized when monitoring is combined with control, such

as controlling physical changes.

SENSORS:

 A sensor is a device that detects changes and events in a physical environment. It may

convert physical parameters like humidity, pressure, temperature, heat, motion, etc.,

into electrical signals.

 This signal can be converted into a human-readable display and sent across a network

for additional processing.

A sensor works by sensing a quantity by utilizing a particular detecting device. Each sensor

operates on a distinct principle, such as an electromagnetic sensor, a resistive sensor, a

capacitor sensor, etc. In general, they sense the matching attribute in the environment and

convert it into a proportional magnitude electrical signal.1. Sensor:

Sensor is a device used for the conversion of physical events or characteristics into the

electrical signals. This is a hardware device that takes the input from environment and gives

to the system by converting it.

For example, a thermometer takes the temperature as physical characteristic and then

converts it into electrical signals for the system.

TYPES OF SENSORS:

1. Active Sensor

2. Passive Sensor

 Active sensors necessitate a power supply, whereas passive sensors don't require a

power supply.

Eg: There are various types of sensors available, including temperature, ultrasonic,

pressure, and location sensors, among others. They are utilized for detecting and

measuring the relevant quantities.

Some important sensors are as follows:

1. Biosensors

These biosensors utilize electrochemical technology. These sensors are used in medical, food,

and water testing devices. These biosensors also aid in analyzing proteins, cells, nucleic acid,

etc.

2. Accelerometers

These sensors utilize the Micro Electro Mechanical Sensor Technology. These sensors utilize

in patient monitoring, vehicle systems, etc.

3. Image Sensors

These sensors utilize the Complementary Metal Oxide Sensor mechanism. They detect and

transfer data that is utilized to make an image. These image sensors are very useful in

consumer surveillance and electronic systems.

3. Chemical Sensors

These sensors use ultrasonic, microwave, and radar technology, and they are used in security

systems, video games, and other applications.

Features of Sensors

There are various features of Sensors. Some main features of Sensors are as follows:

1. A sensor could be either active or passive. Active sensors necessitate a power source,

but passive doesn't necessitate a power source.

2. It is a device that monitors and measures changes in the environment.

3. It is responsible for converting physical quantities into electrical signals.

4. It is connected to a system's input.

5. It generates an electrical signal as its output.

2.Actuator:

Actuator is a device that converts the electrical signals into the physical events or

characteristics. It takes the input from the system and gives output to the environment.

For example, motors and heaters are some of the commonly used actuators.

 A device that changes electrical signals into mechanical work is known as

an actuator. It is used to cause movement or a change in the surroundings.

 Actuators are connected to a system's output. It receives an electrical signal as input

and produces mechanical movement as output. It receives input or instruction from a

system or a signal conditioning device and outputs it to the environment.

 The actuator is dependent on the sensor data. The sensor sends data to a signal

condition unit, which analyzes the data or information and transmits commands to the

actuator depending on that data. A "temperature control system" is an instance of an

actuator system in which a temperature sensor manages the temperature. If the

temperature surpasses a specific limit, the device instructs the fan to increase its speed

and decrease the temperature.

Types of Actuators

There are various types of actuators. Some of these are as follows:

1. Manual Actuator

This type of actuator is manually operated via gears, levers, and wheels, among other things.

They do not need a power source because they are powered by human action.

2. Spring Actuator

It has a loaded spring that is triggered and released to generate mechanical work. It may be

triggered in several ways.

3. Hydraulic Actuator

Hydraulic actuators generate pressure by compressing fluid in a cylinder, allowing

mechanical movement.

4. Electric Actuators

These actuators require power to function. It utilizes an electric motor to produce movement.

They are quick and effective.

Features of Actuators

There are various features of Actuators. Some main features of Actuators are as follows:

1. The actuator assists in managing the environment based on sensor readings.

2. A device that converts electrical signals into mechanical movement is known as an

actuator.

3. It requires an additional power source to function.

4. It receives an electrical signal as input.

5. It is connected to a system's output.

It produces mechanical work.Difference between Sensor and Actuator :

SENSOR ACTUATOR

It converts physical characteristics into electrical

signals.

It converts electrical signals into physical

characteristics.

It takes input from environment.
It takes input from output conditioning unit of

system.

It gives output to input conditioning unit of system. It gives output to environment.

Sensor generated electrical signals. Actuator generates heat or motion.

It is placed at input port of the system. It is placed at output port of the system.

It is used to measure the physical quantity.
It is used to measure the continuous and

discrete process parameters.

It gives information to the system about

environment.
It accepts command to perform a function.

Example: Photo-voltaic cell which converts light

energy into electrical energy.

Example: Stepper motor where electrical

energy drives the motor.

Setting up the board-programming for iot:

Setting up the board programming for IoT involves several steps, depending on the specific

board you are using and the programming language you want to use. Here are some general

steps you can follow:

1. Choose your board: There are many IoT boards available, such as Arduino, Raspberry

Pi, ESP8266, etc. Choose a board that fits your project requirements.

2. Install the necessary software: You will need to install the necessary software on your

computer to program the board. For example, if you are using an Arduino board, you

will need to install the Arduino IDE.

3. Connect your board: Connect your board to your computer using a USB cable or

another suitable method.

4. Write your code: Write your code in a programming language supported by your

board. For example, Arduino boards use a version of C++, while Raspberry Pi boards

can use Python or other languages.

5. Upload your code: Upload your code to the board using the software you installed

earlier. This will program the board to execute your code.

6. Test your code: Test your code by connecting sensors or other devices to the board

and seeing if it works as intended.

7. Deploy your project: Once your code is working correctly, deploy your project to the

intended location, such as a remote server or IoT device.

These are the general steps involved in setting up the board programming for IoT. However,

the specifics of each step will vary depending on your board, programming language, and

project requirements.

Installation of Arduino UNO:

After learning about the main parts of the Arduino UNO board, we go for how to set up the

Arduino IDE. we will be ready to upload our program on the Arduino board.our computer

and prepare the board to receive the program via USB cable.

Step 1 − First you must have your Arduino board and a USB cable. In case you use Arduino

UNO, Arduino Duemilanove, Nano, Arduino Mega 2560, or Diecimila, you will need a

standard USB cable (A plug to B plug), the kind you would connect to a USB printer as

shown in the following image.

In case you use Arduino Nano, you will need an A to Mini-B cable instead as shown in the

following image.

Step 2 − Download Arduino IDE Software.

You can get different versions of Arduino IDE from the Download page on the Arduino

Official website. You must select your software, which is compatible with your operating

system (Windows, IOS, or Linux). After your file download is complete, unzip the file.

Step 3 − Power up your board.

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power from

either, the USB connection to the computer or an external power supply. The power source is

selected with a jumper, a small piece of plastic that fits onto two of the three pins between the

USB and power jacks. Check that it is on the two pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable. The green power LED

should glow.

Step 4 − Launch Arduino IDE.

After Arduino IDE software is downloaded, you need to unzip the folder. Inside the folder,

you can find the application icon with an infinity label (application.exe). Double-click the

icon to start the IDE.

https://www.arduino.cc/en/Main/Software

Step 5 − Open your first project.

Once the software starts, you have two options −

 Create a new project.
 Open an existing project example.

To create a new project, select File → New.

To open an existing project example, select File → Example → Basics → Blink.

Here, we are selecting just one of the examples with the name Blink. It turns the LED on and

off with some time delay. You can select any other example from the list.

Step 6 − Select your Arduino board.

To avoid any error while uploading your program to the board, you must select the correct

Arduino board name, which matches with the board connected to your computer.

Go to Tools → Board and select your board.

Here, we have selected Arduino Uno board, but you must select the name matching the board

that you are using.

Step 7 − Select your serial port.

Select the serial device of the Arduino board. Go to Tools → Serial Port menu. This is likely

to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial ports). To

find out, you can disconnect your Arduino board and re-open the menu, the entry that

disappears should be of the Arduino board. Reconnect the board and select that serial port.

Step 8 − Upload the program to your board.

Before explaining how we can upload our program to the board, we must demonstrate the

function of each symbol appearing in the Arduino IDE toolbar.

A − Used to check if there is any compilation error.

B − Used to upload a program to the Arduino board.

C − Shortcut used to create a new sketch.

D − Used to directly open one of the example sketch.

E − Used to save your sketch.

F − Serial monitor used to receive serial data from the board and send the serial data to the

board.

Now, simply click the "Upload" button in the environment. Wait a few seconds; you will see

the RX and TX LEDs on the board, flashing. If the upload is successful, the message "Done

uploading" will appear in the status bar.

Readingdata from sensors:

Reading data from a sensor typically involves the following steps:

1. Connect the sensor: The first step is to connect the sensor to the device that will be

reading its output. This could be a microcontroller, a single-board computer, or any

other device capable of reading analog or digital signals.

2. Configure the device: Once the sensor is connected, the device must be configured to

read the sensor's output. This may involve setting up communication protocols, such

as I2C or SPI, and configuring the input pins or channels on the device to receive the

sensor's output.

3. Read the sensor: Once the device is configured, it can begin reading the sensor's

output. Depending on the type of sensor and the device being used, this may involve

polling the sensor for data or receiving a continuous stream of data from the sensor.

4. Process the data: Once the data has been read from the sensor, it may need to be

processed or analyzed in some way. For example, if the sensor is measuring

temperature, the raw data may need to be converted into a meaningful temperature

reading using a formula or lookup table.

5. Use the data: Finally, once the data has been processed, it can be used for whatever

purpose it was intended. This could be as simple as displaying the data on a screen or

as complex as using the data to control a system or make decisions in real-time.

How to read Analog Sensors using Arduino:
The Arduino has built-in analog and digital input and output (I/O) pins The difference between

analog and digital sensors is that an analog sensor collects readings over a range of values, and a

digital sensor only reads a HIGH or LOW signal (a bit of data).

The Arduino has a 10-bit Analog-to-Digital-Converter (ADC), which maps sensor readings

between 0 and the operating voltage (5V or 3.3V) into integer values between 0 and 1023.

Step 1. Wire Analog Sensors to Arduino
The majority of analog sensors for Arduino are wired and programmed the same. So, once

you learn how to wire and read data from one analog sensor, you’ll be able to wire and program
thousands of additional sensors to collect a whole bunch of data. For this example, I’ll walk you
through wiring and programming a light-dependent resistor (LDR) also known as a

photoresistor.

The first step is to connect the analog sensor to the Arduino. Analog sensors for Arduino have

three wires (Ground, Signal, Power). Then, connect the ground wire to GND on the Arduino.

Next, attach the Signal wire to an analog pin on the Arduino. Lastly, connect the power wire to

the 5V on the Arduino

Step 2. Setup your Arduino Sketch
The next step is to set up the Arduino Sketch. First, configure a global variable for the analog

sensor.

int ldr = A0;

Then, in the setup() method, initialize the sensor as an input and start the Serial monitor.

void setup(){

pinMode(ldr, INPUT); //initialize ldr sensor as INPUT

Serial.begin(9600); //begin the serial monitor at 9600 baud

}

The Arduino Uno has a baud rate of 9600. We can use the begin method to start the Serial

Monitor. Now, we’re ready to write the Arduino code to collect readings from our analog
sensor.

Step 3. Write code to collect readings from Analog Sensors
Next, collect a sensor reading using the analogRead(ldr) method, and store it in an integer

variable. I called this variable “data.”

We will use a few print statements to show the readings in the Serial Monitor. Serial.print() will

print data horizontally across the screen. Serial.println() will print data vertically down the

screen. I used both to label the data while making it easy to read.

void loop(){

 int data=analogRead(ldr);

Serial.print(“ldr reading=“);
Serial.println(data);

delay(1000);

}

Finally, add a delay. This prevents the Arduino from taking readings faster than we can see

them. Feel free to adjust this delay to whatever interval makes sense for your application. Once

https://www.learnrobotics.org/blog/four-steps-to-writing-an-arduino-program/

you have the test code written, save the sketch and upload it to the Arduino. Open up the serial

monitor and you should see values from 0-1023 depending on how bright or dark the area is.

Step 4. Analyze and Convert Sensor Readings as needed
Some sensors require a unit conversion. For example, it’s easier to understand what temperature

it is when the units are in Celcius or Fahrenheit. Furthermore, with our LDR we could convert

the unit readings into a brightness percentage. That way when we analyze the data, we can check

for conditions based on 25% bright, 100% bright, or a unit that makes more sense for the

application.

Most datasheets specify formulas that you can use to make these conversions. You don’t always
have to “make up” a unit for your sensor.

Step 5. Use sensor data to make decisions
Once you have an understanding of how data is collected from your analog sensor, you can use

the readings to make decisions.

We’ll use conditional statements to check to see if a condition is TRUE or FALSE. Then, based
on that condition, we’ll react accordingly.

Here’s an example using the LDR. If the condition is LIGHT, then let’s write the word
“daylight” to the Serial Monitor. Otherwise, write the word “nighttime” to the Serial Monitor.

First, add a method called lightCheck() to the previous Arduino sketch.

//globals to store data

int reading;

int threshold = 900; //range of 0-1023 / higher value = brighter

void lightCheck(){

 reading = analogRead(ldr);

if(reading >= threshold){ //this condition means the readings are light

Serial.println("daylight");

 }

else{

Serial.println("nighttime");

 }

delay(1000);

}

Then, we’ll call lightCheck() in our loop() method. Here’s how it should work.

Communication through Bluetooth iot:

Bluetooth is a widely used wireless communication technology that is frequently used in

Internet of Things (IoT) devices to enable communication between them. Bluetooth enables

low-power, short-range wireless communication between devices, making it an ideal choice

for many IoT applications.

Bluetooth is often used in IoT devices for various purposes such as transferring data,

controlling devices, and enabling communication between devices. For example, a Bluetooth-

enabled sensor in a smart home can communicate with a smartphone app to send data on

temperature, humidity, and other environmental factors.

One of the main advantages of using Bluetooth in IoT is that it is a low-power technology,

which means that it does not consume a lot of battery power. This makes it an ideal choice

for IoT devices that are designed to be powered by a battery or other low-power sources.

Additionally, Bluetooth is relatively easy to implement and has a high level of compatibility

with many devices.

In summary, Bluetooth is an important technology for enabling communication in IoT

devices, and its low-power and compatibility features make it a popular choice for many IoT

applications

Bluetooth is a short-range wireless communication network over a radio frequency. Bluetooth

is mostly integrated into smartphones and mobile devices. The Bluetooth communication

network works within 2.4 ISM band frequencies with data rate up to 3Mbps.

There are three categories of Bluetooth technology:

1. Bluetooth Classic

2. Bluetooth Low Energy

3. Bluetooth SmartReady

The features of Bluetooth 5.0 version is introduced as Bluetooth 5 which have been

developed entirely for the Internet of Things.

Play Video

Properties of Bluetooth network

o Standard: Bluetooth 4.2

o Frequency: 2.4GHz

o Range: 50-150m

o Data transfer rates: 3Mbps

Advantages of Bluetooth network

o It is wireless.

o It is cheap.

o It is easy to install.

o It is free to use if the device is installed with it.

Disadvantages of Bluetooth network

o It is a short-range communication network.

o It connects only two devices at a time.
o Communication through WiFi is a type of wireless communication that enables

devices to communicate with each other using radio waves over a local area network

(LAN). WiFi (Wireless Fidelity) is a popular wireless networking technology that

uses radio waves to provide wireless high-speed Internet and network connections.

o To communicate through WiFi, devices must have a wireless network adapter that can

transmit and receive signals over the air. The wireless adapter converts the data into

radio waves and sends it to the wireless router or access point, which then sends the

data to other devices connected to the same network.

o WiFi communication is commonly used in homes, offices, public places, and other

locations where there is a need for wireless connectivity. Some examples of devices

that use WiFi communication include smartphones, laptops, tablets, gaming consoles,

and smart home devices.

o One of the advantages of WiFi communication is its convenience and flexibility, as it

allows devices to connect to the Internet and network without the need for cables or

physical connections. However, WiFi communication can be affected by factors such

as distance, interference, and network congestion, which can impact its speed and

reliability.

communication through wifi:

IoT (Internet of Things) devices often use Wi-Fi to communicate with each other and with

the internet. Wi-Fi is a wireless networking technology that uses radio waves to transmit data

between devices that are within range of a Wi-Fi network.

To communicate through Wi-Fi in IoT, devices need to have Wi-Fi radios and be connected

to a Wi-Fi network. The devices can then send and receive data over the network using

various communication protocols such as HTTP, MQTT, CoAP, and others.

One important consideration when using Wi-Fi for IoT communication is security. Wi-Fi

networks can be vulnerable to hacking and other security threats, so it's important to

implement strong security measures such as encryption, secure authentication, and access

controls to protect IoT devices and the data they transmit.

Overall, Wi-Fi is a popular choice for IoT communication due to its widespread availability,

relatively low cost, and ease of use. However, other wireless communication technologies

such as Bluetooth, Zigbee, and LoRaWAN may also be suitable for specific IoT use cases

depending on factors such as range, power consumption, and data transfer speed.

Applications of Wi-Fi :

Wi-Fi has many applications, it is used in all the sectors where a computer or any digital

media is used, also for entertaining Wi-Fi is used. Some of the applications are mentioned

below –

 Accessing Internet: Using Wi-Fi we can access the internet in any Wi-Fi-capable

device wirelessly.

 We can stream or cast audio or video wirelessly on any device using Wi-Fi for

our entertainment.

 We can share files, data, etc between two or more computers or mobile phones

using Wi-Fi, and the speed of the data transfer rate is also very high. Also, we

can print any document using a Wi-Fi printer, this is very much used nowadays.

 We can use Wi-Fi as HOTSPOTS also, it points Wireless Internet access for a

particular range of area. Using Hotspot the owner of the main network

connection can offer temporary network access to Wi-Fi-capable devices so that

the users can use the network without knowing anything about the main network

connection. Wi-Fi adapters are mainly spreading radio signals using the owner

network connection to provide a hotspot.

 Using Wi-Fi or WLAN we can construct simple wireless connections from one

point to another, known as Point to point networks. This can be useful to

connect two locations that are difficult to reach by wire, such as two buildings of

corporate business.

 One more important application is VoWi-Fi, which is known as voice-over Wi-

Fi. Some years ago telecom companies are introduced VoLTE (Voice over

Long-Term Evolution). Nowadays they are introduced to VoWi-Fi, by which

we can call anyone by using our home Wi-Fi network, only one thing is that the

mobile needs to connect with the Wi-Fi. Then the voice is transferred using the

Wi-Fi network instead of using the mobile SIM network, so the call quality is

very good. Many mobile phones are already getting the support of VoWi-Fi.

 Wi-Fi in offices: In an office, all the computers are interconnected using Wi-Fi.

For Wi-Fi, there are no wiring complexities. Also, the speed of the network is

good. For Wi-Fi, a project can be presented to all the members at a time in the

form of an excel sheet, ppt, etc. For Wi-Fi, there is no network loss as in cable

due to cable break.

 Also using W-Fi a whole city can provide network connectivity by deploying

routers at a specific area to access the internet. Already schools, colleges, and

universities are providing networks using Wi-Fi because of its flexibility.

 Wi-Fi is used as a positioning system also, by which we can detect the positions

of Wi-Fi hotspots to identify a device location.

Types of Wi-Fi:

Wi-Fi has several types of standards, which are discussed earlier, here just the name of the

standards are defined,

Standards

Year of

Release Description

Wi-Fi-1

(802.11b) 1999

This version has a link speed from 2Mb/s to 11 Mb/s over a

2.4 GHz frequency band

Wi-Fi-2

(802.11a) 1999

After a month of release previous version, 802.11a was

released and it provide up to 54 Mb/s link speed over 5 Ghz

band

Wi-Fi-3

(802.11g) 2003

In this version the speed was increased up to 54 to 108 Mb/s

over 2.4 GHz

802.11i 2004

This is the same as 802.11g but only the security mechanism

was increased in this version

802.11e 2004

This is also the same as 802.11g, only Voice over Wireless

LAN and multimedia streaming are involved

Wi-Fi-4

(802.11n) 2009

This version supports both 2.4 GHz and 5 GHz radio

frequency and it offers up to 72 to 600 Mb/s speed

Wi-Fi-5

(802.11ac) 2014 It supports a speed of 1733 Mb/s in the 5 GHz band

Comparison between WiFi and Bluetooth

The following table highlights the major differences between WiFi and Bluetooth.

Key WiFi Bluetooth

Definition

WiFi stands for Wireless Fidelity. Wi-
Fi is a technology that enables devices
to connect to the Internet wirelessly.

Bluetooth is a wireless technology that is used to
connect devices in short range.

Component
WiFi requires wireless adaptor on all
devices and Wireless Router for
connectivity.

Bluetooth requires an Bluetooth adaptor on

all devices for connectivity.

Power
Consumption

WiFi consumes high power. Bluetooth is easier to use and consumes

 less power than Wi-Fi because it only requires an
adapter on each connecting device.

Security
WiFi is more secure than Bluetooth. Bluetooth is less secure than other

wireless technologies such as WiFi.

Number of
Users

Wi-Fi allows more devices and users
to communicate at the same time.

Bluetooth restricts the number of devices that can
connect at any given moment.

Bandwidth WiFi needs high bandwidth. Bluetooth has a low bandwidth.

Coverage WiFi coverage area is up to 32 meters. Bluetooth coverage area is about 10 meters.

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand,

Stamatis Karnouskos, David Boyle, ― From Machine-to-Machine to

the Internet of Things: Introduction to a New Age of Intelligence‖, 1st

Edition, Academic Press, 2014.

2. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On

Approach, Universities Press, 2014.

3. The Internet of Things, Enabling technologies and use cases – Pethuru

Raj, Anupama C. Raman, CRC Press.

4. Francis daCosta, ―Rethinking the Internet of Things: A Scalable

Approach to Connecting Everything‖, 1st Edition, Apress
Publications, 2013

5. Cuno Pfister, Getting Started with the Internet of Things, O‟Reilly

Media, 2011, ISBN: 9781- 4493- 9357-1

6. DGCA RPAS Guidance Manual, Revision 3 – 2020

7. Building Your Own Drones: A Beginners' Guide to Drones,

UAVs, and ROVs, John Baich

P.HARI KRISHNA

Unit-3 IOT ARCHITECTURE&PROTOCOLS

Architecture Reference Model

Reference Model and Architecture

•An ARM consists of two main parts: a Reference model and a Reference Architecture.

•A reference model describes the domain using a number of sub-models

P.HARI KRISHNA

P.HARI KRISHNA

From Reference to concrete architecture and actual system

P.HARI KRISHNA

IOT Reference architecture and reference model dependency

IOT Reference Model

IoT domain model

The domain model captures the basic attributes of the main concepts and the
relationship between these concepts. A domain model also serves as a tool for human
communication between people working in the domain in question and between people
who work across different domains.

Model notation and semantics

P.HARI KRISHNA

UML Class diagram main modelling concepts

Main concepts

The IoT is a support infrastructure for enabling objects and places in the physical world
to have a corresponding representation in the digital world.

P.HARI KRISHNA

Physical vs Virtual World

•The Devices are physical artefacts with which the physical and virtual worlds interact.
Devices as mentioned before can also be Physical Entities for certain types of
applications, such as management applications when the interesting entities of a
system are the Devices themselves and not the surrounding environment. For the IoT
Domain Model, three kinds of Device types are the most important:

1. Sensors:

 These are simple or complex Devices that typically involve a transducer that
converts physical properties such as temperature into electrical signals.

 These Devices include the necessary conversion of analog electrical signals into
digital signals, e.g. a voltage level to a 16-bit number, processing for simple
calculations, potential storage for intermediate results, and potentially
communication capabilities to transmit the digital representation of the physical
property as well receive commands.

 A video camera can be another example of a complex sensor that could detect
and recognise people.

2. Actuators:

 These are also simple or complex Devices that involve a transducer that converts
electrical signals to a change in a physical property (e.g. turn on a switch or
move a motor).

 These Devices also include potential communication capabilities, storage of
intermediate commands, processing, and conversion of digital signals to analog
electrical signals.

P.HARI KRISHNA

3. Tags:

 Tags in general identify the Physical Entity that they are attached to. In reality,
tags can be Devices or Physical Entities but not both, as the domain model
shows.

 An example of a Tag as a Device is a Radio Frequency Identification (RFID) tag,
while a tag as a Physical Entity is a paper-printed immutable barcode or Quick
Response (QR) code.

 Either electronic Devices or a paper-printed entity tag contains a unique
identification that can be read by optical means (bar codes or QR codes) or radio
signals (RFID tags).

 The reader Device operating on a tag is typically a sensor, and sometimes a
sensor and an actuator combined in the case of writable RFID tags.

Information Model
Virtual Entity in the IoT Domain Model is the “Thing” in the Internet of Things, the IoT
information model captures the details of a Virtual Entity- centric model. Similar to the
IoT Domain Model, the IoT Information Model is presented using Unified Modelling
Language (UML) diagrams.

P.HARI KRISHNA

High-level IoT Information Model

Relationship between core concepts of IoT Domain Model and IoT Information Model.

P.HARI KRISHNA

Functional model
The IoT Functional Model aims at describing mainly the Functional Groups (FG) and
their interaction with the ARM, while the Functional View of a Reference Architecture
describes the functional components of an FG, interfaces, and interactions between the
components. The Functional View is typically derived from the Functional Model in
conjunction with high-level requirements.

P.HARI KRISHNA

Device functional group

The Device FG contains all the possible functionality hosted by the physical Devices
that are used for increment the Physical Entities. This Device functionality includes
sensing, actuation, processing, storage, and identification components, the
sophistication of which depends on the Device capabilities

Communication functional group

The Communication FG abstracts all the possible communication mechanisms used by
the relevant Devices in an actual system in order to transfer information to the digital
world components or other Devices.

IoT Service functional group

The IoT Service FG corresponds mainly to the Service class from the IoT Domain
Model, and contains single IoT Services exposed by Resources hosted on Devices or in
the Network (e.g. processing or storage Resources).

Virtual Entity functional group

The Virtual Entity FG corresponds to the Virtual Entity class in the IoT Domain Model,
and contains the necessary functionality to manage associations between Virtual

P.HARI KRISHNA

Entities with themselves as well as associations between Virtual Entities and related IoT
Services, i.e. the Association objects for the IoT Information Model. Associations
between Virtual Entities can be static or dynamic depending on the mobility of the
Physical Entities related to the corresponding Virtual Entities.

IoT Service Organization functional group

The purpose of the IoT Service Organisation FG is to host all functional components
that support the composition and orchestration of IoT and Virtual Entity services.
Moreover, this FG acts as a service hub between several other functional groups such
as the IoT Process Management FG when, for example, service requests from
Applications or the IoT Process Management are directed to the Resources
implementing the necessary Services.

IoT Process Management functional group

The IoT Process Management FG is a collection of functionalities that allows smooth
integration of IoT-related services (IoT Services, Virtual Entity Services, Composed
Services) with the Enterprise (Business) Processes.

Management functional group

The Management FG includes the necessary functions for enabling fault and
performance monitoring of the system, configuration for enabling the system to be
flexible to changing User demands, and accounting for enabling subsequent billing for
the usage of the system. Support functions such as management of ownership,
administrative domain, rules and rights of functional components, and information stores
are also included in the Management FG.

Security functional group

The Security FG contains the functional components that ensure the secure operation
of the system as well as the management of privacy. The Security FG contains
components for Authentication of Users (Applications, Humans), Authorisation of
access to Services by Users, secure communication (ensuring integrity and
confidentiality of messages) between entities of the system such as Devices, Services,
Applications, and last but not least, assurance of privacy of sensitive information relating
to Human Users.

Application functional group

P.HARI KRISHNA

The Application FG is just a placeholder that represents all the needed logic for creating
an IoT application. The applications typically contain custom logic tailored to a specific
domain such as a Smart Grid

Communication model

Safety

the IoT Reference Model can only provide IoT-related guidelines for ensuring a safe
system to the extent possible and controllable by a sys- tem designer.
Eg: smart grid.

Privacy

Because interactions with the physical world may often include humans, protecting the
User privacy is of utmost importance for an IoT system. The IoT-A Privacy Model
depends on the following functional components: Identity Management, Authentication,
Authorisation, and Trust & Reputation

Trust

Generally, an entity is said to ‘trust’ a second entity when the first entity makes the
assumption that the second entity will behave exactly as the first entity expects.”

Security

The Security Model for IoT consists of communication security that focuses mostly on
the confidentiality and integrity protection of interacting entities and functional
components such as Identity Management, Authentication, Authorisation, and Trust &
Reputation.

P.HARI KRISHNA

PROTOCOLS:

6LoWPAN

6LoWPAN is an IPv6 protocol, and It’s extended from is IPv6 over Low
Power Personal Area Network. As the name itself explains the
meaning of this protocol is that this protocol works on Wireless
Personal Area Network i.e., WPAN.
WPAN is a Personal Area Network (PAN) where the interconnected
devices are centered around a person’s workspace and connected
through a wireless medium. You can read more about WPAN
at WPAN. 6LoWPAN allows communication using the IPv6 protocol.
IPv6 is Internet Protocol Version 6 is a network layer protocol that
allows communication to take place over the network. It is faster and
more reliable and provides a large number of addresses.
6LoWPAN initially came into existence to overcome the conventional
methodologies that were adapted to transmit information. But still, it is
not so efficient as it only allows for the smaller devices with very limited
processing ability to establish communication using one of the Internet
Protocols, i.e., IPv6. It has very low cost, short-range, low memory
usage, and low bit rate.

It comprises an Edge Router and Sensor Nodes. Even the smallest of
the IoT devices can now be part of the network, and the information
can be transmitted to the outside world as well. For example, LED
Streetlights.

https://www.geeksforgeeks.org/what-is-ipv6
https://www.geeksforgeeks.org/overview-of-personal-area-network-pan
https://www.geeksforgeeks.org/overview-of-wireless-personal-area-network-wpan

P.HARI KRISHNA

 It is a technology that makes the individual nodes IP enabled.
 6LoWPAN can interact with 802.15.4 devices and also other types

of devices on an IP Network. For example, Wi-Fi.
 It uses AES 128 link layer security, which AES is a block cipher

having key size of 128/192/256 bits and encrypts data in blocks of
128 bits each. This is defined in IEEE 802.15.4 and provides link
authentication and encryption.

Basic Requirements of 6LoWPAN:
1. The device should be having sleep mode in order to support the

battery saving.
2. Minimal memory requirement.
3. Routing overhead should be lowered.

Features of 6LoWPAN:
1. It is used with IEEE 802.15,.4 in the 2.4 GHz band.
2. Outdoor range: ~200 m (maximum)
3. Data rate: 200kbps (maximum)
4. Maximum number of nodes: ~100

Advantages of 6LoWPAN:
1. 6LoWPAN is a mesh network that is robust, scalable, and can heal

on its own.
1. It delivers low-cost and secure communication in IoT devices.
2. It uses IPv6 protocol and so it can be directly routed to cloud

platforms.
3. It offers one-to-many and many-to-one routing.
4. In the network, leaf nodes can be in sleep mode for a longer

duration of time.

Disadvantages of 6LoWPAN:
1. It is comparatively less secure than Zigbee.
2. It has lesser immunity to interference than that Wi-Fi and Bluetooth.
3. Without the mesh topology, it supports a short range.

Applications of 6LoWPAN:
1. It is a wireless sensor network.
2. It is used in home-automation,
3. It is used in smart agricultural techniques, and industrial monitoring.

Security and Interoperability with 6LoWPAN:
 Security: 6LoWPAN security is ensured by the AES algorithm,

which is a link layer security, and the transport layer security
mechanisms are included as well.

https://www.geeksforgeeks.org/what-is-wi-fiwireless-fidelity/
https://www.geeksforgeeks.org/advanced-encryption-standard-aes/

P.HARI KRISHNA

 Interoperability: 6LoWPAN is able to operate with other wireless
devices as well which makes it interoperable in a network.

RPL (IPv6 Routing protocol):
RPL stands for Routing Protocol for Low Power and Lossy
Networks for heterogeneous traffic networks. It is a routing protocol for
Wireless Networks. This protocol is based on the same standard as by
Zigbee and 6 Lowpan is IEEE 802.15.4 It holds both many-to-one and
one-to-one communication.
It is a Distance Vector Routing Protocol that creates a tree-like
routing topology called the Destination Oriented Directed Acyclic Graph
(DODAG), rooted towards one or more nodes called the root node or
sink node.
The Directed Acyclic Graphs (DAGs) are created based on user-
specified specific Objective Function (OF). The OF defines the method
to find the best-optimized route among the number of sensor devices.

The IETF chartered the ROLL (Routing Over Low power and Lossy

networks) working group to evaluate all three routing protocols and

determine the needs and requirements for developing a routing

solution for IP smart objects. After the study of various use cases and a

survey of existing protocols, the consensus was that a new routing

protocol should be developed for IP smart objects, given the

characteristics and requirements of the constrained network. This new

Distance Vector Routing Protocol was named the IPv6 Routing

Protocol for Low power and Lossy networks(RPL). The RPL

specification was published as RFC 6550 by the ROLL working group.

https://www.geeksforgeeks.org/distance-vector-routing-dvr-protocol
https://www.geeksforgeeks.org/clone-directed-acyclic-graph

P.HARI KRISHNA

In an RPL Network, each node acts as a router and becomes part of a
mesh network. Routing is performed at the IP Layer. Each node
examines every received IPv6 packet and determines the next-hop
destination based on the information contained in the IPv6 header. No
information from the MAC layer header is needed to perform the next
determination.

Modes of RPL:

This protocol defines two modes:
1. Storing mode: All modes contain the entire routing table of the RPL
domain. Every node knows how to reach every other node directly.
2. Non-Storing mode: Only the border router(s) of the RPL domain
contain(s) the full routing table. All other nodes in the domain maintain
their list of parents only and use this as a list of default routes towards
the border router. The abbreviated routing table saves memory space
and CPU. When communicating in non-storing mode, a node always
forwards its packet to the border router, which knows how to ultimately
reach the final destination.
RPL is based on the concept of a Directed Acyclic Graph (DAG). A
DAG is Directed Graph where no cycle exists. This means that from
any vertex or point in the graph,

we cannot follow an edge or a line back to this same point. All of the
edges are arranged in a path oriented toward and terminating at one or
more root nodes.

A basic RPL process involves building a Destination Oriented Directed
Acyclic Graph (DODAG). A DODAG is a DAG rooted in one
destination. In RPL this destination occurs at a border router known as
the DODAG root. In a DODAG, three parents maximum are
maintained by each node that provides a path to the root. Typically one
of these parents is the preferred parent, which means it is the preferred
next hop for upward roots towards the root. The routing graph created
by the set of DODAG parents across all nodes defines the full set of
upwards roots. RPL protocol information should ensure that routes are
loop-free by disallowing nodes from selected DODAG parents
positioned further away from a border router.

P.HARI KRISHNA

Implementation of RPL Protocol:

The RPL protocol is using the Contiki Operating system. This

Operating System majorly focuses on IoT devices, more

specifically Low Power Wireless IoT devices. It is an Open source

Model and was first bought into the picture by Adam Dunkels.

The RPL protocol mostly occurs in wireless sensors and networks. Other similar

Operating Systems include T-Kernel, EyeOS, LiteOS, etc.

CoAP Protocol:

As said before CoAP is an IoT protocol. CoAP stands for Constrained Application

Protocol and it is defined in RFC 7252. CoAP is a simple protocol with low overhead

specifically designed for constrained devices (such as microcontrollers) and

constrained networks. This protocol is used in M2M data exchange and it is very

similar to HTTP even if there are important differences that we will cover laters.

The main features of CoAP protocols are:

 Web protocol used in M2M with constrained requirements

 Asynchronous message exchange

 Low overhead and very simple to parse

 URI and content-type support

 Proxy and caching capabilities

As you may notice, some features are very similar to HTTP even if CoAP must not be

considered a compressed HTTP protocol because CoAP is specifically designed for

IoT and in more details for M2M so it is very optimized for this task.

From the abstraction protocol layer, CoAP can be represented as:

https://tools.ietf.org/html/rfc7252

P.HARI KRISHNA

As you can see there are two different layers that make CoAp protocol: Messages

and Request/Response. The Messages layer deals with UDP and with asynchronous

messages. The Request/Response layer manages request/response interaction based

on request/response messages.

CoAP supports four different message types:

 Confirmable

 Non-confirmable

 Acknowledgment

 Reset

Before going deeper into the CoAp protocol structure is useful to define some terms

that we will use later:

Endpoint: An entity that participates in the CoAP protocol. Usually, an Endpoint is

identified with a host

Sender: The entity that sends a message

Recipient: The destination of a message

Client: The entity that sends a request and the destination of the response

Server: The entity that receives a request from a client and sends back a response to

the client

CoAP Messages Model

https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-stack-300x262.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-stack-300x262.png

P.HARI KRISHNA

This is the lowest layer of CoAP. This layer deals with UDP exchanging messages

between endpoints. Each CoAP message has a unique id, this is useful to detect

message duplicates. A CoAP message is built by these parts:

 a binary header

 a compact options

 payload

Later, we will describe the message format in more details.

As said before, the CoAP protocol uses two kind of messages:

 Confirmable message

 Non-confirmable message

A confirmable message is a reliable message. When exchanging messages between

two endpoints, these messages can be reliable. In CoAP a reliable message is

obtained using a Confirmable message (CON). Using this kind of message, the client

can be sure that the message will arrive at the server. A Confirmable message is sent

again and again until the other party sends an acknowledge message (ACK). The

ACK message contains the same ID of the confirmable message (CON).

The picture below shows the message exchange process:

P.HARI KRISHNA

If the server has troubles managing the incoming request it can send back a Rest

message (RST) instead of the Acknowledge message (ACK):

https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-ack.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-ack.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-ack.png

P.HARI KRISHNA

The other message category is the Non-confirmable (NON) messages. These are

messages that don’t require an Acknowledge by the server. They are unreliable
messages or in other words messages that do not contain critical information that

must be delivered to the server. To this category belongs messages that contain

values read from sensors.

Even if these messages are unreliable, they have a unique ID.

https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-rst.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-rst.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-rst.png

P.HARI KRISHNA

CoAp Request/Response Model

The CoAP Request/Response is the second layer in the CoAP abstraction layer. The

request is sent using a Confirmable (CON) or Non-Confirmable (NON) message.

There are several scenarios depending on if the server can answer immediately to

the client request or the answer if not available:

If the server can answer immediately to the client request then if the request is

carried using a Confirmable message (CON) then the server sends back to the client

an Acknowledge message containing the response or the error code:

https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-non.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-non.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-messages-non.png

P.HARI KRISHNA

As you can notice in the CoAP message there is a Token. The Token is different from

the Message ID and it is used to match the request and the response.

If the server can’t answer to the request coming from the client immediately, then it

sends an Acknowledge message with an empty response. As soon as the response is

available then the server sends a new Confirmable message to the client containing

the response. At this point the client sends back an Acknowledge message:

https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con.png

P.HARI KRISHNA

If the request coming from the client is carried using a NON-confirmable message

then the server answer using a NON-confirmable message.

CoAp Message Format

This paragraph covers the CoAP Message format. By now we have discussed

different kinds of messages exchanged between the client and the server, now it is

time to analyze the message format. The constrained application protocol is meat for

constrained environments and for this reason, it uses compact messages. To avoid

https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con-async.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con-async.png
https://www.javacodegeeks.com/wp-content/uploads/2018/11/request-ack-con-async.png

P.HARI KRISHNA

fragmentation, a message occupies the data section of a UDP datagram. A message

is made by several parts:

Where:

Ver: It is a 2 bit unsigned integer indicating the version

T: it is a 2 bit unsigned integer indicating the message type: 0 confirmable, 1 non-

confirmable

TKL: Token Length is the token 4 bit length

Code: It is the code response (8 bit length)

Message ID: It is the message ID expressed with 16 bit

and so on.

More useful resources:

 MQTT protocol tutorial

 IoT protocols overview

CoAP security aspects

One important aspect when dealing with IoT protocols is the security aspects. As

stated before, CoAP uses UDP to transport information. CoAP relies on UDP security

aspects to protect the information. As HTTP uses TLS over TCP, CoAP uses Datagram

TLS over UDP. DTLS supports RSA, AES and so on. Anyway, we should consider that

in some constrained devices some of DTLS cipher suits may not be available. It is

https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-message-format.png
https://www.survivingwithandroid.com/2016/10/mqtt-protocol-tutorial.html
https://www.survivingwithandroid.com/2016/08/iot-protocols-list.html
https://www.javacodegeeks.com/wp-content/uploads/2018/11/coap-message-format.png

P.HARI KRISHNA

important to notice that some cipher suites introduces some complexity and

constrained devices may not have resources enough to manage it.

CoAP vs MQTT

An important aspect to cover is the main differences between CoAP and MQTT. As

you may know MQTT is another protocol widely used in IoT. There are several

differences between these two protocols. The first aspect to notice is the different

paradigm used. MQTT uses a publisher-subscriber while CoAP uses a request-

response paradigm. MQTT uses a central broker to dispatch messages coming from

the publisher to the clients. CoAP is essentially a one-to-one protocol very similar to

the HTTP protocol. Moreover, MQTT is an event oriented protocol while CoAP is

more suitable for state transfer.

 Message Queue Telemetry Transport Protocol (MQTT):

MQTT is simple, lightweight messaging protocol used to establish
communication between multiple devices. It is TCP-based protocol relying on
the publish-subscribe model. This communication protocol is suitable for
transmitting data between resource-constrained devices having low bandwidth
and low power requirements. Hence this messaging protocol is widely used
for communication in IoT Framework.

https://www.javacodegeeks.com/wp-content/uploads/2018/11/secured-coap-243x300.png
https://www.survivingwithandroid.com/2016/10/mqtt-protocol-tutorial.html
https://www.geeksforgeeks.org/internet-things-iot-2/amp/
https://www.javacodegeeks.com/wp-content/uploads/2018/11/secured-coap-243x300.png

P.HARI KRISHNA

Publish-Subscribe Model :
This model involves multiple clients interacting with each other, without having
any direct connection established between them. All clients communicate with
other clients only via third party known as Broker.

MQTT Client and Broker :
Clients publish messages on different topics to broker. The broker is the
central server that receives these messages and filters them based on their
topics. It then sends these messages to respective clients that have
subscribed to those different topics.

Hence client that has subscribed to a specific topic receives all messages
published on that topic.

Figure – Publish-Subscribe Model

Here the broker is central hub that receives messages, filters them, and
distributes them to appropriate clients, such that both message publishers, as
well as subscribers, are clients.

P.HARI KRISHNA

Advantages :

1. Easy Scalability –
This model is not restricted to one-to-one communication between clients.
Although the publisher client sends a single message on specific topic,
broker sends multiple messages to all different clients subscribed to that
topic. Similarly, messages sent by multiple such publisher clients on multiple
different topics will be sent to all multiple clients subscribed to those topics.
Hence one-to-many, many-to-one, as well as many-to-many communication
is possible using this model. Also, clients can publish data and at the same
time receive data due to this two-way communication protocol. Hence
MQTT is considered to be bi-directional protocol. The default unencrypted
MQTT port used for data transmission is 1883. The encrypted port for
secure transmission is 8883.

2. Eliminates insecure connections –
In a complex system where multiple devices are connected with each other,
each device not only has to manage its connections with other devices but
also has to ensure that these connections are secure. But in the publish-
subscribe model, the broker becomes central server managing all security
aspects. It is responsible for the authentication and authorization of all
connected clients.

3. Lightweight Communication –
Data transmission is quick, efficient, and lightweight because MQTT
messages have small code footprint. These control messages have a fixed
header of size 2 bytes and payload message up to size 256 megabytes.

Topics :
In MQTT, topic is UTF-8 string that the broker uses to filter messages for each
individual connected client. Each topic consists of one or more different topic
levels. Each topic level is separated by forward slash also called topic level
separator. Both topics and levels are case-sensitive.

Example of topic –

home/kitchen/table

Here, “home”, “kitchen” and “table” are different levels of topic.

P.HARI KRISHNA

Wildcard is an additional feature used in MQTT to make topics and their levels
more flexible and user-friendly.

MQTT Topics include two types of wildcards:

1. Single Level: “+”
Single-level wildcard represented by “+” symbol can replace single level in
topic.

Example –
If the client wants information about all tables present inside the house, it will
subscribe to the topic :

home/+/table

Hence any information published related to tables, inside the kitchen, living
room, bedroom, etc, can be obtained on this topic.

Figure – Single-Level Topics in MQTT

2. Multi-Level: “#”
Multi-level wildcard represented by “#” symbol can replace multiple levels in
topic.

Example –
If a client wants information about all objects present inside the kitchen, living
room, bedroom, or any other room on ground floor, it will subscribe to topic:

P.HARI KRISHNA

home/groundfloor/#

Hence any information published on topics related to kitchen items, bedroom
items, living room items can be obtained on this topic. Information up to
multiple levels can be obtained in this case.

Overview of IoT Framework

IoT (Internet of Things) is a network of devices which are connected to the internet for

transferring and sensing the data without much human intervention, the framework

used to this is termed as the IoT framework, this framework consists all the required

capabilities for the cloud support and other needs which is needed to satisfy the IoT

technology, few of the common IoT frameworks that are used frequently are KAA IoT,

P.HARI KRISHNA

Cisco IoT Cloud Connect, ZETTA IoT, SAP IoT, IBM Watson, Hewlett Packard Enterprise,

etc

List of IoT Framework
Now we will discuss the IoT Framework one by one

1. KAA IoT
Kaa IoT is one of the most effective and rich Open Source Internet of Things Cloud

Platforms, where anyone can freely implement their smart product concepts. You can

manage an N number of devices connected to each other with cross-device

interoperability on this platform. You can monitor your machine in actual time by

providing and configuring remote devices. Kaa enables information exchange between

linked devices, the IoT Cloud, information and visualization systems, as well as other

elements of IoT Ecosystems

2. Cisco IoT Cloud Connect
Cisco IoT Cloud Connect provides robust, automated, and highly secure connectivity for

the enterprise. IoT data management is done by the Cisco Kinetic IoT platform to

extract, move and compute the data. As Cisco is very famous for its security services, it

protects IoT deployment against threats with a secure IoT architecture.

3. ZETTA IoT

https://www.educba.com/iot-architecture/

P.HARI KRISHNA

Zetta is nothing but a server-oriented platform developed based on the REST, NodeJS,

and the Siren hypermedia-API-strip flow-based reactive programming philosophy. After

being abstracted as REST APIs they are connected with cloud services. These internet

services include tools for visualizing machine analytics and support such as Splunk. It

builds a gero-distributed network through connectivity with systems like Heroku to

endpoints like Arduino and Linux hackers.

4. Salesforce IoT
Salesforce is power by thunder. Thunder allows companies to unlock earlier unseen

ideas and allows anyone to take proactive, personalized activities from any device to

bring their clients closer than ever. More than 150,000 clients worldwide were held by

Salesforce. Salesforce has a 19.7% market share in the globe of CRM. SAP (12.%1),

Microsoft (6.2%), Oracle (9.1%) are far behind its nearest rivals. Many businesses now

develop their apps or migrate to Salesforce on the Salesforce platform. This has raised

demand for developers and administrators from Salesforce.

5. DeviceHive IoT
DeviceHive is another rich IoT open-source platform that is distributed under the

Apache 2.0 license and can be used and changed free of charge. It provides deployment

options for Docker and Kubernetes and can be downloaded and used both by public

and personal cloud. You can run batch analysis and machine learning above and beyond

https://www.educba.com/careers-in-salesforce/
https://www.educba.com/kubernetes-vs-docker/

P.HARI KRISHNA

your device information. DeviceHive supports several libraries, including Android and

iOS.

6. Oracle IoT
We surely include Oracle, a worldwide software company known to offer its top level of

solutions in database management, and business software, as we compare the top

Internet-of-Things platforms. Oracle offers its flexible environment outstanding

company possibilities to create company applications. Oracle supports the processing

and builds large-scale IoT networks with very wide data. The use of advanced security

systems to protect IoT systems against external threats is another worth mentioning.

Since these systems usually have different devices, some of which have no security tool,

it is not sufficiently justifiable to implement centralized security measures.

7. SAP IoT
The SAP Internet of Things cloud platform has everything you need to build and handle

an IoT application. The SAP platform provides a convenient environment to remotely

manage and monitor all connected devices of your IoT system. In the SAP Platform a

remote-devices we can connect directly or through cloud service. Obviously, SAP can

use IoT information to create machine learning and artificial intelligence applications

while maintaining recent technological trends.

8. Microsoft Azure IoT

https://www.educba.com/machine-learning-vs-artificial-intelligence/

P.HARI KRISHNA

Without the Microsoft Azure solution, a cloud service giant with AWS and Google

Cloud platform, the comparison of our IoT platform will be not complete. The

Microsoft Azure IoT Suite provides preconfigured solutions and the ability to personalize

and develop new solutions to meet the project requirements. The strongest safety

mechanisms, superb scalability and simple integration with your current or future

systems are achieved through Microsoft Azure Internet of thing Suite.

9. Google Cloud Platform – IoT framework
Things can be done by Google. Google Cloud is one of the best IoT systems available

today with its end-to-end platform. Google stands out from the others because it can

process the large quantity of information using Cloud IoT Core. Due to Google’s Cloud

Data Studio and Big Query you get advanced analysis. With the help of Google Cloud

Platform, you can accelerate your business and with that, you can speed up your

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis

Karnouskos, David Boyle, ― From Machine-to-Machine to the Internet

of Things: Introduction to a New Age of Intelligence‖, 1st
 Edition,

Academic Press, 2014.

2. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On

Approach, Universities Press, 2014.

3. The Internet of Things, Enabling technologies and use cases – Pethuru

Raj, Anupama C. Raman, CRC Press.

4. Francis daCosta, ―Rethinking the Internet of Things: A Scalable

Approach to Connecting Everything‖, 1st Edition, Apress Publications,
2013

5. Cuno Pfister, Getting Started with the Internet of Things, O‟Reilly Media,

2011, ISBN: 9781- 4493- 9357-1

https://www.educba.com/google-cloud-vs-aws/
https://www.educba.com/google-cloud-vs-aws/
https://www.educba.com/google-cloud-platform/
https://www.educba.com/google-cloud-platform/

P.HARI KRISHNA

6. DGCA RPAS Guidance Manual, Revision 3 – 2020

7. Building Your Own Drones: A Beginners' Guide to Drones, UAVs,

and ROVs, John Baichtal

P.HARI KRISHNA

Unit-4

What is The Internet of Things or “IoT”?
In the most basic of terms, the Internet of things is just that; it’s every physical device that is

connected to the internet. If it has a chip or is considered “smart,” that item is part of the internet of

things, otherwise known as the IoT. The IoT encompasses all smart devices, and we do mean ALL.

Everything from hairbrushes, smartwatches, kitchen appliances, Industrial sorters, and weather vane

data collectors; if it’s connected to the World Wide Web, it’s part of the IoT.

The real beauty of the Internet of Things is it allows devices to communicate and collaborate over

huge distances. Gone are the days when each factory, office, and organization had to function within

a closed system and physically carry information back and forth. Organizations across the globe can

now have their devices updated in real-time.

Three Main Areas of IoT Usage

All physical devices connected to the internet are the definition of the Internet of Things in the

broadest sense. But it’s beginning to have a secondary meaning when it comes to systems that are

interconnected via the internet and depend on the internet to wirelessly connect to each other within a

system or with certain parameters. These systems could be on a small or large scale. There are three

areas of IoT technology where the application of The Internet of Things has been widely used.

 Consumer

If you think of your home as the parameter, in this case, every smart device you own is part of your

own Internet of Things. This includes everything from wearable devices, smartphones, smart toasters,

tablets, televisions, blow dryers, smart blankets, baby monitors, kitchen appliances, and children’s
toys. If it’s in your home, connected to your internet, and powered on, it’s part of your very own IoT.

 Enterprise

On the other end of the scale, a large company’s Internet of Things could refer to all of its

manufacturing equipment, computers, servers, alarm systems, safety systems, and data collectors

across all of its multiple factories.

Public or Government Usage

Government or Public usage of IoT technology has always made people squirm from an ethical

standpoint, but the actual applications are far from nefarious and typically streamline systems that

have been hopelessly complicated up until IoT became widely available.

https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot

P.HARI KRISHNA

Similarly, city, state, and federal governments have used IoT technology to regulate things like gas

emissions, water levels in drought-prone areas, sewer effectiveness, and water quality. Cities are now

able to detect water contamination much faster than in previous decades, saving many citizens from

contamination.

IoT Technologies and Cybersecurity

Though the areas mentioned above are some of the largest applications of IoT technology; there are

hundreds of other areas where the internet of things is invaluable. Cybersecurity industries have also

found applications, and pitfalls, in the use of the Internet of Things.

 Lots of Data Transfer, Lots of Vulnerability

The Internet of Things was a world-changing invention; however, since its creation in 1999, the IoT

has posed a significant security and privacy issue. Every device on the Internet of Things can become

a potential security issue. Smart devices are designed to continually gather data and communicate

back and forth with other devices. There are two main areas where the cybersecurity threat in IoT

technologies is especially apparent.

 Consumer

Let’s say the toothbrush tracks your brushing habits, how long you brush, when, and where. The

toothbrush records all that data and then communicates it through your wireless internet router and

your internet server, which then relays it to multiple points, including a satellite (most likely).

Enterprise/Public

When IoT technology is unprotected on the industry or public scale, the use of IoT technology

becomes a serious security issue waiting to happen. Cyberthreat hackers can potentially hijack

systems, devices, and machines or shut down public works and demand ransoms. They could

infiltrate government offices and mine sensitive data, leading to identity theft and possible threats to

national security. Enterprise and Public works attacks are only projected to go up.

Telnet Remote Access Protocol

Unfortunately, the cybersecurity threat to enterprise and public works isn’t just theoretical. In the first

half of 2021 alone, 1.51 billion IoT data breaches occurred. All of these attacks used the telnet remote

access protocol. This protocol is the backbone of IoT technologies and improves upon HTTP and FTP

need for end-user approval for data transfer. Telnet automates communications and allows systems to

communicate back and forth as needed. It’s an extremely useful protocol and widely used. There has

been a significant increase in IoT cyberattacks using Telnet remote access protocol during the last

five years, peaking during the wind-down of the Covid-19 pandemic. This coincides with the ever-

increasing amount of businesses and organizations moving to fully remote or hybrid office settings.

https://www.visionofhumanity.org/what-is-the-internet-of-things/#%3A~%3Atext%3DThe%20term%20%27Internet%20of%20Things%2Cthem%20through%20a%20supply%20chain
https://www.iotworldtoday.com/2021/09/17/iot-cyberattacks-escalate-in-2021-according-to-kaspersky/
https://www.techtarget.com/searchnetworking/definition/Telnet#%3A~%3Atext%3DTelnet%20is%20a%20network%20protocol%2Cprotocol%20for%20creating%20remote%20sessions
https://www.techtarget.com/searchnetworking/definition/Telnet#%3A~%3Atext%3DTelnet%20is%20a%20network%20protocol%2Cprotocol%20for%20creating%20remote%20sessions

P.HARI KRISHNA

Cybersecurity and IoT Device Discovery

While the vulnerabilities of IoT technologies sound terrifying, there is good news. Cybersecurity

companies have been working to mitigate these threats for decades and have even used the Internet of

Things framework to create a secure network.

IoT device discovery is the most efficient way to protect IoT technologies from being breached by

cyberattacks. The practice of IoT device discovery provides the framework that allows more specific

security protocols to function. IoT device discovery is an automated system to onboard, vet, and

analyze each endpoint device that connects to it. Information technology departments can then

specify what endpoint devices are part of their IoT network and which are potential threats. This

allows IT and security departments to see what devices interact with their networks by placing

automated gatekeepers when unknown devices try to sign in to the network.

 IoT Device Discovery and Industries/Public Works

When it comes to many types of industry and public works, IoT device discovery is pretty

straightforward. These companies, organizations, and government entities are not interacting with

consumers and therefore don’t have a constant influx of new devices trying to onboard to their
network.

The IT department can set strict parameters around its network that only allows for certain types of

devices with access tags attached to their IP address. It can also keep track of and monitor the number

and type of devices in its network. Only pre-approved devices are allowed onto the network. New

devices have to be registered and assigned access tags. It’s very similar to having a physical key card

to get into your office building, but the key card is a digital code attached to your device.

Simple IoT Device Discovery protocols also come in handy in industry settings where only so many

devices should be active on the network. If a new device appears, IoT device discovery flags the

device, can quarantine it, and instantly alert their cybersecurity teams.

 IoT Device Discovery and Consumer Interaction

IoT device discovery becomes much more complicated as soon as consumer interaction is involved.

This pertains to all areas of IoT technological applications like entertainment, research, healthcare,

consumer-facing enterprise, consumer products, and government/public works. In organizations like

this, there are countless end-user devices constantly accessing networks. For example, public Wi-Fi,

smart devices, and GPS systems. When dealing with varying numbers of devices and no stable

parameters, you need a more dynamic version of IoT device discovery software.

 IoTVAS NSE Script

IoTVAS is short for IoT vulnerability assessment solution and is a more advanced form of IoT

device discovery. This system helps enterprises and organizations vet their end-user devices

more thoroughly by analyzing device inventories. IoTVAS then reads the ‘fingerprint’ of the

P.HARI KRISHNA

devices by identifying the device by using one of several device features. These features can

include the HTTP and HTTPS services or raw response of the device web server, a Telnet

service banner, or an optional MAC (Media Access Control) on the device’s network
interface.

The Internet of Things: Made Safe Through IoT Devices Discovery

As the world of cyberthreat and data breaches evolves, so will cybersecurity industry professionals

who strive to mitigate and repel cyber attacks. Since 1999, the Internet of Things has been bringing

devices together, pushing enterprises and STEM pursuits to places humanity could only have dreamt

of in the not-so-distant past. As IoT technologies take their next steps into future applications and

industries, the IoT Device Discovery protocol will continue to shield it from potential threats.

Why use an IoT platform?
An IoT platform is critical to building an IoT ecosystem, it simplifies IoT, making it more

secure, regardless of where you are on your IoT journey to build smart, connected products.
IoT is a complex ecosystem that spans a network of devices and software applications touching multiple parts

of the physical and digital landscapes. It is rare for an organization to maintain in-house expertise across all the

relevant domains to build a complete set of IoT capabilities. As a result, in the “buy versus build” debate over
IoT capabilities, most enterprises see value in buying an IoT platform to provide an out-of-the-box set of key

capabilities, on top of which the business can build differentiating logic and applications.

IoT platform capabilities

At a basic level, IoT platforms should allow you to connect and manage your devices with ease, offer
application enablement and integration tools, and analyze your IoT data for actionable insights.

IoT connectivity
Connection is at the heart of IoT: devices are connected using protocols to share information and

enable new insights. An IoT platform provides out-of-the-box connectivity to many device types and

protocols.

For devices that do not support standard IoT protocols, an IoT platform is especially valuable if it

offers a software development kit (SDK) to integrate devices with the rest of your ecosystem.

Leading IoT platforms enable connectivity and integration using publicly documented APIs.

IoT device lifecycle management

An IoT platform allows you to manage the lifecycle of IoT devices and sensors—from planning and

onboarding, monitoring and maintenance, through to retirement—remotely from a centralized

location. Robust device lifecycle management processes are often neglected in early-stage IoT

projects, when the focus is on building and launching a solution, but they are fundamental to scale a

rollout and maintain reliable performance.

Enterprise IoT users need to update and communicate with devices efficiently in a controlled, secured

and phased way. One example of this is the bulk registration of devices. Another is updating software

and firmware to maintain performance, uptime and security. An IoT platform should allow you to

access and monitor critical information easily, such as system resource information, alarms and

errors, cellular signal strength or GPS location.

 Scalable IoT data management
IoT data is the source of insights. An IoT platform handles data logging, storing, and processing, and
manages data transactions. IoT data comes from many devices and locations, and spans many data

https://www.randori.com/resources/
https://www.softwareag.com/en_corporate/platform/iot/smart-iot-connected-products.html
https://www.softwareag.com/en_corporate/platform/iot/iot-device-management.html
https://www.softwareag.com/en_corporate/platform/iot/iot-connected-devices.html
https://www.softwareag.com/en_corporate/platform/iot/iot-device-management.html

P.HARI KRISHNA

types. IoT platforms can orchestrate action based on real-time data, and coordinate the long-term

storage and analysis of large data sets to power analytics.

IoT integration

An IoT platform needs to be much more than a passive destination for data from IoT sensors. IoT

needs integration to fill its promise, as integrating IoT data with other systems builds value

exponentially by helping you use insights from IoT in your existing systems and processes to make

better business decisions.

IoT application development
Building and maintaining IoT applications involves technical expertise, time and resources. An IoT

platform with application enablement features can help remove the resource technical hurdles to

building and deploying applications.

Many businesses see value in enabling their IoT users to develop custom applications with an

application builder—or by extending the platform’s default applications to meet their specific

business needs and requirements.

IoT data analytics

The value of IoT is not in the fleet of devices and sensors an organization is monitoring, but in the

accurate and relevant data derived from these IoT devices and sensors. And the value of that data

comes from analytics.

An IoT platform with powerful analytic capabilities enables you to access this key data and discover

insights. You can create dashboards that pull together data, so you have a single view of the status of

all devices and how your project’s performing.
An IoT platform with self-service analytics puts key data into the hands of many. The more widely
accessible your insights, the greater their value across the entire enterprise.

Registering a IOT device
In order for an appliance or other asset to become "smart" and connect to an IoT backend, it must

have sensors that can take device readings and send that information to the cloud. We call these

sensors IoT devices.

Field technicians might need to interact with IoT devices in several ways:

1. If a field technician is installing an entirely new asset like an air conditioner, and that air

conditioner has an embedded IoT device or devices, they must register that device with the

appropriate IoT backend in order for it to start working.

2. Field technicians might need to service an existing asset, and then install a new IoT device that

will start sending signals to an IoT backend.

3. While onsite, a field technician might need to interact with and receive data from existing IoT

devices in order to better troubleshoot their maintenance or repairs.

In this article, we’re going to look at a few ways to register a new IoT device in Connected Field
Service, and make sure that IoT device is associated with the correct customer asset in Field Service.

While you can use custom IoT providers with Connected Field Service, we're going to use Azure IoT

Hub.

Connected Field Service must be connected to Azure IoT Hub or another custom IoT provider. For

more information, see the article on getting set up with Azure IoT Hub, or the article on setting up

custom IoT providers.

https://www.softwareag.com/en_corporate/resources/asset/wp/iot-and-analytics/why-iot-needs-integration-white-paper.html
https://www.softwareag.com/en_corporate/resources/asset/wp/iot-and-analytics/why-iot-needs-integration-white-paper.html
https://www.softwareag.com/en_corporate/platform/iot/iot-application-enablement.html
https://learn.microsoft.com/en-us/dynamics365/field-service/cfs-custom-iot-provider
https://learn.microsoft.com/en-us/dynamics365/field-service/installation-setup-iothub
https://learn.microsoft.com/en-us/dynamics365/field-service/cfs-custom-iot-provider
https://learn.microsoft.com/en-us/dynamics365/field-service/cfs-custom-iot-provider

P.HARI KRISHNA

Create and register an IoT device from IoT Hub

First, let's look at how to register a new device from Azure IoT Hub.

Go to Azure IoT Hub and select an environment.

From the environment, go to IoT devices > +New.

Give the device a descriptive ID (in our example, we name it "HVACtemp1") and Save.

P.HARI KRISHNA

Head over to Dynamics 365 Field Service, then to Assets > IoT Devices, and select Import Devices.

P.HARI KRISHNA

Any new devices registered back in Azure IoT Hub will now appear in the list of active IoT devices

in Field Service.

We’ll still need to connect this new device to the relevant customer asset, which will we do later in

this article.

Create and register an IoT device from Field Service

You can also create an IoT device directly in Field Service.

From Field Service > Assets > IoT Devices > +New. Give the IoT device a descriptive name,

then Save. Finally, select Register in the top ribbon.

Selecting Register sends the new device information back to Azure IoT Hub, which the system tells

you with a message seen in the following screenshot.

P.HARI KRISHNA

Once the device is synced back to Azure IoT Hub, a device ID will be generated and synced back to

the IoT device in Field Service.

P.HARI KRISHNA

Back in Azure IoT Hub, we now see the IoT device we created in Field Service, with its new device

ID.

Connect to asset

After we've created the IoT device record, we'll need to associate it with a new or existing customer

asset. For instance: in our example, we have a new IoT device sensor that has been installed in an air

conditioning unit.

In Field Service, go to Assets and find the customer asset you need to associate with the new IoT

device.

From the customer asset, select Connect Device in the top ribbon, and look up the newly created IoT

device.

P.HARI KRISHNA

Once the IoT device has been associated with the asset, a new section will appear called Connected

Devices, where you can see information about the new IoT device.

P.HARI KRISHNA

Note
 Multiple IoT devices can be associated with a single customer asset. On the asset, go

to Related > Connections to associate additional IoT devices.

 When you're associating a device with an asset, you can set a primary device ID for the asset. If you

associate multiple devices with the asset, the primary device ID for the asset won't be displayed in the

form; however, a device ID link'll still exist in the background. Also, the first or the oldest device that's

associated with the asset will be the primary device ID for the asset. If you delete the link to the primary

device ID, then the next oldest-connected device ID will be set as the primary ID.

Registration error

When a device does not register, you'll see an error in the Registration Status field of the asset

record. For assets with multiple devices, device status will show the error message for each device.

This error may occur if Dynamics 365 is not connected to Azure or if Azure is offline.

Additional notes

P.HARI KRISHNA

Use the Check IoT Setup ribbon button to check for information about the IoT

setup such as, is IoT deployed, are there any devices in the environment.

Manually doing this refresh may display more CFS ribbon item

Deregister a device

To avoid end-user disruption, device deregistration in Windows Autopatch only deletes the Windows

Autopatch device record itself. Device deregistration can't delete Microsoft Intune and/or the Azure

Active Directory device records. Microsoft assumes you'll keep managing those devices yourself in

some capacity.

To deregister a device:

1. Sign into the Intune admin center.
2. Select Windows Autopatch in the left navigation menu.

3. Select Devices.

4. In either Ready or Not ready tab, select the device(s) you want to deregister.
5. Once a device or multiple devices are selected, select Device actions, then select Deregister device.

Warning

Removing devices from the Windows Autopatch Device Registration Azure AD group doesn't

deregister devices from the Windows Autopatch service.

Excluded devices

When you deregister a device from the Windows Autopatch service, the device is flagged as

"excluded" so Windows Autopatch doesn't try to reregister the device into the service again, since the

deregistration command doesn't trigger device membership removal from the Windows Autopatch

Device Registration Azure Active Directory group.

Important

The Azure AD team doesn't recommend appending query statements to remove specific device from

a dynamic query due to dynamic query performance issues.

If you want to reregister a device that was previously deregistered from Windows Autopatch, you

must submit a support request with the Windows Autopatch Service Engineering Team to request the

removal of the "excluded" flag set during the deregistration process. After the Windows Autopatch

Service Engineering Team removes the flag, you can reregister a device or a group of devices.

https://go.microsoft.com/fwlink/?linkid=2109431
https://learn.microsoft.com/en-us/windows/deployment/windows-autopatch/operate/windows-autopatch-support-request

P.HARI KRISHNA

Hiding unregistered devices

You can hide unregistered devices you don't expect to be remediated anytime soon.

To hide unregistered devices:

1. Sign into the Intune admin center.

2. Select Windows Autopatch in the left navigation menu.

3. Select Devices.
4. In the Not ready tab, select an unregistered device or a group of unregistered devices you want to hide

then select Status == All.

5. Unselect the Registration failed status checkbox from the list.

 What's a web server and HTTP

Any computer that can implement http or https is able to play the role of a web server. Http is a protocol, a way of

communication which supplies web pages. It is pretty widely used and easy to implement. Through http you can transfer

html and create simple user interfaces, it can implement Java Script and make more complicated web pages and it is available

in most of the browsers. One of the great qualities of this protocol is that it replaced complicated and heavy displays with

user friendly web pages.

How does it work? The browser sends a request to the server who searches the demanded page and returns it to the browser

for the user. The request will consist of information about the kind of browser that is used, about the computer or about the

document requested. It will have a method, a URL, a query string and the upload body in case you want data to be sent to

the server.

The response will include the status, which tells the browser if the page was found or not (the errors among the 400s are

about a not found page, 300 are redirections and 200s are confirmations of the page being found).

Https has two important security roles.

 It encripts the data. The request and the response will be both encripted on sending and decripted when read.

 The server is always asked for a certificate of authenticity before it is asked for a page. This prevents against stolen

data through false web pages.

What does a query consist of? It will always look like this: http://address:[port]URL?querystring. The port can be absent,

in which case it will be 80 for http and 443 for https. It has to be specified if it is not one the two. Concerning the URL,

when it is not written, the default will be /. The available methods in http are: get, post, put and delete. The main ones being

the first two.

 Get method needs no upload body. It will only ask for data from the server and send only the headers, the address,

the URL.

https://go.microsoft.com/fwlink/?linkid=2109431
http://address/
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture1.png?id=iot:courses:05

P.HARI KRISHNA

 Post sends important data to the server, which will be uploaded. Post has the role of modifying data on the server.

The response of both these methods is the page and any additional information that was requested.

 Put is similar to post, only that in the semantic way, this method only creates an object on the server.

 Delete also plays a semantic part. It needs no upload body and it delete objects on the server. The same action can

be performed however using get.

On one server there can be more than one websites,which means that, if the host is not specified in the request, the response
may not be the one the browser expects.

Also, the response may have more than text. Any additional feature: images, JavaScript objects and so on will need a new

request, so the process will be slowed down.

 Webservers on gadgets using Wyliodrin

The boards are nonpowerful computers. With wyliodrin there is no need to install any software or make any configuration

on the boards to run a webserver on them.

To create a webserver in wyliodrin you will need a web node. The simplest way to use a web page in this particular way is

to send static files. In the project files, create a new folder static. Everything inside it will be sent back to the browser by

the server, regardless of the fact that they are html, Java Script or CSS files. Images can be added as well, but they will

definitely make the process slower. There are other ways of adding an image. For example, by using a storage system and

including the images from there. This method will solve speed and memory issues.

The web node: The route option is actually the URL. The webserver will be active when it stumbles upon the specified

route. Afterwords you choose the method, and write the port to setup the server. This port will only be used once, in the

beginning.

The payload goes either in the query string for the get method or in the upload data for post. The message is built on this

payload, on two mandatory variables: res which stands for the response and req which is the request. Without the last two,

the server won't be able to provide a response.

The web response node: The message received by this node comes from one web node. For a web response the simplet way

is to make a redirection. Which means, in the redirect field, you can write the path to one of the static files and the browser

will be sent to this page. On top of these, you will need the board's IP address which might not be public unless it is in the

same network with the web server.

https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture4.png?id=iot:courses:05
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture02.png?id=iot:courses:05

P.HARI KRISHNA

As a solution, IOT servers have a public address. The port for these servers can be either 80 for http or 443 for https. The

user accesses the public page, through the IOT server which is connected to Wyliodrin as well as the board. Now the problem

with the board and the web being in the same network is solved as both can communicate with Wyliodrin.

Web templates: Just as for the static files, you will need a templates folder. This time, when you use the node, you don't

need the whole path. You can only write the name of the file in the templates folder. What does the node do? It processes

the response, meaning it loads the values plus the payload in it and sends it back to the browser. The values need to be in

between two sets of curly brackets {{}}. Note that the values won't update unless the page is reloaded.

https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture3.png?id=iot:courses:05
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture5.png?id=iot:courses:05

P.HARI KRISHNA

Web services

A long time ago, the web services were more complicated. Now the application only requests the web server for the data,

and it is the browser's job to rearrange it so that it is in the right format for the application.

How to implement it into a Wyliodrin application? Using a simple web response and web server node, you send a static

page to the user and each time you make a query, instead of a template, you use a web response node and send the payload

to the browser, which can be a number, an object or anything else.

 JQuery

There is a library called JQuery, based on JavaScript, thus available in any browser, which can make function calls to the

server.

Case study: You have the following situation: you change the payload into a variable which stores values from a sensor.

You want this variable to be shown in your web page. Practically, when an API gets called, what you will do, will be to

make a get request to the server using the web address that you want with the URL /sensor. The web page will send values

that you will store in a variable in your html file.

 Web sockets

A web socket is based on the http or https protocol. It builds a connection between the browser and the server, so that either

one can send data. When the browser makes a request, the server recognises the socket and doesn't close the connection.

https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture7.png?id=iot:courses:05
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture6.png?id=iot:courses:05

P.HARI KRISHNA

The two partie send the packages they need to send. If the server does not know how to work with sockets, the socket io

will go back to querying.

 AngularJS

AngularJS is a library through which you can build browser applications. In the next example, every web node will create

a new socket and serve a static web page. If you include in the response a variable, and this variable changes, wyliodrin

controller will be notified every time this kind of novelty appears and AngularJS will replace the old value of the variable

with the new one, creating a dynamic web page.

Introduction to Cloud Storage Models & Communication APIs

In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the rapid development

of associated technologies create a widespread connection of things. This has lead to the production

of large amounts of data, which needs to be stored, processed and accessed. Cloud computing as a

paradigm for bigdata storage and analytics. While IoT is exciting on its own, the real innovation will

https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture02.png?id=iot:courses:05
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture03.png?id=iot:courses:05
https://ocw.cs.pub.ro/courses/_detail/iot2015/courses/picture01.png?id=iot:courses:05

P.HARI KRISHNA

come from combining it with cloud computing. The combination of cloud computing and IoT will

enable new monitoring services and powerful processing of sensory data streams. For example,

sensory data can be uploaded and stored with cloud computing, later to be used intelligently for

smart monitoring and actuation with other smart devices. Ultimately, the goal is to be able to

transform data to insight and drive productive, cost-effective action from those insights. The cloud

effectively serves as the brain to improved decision-making and optimized internet-based

interactions. However, when IoT meets cloud, new challenges arise. There is an urgent need for

novel network architectures that seamlessly integrate them. The critical concerns during integration

are quality of service (QoS) and quality of experience (QoE), as well as data security, privacy and

reliability. The virtual infrastructure for practical mobile computing and interfacing includes

integrating applications, storage devices, monitoring devices, visualization platforms, analytics tools

and client delivery.

Cloud computing offers a practical utility-based model that will enable businesses and users to access

applications on demand anytime and from anywhere.

Deployment models

Deployment in cloud computing comprises four deployment models: private cloud, public cloud, multi

cloud and hybrid cloud.

P.HARI KRISHNA

Cloud storage models

What is Cloud Storage?

Cloud Storage is a mode of computer data storage in which digital data is stored on servers in off-site

locations. The servers are maintained by a third-party provider who is responsible for hosting,

managing, and securing data stored on its infrastructure. The provider ensures that data on its servers

is always accessible via public or private internet connections.

Cloud Storage enables organizations to store, access, and maintain data so that they do not need to

own and operate their own data centers, moving expenses from a capital expenditure model to

operational. Cloud Storage is scalable, allowing organizations to expand or reduce their data footprint

depending on need.

Google Cloud provides a variety of scalable options for organizations to store their data in the cloud.

Learn more about Cloud Storage at Google Cloud.

How does Cloud Storage work?

Cloud Storage uses remote servers to save data, such as files, business data, videos, or images. Users

upload data to servers via an internet connection, where it is saved on a virtual machine on a physical

server. To maintain availability and provide redundancy, cloud providers will often spread data to

multiple virtual machines in data centers located across the world. If storage needs increase, the cloud

provider will spin up more virtual machines to handle the load. Users can access data in Cloud

Storage through an internet connection and software such as web portal, browser, or mobile app via

an application programming interface (API).

Cloud Storage is available in four different models:

Public

Public Cloud Storage is a model where an organization stores data in a service provider’s data centers

that are also utilized by other companies. Data in public Cloud Storage is spread across multiple

regions and is often offered on a subscription or pay-as-you-go basis. Public Cloud Storage is

considered to be “elastic” which means that the data stored can be scaled up or down depending on
the needs of the organization. Public cloud providers typically make data available from any device

such as a smartphone or web portal.

Private

Private Cloud Storage is a model where an organization utilizes its own servers and data centers to

store data within their own network. Alternatively, organizations can deal with cloud service

https://cloud.google.com/storage

P.HARI KRISHNA

providers to provide dedicated servers and private connections that are not shared by any other

organization. Private clouds are typically utilized by organizations that require more control over their

data and have stringent compliance and security requirements.

Hybrid

A hybrid cloud model is a mix of private and public cloud storage models. A hybrid cloud storage

model allows organizations to decide which data it wants to store in which cloud. Sensitive data and

data that must meet strict compliance requirements may be stored in a private cloud while less

sensitive data is stored in the public cloud. A hybrid cloud storage model typically has a layer of

orchestration to integrate between the two clouds. A hybrid cloud offers flexibility and allows

organizations to still scale up with the public cloud if need arises.

Multi cloud

A multi cloud storage model is when an organization sets up more than one cloud model from more

than one cloud service provider (public or private). Organizations might choose a multi cloud model

if one cloud vendor offers certain proprietary apps, an organization requires data to be stored in a

specific country, various teams are trained on different clouds, or the organization needs to serve

different requirements that are not stated in the servicers’ Service Level Agreements. A multi cloud

model offers organizations flexibility and redundancy.

Advantages of Cloud Storage

Total cost of ownership

Cloud Storage enables organizations to move from a capital expenditure to an operational expenditure

model, allowing them to adjust budgets and resources quickly.

Elasticity

Cloud Storage is elastic and scalable, meaning that it can be scaled up (more storage added) or down

(less storage needed) depending on the organization’s needs.

Flexibility

Cloud Storage offers organizations flexibility on how to store and access data, deploy and budget

resources, and architect their IT infrastructure.

P.HARI KRISHNA

Security

Most cloud providers offer robust security, including physical security at data centres and cutting

edge security at the software and application levels. The best cloud providers offer zero trust

architecture, identity and access management, and encryption.

Sustainability

One of the greatest costs when operating on-premises data centres is the overhead of

energy consumption. The best cloud providers operate on sustainable energy through

renewable resources.

Redundancy

Redundancy (replicating data on multiple servers in different locations) is an inherent trait in public

clouds, allowing organizations to recover from disasters while maintaining business continuity.

Disadvantages of Cloud Storage

Compliance

Certain industries such as finance and healthcare have stringent requirements about how data is stored

and accessed. Some public cloud providers offer tools to maintain compliance with applicable rules

and regulations.

Latency

Traffic to and from the cloud can be delayed because of network traffic congestion or slow internet

connections.

Control

Storing data in public clouds relinquishes some control over access and management of that data,

entrusting that the cloud service provider will always be able to make that data available and maintain

its systems and security.

Outages

While public cloud providers aim to ensure continuous availability, outages sometimes do occur,

making stored data unavailable.

https://cloud.google.com/beyondcorp-enterprise
https://cloud.google.com/beyondcorp-enterprise
https://cloud.google.com/iam
https://cloud.google.com/security-key-management
https://cloud.google.com/sustainability
https://cloud.google.com/solutions/risk-and-compliance-as-code/

P.HARI KRISHNA

Communication API’S
A cloud storage API is an application program interface that connects locally-based application to a

cloud-based storage system, so that a user can send data to it and access and work with data stored in

it. To the application, the cloud storage system is just another target device, like tape or disk-based

storage. An application program interface (API) is code that allows two software programs to

communicate with each other. The API defines the correct way for a developer to write a program that

requests services from an operating system (OS) or other application. APIs are implemented by

function calls composed of verbs and nouns. The required syntax is described in the documentation of

the application being called

Three basic types of APIs

APIs take three basic forms: local, web-like and program-like.

1. Local APIs are the origin al form, from which the name came. They offer So r middleware

services to application programs. Microsoft's.NET APIs, the TAPI(TelephonyAPI) for voice

applications, and database access APIs are examples of the local API form.

2. Web APIs are designed to represent widely used resources like HTML pages and are accessed

using a simple HTTP protocol. Any web URL activates a web API. Web APIs are often called

REST (representational state transfer) or RESTful because the publisher of REST interfaces doesn't

save any data internally between requests. As such, requests from many users can be intermingled as

they would be on the internet.

3. Program APIs are based on remote procedure call (RPC) technology that makes a remote

program component appear to be local to the rest of the software. Service oriented architecture

(SOA) APIs, such as Microsoft's WS-series of APIs, are program APIs.

WAMP-Auto Bahn for IoT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket

which provides publish-subscribe and remote procedure call (RPC) messaging patterns.

P.HARI KRISHNA

Transport: Transport is channel that connects two peers.

• Session: Session is a conversation between two peers that runs over a transport.

• Client: Clients are peers that can have one or more roles. In publish-subscribe model client can have

following roles:

– Publisher: Publisher publishes events (including payload) to the topic maintained by the Broker.

– Subscriber: Subscriber subscribes to the topics and receives the events including the

payload. In In RPC model client can have following roles: –

1. Caller: Caller issues calls to the remote procedures along with call arguments. –

2. Callee: Callee

executestheprocedurestowhichthecallsareissuedbythecallerandreturnstheresultsbacktothe caller. •

3. Router: Routers are peers that perform generic call and event routing. In publish-subscribe model

4. Router has the role of a Broker: – Broker: Broker acts as a router and routes messages published

to a topic to all subscribers subscribed to the topic.

In RPC model Router has the role of a Broker:–

1. Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes

results from Callee to Caller.

2. Application Code: Application code runs on the Clients (Publisher, Subscriber, Callee or Caller).

P.HARI KRISHNA

Xively Cloud for IoT

Use of Cloud IoT cloud-based service

• The service provides for the data collection, data points, messages and calculation objects.

• The service also provisions for the generation and communication of alerts, triggers and feeds

to the user.

•A user is an application or service. The user obtains responses or feeds from the cloud service.

Pachube platform: for data capture in real-time over the Internet

• Cosm: a changed domain name, where using a concept of console, one can monitor the feeds

• Xively is the latest domain name.

A commercial PaaS for the IoT/M2M

•A data aggregator and data mining website often integrated into the Web of Things

• An IoT PaaS for services and business services.

Xively PaaS services:

• Data visualization for data of connected sensors to IoT devices.

• Graphical plots of collected data.

• Generates alerts.

• Access to historical data

• Generates feeds which can be real-world objects of own or others

Xively HTTP based APIs

• Easy to implement on device hardware acting as clients to Xively web services

• APIs connect to the webservice and send data.

• APIs provides services for logging, sharing and displaying sensor data of all

Xively Support

• The platform supports the REST, WebSockets and MQTT protocols and connects the devices to

Xively Cloud Services

P.HARI KRISHNA

• Native SDKs for Android, Arduino, ARMmbed, Java, PHP, Ruby, and Python languages

• Developers can use the work flow of prototyping, deployment and management through

the tools provided at Xively

P.HARI KRISHNA

Xively APIs

• Enable interface with Python, HTML5, HTML5 server, tornado

• Interface with WebSocket Server and Web Sockets

• Interface with an RPC (Remote Procedure Call).

XivelyPaaS services

• Enables services

• Business services platform which connects the products, including collaboration products

• Rescue, Bold chat, join.me, and operations to Internet

• Data collection in real-time over Internet

Xively Methods for IoT Devices Data

• Concept of users, feeds, data streams, data points and triggers

• Data feed typically a single location (e.g. a device or devices network),

• Data streams are of individual sensors associated with that location (for example, ambient

lights, temperatures, power consumption).

• Pull or Push (Automatic or Manual Feed)

Xively Data formats and Structures

• Number of data formats and structures enable the interaction, data collection and services

• Support exists for JSON, XML and CSV

• Structures: Tabular, spreadsheet, Excel, Data numbers and Text with a comma-separated values

in file

Xively Uses in IoT/M2M

• Private and Public Data Access

• Data streams, Data points and Triggers

• Creating and Managing Feeds

• Visualising Data

P.HARI KRISHNA

Django
Django is an opensource web application framework for developing web applications in Python.

• A web application frame work in general is a collection of solutions, packages and best

practices that allows development of web applications and dynamic websites.

• Django is based on the Model-Template-View architecture and provides a separation of the data

model from the business rules and the user interface.

• Django provides a unified API to a data base backend.

• Thus web applications built with Django can work with different databases without requiring

any code changes.

• With this flexibility in web application design combined with the powerful capabilities of

the Python language and the Python ecosystem, Django is best suited for cloud applications.

• Django consists of an object- relational mapper, a web templating system and a regular-

expression based URL dispatcher. Django is Model-Template-View (MTV) framework.

Model

• The model acts as a definition of some stored data and handles the interactions with the database.

In a web application, the data can be stored in a relational database, non-relational database, an XML

file, etc. A Django model is a Python class that outlines the variables and methods for a particular

type of data.

Template

• In a typical Django web application, the template is simply an HTML page with a few extra

placeholders. Django’s template language can be used to create various forms of text files

(XML, email, CSS, Java script, CSV, etc.)

View

• The view ties the model to the template. The view is where you write the code that

actually generates the web pages.

View determines what data is to be displayed, retrieves the data from the database and passes the

data to the template.

Designing a RESTful Web API

i) REST based communication APIs (Request-Response Based Model)

P.HARI KRISHNA

ii) Web Socket based Communication APIs (Exclusive Pair Based Model)

i) REST based communication APIs: Representational State Transfer (REST) is a

set of architectural principles by which we can design web services and web APIs that

focus on a system‘s resources and have resource states are addressed and transferred.

P.HARI KRISHNA

TECH

The REST architectural constraints are as follows: The below figure shows the

communication between client server with REST APIs

Client-Server: The principle behind client-server constraint is the separation of

concerns. Separation allows client and server to be independently developed and

updated.

Stateless: Each request from client to server must contain all the info. Necessary to

understand the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be

implicitly or explicitly labelled as cache-able or non-cacheable. If a response is cache-

able, then a client cache is given the right to reuse that response data for later, equivalent

requests.

Layered System: Constraints the behaviour of components such that each component

cannot see beyond the immediate layer with which they are interacting.

User Interface: Constraint requires that the method of communication between a client

and a server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to execute

in their context. This constraint is the only one that is optional.

P.HARI KRISHNA

TECH

8

The Request-Response model used by REST:

RESTful web service is a collection of resources which are represented by URIs.

RESTful web API has a base URI (e.g: http://example.com/api/tasks/). The clients and

requests to these URIs using the methods defined by the HTTP protocol (e.g: GET,

PUT, POST or DELETE). A RESTful web service can support various internet media

types.

http://example.com/api/tasks/

P.HARI KRISHNA

9 M.Sc(CS) CSDepartment-MTNC

18PCSC41-InternerofThings 2020-2021(EVEN)

ii) Web Socket Based Communication APIs

WebSocket APIs allow bi-directional, full duplex communication between clients

and servers. WebSocket APIs follow the exclusive pair communication model.

Amazon Web Services for IoT

i) AmazonEC2

In this example, a connection to EC2 service is first established by calling

boto.ec2.connect_to_region.

• The EC2 region, AWS access key and AWS secret key are passed to this function. After connecting

to EC2, a new instance is launched using the conn.run_instances function.

• The AMI-ID, instance type, EC2 key handle and security group are passed to this function.

ii) Amazon

AutoScaling

AutoScaling

Service

• A connection to Auto Scaling service is first established by

calling boto.ec2.autoscale.connect_to_region function.

P.HARI KRISHNA

10 M.Sc(CS) CSDepartment-MTNC

18PCSC41-InternerofThings 2020-2021(EVEN)

• Launch Configuration

• After connecting to Auto Scaling service, a new launch configuration is created by calling

conn.create_launch_configuration.Launchconfigurationcontainsinstructionsonhowtolaunch new

instances including the AMI-ID, instance type, security groups, etc.

Auto Scaling Group

• After creating a launch configuration, it is then associated with a new Auto Scaling group.

Auto Scaling group is created by calling conn.create_auto_scaling_group. The

settings for Auto Scaling group such as the maximum and minimum number of instances in the

group, the launch configuration, availability zones, optional load balancer to use with the group, etc.

AutoScaling Policies

• After creating an Auto Scaling group, the policies for scaling up and scaling down are defined.

• In this example, a scale up policy with adjustment type Change In Capacity and scaling_ad

justment = 1 is defined.

• Similarly a scale down policy with adjustment type Change In Capacity and scaling_adjustment = -

1 is defined.

Cloud Watch Alarms

• With the scaling policies defined, the next step is to create Amazon Cloud Watch alarms that

trigger these policies.

• The scale up alarm is defined using the CPU Utilization metric with the Average statistic and

threshold greater 70% for a period of 60sec.The scale up policy created previously is associated

with this alarm. This alarm is triggered when the average CPU utilization of the instances in the

group becomes greater than 70% for more than 60 seconds.

• The scale down alarm is defined in a similar manner with a threshold less than 50%.

P.HARI KRISHNA

11 M.Sc(CS) CSDepartment-MTNC

18PCSC41-InternerofThings 2020-2021(EVEN)

iii) AmazonS3:

• In this example, a connection to S3 service is first established by calling boto.connect_s3 function.

• The upload_to_s3_bucket_path function uploads the file to the S3 bucket specified at the

specified path.

iv) Amazon RDS
In this example, a connection to RDS service is first established by calling

boto.rds.connect_to_region function.

• The RDS region, AWS access key and AWS secret key are passed to this function.

• After connecting to RDS service, the conn.create_db instance function is called to launch

a new RDS instance.

• The input parameters to this function include the instance ID, database size, instance type, database

username, database password, database port, database engine (e.g. MySQL5.1), database name,

security groups, etc.

v) AmazonDynamoDB

In this example, a connection to Dynamo DB service is first established by calling

boto.dynamodb.connect_to_region.

• After connecting to Dynamo DB service, a schema for the new table is created by

calling conn.create_schema.

• The schema includes the hash key and range key names and types.

• A Dynamo DB table is then created by calling conn.create_table function with the table

schema, read units and write units as input parameters.

P.HARI KRISHNA

18PCSC41-InternerofThings 2020-2021(EVEN)

Sky Net IoT Messaging Platform.

Sky Net is running on a dozen Amazon EC2 servers and has nearly 50,000

registered smart devices including: Arduinos, Sparks, Raspberry Pis, Intel Galileos, and

Beagle Boards, Matthieu said. Sky Net runs as an IoT platform-as-a-service (PaaS) as well

as a private cloud through Docker, the new lightweight container technology. The platform

is written in Node.js and released under an MIT opensource license on GitHub.

The single Sky Net API supports the following IoT protocols: HTTP, REST, Web

Sockets, MQTT (Message Queue Telemetry Transport), and CoAP (Constrained

Application Protocol) for guaranteed message delivery and low-bandwidth satellite

communications, Matthieu said. Every connected device is assigned a 36 character UUID

and secret token that act as the device’s strong credentials. Security permissions can be

assigned to allow device discoverability, configuration, and messaging.

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis

Karnouskos, David Boyle, ― From Machine-to-Machine to the Internet of

Things: Introduction to a New Age of Intelligence‖, 1st
 Edition, Academic

Press, 2014.

2. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On

Approach, Universities Press, 2014.

3. The Internet of Things, Enabling technologies and use cases – Pethuru Raj,

Anupama C. Raman, CRC Press.

4. Francis daCosta, ―Rethinking the Internet of Things: A Scalable

Approach to Connecting Everything‖, 1st Edition, Apress Publications,
2013

5. Cuno Pfister, Getting Started with the Internet of Things, O‟Reilly Media,

2011, ISBN: 9781- 4493- 9357-1

6. DGCA RPAS Guidance Manual, Revision 3 – 2020

7. Building Your Own Drones: A Beginners' Guide to Drones, UAVs,

and ROVs, John Baich

12 M.Sc(CS) CSDepartment-MTNC

UNIT V IoT Physical Servers & Cloud Offerings

5.1 Introduction to Cloud Storage Models & Communication APIs –

5.2 WAMP - AutoBahn for IoT

5.3 Xively Cloud for IoT

5.4 Django

5.5 Designing a RESTful Web API

5.6 Amazon Web Services for IoT

5.7 SkyNetIoT Messaging Platform.

5.1 Introduction to Cloud Storage Models & Communication APIs

In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the rapid development

of associated technologiescreate a widespread connection of ―things.‖This has lead to the production

of large amounts of data, which needs to be stored, processed and accessed. Cloud computing as a

paradigm for big data storage and analytics. While IoT is exciting on its own, the real innovation will

come from combining it with cloud computing. The combination of cloud computing and IoT will

enable new monitoring services and powerful processing of sensory data streams. For example,

sensory data can be uploaded and stored with cloud computing, later to be used intelligently for smart

monitoring and actuation with other smart devices. Ultimately, the goal is to be able to transform

data to insight and drive productive, cost-effective action from those insights. The cloud effectively

serves as the brain to improved decision-making and optimized internet-based interactions.However,

when IoT meets cloud, new challenges arise. There is an urgent need for novel network architectures

that seamlessly integrate them. The critical concerns during integration are quality of service (QoS)

and qualityof experience (QoE), as well as data security, privacy and reliability. The virtual

infrastructure for practical mobile computing and interfacing includes integrating applications,

storage devices, monitoring devices, visualization platforms, analytics tools and client delivery.

Cloud computing offers a practical utility-based model that will enable businesses and users to access

applications on demand anytime and fromanywhere.

Deployment models

Deployment in cloud computing comprises four deployment models: private cloud, public cloud,

community cloud and hybrid cloud.

A cloud storage API is an application program interface that connects a locally-based application to a

cloud-based storage system, so that a user can send data to it and access and work with data stored in

it. To the application, the cloud storage system is just another target device, like tape or disk-based

storage. An application program interface (API) is code that allows two software programs to

communicate with each other. The API defines the correct way for a developer to write a program

that requests services from an operating system (OS) or other application. APIs are implemented by

function calls composed of verbs and nouns. The required syntax is described in the documentation

of the application beingcalled

Three basic types of APIs

APIs take three basic forms: local, web-like and program-like.
1. Local APIs are the original form, from which the name came. They offer OS or middleware

services to application programs. Microsoft's .NET APIs, the TAPI (Telephony API) for voice

applications, and database access APIs are examples of the local APIform.

2. Web APIs are designed to represent widely used resources like HTML pages and are accessed

using a simple HTTP protocol. Any web URL activates a web API. Web APIs are often called REST

(representational state transfer) or RESTful because the publisher of REST interfaces doesn't save

any data internally between requests. As such, requests from many users can be intermingled as they

would be on theinternet.

3. Program APIs are based on remote procedure call (RPC) technology that makes a remote

program component appear to be local to the rest of the software. Service oriented architecture

(SOA) APIs, such as Microsoft's WS-series of APIs, are programAPIs.

5.2 WAMP - AutoBahn for IoT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket

which provides publish-subscribe and remote procedure call (RPC) messaging patterns.

Transport: Transport is channel that connects two peers.

• Session: Session is a conversation between two peers that runs over a transport.

• Client: Clients are peers that can have one or more roles. In publish-subscribe model client can have

following roles:

– Publisher: Publisher publishes events (including payload) to the topic maintained by the Broker.

– Subscriber: Subscriber subscribes to the topics and receives the events including the payload.

In RPC model client can have following roles:

– Caller: Caller issues calls to the remote procedures along with call arguments.

– Callee: Callee executes the procedures to which the calls are issued by the caller and returns the

results back to the caller.

• Router: Routers are peers that perform generic call and event routing. In publish-subscribe model

Router has the role of a Broker:

– Broker: Broker acts as a router and routes messages published to a topic to all subscribers

subscribed to the topic.

In RPC model Router has the role of a Broker:

– Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes results

from Callee to Caller.

• Application Code: Application code runs on the Clients (Publisher, Subscriber, Callee or Caller).

In RPC model client can have following roles: –
1. Caller: Caller issues calls to the remote procedures along with call arguments. – Callee: Callee

executes the procedures to which the calls are issued by the caller and returns the results back to the

caller. • Router: Routers are peers that perform generic call and event routing. In publish-subscribe

model Router has the role of a Broker: – Broker: Broker acts as a router and routes messages

published to a topic to all subscribers subscribed to thetopic.

In RPC model Router has the role of a Broker: –

1. Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes results

from Callee toCaller.

2. Application Code: Application code runs on the Clients (Publisher, Subscriber, Callee or Caller).

5.3 Xively Cloud for IoT

Use of Cloud IoT cloud-based service •The service provides for the data collection, data points,

messages and calculation objects. • The service also provisions for the generation and

communication of alerts, triggers and feeds to the user. • A user is an application or service. The

user obtains responses or feeds from the cloud service.

Pachube platform: for data capture in real-time over the Internet • Cosm: a changed domain

name, where using a concept of console, one can monitor the feeds • Xively is the latest domain

name.

A commercial PaaS for the IoT/M2M • A data aggregator and data mining website often

integrated into the Web of Things • An IoT PaaS for services and business services.

Xively PaaS services:

• Data visualisation for data of connected sensors to IoT devices.

• Graphical plots of collected data.

• Generates alerts.

• Access to historical data

• Generates feeds which can be real-world objects of own or others

Xively HTTP based APIs

• Easy to implement on device hardware acting as clients to Xively web services

• APIs connect to the web service and send data.

• APIs provides services for logging, sharing and displaying sensor data of all

Xively Support

•The platform supports the REST, WebSockets and MQTT protocols and connects the devices to

Xively Cloud Services

• Native SDKs for Android, Arduino, ARM mbed, Java, PHP, Ruby, and Python languages

• Developers can use the workflow of prototyping, deployment and management through the

tools provided at Xively

Xively APIs

• Enable interface with Python, HTML5, HTML5 server, tornado

• Interface with WebSocket Server and WebSockets

• Interface with an RPC (Remote Procedure Call).

Xively PaaS services

• Enables services

• Business services platform which connects the products, including collaboration products

• Rescue, Boldchat, join.me, and operations to Internet

• Data collection in real-time over Internet

Xively Methods for IoT Devices Data

•Concept of users, feeds, data streams, data points and triggers

• Data feed typically a single location (e.g. a device or devices network),

• Data streams are of individual sensors associated with that location (for example, ambient

lights, temperatures, power consumption).

• Pull or Push (Automatic or Manual Feed)

Xively Data formats and Structures

• Number of data formats and structures enable the interaction, data collection and services

• Support exists for JSON , XML and CSV

• Structures: Tabular, spreadsheet, Excel, Data numbers and Text with a comma-separated values

in file

Xively Uses in IoT/M2M

• Private and Public Data Access

• Data streams, Data points and Triggers

• Creating and Managing Feeds

• Visualising Data

5.4 Django

Django is an open source web application framework for developing web applications in Python.

• A web application framework in general is a collection of solutions, packages and best practices

that allows development of web applications and dynamic websites.

• Django is based on the Model-Template-View architecture and provides a separation of the data

model from the business rules and the user interface.

• Django provides a unified API to a database backend.

• Thus web applications built with Django can work with different databases without requiring any

code changes.

• With this fiexibility in web application design combined with the powerful capabilities of the

Python language and the Python ecosystem, Django is best suited for cloud applications.

• Django consists of an object-relational mapper, a web templating system and a regular-expression

based URL dispatcher. Django is Model-Template-View (MTV) framework.

Model

• The model acts as a definition of some stored data and handles the interactions with the database. In

a web application, the data can be stored in a relational database, non-relational database, an XML

file, etc. A Django model is a Python class that outlines the variables and methods for a particular

type of data.

Template

• In a typical Django web application, the template is simply an HTML page with a few extra

placeholders. Django’s template language can be used to create various forms of text files (XML,

email, CSS, Javascript, CSV, etc.)

View

• The view ties the model to the template. The view is where you write the code that actually

generates the web pages.

View determines what data is to be displayed, retrieves the data from the database and passes the

data to the template.

5.5 Designing a RESTful Web API

i) REST based communication APIs(Request-Response Based Model)

ii) WebSocket based Communication APIs(Exclusive Pair Based Model)

i) REST based communication APIs: Representational State Transfer(REST) is a

set of architectural principles by which we can design web services and web APIs that

focus on a system‘s resources and have resource states are addressed and transferred.

The REST architectural constraints are as follows: The below figure shows the

communication between client server with REST APIs

Client-Server: The principle behind client-server constraint is the separation of

concerns. Separation allows client and server to be independently developed and

updated.

Stateless: Each request from client to server must contain all the info. Necessary to

understand the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be

implicitly or explicitly labeled as cache-able or non-cacheable. If a response is cache-

able, then a client cache is given the right to reuse that response data for later,

equivalent requests.

Layered System: constraints the behavior of components such that each component

cannot see beyond the immediate layer with which they are interacting.

User Interface: constraint requires that the method of communication between a

client and a server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to

execute in their context. This constraint is the only one that is optional.

The Request-Response model used by REST:

RESTful web service is a collection of resources which are represented by URIs.

RESTful web API has a base URI(e.g: http://example.com/api/tasks/). The clients and

requests to these URIs using the methods defined by the HTTP protocol(e.g: GET,

PUT, POST or DELETE). A RESTful web service can support various internet media

types.

ii) WebSocket Based Communication APIs

WebSocket APIs allow bi-directional, full duplex communication between

clients and servers. WebSocket APIs follow the exclusive pair communication model.

5.6 Amazon Web Services for IoT

i) Amazon EC2

In this example, a connection to EC2 service is fi rst established by calling

boto.ec2.connect_to_region.

• The EC2 region, AWS access key and AWS secret key are passed to this function. After connecting

to EC2 , a new instance is launched using the conn.run_instances function.

• The AMI-ID, instance type, EC2 key handle and security group are passed to this function.

ii) Amazon AutoScaling

AutoScaling Service

• A connection to AutoScaling service is first established by calling

boto.ec2.autoscale.connect_to_region function.

http://example.com/api/tasks/

• Launch Configuration

• After connecting to AutoScaling service, a new launch configuration is created by calling

conn.create_launch_con f iguration. Launch configuration contains instructions on how to launch

new instances including the AMI-ID, instance type, security groups, etc.

AutoScaling Group

• After creating a launch configuration, it is then associated with a new AutoScaling group.

AutoScaling group is created by calling conn.create_auto_scaling_group. The

settings for AutoScaling group such as the maximum and minimum number of instances in the

group, the launch configuration, availability zones, optional load balancer to use with the group, etc.

AutoScaling Policies

• After creating an AutoScaling group, the policies for scaling up and scaling down are defined.

• In this example, a scale up policy with adjustment type Change In Capacity and scaling_ad

justment = 1 is defined.

• Similarly a scale down policy with adjustment type ChangeInCapacity and scaling_ad justment = -1

is defined.

CloudWatch Alarms

• With the scaling policies defined, the next step is to create Amazon CloudWatch alarms that trigger

these policies.

• The scale up alarm is defined using the CPUUtilization metric with the Average statistic and

threshold greater 70% for a period of 60 sec. The scale up policy created previously is associated

with this alarm. This alarm is triggered when the average CPU utilization of the instances in the

group becomes greater than 70% for more than 60 seconds.

• The scale down alarm is defined in a similar manner with a threshold less than 50%.

iii) Amazon S3:

• In this example, a connection to S3 service is first established by calling boto.connect_s3 function.

• The upload_to_s3_bucket_path function uploads the file to the S3 bucket specified at the specified

path.

iv) Amazon RDS

In this example, a connection to RDS service is first established by calling

boto.rds.connect_to_region function.

• The RDS region, AWS access key and AWS secret key are passed to this function.

• After connecting to RDS service, the conn.create_dbinstance function is called to launch a

new RDS instance.

• The input parameters to this function include the instance ID, database size, instance type, database

username, database password, database port, database engine (e.g. MySQL5.1), database name,

security groups, etc.

v) Amazon Dynamo DB

In this example, a connection to DynamoDB service is first established by calling

boto.dynamodb.connect_to_region.

• After connecting to DynamoDB service, a schema for the new table is created by calling

conn.create_schema.

• The schema includes the hash key and range key names and types.

• A DynamoDB table is then created by calling conn.create_table function with the table schema,

read units and write units as input parameters.

5.7 SkyNetIoT Messaging Platform.

SkyNet is running on a dozen Amazon EC2 servers and has nearly 50,000 registered

smart devices including: Arduinos, Sparks, Raspberry Pis, Intel Galileos, and BeagleBoards,

Matthieu said. SkyNet runs as an IoT platform-as-a-service (PaaS) as well as a private cloud

through Docker, the new lightweight container technology. The platform is written in Node.js

and released under an MIT open source license on GitHub.

The single SkyNet API supports the following IoT protocols: HTTP, REST,

WebSockets, MQTT (Message Queue Telemetry Transport), and CoAP (Constrained

Application Protocol) for guaranteed message delivery and low-bandwidth satellite

communications, Matthieu said. Every connected device is assigned a 36 character UUID and

secret token that act as the device’s strong credentials. Security permissions can be assigned to

allow device discoverability, configuration, and messaging.

Part A-Multiple Choice Questions

Part B- 7 Marks

Part C- 16 Marks

[Separately discussed]

1. Elaborate the WAMP – AutoBahn for IoT.

2. Explain about Xively Cloud for IoT.

3. Draw the Django Architecture with explanation

4. How to Design a RESTful Web API? Explain

1. List out the Amazon Web Services for IoT

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis

Karnouskos, David Boyle, ― From Machine-to-Machine to the Internet of

Things: Introduction to a New Age of Intelligence‖, 1st
 Edition, Academic Press,

2014.

2. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On Approach,

Universities Press, 2014.

3. The Internet of Things, Enabling technologies and use cases – Pethuru Raj,

Anupama C. Raman, CRC Press.

4. Francis daCosta, ―Rethinking the Internet of Things: A Scalable Approach to

Connecting Everything‖, 1st Edition, Apress Publications, 2013

5. Cuno Pfister, Getting Started with the Internet of Things, O‟Reilly Media, 2011,

ISBN: 9781- 4493- 9357-1

6. DGCA RPAS Guidance Manual, Revision 3 – 2020

7. Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and

ROVs, John Baichtal

