U. Naresh Kumar

UNIT-I

Introduction to Linux:

Linux is a Unix-like computer operating system assembled under the model of free and open
source software development and distribution. The defining component of Linux is the Linux

kernel, an operating system kernel first released 5 October 1991 by Linus Torvalds.

Linux was originally developed as a free operating system for Intel x86-based personal
computers. It has since been ported to more computer hardware platforms than any other
operating system. It is a leading operating system on servers and other big iron systems such as
mainframe computers and supercomputers more than 90% of today's 500 fastest
supercomputers run some variant of Linux, including the 10 fastest. Linux also runs on
embedded systems (devices where the operating system is typically built into the firmware and
highly tailored to the system) such as mobile phones, tablet computers, network routers,
televisions and video game consoles; the Android system in wide use on mobile devices is
built on the Linux kernel.

Basic Features

Following are some of the important features of Linux Operating System.

o Portable - Portability means software‘s can works on different types of hardware‘s in
same way. Linux kernel and application programs support their installation on any kind
of hardware platform.

e Open Source - Linux source code is freely available and it is community based
development project. Multiple Teams works in collaboration to enhance the capability
of Linux operating system and it is continuously evolving.

e Multi-User - Linux is a multiuser system means multiple users can access system
resources like memory/ ram/ application programs at same time.

e Multiprogramming - Linux is a multiprogramming system means multiple applications

can run at same time.

e Hierarchical File System - Linux provides a standard file structure in which system

U. Naresh Kumar

files/ user files are arranged.

e Shell - Linux provides a special interpreter program which can be used to execute
commands of the operating system. It can be used to do various types of operations, call
application programs etc.

e Security - Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

Linux Advantages

1.Low cost: You don‘t need to spend time and money to obtain licenses since Linux and
much of its software come with the GNU General Public License. You can start to work
immediately without worrying that your software may stop working anytime because the free
trial version expires. Additionally, there are large repositories from which you can freely
download high quality software for almost any task you can think of.

2.Stability: Linux doesn‘t need to be rebooted periodically to maintain performance levels.

It doesn‘t freeze up or slow down over time due to memory leaks and such. Continuous
up- times of hundreds of days (up to a year or more) are not uncommon.

3.Performance: Linux provides persistent high performance on workstations and on
networks. It can handle unusually large numbers of users simultaneously, and can make old
computers sufficiently responsive to be useful again.

4.Network friendliness: Linux was developed by a group of programmers over the Internet
and has therefore strong support for network functionality; client and server systems can be
easily set up on any computer running Linux. It can perform tasks such as network backups
faster and more reliably than alternative systems.

5.Flexibility: Linux can be used for high performance server applications, desktop
applications, and embedded systems. You can save disk space by only installing the
components needed for a particular use. You can restrict the use of specific computers by
installing for example only selected office applications instead of the whole suite.

6. Compatibility: It runs all common UNIX software packages and can process all common
file formats.

7. Choice: The large number of Linux distributions gives you a choice. Each distribution is

developed and supported by a different organization. You can pick the one you like best; the

U. Naresh Kumar

core functionalities are the same; most software runs on most distributions.

8.Fast and easy installation: Most Linux distributions come with user-friendly installation
and setup programs. Popular Linux distributions come with tools that make installation of
additional software very user friendly as well.

9. Full use of hard disk: Linux continues work well even when the hard disk is almost full.
10. Multi-tasking: Linux is designed to do many things at the same time; e.g., a large
printing job in the background won‘t slow down your other work.

11. Security: Linux is one of the most secure operating systems. —Walls| and flexible file
access permission systems prevent access by unwanted visitors or viruses. Linux users have to
option to select and safely download software, free of charge, from online repositories
containing thousands of high quality packages. No purchase transactions requiring credit card
numbers or other sensitive personal information are necessary.

12. Open Source: If you develop software that requires knowledge or modification of the
operating system code, LINUX"s source code is at your fingertips. Most Linux applications
are Open Source as well.

Difference between UNIX and LINUX

Features LINUX UNIX
Cost Linux can be freely distributed, Different flavors of Unix have
downloaded freely, distributed different cost structures according
through magazines, Books etc. to vendors
There are priced versions for
Linux also, but they are
normally cheaper than
Windows.
Development Linux is developed by Open | Unix systems are divided into
and Source development i.e. through | various other flavors, mostly
Distribution sharing and collaboration of | developed by AT&T as well as
code and features through | various commercial vendors and
forums etc and it is distributed non-profit organizations.

U. Naresh Kumar

by various vendors.

variety of computer hardware,
ranging from mobile phones,
tablet computers and video
game consoles, to mainframes

and supercomputers.

Manufacturer Linux kernel is developed by Three biggest distributions are
the community. Linus Torvalds Solaris (Oracle), AIX (IBM) & HP-
oversees things. UX Hewlett Packard. And Apple

Makes OSX, an unix based os..

User Everyone. From home users to Unix operating systems were
developers and computer developed mainly for mainframes,
enthusiasts alike. servers and workstations except

OSX, Which is designed for
everyone. The Unix environment
and the client-server program
model were essential elements in
the development of the Internet

Usage Linux can be installed on a wide | The UNIX operating system is used

in internet servers, workstations &
PCs. Backbone of the majority of
finance infrastructure and many

24x365 high availability solutions.

File system

Ext2, Ext3, Ext4, Jfs, ReiserFS,

jfs, gpfs, hfs, hfs+, ufs, xfs, zfs

Source software development
and Free Operating System
(OS).

support Xfs, Btrfs, FAT, FAT32, NTFS format

Text mode BASH (Bourne Again SHell) is Originally the Bourne Shell. Now

interface the Linux default shell. It can it's compatible with many others
support multiple command including BASH, Korn & C.
interpreters.

What is it? Linux is an example of Open Unix is an operating system that is

very popular in universities,

companies, big enterprises etc.

U. Naresh Kumar

detection and

detection and solution is very

GUI Linux typically provides two | Initially Unix was a command
GUIs, KDE and Gnome. But | based OS, but later a GUI was
there are millions of alternatives | created called Common Desktop
such as LXDE, Xfce, Unity, | Environment. Most distributions
Mate, twm, ect. now ship with Gnome.

Price Free but support is available for Some free for development use
a price. (Solaris) but support is available for

a price.

Security Linux has had about 60-100 A rough estimate of UNIX viruses
viruses listed till date. None of is between 85 -120 viruses reported
them actively spreads till date.
nowadays.

Threat In case of Linux, threat | Because of the proprietary nature of

the original Unix, users have to

x86 hardware, ports available
for over two dozen CPU types

including ARM

solution fast, as Linux is mainly | wait for a while, to get the proper
community driven and | bug fixing patch. But these are not
whenever any Linux user posts | as common.
any kind of threat, several
developers start working on it
from different parts of the world
Processors Dozens of different kinds. x86/x64, Sparc, Power, Itanium,
PA-RISC, PowerPC and many
others.
Examples Ubuntu, Fedora, Red Hat, OS X, Solaris, All Linux
Debian, Archlinux, Android etc.
Architectures Originally developed for Intel's is available on PA-RISC and

Itanium machines. Solaris also
available for x86/x64 based
systems.OSX is PowerPC(10.0-

U. Naresh Kumar

10.5)/x86(10.4)/x64(10.5-10.8)

Inception

Inspired by MINIX (a Unix-like
system) and eventually after
adding many features of GUI,
Drivers etc, Linus Torvalds
developed the framework of the
OS that became LINUX in
1992. The LINUX kernel was
released on 17th September,

1991

In 1969, it was developed by a
group of AT&T employees at Bell
Labs and Dennis Ritchie. It was
written in —Cl language and was
designed to be a portable, multi-
tasking and multi-user system in a

time-sharing configuration

Linux Distribution (Operating System) Names

A few popular names:

1.Redhat Enterprise Linux

2.Fedora Linux

3. Debian Linux

4. Suse Enterprise Linux

5. Ubuntu Linux

Common things between Linux & UNIX

Both share many common applications such as:

1. GUI, file, and windows managers (KDE, Gnome)
2. Shells (ksh, csh, bash)

3. Various office applications such as OpenOffice.org

4. Development tools (perl, php, python, GNU c/c++ compilers)

5. Posix interface

U. Naresh Kumar

Layered Architecture:

Architecture

Linux System Architecture is consists of following layers

Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

Kernel - Core component of Operating System, interacts directly with hardware,

provides low level services to upper layer components.

Shell - An interface to kernel, hiding complexity of kernel's functions from users. Takes

commands from user and executes kernel's functions.

systems.

LINUX File system

Utilities - Utility programs giving user most of the functionalities of an operating

Linux file structure files are grouped according to purpose. Ex: commands, data files,

documentation. Parts of a Unix directory tree are listed below. All directories are grouped

under the root entry "/". That part of the directory tree is left out of the below diagram.

b

U. Naresh Kumar

1./ —Root
» Every single file and directory starts from the root directory.
= Only root user has write privilege under this directory.
» Please note that /root is root user‘s home directory, which is not same as /.
2. /bin — User Binaries
» Contains binary executables.
* Common linux commands you need to use in single-user modes are located under this
directory.
= Commands used by all the users of the system are located here.
= For example: ps, Is, ping, grep, cp.
3. /sbin — System Binaries
= Just like /bin, /sbin also contains binary executables.
= But, the linux commands located under this directory are used typically by system
aministrator, for system maintenance purpose.
= For example: iptables, reboot, fdisk, ifconfig, swapon

4. /etc — Configuration Files

* Contains configuration files required by all programs.
» This also contains startup and shutdown shell scripts used to start/stop individual
programs.
» For example: /etc/resolv.conf, /etc/logrotate.conf
5. /dev — Device Files
» Contains device files.
» These include terminal devices, usb, or any device attached to the system.
» For example: /dev/ttyl, /dev/usbmon0
6. /proc — Process Information
» Contains information about system process.
» This is a pseudo filesystem contains information about running process. For example:
/proc/{pid} directory contains information about the process with that particular pid.
» This is a virtual filesystem with text information about system resources. For example:
/proc/uptime
7. Ivar — Variable Files
» var stands for variable files.

» Content of the files that are expected to grow can be found under this directory.

9

U. Naresh Kumar

» This includes — system log files (/var/log); packages and database files (/var/lib);
emails (/var/mail); print queues (/var/spool); lock files (/var/lock); temp files needed
across reboots (/var/tmp);

8. /tmp — Temporary Files

= Directory that contains temporary files created by system and users.

= Files under this directory are deleted when system is rebooted.
9. /usr — User Programs

» Contains binaries, libraries, documentation, and source-code for second level programs.

= /usr/bin contains binary files for user programs. If you can‘t find a user binary under
/bin, look under /usr/bin. For example: at, awk, cc, less, scp

» /usr/sbin contains binary files for system administrators. If you can‘t find a system
binary under /sbin, look under /usr/sbin. For example: atd, cron, sshd, useradd, userdel

» /usr/lib contains libraries for /ust/bin and /ust/sbin

= /usr/local contains users programs that you install from source. For example, when you
install apache from source, it goes under /usr/local/apache?

10. /home — Home Directories
= Home directories for all users to store their personal files.
» For example: /home/john, /home/nikita

11. /boot — Boot Loader Files

= Contains boot loader related files.

» Kernel initrd, vmlinux, grub files are located under /boot

» For example: initrd.img-2.6.32-24-generic, vimlinuz-2.6.32-24-generic

12. /lib — System Libraries

» Contains library files that supports the binaries located under /bin and /sbin

» Library filenames are either 1d* or lib*.so.*

» For example: 1d-2.11.1.so, libncurses.so.5.7

13. /opt — Optional add-on Applications

» opt stands for optional.

* Contains add-on applications from individual vendors.

* add-on applications should be installed under either /opt/ or /opt/ sub-directory.

14. /mnt — Mount Directory
» Temporary mount directory where sysadmins can mount filesystems.
15. /media — Removable Media Devices

» Temporary mount directory for removable devices.

10

U. Naresh Kumar

» For examples, /media/cdrom for CD-ROM; /media/floppy for
/media/cdrecorder for CD writer
16. /srv — Service Data
» srv stands for service.
= Contains server specific services related data.

» For example, /srv/cvs contains CVS related data.
Linux Utilities:
File Handling utilities:

Cat Command:

cat linux command concatenates files and print it on the standard output.

SYNTAX:
The Syntax is

cat [OPTIONS] [FILE]...

floppy drives;

OPTIONS:
-A Show all.
-b Omits line numbers for blank space in the output.
-e A'$ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.
-S If the output has multiple empty lines it replaces it with one empty line.
-T Displays the tab characters in the output.

Non-printing characters (with the exception of tabs, new-lines and form-feeds)

-v are printed visibly.

Example:
To Create a new file:

cat > filel.txt

This command creates a new file filel.txt. After typing into the file press control+d

(*d) simultaneously to end the file.

1. To Append data into the

file: cat >> filel.txt

To append data into the same file use append operator >> to write into the file, else

the file will be overwritten (i.e., all of its contents will be erased).

11

U. Naresh Kumar

2. Todisplay a

file: cat

filel.txt

This command displays the data in the file.
3. To concatenate several files and

display: cat filel.txt file2.txt

The above cat command will concatenate the two files (filel.txt and file2.txt) and it will
display the output in the screen. Sometimes the output may not fit the monitor screen. In
such situation you can print those files in a nlew file or display the file using less
command.

cat filel.txt file2.txt | less

4. To concatenate several files and to transfer the output to another file.
cat filel.txt file2.txt > file3.txt
In the above example the output is redirected to new file file3.txt. The cat command will

create new file file3.txt and store the concatenated output into file3.txt.

rm COMMAND:

rm linux command is used to remove/delete the file from the directory.

SYNTAX:
The Syntax is

rm [options..] [file | directory]
OPTIONS:

-f Remove all files in a directory without prompting the user.
Interactive. With this option, rm prompts for confirmation before removing
any files.
Recursively remove directories and subdirectories in the argument list. The
directory will be emptied of files and removed. The user is normally
Tlon-R prompted for removal of any write-protected files which the directory

contains.

12

U. Naresh Kumar

EXAMPLE:
1. To Remove / Delete a file:

rm file1.txt
Here rm command will remove/delete the file filel.txt.
2. To delete a directory tree:
rm -ir tmp
This rm command recursively removes the contents of all subdirectories of the tmp
directory, prompting you regarding the removal of each file, and then removes the tmp
directory itself.
3. To remove more files at once
rm filel.txt file2.txt
rm command removes filel.txt and file2.txt files at the same time.

cd COMMAND:

cd command is used to change the directory.

SYNTAX:
The Syntax is
cd [directory | ~|./|../| -]

OPTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

EXAMPLE:
1. cd linux-command

This command will take you to the sub-directory(linux-command) from its parent

directory.

2. cd.

This will change to the parent-directory from the current working directory/sub-directory.

3. cd~
This command will move to the user's home directory which is "/home/username".

cp COMMAND:
cp command copy files from one location to another. If the destination is an existing file, then
the file is overwritten; if the destination is an existing directory, the file is copied into the

directory (the directory is not overwritten).

13

U. Naresh Kumar

SYNTAX:
The Syntax is
cp [OPTIONS]... SOURCE DEST
cp [OPTIONS]... SOURCE... DIRECTORY
cp [OPTIONS]... --target-directory=DIRECTORY SOURCE...

OPTIONS:

-a

same as -dpR.

--backup[=CONTROL] |make a backup of each existing destination file

-b like --backup but does not accept an argument.

] if an existing destination file cannot be opened, remove it and try
- again.

-p same as --preserve=mode,ownership,timestamps.

preserve[=ATTR_LIST]

preserve the specified attributes
(default: mode,ownership,timestamps) and security
contexts, if possible

additional attributes: links, all.

--NO-

preserve=ATTR_LIST

don't preserve the specified attribute.

--parents append source path to DIRECTORY.

EXAMPLE:

Copy two

files: cp
filel file2
The above cp command copies the content of filel.php to file2.php.

To backup the copied

file: cp -b filel.php

file2.php

Backup of filel.php will be created with '~' symbol as file2.php~.
Copy folder and

subfolders: cp -R scripts

scriptsl

The above cp command copy the folder and subfolders from scripts to scriptsl.

4

U. Naresh Kumar

Is COMMAND:

Is command lists the files and directories under current working directory.

SYNTAX:

The
Syntax is

Is [OPTIONS]... [FILE]

OPTIONS:
Lists all the files, directories and their mode, Number of links, owner of the
! file, file size, Modified date and time and filename.
-t Lists in order of last modification time.
-a Lists all entries including hidden files.
-d Lists directory files instead of contents.
-p Puts slash at the end of each directories.
-u List in order of last access time.
-1 Display inode information.

-ltr List files order by date.
-ISr List files order by file size.
EXAMPLE:
Display root directory contents:
Is/

lists the contents of root directory.

1. Display hidden files and directories:

Is -a

lists all entries including hidden files and directories.
2. Display inode information:

Is -1

7373073 book.gif
7373074 clock.gif
7373082 globe.gif
7373078 pencil.gif
7373080 child.gif

23

15

. Naresh Kumar

7373081 email.gif

7373076 indigo.gif

The above command displays filename with inode value.
In COMMAND:

In command is used to create link to a file (or) directory. It helps to provide soft link for
desired files. Inode will be different for source and destination.
SYNTAX:

The
Syntax is

In [options] existingfile(or directory)name newfile(or directory)name

OPTIONS:
¢ Link files without questioning the user, even if the mode of target forbids
writing. This is the default if the standard input is not a terminal.
-n Does not overwrite existing files.
-S Used to create soft links.
EXAMPLE:

1. In-s filel.txt file2.txt
Creates a symbolic link to 'filel.txt' with the name of 'file2.txt'. Here inode for
'file1.txt' and 'file2.txt' will be different.

2. In-s nimi nimil

Creates a symbolic link to nimi' with the name of 'nimil".
chown COMMAND:

chown command is used to change the owner / user of the file or directory. This is an
admin command, root user only can change the owner of a file or directory.
SYNTAX:

The Syntax is
chown [options] newowner filename/directoryname

16

U. Naresh Kumar

OPTIONS:
R Change the permission on files that are in the subdirectories of the directory
that you are currently in.
-C Change the permission for each file.
r Prevents chown from displaying error messages when it is unable to change
the ownership of a file.
EXAMPLE:

1. chown hiox test.txt
The owner of the 'test.txt' file is root, Change to new user hiox.
2. chown -R hiox test
The owner of the 'test' directory is root, With -R option the files and subdirectories

user also gets changed.

3. chown -c hiox calc.txt
Here change the owner for the specific 'calc.txt' file only.
Security By File Permissions

Chmod Command:

chmod command allows you to alter / Change access rights to files and directories.

File Permission is given for users, group and others as,

Read | Write |Execute

User -
Group [
Others -
Permission 000
SYNTAX:
The Syntax is

chmod [options] [MODE)] FileName

File Permission
File Permission

0 none

17

U.

Naresh Kumar

1 execute only
2 write only
3 write and execute
4 read only
5 read and execute
6 read and write
7 set all permissions
OPTIONS:
-C Displays names of only those files whose permissions are being changed
-f Suppress most error messages
-R Change files and directories recursively
| -v_ | Output version information and exit. |
EXAMPLE:

1. To view your files with what permission they are:

Is -alt

This command is used to view your files with what permission they are.
2. To make a file readable and writable by the group and others.

chmod 066 filel.txt
3. To allow everyone to read, write, and execute the file

chmod 777 filel.txt

mkdir COMMAND:

mkdir command is used to create one or more directories.

SYNTAX:
The Syntax is

mkdir [options] directories

OPTIONS:
-m Set the access mode for the new directories.
-p Create intervening parent directories if they don't exist.
-V Print help message for each directory created.

18

U. Naresh Kumar

EXAMPLE:
1. Create directory:
mkdir test

The above command is used to create the directory 'test'.

Create directory and set permissions:

mkdir -m 666 test

The above command is used to create the directory 'test' and set the read and write
permission.

rmdir COMMAND:

rmdir command is used to delete/remove a directory and its subdirectories.

SYNTAX:
The Syntax is
rmdir [options..] Directory
OPTIONS:
Allow users to remove the directory dirname and its parent directories which
P become empty.
EXAMPLE:
1. To delete/remove a directory
rmdir tmp
rmdir command will remove/delete the directory tmp if the directory is empty.
2. To delete a directory tree:
rm -ir tmp
This command recursively removes the contents of all subdirectories of the tmp
directory, prompting you regarding the removal of each file, and then removes the tmp
directory itself.
mv COMMAND:

mv command which is short for move. It is used to move/rename file from one directory to

another. mv command is different from cp command as it completely removes the file from the

source and moves to the directory specified, where cp command just copies the content from one

file to another.

SYNTAX:
The Syntax is

mv [-f] [-i] oldname newname

19

U. Naresh Kumar

OPTIONS:

-f

-1

This will not prompt before overwriting (equivalent to --reply=yes). mv -f will

move the file(s) without prompting even if it is writing over an existing target.

Prompts before overwriting another file.

EXAMPLE:

1.

To Rename / Move a file:

mv filel.txt file2.txt

This command renames filel.txt as file2.txt
To move a directory

mv hscripts tmp

In the above line mv command moves all the files, directories and sub-directories from
hscripts folder/directory to tmp directory if the tmp directory already exists. If there is no

tmp directory it rename's the hscripts directory as tmp directory.

To Move multiple files/More files into another directory
mv filel.txt tmp/file2.txt newdir
This command moves the files filel.txt from the current directory and file2.txt from the

tmp folder/directory to newdir.

diff COMMAND:

diff command is used to find differences between two files.

SYNTAX:
The Syntax is

diff [options..] from-file to-file

OPTIONS:
-a Treat all files as text and compare them line-by-line.
-b Ignore changes in amount of white space.
-C Use the context output format.
-e Make output that is a valid ed script.
H Use heuristics to speed handling of large files that have numerous scattered

small changes.

Ignore changes in case; consider upper- and lower-case letters equivalent.

20

U. Naresh Kumar

Prints in RCS-format, like -f except that each command specifies the number

N of lines affected.
Output RCS-format diffs; like -f except that each command specifies the
-q number of lines affected.
-r When comparing directories, recursively compare any subdirectories found.
-s Report when two files are the same.
-wW Ignore white space when comparing lines.
-y Use the side by side output format.
EXAMPLE:

Lets create two files filel.txt and file2.txt and let it have the following data.

Data in filel.txt Data in file2.txt
HIOX TEST
) HIOX TEST
hscripts.com
HSCRIPTS.
with friend ship com
L with friend ship
hiox india
1. Compare files ignoring white space:

diff -w filel.txt file2.txt

This command will compare the file filel.txt with file2.txt ignoring white/blank space
and it will produce the following output.

2c2

< hscripts.com

> HSCRIPTS.com

4d3

< Hioxindia.com

Compare the files side by side, ignoring white space:

diff -by filel.txt file2.txt

This command will compare the files ignoring white/blank space, It is easier to
differentiate the files.

HIOX TEST HIOX TEST
hscripts.com | HSCRIPTS.com

with friend ship with friend ship

Hioxindia.com <

21

U. Naresh Kumar

The third line(with friend ship) in file2.txt has more blank spaces, but still the -b ignores

the blank space and does not show changes in the particular line, -y printout the result
side by side.
3. Compare the files ignoring case.
diff -1y filel.txt file2.txt
This command will compare the files ignoring case(upper-case and lower-case) and
displays the following output.
HIOX TEST HIOX TEST
hscripts.com HSCRIPTS.com
with friend ship | with friend ship
chgrp COMMAND:
chgrp command is used to change the group of the file or directory. This is an admin
command. Root user only can change the group of the file or directory.
SYNTAX:
The Syntax is

chgrp [options] newgroup filename/directoryname

OPTIONS:
Change the permission on files that are in the subdirectories of the directory
® that you are currently in.
-C Change the permission for each file.
-f Force. Do not report errors.
Hioxindia.com <
EXAMPLE:

1. chgrp hiox test.txt
The group of 'test.txt' file is root, Change to newgroup hiox.

2. chgrp -R hiox test
The group of 'test' directory is root. With -R, the files and its subdirectories also changes
to newgroup hiox.

3. chgrp -c hiox calc.txt

They above command is used to change the group for the specific file('calc.txt') only.
About wc
Short for word count, wc displays a count of lines, words, and characters in a file.

22

U. Naresh Kumar

Syntax
we [-c | -m|-C][-l] [-w] [file...]

-C Count bytes.

-m Count characters.

-C Same as -m.

-1 Count lines.

-w Count words delimited by white space characters or new line characters.

Delimiting characters are Extended Unix Code (EUC) characters from any code

set defined by iswspace()

File Name of file to word count.

Examples
wc myfile.txt - Displays information about the file myfile.txt. Below is an example of the output.

5 13 57 myfile.txt

5 = Lines

13 = Words

57 = Characters

About split

Split a file into pieces.

Syntax

split [-linecount | -1 linecount] [-a suffixlength] [file [name]]
split -b n [k | m] [-a suffixlength] [file [name]]

-linecount | -1 Number of lines in each piece. Defaults to 1000 lines.

linecount

-a Use suffixlength letters to form the suffix portion of the filenames of the split
suffixlength ~ file. If -a is not specified, the default suffix length is 2. If the sum of the name
operand and the suffixlength option-argument would create a filename exceeding

NAME_MAX bytes, an error will result; split will exit with a diagnostic message

and no files will be created.

-bn Split a file into pieces n bytes in size.

23

U. Naresh Kumar

-bnk
-bnm

File

name

Examples

Split a file into pieces n*1024 bytes in size.
Split a file into pieces n*1048576 bytes in size.

The path name of the ordinary file to be split. If no input file is given or file is -,

the standard input will be used.

The prefix to be used for each of the files resulting from the split operation. If no
name argument is given, x will be used as the prefix of the output files. The
combined length of the basename of prefix and suffixlength cannot exceed

NAME_MAX bytes; see OPTIONS.

split -b 22 newfile.txt new - would split the file "newfile.txt" into three separate files called

newaa, newab and newac each file the size of 22.

split -1 300 file.txt new - would split the file "newfile.txt" into files beginning with the name

"new" each containing 300 lines of text each

About settime and touch
Change file access and modification time.

Syntax

touch [-a] [-c] [-m] [-r ref_file | -t time] file
settime [-f ref_file] file

-a

-r ref file

Change the access time of file. Do not change the modification time unless -m is

also specified.
Do not create a specified file if it does not exist. Do not write any diagnostic

messages concerning this condition.

Change the modification time of file. Do not change the access time unless -a is

also specified.

Use the corresponding times of the file named by ref_file instead of the current

time.

24

U. Naresh Kumar

-t time

-fref _file

File

Examples

Use the specified time instead of the current time. time will be a decimal number

of the form:

[[CC]YY]MMDDhhmm [.SS]

MM - The month of the year [01-12].
DD - The day of the month [01-31].
hh - The hour of the day [00-23].
mm - The minute of the hour [00-59].
CcC - The first two digits of the year.

YY - The second two digits of the year.
SS - The second of the minute [00-61].

Use the corresponding times of the file named by ref_file instead of the current

time.

A path name of a file whose times are to be modified.

settime myfile.txt
Sets the file myfile.txt as the current time / date.
touch newfile.txt

Creates a file known as "newfile.txt", if the file does not already exist. If the file already exists

the accessed / modification time is updated for the file newfile.txt

About comm

Select or reject lines common to two files.

Syntax

comm [-1] [-2] [-3] file] file2

filel

file2

Suppress the output column of lines unique to filel.

Suppress the output column of lines unique to file2.

Suppress the output column of lines duplicated in filel and file2.
Name of the first file to compare.

Name of the second file to compare.

25

U. Naresh Kumar

Examples
comm myfilel.txt myfile2.txt
The above example would compare the two files myfilel.txt and myfile2.txt.

Process utilities:
ps Command:

ps command is used to report the process status. ps is the short name for Process Status.

SYNTAX:
The Syntax is
ps [options]

OPTIONS:

List information about all processes most frequently requested: all those
-a
except process group leaders and processes not associated with a terminal..

-A or e List information for all processes.

-d List information about all processes except session leaders.
-e List information about every process now running.
-f Generates a full listing.
-j Print session ID and process group ID.
-1 Generate a long listing.
EXAMPLE:
1. ps
Output:

PID TTY TIME CMD
2540 pts/1 00:00:00 bash

2621 pts/1 00:00:00 ps

In the above example, typing ps alone would list the current running processes.
2. ps-f

Output:

UID PID PPID CSTIME TTY TIME CMD

nirmala 2540 2536 0 15:31 pts/1 00:00:00 bash
nirmala 2639 2540 0 15:51 pts/1 ~ 00:00:00 ps -f

Displays full information about currently running processes.

26

U. Naresh Kumar

kill COMMAND:

kill command is used to kill the background process.

SYNTAX:
The Syntax is
kill [-s] [-1] %pid

OPTIONS:

-1

-pid
-9

Specify the signalto send. The signal may be given as a signal name
number.

Write all values of signal supported by the implementation, if no operand is
given.

Process id or job id.

Force to kill a process.

EXAMPLE:

Step by Step process:
Open a process music player.

Xmms

press ctrl+z to stop the process.
To know group id or job id of the background task.

jobs -1
It will list the background jobs with its job id as,
xmms 3956

kmail 3467
To kill a job or process.

kill 3956

kill command kills or terminates the background process xmms.

About nice
Invokes a command with an altered scheduling priority.

Syntax

nice [-increment | -n increment | command [argument ... |

or

27

U. Naresh Kumar

-increment | - increment must be in the range 1-19; if not specified, an increment of 10 is

n increment

command

argument

Examples

assumed. An increment greater than 19 is equivalent to 19.
The super-user may run commands with priority higher than normal by using a
negative increment such as -10. A negative increment assigned by an

unprivileged user is ignored.

The name of a command that is to be invoked. If command names any of the

special built-in utilities, the results are undefined.

Any string to be supplied as an argument when invoking command.

nice +13 pico myfile.txt - runs the pico command on myfile.txt with an increment of +13.

About at

Schedules a command to be ran at a particular time, such as a print job late at night.

Syntax

at executes commands at a specified time.

atq lists the user's pending jobs, unless the user is the superuser; in that case, everybody's jobs

are listed. The format of the output lines (one for each job) is: Job number, date, hour, job

class.

atrm deletes jobs, identified by their job number.

batch executes commands when system load levels permit; in other words, when the load

average drops below 1.5, or the value specified in the invocation of atrun.

at [-c | -k| -s] [-f filename] [-q queuename] [-m] -t time [date] [-1] [-r]

-f filename

C shell. csh(1) is used to execute the at-job.

Korn shell. ksh(1) is used to execute the at-job.
Bourne shell. sh(1) is used to execute the at-job.
Specifies the file that contains the command to run.

Sends mail once the command has been run.

28

U. Naresh Kumar

-t time Specifies at what time you want the command to be ran. Format hh:mm. am / pm
indication can also follow the time otherwise a 24-hour clock is used. A timezone
name of GMT, UCT or ZULU (case insensitive) can follow to specify that the
time is in Coordinated Universal Time. Other timezones can be specified using
the TZ environment variable. The below quick times can also be entered:
midnight - Indicates the time 12:00 am (00:00).
noon - Indicates the time 12:00 pm.
now - Indicates the current day and time. Invoking at - now will submit submit

an at-job for potentially immediate execution.

date Specifies the date you wish it to be ran on. Format month, date, year. The
following quick days can also be entered:
today - Indicates the current day.

tomorrow - Indicates the day following the current day.

-1 Lists the commands that have been set to run.
-r Cancels the command that you have set in the past.
Examples

at -m 01:35 < atjob = Run the commands listed in the 'atjob' file at 1:35AM, in addition all
output that is generated from job mail to the user running the task. When this command has been
successfully enter you should receive a prompt similar to the below example.
Commands will be executed using /bin/csh job 1072250520.a at Wed Dec 24
00:22:00 2003
at -1 = This command will list each of the scheduled jobs as seen below.
1072250520.a Wed Dec 24 00:22:00 2003
at -r 1072250520.a = Deletes the job just created.

or

atrm 23 = Deletes job 23.
If you wish to create a job that is repeated you could modify the file that executes the commands

with another command that recreates the job or better yet use the crontab command.
Note: Performing just the at command at the prompt will give you an error "Garbled Time", this

is a standard error message if no switch or time setting is given.

29

U. Naresh Kumar

Disk utilities:

du (abbreviated from disk usage) is a standard Unix program used to estimate file space
usage—space used under a particular directory or files on a file system.

dutakesa single argument, specifying apathnamefordutowork; if it is not specified, the current
directory is used. The SUS mandates for du the following options:

-a, display an entry for each file (and not directory) contained in the current directory

-H, calculate disk usage for link references specified on the command line
-k, show sizes as multiples of 1024 bytes, not 512-byte

-L, calculate disk usage for link references anywhere

-s, report only the sum of the usage in the current directory, not for each file

-X, only traverse files and directories on the device on which the pathname argument is
specified.

Other Unix and Unix-like operating systems may add extra options. For example, BSD and GNU
du specify a -h option, displaying disk usage in a format easier to read by the user, adding units
with the appropriate SI prefix*

$ du -sk *
152304 directoryOne
1856548 directoryTwo

Sum of directories in human-readable format (Byte, Kilobyte, Megabyte, Gigabyte, Terabyte and
Petabyte):

$ du -sh *
149M directoryOne
1.8G directoryTwo

disk usage of all subdirectories and files including hidden files within the current directory
(sorted by filesize) :

$ du -sk .[L.]* *| sort -n

disk usage of all subdirectories and files including hidden files within the current directory
(sorted by reverse filesize) :

$ du -sk .[!.]* *| sort —nr
The weight of directories:

$du-d1-c-h

30

U. Naresh Kumar

df command : Report file system disk space usage
Df command examples - to check free disk space
Type df -h or df -k to list free disk space:

$ df-h

OR

$ df k

Output:

Filesystem Size Used Avail Use% Mounted on
/dev/sdbl 20G 9.2G 9.6G 49% /

varrun 393M 144k 393M 1% /var/run
varlock 393M 0 393M 0% /var/lock
procbususb 393M 123k 393M 1% /proc/bus/usb
udev 393M 123k 393M 1% /dev

devshm 393M 0393M 0% /dev/shm

Irm 393M 35M 359M 9% /lib/modules/2.6.20-15-generic/volatile
/dev/sdb5 29G 54G 22G 20% /media/docs
/dev/sdb3 30G 59G 23G 21% /media/isomp3s
/dev/sdal 8.5G 4.3G 4.3G 51% /media/xpl
/dev/sda2 12G 6.5G 5.2G 56% /media/xp2
/dev/sdcl 40G 3.1G 35G 9% /media/backup

du command examples
du shows how much space one ore more files or directories is using.

$ du -sh
103M
-s option summarize the space a directory is using and -h option provides "Human-readable"
output.
Networking commands:

These are most useful commands in my list while working on Linux server , this enables you to
quickly troubleshoot connection issues e.g. whether other system is connected or not , whether
other host is responding or not and while working for FIX connectivity for advanced trading
system this tools saves quite a lot of time .

This article is in continuation of my article How to work fast in Unix and Unix Command
tutorials and Examples for beginners.

» finding host/domain name and IP address - hostname

* test network connection — ping

» getting network configuration —ifconfig

» Network connections, routing tables, interface statistics —netstat

* query DNS lookup name — nslookup

» communicate with other hostname — telnet

* outing steps that packets take to get to network host —traceroute

* view user information — finger

31

U. Naresh Kumar

» checking status of destination host - telnet
Example of Networking commands in Unix
let's see some example of various networking command in Unix and Linux. Some of them are

quite basic e.g. ping and telnet and some are more powerful e.g. nslookup and netstat. When you
used these commands in combination of find and grep you can get anything you are looking for

e.g. hostname, connection end points, connection status etc.
hostname
hostname with no options displays the machines host name

hostname —d displays the domain name the machine belongs to
hostname —f displays the fully qualified host and domain name
hostname —i displays the IP address for the current machine

ping

It sends packets of information to the user-defined source. If the packets are received, the
destination device sends packets back. Ping can be used for two purposes

1. To ensure that a network connection can be established.

2. Timing information as to the speed of the connection.

If you do ping www.yahoo.com it will display its IP address. Use ctrl+C to stop the test.
ifconfig

View network configuration, it displays the current network adapter configuration. It is handy to
determine if you are getting transmit (TX) or receive (RX) errors.

netstat

Most useful and very versatile for finding connection to and from the host. You can find out all
the multicast groups (network) subscribed by this host by issuing ''netstat -g"'

netstat -nap | grep port will display process id of application which is using that port

netstat -a or netstat —all will display all connections including TCP and UDP

netstat --tcp or netstat —t will display only TCP connection

netstat --udp or netstat —u will display only UDP connection

netstat -g will display all multicast network subscribed by this host.

slookup

If you know the IP address it will display hostname. To find all the IP addresses for a given
domain name, the command nslookup is used. You must have a connection to the internet for
this utility to be useful.

E.g. nslookup blogger.com
You can also use nslookup to convert hostname to IP Address and from IP Address from

hostname.

traceroute

A handy utility to view the number of hops and response time to get to a remote system or web
site is traceroute. Again you need an internet connection to make use of this tool.

finger

View user information, displays a user‘s login name, real name, terminal name and write status.
this is pretty old unix command and rarely used now days.

telnet

Connects destination host via telnet protocol, if telnet connection establish on any port means
connectivity between two hosts is working fine.

telnet hostname port will telnet hostname with the port specified. Normally it is used to see

32

http://www.yahoo.com/

U. Naresh Kumar

whether host is alive and network connection is fine or not.

10 Most important linux networking commands
Linux is most powerful operating system which often needs to use commands to explore it

effectively.Some of the commands are restricted to normal user groups as they are powerful and
has more functionality involved in it.Here we summarized most interesting and useful
networking commands which every linux user are supposed to be familiar with it.

1. Arp manipulates the kernel‘'s ARP cache in various ways. The primary options are clearing
an address mapping entry and manually setting up one. For debugging purposes, the arp
program also allows a complete dump of the ARP cache.ARP displays the IP address assigned to
particular ETH card and mac address

[fasil@smashtech [# arp
Address HWtype HWaddress Flags Mask Iface
59.36.13.1 ether C ethO

2.Ifconfig is used to configure the network interfaces. Normally we use this command tocheck
the IP address assigned to the system.It is used at boot time to set up interfaces as

necessary. After that, it is usually only needed when debugging or when system tuning is
needed.

[fasil@smashtech ~]# /sbin/ifconfig

eth0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets: 126341 errors:0 dropped:0 overruns:0 frame:0
TX packets:44441 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen: 1000

3. Netstat prints information about the networking subsystem. The type of information which is
usually printed by netstat are Print network connections, routing tables, interface statistics,
masquerade connections, and multicast.

[fasil@smashtech ~]# netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 O .230.87:https ESTABLISHED

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type State I-Node Path

unix 10 [] DGRAM 4970 /dev/log

unix 2 [] DGRAM 6625 @/var/run/hal/hotplug_socket
unix 2 [] DGRAM 2952 @udevd

unix 2 [] DGRAM 100564

unix 3 [] STREAM CONNECTED 62438 /tmp/.X11-unix/X0
unix 3 [] STREAM CONNECTED 62437

33

U. Naresh Kumar

unix 3 [] STREAM CONNECTED 10271 @/tmp/fam-root-
unix 3 [] STREAM CONNECTED 10270

unix 3 [] STREAM CONNECTED 9276

unix 3 [] STREAM CONNECTED 9275

4.ping command is used to check the connectivity of a system to a network. Whenever there is
problem in network connectivity we use ping to ensure the system is connected tonetwork.

[root@smashtech ~]# ping google.com

PING google.com (74.125.45.100) 56(84) bytes of data.

64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=0 ttl=241 time=295 ms
64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=1 ttl=241 time=277 ms
64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=2 ttl=241 time=277 ms

--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 6332ms
rtt min/avg/max/mdev = 277.041/283.387/295.903/8.860 ms, pipe 2

5. Nslookup is a program to query Internet domain name servers. Nslookup has two modes:
interactive and non-interactive. Interactive mode allows the user to query name servers for
information about various hosts and domains or to print a list of hosts in a domain. Non-
interactive mode is used to print just the name and requested information for a host or domain.

[fasil@smashtech ~]# nslookup google.com
Server: server ip
Address: gateway ip 3

Non-authoritative answer:
Name: google.com
Address: 209.85.171.100
Name: google.com
Address: 74.125.45.100
Name: google.com
Address: 74.125.67.100

6. dig (domain information groper) is a flexible tool for interrogating DNS name servers. It
performs DNS lookups and displays the answers that are returned from the name server(s) that
were queried. Most DNS administrators use dig to troubleshoot DNS problems because of its
flexibility, ease of use and clarity of output. Other lookup tools tend to have less functionality
than dig.

[fasil@smashtech ~]# dig google.com

34

U. Naresh Kumar

; <<>> DiG 9.2.4 <<>> google.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4716

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 4

;; QUESTION SECTION:

;google.com. IN A

;; ANSWER SECTION:

google.com. 122 IN A 74.125.45.100
google.com. 122 IN A 74.125.67.100
google.com. 122 IN A 209.85.171.100
;; AUTHORITY SECTION:

google.com. 326567 IN NS ns3.google.com.
google.com. 326567 IN NS ns4.google.com.
google.com. 326567 IN NS nsl.google.com.
google.com. 326567 IN NS ns2.google.com.

;; ADDITIONAL SECTION:

nsl.google.com. 152216 IN
ns2.google.com. 152216 IN
ns3.google.com. 152216 IN
ns4.google.com. 152216 IN

216.239.32.10
216.239.34.10
216.239.36.10
216.239.38.10

> > >

;; Query time: 92 msec

;; SERVER: 172.29.36.1#53(172.29.36.1)
;; WHEN: Thu Mar 5 14:38:45 2009

;; MSG SIZE rcvd: 212

7. Route manipulates the IP routing tables. Its primary use is to set up static routes to specific
hosts or networks via an interface after it has been configured with the ifconfig program. When
the add or del options are used, route modifies the routing tables. Without these options, route
displays the current contents of the routing tables.

[fasil@smashtech ~]# route
Kernel IP routing table

Destination ~ Gateway Genmask Flags Metric Ref Use Iface
54.192.56.321* 255.255.255.0 U 0 O OethO

* 25525500 U O O 0 ethO
default 0.0.0.0 uGg 0 0 0 ethO

35

U. Naresh Kumar

8. Traceroute : Internet is a large and complex aggregation of network hardware, connected
together by gateways. Tracking the route one‘s packets follow (or finding the miscreant gateway
that‘s discarding your packets) can be difficult.

Traceroute utilizes the IP protocol _time to live® field and attempts to elicit an ICMP
TIME_EXCEEDED response from each gateway along the path to some host. The only
mandatory parameter is the destination host name or IP number. The default probe

datagram length is 40 bytes, but this may be increased by specifying a packet length (in bytes)
after the destination host name.

[fasil@smashtech ~]# traceroute google.com

traceroute: Warning: google.com has multiple addresses; using 209.85.171.100
traceroute to google.com (209.85.171.100), 30 hops max, 38 byte packets

1 k sk ok
9.W-displays information about the users currently on the machine, and their processes. The
header shows, in this order, the current time, how long the system has been running, how many
users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.
[fasil@smashtechl ~]# w

15:18:22 up 4:38, 3 users, load average: 0.89, 0.34, 0.19

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root :0 - 10:41 ?7xdm? 24:53 1.35s /usr/bin/gnome-session
root pts/l :0.0 10:58 1.00s 0.34s 0.00s w
root pts/2 :0.0 12:10 23:32 0.03s 0.03s bash
Filters:
more COMMAND:
more command is used to display text in the terminal screen. It allows only backward

movement.
SYNTAX:

The Syntax is

more [options] filename

OPTIONS:
-C Clear screen before displaying.
-e Exit immediately after writing the last line of the last file in the argument list.
-n Specify how many lines are printed in the screen for a given file.
+n Starts up the file from the given number.
EXAMPLE:

1. more -c index.php
Clears the screen before printing the file .
2. more -3 index.php

36

U. Naresh Kumar

Prints first three lines of the given file. Press Enter to display the file line by line.

head COMMAND:
head command is used to display the first ten lines of a file, and also specifies how many lines
to display.
SYNTAX:
The Syntax is

head [options] filename

OPTIONS:

-n To specify how many lines you want to display.

-n number The number option-argument must be a decimal integer whose sign affects
the location in the file, measured in lines.

The number option-argument must be a decimal integer whose sign affects

-c number o])
the location in the file, measured in bytes.

EXAMPLE:

1. head index.php
This command prints the first 10 lines of 'index.php'.
2. head -5 index.php
The head command displays the first 5 lines of 'index.php'.
3. head -c 5 index.php
The above command displays the first 5 characters of 'index.php'.

tail COMMAND:
tail command is used to display the last or bottom part of the file. By default it displays last

10 lines of a file.

SYNTAX:
The Syntax is

tail [options] filename

OPTIONS:
-1 To specify the units of lines.
-b To specify the units of blocks.
-n To specify how many lines you want to display.
The number option-argument must be a decimal integer whose sign affects the
-c number

location in the file, measured in bytes.

37

U. Naresh Kumar

b The number option-argument must be a decimal integer whose sign affects the
-n number
location in the file, measured in lines.

EXAMPLE:

1. tail index.php
It displays the last 10 lines of 'index.php'.
2. tail -2 index.php
It displays the last 2 lines of 'index.php'.
3. tail -n 5 index.php
It displays the last 5 lines of 'index.php'.
4. tail -¢ 5 index.php
It displays the last 5 characters of 'index.php'.
cut COMMAND:

cut command is used to cut out selected fields of each line of a file. The cut command uses
delimiters to determine where to split fields.
SYNTAX:
The Syntax is

cut [options]

OPTIONS:
-C Specifies character positions.
-b Specifies byte positions.

-d flags Specifies the delimiters and fields.

EXAMPLE:
1. cut -c1-3 text.txt
Output:
Thi

Cut the first three letters from the above line.
2. cut-d, -fl,2 text.txt
Output:
This is, an example program
The above command is used to split the fields using delimiter and cut the first two fields.
paste COMMAND:

paste command is used to paste the content from one file to another file. It is also used to set

column format for each line.

SYNTAX:
The Syntax is

paste [options]

38

U. Naresh Kumar

OPTIONS:

-s Paste one file at a time instead of in parallel.

-d Reuse characters from LIST instead of TABs .
EXAMPLE:

1. paste test.txt>test1.txt
Paste the content from 'test.txt' file to 'test1.txt' file.

2. lIs|paste - - - -
List all files and directories in four columns for each line.
sort COMMAND:

sort command is used to sort the lines in a text file.
SYNTAX:
The Syntax is
sort [options] filename
OPTIONS:
-r Sorts in reverse order.
-u If line is duplicated display only once.

-o filename Sends sorted output to a file.

EXAMPLE:

1. sort test.txt
Sorts the 'test.txt'file and prints result in the screen.
2. sort -r test.txt
Sorts the 'test.txt' file in reverse order and prints result in the screen.
About uniq
Report or filter out repeated lines in a file.

Syntax
uniq [-c | -d| -u] [-ffields] [-s char] [-n] [+m] [input_file [output_file]]

-C Precede each output line with a count of the number of times the line occurred in
the input.

-d Suppress the writing of lines that are not repeated in the input.

-u Suppress the writing of lines that are repeated in the input.

39

U. Naresh Kumar

-f fields

-s char

+m

input_file

output_file

Examples

Ignore the first fields fields on each input line when doing comparisons, where
fields is a positive decimal integer. A field is the maximal string matched by the
basic regular expression:

[[:blank:]]*[*[:blank:]]*

If fields specifies more fields than appear on an input line, a null string will be

used for comparison.

Ignore the first chars characters when doing comparisons, where chars is a
positive decimal integer. If specified in conjunction with the -f option, the first
chars characters after the first fields fields will be ignored. If chars specifies more

characters than remain on an input line, a null string will be used for comparison.
Equivalent to -f fields with fields set to n.
Equivalent to -s chars with chars set to m.

A path name of the input file. If input_file is not specified, or if the input_file is -

,the standard input will be used.

A path name of the output file. If output_file is not specified, the standard output
will be used. The results are unspecified if the file named by output_file is the

file named by input_file.

uniq myfilel.txt > myfile2.txt - Removes duplicate lines in the first filel.txt and outputs the

results to the second file.

About tr

Translate characters.

Syntax

tr [-c] [-d] [-s] [stringl] [string2]

Complement the set of characters specified by stringl.
Delete all occurrences of input characters that are specified by string].
Replace instances of repeated characters with a single character.

First string or character to be changed.

40

U. Naresh Kumar

string2 Second string or character to change the stringl.

Examples
echo '12345678 9247" | tr 123456789 computerh - this example takes an echo response of

12345678 9247' and pipes it through the tr replacing the appropriate numbers with the letters. In
this example it would return computer hope.
tr -cd "\11\12\40-\176' < myfilel > myfile2 - this example would take the file myfilel and strip

all non printable characters and take that results to myfile2.

Text processing utilities and Backup utilities:
Text processing utilities:

cat : concatenate files and print on the standard output
Usage: cat [OPTION] [FILE]...

eg. cat filel.txt file2.txt

catn

filel.txt

echo : display a line of text
Usage: echo [OPTION] [string] ...
eg. echo I love India

echo SHOME

wc: print the number of newlines, words, and bytes in files
Usage: we [OPTION]... [FILE]...
eg. wc filel.txt

wc L

filel.txt

sort :sort lines of text files
Usage: sort [OPTION]... [FILE]...
eg. sort filel.txt

sort r

filel.txt

41

U. Naresh Kumar

General Commands:
date COMMAND:

date command prints the date and time.

SYNTAX:

The Syntax is

date [options] [+format] [date]

OPTIONS:

Slowly adjust the time by sss.fff seconds (fff represents fractions of a second).

This adjustment can be positive or negative.Only system admin/ super user

can adjust the time.

- date - Sets the time and date to the value specfied in the datestring. The datestr may

string
-u
Format:
Yoa
YA
%b
%B
Yoc
%D
%
9on
Pop
%T
Yot

%V

contain the month names, timezones, 'am’, ‘pm’, etc.

Display (or set) the date in Greenwich Mean Time (GMT-universal time).

Abbreviated weekday(Tue).

Full weekday(Tuesday).
Abbreviated month name(Jan).
Full month name(January).
Country-specific date and time format..
Date in the format %m/%d/%y.
Julian day of year (001-366).
Insert a new line.

String to indicate a.m. or p.m.
Time in the format %9H:%M:%S.
Tab space.

Week number in year (01-52); start week on Monday.

7))

U. Naresh Kumar

EXAM
date

PLE:

command

date

The above command will print Wed Jul 23 10:52:34 IST 2008

To use tab space:

date +"Date is %D %t Time is %T"

The above command will remove space
Date is 07/23/08 Time is 10:52:34

To know the week number of the year,

date -V

The above command will print 30

To set the date,

date -s "10/08/2008 11:37:23"

The above command will print Wed Oct 08 11:37:23 IST 2008

who COMMAND:

who command can list the names of users currently logged in, their terminal, the time they

and print as

have been logged in, and the name of the host from which they have logged in.

SYNTAX:
The Syntax is
who [options] [file]
OPTIONS:
. Print the username of the invoking user, The 'am' and 'i' must be space
i separated.
-b Prints time of last system boot.
-d print dead processes.
-H Print column headings above the output.
-1 Include idle time as HOURS:MINUTES. An idle time of . indicates activity
within the last minute.
-m Same as who am 1.
-q Prints only the usernames and the user count/total no of users logged in.
-T,-w Include user's message status in the output.

43

U. Naresh Kumar

EXAMPLE:
1. who —Uh
Output:
NAME LINE TIME IDLE PID COMMENT
hiox ttyp3 Jul 10 11:08 . 4578

This sample output was produced at 11 a.m. The "." indiacates activity within the last
minute.

2. whoami
who am i command prints the user name.

echo COMMAND:

echo command prints the given input string to standard output.
SYNTAX:

The Syntax is

echo [options..] [string]

OPTIONS:
-n do not output the trailing newline
-e enable interpretation of the backslash-escaped characters listed below
-E disable interpretation of those sequences in STRINGs

Without -E, the following sequences are recognized and interpolated:

the character whose ASCII code is NNN

\NNN
(octal)
\a alert (BEL)
\\ backslash
\b backspace
\c suppress trailing newline
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab

EXAMPLE:
echo command

echo "hscripts Hiox India"

The above command will print as hscripts Hiox India

44

U. Naresh Kumar

1. To use backspace:

echo -e "hscripts \bHiox \bIndia"

The above command will remove space and print as hscriptsHioxIndia
2. To use tab space in echo command

echo -e "hscripts\tHiox\tIndia"

The above command will print as hscripts Hiox India

passwd COMMAND:

passwd command is used to change your password.

SYNTAX:
The Syntax is
passwd [options]

OPTIONS:

-a Show password attributes for all entries.

-1 Locks password entry for name.

Deletes password for name. The login name will not be prompted for

password.
Force the user to change password at the next login by expiring the password

-f
for name.

EXAMPLE:
1. passwd
Entering just passwd would allow you to change the password. After entering passwd you
will receive the following three prompts:
Current Password:
New Password:

Confirm New Password:
Each of these prompts must be entered correctly for the password to be successfully

changed.
pwd COMMAND:

pwd - Print Working Directory. pwd command prints the full filename of the current working

directory.

45

U. Naresh Kumar

SYNTAX:
The Syntax is
pwd [options]
OPTIONS:
-P The pathname printed will not contain symbolic links.

-L The pathname printed may contain symbolic links.
EXAMPLE:

1. Displays the current working directory.
pwd
If you are working in home directory then, pwd command displays the current working
directory as /home.
cal COMMAND:

cal command is used to display the calendar.

SYNTAX:
The Syntax is

cal [options] [month] [year]

OPTIONS:
-1 Displays single month as output.
-3 Displays prev/current/next month output.
- Displays sunday as the first day of the week.

-m Displays Monday as the first day of the week.

- Displays Julian dates (days one-based, numbered from January 1).

-y Displays a calendar for the current year.

EXAMPLE:

1. cal
Output:
September 2008

Su Mo Tu We Th Fr Sa

123456
78910111213
14151617 18 19 20
21 222324252627
2829 30

46

U. Naresh Kumar

cal command displays the current month calendar.

2. cal-3 52008

Output:
April 2008 May 2008 June 2008
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
12345 123123456 7

6789101112456789108910111213 14
13141516171819 11121314151617 151617 1819 20 21
20212223242526 18192021222324 222324252627 28

27282930 252627282930312930
Here the cal command displays the calendar of April, May and June month of year 2008.
login Command

Signs into a new system.
Syntax
login [-p] [-d device] [-h hostname | terminal | -r hostname | [name [environ | |

-p Used to pass environment variables to the login shell.

-d device login accepts a device option, device. device is taken to be the path name of the
TTY port login is to operate on. The use of the device option can be expected to
improve login performance, since login will not need to call ttyname. The -d
option is available only to users whose UID and effective UID are root. Any

other attempt to use -d will cause login to quietly exit.

-hhostname | Used by in.telnetd to pass information about the remote host and terminal type.

terminal

-r hostname Used by in.rlogind to pass information about
the remote host.

Examples

login computerhope.com - Would attempt to login to the computerhope domain.
uname command

Print name of current system.

Syntax

uname [-a] [-i] [-m] [-n] [-p] [-r] [-s] [-v] [-X] [-S systemname]

-a Print basic information currently available from the system.

-1 Print the name of the hardware implementation (platform).

&7

U. Naresh Kumar

43

U. Naresh Kumar

-m Print the machine hardware name (class). Use of this option is discouraged; use

uname -p instead.

-n Print the nodename (the nodename is the name by which the system is known to

a communications network).

-p Print the current host's ISA or processor type.

-r Print the operating system release level.

-S Print the name of the operating system. This is the default.

-V Print the operating system version.

-X Print expanded system information, one information

element per line, as expected by SCO Unix. The

displayed information includes:

e system name, node, release, version, machine, and number of CPUs.
e BusType, Serial, and Users (set to "unknown" in Solaris)

e OEM# and Origin# (set to 0 and 1, respectively)

-S The nodename may be changed by specifying a system name argument. The
systemname system name argument is restricted to SYS_NMLN characters. SYS_NMLN is
an implementation specific value defined in <sys/utsname.h>. Only the super-
user is allowed

this capability.

Examples
uname -arv
List the basic system information, OS release, and OS version as shown below.

SunOS hope 5.7 Generic_106541-08 sun4m sparc SUNW,SPARCstation-10

uname -p
Display the Linux platform.

SED:
‘What is sed?
O A non-interactive stream editor

O Interprets sed instructions and performs actions

O Use sed to:

49

U. Naresh Kumar

e Automatically perform edits on file(s)
e Simplify doing the same edits on multiple files

e Write conversion programs

input file

script

sed options script file list

usuallyina
separate file

-n: no automatic output
-e: inline script
-f: in-file script

Sed Command Syntax(Sed Scripts):

S sed -e 'address command' input_file

(a) Inline Script

$ sed -f script.sed input file

(b) Script File

50

U. Naresh Kumar

Sed Operation
How Does sed Work?

hold space

input file

i

I

script
O sed reads line of input
O line of input is copied into a temporary buffer called pattern space
O editing commands are applied
O subsequent commands are applied to line in the pattern space, not the original input
line
O once finished, line is sent to output (unless —n option was used)

O line is removed from pattern space

O sed reads next line of input, until end of file

Note: input file is unchanged

sed instruction format(Sed Addresses):

O address determines which lines in the input file are to be processed by the command(s)
O if no address is specified, then the command is applied to each input line
O address types:

O Single-Line address

O Set-of-Lines address

O Range address

O Nested address

Single-Line Address

O Specifies only one line in the input file

O special: dollar sign ($) denotes last line of input file

51

U. Naresh Kumar

Examples:

O show only line 3
sed -n -e '3 p' input-file
O show only last line

sed -n -e '$ p' input-file
O substitute —endifl with —fil on line 10
sed -e '10 s/endif/fi/' input-file
Set-of-Lines Address
O use regular expression to match lines

O written between two slashes
O process only lines that match
O may match several lines

O lines may or may not be consecutives

Examples:
sed -e ‘/key/ s/more/other/’ input-file

sed -n -e ‘/r..t/ p’ input-file
Range Address

O Defines a set of consecutive lines

Format:

start-addr,end-addr (inclusive)

Examples:

10,50 line-number,line-number
10,/R.E/ line-number,/RegExp/
/R.E./,10 /RegExp/,line-number
/R.E./,/R.E/ /RegExp/,/RegExp/

Example: Range Address

% sed -n -e ‘/*"BEGINS$/,/ENDS$/p’ input-file

O Print lines between BEGIN and END, inclusive

52

U. Naresh Kumar

BEGIN
Line 1 of input

Line 2 of input
Line3 of input
END
Line 4 of input
Line 5 of input
Nested Address
O Nested address contained within another address

Example:
print blank lines between line 20 and 30

20,30

/"$/ p
}
Address with !

O address with an exclamation point (!):
instruction will be applied to all lines that do not match the address

Example:
print lines that do not contain —obsoletel
sed -e ‘/obsolete/!p’ input-file

sed commands

Commands I
| |

Input/Output ’ Branch | Quit |
Modify I Transform I Files I Hold SpaceI

Line Number

O line number command (=) writes the current line number before each matched/output line
Examples:
sed -e '/Two-thirds-time/=' tuition.data

sed -e '/*[0-9][0-9]/=' inventory

53

U. Naresh Kumar

modify commands

Modify I
| | | |
Insert | Append I Change I Delete | ‘ Delete First |

Insert Command: i
O adds one or more lines directly to the output before theaddress:

O inserted —textl never appears in sed‘s pattern space
O cannot be used with a range address; can only be used with the single-line and set-

of-lines address types

Syntax:
[address] i\

text
Append Command: a
O adds one or more lines directly to the output after the address:
O Similar to the insert command (i), append cannot be used with a range address.

O Appended —textl does not appear in sed‘s pattern space.

Syntax:
[address] a\

text
Change Command: ¢
O replaces an entire matched line with new text

O accepts four address types:

O single-line, set-of-line, range, and nested addresses.

Syntax:
[address1[,address2]] ¢\

text
Delete Command: d

O deletes the entire pattern space

O commands following the delete command are ignored since the deleted text is no

54

U. Naresh Kumar

longer in the pattern space

Syntax:
[addressl[,address2]] d

Substitute Command (s)

Syntax:
[addrl][,addr2] s/search/replace/[flags]

O replaces text selected by search string with replacement string
O search string can be regular expression
O flags:

O global (g), i.e. replace all occurrences

O specific substitution count (integer), default 1

Regular Expressions: use with sed

. Any one character. except new line
" Zero or more of preceding character
2 A character at beginning of line
S A character at end of line
\char Escape the meaning of char following it
[Any one of the enclosed characters
\(Y) Tags matched characters to be used later
x\{m\} Repetition of character x. m times
\< Beginning of word
\> End of word

55

U. Naresh Kumar

Substitution Back References

(b) Numbered Buffer Substitution

Example: Replacement String &

$ cat datafile
Charles Main 30 98 3 34
Sharon Gray 53 97 5§ 23

Patricia Hemenway 4.0 7 4 17

TB Savage 44 84 5 20

AM Main Jr. 51 94 3 13
Margot Weber 45 89 5 9
Ann Stephens 57 94 S 13

$ sed -e “s/[0-9][0-9]$/&.5/° datafile

Charles Main 30 98 3 34.5

Sharon Gray 53 97 5 235

56

U. Naresh Kumar

Patricia Hemenway 4.0 7 4 17.5

TB Savage 44 84 5 205
AM Main Jr. 51 94 3 135
Margot Weber 45 89 S 9
Ann Stephens 57 94 5 135

Transform Command (y)

Syntax:

[addr1][,addr2]y/a/b/

translates one character 'a' to another 'b'

cannot use regular expression metacharacters

cannot indicate a range of characters

O O OO

similar to —trl command

Example:

$ sed -e ‘1,10y/abed/wxyz/’ datafile
sed /0 commands

I/0 Commands I
| | | |
| Append | . I Print First : I
Next (n) Next (N) Print (p) Line (P) List (1)

Input (next) Command: n and N
O Forces sed to read the next input line

O Copies the contents of the pattern space to output
O Deletes the current line in the pattern space
O Refills it with the next input line

O Continue processing

57

U. Naresh Kumar

O N (uppercase) Command
O adds the next input line to the current contents of the pattern space

O useful when applying patterns to two or more lines at the same time
Output Command: p and P

O Print Command (p)
O copies the entire contents of the pattern space to output
O will print same line twice unless the option ——nl is used
O Print command: P

O prints only the first line of the pattern space

O prints the contents of the pattern space up to and including a new line character

O any text following the first new line is not printed
List Command (1)

O The list command: 1
O shows special characters (e.g. tab, etc)

O The octal dump command (od -c) can be used to produce similar result

Hold Space

O temporary storage area

used to save the contents of the pattern space

O 4 commands that can be used to move text back and forth between the pattern space and
the hold space:

h, H
g G
File commands
O allows to read and write from/to file while processing standard input

O read: r command

O write: w command
Read File command
Syntax: r filename

O queue the contents of filename to be read and inserted into the output stream at

58

U. Naresh Kumar

the end of the current cycle, or when the next input line is read

O if filename cannot be read, it is treated as if it were an empty file, without any
error indication
O single address only
Write File command
Syntax: w filename
O Write the pattern space to filename
O The filename will be created (or truncated) before the first input line is read

O all w commands which refer to the same filename are output through the same
FILE stream

Branch Command (b)
O Change the regular flow of the commands in the script file

Syntax: [addr1][,addr2]b[label]

O Branch (unconditionally) to _label‘ or end of script

O If —labell is supplied, execution resumes at the line following :label; otherwise,

control passes to the end of the script

O Branch label

:mylabel
Example: The quit (q) Command

Syntax: [addr]q

O Quit (exit sed) when addr is encountered.
Example: Display the first 50 lines and quit

% sed -e °50q’ datafile

Same as:
% sed -n -e ‘1,50p’ datafile
% head -50 datafile
Awk
What is awk?
O created by: Aho, Weinberger, and Kernighan

O scripting language used for manipulating data and generating reports

O versions of awk

59

U. Naresh Kumar

O awk, nawk, mawk, pgawk, ...
O GNU awk: gawk

What can you do with awk?

O awk operation:

O scans a file line by line

O splits each input line into fields

O compares input line/fields to pattern

O performs action(s) on matched lines
O Useful for:

O transform data files

O produce formatted reports
O Programming constructs:

O format output lines

O arithmetic and string operations

O conditionals and loops

The Command: awk

input file

script

awk options script files
AN
-F:input field separator usually in a
-f: script file separate file
Basic awk Syntax

O awk [options] ‘script’ file(s)

O awk [options] —f scriptfile file(s)

Options:
-F to change input field separator

60

U. Naresh Kumar

-f to name script file
Basic awk Program

O consists of patterns & actions:
pattern {action}
O if pattern is missing, action is applied to all lines

O ifaction is missing, the matched line is printed

O must have either pattern or action

Example:

awk '/for/' testfile
O prints all lines containing string —forl in testfile

Basic Terminology: input file

O A field is a unit of data in a line

O Each field is separated from the other fields by the field separator
O default field separator is whitespace

O A record is the collection of fields in a line

O A data file is made up ofrecords

Example Input File

Fneld Field 2 Field 3 Field 4
|rst Name) || (Last_Name) (Pay_Rate) (Hours)

Record 2 \

Record 4 \

Record 10 |

A file with 10 records, each with four fields

61

U. Naresh Kumar

Buffers
Record
Buffer Field
input file 2 Buffer
— $1]] s2]] --- Sn|]
— 50
script
O awk supports two types of buffers:

o

record and field

field buffer:
O one for each fields in the current record.
O names: $1, $2, ...

record buffer :

O $0 holds the entire record

Some System Variables

FS

RS

NF

NR

OFS

ORS

Field separator (default=whitespace)

Record separator (default=\n)

Number of fields in current record

Number of the current record

Output field separator (default=space)

Output record separator (default=\n)

FILENAME Current filename

Example: Records and Fields

62

U. Naresh Kumar

% cat emps

Tom Jones 4424 5/12/66 543354
Mary Adams 5346 11/4/63 28765
Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $0}' emps

1 Tom Jones 4424 5/12/66 543354

2 Mary Adams 5346 11/4/63 28765

3 Sally Chang 1654 7/22/54 650000

4 Billy Black 1683 9/23/44 336500

Example: Space as Field Separator

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $1, $2, $5}' emps

1 Tom Jones 543354

2 Mary Adams 28765

U. Naresh Kumar

3 Sally Chang 650000

4 Billy Black 336500

Example: Colon as Field Separator

% cat em2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk -F: '/Jones/{print $1, $2}' em2

Tom Jones 4424

awk Scripts

e awk scripts are divided into three major parts:

BEGIN {Begin's Actions} Preprocessing

Body

END {End's Actions} Postprocessing

64

U. Naresh Kumar

e comment lines start with #
o BEGIN: pre-processing

e performs processing that must be completed before the file processing starts
(i.e., before awk starts reading records from the input file)
o useful for initialization tasks such as to initialize variables and to create
report headings
e BODY: Processing
e contains main processing logic to be applied to input records
e like a loop that processes input data one record at atime:
O ifa file contains 100 records, the body will be executed 100 times, one for
each record
o END: post-processing
e contains logic to be executed after all input data have been processed
e logic such as printing report grand total should be performed in this part

of the script

Pattern / Action Syntax

pattern {statement} I

(a) One Statement Action

pattern {statementl; statement2; statement3}

(b) Multiple Statements Separated by Semicolons

pattern

{
statementl
statement?2
statement3

(c) Multiple Statements Separated by Newlines

65

U. Naresh Kumar

Categories of Patterns

Patterns

Simple | Range |
BEGIN I END I Expression II Nothing I

Expression Pattern types

e match

= entire input record
o regular expression enclosed by _/s

= explicit pattern-matching expressions

o ~ (match), !~ (not match)

O expression operators
= arithmetic

= relational
= logical

% cat employees2

Tom Jones:4424:5/12/66:543354
Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000
Billy Black:1683:9/23/44:336500
% awk -F: '/00$/' employees2
Sally Chang:1654:7/22/54:650000
Billy Black:1683:9/23/44:336500

66

U. Naresh Kumar

Example: explicit match

% cat datafile

northwest NW Charles Main 30 98 334
western WE Sharon Gray 53 97 523
southwest SW Lewis Dalsass 27 8 218
southern SO Suan Chin 51 95 415
southeast SE Patricia Hemenway 4.0 .7 4 17
eastern EA TB Savage 44 84 5 20
northeast NE AM Main 51 94 313
north NO Margot Weber 4.5 8 5 9
central CT Ann Stephens 57 94 513
% awk '$5 ~ \.[7-9]+/' datafile

southwest SW Lewis Dalsass 2.7 8 218
central CT Ann Stephens 57 94 513
Examples: matching with REs

% awk '$2 !~ /E/{print $1, $2}' datafile

northwest NW

southwest SW

southern SO

north NO

central CT

67

U. Naresh Kumar

% awk '/"[ns])/{print $1}' datafile
northwest

southwest

southern

southeast

northeast

north

Arithmetic Operators

Operator Meaning Example
+ Add X+y
- Subtract X—y
* Multiply x*y
/ Divide x/y
% Modulus X%y
A Exponential XNy
Example:

% awk '$3 * $4 > 500 {print $0}' file
Relational Operators

Operator Meaning Example
< Less than X<y
<= Less than or equal x<=y
== Equal to X==y

68

U. Naresh Kumar

= Not equal to xl=y
> Greater than x>y

> = Greater than or equal to X>=y
~ Matched by reg exp x ~ Iyl

I~ Not matched by req exp x 1~ 1yl

Logical Operators
Operator Meaning Example
&& Logical AND a&&b
I Logical OR allb
! NOT la
Examples:

% awk '($2 > 5) && ($2<=15) {print $0}' file
% awk '$3 == 100 || $4 > 50' file
Range Patterns

e Matches ranges of consecutive input lines

Syntax:

patternl , pattern2 {action}
e pattern can be any simple pattern

e patternl turns action on

e pattern2 turns action off

First match:
blue - yellow

/blue/,/yellow/ {print}

Ord Second match:
grq blue - end

6Y

U. Naresh Kumar

Range Pattern Example

awk Actions
Statements I
Expressionl Output I‘ Decision I Loop I Control I

H print = while - next

i

printf for | getline

— sprintf — do-while J exit

Ml

i
Ll

awk expressions

e Expression is evaluated and returns value
e consists of any combination of numeric and string constants, variables,
operators, functions, and regular expressions
¢ Can involve variables
e As part of expression evaluation
e Astarget ofassignment awk variables
e A user can define any number of variables within an awk script
e The variables can be numbers, strings, or arrays
e Variable names start with a letter, followed by letters, digits, and underscore
e Variables come into existence the first time they are referenced; therefore, they do not
need to be declared before use

e All variables are initially created as strings and initialized to a null string —I

awk Variables
Format

variable = expression

70

U. Naresh Kumar

Examples:
% awk '$1 ~ /Tom/
{wage = $3 * $4; print wage}' filename
% awk '$4 =="CA" {$4 = "'California"'; print $0}' filename

awk assignment operators
= assign result of right-hand-side expressionto

left-hand-side variable

++ Add 1 to variable
-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication
= Assign result of division

%= Assign result of modulo

A= Assign result of exponentiation

Awk example:
File: grades
john 8592 78 94 88
andrea 89 90 75 90 86
jasper 84 88 80 92 84
e awk script: average
average five grades
{ total = $2 + $3 + $4 + $5 + $6
avg =total /5
print $1, avg }
e Runas:

awk —f average grades

Output Statements

71

U. Naresh Kumar

print

print easy and simple output
printf

print formatted (similar to C printf)
sprintf

format string (similar to C sprintf)

Function: print

e Writes to standard output
¢ Qutput is terminated by ORS
e default ORS is newline
e Ifcalled with no parameter, it will print $0
e Printed parameters are separated by OFS,
e default OFS is blank
¢ Print control characters are allowed:

e \n\fla\t\\... print example

% awk '{print}' grades

Jjohn 8592 78 94 88

andrea 89 90 75 90 86

% awk '{print $0}' grades

Jjohn 8592 78 94 88

andrea 89 90 75 90 86

% awk '{print($0)}' grades

John 8592 78 94 88

andrea 89 90 75 90 86

Redirecting print output

72

U. Naresh Kumar

e Print output goes to standard output

unless redirected via:

> —filel
>> —filel
| —commandl

e will open file or command only once

e subsequent redirections append to already open stream
print Example
% awk '{print $1 , $2 > "file''}' grades
% cat file
john 85
andrea 89
jasper 84
% awk '{print $1,$2 | "'sort"}' grades
andrea 89
jasper 84
john 85
% awk '{print $1,%$2 | "'sort -k 2"'}' grades
jasper 84
john 85
andrea 89

% date

Wed Nov 19 14:40:07 CST 2008

73

U. Naresh Kumar

% date |
awk '{print '""Month: " $2 '""\nYear: ", $6}'
MoOnth: Nov
Year: 2008
printf: Formatting output
Syntax:
printf(format-string, varl, var2, ...)

o works like C printf

e cach format specifier in —format-stringl requires argument of matching type

Format specifiers

Yod %1 decimal integer

Joc single character

Yos string of characters

%t floating point number

%0 octal number

Jox hexadecimal number

Yoe scientific floating point notation

%% the letter —%l

Format specifier examples

Format specifier modifiers

o between —%l and letter

74

U. Naresh Kumar

%10s
%7d
%10.4f

%0-20s

* meaning:
o width of field, field is printed right justified
e precision: number of digits after decimal point

o —| will left justify sprintf: Formatting text

Syntax:
sprintf(format-string, varl, var2, ...)

= Works like printf, but does not produce output

= Instead it returns formatted string

Example:

text = sprintf("'1: %d - 2: %d'"', $1, $2)

print text

awk Array

e awk allows one-dimensional arrays

to store strings or numbers

e index can be number or string
e array need not be declared
eits size

eits elements

75

U. Naresh Kumar

e array elements are created when first used

einitialized to O or —I

Arrays in awk
Syntax:
arrayName[index] = value
Examples:

list[1] = '"one"
list[2] = ""three"
list[''other''] = ""oh my !"

Illustration: Associative Arrays
e awk arrays can use string as index

Name Age Department Sales
"Robert" 46 "19-24" 1,285.72
"George" 22 "81-70" 10,240.32
"Juan” 22 "41-10" 3,420.42
"Nhan" 19 "17-A1" 46,500.18
”Jome "61 -61" iF 11441

AwK builtin split functions

split(string, array, fieldsep)

o divides string into pieces separated by fieldsep, and stores the pieces in array

o if the fieldsep is omitted, the value of FS is used.
Example:

split("'auto-da-fe'', a, ''-'")

76

U. Naresh Kumar

e sets the contents of the array a as follows:
a[1] = "auto"
a[2] ="da"
a[3] = "fe"
Example: process sales data

e input file:

Sales
1 clothing 3141
1 computers 9161
1 textbooks 21812
2 elething 3252
2 CcCoOmputers LA321
2 supplies 2242
2 textbooks 15462

O output:

77

U. Naresh Kumar

O summary of category sales Illustration: process each input line

Input

NN DN~ — -

clothing
computers
textbooks
clothing
computers
supplies
textbooks

3141 DS

9161
21321
3252
12321
2242
15462

MMNDN DN~ -

clothing
computers
textbooks
clothing
computers
supplies
textbooks

3141 Dl

9161
21321
3252
12321
2242
15462

claothing
computers
textbooks
clothing
computers
supplies
textbooks

15462

3141 ES

9161
21321
32562
12321
2242

Array

—) s "clothing"

= = computers’

clothing"” 3141

9161
"clothing" 3141
"computers” [9161
"textbooks" |21312

- =] -

Illustration: process each input line

NN NN — =

clothing
computers
textbooks
clothing
computers
supplies
textbooks

3141
9161
21321
3252
12321
2242
15462

.

clothing
computers
textbooks
clothing
computers
supplies
textbooks

3141
9161
21321
3252
12321
2242
15462

Summary: awk program

Sales
1 clothing 3141
1 computers 9161
1 textbooks 21312
2 clothing 3252
2 computers 12321
2 supplies 2242
2 textbooks 15462

- =] -

- =] -

=) o

awk

|{deptSales [62] 4= %8} I

"clothing"

"textbooks"

7 compu ters”

"supplies”

"clothing"
"computers”
"textbooks"

"supplies”

‘computers”

‘clothing"

'textbooks"

6393

9161

21312

6393

21482

36774

2242

6393
21482
36774

2242

deptSales

78

U. Naresh Kumar

Example: complete program

% cat sales.awk

{

}
END {

for (x in deptSales)

deptSales[$2] += $3

print x, deptSales[x]
}
% awk —f sales.awk sales
awk builtin functions

tolower(string)

O returns a copy of string, with each upper-case character converted to lower-case.

Nonalphabetic characters are left unchanged.

Example: tolower("MiXeD cAsE 123")

returns "mixed case 123"

toupper(string)

O returns a copy of string, with each lower-case character converted to upper-case.

awk Example: list of products

103:sway bar:49.99
101:propeller:104.99

104:fishing line:0.99
113:premium fish bait:1.00
106:cup holder:2.49

107:cooler:14.89

79

U. Naresh Kumar

112:boat cover:120.00

109:transom:199.00

110:pulley:9.88

105:mirror:4.99

108:wheel:49.99

111:lock:31.00

102:trailer hitch:97.95

awk Example: output

Marine Parts R Us

Main catalog

Part-id name price

101 propeller 104.99

102 trailer hitch 97.95

103 sway bar 49.99

104 fishing line 0.99

105 mirror 4.99

106 cup holder 2.49

107 cooler 14.89

108 wheel 49.99
109 transom 199.00

U. Naresh Kumar

110 pulley 9.88

111 lock 31.00

112 boat cover 120.00

113 premium fish bait 1.00

Catalog has 13 parts

awk Example: complete

BEGIN {

FS= H:H

print ''Marine Parts R Us"

print ''Main catalog"

print "'Part-id\tname\t\t\t price"

print " "
}
{
printf("' %3d\t %-20s\t %6.2f\n"", $1, $2, $3)
count++
}
END {
print " "

print ''Catalog has " count " parts'

81

U. Naresh Kumar

Applications:
Awk control structures

O Conditional
if-else
O Repetition
for
O with counter
O with array index
while
do-while

also: break, continue

if Statement

Syntax:

if (conditional expression)

statement-1

else

statement-2

Example:

if (NR<3)

print $2

else

print $3

82

U. Naresh Kumar

for Loop

Syntax:

for (initialization; limit-test; update)

statement

Example:

for (i = 1; i <= NR; i++)

total += $i

count++

for Loop for arrays

Syntax:

for (var in array)

statement
Example:
for (x in deptSales)
{

print x, deptSales[x]
}
While Loop
Syntax:

83

U. Naresh Kumar

while (logical expression)
statement

Example:

i=1

while (i <=NF)

print i, $i

i++

do-while Loop
Syntax:
do

statement

while (condition)

O statement is executed at least once, even if condition is false at the beginning

Example:

do {
print $0
i++

} while (i <= 10)

84

U. Naresh Kumar

loop control statements
O break
exits loop
O continue
skips rest of current iteration, continues with next iteration

Shell Programming

The shell has similarities to the DOS command processor Command.com (actually Dos was
design as a poor copy of UNIX shell), it's actually much more powerful, really a programming
language in its own right.

A shell is always available on even the most basic UNIX installation. You have to go through the
shell to get other programs to run. You can write programs using the shell. You use the shell to
administrate your UNIX system. For example:

Is -al | more

is a short shell program to get a long listing of the present directory and route the output through
the more command.

What is a Shell?

A shell is a program that acts as the interface between you and the UNIX system, allowing you
to enter commands for the operating system to execute.

Here are some common shells.

85

U. Naresh Kumar

Shell Name A Bit of History

gh (Boume) The original shell

esh tesh and zsh The C shell, created by Bill Joy of Berkeley UNIX fame Probably the
second most popular shell after bash

keh, pdksh The Korn shell and its public domain cousin, Written by David Kom

bash Mhe Linux staple, from the GNU project. bash, or Bourne Again Shell
has the advantage that the source code is available and even if it's not
currently running on your UNIX system, it has probably been ported to it

e More C than esh, Also from the GNU project

————————— —— —

Introduction- Working with Bourne Shell

+ The Bourne shell, or sh, was the default Unix shell of Unix Version 7. It was developed
by Stephen Bourne, of AT&T Bell Laboratories.

* A Unix shell, also called "the command line", provides the traditional user interface for
the Unix operating system and for Unix-like systems. Users direct the operation of the
computer by entering command input as text for a shell to execute.

+ There are many different shells in use. They are

— Bourne shell (sh)

— C shell (csh)

— Korn shell (ksh)
Bourne Again shell (bash)

* When we issue a command the shell is the first agency to acquire the information. It
accepts and interprets user requests. The shell examines &rebuilds the commands
&leaves the execution work to kernel. The kernel handles the h/w on behalf ofthese
commands &all processes in the system.

+ The shell is generally sleeping. It wakes up when an input is keyed in at the prompt. This
input is actually input to the program that represents the shell.

Shell responsibilities
1. Program Execution
2. Variable and Filename Substitution
3. I/0 Redirection
4. Pipeline Hookup
5. Environment Control
6. Interpreted Programming Language
1. Program Execution:

¢+ The shell is responsible for the execution of all programs that you request fromyour
terminal.

+ Each time you type in a line to the shell, the shell analyzes the line and thendetermines
what to do.

86

U. Naresh Kumar

* The line that is typed to the shell is known more formallyas the command line. The shell
scans this command line and determines the name of the program to be executed and
what arguments to pass to the program.

2. Variable and Filename Substitution:

+ Like any other programming language, the shell lets you assign values to variables.
Whenever you specify one of these variables on the command line, preceded by adollar
sign, the shell substitutes the value assigned to the variable at that point.

3.1/0 Redirection:

+ It is the shell's responsibility to take care of input and output redirection on the command
line. It scans the command line for the occurrence of the special redirection characters <,
>, 0r >>,

4. Pipeline Hookup:

o Just as the shell scans the command line looking for redirection characters, it also looks
for the pipe character |. For each such character that it finds, it connects the standard
output from the command preceding the | to the standard input of the one following thel.
It then initiates execution of both programs.

5. Environment Control:

o The shell provides certain commands that let you customize your environment. Your
environment includes home directory, the characters that the shell displays toprompt you

87

U. Naresh Kumar

to type in a command, and a list of the directories to be searched whenever you request
that a program be executed.

6. Interpreted Programming Language:

¢ The shell has its own built-in programming language. This language is interpreted,
meaning that the shell analyzes each statement in the language one line at a time and then
executes it. This differs from programming languages such as C and FORTRAN, in
which the programming statements are typically compiled into a machine-executable
form before they are executed.

+ Programs developed in interpreted programming languages are typically easier to debug
and modify than compiled ones. However, they usually take much longer to execute than
their compiled equivalents.

Pipes and Redirection
Pipes connect processes together. The input and output of UNIX programs can be redirected.
Redirecting Output
The > operator is used to redirect output of a program. For example:

Is -1 > Isoutput.txt
redirects the output of the list command from the screen to the file Isoutput.txt.

To Oappend to a file, use the >> operator.
ps >> Isoutput.txt

Redirecting Input

You redirect input by using the < operator. For example:
more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the following
program means run the ps program, sort its output, and save it in the file pssort.out

ps | sort > pssort.out
The sort command will sort the list of words in a textfile into alphbetical order according to the

ASCII code set character order.

Here Documents

88

U. Naresh Kumar

A here document is a special way of passing input to a command from a shell script. The
document starts and ends with the same leader after <<. For example:

#!/bin/sh
cat < this is a here
document
IFUNKY!

How It Works

It executes the here document as if it were input commands.
Running a Shell Script

You can type in a sequence of commands and allow the shell to execute them interactively, or
youu can sotre these commands in a file which you can invoke as a program.

Interactive Programs

A quick way of trying out small code fragments is to just type in the shell script on the command
line. Here is a shell program to compile only files that contain the string POSIX.

{ for file in *
do
it grep -1 POBIX §file
then
more §file
£1
done

The Shell as a Programming Language
Creating a Script

To create a shell script first use a text editor to create a file containing the commands. For
example, type the following commands and save them as first.sh

89

U. Naresh Kumar

#!/bin/ah

fixer.sh

™is file looks through all the files in the gurrent
directory for the string POSIX, and then prints those
filles to the standard output.

for file in *
4o
i grep -qg POSIX $file
then
pore Sfile
£l
done

| exie 0
Note: commands start with a #.

The line

#!/bin/sh
is special and tells the system to use the /bin/sh program to execute this program.

The command

exit 0
Causes the script program to exit and return a value of 0, which means there were not errors.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the script file as a
parameter, thus:

/bin/sh first.sh

Or 2) change the mode of the script to executable and then after execute it by just typing its
name.

chmod +x first.sh
first.sh
Actually, you may need to type:
first.sh
to make the file execute unles the path variable has your directory in it.

Shell Syntax
The modern UNIX shell can be used to write quite large, structured programs.

Shell metacharacters

The shell consists of large no. of metacharacters. These characters plays vital role in Unix
programming.

Types of metacharacters:

90

U. Naresh Kumar

1.File substitution
2.1/0 redirection
3. Process execution
4. Quoting metacharacters
5.Positional ~ parameters
6. Special characters
7.Command substitution
Filename substitution:
These metacharacters are used to match the filenames in a directory.
Metacharacter significance
* matches any no. of characters
? matches a single character
[ijk] matches a single character either i,j,k
['ijk] matches a single character that is not an Lj,k

Shell Variables

Variables are generally created when you first use them. By default, all variables are considered
and stored as strings. Variable names are case sensitive.

salutation=Hello
echo S$salutation

Hel
salutation=*"Yeas Dear*
echo Ssalutation

g 31" " 11
palutation=7+5
echo $salutation

e U can define & use variables both in the command line and shell scripts. These variables
are called shell variables.

e No type declaration is necessary before u can use a shellvariable.

e Variables provide the ability to store and manipulate the information with in the shell

program. The variables are completely under the control ofuser.

91

U. Naresh Kumar

2)

Variables in Unix are of two types.

1) User-defined variables:
Generalized form:
variable=value.
Eg: $x=10
$echo $x
10
To remove a variable use unset.
= S$unset x

All shell variables are initialized to null strings by default. To explicitly set null values
use

= X= or x=_° or x=—I

To assign multiword strings to a variable use

* $msg=_u have a mail‘
Environment Variables

e They are initialized when the shell script starts and normally

capitalized to distinguish them from user-defined variables in scripts
e To display all variables in the local shell and their values, type the set command
e The unset command removes the variable from the current shell and sub shell

Environment Variables| Description

$HOME Home directory

$PATH List of directories to search for commands
$PS1 Command prompt

$PS2 Secondary prompt

$SHELL Current login shell

$0 Name of the shell script

$# No . of parameters passed

92

U. Naresh Kumar

$$ Process ID of the shell script

Command substitution and Shell commands:

read:
e The read statement is a tool for taking input from the user i.e.
making scripts interactive. It is used with one or more variables.
Input supplied through the standard input is read into these
variables.
$read name

What ever u entered is stored in the variable
name. printf:

Printf is used to print formatted

o/p. printf "format" argl arg?2 ...

Eg:

$ printf "This is a number: %d\n" 10
This is a number: 10

$

Printf supports conversion specification characters like %d, %s ,%x
,%o0.... Exit status of a command:

o Every command returns a value after execution .This value is called the exit

status or return value of a command.
o This value is said to be true if the command executes successfully and false if it fails.
o There is special parameter used by the shell it is the $?. It stores the exit

status of a command.

exit:

o The exit statement is used to prematurely terminate a program. When this
statement is encountered in a script, execution is halted and control is returned to
the calling program- in most cases the shell.

o U don‘t need to place exit at the end of every shell script because the shell
knows when script execution is complete.

set:
e Set is used to produce the list of currently defined variables.
$set

93

U. Naresh Kumar

e Set is used to assign values to the positional parameters.
$set welcome to Unix
The do-nothing(:)Command

e [t is a null command.

e In some older shell scripts, colon was used at the start of a line to introduce a
comment, but modern scripts uses # now.

* expr:
e The expr command evaluates its arguments as an expression:
$expr8+6
$x="expri12 /4"
$ echo $x
3

export:

There is a way to make the value of a variable known to a sub shell, and that's
by exporting it with the export command. The format of this command is

export variables
where variables is the list of variable names that you want exported. For any sub
shells that get executed from that point on, the value of the exported variables will be
passed down to the sub shell.
eval:
eval scans the command line twice before executing it. General form for eval
is eval command-line
Eg:
$ cat last

eval echo \$$#

$ last one two three four
four

${n}

If u supply more than nine arguments to a program, u cannot access the tenth and greater
arguments with $10, $11, and so on.

${n} must be used. So to directly access argument 10, you must write

94

U. Naresh Kumar

${10}
Shift command:

The shift command allows u to effectively left shift your positional parameters. If u execute
the command

Shift

whatever was previously stored inside $2 will be assigned to $1, whatever was previously
stored in $3 will be assigned to $2, and so on. The old value of $1 will be irretrievably lost.

The Environment-Environment Variables

It creates the variable salutation, displays its value, and some parameter variables.

¢ When a shell starts, some variables are initialized from values in the environment.
Here is a sample of some of them.

Description

The home directory of the current user.

A colon-separated list of directories to search for commands,
A command prompt, usually $

A secondary prompt, used when prompting for additional input,
usually >

An Input field separator. A list of characters that are used to
separate words when the shell is reading input, usually space, tab
and newline characters

Variable Description

The name of the shell script

The number of parameters passed

The process [D of the shell script, often used inside a script for
generating unique temporary filenames, for example /tmp/junk_$§.

Parameter Variables
+ If your script is invoked with parameters, some additional variables are created.

Parameter Variable Description
$1, 83, The parameters given to the seript
$* A list of all the parameters, in a single variable, separated by the first
character in the environment variable I¥s
l S0 A substle variation on $¢, that doesn't use the I¥8 environment variable
Quoting

Normally, parameters are separated by white space, such as a space. Single quot marks can be
used to enclose values containing space(s). Type the following into a file called quot.sh

95

U. Naresh Kumar

make sure to make it executable by typing the command:

< chmod a+x
quot.sh The results of executing

96

U. Naresh Kumar

the file is:

Hl there

Hl there
Smyvar

smyvar

Enter some toxt
Mello wWorld

Sinyvar now equals Hallo World

How It Works

The variable myvar is created and assigned the string Hi there. The content of the variable is
displyed using the echo $. Double quotes don't effect echoing the value. Single quotes and
backslash do.

The test, or [|[Command

Here is how to check for the existance of the file fred.c using the test and using the []
command.

if test <f fred.c
then

£
We can also write it like this

if [~f fred.c)
then

fi

You can even place the then on the same line as the if, if youu add a semicolon before the
word then.

if [-f fred.c)y then

1

Here are the conditon types that can be used with the test command. There are string
comparison.

String Comparison Result

string True if the string Is not an empty string

stringl = string2

stringl I= string2
-n string

® string

There are arithmetic comparison.

True if the strings are the same
True of the strings are not equal
True if the string is not aull

True if the string 15 null (an empty string)

97

U. Naresh Kumar

Arithmetic Comparison Result

expressionl -eq expression2 True if the expressions are equal.
expression]l -ne aexpression2 True if the expressions are not equal
expression]l -gt expression2 True if expressionl is greater than expression2.

expressionl -ge expression2 True if expressionl is greater than or equal to
expression?.

expressionl -1t expressionl Triw if expraessioni is lew than expression2.

expressionl ~-le expression2 True if expressionl is less than or equal to
expression2.

i{: expression The 1 negates the expression and returns true if the

expression is false, and vice versa

There are file conditions.

Result

True if the file is a directory.
True if the file exists.
True if the fle is a regular fle,

True if set-group~-1id is set on hle
True if the file is readable.

True if the file has non-zero size.
True if set-user-1d is set on file
True if the file is writeable,

True If the file is executable.

Control Structures

The shell has a set of control structures.
if

The if statement is vary similar other programming languages except it ends with a fi.

if condition
then

statements
else

statements
fi

elif

the elif is better known as "else if". It replaces the else part of an if statement with another if
statement. You can try it out by using the following script.

98

U. Naresh Kumar

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [$tiOmeofday = "yes" |
then
echo "Good morning"
elif [$timeofday = "no" |; then
echo "Good afternoon”

else
echo "Sorry, $timeofday not recognized. Enter yes

orno" exit 1 fi
exit 0
How It Works
The above does a second test on the variable timeofday if it isn't equal to yes.
A Problem with Variables
If a variable is set to null, the statement
if [$timeofday = "yes"]

looks like
if [="yes"]

99

U. Naresh Kumar

which is illegal. This problem can be fixed by using double quotes around the variable name.
if ["$timeofday" = "yes"]
for

The for construct is used for looping through a range of values, which can be any set of strings.
The syntax is:

for variable in values

do
statements
done
Try out the following script:
#!/bin/sh
for foo in bar fud 43
do
echo $foo
done
exit 0
When executed, the output should be:
bar
fudO
43
How It Works
The above example creates the variable foo and assigns it a different value each time around the
for loop.
How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt, chap4.txt,
and chap5.txt and print the files.

#!/bin/sh

for file in $(1s chap[345].txt); do
lpr $file
done0

while

While loops will loop as long as some condition exist. OF course something in the body
statements of the loop should eventually change the condition and cause the loop to exit. Here is
the while loop syntax.

while condition do
statements
done

100

U. Naresh Kumar

Here is a whil loop that loops 20 times.
#!/bin/sh

foo=1
while ["$foo" -le 20]
do

done exit 0

How It Works
echo ""Here we go again'' foo=$(($foo+1))

The above script uses the [] command to test foo for <=the value 20. The line

foo=$(($fo0o+1))
increments the value of foo each time the loop executes..

until

The until statement loops until a condition becomes true! Its syntax is:

until condition

do
statements
done
Here is a script using until.
#!/bin/sh
until who | grep "$1" > /dev/null
do
S10eep 60
done

now ring the bell and announce the expected user.

echo -e \\a
echo "*#*** §1 has just loogged in ****"

exit 0

case

The case statement allows the testing of a variable for more then one value. The case statement
ends with the word esac. Its syntax is:

case variable in
pattern [| pattern] ...) statements;;

pattern [| pattern] ...) statements;;

€sac

101

U. Naresh Kumar

Here is a sample script using a case statement:
#!/bin/sh

echo "Is it morning? Please answer yes or no'
read timeofday

case "$timeofday" in
"yes") echo "Good Morning";;
"no") echo "Good Afternoon";;
0"y") echo "Good Morning";;
"n") echo "Good Afternoon";;
*) echo "Soory, answer not recognized";;

€sac

exit 0

The value in the varaible timeofday is compared to various strings. When a match is made, the
associated echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.

case "$timeofday" in
"yes" | "y" | "yes" | "YES") echo "good Morning";;
"n"* | "N"*) <echo "Good Afternoon";;
*) <echo "Sorry, answer not recognized";;

Oesac

How It Works

The above has sever strings tested for each possible statement.
Here is a case statement that executes multiple statements for each case.

case "$timeofday" in
uyesu | nyn | "YCS" | HYESH)
echo "Good Morning"
echo "Up bright and early this morning"

3
[nN]*)
echo "Good Afternoon"
5
)
echo "Sorry, answer not recognized"
echo "Please answer yes or noo"
exit 1
5

€sac

How It Works

102

U. Naresh Kumar

When a match is found to the variable value of timeofday, all the statements up to the ;; are
executed.

Arithmetic in shell

The $((...)) is a better alternative to the expr command, which allows simple arithmetic
commands to be processed.

x=$(($x+1))

Parameter Expansion

Using { } around a variable to protect it against expansion.
#!/bin/sh

foriinl?2
do
my_secret_process ${i}_tmp
done
Here are some of the parameter expansion

Parameter Expansion Description

$(param:-dafaulr) |f paramisnull, set it to the value of datfault

$(Wparam) Gives the length of param.

8 (paramhyword) From the end, removes the smallest part of param that matches word and
returns the rest

$ (paramdSword) From the end, removes the longest part of param that matches
word and returns the rest

$ (param#word) From the beginning, removes the smallest part of param that matches
word and returns the rest

$ (paramifword) From the beginning, removes the longest part of paxram that matches
word and returns the rest

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter expansion works.

Shell Script Examples
Example
#!/bin/sh
echo "Is it morning? (Answer yes or no)"
read timeofday

if [$timeofday = "yes"]; then

103

U. Naresh Kumar

echo "Good Morning"
else
echo "Good afternoon"

fi

exit 0

elif - Doing further Checks

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]; then
echo "Good Morning"

elif [$timeofday = "no"]; then
echo "Good afternoon"

else echo "Wrong answer! Enter yes or no"
exit 1

fi exit 0

Interrupt Processing-trap
The trap command is used for secifying the actions to take on receipt of signals. It syntax is:

trap command signal
Here are some of the signals.

Signal Description

HUP (1) Hang up; usually sent when a terminal goes off line, or a user logs out
INT (2) Interrupt usually sent by pressing Crri(
QuIT (3) Quit; usually sent by pressing Crrl-

ABRT () Abort, usually sent on some Serous execution error

ALRM (14) Alarm; usually used for handling time-outs

TERM (15) Terminate; usually sent by the system when its shutting down
| ————— e ——— -

How It Works

The try it out section has you type in a shell script to test the trap command. It creates a file and

104

U. Naresh Kumar

keeps saying that it exists until youu cause a control-C interrupt. It does it all again.

Functions
You can define functions inthe shell. The syntax is:

function_name () {

statements
10
Here is a sample function and its execution.
#!/bin/sh
foo() {
echo "Function foo is executing"
}

105

U. Naresh Kumar

'

echo "script starting'
foo
echo "script ended"

exit 0

How It Works

When the above script runs, it defines the funcion foo, then script echos script starting, then it
runs the functions foo which echos Function foo is executing, then it echo script ended.

Here is another sample script with a function in it. Save it as my_name

#!/bin/sh

yes_or_no() {
echo "Parameters are $*"
while true
do
echo -n "Enter yes or no"
read x
Ocase "$x" in
y | yes) return 0;
n | no) return 1;;
*) echo "Answer yes or no"
esac

done

}

echo "Original parameters are $*"

if yes_or_no "IS your naem $1"

then
echo "Hi $1"
else
echo "Never mind"
fi
Oexit O
How It Works

106

U. Naresh Kumar

When my_name is execute with the statement:
my_name Rick and Neil

. gives the output of:
Original parameters are Rick and Neil
Parameters are Is your name Rick
Enter yes or no
no
Never mind

Commands

You can execute normal command and built-in commands from a shell script. Built-in
commands are defined and only run inside of the script.

break

It is used to escape from an enclosing for, while or until loop before the controlling condition has
been met.

The : Command

The colon command is a null command. It can be used for an alias for true..

Continue

The continue command makes the enclosing for, while, or until loop continue at the next
iteration.

The Command
The dot command executes the command in the current shell:

. shell_script
echo

The echo command simply outputs a string to the standard output device followed by a newline
character.

Eval
The eval command evaluates arguments and give s the results.
exec

The exec command can replace the current shell with a different program. It can also modify the
current file descriptors.

exit n

107

U. Naresh Kumar

The exit command causes the script to exit with exit code n. An exit code of 0 means success.
Here are some other codes.

128 and above

export

Exit Code Description
126 The file was not executable
127 A command was not found

A signal occurred

The export command makes the variable named as its parameter available in subshells.

expr

The expr command evaluates its arguments as an expression.

Ox ="expr $x + 1°
Here are some of its expression evaluations

Description

Expression Evaluation
| exprl | expr2
exprl & axpr2
exprl axpr
exprl > exprd
exprl »>= exprl
exprl < exprl

exprl <= exprl
exprl |I= eaxpril

_prl expr

exprl - expr2

exprl * expr

exprl / exprd

exprl % axprl
printf

exprl I exprl is
non-zero, otherwise expr2
Zero if elther expression
is zoro, otherwise exprl
Equal

Greater than

Greater or equal to

Less than

Less or equal to

Not equal

Addition

Subtraction

Multiplication

Integer division

Integer modulo,

The printf command is only available in more recent shells. It works similar to the echo
command. Its general form is:

printf "format string" parameter] parameter?2 ...
Here are some characters and format specifiers.

108

U. Naresh Kumar

I Escape Sequence Description J
W Backslash character |
= Alert (ring the bell or beep)
\b Backspace character ’
\E Foom feed character

‘ \n Newline character |
x Carrage return
\t Tab character

l \w Verrtical tab character

\ooo The single character with
I octal value coo

[Conversion Specifier Description J
a COutput a decimal number
< Output a character
= Chutput a stmang
: |

Output the S character

return

The return command causes functions to return. It can have a value parameter which it returns.

set

The set command sets the parameter variables for the shell.

shift

The shift command moves all the parameters variables down by one, so $2 becomes $1, $3
becomes $2, and so on.

unset

The unset command removes variables or functions from the environment.

Command Execution

The result of $(command) is simply the output string from the command, which is then available
to the script.

Debugging Shell Scripts

When an error occurs in a script, the shell prints out the line number with an error. You can use
the set command to set various shell option. Here are some of them.

Command Line Option set Option Description J
sh -n <script> set -0 noexec Checks for syntax errors only; doesn’t execute
set -n commands

sh -v <script> sar -o wverbose Echoes commands before running thom
set ~-v

sh -x <script> et -0 Xtrace Fohoes commands after processing on the
set -x command line
st -0 nounset Gives an error message when an undefined
set -u varable is used

109

U. Naresh Kumar

Unit II

Files and Directories

UNIX File Structure

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other devices in the exactly the same way
as they would use a file.

Directories, too, are special sorts of files.
File types

Most files on a UNIX system are regular files or directories, but there are additional types of

files:

1. Regular files: The most common type of file, which contains data of some form. There
is no distinction to the UNIX kernel whether this data is text or binary.

2. Directory file: A file contains the names of other files and pointers to information on
these files. Any process that has read permission for a directory file can read the contents
of the directory, but only the kernel can write to a directoryfile.

3. Character special file: A type of file used for certain types of devices on asystem.

4. Block special file: A type of file typically used for disk devices. All devices on a
system are either character special files or block special files.

5. FIFO: A type of file used for interprocess communication between processes. It‘s
sometimes called a named pipe.

6. Socket: A type of file used for network communication between processes. A socket
can also be used for nonnetwork communication between processes on a single host.

7. Symbolic link: A type of file that points to another file.

The argument to each of different file types is defined as follows_

110

U. Naresh Kumar

Macro Type of file

S_ISREG() | Regular file

S_ISDIR() Directory file

S_ISCHR() | Character special file

S_ISBLK() | Block special file

S_ISFIFO() | Pipe or FIFO

S_ISLNK() | Symbolic link

S_ISSOCKJ() | Socket

File System Structure

Files are arranged in directories, which also contain subdirectories.

A user, neil, usually has his files stores in a 'home' directory, perhaps /home/neil.

111

U. Naresh Kumar

Files and Devices

Even hardware devices are represented (mapped) by files in UNIX. For example, as root, you
mount a CD-ROM drive as a file,

$ mount -t is09660 /dev/hdc /mnt/cd_rom
$ cd /mnt/cd_rom
/dev/console - this device represents the system console.
/dev/tty - This special file is an alias (logical device) for controlling terminal (keyboard and
screen, or window) of a process.
/dev/null - This is the null device. All output written to this device is discarded.

File Metadata Inodes

* A structure that is maintained in a separate area of the hard disk.
+ File attributes are stored in the inode.
* Every file is associated with a table called the inode.
* The inode is accessed by the inode number.
* Inode contains the following attributes of a file: file type, file permissions , no. of links
UID of the owner, GID of the group owner, file size date and time of last modification, last

access, change.

File attributes
Attribute value meaning
File type type of the file

Access permission file access permission for owner, group and others

Hard link count no.of hard links of a file.
UID file owner user ID.

GID the file group ID.

File size file size in bytes.

Inode number system inode number of the file.

File system ID file system ID where the file is stored.

112

U. Naresh Kumar

Kernel Support For Files:
UNIX supports the sharing of open files between different processes. Kernel has three data

structures are used and the relationship among them determines the effect one process has on

another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a table
of open file descriptors, which is taken as a vector, with one entry per descriptor.
Associated with each file descriptor are

a. The file descriptor flags.
b. A pointer to a file table entry.
2. The kernel maintains a file table for all open files. Each file table entry contains
a. The file status flags for the file(read, write, append, sync, nonblocking, etc.),
b. The current file offset,
c. A pointer to the v-node table entry for the file.

3. Each open file (or device) has a v-node structure. The v-node contains information about
the type of file and pointers to functions that operate on the file. For most files the v-
node also contains the i-node for the file. This information is read from disk when the
file is opened, so that all the pertinent information about the file is readily available.

The arrangement of these three tables for a single process that has two different files open

one file is open on standard input (file descriptor 0) and the other is open standard output

(file descriptor 1).

Here, the first process has the file open descriptor 3 and the second process has file open
descriptor 4. Each process that opens the file gets its own file table entry, but only a single v-
node table entry. One reason each process gets its own file table entry is so that each process has

its own current offset for the file.

» After each _write‘ is complete, the current file offset in the file table entry is incremented
by the number of bytes written. If this causes the current file offset to exceed the current
file size, the current file size, in the i-node table the entry is to the current file offset(Ex:
file is extended).

» Ifafile is opened with O_APPEND flag, a corresponding flag is set in the file status flags

of the file table entry. Each time a _write* is performed for a file with this append flag

113

U. Naresh Kumar

set, the current file offset in the file table entry is first set to the current file size from the
i-node table entry. This forces every _write‘ to be appended to the current end of file.

» The _lseek function only modifies the current offset in the file table entry. No I/O table

place.

» [Ifafile is positioned to its current end of file using Iseek, all that happens is the current
file offset in the file table entry is set to the current file size from the i-node tableentry.
It is possible for more than a descriptor entry to point to the same file table only. The file
descriptor flag is linked with a single descriptor in a single process, while file status flags are

descriptors in any process that point to given file table entry.

System Calls and Device Drivers

System calls are provided by UNIX to access and control files and devices.
A number of device drivers are part of the kernel.

The system calls to access the device drivers include:

» open Open a file or device.

» read Read from an open file or device.
B» write Write to a file or device.

» close Close the file or device,

» ioctl Specific control the device.

Library Functions

To provide a higher level interface to device and disk files, UNIIX provides a number of standard
: S

= |

User program - et

KaFRE] <— Kernel Space

| Device Drivers |

Hardware
Devices

libraries. o

114

U. Naresh Kumar

Low-level File Access
Each running program, called a process, has associated with it a number of file descriptors.

When a program starts, it usually has three of these descriptors already opened. These are:

D0 Standard mput
@ 1 Standard output
P 2 Standard error

- #include <unistd.h>

- glze t write(int fil’deS. const void ‘*fb'_u‘f;, size_t nbytes);

The write system call arranges for the first nbytes bytes from buf to be written to the file
associated with the file descriptor fildes.

With this knowledge, let's write our first program, simple_write.c:

#finclude <unistd.hs

int main()

{ . ‘
if ((write(l, "Here is some data\n", 18)) != 18)
write(2, "A write error has occurred on file descriptor 1\n",46);
exit(0);
}

Here is how to run the program and its output.
$ simple_write

Here is some data

$

read

$include <unistd.hy

size t read(int fildes, void *buf, size t nbytes); 3

The read system call reads up to nbytes of data from the file associated with the file
decriptor fildes and places them in the data area buf.

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard
output.

115

U. Naresh Kumar

§incTude Zunvebd by 1

int main()
{ 5
char buffer[128]; _
int nread;

nread = read(0, buffer, 128);
if (nread == -1)" - : :
write(2, "A read error has occurred\n", 26);

if ((_'writa(l,bnffef,nread)) I= nread)
write(2, "A write error has occurred\n",27);
exit(0);
}
If you run the program, you should see:

$ echo hello there | simple_read
hello there

$ simple_read < draftl.txt

Files

open

To create a new file descriptor we need to use the open system call.

#include <fentl.h> s : _ |
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags);
int open(const char *path, int oflags, mode t mode);

open establishes an access path to a file or device.

The name of the file or device to be opened is passed as a parameter, path, and
the oflags parameter is used to specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other optional
modes. The open call must specify one of the following file access modes:

Mode Description

O_RDONLY Open for read-only
O_WRONLY Open for write-only

O_RDWR Open for reading and writing

116

U. Naresh Kumar

The call may also include a combination (bitwise OR) of the following optional modes in
the oflags parameter:

D O_APPEND Place written data at the end of the file.
D O_TRUNC Set the length of the file to zero, discarding existing contents,
D 0CREAT Creates the file, if necessary, with permissions given in mode.

» O_EXCL Used with O_CREAT, ensures that the caller creates the fle, The open is
atomic; ie. it's performed with just one function call. This protects against
two programs creating the file at the same time. If the file already exists,
open will fail, J

Initial Permissions
When we create a file using the O_CREAT flag with open, we must use the three parameter

form. mode, the third parameter, is made form a bitwise OR of the flags defined in the header
file sys/stat.h. These are:

» S_IRUSR Read permission, owner.
» S_TIWUSR Write permission, owner.
» S _IXUSR Execute permission, owner.
» S_IRGRP Read permission, group.
» S_IWGRP Write permission, group.
» S_IXGRP Execute permission, group.
» S _IROTH Read permission, others.
» S_IWOTH Write permission, others.
» S_IXOTH Execute permission, others.

For example
open ("myfile", O _CREAT, S_IRUSR|S IXOTH);

Has the effect of creating a file called myfile, with read permission for the owner and execute
permission for others, and only those permissions.

5 1s -1ls myfile

0 =F=——-—m——x¢ 1 neil sgftware 0 Sep 72 0#:11 myfile?

117

U. Naresh Kumar

The umask is a system variable that encodes a mask for file permissions to be used when a file is
created.

You can change the variable by executing the umask command to supply a new value.

The value is a three-digit octal value. Each digit is the results of ANDing values from 1, 2, or 4.

Digit Value Meaning

1 0 No user permissions are to be disallowed.
4 User read permission is disallowed.
2 User write permission is disallowed.
1

User execute permission is disallowed.

Digit Value Meaning

No group permissions are to be disallowed.
Group read permission is disallowed.
Group write permission is disallowed.
Group execute permission is disallowed.

No other permissions are to be disallowed.
Other read permission is disallowed.
Other write permission is disallowed.
Other execute permission is disallowed.

w2
ENEO =N o

For example, to block 'group' write and execute, and 'other' write, the umask would be:

Digit Value
1 0
2 2
1
3 2
=

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The
resulting umask is 032.

close

#include <unistd.h> 7 : ’

int close(int fildes);

U. Naresh Kumar

We use close to terminate the association between a file descriptor, fildes, and its file.

ioctl

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl is a bit of a rag-bag of things. It provides an interface for controlling the behavior of
devices, their descriptors and configuring underlying services.

ioctl performs the function indicated by emd on the object referenced by the descriptor fildes.
Try It Out - A File Copy Program

We now know enough about the open, read and write system calls to write a low-level
program, copy_system.c, to copy one file to another, character by character.

..... o T

W 11 do ﬁns ina number of ways dtmng this cka;atef to compare the ejj‘zcwncy of {
: 1 assume that the input file exists and the output file
; progmms, we wor;ld chcck that these asmmpmns N

#include <unistd.b>
#include <sys/stat.h>
#include <fcntl.h>

int main()
{

char‘c;
int in, out;

in = open("file.in", O_RDONLY);
out = open("file.out”, O _WRONLY|O_ CREAT, S IRUSR|S_IWUSR);
while(read(in,&c,1) == 1)

write (out,&c,1);

ax:;t (0);

N #: lude <um.std h> Zzne mmst come ﬁrst as it defmes ﬂags : A
regardmg POSI;X v compltance that may affect other mclude frles

Running the program will give the following:

S time copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU

2 1s -1l file.in file.out
1029 -rw-r-——-r- 1 neil uger
1029 —rw==————- 1 neil use

1048576 Sep 17 10:46 file.in
1048576 Sep 17 10:51 file.out

16 B0

n]

119

U. Naresh Kumar

We used the UNIX time facility to measure how long the program takes to run. It took 2 and one
half minutes to copy the 1Mb file.

We can improve by copying in larger blocks. Here is the improved copy_block.c program.

finclude <unistd.h>
finclude <gys/stat.hs
#include <fentl.h>

int mein()

{
char block[1024];
int in, sub:

int nread;

in = gpen("file.in", 0O _RDONLY):

out = open("file.out", O_WRONLY|O_CREAT, $_IRUSR|S_IWUSR):

while((nread = read(in,block,sizeof(block))) > 0)
write(out,block,nread);

exit(0Q);

Now try the program, first removing the old output file:

S rm file.out
5 time copy block
0.0luser 1.09system 0:01.80slapsed S57%CPU

S 1s =-1ls file.in file.out
1028 -rw-r--r—- 1 neil users 104857¢
1028 —rw———--—- 1 neil users 104837

17 10:46 file.in
17 10:57 file.out

The revised program took under two seconds to do the copy.

Other System Calls for Managing Files

Here are some system calls that operate on these low-level file descriptors.

Iseek

fiinclude <unistd.h»>
#include <sys/types.h>

off_t lseek(int fildes, off t offset, int whence): {

120

U. Naresh Kumar

The Iseek system call sets the read/write pointer of a file descriptor, fildes. You use it to set
where in the file the next read or write will occur.

The offset parameter is used to specify the position and the whence parameter specifies how the
offset is used.

whence can be one of the following:

» SEEK_SET offset is an absolute position

» SEEK_CUR offset is relative to the current position

» SEEK_END offset is relative to the end of the file
dup and dup2

£include <unistd.h>

int dup(int f£ildes);
int dup2(int fildes, int fildes2):;

The dup system calls provide a way of duplicating a file descriptor, giving two or more, different
descriptors that access the same file.

File Status Information-Stat Family: fstat, stat and Istat

#include <unistd.h>
£include <sys/stat.h>
f#include <sys/types.h>

int fstat(int fildes, struct stat *buf);
int stat(const char *path, struct stat *buf);
int lstat (const char *path, struct stat *buf);

Note that the i

The fstat system call returns status information about the file associated with an open file
descriptor.

The members of the structure, stat, may vary between UNIX systems, but will include:

121

U. Naresh Kumar

stat Membe‘r

Description

gt _mode
st_ino
st_dev
st_uid
st_gid
st_atime
gt _ctime
st_mtime

gt _nlink

File permissions and file type information.

The inode associated with the file,

The device the file resides on.

The user identity of the file owner.

The group identity of the file owner.

The time of last access,

The time of last change to mode, owner, group or content.
The time of last modification to contents.

The number of hard links to the file.

The permissions flags are the same as for the open system call above. File-type flags include:

» S_IFBLK
» S_IFDIR
» s _IFCHR
» S_IFIFO
> S_IFREG
» S_IFLNK

Other mode flags include:

B S_ISUID
» S_IseID

Entry is a block special device.
Entry is a directory.
Entry is a character special device.

Entry is a FIFO (named pipe).

o

Entry is a regular file.

Entry is a symbolic link.

Entry has setUID on execution.

Enfrv has setGID on execution.

Masks to interpret the st_mode flags include:

» S_IFMT
» S_IRWXU
» S_IRWXG
» S_IRwWXO

File type.
User read/write/execute permissions.
Group read/write/execute permissions.

Others read/write/execute permissions.

122

U. Naresh Kumar

There are some macros defined to help with determining file types. These include:

‘% S_ISBLK Test for block special file.
» S_ISCHR Test for character special fi
» S_ISDIR Test for directory.

» S_ISFIFO Test for FIFO.

» S_ISREG Test for regular file.

b S_ISLNK Test for symbolic link.

To test that a file doesn't represent a directory and has execute permisson set for the owner and
no other permissions, we can use the test:

struct stat statbuf;
- mode_t modes;

stat ("£ilename", &statbuf);
- modes = statbuf.st mode;

(1S ISDIR(modes) && (modes & S_IRWKU) == S_IXUSR)

File and record locking-fcntl function

+ File locking is applicable only for regular files.

+ Itallows a process to impose a lock on a file so that other processes can not modify the
file until it is unlocked by the process.

« Write lock: it prevents other processes from setting any overlapping read / write locks on
the locked region of a file.

* Read lock: it prevents other processes from setting any overlapping write locks on the
locked region of a file.

* Write lock is also called a exclusive lock and read lock is also called a shared lock.
« fentl API can be used to impose read or write locks on either a segment or an entire file.
* Function prototype:

#include<fentl.h>
int fentl (int fdesc, int cmd_flag,);

+ All file locks set by a process will be unlocked when the process terminates.

123

U. Naresh Kumar

File Permission-chmod

You can change the permissions on a file or directory using the chmod system call. Tis forms the
basis of the chmod shell program.

#include <sys/stat.h>

int chmod(const char *path, mode t mode):

chown

A superuser can change the owner of a file using the chown system call.

#include <unistd.h>

int chown(const char *path, uid_t owner, gid t groﬁp) 2

Links-soft link and hard link

Soft link(symbolic links):Refer to a symbolic path indicating the abstract location of another
file.

= Used to provide alternative means of referencing files.
= Users may create links for files using In command by specifying —s option.

hard links : Refer to the specific location of physical data.

* A hard link is a UNIX path name for a file.

* Most of the files have only one hard link. However users may create additional hard links for
files using In command.

Limitations:

= Users cannot create hard links for directories unless they have super user privileges.

= Users cannot create hard links on a file system that references files on a different systems.
unlink, link, symlink

We can remove a file using unlink.

#include <unigtd.h>

int unlink(const char *path);
int link(const char *pathl, const char *path2);
int symlink(const char *pathl, const char *path2);

The unlink system call decrements the link count on a file.

The link system call cretes a new link to an existing file.

124

U. Naresh Kumar

The symlink creates a symbolic link to an existing file.
Directories

As well as its contents, a file has a name and 'administrative information', i.e. the file's
creation/modification date and its permissions.

The permissions are stored in the inode, which also contains the length of the file and where on
the disc it's stored.

A directory is a file that holds the inodes and names of other files.
mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.

#include <sys/stat.h>

int mkdir(const char *path, mode t mode) ;

The mkdir system call makes a new directory with path as its name.

#include <unistd.h>

int rmdir(const char *path);

The rmdir system call removes an empty directory.
chdir

A program can naviagate directories using the chdir system call.

f£include <unistd.h>

int chdir(const char *path);

Current Working Directory- getcwd

A program can determine its current working directory by calling the getcwd library function.

£include <unistd.h>

char *getcwd(char *buf, size t size):;

The getcwd function writes the name of the current directory into the given buffer, buf.

125

U. Naresh Kumar

Scanning Directories

The directory functions are declared in a header file, dirent.h. They use a structure, DIR, as a
basis for directory manipulation.

Here are these functions:

» opendir, closedir
» readdir
B telldir
» seekdir

opendir

The opendir function opens a directory and establishes a directory stream.

! #include <sys/types.h>
| #include <dirent.h>

DIR *opendir (const char *name);

readdir

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp):

The readdir function returns a pointer to a structure detailing the next directory entry in the
directory stream dirp.

The dirent structure containing directory entry details included the following entries:

i» ino t d ino The inode of the file.
i» char d_namel(] The name of the file
telldir

#include <sys/types.h>
#include <dirent,h>

long int telldir(DIR *dirp);

126

U. Naresh Kumar

The telldir function returns a value that records the current position in a directory stream.

seekdir

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

The seekdir function sets the directory entry pointer in the directory stream given by dirp.

closedir

£include <sys/types h>
Finclude <dirent.h>

int closedir(DIR *dirp);

The closedir function closes a directory stream and frees up the resources associated with it.
Try It Out - A Directory Scanning Program

1. The printdir, prints out the current directory. It willrecurse for subdirectories.

#include <unistd.h>
#include <stdioc.h>
#include <dirent.h>
#include <string.h>
#include <sys/ st_.a_t"; h>

void printdir (char ‘*‘di:é,-_ int iiep’th_:)-
DIR *dp; , ,
struct dirent *entry:
strﬁctcﬁtatEStatbuﬁf

1f((dp = opend:.r(d:.r)) NULL) { R AR,
fprzntf(stderr,"oamot open cb.rectory.-: Jss\n" d:}_x);
return,-_ SRR 0 S S
: DGR
Chdlr(dfr)’ ARG S AR N
- while((renddic(dp)) 1= NULL)
"L’HStatfentrY*>d name,&statbuf).f-”'

127

U. Naresh Kumar

After some initial error checking, using opendir, to see that the directory exists, printdir makes
a call to chdir to the directory specified. While the entries returned by readdir aren't null, the
program checks to see whether the entry is a directory. If it isn't, it prints the file entry with
indentation depth.

128

U. Naresh Kumar

The program produces output like this (edited for brevity):How It Works
S printdir
Directory. scan of /home/neil:
.less
.lessrc
.term/

termrxre
.elm/

elmrc
Mail/

received

mbox -
.bash_history
. fvwmrc
.tin/

mailidx/

.index/

563.1
563.2

vosted
attributes
active
tinrc
done.

Here is one way to make the program more general.

Bt moin(ine aryc; chaz* argv(])

i v k.
char *topd:. ", ,pwdtzxan SRR
if (argc la,Z) S 3

topdlrapwd;
else 8

topaix argv[l]

prinbf("D;recto:y scan of %s\n“,topd;r);
pr;ntd;:(_apdxr,ﬂ),
przntf("done An");

exith*

You can run it using the command:

$ printdir /usr/local | more

129

U. Naresh Kumar

UNIT-III

Processes and signals form a fundamental part of the UNIX operating environment, controlling
almost all activities performed by a UNIX computer system.

Here are some of the things you need to understand.

Frocess structure, type and scheduling
S=rhng new processes in different ways
Tarent, child and zombie processes

“What signals are and how to use them

What is a Process

The X/Open Specification defines a process as an address space and single thread of control that
executes within that address space and its required system resources.

A process is, essentially, a running program.

Layout of a C program

Here is how a couple of processes might be arranged within the operationg system.

library

files

Each process is allocated a unique number, a process identifier, or PID.
The program code that will be executed by the grep command is stored in a disk file.
The system libraries can also be shared.

A process has its own stack space.

130

U. Naresh Kumar

Image in main memory
The UNIX process table may be though of as a data structure describing all of the processes that
are currently loaded.

Viewing Processes

We can see what processes are running by using the ps command.

Here is some sample output:

= PS8
._7 o TTY STAT TIME COMMAND
57 w01 8 0:00 -bhash
17 w1 8 0:00 sh /usr/Xll/bin/startx
115 w01 8 G:01 fvwm
1% ppl S 0:01 -bash
128 ool B 0:06 emacs process.txt
146 wvQl 8 0:00 oclock

The PID column gives the PIDs, the TTY column shows which terminal started the process,
the STAT column shows the current status, TIME gives the CPU time used so far and
the COMMAND column shows the command used to start the process.

Let's take a closer look at some of these:
87 w01 '8 0:00 -bash

The initial login was performed on virtual console number one (v01). The shell is running bash.
Its status is s, which means sleeping. Thiis is because it's waiting for the X Windows sytem to
finish.

107 =01 2 0:00 gh Jusr/Xli/bin/astartx

X Windows was started by the command startx. It won't finished until we exit from X. It too is
sleeping.

1315 01 8 0:01 £y

The fvwm is a window manager for X, allowing other programs to be started and windows to be
arranged on the screen.

LS Pl & 0:01 <bash

This process represents a window in the X Windows system. The shell, bash, is running in the
new window. The window is running on a new pseudo terminal (/dev/ptyp0) abbreviated ppO.

131

U. Naresh Kumar

125 pol 3 0:06 emacs process.txt

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo
terminal.

146 +01 & 0:00 oclock

This is a clock program started by the window manager. It's in the middle of a one-minute wait
between updates of the clock hands.

Process environment

Let's look at some other processes running on this Linux system. The output has been
abbreviated for clarity:

$ ps -ax
PID TTY STAT TIME COMMAND
1 2 8 0:00 init
7 T 8 0:00 update (bdfluslh)
40 ? 8§ 0:01 /usr/sbin/syslogd
de 2 5 0:00 /usr/sbin/lpd
51 %' 8 0:00 sendmail: accepting connections
88 v02 § 0:00 /sbin/agetty 38400 tty2
109 2 R 0:41 ¥ 0
192 pp0 R 0:00 ps =ax

Here we can see one very important process indeed:

o

1 2 3 D:00 imit

In general, each process is started by another, known as its parent process. A process so started
is known as a child process.

When UNIX starts, it runs a single program, the prime ancestror and process number one: init.

One such example is the login procedure init starts the getty program once for each terminal that
we can use to long in.

These are shown in the ps output like this:

88 wb2 = 0:00 /ebin/agetly 38400 toy2

132

U. Naresh Kumar

133

U. Naresh Kumar

When interacting with your server through a shell session, there are many pieces of information
that your shell compiles to determine its behavior and access to resources. Some of these settings
are contained within configuration settings and others are determined by user input.

One way that the shell keeps track of all of these settings and details is through an area it
maintains called the environment. The environment is an area that the shell builds every time that
it starts a session that contains variables that define system properties.

In this guide, we will discuss how to interact with the environment and read or set environmental
and shell variables interactively and through configuration files. We will be using an Ubuntu
12.04 VPS as an example, but these details should be relevant on any Linux system.

Every time a shell session spawns, a process takes place to gather and compile information that

should be available to the shell process and its child processes. It obtains the data for these

settings from a variety of different files and settings on the system.

Basically the environment provides a medium through which the shell process can get or set

settings and, in turn, pass these on to its child processes.

Environment List

The environment is implemented as strings that represent key-value pairs. If multiple values are
passed, they are typically separated by colon (:) characters. Each pair will generally will look

something like this:

KEY=valuel:value2:...

If the value contains significant white-space, quotations are used:
KEY="value with spaces"

The keys in these scenarios are variables. They can be one of two types, environmental variables

or shell variables.

Environmental variables are variables that are defined for the current shell and are inherited by
any child shells or processes. Environmental variables are used to pass information into
processes that are spawned from the shell.

Shell variables are variables that are contained exclusively within the shell in which they were
set or defined. They are often used to keep track of ephemeral data, like the current working

directory.

134

U. Naresh Kumar

By convention, these types of variables are usually defined using all capital letters. This helps

users distinguish environmental variables within other contexts.

Environment variables- getenv, setenv

Every process has an environment block that contains a set of environment variables and their
values. There are two types of environment variables: user environment variables (set for each
user) and system environment variables (set for everyone).
By default, a child process inherits the environment variables of its parent process. Programs
started by the command processor inherit the command processor's environment variables. To
specify a different environment for a child process, create a new environment block and pass a
pointer to it as a parameter to the CreateProcess function.
The command processor provides the set command to display its environment block or to create
new environment variables. You can also view or modify the environment variables by
selecting System from the Control Panel, selectingAdvanced system settings, and
clicking Environment Variables.
Each environment block contains the environment variables in the following format:

Varl=Valuel\0

Var2=Value2\0

Var3=Value3\0

VarN=ValueN\O\O

The name of an environment variable cannot include an equal sign (=).

The GetEnvironmentStrings function returns a pointer to the environment block of the calling
process. This should be treated as a read-only block; do not modify it directly. Instead, use
the SetEnvironmentVariable function to change an environment variable. When you are finished

with the environment block obtained from GetEnvironmentStrings,call the
FreeEnvironmentStrings function to free the block. Calling SetEnvironmentVariable has no
effect on the system environment variables.

Kernel support for process

The kernel runs the show, i.e. it manages all the operations in a Unix flavored environment. The
kernel architecture must support the primary Unix requirements. These requirements fall in two
categories namely, functions for process management and functions for file management (files
include device files). Process management entails allocation of resources including CPU,
memory, and offers services that processes may need. The file management in itself involves
handling all the files required by processes, communication with device drives and regulating
transmission of data to and from peripherals. The kernel operation gives the user processes a feel
of synchronous operation, hiding all underlying asynchronism in peripheral and hardware
operations (like the time slicing by clock). In summary, we can say that the kernel handles the
following operations :

1. It is responsible for scheduling running of user and other processes.

135

U. Naresh Kumar

2. Itis responsible for allocating memory.
3. It is responsible for managing the swapping between memory anddisk.
4. It is responsible for moving data to and from the peripherals.

5. it receives service requests from the processes and honors them.

Process Identification:

Every process has a unique process 1D, a non-negative integer. There are two special processes.
Process Dy is usually the schedule process and is often known as the _swapper‘. No program on
disk corresponds to this process — it is part of the kernel and is known as a system process,
process IDi is usually the _init‘ process and is invoked by the kernel at the end of the bootstrap
procedure. The program files for this process loss /etc/init in older version of UNIX and is

/sbin/init is newer version. _init‘ usually reads the system dependent initialization files and brings
the system to a certain state. The _init* process never dies. _init‘ becomes the parent process of

any orphaned child process.

Process control

One further ps output example is the entry for the ps command itself:

182 ppl R G:00 ps —-ax

This indicates that process 192 is in a run state (R) and is executing the command ps-ax.

We can set the process priority using nice and adjust it using renice, which reduce the priority of
a process by 10. High priority jobs have negative values.

Using the ps -1 (forlong output), we can view the priority of processes. The value we are
interested in is shown in the NI (nice) column:

-1
UID PTD PPID PRI NI SIZE RSS WCHEN STAT TTY TIME COMML
501 146 1 1 0 83 754 130b35 s w0l 0:00 acloe

Here we can see that the oclock program is running with a default nice value. If it had been
stated with the command,

nice oclock &

it would have been allocated a nice value of +10.

We can change the priority of a ruinning process by using the renice command,

136

U. Naresh Kumar

> renice 10 146
146: old prigority 0, new priority i0

So that now the clock program will be scheduled to run less often. We can see the modified nice
value with the ps again:

|

T TTY TIME COMM

UIio PID PPID PRI NI SIZE RSS WCHAN STA
3 N w01 0:00 oclo

0 501 146 1 20 10 85 756 130b8s

Notice that the status column now also contains N, to indicate that the nice value has changed
from the default.

Process Creation Starting New Processes

We can cause a program to run from inside another program and thereby create a new process by
using the system. library function.

‘#include <stdlib.h>

int system (const char *string);

The system function runs the command passed to it as string and waits for it to complete.

The command is executed as if the command,

5 sh -c string

has been given to a shell.

Try It Out - system

1. We can use system to write a program to run ps for us.

137

U. Naresh Kumar

 #include <stdlib.h>
~ #include <stdio.h> =

int main()
printf("Running ps with system\n®);

system("ps -ax");
,“rintfgyncnegxnn);;j_- :
3

2. When we compile and run this program, system.c, we get the following:

./system
“nning ps with system
=2ID TTY STAT TIME COMMAND

i % 8 0:00 init

7 ? 8 0:00 update (bdflush)
146 w01 5 N 0:00 ocleck
256 pp0 S 0:00 ./system
257 pph R 0:00 ps -ax

3. The system function uses a shell to start the desiredprogram.

We could put the task in the background, by changing the function call to the following:
E?Htéﬂpi%hﬁaxﬁﬁgi;:+

Now, when we compile and run this version of the program, we get:

)

. /system2
Tunning ps with system

Sone.,

S PID TTY STAT TIME COMMAND
T % B 0:00 init
7 ® 8 0:00 update (bdflush)
146 +w01 8 N 0:00 ocleck
266 ppd R G:00 ps -ax

How It Works

138

U. Naresh Kumar

In the first example, the program calls system with the string ''ps -ax'', which executes
the ps program. Our program returns from the call to system when the ps command is finished.

In the second example, the call to system returns as soon as the shell command finishes. The
shell returns as soon as the ps program is started, just as would happen if we had typed,

> ps -ax &k
at a shell prompt.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They differ in the
way that they start processes and present program arguments.

#include <unistd.h>

char **%environ;

int execl(const char *path, const char *arg0, ..., (char *)0);

int execlp(const char *path, const char REBGU5 ez (char *)0);

int execle(const char *path, const char *arg0, ..., {char *)0, const char
*envpl[]);

‘ int execv(const char *path, const char *argv([]);
| int execvp(const char *path, const char *argvl[]);
int execve(const char *path, const char *argv[l, const char *envp[]):

The exec family of functions replace the current process with another created according to the
arguments given.

If we wish to use an exec function to start the ps program as in our previous examples, we have
the following choices:

#include <unistd.h>

/* Example of an argument list */
/* Note that we need a program name for argv[0] */
const char *ps argv[] =

{Ilpslt’ I’l_axll' 0}'.

/* Example environment, not terribly useful %/
const char *ps _envpl[] =
{"PaTH=/bin: /usr/bin", "TERM=congole", 0};
/* Possible calls to exec functions */
execl("/bin/ps®, "ps", "-ax", 0): /* assumes ps is in /bin */
execlp("ps®, Fps®, "oax®, 0); . /* assumes /bin is in PATH */

execle("/bin/ps™, “ps", ®-ax", 0, Ds_envp); /* passes own environment */

execv ("/bin/ps", pPs_argv);

execvp("ps”, ps_argv):
execyve("/bin/ps", ps argv, Ps_envp);

U. Naresh Kumar

Try It Out - exclp

Let's modify our example to use an exexlp call.

Now, when we run this program, pexec.c, we get the usual ps output, but no Done. message at
all.

Note also that there is no reference to a process called pexec in the output:

5 ./pexec
running ps with execlp
Pip TTY STAT TIME COMMAND
i 7 £ 0:00 init
s 0:00 update (bdflush)

145 01 S N D:00 oeclock
294 ppld R 0:00 ps -ax

How It Works

The program prints its first message and then calls execlp, which searches the directories given
by the PATH environment variable for a program called ps.

It then executes this program in place of our pexec program, starting it as if we had given the
shell command:

5 ps -ax
Waiting for a Process

We can arrange for the parent process to wait until the child finishes before continuing by
calling wait.

#include <sys/types.h>
#include <sys/wait.h>

\ pid_t wait(int *stat loc);

The wait system call causes a parent process to pause until one of its child processes dies or is
stopped.

We can interrogate the status information using macros defined in sys/wait.h. These include:

140

U. Naresh Kumar

Macro Definition

WIFEXITED(stat_val) Non-zero if the child is terminated normally.
WEXITSTATUS (stat _val) If WIFEXITED is non-zero, this returns child exit code.
WIFSIGNALED (stat_val) Non-zero if the child is terminated on an uncaught signal.

WTERMSIG (stat_val) If WIFSIGNALED is non-zero, this returns a signal number.
WIFSTOPPED(stat_val) Non-zero if the child has stopped on a signal.
WSTOPSIG({stat_val) If WIFSTOPPED is non-zeto, this returns a signal number.

Try It Out - wait

1. Let's modify our program slightly so we can wait for and examine the child process exit status.
Call the new program wait.c.

tinclude <sys/types.h>
#include <svs/wait.hs>
#include <unistd.h>
Finclude <stdic.hs

141

U. Naresh Kumar

main()

pid t pid;
char *message;

printf("fork program starting\n");
pid = fork():
switch (pid)
{
case -1:
exit(1);
case 0%
message = "This is the child";

default: ’
message = "This is the parent”;
o= 3y

for(; m > 03 o=} {
puts (message) ;
sleep(l);

2.This section of the program waits for the child process to finish:

142

U. Naresh Kumar

When we run this program, we see the parent wait for the child. The output isn't confused and
the exit code is reported as expected.

S . /wait

fork program starting
This iz the payent
his is the child
nis ig the parent

.al
e)
’_, .
0]
[

is the child

3 Lke parent

his is the ¢hild
18

>
bt
(=]
’_. -
i
|t
]

= ths child
This ig tha child
Child has finished: PID
Child exited with code 3

410

=1l

How It Works

The parent process uses the wait system call to suspend its own execution until status
information becomes available for a child process.

Zombie Processes

When a child process terminates, an association with its parent survives until the parent in turn
either terminates normally or calls wait.

This terminated child process is known as a zombie process.
Try It Out - Zombies

fork2.c is jsut the same as fork.c, except that the number of messages printed by the child and
paent porcesses is reversed.

Here are the relevant lines of code:

switch(pid)

{

case -1l
exit(l);

message = "This is the c¢hild";
n = 3;
break;
default:
nessage
n= bz
brea

"This is the parent";

U. Naresh Kumar

How It Works

If we run the above program with fork2 & and then call the ps program after the child has
finished but before the parent has finished, we'll see a line like this:

=1} TTY STAT TINME COMMAND
20 ppl 2 G:00 (forkz2) <zombies

There's another system call that you can use to wail for child processes. It's called waitpid and you
can use it to wait for a specific process to terminate.

£include <sys/types.h>
finclude <sys/wait.h>

pid_t waitpid(pid t pid, int *stat_loc, int options);

If we want to have a parent process regularly check whether a specific child process had
terminated, we could use the call,

waitpid{child pid, (int *) 0, WNOHANG):

which will return zero if the child has not terminated or stopped or child_pid if it has.

Orphan Process

* When the parent dies first the child becomes Orphan .
* The kernel clears the process table slot for the parent.

System call interface for process management

In addition to the process ID, there are other identifiers for every process. The following

functions return these identifiers

#incldue<sys/types.h>

#include<unistd.h>

pid_t getpid(void); Returns: process ID of calling process

pid_t geppid(void); Returns: parent process ID OF calling process
uid_t getuid(void); Returns: real user ID of calling process

144

U. Naresh Kumar

uid_t geteuid(void); Returns: effective user ID of calling process
gid_t getgid(void); Returns: real group ID of calling process
gid_t getegid(void); Returns: effective group ID of calling process

fork Function
The only way a new process is created by the UNIX kernel is when an existing process calls the

fork function.

#include<sys/types.h>

#include<unistd.h>

pid_t fork(void);

Return: 0 is child, process ID of child in parent, -1 on error

The new process created by fork is called child process. This is called once, but return twice that
is the return value in the child is 0, while the return value in the parent is the process ID of the
new child. The reason the child‘s process ID is returned to the parent is because a process can
have more than one child, so there is no function that allows a process to obtain the process IDs
of its children. The reason fork return O to the child is because a process can have only a single

parent, so that child can always call getppid to obtain the process ID of its parent.

Both the child and parent contain executing with the instruction that follows the call to fork. The
child is copy of the parent. For example, the child gets a copy of the parent‘s data space, heap
and stack. This is a copy for the child the parent and children don‘t share these portions of

memory. Often the parent and child share the text segment, if it is read-only.
There are two users for fork:

1. When a process wants to duplicate itself so that the parent and child can each execute
different sections of code at the same time. This is common for network servers_ the
parent waits for a service requests from a client. When the request arrives, the parent
calls fork and lets the child handle the request. The parent goes back to waiting for the
next service request to arrive.

When a process wants to execute a different program, this is common for shells. In this

case the child does an exec right after it returns from the fork.

145

U. Naresh Kumar

vfork Function

The function vfork has the same calling sequence and share return values as fork. But the
semantics of the two functions differ. vfork is intended to create a new process when the
purpose of the new process is to exec a new program. vfork creates the new process, just like
fork, without fully copying the address space of the parent into the child, since the child won‘t
reference the address space — the child just calls exec right after the vfork. Instead, while the
child is running, until it calls either exec or exit, the child runs in the address space of the parent.
This optimization provides an efficiency gain on some paged virtual memory implementations of

UNIX.

Another difference between the two functions is that vfork guarantees that the child runs first,

until the parent resumes.
exit Function

There are three ways for a process to terminate normally, and two forms of abnormal

termination.

1. Normal termination:
a. Executing a return from the main function. This is equivalent to calling exit
b. Calling the exit function
c. Calling the _exit function

2. Abnormal termination
a. Calling abort: It generates the SIGABRT signal
b. When the process receives certain signals. The signal can be generated by the

process itself
Regardless of how a process terminates, the same code in the kernel is eventually executed. This

kernel code closes all the open descriptors for the process, releases the memory that it was using,

and the like.

For any of the preceding cases we want the terminating process to be able to notify its parent how it
terminated. For the exit and _exit functions this is done by passing an exit status as the argument to
these two functions. In the case of an abnormal termination however, the kernel generates a
termination status to indicate the reason for the abnormal termination. In any case, the parent of the
process can obtain the termination status from either the wait or waitpid function.The exit status is
converted into a termination status by the kernel when _exit is finally called. If the child terminated

normally, then the parent can obtain the exit status of the child.

146

U. Naresh Kumar

If the parent terminates before the child, then init process becomes the parent process of any
process, whose parent terminates; that is the process has been inherited by init. Whenever a
process terminates the kernel goes through all active processes to see if the terminating process is
the parent of any process that still exists. If so, the parent process ID of the still existing process

is changed to be 1 to assume that every process has a parent process.

When a child terminates before the parent, and if the child completely disappeared, the parent
wouldn‘t be able to fetch its termination status, when the parent is ready to seek if the child had
terminated. But parent get this information by calling wait and waitpid, which is maintained by

the kernel.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the parent is notified by the kernel
sending the parent SIGCHLD signal. Since the termination of a child is an asynchronous event,
this signal is the asynchronous notification from the kernel to the parent. The default action for
this signal is to be ignored. A parent may want for one of its children to terminate and then

accept it child‘s termination code by executing wait.
A process that calls wait and waitpid can

1. block (if all of its children are still running).
2. return immediately with termination status of a child (if a child has terminated and is
waiting for its termination status to be fetched) or

3. return immediately with an error (if it down have any child process).

If the process is calling wait because it received SIGCHLD signal, we expect wait to return

immediately. But, if we call it at any random point in time, it can block.
#include<sys/types.h>

#include<sys/wait.h>
pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, o or -1 on error

147

U. Naresh Kumar

The difference between these two functions is

1. wait can block the caller until a child process terminates, while waitpid has an option that
prevents it from blocking.
2. waitpid does not wait for the first child to terminate, it has a number of options that
control which process it waits for.
If a child has already terminated and is a zombie, wait returns immediately with that child‘s
status. Otherwise, it blocks the caller until a child terminates: if the caller blocks and has
multiple children, wait returns when one terminates, we can know this process by PID return by

the function.

For both functions, the argument statloc is pointer to an integer. If this argument is not a null
pointer, the termination status of the terminated process is stored in the location pointed to by the

argument.

If we have more than one child, wait returns on termination of any of the children. A function

that waits for a specific process is waitpid function.

The interpretation of the pid argument for waitpid depends on its value:

pid ==-1 waits for any child process. Here, waitpid is equivalent to wait

pid > 0 waits for the child whose process ID equals pid

pid ==0 waits for any child whose process group ID equals that of the calling
process

pid < -1 waits for any child whose process group ID equals the absolute value of
pid

waitpid returns the process ID of the child that terminated, and its termination status is returned

through statloc. With wait the only error is if the calling process has no children. ~ With waitpid

however, it‘s also possible to get an error if the specified process or process group does not exist

or is not a child of the calling process.

The options argument lets us further control the operation of waitpid. This argument is either 0

or 1s constructed from the bitwise OR of the following constants.

WNOHANG waitpid will not blink if a child specified by pid is not immediately

available. In this case, the return value is 0.

WUNTRACED if the status of any child specified by pid that has stopped, and whose

148

U. Naresh Kumar

status has not been updated since it has stopped, is returned
The waitpid function provides these features that are not provided by the wait function are:

1. waitpid lets us to wait for one particular process
2. waitpid provides a non-blocking version ofwait
3. waitpid supports job control (wit the WUNTRACED option)

exec Function

The fork function can create a new process that then causes another program to be executed by
calling one of the exec functions. When a process calls one of the exec functions, that process is
completely replaced by the new program and the new program starts executing at its main
function. The process ID doesn‘t change across an exec because a new process is not created.

exec merely replaces the current process with a brand new program from disk.

There are six different exec functions. These six functions round out the UNIX control
primitives. With fork we can create new processes, and with the exec functions we can initiate
new programs. The exit function and the two wait functions handle termination and waiting for

termination. These are the only process control primitives we need.
#include<unistd.h>

int execl(const char *pathname, const char *arg0, . . . /*(char *) 0%/
int execv(const char *pathname, char *const argv[]);

int execle(const char *pathname, const char *arg0, . . . /* (char *) 0, char envp[]*/);

int execve(const char *pathname, char *const argv[], char *const envp[]);
int execlp(const char *pathname, const char *arg0, . . . /* (char *) 0*/);
int execvp(const char *filename, char *const argv(]);

All six returns: -1 on error, no return on success.

The first difference in these functions is that the first four take a pathname argument, while the

last two take a filename argument. When a filename argument is specified:

e if filename contains a slash, it is taken as a pathname.

e Otherwise, the executable file is a searched for in directories specified by the PATH

149

U. Naresh Kumar

environment variable.
The PATH variable contains a list of directories (called path prefixes) that are separated by

colors. For example, the name=value environment string
PATH=/bin:/usr/bin:usr/local/bin/:.
Specifies four directories to search, where last one is current working directory.

If either of the two functions, execlp or execvp finds an executable file using one of the path
prefixes, but the file is not a machine executable that was generated by the link editor, it assumes

the file is a shell script and tries to invoke /bin/sh with filename as input to the shell.

The next difference concerns the passing of argument list. The function execl, execlp and execle
require each of the command-line arguments to the new program to be specified as separate
arguments. The end of the argument should be a null pointer. For the other three functions
execv, execvp and execve, we have to build an array of pointers to the arguments, and the

address of this array is the argument to these three functions.

The final difference is the passing of the environment list to the new program. The two functions
execle and execve allow us to pass a pointer to an array of pointer to an array of pointer to an
array of pointers to the environment strings. The other four functions, however, use the environ
variable in the calling process to copy the existing environment for the new program.

Differences Between Threads and Processes

UNIX processes can cooperate; they can send each other messages and they can interrupt one
another.

There is a class of process known as a thread which are distinct from processes in that they are
separate execution streams within a single process.

Signals

A signal is an event generated by the UNIX system in response to some condition, upon receipt
of which a process may in turn take some action.

Signal names are defined in the header file signal.h. They all begin with SIG and include:

150

U. Naresh Kumar

Signal Name Description

SIGABORT *Process abort

SIGALRM Alarm clock

SIGFPE *Floating point exception
SIGHUP Hangup

SIGILL *[llegal instruction

SIGINT Terminal Interrupt

SIGKILL Kill (can’t be caught or ignored)
SIGPIPE Write on a pipe with no reader
SIGQUIT Terminal Quit

SIGSEGV *Invalid memory segment access
SIGTERM Termination

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

Additional signals include:

Signal Name Description

SIGCHLD Child process has stopped or exited
SIGCONT Continue executing, if stopped

SIGSTOP Stop executing (can’t be caught or ignored)
SIGTSTP Terminal stop signal

SIGTTIN Background process trying to read
SIGTTOU Background process trying to write

If the shell and terminal driver are configured normally, typing the interrupt character (Ctrl-C) at
the keyboard will result in the SIGINT signal being sent to the foreground process. This will
cause the program to terminate.

We can handle signals using the signal library function.

151

U. Naresh Kumar

e

$include <signal.h>

¥oid (*signal(int sig, void (*func) (int))) (int);

The signal function itself returns a function of the same type, which is the previous value of the
function set up to handle this signal, or one of these tow special values:

» SIG_IGN Ienore the signal,
» SIG DFL Restore default behaviorn

Signal generation & Handling

1. We'll start by writing the function which reacts to the signal which is passed in the parameter sig.

$include <signal.h>
£:nclude «<stdio.h>
Sinclude <unistd.h>

woid ouch(int sig)

printf("OUCH! - I got signal %d\n", sig):
Let's call it ouch:
2. The main function has to intercept the SIGINT signal generated when we type Ctrl-C.

For the rest of the time, it just sits in an infinite loop, printing a message once a second:

wdnt mazn()

(void) signal (SIGINT, ouch);
while(l) { S
printf("Hello World!\n");
- sTeen(i): DR
S5
Y.

3. While the program is running, typing Ctrl-C causes it to react and then continue.

When we type Cirl-C again, the program ends:

152

U. Naresh Kumar

S .lotric
Hello World!
Hello World!
Hello World!
Hello World!
(ol

QUCH! - I got signal 2
Hello Woxrlid!
Hellg World!
Hello World!
Hello World!
aC

How It Works

The program arranges for the function ouch to be called when we type Ctrl-C, which gives
the SIGINT signal.

Kernel support for Signals-Sending Signals

A process may send a signal to itself by calling raise.

#include <signal.h>

ot raise(int sig);

A process may send a signal to another process, including itself, by calling kill.

#include <sys/types.h>
Finclude <signal.h>

=t kill(pid t pid, int sig);

Signals provide us with a useful alarm clock facility.

The alarm function call can be used by a process to schedule a SIGALRM signal at some time
in the future.

153

U. Naresh Kumar

#include <unistd.h>

==signad int alarm(unsigned int seconds) ;

Try It Out - An Alarm Clock

1. In alarm.c, the first function, ding, simulates an alarm clock:

2. In main, we tell the child process to wait for five seconds before sending a SIGALRM signal
to its parent:

3. The parent process arranges to catch SIGALRM with a call to signal and then waits forthe
inevitable.

154

U. Naresh Kumar

When we run this program, it pauses for five seconds while it waits for the simulated alarm
clock.

S ./alarm

alarm application starting
waiting for alarm to go off
<5 second pauses>

alarm has gone off

done

g

This program introduces a new function, pause, which simply causes the program to suspend
execution until a signal occurs.

It's declared as,

#incliude <unistd.h>

int pause(void);

How It Works

The alarm clock simulation program starts a new process via fork. This child process sleeps for
five seconds and then sends a SIGALRM to its parent.

A Robust Signals Interface

X/Open specification recommends a newer programming interface for signals that is more
robust: sigaction.

#include <signal.h>

int sigaction{int sig, const struct sigaction *act, struct sigaction *oact);

The sigaction structure, used to define the actions to be taken on receipt of the signal specified
by sig, is defined in signal.h and has at least the following members:

void (*) (int) sa handler function, 8IG_DFL or SIG IGN

ﬁlgset_t sa_mask signals to block in sa_ handler
int sa_flags signal action modifiers

Try It Out - sigaction

Make the changes shown below so that SIGINT is intercepted by sigaction. Call the new

155

U. Naresh Kumar

program ctrlc2.c.

tinclude <signal.h>
$#include <stdio.h>
¥ineciude <unistd.h>

void ouch{int sig)
{

printT ("OUCH! - I got signal $d\n", sig);

int main()
{
struct sigaction act;

act.sa handler = ouch;
s.:‘.__gex_npty'set (sact.sa mask);
act.sa flags = 0;

sigaction(SIGINT, &act, 0);
while(l) {

printf ("Hello World!\n");
sleep(l);

[

Running the program, we get a message when we type Ctrl-C because SIGINT is handled
repeated;y by sigaction.

Type Ctrl-\ to terminate the program.

S ./ctrle2
Eglle Waorid!
Hella World!

156

U. Naresh Kumar

== 1lg World!

JUCH! - I got signal 2
==110 Worldl
==_1o World!

JUCH! - I ‘got signal 2
==11g Worlgd!
==llo Worldl!

How It Works

The program calls sigaction instead of signal to set the signal handler for Ctrl-C (SIGINT) to
the function ouch.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to manipulate sets of
signals.

£#include <signal.h>

int sigaddset(sigset_t *set, int signo);
int sigemptyset(sigset_t *set);

int sigfillset(sigset t *set); _
int sigdelset(sigset t *set, int sigmo);

The function sigismember determines whether the given signal is amember of a signal set.

£include <sigmal.h>

int sigismember(sigset_t *set, int signo);

The process signal mask is set or examined by calling the function sigprocmask.

#include <signal.h>

int sigprocmask(int how, const sigset t *set, sigset t *oset);

sigprocmask can change the process signal mask in a number of ways according to
the how argument.

157

U. Naresh Kumar

The how argument can be one of:

4% SIG_BLOCK The signals in set are added to the signal mask.
» SIG_SETMASK The signal mask is set from set.

» SIG_UNBLOCK The signals in set are removed from the signal mask.

If a signal is blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of its blocked signals ar pending by calling the
function sigpending.

#include <sigpending>

int sigpending(sigset t *set);

A process can suspend execution until the delivery of one of a set of signals by
calling sigsuspend.

This is a more general form of the pause function we met earlier.

#include <signal.h>

‘ int sigsuspend(const sigset t *sigmask);

Signal Functions

The system calls related to signals are explained in the following sections.

Unreliable signals

The signals could get lost — a signal could occur and the process would never know about it.
Here, the process has little control over a signal, it could catch the signal or ignore it, but

blocking of a signal is not possible.

Reliable signals

Linux supports both POSIX reliable signals (hereinafter "standard signals") and POSIX real-time
signals.

Signal dispositions

158

U. Naresh Kumar

Each signal has a current disposition, which determines how the process behaves when it is
delivered the signal.

The entries in the "Action" column of the tables below specify the default disposition for each
signal.

kill and raise Functions

The kill function sends a signal to a process or a group of processes. The raise function allows a

process to send a signal to itself.
#include<sys/types.h>
#include<signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Both return: 0 if OK, -1 on error

There are four different conditions for the pid argument to kill:
pid > 0 The signal is sent to the process whose process ID is pid.

pid=0 The signal is sent to all processes whose process group ID equals the process

group ID of the sender and for which the sender has permission to send thesignal.

pid<0 The signal is sent to all processes whose process group ID equals the absolute

value of pid and for which the sender has permission to send the signal.
pid =-1 unspecified.
alarm and pause Functions

The alarm function allows us to get a timer that will expire at a specified time in the future.
When the timer expires, the SIGALRM signal is generated. If we ignore or don‘t catch this

signal, its default action is to terminate the process.
#include<unistd.h>
unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm.

159

U. Naresh Kumar

The seconds value is the number of clock seconds in the future when the signal should be
generated. There is only one of the alarm clocks per process. If, when we call alarm, there is a
previously registered alarm clock for the process that has not yet expired, the number of seconds
left for that alarm clock to return as the value of this function. That previously registered alarm

clock is replaced by the new value.

If there is a previously registered alarm clock for the process that has not yet expired and if the
seconds value is 0, the previous alarm clock is cancelled. The number of seconds left for that

previous alarm clock is still returned as the value of the function.

Although the default action for SIGALRM is terminating the process, most processes use an

alarm clock catch this signal.

160

U. Naresh Kumar

The pause function suspends the calling process until a signal is caught.
#include<unistd.h>

int pause(void);

Returns: -1 with errno set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns. In that

case, pause returns -1 with errno set to EINTR.
abort Function

abort function causes abnormal program termination.

#include<stdlib.h>

void abort(void);

This function never returns.

This function sends the SIGABRT signal to the process. A process should not ignore this signal.

abort overrides the blocking or ignoring of the signal by the process.
sleep Function

#include<unistd.h>

unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds.

This function causes the calling process to be suspended until either:

1. The amount of clock that is specified by seconds has elapsed or

2. Assignal is caught by the process and the signal handler returns.

In case 1 the return value is O when sleep returns early, because of some signal being caught case

2, the return value is the number of unslept seconds.

Sleep can be implemented with an alarm function. If alarm is used, however, there can

be interaction between the two functions.

161

U. Naresh Kumar

Unit IV
Introduction to IPC

Interprocess communication (IPC) includes thread synchorization and data exchange between
threads beyond the process boundaries. If threads belong to the same process, they execute in the
same address space, i.e. they can access global (static) data or heap directly, without the help of

the operating system. However, if threads belong to different processes, they cannot access each
others address spaces without the help of the operating system.

There are two fundamentally different approaches in IPC:

e processes are residing on the same computer
e processes are residing on different computers

The first case is easier to implement because processes can share memory either in the user space
or in the system space. This is equally true for uniprocessors and multiprocessors.

In the second case the computers do not share physical memory, they are connected via 1/0
device(for example serial communication or Ethernet). Therefore the processes residing in
different computers can not use memory as a means for communication.

IPC between processes on a Single System

Most of this chapter is focused on IPC on a single computer system, including four general
approaches:

e Shared memory
e Messages

e Pipes

e Sockets

The synchronization objects considered in the previous chapter normally work across the process
boundaries (on a single computer system). There is one addition necessary however: the
synchronization objects must be named. The handles are generally private to the process, while
the object names, like file names, are global and known to all processes.

h = init_CS("xxx");
h = init_semaphore(20,"xxx");
h = init_event("xxx");
h = init_condition("xxx");
h = init_message_buffer(100,"xxx");
IPC between processes on different systems

IPC between processes on different systems

IPC is Inter Process Communication, more of a technique to share data across different processes
within one machine, in such a way that data passing binds the coupling of different processes.
The first, is using memory mapping techniques, where a memory map is created, and others

162

U. Naresh Kumar

open the memory map for reading/writing...

The second is, using sockets, to communicate with one another...this has a high overhead, as
each process would have to open up the socket, communicate across... althougheffective

The third, is to use a pipe or a named pipe, a very good example
PIPES:

A pipe is a serial communication device (i.e., the data is read in the order in which it was
written),which allows a wunidirectional communication. The data written to end
isreadbackfromtheotherend.

The pipe is mainly used to communicate between two threads in a single process or between
parent and child process. Pipes can only connect the related process. In shell,
thesymbolcanbeusedtocreateapipe.

In pipes the capacity of data is limited. (i.e.) If the writing process is faster than the reading
process which consumes the data, the pipe cannot store the data. In this situation the writer
process will block until more capacity becomes available. Also if the reading process tries to
read data when there is no data to read, it will be blocked until the data becomes available. By
this, pipes automatically synchronize the two process.

Creatingpipes:
The pipe() function provides a means of passing data between two programs and also allows to
read and write the data.

#include<unistd.h>
int pipe(int file_descriptor[2]);

pipe()function is passed with an array of file descriptors. It will fill the array with new file
descriptors and returns zero. On error, returns -1 and sets the errno to indicate the reason of
failure.

The file descriptors are connected in a way that is data written to file_ descriptor[1] can be read
back from the file_descriptor[0].

(Note: As this uses file descriptors and not the file streams, we must use read and write system
calls to access the data.)

Pipes are originally used in UNIX and are made even more powerful in Windows 95/N'T/2000.

Pipes are implemented in file system. Pipes are basically files with only two file offsets: one for
reading another for writing. Writing to a pipe and reading from a pipe is strictly in FIFO manner.
(Therefore pipes are also called FIFOs).

For efficiency, pipes are in-core files, i.e. they reside in memory instead on disk, as any other
global data structure. Therefore pipes must be restricted in size, i.e. number of pipe blocks must
be limited. (In UNIX the limitation is that pipes use only direct blocks.)Since the pipes have a
limited size and the FIFO access discipline, the reading and writing processes are synchronized
in a similar manner as in case of message buffers. The access functions for pipes are the same as
for files: WriteFile() and ReadFile().

163

U. Naresh Kumar

Pipes used as standard input and output:
We can invoke the standard programs, ones that don‘t expect a file descriptor as a parameter.

#include<unistd.h>

int dup(int file_descriptor);

int dup2(int file_descriptor_1,
int file_descriptor_2);

The purpose of dup call is to open a new file descriptor, which will refer to the same file as an
existing file descriptor. In case of dup, the value of the new file descriptor is the lowest number
available. In dup2 it is same as, or the first available descriptor greater than the parameter
file_descriptor_2.

We can pass data between process by first closing the file descriptor 0 and call is made to dup.
By this the new file descriptor will have the number 0.As the new descriptor is the duplicate of
an existing one, standard input is changed to have the access. So we have created two file
descriptors for same file or pipe, one of them will be the standard input.

(Note: The same operation can be performed by using the fcntl() function. But compared to this
dup and dup?2 are more efficient)

//pipes.c
#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>

#include<string.h>

int main()

{

int data_processed;

int file_pipes[2];

const char some_data[]="123";
pid_t fork_result;

if(pipe(file_pipes)==0)

{

fork_result=fork();

if(fork_result==(pid_t)-1)

{

fprintf(stderr,"fork failure");

exit(EXIT_FAILURE);

}
if(fork_result==(pid_t)0)

{

close(0);

dup(file_pipes[0]);

close(file_pipes[0]);

164

U. Naresh Kumar

close(file_pipes[1]);

execlp("od","od","-c",(char *)0);
exit(EXIT_FAILURE);

}

else

{

close(file_pipes[0]);
data_processed=write(file_pipes[1],
some_data,strlen(some_data)); close(file_pipes[1]);
printf("%d -wrote %d bytes\n",(int)getpid(),data_processed);
}

} exit(EXIT_SUCCESS);

}

The program creates a pipe and then forks. Now both parent and child process will have its own
file descriptors for reading and writing. Therefore totally there are four file descriptors.

The child process will close its standard input with close(0) and calls duo(file_pipes[0]). This
will duplicate the file descriptor associated with the read end. Then child closes its original file
descriptor. As child will never write, it also closes the write file descriptor,

file_pipes[1]. Now there is only one file descriptor 0 associated with the pipe that is standard
input. Next, child uses the exec to invoke any program that reads standard input.

The od command will wait for the data to be available from the user terminal.

Since the parent never read the pipe, it starts by closing the read end that is file_pipe[0]. When
writing process of data has been finished, the write end of the parent is closed and exited. As there
are no file descriptor open to write to pipe, the od command will be able to read the three bytes
written to pipe, meanwhile the reading process will return O bytes indicating the end of the file.

There are two types of pipes:

e Namedpipes.
e Unnamed pipes (Anonymous pipes)

Named pipes (FIFOs)

Similar to pipes, but allows for communication between unrelated processes.
This is done by naming the communication channel and making it permanent.

Like pipe, FIFO is the unidirectional data stream.

FIFO creation:
int mkfifo (const char *pathname, mode_t mode);
- makes a FIFO special file with name pathname.
(mode specifies the FIFO's permissions, as common in UNIX-like file systems).
- A FIFO special file is similar to a pipe, except that it is created in a different way. Instead of being an
anonymous communications channel, a FIFO special file is entered into the file system by calling mkfifo()

Once a FIFO special file has been created, any process can open it for reading or writing, in the
same way as an ordinary file.

165

U. Naresh Kumar

A First-in, first-out(FIFO) file is a pipe that has a name in the filesystem. It is also called as
med pipes.

Creation of FIFO:
We can create a FIFO from the command line and within a program.

To create from command line we can use either mknod or mkfifo commands.
$ mknod filename p
$ mkfifo filename

(Note: The mknod command is available only n older versions, you can make use of mkfifo in
new versions.)

To create FIFO within the program we can use two system calls. They are,
#include<sys/types.h>
#include<sys/stat.h>

int mkfifo(const char
*filename,mode_t mode);

int mknod(const char *filename,
mode_t mode|S_IFIFO,(dev_t) 0);

If we want to use the mknod function we have to use ORing process of fileaccess mode with
S_IFIFO and the dev_t value of 0.Instead of using this we can use the simple mkfifo function.

Accessing FIFO:
Let us first discuss how to access FIFO in command line using file commmands. The useful
feature of named pipes is, as they appear in the file system, we can use them in commands.

We can read from the FIFO(empty)

$ cat < /tmp/my_fifo

Now, let us write to the FIFO.

$ echo "Simple!!!" > /tmp/my_fifo

(Note: These two commands should be executed in different terminals because first command
will be waiting for some data to appear in the FIFO.)

FIFO can also be accessed as like a file in the program using low-level I/O functions or C library
I/0O functions.

The only difference between opening a regular file and FIFO is the use of open_flag with the
optionO_NONBLOCK. The only restriction is that we can‘t open FIFO for reading and writing
with O_RDWR mode.

//fifol.c

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>

166

U. Naresh Kumar

#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()

{

int pipe_fd;

int res;

int open_mode = O_WRONLY;

int bytes_sent = 0;

char buffer[BUFFER_SIZE + 1];

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);

if (res 1=0) {

fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
exit(EXIT_FAILURE);

}

}
printf("Process %d opening FIFO O_WRONLY\n", getpid());

pipe_fd = open(FIFO_NAME, open_mode);
printf("Process %d result %d\n", getpid(), pipe_fd); if
(pipe_fd !=-1) {

while(bytes_sent < TEN_MEG) {

res = write(pipe_fd, buffer, BUFFER_SIZE); if
(res==-1) {

fprintf(stderr, "Write error on pipe\n");
exit(EXIT_FAILURE);

}

}

(void)close(pipe_fd);

}

else { exit(EXIT_FAILURE);

}

printf("Process %d finished\n", getpid());
exit(EXIT_SUCCESS);

}

/ffifo2.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <limits.h>

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF int

167

U. Naresh Kumar

main()

{

int pipe_fd; int

res;

int open_mode = O_RDONLY; char

buffer BUFFER_SIZE + 1]; int

bytes_read = 0;

memset(buffer, \0', sizeof(buffer));

printf("Process %d opening FIFO O_RDONLY\n", getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf("Process %d result %d\n", getpid(), pipe_fd);
if (pipe_fd !=-1) {

do {

res = read(pipe_fd, buffer, BUFFER_SIZE);
bytes_read += res;

} while (res > 0);

(void)close(pipe_fd);

}

else {

exit(EXIT_FAILURE);

}

printf("Process %d finished, %d bytes read\n", getpid(), bytes_read);
exit(EXIT_SUCCESS);

}

Both fifol.c and fifo2.c programs use the FIFO in blocking mode.

First fifol.c is executed .It blocks and waits for reader to open the named pipe. Now writer
unblocks and starts writing data to pipe. At the same time, the reader starts reading data from the

pipe.
Unnamed pipes (Anonymous Pipes)

Anonymous pipes don't have names, therefore they can be used only between related processes
which can inherit the file handles (file descriptors).

Anonymous pipes are typically used to "pipe" two programs: standard output from one program
is redirected to the pipe input (write handle), while the standard input of the second program is
redirected to from the pipe output (read handle). The pipe is created by the parent (usually the
login shell), and the pipe handles are passed to children through the inheritance mechanism.

Anonymous pipes cannot be used across a network. Also, anonymous pipes are unidirectional- in
order to communicate two related processes in both directions, two anonymous pipes must be
created.

Example of Win32 anonymous pipes used for program piping:

[k stk st stesteste stk seste e steste stk s st seste stk s st seste sttt st steste st stesteske sttt ekt skt seteteostoloskoko totokoiokokokokok

// This program implements piping of programs pl.exe and p2.exe

// through an anonymous pipe. The program creates two child processes
// (which execute images pl.exe and p2.exe) and a pipe, then passes

// the pipe handles to the children.

168

U. Naresh Kumar

1

// The program is invoked as: pipe pl p2 (no command line arguments)
//******>l<***********>l<*************>l<********>l<*************************
#include <windows.h>

#include <iostream.h>

int main(int argc, char *argv[])

{

// Create anonymous (unnamed) pipe

SECURITY_ATTRIBUTES sa;

sa.nLength = sizeof(SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = 0;

sa.bInheritHandle = TRUE; // Handles are inheritable (default is FALSE)
HANDLE rh,wh; /I Read and write handles of the pipe
if(!CreatePipe(&rh,&wh,&sa,0))

{

cout << "Couldn't create pipe " << GetLastError()<< endl;

return (1);

}

/I Create the first child process pl

PROCESS_INFORMATION pil;

STARTUPINFO sil;

GetStartupInfo(&sil); /I Get default startup structure
sil.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
sil.hStdOutput = wh; /1 Std output of p1 is input to the pipe

sil.dwFlags = STARTF_USESTDHANDLES;
CreateProcess(argv[1], //Name of the pl's image (without ".exe."
0,0,0,
TRUE, /I Each open inheritable handle of the
/l parent will be inherited by the child
0,0,0,
&sil,&pil);
CloseHandle(wh); // Pipe handle no longer needed
/I Create the second child process p2
PROCESS_INFORMATION pi2;
STARTUPINFO si2;
GetStartupInfo(&si2); // Get default startup structure

si2.hStdInput = rh; /1 Std input of p2 is otput from the pipe
si2.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
si2.dwFlags = STARTF_USESTDHANDLES;
CreateProcess(0,argv([2], // Name of the pl's image (without ".exe."
0,0,
TRUE, // Each open inheritable handle of the

/[parent will be inherited by the child
0,0,0,
&si2,&pi2);

WaitForSingleObject(pil.hProcess, INFINITE);
CloseHandle(pil.hProcess);
WaitForSingleObject(pi2.hProcess, INFINITE);
CloseHandle(pi2.hProcess);

CloseHandle(rh);

169

U. Naresh Kumar

return(0);

}

Comment:

In order to communicate two processes (P1 and P2) through anonymous pipes by redirecting the
standard 1/O, the processes don't have to be aware of the existence of pipes, i.e. their sources and
images don't have to be modified.

Pipe processing:(popen &pclose library functions)

The process of passing data between two programs can be done with the help of popen() and
pclose() functions.

#include<stdio.h>

FILE *popen(const char *command ,
const char *open-mode);

int pclose(FILE *stream_to_close);

popen():

The popen function allows a program to invoke another program as a new process and either
write the data to it or to read from it. The parameter command is the name of the program to run.
The open_mode parameter specifies in which mode it is to be invoked, it can be only either "r" or
"w". On failure popen() returns a NULL pointer. If you want to perform bi-directional

communication you have to use two pipes.

pclose():

By using pclose(), we can close the filestream associated with popen() after the process started
by it has been finished. The pclose() will return the exit code of the process, which is to be
closed. If the process was already executed a wait statement before calling pclose, the exit status
will be lost because the process has been finished. After closing the filestream, pclose() will wait
for the child process to terminate.

Messagequeue:

This is an easy way of passing message between two process. It provides a way of
sending a block of data from one process to another. The main advantage of using this is, each
block of data is considered to have a type, and a receiving process receives the blocks of data
having different type values independently.

Creation and accessing of a message queue:

You can create and access a message queue using the msgget() function.
#include<sys/msg.h>

int msgget(key_t key,int msgflg);

The first parameter is the key value, which specifies the particular message queue. The special
constant IPC_PRIVATE will create a private queue. But on some Linux systems the message

queue may not actually be private.

The second parameter is the flag value, which takes nine permission flags.

170

U. Naresh Kumar

Adding a message:

The msgsnd() function allows to add a message to a message queue.
#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr ,size_t msg_sz,int msgflg);

The first parameter is the message queue identifier returned from an msgget function.

The second parameter is the pointer to the message to be sent. The third parameter is the size of
the message pointed to by msg_ptr. The fourth parameter, is the flag value controls what happens
if either the current message queue is full or within the limit. On success, the function returns 0
and a copy of the message data has been taken and placed on the message queue, on failure -1 is
returned.

Retrieving a message:

The smirch() function retrieves message from the message queue.
#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr

,size_t msg_sz,long int msgtype ,int msgflg);

The second parameter is a pointer to the message to be received.

The fourth parameter allows a simple form of reception priority. If its value is O,the first
available message in the queue is retreived. If it is greater than O,the first message type is
retrived. If it is less than 0,the first message that has a type the same a or less than the absolute
value of msgtype is retrieved.

On success, msgrcv returns the number on bytes placed in the receive buffer, the message is
copied into the user-allocated buffer and the data is deleted from the message queue. It returns -1
on error.

Controlling the message queue:
This is very similar that of control function of shared memory.

#include<sys/msg.h>
int msgctl(int msgid,int command,
struct msqid_ds *buf);

The second parameter takes the values as given below:

1.)IPC_STAT - Sets the data in the msqid_ds to reflect the values associated with the message

queue.

2.) IPC_SET - If the process has the permission to do so, this sets the values associated with the
message queue to those provided in the msgid_ds data structure.

3.) IPC_RMID-Deletes the message queue.

(Note: If the message queue is deleted while the process is writing in a msgsnd or msgrcv
function, the send or receive function will fail.

171

U. Naresh Kumar

Client /server Example:

//msgql.c
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<errno.h>
#include<unistd.h>

#include<sys/msg.h>

struct my_msg_st

{

long int my_msg_type;
char some_text[BUFSIZ];
1

int main()

{

int running = 1;

int msgid;

struct my_msg_st some_data;
long int msg_to_receive = 0;

msgid = msgget((key_t)1234,
0666 | IPC_CREAT);

if (msgid == -1)

{

fprintf(stderr, "failed to get:\n");
exit(EXIT_FAILURE);

}

while (running)

{

if(msgrev(msgid, (void *)&some_data,
BUFSIZ,msg_to_receive,0) == -1)

{

fprintf(stderr, "failedto receive: \n");
exit(EXIT_FAILURE);

}

printf("You Wrote: %os",
some_data.some_text);

172

U. Naresh Kumar

if(strncmp(some_data.some_text, "end", 3)
==0)
{

running = 0;

}

}

if (msgctl(msgid, IPC_RMID, 0) == -1)
{

fprintf(stderr, "failed to delete\n");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESYS);

}

//msgq2.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st

{

long int my_msg_type;
char some_text(MAX_TEXT];
|5

int main()

{

int running = 1;

struct my_msg_ st some_data;
int msgid;

char buffer[BUFSIZ];

msgid = msgget((key_t)1234,
0666 | IPC_CREAT);

if (msgid ==-1)

{

fprintf(stderr, "failed to create:\n");
exit(EXIT_FAILURE);

}

while(running)

{

printf("Enter Some Text: ");
fgets(buffer, BUEFSIZ, stdin);
some_data.my_msg_type = 1;

strcpy(some_data.some_text, buffer);

173

U. Naresh Kumar

if(msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) ==-1)
{

fprintf(stderr, "msgsnd failed\n");
exit(EXIT_FAILURE);

}

if(strncmp(buffer, "end", 3) == 0)
{

running = 0;

}

}

exit(EXIT_SUCCESS);

}

The msgql.c program will create the message queue using msgget() function.
The msgid identifier is returned by the msgget().The message are received from the queue
using msgrcv() function until the string "end" is encountered. Then the queue is
deletedusing msgctl() function.

The msgq2.c program uses the msgsnd() function to send the entered text to the queue.
Semaphore:

While we are using threads in our programs in multi-user systems, multiprocessing system, or a
combination of two, we may often discover critical sections in the code. This is the section where
we have to ensure that a single process has exclusive access totheresource.

For this purpose the semaphore is used. It allows in managing the access to resource.
To prevent the problem of one program accessing the shared resource simultaneously, we are in

Need to generate and use a token which guarantees the access to only one
threadofexecutioninthecriticalsectionatatime.

It is counter variable, which takes only the positive numbers and upon which programs can only
act atomically. The positive number is the value indicating the number of units of the shared
resources are available for sharing.

The common form of semaphore is the binary semaphore, which will control a single resource,
and its value i1s initialized to O.

Creation of semaphore:
The shmget() function creates a new semaphore or obtains the semaphore key of an existing
semaphore.

#include<sys/sem.h>
intshmget(key_tkey,intnum_sems,
intsem_flags);

The first parameter, key, is an integral value used to allow unrelated process to access the same
semaphore. The semaphore key is used only by semget. All others use the identifier return by the
semget(). There is a special key value IPC_PRIVATE whichallows to create the semaphore and
to be accessed only by the creating process.

174

U. Naresh Kumar

The second parameter is the number of semaphores required, it is almost always 1. The
third parameter is the set of flags. The nine bits are the permissions for the semaphore.

On success it will return a positive value which is the identifier used by the other semaphore
functions. On error, it returns -1.

Changing the value:
The function semop() is used for changing the value of the semaphore.

#include<sys/sem.h>
int semop(int sem_id,struct sembuf
*sem_ops,size_t num-_sem_ops);

The first parameter is the shmid is the identifier returned by the semget().

The second parameter is the pointer to an array of structure. The structure may contain at least
the following members:

struct sembuf{
short sem_num;
short sem_op;
short sem_flg;

}

The first member is the semaphore number, usually O unless it is an array of semaphore. The
sem_op is the value by which the semaphore should be changed. Generally it takes -1,which is
operation to wait for a semaphore and +1, which is the operation to signal the availability of
semaphore.

The third parameter, is the flag which is usually set to SET_UNDO. If the process terminates
without releasing the semaphore, this allows to release it automatically.

Controlling the semaphore:
The semctl() function allows direct control of semaphore information.

#include<sys/sem.h>
int semctl(int sem_id,int sem_num,
int command,.../*union semun arg */);

The third parameter is the command, which defines the action to be taken. There are two
common values:

1.) SETVAL: Used for initializing a semaphore to a known value.
2.) IPC_RMID:Deletes the semaphore identifier.

File locking with semaphores

/Isem.c

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/sem.h>

175

U. Naresh Kumar

#include<sys/ipc.h>
#include<sys/types.h>
union semun

{

int val;

struct semid ds *buf;
unsigned short *array;

|5

static void del_semvalue(void);
static int set_semvalue(void);
static int ~ semaphore_p(void);
static int semaphore_v(void);
static int sem_id;

/l

static int set_semvalue()

{ . .

union semun sem_union;

sem_union.val = 1;

if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);
return(1);

}
I

static void del_semvalue()

{

union semun Sem_union;

if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore\n");

}

/!

static int semaphore_p()

{

struct sembuf sem_b;
sem_b.sem_num = 0;

sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;

if (semop(sem_id, &sem_b, 1) ==-1)

{

fprintf(stderr, "semaphore_p failed\n");
return(0);

}

return(1);

}
/!
static int semaphore_v()

{

struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V(O */
sem_b.sem_flg = SEM_UNDO;

176

U. Naresh Kumar

if (semop(sem_id, &sem_b, 1) ==-1) {
fprintf(stderr, "semaphore_v failed\n");
return(0);

}

return(1);

}

int main(int argc, char *argv[])

{

int i;

int pause_time;

char op_char ='0O";

srand((unsigned int)getpid());

sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);
if (argc > 1)

{

if (!set_semvalue())

{

fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);

}

op_char ="X";
sleep(2);

}

for(i=0; 1< 10; i++)
{

if (!semaphore_p()) exit(EXIT_FAILURE);
printf("%c", op_char);

fflush(stdout);

pause_time = rand() % 3;

sleep(pause_time);

printf("%c", op_char);fflush(stdout);

if (!semaphore_v()) exit(EXIT_FAILURE);
pause_time = rand() % 2;
sleep(pause_time);

}

printf("\n%d - finished\n", getpid());

if (arge > 1)

{

sleep(10);

del_semvalue();

}

exit(EXIT_SUCCESS);

}

The function set_semvalue() initializes the semaphore using the SETVAL command

in semctl()function. But this 1is to be done before the wusage of semaphore.

The function del_semvalue() is used to delete the semaphore by wusing the
command /PC_RMID in the semctl() function. The function semaphore_p() changes the

177

U. Naresh Kumar

semaphore value to -1, which is wused to make the process to wait.

In the function semaphore_v(),the semop member of the structure sembuf is set to 1.By this the
semphore becomes available for the other processes because it is released.

178

U. Naresh Kumar

UNIT V

Shared Memory:

Shared memory is a highly efficient way of data sharing between the running programs. It allows
two unrelated processes to access the same logical memory. It is the fastest form of IPC because
all processes share the same piece of memory. It also avoidscopyingdataunnecessarily.

As kernel does not synchronize the processes, it should be handled by the user. Semaphore can
also be used to synchronize the access to shared memory.

Usageofsharedmemory:

To use the shared memory, first of all one process should allocate the segment, and then each
process desiring to access the segment should attach the segment. After accessing the segment,
each process should detach it. It is also necessary to deallocate thesegmentwithoutfail.

Allocating the shared memory causes virtual pages to be created. It is important to note that
allocating the existing segment would not create new pages, but will return
theidentifierfortheexistingpages.

All the shared memory segments are allocated as the integral multiples of the system's page size,
which is the number of bytes in a page of memory.

Unix kernel support for shared memory

® There is a shared memory table in the kernel address space that keeps track of all shared
memory regions created in the system.
Each entry of the tables store the following data:

Name

Creator user ID and group ID.

Assigned owner user ID and group ID.

Read-write access permission of the region.

The time when the last process attached to the region.

The time when the last process detached from the region.

The time when the last process changed control data of the region.
The size, in no. of bytes of the region.

el IR I e

UNIX APIs for shared memory shmget

® Open and create a shared memory.

® Function prototype:
#include<sys/types.h>
#include<sys/ipc.h>

#include<sys/shm.h>

179

U. Naresh Kumar

int shmget (key_t key, int size, int flag);
® Function returns a positive descriptor if it succeeds or -1 if it fails.
Shmat

® Attach a shared memory to a process virtual address space.
® Function prototype:

#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>

void * shmat (int shmid, void *addr, int flag);

® Function returns the mapped virtual address of he shared memory if it succeeds or -1 ifit
fails.

Shmdt

® Detach a shared memory from the process virtual address space.
® Function prototype:

#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
int shmdt (void *addr);

® Function returns O if it succeeds or -1 if it fails.

Shmctl

® Query or change control data of a shared memory or delete thememory.

® Function prototype:
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
int shmctl (int shmid, int cmd, struct shmid_ds *buf);

® Function returns O if it succeeds or -1 if it fails.

180

U. Naresh Kumar

Shared memory Example
//shmryl.c

#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<sys/shm.h>

#define TEXT_SZ 2048

struct shared_use_st

{

int written_by_you;

char some_text[TEXT_SZ]J;
1

int main()

{

int running = 1;

void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid;

srand((unsigned int)getpid());
shmid = shmget((key_t)1234,
sizeof(struct shared_use_st),
0666 [IPC_CREAT);

if (shmid == -1)

{
fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory = shmat(shmid,(void *)0, 0);
if (shared_memory == (void *)-1)

{

fprintf(stderr, "shmat failed\n");
exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n",
(int)shared_memory);

shared_stuff = (struct shared_use_st *)
shared_memory;
shared_stuff->written_by_you = 0;
while(running)

{

181

U. Naresh Kumar

if(shared_stuff->written_by_you)
{

printf("You Wrote: %s",
shared_stuff->some_text);

sleep(rand() %4);
shared_stuff->written_by_you = 0;

if (strncmp(shared_stuff->some_text,
"end", 3)==0)

{

running = 0;

}

}

}

if (shmdt(shared_memory) == -1)

{
fprintf(stderr, "shmdt failed\n");

exit(EXIT_FAILURE);

}
if (shmetl(shmid, IPC_RMID, 0) == -1)

{
fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);

}

//shmry2.c

#include<unistd.h>
#include<stdlib.h>
#include<stdio.h>

#include<string.h>

#include<sys/shm.h>

#define TEXT SZ 2048
struct shared_use_st

{

int written_by_you;
char some_text[TEXT_SZ]J;
X

int main()

{

int running =1

182

U. Naresh Kumar

void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];

int shmid;

shmid =shmget((key_t)1234, sizeof(struct
shared_use_st),

0666 | IPC_CREAT);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");
exit(EXIT_FAILURE);

}

shared_memory=shmat(shmid,
(void *)0, 0);
if (shared_memory == (void *)-1)

{

fprintf(stderr, "shmat failed\n");
exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n", (int) shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
while(running)

{

while(shared_stuff->written_by_you==1)

{

sleep(1);

printf("waiting for client... \n");

}

printf("Enter Some Text: ");
fgets (buffer, BUFSIZ, stdin);
strncpy(shared_stuff->some_text, buffer,
TEXT_S7);
shared_stuff->written_by_you = 1;
if(strncmp(buffer, "end", 3) == 0)
{

running = 0;

}

}

if (shmdt(shared_memory) == -1)
{

fprintf(stderr, "shmdt failed\n");
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

183

U. Naresh Kumar

The shmryl.c program will create the segment using shmget() function and returns the identifier
shmid. Then that segment is attached to its address space using shmat() function.

The structure share_use_st consists of a flag written_by_you is set to 1 when data is available.
When it is set, program reads the text, prints it and clears it to show it has read the data. The
string end is used to quit from the loop. After this the segment is detached and deleted.

The shmry2.c program gets and attaches to the same memory segment. This is possible with the
help of same key value /234 used in the shmget() function. If the written_by_you text is set, the
process will wait until the previous process reads it. When the flag is cleared, the data is written
and sets the flag. This program too will use the string "end" to terminate. Then the segment is
detached.

Sockets

A socket is a bidirectional communication device that can be used to communicate withanother
process on the same machine or with a process running on other machines.Sockets are the only
interprocess communication we‘ll discuss in this chapter thatpermit communication between
processes on different computers. Internet programs such as Telnet, rlogin, FTP, talk, and the
World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using theTelnet program
because they both use sockets for network communications.To open a connection to a WWW
server at www.codesourcery.com, use telnet www.codesourcery.com 80.The magic constant 80
specifies a connection to the Web server programming running www.codesourcery.com instead
of some other process.Try typing GET / after the connection is established.This sends a message
through the socket to the Web server, which replies by sending the home page‘s HTML source
and then closing the connection—for example:

% telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is _"]‘.

GET /

<htmI>

<head>

<meta http-equiv=IContent-Typel content=Itext/html; charset=iso-8859-11>

3. Note that only Windows NT can create a named pipe; Windows 9x programs can form only
client connections.

4. Usually, you‘d use telnet to connect a Telnet server for remote logins. But you can also use
telnet to connect to a server of a different kind and then type comments directly at it.

Introduction to Berkeley sockets

Berkeley sockets (or BSD sockets) is a computing library with an application programming
interface (API) for internet sockets and Unix domain sockets, used for inter-process
communication (IPC).

184

http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/

U. Naresh Kumar

This list is a summary of functions or methods provided by the Berkeley sockets API
library:

e socket() creates a new socket of a certain socket type, identified by an integer number,
and allocates system resources to it.

e bind() is typically used on the server side, and associates a socket with a socket address
structure, i.e. a specified local port number and IP address.

e listen() is used on the server side, and causes a bound TCP socket to enter listening state.

e connect() is used on the client side, and assigns a free local port number to a socket. In
case of a TCP socket, it causes an attempt to establish a new TCP connection.accept() is
used on the server side. It accepts a received incoming attempt to create a new TCP
connection from the remote client, and creates a new socket associated with the socket
address pair of this connection.

e send() and recv(), or write() and read(), or sendto() and recvfrom(), are used for sending
and receiving data to/from a remote socket.

e close() causes the system to release resources allocated to a socket. In case of TCP, the
connection is terminated.

e gethostbyname() and gethostbyaddr() are used to resolve host names and addresses. IPv4
only.

e select() is used to pend, waiting for one or more of a provided list of sockets to be ready
to read, ready to write, or that have errors.

e poll() is used to check on the state of a socket in a set of sockets. The set can be tested to
see if any socket can be written to, read from or if an error occurred.

e getsockopt() is used to retrieve the current value of a particular socket option for the
specified socket.

e setsockopt() is used to set a particular socket option for the specified socket.

IPC over a network Socket Concepts

When you create a socket, you must specify three parameters:
e communication style,
e namespace,
e protocol.
A communication style controls how the socket treats transmitted data and specifies
the number of communication partners.When data is sent through a socket, it is ackaged into
chunks called packets.The communication style determines how these
packets are handled and how they are addressed from the sender to the receiver.

Connection styles guarantee delivery of all packets in the order they were sent. If
packets are lost or reordered by problems in the network, the receiver automatically
requests their retransmission from the sender.

A connection-style socket is like a telephone call: The addresses of the sender

and receiver are fixed at the beginning of the communication when the connection
is established.

Datagram styles do not guarantee delivery or arrival order. Packets may be lost or
reordered in transit due to network errors or other conditions. Each packet must
be labeled with its destination and is not guaranteed to be delivered.The system

185

U. Naresh Kumar

guarantees only —best effort,| so packets may disappear or arrive in a different

order than shipping.

A datagram-style socket behaves more like postal mail. The sender specifies the
receiver‘s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket address identifies one
end of a socket connection. For example, socket addresses in the —local namespacel are ordinary
filenames. In —Internet namespace,| a socket address is composed of the Internet address (also
known as an Internet Protocol address or IP address) of a host attached to the network and a
port number.The port number distinguishes among multiple sockets on the samehost.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the primary
networking protocols used by the Internet; the AppleTalk network protocol; and the UNIX local
communication protocol. Not all combinations of styles, namespaces,and protocols are
supported.

Client-server datagram socket — example
To experiment with datagram sockets in the UNIX domain we will write a client/server
application where:
o the client takes a number of arguments on its command line and send them to the server
using separate datagrams
e for each datagramreceived, the server converts it to uppercase and send it back to the
client
e the client prints server replies to standard output
For this to work we will need to bind all involved sockets to pathnames.

Client-server datagram socket example — protocol

#include <ctype .h>

#include <sys/un.h>

#include <sys/socket .h>

#include <unistd h>

#include " helpers .h"

#define SRV_SOCK_PATH " /tmp/uc_srv_socket "
#define CLI_SOCK_PATH " /tmp/ uc_cl i_socket .%Id "
#define MSG_LEN 10

#include "uc€proto .h"

int main(int argc , char *argv []) {

struct sockaddr_un srv_addr, cl i_addr ;

intsrv_fd,i;

ssize_t bytes ;

socklen_t len ;

char buf [MSG_LEN] ;

1f((srv_fd =socket (AF_UNIX , SOCK_DGRAM, 0)) <0)
err_sys (" socket error ") ;

memset(&srv_addr , 0, sizeof (struct sockaddr_un)) ;
srv_addr . sun_family = AF_UNIX ;

strnepy (srv_addr . sun_path , SRV_SOCK_PATH,
sizeof (srv_addr . sun_path) €1) ;

1 f(access (srv_addr . sun_path , F_OK) ==0)

unlink (srv_addr . sun_path) ;

1 f(bind (srv_fd, (struct sockaddr *) &srv_addr ,

186

U. Naresh Kumar

sizeof (struct sockaddr_un)) < 0)
err_sys (" bind error ") ;

for (53) {

len = sizeof (struct sockaddr_un) ;

i f((bytes = recvfrom(srv_fd , buf, MSG_LEN, 0,
(struct sockaddr *) &cl i_addr , &len)) < 1)
err_sys (" recvfrom error ") ;

print £ (" server received %Id bytes from %s\n" ,
(long) bytes , cli_addr . sun_path) ;

for (i=0;1<bytes ;i++)

buf[i] = toupper ((unsigned char) buf[i]);

if (sendto (srv_fd, buf, bytes, 0,

(struct sockaddr *) &cl i_addr , len) != bytes)
err_sys (" sendto error ") ;

}

}

#include "uc€proto .h"

int main(int argc , char *argv []) {

struct sockaddr_un srv_addr , cl i_addr ;

int srv_fd,1i;

size t len

ssize_t bytes ;

char resp [MSG_LEN] ;

if(argc <2)

err_quit ("Usage : uc€pc lient MSG. .. ") ;

if((srv_fd =socket (AF_UNIX , SOCK_DGRAM, 0)) <0)
err_sys (" socket error ") ;

memset(&cl i_addr , 0, sizeof (struct sockaddr_un)) ;
cli_addr . sun_family = AF_UNIX;

snpr int f (cli_addr . sun_path , sizeof (cli_addr . sun_path),
CLI_SOCK_PATH, (long) getpid ()) ;

1f(bind (srv_fd, (struct sockaddr *) &cli_addr,
sizeof (struct sockaddr_un)) == €1)

err_sys (" bind error ") ;

Notes:
the server is persistent and processes one datagram at a time, no matter the client rocess, 1.e.
there is no notion of connection messages larger than 10 bytes are silently truncated

Socket address structures(UNIX domain & Internet domain) UNIX
domain Sockets:

We now want to give an example of stream sockets. To do so, we can longer remain in the
abstract of general sockets, but we need to pick a domain. We pick the UNIX domain. In the
UNIX domain, addresses are pathnames. The corresponding Cstructure is sockaddr_un:
struct sockaddr_un {

sa_fami ly_t sun_family ; /* = AF_UNIX ¥/

187

U. Naresh Kumar

char sun_path[108] ; /* socket pathname,

NULL®@terminated */

}

The field sun_path contains a regular pathname, pointing to a special file of type socket (. pipe)
which will be created at bind time.

During communication the file will have no content, it is used only as a rendez-vous point
between processes.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two processes on the same
computer. Internet-domain sockets, on the other hand, may be used to connect processes on
different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace represented by
PF_INET.The most common protocols are TCP/IP.The Internet Protocol (IP), a low-level
protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary. It
guarantees only —best-effortl delivery, so packets may vanish or be reordered during transport.
Every participating computer is specified using a unique IP number.The Transmission Control
Protocol (TCP), layered on top of IP, provides reliable connection-ordered transport. It permits
telephone-like connections to be established between computers and ensures that data is
delivered reliably and inorder.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS)
associates names such as www.codesourcery.com with computers® unique IP numbers. DNS is
implemented by a worldwide hierarchy of name servers, but you don‘t need to understand DNS
protocols to use Internet host names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This information is
stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that this
is an Internet namespace address.The sin_addr field stores the Internet address of the desired
machine as a 32-bit integer IP number.A port number distinguishes a given machine‘s different
sockets. Because different machines store multibyte values in different byte orders, use htons to
convert the port number to

network byte order. See the man page for ip for more information.To convert human-readable
hostnames, either numbers in standard dot notation (such as 10.0.0.1) or DNS names (such as
www.codesourcery.com) into 32-bit IP numbers, you can use gethostbyname.This returns a
pointer to the struct hostent structure; the h_addr field contains the host‘s IP number.

System Calls

Sockets are more flexible than previously discussed communication techniques.These
are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets
bind—Labels a server socket with an address

188

http://www.codesourcery.com/
http://www.codesourcery.com/

U. Naresh Kumar

listen—Configures a socket to accept conditions
accept—Accepts a connection and creates a new socket for the connection
Sockets are represented by file descriptors.

Creating and Destroying Sockets
Sockets are IPC objects that allow to exchange data between processes running:
either on the same machine (host), or on different ones over a network.
The UNIX socket API first appeared in 1983 with BSD 4.2. It has been finally standardized for
the first time in POSIX.1g (2000), but has been ubiquitous to every UNIX implementation since
the 80s.
The socket API is best discussed in a network programming course,which this one is not. We
will only address enough general socketconcepts to describe how to use a specific socket family:
UNIXdomain sockets.

Connection Oriented Protocol

Server

socket()

bind()

listen()

accept() Client

blocks until connection from client SOCkE‘t()
) connection establishment >

connect()
read()‘ data(request)]

write()
process request
erte() data (reply)

— read()

189

U. Naresh Kumar

Connectionless Protocol

Server
socket()
bindConnectionless Protocol ()
recvfrom()
Client
blocks until connection from client socket()

bind()

data (request)

= sendto()

process request

write() o data (reply)

— recvfrom()

Client-server setup

Let‘s consider a typical client-server application scenario — no matter if they are located on the
same or different hosts.

Sockets are used as follows:

each application: create a socket

idea: communication between the two applications will flow through an imaginary —pipel that
will connect the two sockets together

server: bind its socket to a well-known address

we have done the same to set up rendez-vous points for other IPC objects.

e.g. FIFOs

client: locate server socket (via its well-known address) and —initiate communicationl1 with the
server.

Socket options:

In order to tell the socket to get the information about the packet destination, we should call
setsockopt().
setsockopt() and getsockopt() - set and get options on a
socket. Both methods return O on success and -1 on error.
Prototype: int setsockopt(int sockfd, int level, int optname,...
There are two levels of socket options:
To manipulate options at the sockets API level:
SOL_SOCKET
To manipulate options at a protocol level, that protocol number should be used;

190

U. Naresh Kumar

for example, for UDP it is IPPROTO_UDP or SOL_UDP (both are equal 17) ; see
include/linux/in.h and include/linux/socket.h

e SOL_IPisO.

o There are currently 19 Linux socket options and one another on option for BSD
compatibility.

e There is an option called [P_PKTINFO.

We will set the IP_PKTINFO option on a socket in the following example.
// from /usr/include/bits/in.h

#define IP_PKTINFO 8 /* bool */

/* Structure used for IP_PKTINFO. */

struct in_pktinfo

{

int ipi_ifindex; /* Interface index */

struct in_addr ipi_spec_dst; /* Routing destination address */
struct in_addr ipi_addr; /* Header destination address */

1

const int on = 1;

sockfd = socket(AF_INET, SOCK_DGRAM,0);

if (setsockopt(sockfd, SOL_IP, IP_PKTINFO, &on,
sizeof(on))<0)

perror("setsockopt");

When calling recvmsg(), we will parse the msghr like this:

for (cmptr=CMSG_FIRSTHDR(&msg); cmptr!=NULL;
cmptr=CMSG_NXTHDR(&msg,cmptr))

{

if (cmptr->cmsg_level == SOL_IP && cmptr->cmsg_type ==IP_PKTINFO)

{

pktinfo = (struct in_pktinfo*)CMSG_DATA(cmptr);

printf("destination=%s\n", inet_ntop(AF_INET, &pktinfo->ipi_addr,str, sizeof(str)));
}

}

In the kernel, this calls ip_cmsg recv() in
net/ipv4/ip_sockglue.c. (which eventually calls
ip_cmsg_recv_pktinfo()).

¢ You can in this way retrieve other fields of the ip header:

For getting the TTL:

o setsockopt(sockfd, SOL_IP, IP_RECVTTL, &on, sizeof(on))<0).
e But: cmsg_type ==1P_TTL.

For getting ip_options:

o setsockopt() with IP_OPTIONS.

191

U. Naresh Kumar

fentl system calls

The fentl system call provides further ways to manipulate low level file descriptors.

$inciude <fentl.h>

fentl(int fildes, int cmd);
fcntl (int £fildes, int cmd, long arg):

Wi

It can perform miscellaneous operations on open file descriptors.

The call,
fcncl(fildes, F DUPFD, newfd);

returns a new file descriptor with a numerical value equal to or greater than the integer newfd.

The call,

fontl (fildes, F._GETFD)
returns the file descriptor flags as defined in fentlh.

The call,
fcntl(fildes, F SETFD, flags)

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

fcntl(fildes, F GETFL)
fentl(fildes, F_SETFL, flags)

respectively get and set the file status flags and access modes.

Comparision of IPC mechanisms.

IPC mechanisms are mianly 5 types

1. pipes:it is related data only send from one pipe output is giving to another pipe input to share
resouses pipe are used drawback:itis only related process only communicated

2.message queues:message queues are un related process are also communicate with message
queues.

3.sockets:sockets also ipc it is comunicate clients and server

192

U. Naresh Kumar

with socket system calls connection oriented and connection less also

4.PIPE: Only two related (eg: parent & child) processess can be communicated. Data reading
would be first in first out manner.

Named PIPE or FIFO : Only two processes (can be related or unrelated) can communicate. Data
read from FIFO is first in first out manner.

5.Message Queues: Any number of processes can read/write from/to the queue. Data can be

read selectively. (need not be in FIFO manner)

6.Shared Memory: Part of process's memory is shared to other processes. other processes can
read or write into this shared memory area based on the permissions. Accessing Shared memory
is faster than any other IPC mechanism as this does not involve any kernel level
switching(Shared memory resides on user memory area).

7.Semaphore: Semaphores are used for process synchronisation. This can't be used for bulk data
transfer between processes.

193

	UNIT-I
	Introduction to Linux:
	Basic Features
	Linux Advantages
	Difference between UNIX and LINUX
	Common things between Linux & UNIX
	Layered Architecture:
	LINUX File system
	Linux Utilities:
	SYNTAX:
	OPTIONS:
	Example:
	rm COMMAND:

	SYNTAX: (1)
	OPTIONS: (1)
	EXAMPLE:
	cd COMMAND:

	SYNTAX: (2)
	OPTIONS: (2)
	EXAMPLE: (1)
	cp COMMAND:

	SYNTAX: (3)
	OPTIONS: (3)
	ls COMMAND:

	SYNTAX: (4)
	OPTIONS: (4)
	EXAMPLE: (2)
	ln COMMAND:

	SYNTAX: (5)
	OPTIONS: (5)
	chown COMMAND:

	SYNTAX: (6)
	OPTIONS: (6)
	Security By File Permissions Chmod Command:

	SYNTAX: (7)
	File Permission

	OPTIONS: (7)
	mkdir COMMAND:

	SYNTAX: (8)
	OPTIONS: (8)
	EXAMPLE: (3)
	rmdir COMMAND:

	SYNTAX: (9)
	OPTIONS: (9)
	EXAMPLE: (4)
	mv COMMAND:

	SYNTAX: (10)
	OPTIONS: (10)
	EXAMPLE: (5)
	diff COMMAND:

	SYNTAX: (11)
	OPTIONS: (11)
	EXAMPLE: (6)
	chgrp COMMAND:

	SYNTAX: (12)
	OPTIONS: (12)
	EXAMPLE: (7)
	settime myfile.txt
	touch newfile.txt
	comm myfile1.txt myfile2.txt

	Process utilities:
	ps Command:
	SYNTAX:
	OPTIONS:
	EXAMPLE:
	Output:
	Output: (1)
	kill COMMAND:

	SYNTAX: (1)
	OPTIONS: (1)
	EXAMPLE: (1)
	Step by Step process:
	Disk utilities:
	du command examples
	Networking commands:
	hostname
	ping
	ifconfig
	netstat
	E.g. nslookup blogger.com
	traceroute
	finger
	telnet
	10 Most important linux networking commands

	Filters:
	more COMMAND:
	SYNTAX:
	OPTIONS:
	EXAMPLE:
	head COMMAND:

	SYNTAX: (1)
	OPTIONS: (1)
	EXAMPLE: (1)
	tail COMMAND:

	SYNTAX: (2)
	OPTIONS: (2)
	EXAMPLE: (2)
	cut COMMAND:

	SYNTAX: (3)
	OPTIONS: (3)
	EXAMPLE: (3)
	Output:
	Output: (1)
	paste COMMAND:

	SYNTAX: (4)
	OPTIONS: (4)
	EXAMPLE: (4)
	sort COMMAND:

	SYNTAX: (5)
	OPTIONS: (5)
	EXAMPLE: (5)
	Text processing utilities and Backup utilities: Text processing utilities:

	General Commands:
	date COMMAND:
	SYNTAX:
	OPTIONS:
	Format:

	EXAMPLE:
	who COMMAND:

	SYNTAX: (1)
	OPTIONS: (1)
	EXAMPLE: (1)
	Output:
	echo COMMAND:

	SYNTAX: (2)
	OPTIONS: (2)
	EXAMPLE: (2)
	passwd COMMAND:

	SYNTAX: (3)
	OPTIONS: (3)
	EXAMPLE: (3)
	pwd COMMAND:

	SYNTAX: (4)
	OPTIONS: (4)
	EXAMPLE: (4)
	cal COMMAND:

	SYNTAX: (5)
	OPTIONS: (5)
	EXAMPLE: (5)
	Output:
	Output: (1)
	login Command
	uname command
	uname -arv
	uname -p

	SED:
	Sed Command Syntax(Sed Scripts):
	sed instruction format(Sed Addresses):
	sed -n -e '3 p' input-file
	sed -n -e '$ p' input-file
	sed -e '10 s/endif/fi/' input-file
	sed -e ‘/key/ s/more/other/’ input-file sed -n -e ‘/r..t/ p’ input-file
	% sed -n -e ‘/^BEGIN$/,/^END$/p’ input-file

	BEGIN
	Line 1 of input Line 2 of input Line3 of input END
	20,30{
	sed -e ‘/obsolete/!p’ input-file sed commands
	sed -e '/Two-thirds-time/=' tuition.data sed -e '/^[0-9][0-9]/=' inventory
	[address] i\ text
	[address] a\ text
	[address1[,address2]] c\ text
	[addr1][,addr2] s/search/replace/[flags]
	[addr1][,addr2]y/a/b/
	$ sed -e ‘1,10y/abcd/wxyz/’ datafile
	h, H
	:mylabel
	% sed -e ’50q’ datafile

	Awk
	 awk [options] ‘script’ file(s)
	pattern {action}
	awk '/for/' testfile
	Pattern / Action Syntax
	% awk '$3 * $4 > 500 {print $0}' file
	% awk '($2 > 5) && ($2 <= 15) {print $0}' file
	pattern1 , pattern2 {action}
	awk Actions
	variable = expression
	awk –f average grades
	print
	printf(format-string, var1, var2, …)
	sprintf(format-string, var1, var2, …)
	text = sprintf("1: %d – 2: %d", $1, $2) print text
	awk Array
	arrayName[index] = value
	list[1] = "one" list[2] = "three"
	Awk builtin split functions split(string, array, fieldsep)
	split("auto-da-fe", a, "-")
	% cat sales.awk
	deptSales[$2] += $3
	END {
	for (x in deptSales)
	toupper(string)
	Part-id name price
	101 propeller 104.99
	102 trailer hitch 97.95
	103 sway bar 49.99
	104 fishing line 0.99
	105 mirror 4.99
	106 cup holder 2.49
	107 cooler 14.89
	108 wheel 49.99
	109 transom 199.00
	110 pulley 9.88

	FS= ":"
	printf("%3d\t%-20s\t%6.2f\n", $1, $2, $3) count++

	END { (1)
	print "======================================"
	Applications:
	for (initialization; limit-test; update) statement
	for (i = 1; i <= NR; i++)
	total += $i count++
	for (var in array) statement
	for (x in deptSales)
	print x, deptSales[x]
	while (logical expression) statement
	i = 1
	print i, $i i++
	do
	 break
	 continue
	Shell Programming
	What is a Shell?
	Introduction- Working with Bourne Shell
	Shell responsibilities
	Pipes and Redirection
	Redirecting Output
	Redirecting Input
	Pipes
	Here Documents
	How It Works
	Running a Shell Script
	Interactive Programs
	The Shell as a Programming Language Creating a Script
	Making a Script Executable
	Shell Syntax
	Shell metacharacters
	Filename substitution:
	Shell Variables
	1) User-defined variables:
	2) Environment Variables
	Command substitution and Shell commands:
	The Environment-Environment Variables
	Parameter Variables
	Quoting
	How It Works (1)
	The test, or []Command
	Control Structures
	if
	elif
	How It Works (2)
	A Problem with Variables
	for
	How It Works (3)
	How It Works (4)
	while
	How It Works (5)
	until
	case
	How It Works (6)
	How It Works (7)
	Arithmetic in shell
	Parameter Expansion
	How It Works (8)
	Shell Script Examples Example
	elif - Doing further Checks
	Interrupt Processing-trap
	How It Works (9)
	Functions
	How It Works (10)
	How It Works (11)
	Commands
	break
	The : Command
	Continue
	The Command
	Eval
	exec
	exit n
	export
	expr
	printf
	return
	set
	shift
	unset
	Command Execution
	Debugging Shell Scripts

	UNIX File Structure
	File types
	File System Structure
	Files and Devices
	File Metadata Inodes
	File attributes
	Kernel Support For Files:
	System Calls and Device Drivers
	Library Functions
	Low-level File Access
	read
	open
	Initial Permissions
	umask
	close
	ioctl
	Other System Calls for Managing Files
	lseek
	dup and dup2
	File Status Information-Stat Family: fstat, stat and lstat
	File and record locking-fcntl function
	File Permission-chmod
	chown
	Links-soft link and hard link
	unlink, link, symlink
	Directories
	mkdir, rmdir
	chdir
	Current Working Directory- getcwd
	Scanning Directories
	readdir
	telldir
	seekdir
	Try It Out - A Directory Scanning Program
	UNIT-III
	What is a Process
	Layout of a C program
	Image in main memory
	Viewing Processes
	Process environment
	Environment List
	Environment variables- getenv, setenv
	Kernel support for process
	Process Identification:
	Process control
	Process Creation Starting New Processes
	Try It Out - system
	How It Works
	Replacing a Process Image
	Try It Out - exclp
	How It Works (1)
	Waiting for a Process
	Try It Out - wait
	How It Works (2)
	Zombie Processes
	Try It Out - Zombies
	How It Works (3)
	Orphan Process
	System call interface for process management
	fork Function
	vfork Function
	exit Function
	wait and waitpid Functions
	exec Function
	Differences Between Threads and Processes
	Signals
	Signal generation & Handling
	How It Works (4)
	Kernel support for Signals-Sending Signals
	Try It Out - An Alarm Clock
	How It Works (5)
	Try It Out - sigaction
	How It Works (6)
	Signal Sets
	Signal Functions
	Unreliable signals
	Reliable signals
	Signal dispositions
	kill and raise Functions
	alarm and pause Functions
	abort Function
	sleep Function
	Introduction to IPC
	There are two fundamentally different approaches in IPC:
	IPC between processes on a Single System
	IPC between processes on different systems
	PIPES:
	Creatingpipes:
	Pipes used as standard input and output:
	Named pipes (FIFOs)
	FIFO creation:
	Creation of FIFO:
	Accessing FIFO:
	//fifo1.c
	//fifo2.c
	Unnamed pipes (Anonymous Pipes)
	Example of Win32 anonymous pipes used for program piping:
	Comment:
	Pipe processing:(popen &pclose library functions)
	popen():
	pclose():
	Messagequeue:
	Creation and accessing of a message queue:
	Adding a message:
	Retrieving a message:
	Controlling the message queue:
	Client /server Example:
	//msgq2.c
	Semaphore:
	Creation of semaphore:
	Changing the value:
	Controlling the semaphore:
	File locking with semaphores
	Usageofsharedmemory:
	Unix kernel support for shared memory
	UNIX APIs for shared memory shmget
	Shmat
	Shmdt
	Shmctl
	Shared memory Example
	//shmry2.c
	Sockets
	Introduction to Berkeley sockets
	This list is a summary of functions or methods provided by the Berkeley sockets API library:
	IPC over a network Socket Concepts
	Client-server datagram socket — example
	Client-server datagram socket example — protocol
	Socket address structures(UNIX domain & Internet domain) UNIX domain Sockets:
	Internet-Domain Sockets
	DNS Names
	System Calls
	Creating and Destroying Sockets
	Socket options:
	fcntl system calls
	Comparision of IPC mechanisms.

