Software Testing Methodologies

UNIT -1
INTRODUCTION

(1) _Purpose of Testing:
(i_What we do:

>

YV VYV VY VYVYV

Y

Testing consumes at least half of the labor expended to produce a working program.

Few programmers like testing and even fewer like test design—especially if test design and
testing take longer than program design and coding.

This attitude is understandable.

Software is ephemeral: you can’t point to something physical.

| think, deep down, most of us don’t believe in software—at least not the way we believe in
hardware.

If software is insubstantial, then how much more insubstantial does software testing seem?
There isn’t even some debugged code to point to when we’re through with test design.

The effort put into testing seems wasted if the tests don’t reveal bugs.

There’s another, deeper, problem with testing that’s related to the reason we do it (MILL78B,
MYER?79). It's done to catch bugs.

There’s a myth that if we were really good at programming, there would be no bugs to catch.
If only we could really concentrate, if everyone used structured programming, top-down
design, decision tables, if programs were written in SQUISH, if we had the right silver bullets,
then there would be no bugs.

So goes the myth. There are bugs, the myth says, because we are bad at what we do; and if
we are bad at it, we should feel guilty about it.

Therefore, testing and test design amount to an admission of failure, which instills a goodly
dose of guilt. And the tedium of testing is just punishment for our errors.

Punishment for what? For being human? Guilt for what? For not achieving inhuman
perfection? For not distinguishing between what another programmer thinks and what he
says? For not being telepathic? For not solving human communication problems that have
been kicked around by philosophers and theologians for 40 centuries?

The statistics show that programming, done well, will still have one to three bugs per hundred
statements (AKIY71, ALBE76, BOEH75B, ENDR75, RADA81, SHOO75, THAY76,
WEIS85B).

Certainly, if you have a 10% error rate, then you either need more programming education or
you deserve reprimand and guilt.”

There are some persons who claim that they can write bug-free programs. There’s a saying
among sailors on the Chesapeake Bay, whose sandy, shifting bottom outdates charts before
they’re printed, “If you haven’t run aground on the Chesapeake, you haven’t sailed the
Chesapeake much.”

So it is with programming and bugs: | have them, you have them, we all have them—and the
point is to do what we can to prevent them and to discover them as early as possible, but not
to feel guilty about them.

Programmers! Cast out your guilt! Spend half your time in joyous testing and debugging!
Thrill to the excitement of the chase! Stalk bugs with care, methodology, and reason. Build
traps for them.

Be more artful than those devious bugs and taste the joys of guiltless programming! Testers!
Break that software (as you must) and drive it to the ultimate—but don’t enjoy the
programmer’s pain.

Prepared by: S.Prasanna

Software Testing Methodologies
(i) _Productivity and quality in Software:

>

>

YV V V VvV VY V¥V

vV V V V¥V

A\

Consider the manufacture of a mass-produced widget. Whatever the design cost, it is a small
part of the total cost when amortized over a large production run.

Once in production, every manufacturing stage is subjected to quality control and testing
from component source inspection to final testing before shipping.

If flaws are discovered at any stage, the widget or part of it will either be discarded or cycled
back for rework and correction.

The assembly line’s productivity is measured by the sum of the costs of the materials, the
rework, and the discarded components, and the cost of quality assurance and testing.
There is a trade-off between quality-assurance costs and manufacturing costs. If insufficient
effort is spent in quality assurance, the reject rate will be high and so will the net cost.
Conversely, if inspection is so good that all faults are caught as they occur, inspection costs
will dominate, and again net cost will suffer.

The manufacturing process designers attempt to establish a level of testing and quality
assurance that minimizes net cost for a given quality objective.

Testing and quality-assurance costs for manufactured items can be as low as 2% in
consumer products or as high as 80% in products such as spaceships, nuclear reactors, and
aircraft, where failures threaten life.

The relation between productivity and quality for software is very different from that for
manufactured goods.

The “manufacturing” cost of a software copy is trivial: the cost of the tape or disc and a few
minutes of computer time.

Furthermore, software “manufacturing” quality assurance is automated through the use of
check sums and other error-detecting methods.

Software costs are dominated by development.

Software maintenance is unlike hardware maintenance. It is not really “maintenance” but an
extended development in which enhancements are designed and installed and deficiencies
corrected.

The biggest part of software cost is the cost of bugs: the cost of detecting them, the cost of
correcting them, the cost of designing tests that discover them, and the cost of running those
tests.

The main difference then between widget productivity and software productivity is that for
hardware quality is only one of several productivity determinants, whereas for software,
quality and productivity are almost indistinguishable.

(i) __Goals for testing:

>

vV V V V V¥V

Testing and test design, as parts of quality assurance, should also focus on bug prevention.
To the extent that testing and test design do not prevent bugs, they should be able to
discover symptoms caused by bugs.

Finally, tests should provide clear diagnoses so that bugs can be easily corrected. Bug
prevention is testing’s first goal.

A prevented bug is better than a detected and corrected bug because if the bug is prevented,
there’s no code to correct.

Moreover, no retesting is needed to confirm that the correction was valid, no one is
embarrassed, no memory is consumed, and prevented bugs can’t wreck a schedule.

More than the act of testing, the act of designing tests is one of the best bug preventers
known.

The thinking that must be done to create a useful test can discover and eliminate bugs before
they are coded—indeed, test-design thinking can discover and eliminate bugs at every stage
in the creation of software, from conception to specification, to design, coding, and the rest.

Prepared by: S.Prasanna

SOftware Testing Methodologies
For this reason, Dave Gelperin and Bill Hetzel (GELP87) advocate “Test, then code.” The
ideal test activity would be so successful at bug prevention that actual testing would be
unnecessary because all bugs would have been found and fixed during test design.”

» Unfortunately, we can’t achieve this ideal. Despite our effort, there will be bugs because we
are human.

» To the extent that testing fails to reach its primary goal, bug prevention, it must reach its
secondary goal, bug discovery. Bugs are not always obvious.

» A bug is manifested in deviations from expected behavior. A test design must document
expectations, the test procedure in detail, and the results of the actual test—all of which are
subject to error.

» But knowing that a program is incorrect does not imply knowing the bug. Different bugs can
have the same manifestations, and one bug can have many symptoms.

» The symptoms and the causes can be disentangled only by using many small detailed tests.

(iv)_Phases in a Tester’s Mental Life:

(a)_Why Testing:

» What's the purpose of testing? There’s an attitudinal progression characterized by the
following five phases:

PHASE 0—There’s no difference between testing and debugging. Other than in support of
debugging, testing has no purpose.

PHASE 1—The purpose of testing is to show that the software works.

PHASE 2—The purpose of testing is to show that the software doesn’t work.

PHASE 3—The purpose of testing is not to prove anything, but to reduce the perceived risk
of not working to an acceptable value.

PHASE 4—Testing is not an act. It is a mental discipline that results in low-risk software
without much testing effort.

(b)_Phase 0 Thinking:

> | called the inability to distinguish between testing and debugging “phase 0” because it
denies that testing matters, which is why | denied it the grace of a number. See Section 2.1 in
this chapter for the difference between testing and debugging. If phase 0 thinking dominates
an organization, then there can be no effective testing, no quality assurance, and no quality.
Phase 0 thinking was the norm in the early days of software development and dominated the
scene until the early 1970s, when testing emerged as a discipline.

» Phase 0 thinking was appropriate to an environment characterized by expensive and scarce
computing resources, low-cost (relative to hardware) software, lone programmers, small
projects, and throwaway software. Today, this kind of thinking is the greatest cultural barrier
to good testing and quality software. But phase 0 thinking is a problem for testers and
developers today because many software managers learned and practiced programming
when this mode was the norm—and it’s hard to change how you think.

(0 _Phase 1 Thinking-The Software Works

» Phase | thinking represented progress because it recognized the distinction between testing
and debugging. This thinking dominated the leading edge of testing until the late 1970s when
its fallacy was discovered. This recognition is attributed to Myers (MYER79) who observed
that it is self-corrupting. It only takes one failed test to show that software doesn’t work, but
even an infinite number of tests won’t prove that it does. The objective of phase 1 thinking is
unachievable. The process is corrupted because the probability of showing that the software
works decreases as testing increases; that is, the more you test, the likelier you are to find a
bug. Therefore, if your objective is to demonstrate a high probability of working, that objective
is best achieved by not testing at all! Although this conclusion may seem silly to the

Prepared by: S.Prasanna

Software Testing Methodologies
conscious, rational mind, itis the kind of syllogism that our unconscious mind loves to
implement.

(d)_Phase 2 Thinking-The Software Doesn’t Work:

» When, as testers, we shift our goal to phase 2 thinking we are no longer working in cahoots
with the designers, but against them. The difference between phase 1 and 2 thinking is
illustrated by analogy to the difference between bookkeepers and auditors. The bookkeeper’s
goal is to show that the books balance, but the auditor’s goal is to show that despite the
appearance of balance, the bookkeeper has embezzled. Phase 2 thinking leads to strong,
revealing tests.

» While one failed test satisfies the phase 2 goal, phase 2 thinking also has limits. The test
reveals a bug, the programmer corrects it, the test designer designs and executes another
test intended to demonstrate another bug. Phase 2 thinking leads to a never-ending
sequence of ever more diabolical tests. Taken to extremes, it too never ends, and the result
is reliable software that never gets shipped. The trouble with phase 2 thinking is that we don’t
know when to stop.

(e)_Phase 3 Thinking-Test for Risk Reduction:

> Phase 3 thinking is nothing more than accepting the principles of statistical quality control. |
say “accepting” rather than “implementing” because it’s not obvious how statistical quality
control should be applied to software. To the extent that testing catches bugs and to the
extent that those bugs are fixed, testing does improve the product. If a test is passed, then
the product’s quality does not change, but our perception of that quality does. Testing, pass
or fail, reduces our perception of risk about a software product. The more we test, the more
we test with harsh tests, the more confidence we have in the product. We’'ll risk release when
that confidence is high enough.”

() _Phase 4 Thinking-A State of Mind:

» The phase 4 thinker's knowledge of what testing can and can’t do, combined with knowing
what makes software testable, results in software that doesn’t need much testing to achieve
the lower-phase goals. Testability is the goal for two reasons. The first and obvious reason is
that we want to reduce the labor of testing. The second and more important reason is that
testable code has fewer bugs than code that’s hard to test. The impact on productivity of
these two factors working together is multiplicative. What makes code testable? One of the
main reasons to learn test techniques is to answer that question.

(@ _Cumulative Goals:

» The above goals are cumulative. Debugging depends on testing as a tool for probing
hypothesized causes of symptoms. There are many ways to break software that have
nothing to do with the software’s functional requirements: phase 2 tests alone might never
show that the software does what it's supposed to do. It's impractical to break software until
the easy demonstrations of workability are behind you. Use of statistical methods as a guide
to test design, as a means to achieve good testing at acceptable risks, is a way of fine-tuning
the process. It should be applied only to large, robust products with few bugs. Finally, a state
of mind isn’t enough: even the most testable software must be debugged, must work, and
must be hard to break.

(v)_Test Design:

» Although programmers, testers, and programming managers know that code must be
designed and tested, many appear to be unaware that tests themselves must be designed
and tested—designed by a process no less rigorous and no less controlled than that used for
code.

Prepared by: S.Prasanna

Software Testing Methodologies

» Too often, test cases are attempted without prior analysis of the program’s requirements or
structure. Such test design, if you can call it that, is just a haphazard series of ad-lib cases
that are not documented either before or after the tests are executed.

» Because they were not formally designed, they cannot be precisely repeated, and no one is
sure whether there was a bug or not. After the bug has been ostensibly corrected, no one is
sure that the retest was identical to the test that found the bug.

> Ad-lib tests are useful during debugging, where their primary purpose is to help locate the
bug, but adlib tests done in support of debugging, no matter how exhausting, are not
substitutes for designed tests.

» The test-design phase of programming should be explicitly identified. Instead of “design,
code, desk check, test, and debug,” the programming process should be described as:
“design, test design, code, test code, program inspection, test inspection, test debugging,
test execution, program debugging, testing.”

» Giving test design an explicit place in the scheme of things provides more visibility to that
amorphous half of the labor that often goes under the name “test and debug.” It makes it less
likely that test design will be given short shrift when the budget’s small and the schedule’s
tight and there’s a vague hope that maybe this time, just this once, the system will come
together without bugs.

(vi)_Testing Isn’t Evervthing:

» This is a book on testing techniques, which are only part of our weaponry against bugs.
Research and practice (BASI87, FAGA76, MYER78, WEIN65, WHIT87) show that other
approaches to the creation of good software are possible and essential. Testing, | believe, is
still our most potent weapon, but there’s evidence (FAGA76) that other methods may be as
effective: but you can’t implement inspections, say, instead of testing because testing and
inspections catch or prevent different kinds of bugs. Today, if we want to prevent all the bugs
that we can and catch those that we don’t prevent, we must review, inspect, read, do
walkthroughs, and then test. We don’t know today the mix of approaches to use under what
circumstances. Experience shows that the “best mix” very much depends on things such as
development environment, application, size of project, language, history, and culture. The
other major methods in decreasing order of effectiveness are as follows:

» Inspection Methods—In this category | include walkthroughs, desk checking, formal
inspections (FAGA76), and code reading. These methods appear to be as effective as
testing, but the bugs caught do not completely overlap.

> Design Style—By this term | mean the stylistic criteria used by programmers to define what
they mean by a “good” program. Sticking to outmoded style, such as “tight” code or
“optimizing” for performance destroys quality. Conversely, adopting stylistic objectives such
as testability, openness, and clarity can do much to prevent bugs.

> Static Analysis Methods—These methods include anything that can be done by formal
analysis of source code during or in conjunction with compilation. Syntax checking in early
compilers was rudimentary and was part of the programmer’s “testing,” Compilers have taken
that job over (thank the Lord). Strong typing and type checking eliminate an entire
category of bugs. There’s a lot more that can be done to detect errors by static analysis. It's
an area of intensive research and development. For example, much of data-flow anomaly
detection (see Chapters 5 and 8), which today is part of testing, will eventually be
incorporated into the compiler’s static analysis.

» Languages—The source language can help reduce certain kinds of bugs. Languages
continue to evolve, and preventing bugs is a driving force in that evolution. Curiously, though,
programmers find new kinds of bugs in new languages, so the bug rate seems to be
independent of the language used.

Prepared by: S.Prasanna

Software Testing Methodologies

> Design Methodologies and Development Environment—The design methodology (that is,
the development process used and the environment in which that methodology is
embedded), can prevent many kinds of bugs. For example, configuration control and
automatic distribution of change information prevents bugs which result from a programmer’s
unawareness that there were changes.

(i) _The Pesticide Paradox and the Complexity Barrier:

» You're a poor farmer growing cotton in Alabama and the boll weevils are destroying your
crop. You mortgage the farm to buy DDT, which you spray on your field, killing 98% of the
pest, saving the crop. The next year, you spray the DDT early in the season, but the boll
weevils still eat your crop because the 2% you didn’t kill last year were resistant to DDT. You
now have to mortgage the farm to buy DDT and Malathion; then next year’s boll weevils will
resist both pesticides and you’ll have to mortgage the farm yet again. That’s the pesticide
paradox’ for boll weevils and also for software testing.

> First Law: The Pesticide Paradox—Every method you use to prevent or find bugs leaves a
residue of subtler bugs against which those methods are ineffectual. That’s not too bad, you
say, because at least the software gets better and better. Not quite!

» Second Law: The Complexity Barrier—Software complexity (and therefore that of bugs)
grows to the limits of our ability to manage that complexity.

» By eliminating the (previous) easy bugs you allowed another escalation of features and
complexity, but this time you have subtler bugs to face, just to retain the reliability you had
before. Society seems to be unwilling to limit complexity because we all want that extra bell,
whistle, and feature interaction. Thus, our users always push us to the complexity barrier and
how close we can approach that barrier is largely determined by the strength of the
techniques we can wield against ever more complex and subtle bugs.

(2)_Some Dichotomies:

(i)_Testing Versus Debugging:

» Testing and debugging are often lumped under the same heading, and it's no wonder that
their roles are often confused: for some, the two words are synonymous; for others, the
phrase “test and debug’” is treated as a single word. The purpose of testing is to show that
a program has bugs. The purpose of debugging is find the error or misconception that led
to the program’s failure and to design and implement the program changes that correct the
error. Debugging usually follows testing, but they differ as to goals, methods, and most
important, psychology:

1. Testing starts with known conditions, uses predefined procedures, and has predictable
outcomes; only whether or not the program passes the test is unpredictable. Debugging
starts from possibly unknown initial conditions, and the end cannot be predicted, except
statistically.

2. Testing can and should be planned, designed, and scheduled. The procedures for, and
duration of, debugging cannot be so constrained.

3. Testing is a demonstration of error or apparent correctness. Debugging is a deductive
process.

4. Testing proves a programmer’s failure. Debugging is the programmer’s vindication.

5. Testing, as executed, should strive to be predictable, dull, constrained, rigid, and
inhuman. Debugging demands intuitive leaps, conjectures, experimentation, and freedom.
6. Much of testing can be done without design knowledge. Debugging is impossible without
detailed design knowledge.

7. Testing can often be done by an outsider. Debugging must be done by an insider.

Prepared by: S.Prasanna

Software Testing Methodologies

8. Although there is a robust theory of testing that establishes theoretical limits to what
testing can and can’t do, debugging has only recently been attacked by theorists—and so far
there are only rudimentary results.

9. Much of test execution and design can be automated. Automated debugging is still a
dream.

(ii)_Function Versus Structure:

>

Tests can be designed from a functional or a structural point of view. In functional testing
the program or system is treated as a black box. It is subjected to inputs, and its outputs are
verified for conformance to specified behavior. The software’s user should be concerned only
with functionality and features, and the program’s implementation details should not matter.
Functional testing takes the user’s point of view.

Structural testing does look at the implementation details. Such things as programming
style, control method, source language, database design, and coding details dominate
structural testing; but the boundary between function and structure is fuzzy. Good systems
are built in layers—from the outside to the inside. The user sees only the outermost layer, the
layer of pure function. Each layer inward is less related to the system’s functions and more
constrained by its structure: so what is structure to one layer is function to the next. For
example, the user of an online system doesn’t know that the system has a memory-allocation
routine. For the user, such things are structural details. The memory-management routine’s
designer works from a specification for that routine. The specification is a definition of
“function” at that layer. The memory-management routine uses a link-block subroutine. The
memory-management routine’s designer writes a “functional” specification for a link-block
subroutine, thereby defining a further layer of structural detail and function. At deeper levels,
the programmer views the operating system as a structural detail, but the operating system’s
designer treats the computer’s hardware logic as the structural detail.

Most of this book is devoted to models of programs and the tests that can be designed by
using those models. A given model, and the associated tests may be first introduced in a
structural context but later used again in a functional context, or vice versa. The initial choice
of how to present a model was based on the context that seemed most natural for that model
and in which it was likeliest that the model would be used for test design. Just as you can'’t
clearly distinguish function from structure, you can't fix the utility of a model to structural tests
or functional tests. If it helps you design effective tests, then use the model in whatever
context it seems to work.

There’s no controversy between the use of structural versus functional tests: both are useful,
both have limitations, both target different kinds of bugs. Functional tests can, in principle,
detect all bugs but would take infinite time to do so. Structural tests are inherently finite but
cannot detect all errors, even if completely executed. The art of testing, in part, is in how you
choose between structural and functional tests.

(i) _The Designer Versus the Tester:

>

If testing were wholly based on functional specifications and independent of implementation
details, then the designer and the tester could be completely separated. Conversely, to
design a test plan based only on a system’s structural details would require the software
designer’s knowledge, and hence only she could design the tests. The more you know about
the design, the likelier you are to eliminate useless tests, which, despite functional
differences, are actually handled by the same routines over the same paths; but the more
you know about the design, the likelier you are to have the same misconceptions as the
designer. Ignorance of structure is the independent tester’s best friend and worst enemy. The
naive tester has no preconceptions about what is or is not possible and will, therefore, design
tests that the program’s designer would never think of—and many tests that never should be

Prepared by: S.Prasanna

Software Testing Methodologies
thought of. Knowledge, which is the designer’s strength, brings efficiency to testing but also
blindness to missing functions and strange cases. Tests designed and executed by the
software’s designers are by nature biased toward structural considerations and therefore
suffer the limitations of structural testing. Tests designed and executed by an independent
tester are bias-free and can’t be finished. Part of the artistry of testing is to balance
knowledge and its biases against ignorance and its inefficiencies.

» In this book | discuss the “tester,” “test-team member,” or “test designer” in contrast to the
‘programmer” and “program designer,” as if they were distinct persons. As one goes from
unit testing to unit integration, to component testing and integration, to system testing,
and finally to formal system feature testing, it is increasingly more effective if the “tester”
and “programmer” are different persons. The techniques presented in this book can be used
for all testing—from unit to system. When the technique is used in system testing, the
designer and tester are probably different persons; but when the technique is used in unit
testing, the tester and programmer merge into one person, who sometimes acts as a
programmer and sometimes as a tester.

» You must be a constructive schizophrenic. Be clear about the difference between your role
as a programmer and as a tester. The tester in you must be suspicious, uncompromising,
hostile, and compulsively obsessed with destroying, utterly destroying, the programmer’s
software. The tester in you is your Mister Hyde—your Incredible Hulk. He must exercise what
Gruenberger calls “low cunning.” (HETZ73) The programmer in you is trying to do a job in the
simplest and cleanest way possible, on time, and within budget. Sometimes you achieve this
by having great insights into the programming problem that reduce complexity and labor and
are almost correct. And with that tester/Hulk lurking in the background of your mind, it pays to
have a healthy paranoia about bugs. Remember, then, that when | refer to the “test designer”
and “programmer” as separate persons, the extent to which they are separated depends on
the testing level and the context in which the technique is applied. This saves me the effort of
writing about the same technique twice and you the tedium of reading it twice.

(iv)_Modularity Versus Efficiency:

> Both tests and systems can be modular. A module is a discrete, well-defined, small
component of a system. The smaller the component, the easier itis to understand; but every
component has interfaces with other components, and all interfaces are sources of
confusion. The smaller the component, the likelier are interface bugs. Large components
reduce external interfaces but have complicated internal logic that may be difficult or
impossible to understand. Part of the artistry of software design is setting component size
and boundaries at points that balance internal complexity against interface complexity to
achieve an overall complexity minimization.

» Testing can and should likewise be organized into modular components. Small, independent
test cases have the virtue of easy repeatability. If an error is found by testing, only the small
test, not a large component that consists of a sequence of hundreds of interdependent tests,
need be rerun to confirm that a test design bug has been fixed. Similarly, if the test has a
bug, only that test need be changed and not a whole test plan. But microscopic test cases
require individual setups and each such setup (e.g., data, inputs) can have bugs. As with
system design, artistry comes into test design in setting the scope of each test and groups of
tests so that test design, test debugging, and test execution labor are minimized without
compromising effectiveness.

(_Small Versus Large:

> | often write small analytical programs of a few hundred lines that, once used, are discarded.
Do | use formal test techniques, quality assurance, and all the rest | so passionately
advocate? Of course not, and I'm not a hypocrite. | do what everyone does in similar

Prepared by: S.Prasanna

Software Testing Methodologies
circumstances: | design, | code, | test a few cases, debug, redesign, recode, and so on,

much as | did 30 years ago. | can get away with such (slovenly) practices because I'm
programming for a very small, intelligent, forgiving, user population—me. It’s the ultimate of
small programs and it is most efficiently done by intuitive means and complete lack of
formality.

> Let’s up the scale to a larger package. I'm still the only programmer and user, but now, the
package has thirty components averaging 750 statements each, developed over a period of
5 years. Now | must create and maintain a data dictionary and do thorough unit testing. But
I'll take my own word for it and not bother to retain all those test cases or to exercise formal
configuration control.

» You can extrapolate from there or draw on your experiences. Programming in the large
(DERE76) means constructing programs that consist of many components written by many
different persons. Programming in the small is what we do for ourselves in the privacy of
our own offices or as homework exercises in an undergraduate programming course. Size
brings with it nonlinear scale effects, which are imperfectly understood today. Qualitative
changes occur with size and so must testing methods and quality criteria. A primary example
is the notion of coverage—a measure of test completeness. Without worrying about exactly
what these terms mean, 100% coverage is essential for unit testing, but we back off this
requirement as we deal with ever larger software aggregates, accept 75%-85% for most
systems, and possibly as low as 50% for huge systems of 10 million lines of code or so.

(vi)_The Builder Versus the Buver:

> Most software is written and used by the same organization. Unfortunately, this situation is
dishonest because it clouds accountability. Many organizations today recognize the virtue of
independent software development and operation because it leads to better software, better
security, and better testing. Independent software development does not mean that all
software should be bought from software houses or consultants but that the software
developing entity and the entity that pays for the software be separated enough to make
accountability clear. I've heard of cases where the software development group and the
operational group within the same company negotiate and sign formal contracts with one
another—uwith lawyers present. If there is no separation between builder and buyer, there can
be no accountability. If there is no accountability, the motivation for software quality
disappears and with it any serious attempt to do proper testing.

» Just as programmers and testers can merge and become one, so can builder and buyer.
There are several other persons in the software development cast of characters who, like the
above, can also be separated or merged:

1. The builder, who designs for and is accountable to

2. The buyer, who pays for the system in the hope of profits from providing services to

3. The user, the ultimate beneficiary or victim of the system. The user’s interests are
guarded by

4. The tester, who is dedicated to the builder’s destruction and

5. The operator, who has to live with the builder's mistakes, the buyer's murky
specifications, the tester’s oversights, and the user's complaints.

(3)_A Model For Testing:

(i_The Project:
» Testing is applied to anything from subroutines to systems that consist of millions of

statements. The archetypical system is one that allows the exploration of all aspects of
testing without the complications that have nothing to do with testing but affect any very large
project.

Prepared by: S.Prasanna

Software Testing Methodologies

» It's medium-scale programming. Testing the interfaces between different parts of your own
mind is very different from testing the interface between you and other programmers
separated from you by geography, language, time, and disposition.

» Testing a one-shot routine that will be run only a few times is very different from testing one
that must run for decades and may be modified by some unknown future programmer.

» Although all the problems of the solitary routine occur for the routine that is embedded in a
system, the converse is not true: many kinds of bugs just can’t exist in solitary routines.

» Thereis animplied context for the test methods discussed in this book—a real-world context
characterized by the following model project:

> Application—The specifics of the application are unimportant. It is a real-time system that
must provide timely responses to user requests for services. It is an online system connected
to remote terminals.

» Staff—The programming staff consists of twenty to thirty programmers—big enough to
warrant formality, but not too big to manage—big enough to use specialists for some parts of
the system’s design.

» Schedule—The project will take 24 months from the start of design to formal acceptance by
the customer. Acceptance will be followed by a 6-month cutover period. Computer resources
for development and testing will be almost adequate.

> Specification—The specification is good. It is functionally detailed without constraining the
design, but there are undocumented “understandings” concerning the requirements.

> Acceptance Test—The system will be accepted only after a formal acceptance test. The
application is not new, so part of the formal test already exists. At first the customer will
intend to design the acceptance test, but later it will become the software design team’s
responsibility.

» Personnel—The staff is professional and experienced in programming and in the
application. Half the staff has programmed that computer before and most know the source
language. One-third, mostly junior programmers, have no experience with the application.
The typical programmer has been employed by the programming department for 3 years.
The climate is open and frank. Management’s attitude is positive and knowledgeable about
the realities of such projects.

» Standards—Programming and test standards exist and are usually followed. They
understand the role of interfaces and the need for interface standards. Documentation is
good. There is an internal, semiformal, quality-assurance function. The database is centrally
developed and administered.

» Objectives—The system is the first of many similar systems that will be implemented in the
future. No two will be identical, but they will have 75% of the code in common. Once
installed, the system is expected to operate profitably for more than 10 years.

» Source—One-third of the code is new, one-third extracted from a previous, reliable, but
poorly documented system, and one-third is being rehosted (from another language,
computer, operating system—take your pick).

» History—One programmer will quit before his components are tested. Another programmer
will be fired before testing begins: excellent work, but poorly documented. One component
will have to be redone after unit testing: a superb piece of work that defies integration. The
customer will insist on five big changes and twenty small ones. There will be at least one
nasty problem that nobody—not the customer, not the programmer, not the managers, nor
the hardware vendor—suspected. A facility and/or hardware delivery problem will delay
testing for several weeks and force second- and third-shift work. Several important
milestones will slip but the delivery date will be met.

Prepared by: S.Prasanna

Software Testing Methodologies

>

Our model project is a typical well-run, successful project with a share of glory and
catastrophe—neither a utopian project nor a slice of hell.

(ii)_ Overview:

>

V =
=:
=

The process starts with a program embedded in an environment, such as a computer, an
operating system, or a calling program. We understand human nature and its suceptibility to
error. This understanding leads us to create three models: a model of the environment, a
model of the program, and a model of the expected bugs. From these models we create a
set of tests, which are then executed. The result of each test is either expected or
unexpected. If unexpected, it may lead us to revise the test, our model or concept of how the
program behaves, our concept of what bugs are possible, or the program itself. Only rarely
would we attempt to modify the environment.

The Environment:

A program’s environment is the hardware and software required to make it run. For online
systems the environment may include communications lines, other systems, terminals, and
operators. The environment also includes all programs that interact with—and are used to
create—the program under test, such as operating system, loader, linkage editor, compiler,
utility routines.

Programmers should learn early in their careers that it's not smart to blame the environment
(that is, hardware and firmware) for bugs. Hardware bugs are rare. So are bugs in
manufacturer-supplied software. This isn’t because logic designers and operating system
programmers are better than application programmers, but because such hardware and
software is stable, tends to be in operation for a long time, and most bugs will have been
found and fixed by the time programmers use that hardware or software.” Because hardware
and firmware are stable, we don’t have to consider all of the environment’s complexity.
Instead, we work with a simplification of it, in which only the features most important to the
program at hand are considered. Our model of the environment includes our beliefs
regarding such things as the workings of the computer’s instruction set, operating system
macros and commands, and what a higher-order language statement will do. If testing
reveals an unexpected result, we may have to change our beliefs (our model of the
environment) to find out what went wrong. But sometimes the environment could be wrong:
the bug could be in the hardware or firmware after all.

(iv)_The Program:

>

Most programs are too complicated to understand in detail. We must simplify our concept of
the program in order to test it. So although a real program is exercised on the test bed, in our
brains we deal with a simplified version of it—a version in which most details are ignored. If
the program calls a subroutine, we tend not to think about the subroutine’s details unless its
operation is suspect. Similarly, we may ignore processing details to focus on the program’s
control structure or ignore control structure to focus on processing. As with the environment,
if the simple model of the program does not explain the unexpected behavior, we may have
to modify that model to include more facts and details. And if that fails, we may have to
modify the program.

(v) Bugs:

>

Bugs are more insidious than ever we expect them to be. Yet it is convenient to categorize
them: initialization, call sequence, wrong variable, and so on. Our notion of what is orisn’t a
bug varies. A bad specification may lead us to mistake good behavior for bugs, and vice
versa. An unexpected test result may lead us to change our notion of what a bug is—that is
to say, our model of bugs.

While we’re on the subject of bugs, I'd like to dispel some optimistic notions that many
programmers and testers have about bugs. Most programmers and testers have beliefs

Prepared by: S.Prasanna

Software Testing Methodologies

>

about bugs that express a naivete that ranks with belief in the tooth fairy. If you hold any of
the following beliefs, then disabuse yourself of them because as long as you believe in such
things you will be unable to test effectively and unable to justify the dirty tests most programs
need.

Benign Bug Hypothesis—The belief that bugs are nice, tame, and logical. Only weak bugs
have a logic to them and are amenable to exposure by strictly logical means. Subtle bugs
have no definable pattern—they are wild cards.

Bug Locality Hypothesis—The belief that a bug discovered within a component affects only
that component’s behavior; that because of structure, language syntax, and data
organization, the symptoms of a bug are localized to the component’s designed domain. Only
weak bugs are so localized. Subtle bugs have consequences that are arbitrarily far removed
from the cause in time and/or space from the component in which they exist.

Control Bug Dominance—The belief that errors in the control structure of programs
dominate the bugs. While many easy bugs, especially in components, can be traced to
control-flow errors, data-flow and data-structure errors are as common. Subtle bugs that
violate data-structure boundaries and data/code separation can’t be found by looking only at
control structures.

Code/Data Separation—The belief, especially in HOL programming, that bugs respect the
separation of code and data.” Furthermore, in real systems the distinction between code and
data can be hard to make, and it is exactly that blurred distinction that permit such bugs to
exist.

Lingua Salvator Est—The hopeful belief that language syntax and semantics (e.g.,
structured coding, strong typing, complexity hiding) eliminates most bugs. True, good
language features do help prevent the simpler component bugs but there’s no statistical
evidence to support the notion that such features help with subtle bugs in big systems.
Corrections Abide—The mistaken belief that a corrected bug remains corrected. Here’s a
generic counterexample. A bug is believed to have symptoms caused by the interaction of
components A and B but the real problem is a bug in C, which left a residue in a data
structure used by both A and B. The bug is “corrected” by changing A and B. Later, C is
modified or removed and the symptoms of A and B recur. Subtle bugs are like that.

Silver Bullets—The mistaken belief that X (language, design method, representation,
environment—name your own) grants immunity from bugs. Easy-to-moderate bugs may be
reduced, but remember the pesticide paradox.

Sadism Suffices—The common belief, especially by independent testers, that a sadistic
streak, low cunning, and intuition are sufficient to extirpate most bugs. You only catch easy
bugs that way. Tough bugs need methodology and techniques, so read on.

Angelic Testers—The ludicrous belief that testers are better at test design than
programmers are at code design.”

(vi)_Tests:

>

Tests are formal procedures. Inputs must be prepared, outcomes predicted, tests
documented, commands executed, and results observed; all these steps are subject to error.
There is nothing magical about testing and test design that immunizes testers against bugs.
An unexpected test result is as often cause by a test bug as it is by a real bug.” Bugs can
creep into the documentation, the inputs, and the commands and becloud our observation of
results. An unexpected test result, therefore, may lead us to revise the tests. Because the
tests are themselves in an environment, we also have a mental model of the tests, and
instead of revising the tests, we may have to revise that mental model.

(vii)_Testing and Levels:

Prepared by: S.Prasanna

Software Testing Methodologies

>

We do three distinct kinds of testing on a typical software system: unit/ component testing,
integration testing, and system testing. The objectives of each class is different and
therefore, we can expect the mix of test methods used to differ. They are:

Unit, Unit Testing—A unit is the smallest testable piece of software, by which | mean that it
can be compiled or assembled, linked, loaded, and put under the control of a test harness or
driver. A unit is usually the work of one programmer and it consists of several hundred or
fewer, lines of source code. Unit testing is the testing we do to show that the unit does not
satisfy its functional specification and/or that its implemented structure does not match the
intended design structure. When our tests reveal such faults, we say that there is a unit bug.
Component, Component Testing—A component is an integrated aggregate of one or
more units. A unitis a component, a component with subroutines it calls is a component, etc.
By this (recursive) definition, a component can be anything from a unit to an entire system.
Component testing is the testing we do to show that the component does not satisfy its
functional specification and/or that its implemented structure does not match the intended
design structure.

When our tests reveal such problems, we say that there is a component bug. Integration,
Integration Testing—Integration is a process by which components are aggregated to
create larger components. Integration testing is testing done to show that even though the
components were individually satisfactory, as demonstrated by successful passage of
component tests, the combination of components are incorrect or inconsistent. For example,
components A and B have both passed their component tests.

Integration testing is aimed as showing inconsistencies between A and B. Examples of such
inconsistencies are improper call or return sequences, inconsistent data validation criteria,
and inconsistent handling of data objects. Integration testing should not be confused with
testing integrated objects, which is just higher level component testing. Integration testing is
specifically aimed at exposing the problems that arise from the combination of components.
The sequence, then, consists of component testing for components A and B, integration
testing for the combination of A and B, and finally, component testing for the “new”
component (A,B).”

System, System Testing—A system is a big component. System testing is aimed at
revealing bugs that cannot be attributed to components as such, to the inconsistencies
between components, or to the planned interactions of components and other objects.
System testing concerns issues and behaviors that can only be exposed by testing the entire
integrated system or a major part of it. System testing includes testing for performance,
security, accountability, configuration sensitivity, start-up, and recovery.

This book concerns component testing, but the techniques discussed here also apply to
integration and system testing. There aren’t any special integration and system testing
techniques but the mix of effective techniques changes as our concern shifts from
components to integration, to system. How and where integration and system testing will be
covered is discussed in the preface to this book. You'll find comments on techniques
concerning their relative effectiveness as applied to component, integration, and system
testing throughout the book. Such comments are intended to guide your selection of a mix of
techniques that best matches your testing concerns, be it component, integration, or system,
or some mixture of the three.

(viii) _The Role of Models:

>

Testing is a process in which we create mental models of the environment, the program,
human nature, and the tests themselves. Each model is used either until we accept the
behavior as correct or until the model is no longer sufficient for the purpose. Unexpected test
results always force a revision of some mental model, and in turn may lead to a revision of

Prepared by: S.Prasanna

Software Testing Methodologies
whatever is being modeled. The revised model may be more detailed, which is to say more

complicated, or more abstract, which is to say simpler. The art of testing consists of creating,
selecting, exploring, and revising models. Our ability to go through this process depends on
the number of different models we have at hand and their ability to express a program’s
behavior.

(4)_The Consequences of Bugs:

(i_The Importance of Bugs:
» The importance of a bug depends on frequency, correction cost, installation cost, and

consequences.

» Frequency—How often does that kind of bug occur? See Table 2.1 on page 57 for bug
frequency statistics. Pay more attention to the more frequent bug types.

» Correction Cost—What does it cost to correct the bug after it’'s been found? That cost is the
sum of two factors: (1) the cost of discovery and (2) the cost of correction. These costs go up
dramatically the later in the development cycle the bug is discovered. Correction cost also
depends on system size. The larger the system the more it costs to correct the same bug.

» Installation Cost—Installation cost depends on the number of installations: small for a
single-user program, but how about a PC operating system bug? Installation cost can
dominate all other costs—fixing one simple bug and distributing the fix could exceed the
entire system’s development cost.

» Consequences—What are the consequences of the bug? You might measure this by the
mean size of the awards made by juries to the victims of your bug.

» Areasonable metric for bug importance is:
importance($) = frequency*(correction_cost + installation_cost + consequential_cost)

» Frequency tends not to depend on application or environment, but correction, installation,
and consequential costs do. As designers, testers, and QA workers, you must be interested
in bug importance, not raw frequency. Therefore you must create your own importance
model. This chapter will help you do that.

(i) _How Bugs Affect Us-Consequences:

» Bug consequences range from mild to catastrophic. Consequences should be measured in
human rather than machine terms because it is ultimately for humans that we write
programs. If you answer the question, “What are the consequences of this bug?” in machine
terms by saying, for example, “Bit so-and-so will be set instead of reset,” you’re avoiding
responsibility for the bug. Although it may be difficult to do in the scope of a subroutine,
programmers should try to measure the consequences of their bugs in human terms. Here
are some consequences on a scale of one to ten:

> 1. Mild—The symptoms of the bug offend us aesthetically; a misspelled output or a
misaligned printout.

» 2. Moderate—Outputs are misleading or redundant. The bug impacts the system’s
performance.

» 3. Annoying—The system’s behavior, because of the bug, is dehumanizing. Names are
truncated or arbitrarily modified. Bills for $0.00 are sent. Operators must use unnatural
command sequences and must trick the system into a proper response for unusual bug-
related cases.

> 4. Disturbing—It refuses to handle legitimate transactions. The automatic teller machine
won’t give you money. My credit card is declared invalid.

» 5. Serious—It loses track of transactions: not just the transaction itself (your paycheck), but
the fact that the transaction occurred. Accountability is lost.

» 6. Very Serious—Instead of losing your paycheck, the system credits it to another account or
converts deposits into withdrawals. The bug causes the system to do the wrong transaction.

Prepared by: S.Prasanna

Software Testing Methodologies
» 1. Extreme—The problems aren’t limited to a few users or to a few transaction types. They

are frequent and arbitrary instead of sporadic or for unusual cases.

» 8. Intolerable—Long-term, unrecoverable corruption of the data base occurs and the
corruption is not easily discovered. Serious consideration is given to shutting the system
down.

» 9. Catastrophic—The decision to shut down is taken out of our hands because the system
fails.

> 10. Infectious—What can be worse than a failed system? One that corrupts other systems
even though it does not fail in itself; that erodes the social or physical environment; that melts
nuclear reactors or starts wars; whose influence, because of malfunction, is far greater than
expected; a system that kills.

» Any of these consequences could follow from that wrong bit. Programming is a serious
business, and testing is more serious still. It pays to have nightmares about undiscovered
bugs once in a while (SHED80). When was the last time one of your bugs violated
someone’s human rights?

(i) _KFlexible Severity Rather Than Absolutes:

» Many programmers, testers, and quality assurance workers have an absolutist attitude
toward bugs. “Everybody knows that a program must be perfect if it's to work: if there’s a
bug, it must be fixed.” That’s untrue, of course, even though the myth continues to be foisted
onto an unwary public. Ask the person in the street and chances are that they’ll parrot that
myth of ours. That’s trouble for us because we can’t do it now and never could. It's our myth
because we, the computer types, created it and continue to perpetuate it. Software never
was perfect and won'’t get perfect. But is that a license to create garbage? The missing
ingredient is our reluctance to quantify quality. If instead of saying that software has either 0
quality (there is at least one bug) or 100% (perfect quality and no bugs), we recognize that
quality can be measured on some scale, say from 0 to 10. Quality can be measured as a
combination of factors, of which the number of bugs and their severity is only one
component. The details of how this is done is the subject of another book; but it's enough to
say that many organizations have designed and use satisfactory, quantitative, quality
metrics. Because bugs and their symptoms play a significant role in such metrics, as testing
progresses you can see the quality rise from next to zero to some value at which it is deemed
safe to ship the product.

» Examining these metrics closer, we see that how the parts are weighted depends on
environment, application, culture, and many other factors.

» Let's look at a few of these:

» Correction Cost—The cost of correcting a bug has almost nothing to do with symptom
severity. Catastrophic, life-threatening bugs could be trivial to fix, whereas minor annoyances
could require major rewrites to correct.

» Context and Application Dependency—The severity of a bug, for the same bug with the
same symptoms, depends on context. For example, a roundoff error in an orbit calculation
doesn’t mean much in a spaceship video game but it matters to real astronauts.

» Creating Culture Dependency—What's important depends on the creators of the software
and their cultural aspirations. Test tool vendors are more sensitive about bugs in their
products than, say, games software vendors.

» User Culture Dependency—What's important depends on the user culture. An R&D shop
might accept a bug for which there’s a workaround; a banker would go to jail for that same
bug; and naive users of PC software go crazy over bugs that pros ignore.

> The Software Development Phase—Severity depends on development phase. Any bug
gets more severe as it gets closer to field use and more severe the longer it's been around—

Prepared by: S.Prasanna

Software Testing Methodologies
more severe because of the dramatic rise in correction cost with time. Also, what’s a trivial or

subtle bug to the designer means little to the maintenance programmer for whom all bugs are
equally mysterious.

(iv)_The Nightmare List and When to Stop Testing:

> In George Orwell's novel, 1984, there’s a torture chamber called “room 101”"—a room that
contains your own special nightmare. For me, sailing through 4-foot waves, the boat heeled
over, is exhilarating; for my seasick passengers, that's room 101. For me, rounding Cape
Horn in winter, with 20-foot waves in a gale is a room 101 but I've heard round-the-world
sailboat racers call such conditions “bracing.”

» The point about bugs is that you or your organization must define your own nightmares. |
can’t tell you what they are, and therefore | can’t ascribe a severity to bugs. Which is why |
treat all bugs as equally as | can in this book. And when | slip and express a value judgment
about bugs, recognize it for what it is because | can’t completely rid myself of my own values.

» How should you go about quantifying the nightmare? Here’s a workable procedure:

> 1. List your worst software nightmares. State them in terms of the symptoms they produce
and how your user will react to those symptoms. For end users and the population at large,
the categories of Section 2.2 above are a starting point. For programmers the nightmare may
be closer to home, such as: “I might get a bad personal performance rating.”

» 2. Convert the consequences of each nightmare into a cost. Usually, this is a labor cost for
correcting the nightmare, but if your scope extends to the public, it could be the cost of
lawsuits, lost business, or nuclear reactor meltdowns.

» 3. Order the list from the costliest to the cheapest and then discard the low-concern
nightmares with which you can live.

» 4. Based on your experience, measured data (the best source to use), intuition, and
published statistics postulate the kinds of bugs that are likely to create the symptoms
expressed by each nightmare. Don’t go too deep because most bugs are easy. This is a bug
design process. If you can “design” the bug by a one-character or one statement change,
thenit’'s a good target. If it takes hours of sneaky thinking to characterize the bug, then either
it's an unlikely bug or you're worried about a saboteur in your organization, which could be
appropriate in some cases. Most bugs are simple goofs once you find and understand them.

» 5. For each nightmare, then, you’ve developed a list of possible causative bugs. Order that
list by decreasing probability. Judge the probability based on your own bug statistics,
intuition, experience, etc. The same bug type will appear in different nightmares. The
importance of a bug type is calculated by multiplying the expected cost of the nightmare by
the probability of the bug and summing across all nightmares:

» 6. Rank the bug types in order of decreasing importance to you.

» 7. Design tests (based on your knowledge of test techniques) and design your quality
assurance inspection process by using the methods that are most effective against the most
important bugs.

> 8. If atestis passed, then some nightmares or parts of them go away. If a test is failed, then
a nightmare is possible, but upon correcting the bug, it too goes away. Testing, then, gives
you information you can use to revise your estimated nightmare probabilities. As you test,
revise the probabilities and reorder the nightmare list. Taking whatever information you get
from testing and working it back through the exercise leads you to revise your subsequent
test strategy, either on this project if it's big enough or long enough, or on subsequent
projects.

> 9. Stop testing when the probability of all nightmares has been shown to be inconsequential
as a result of hard evidence produced by testing.

Prepared by: S.Prasanna

Software Testing Methodologies
» The above prescription can be implemented as a formal part of the software development

process, or it can be adopted as a guideline or philosophical point of view. The idea is not
that you implement elaborate metrics (unless that’s appropriate) but that you recognize the
importance of the feedback that testing provides to the testing process itself and, more
important, to the kinds of tests you will design.

» The mature tester’s problem has never been how to design tests. If you understand testing
techniques, you will know how to design several different infinities of justifiable tests. The
tester’s central problem is how to best cull a reasonable, finite, number of tests from that
multifold infinity—a test suite that, as experience and logic leads us to predict, will have a
high probability of putting the nightmares to rest—that is to say, an effective, revealing, set of
tests. Look at the pesticide paradox again and observe the following consequence:

» Corollary to the First Law—Test suites wear out.

> Yesterday’s elegant, revealing, effective, test suite will wear out because programmers and
designers, given feedback on their bugs, do modify their programming habits and style in an
attempt to reduce the incidence of bugs they know about. Furthermore, the better the
feedback, the better the QA, the more responsive the programmers are, the faster those
suites wear out. Yes, the software is getting better, but that only allows you to approach
closer to, or to leap over, the previous complexity barrier. True, bug statistics tell you nothing
about the coming release, only the bugs of the previous release—but that’s better than
basing your test technique strategy on general industry statistics or on myths. If you don’t
gather bug statistics, organized into some rational taxonomy, you don’t know how effective
your testing has been, and worse, you don’t know how worn out your test suite is. The
consequences of that ignorance is a brutal shock.

» How many horror stories do you want to hear about the sophisticated oultfit that tested long,
hard, and diligently—sent release 3.4 to the field, confident that it was the best tested product
they had ever shipped—only to have it bomb more miserably than any prior release?

(8)_A Taxonomy For Bugs:

(i_General:

» There is no universally correct way to categorize bugs. This taxonomy is not rigid. Bugs are
difficult to categorize. A given bug can be put into one or another category depending on its
history and the programmer’s state of mind. For example, a one-character error in a source
statement changes the statement, but unfortunately it passes syntax checking. As a result,
data are corrupted in an area far removed from the actual bug. That in turn leads to an
improperly executed function. Is this a typewriting error, a coding error, a data error, or a
functional error? If the bug is in our own program, we're tempted to blame it on typewriting;”
if in another programmer’s code, on carelessness. And if our job is to critique the system, we
might say that the fault is an inadequate internal data-validation mechanism. A detailed
taxonomy is presented in the appendix.

» The major categories are: requirements, features and functionality, structure, data,
implementation and coding, integration, system and software architecture, and testing. A first
breakdown is provided in Table 2. 1, whereas in the appendix the breakdown is as fine as
makes sense. Bug taxonomy, as testing, is potentially infinite. More important than adopting
the “right” taxonomy is that you adopt some taxonomy and that you use it as a statistical
framework on which to base your testing strategy. Because there’s so much effort required to
develop a taxonomy, don’t redo my work—you’re invited to adopt the taxonomy of the
appendix (or any part thereof) and are hereby authorized to copy it (with appropriate
attribution) without guilt or fear of being sued by me for plagiarism. If my taxonomy doesn’t
turn you on, adopt the IEEE taxonomy (IEEE87B).

Prepared by: S.Prasanna

Software Testing Methodologies

(i) _Requirements. Features. and Functionality Bugs:
(a) Requirements and Specifications:

» Requirements and the specifications developed from them can be incomplete, ambiguous, or
self-contradictory. They can be misunderstood or impossible to understand. The specification
may assume, but not mention, other specifications and prerequisites that are known to the
specifier but not to the designer. And specifications that don’t have these flaws may change
while the design is in progress. Features are modified, added, and deleted. The designer has
to hit a moving target and occasionally misses.

» Requirements, especially as expressed in a specification (or often, as not expressed
because there is no specification) are a major source of expensive bugs. The range is from a
few percent to more than 50%, depending on application and environment. What hurts most
about these bugs is that they're the earliest to invade the system and the last to leave. It’s not
unusual for a faulty requirement to get through all development testing, beta testing, and
initial field use, only to be caught after hundreds of sites have been installed.

(b) Feature Bugs:

» Specification problems usually create corresponding feature problems. A feature can be
wrong, missing, or superfluous. A missing feature or case is the easiest to detect and correct.
A wrong feature could have deep design implications. Extra features were once considered
desirable. We now recognize that “free” features are rarely free. Any increase in generality
that does not contribute to reliability, modularity, maintainability, and robustness should be
suspected. Gratuitous enhancements can, if they increase complexity, accumulate into a
fertile compost heap that breeds future bugs, and they can create holes that can be
converted into security breaches. Conversely, one cannot rigidly forbid additional features
that might be a consequence of good design. Removing the features might complicate the
software, consume more resources, and foster more bugs.

(c) Feature Interaction:

» Providing clear, correct, implementable, and testable feature specifications is not enough.
Features usually come in groups of related features. The features of each group and the
interaction of features within each group are usually well tested. The problem is
unpredictable interactions between feature groups or even between individual features. For
example, your telephone is provided with call holding and call forwarding. Call holding allows
you to put a new incoming call on hold while you continue talking to the first caller. Call
forwarding allows you to redirect incoming calls to some other telephone number. Here are
some simple feature interaction questions: How about holding a third call when there is
already a call on hold? Forwarding forwarded calls (i.e., the number forwarded to is also
forwarding calls)? Forwarding calls in a loop? Holding while forwarding is active? Initiating
forwarding when there is a call on hold? Holding for forwarded calls when the telephone
forwarded to does (doesn’t) have forwarding? . . . If you think these variations are brain
twisters, how about feature interactions for your income tax return, say between federal,
state, and local tax laws? Every application has its peculiar set of features and a much bigger
set of unspecified feature interaction potentials and therefore feature interaction bugs. We
have very little statistics on these bugs, but the trend seems to be that as the earlier, simpler,
bugs are removed, feature interaction bugs emerge as a major category. Other than
deliberately preventing some interactions and testing the important combinations, we have
no magic remedy for these problems.

(d) Specification and Feature Bug Remedies:

» Most feature bugs are rooted in human-to-human communication problems. One solution is
the use of high-level, formal specification languages or systems (BELF76, BERZ85,

Prepared by: S.Prasanna

Software Testing Methodologies
DAVI88A, DAV18813, FISC79, HAYES85, PROG88, SOFT88, YEHR80). Such languages and

systems provide short-term support but, in the long run, do not solve the problem.

> Short-Term Support—Specification languages (we’ll call them all “languages” hereafter, even
though some may be interactive dialogue systems) facilitate formalization of requirements
and (partial)” inconsistency and ambiguity analysis. With formal specifications, partially to
fully automatic test case generation is possible. Generally, users and developers of such
products have found them to be cost-effective.

» Long-Term Support—Assume that we have a great specification language and that it can be
used to create unambiguous, complete specifications with unambiguous, complete tests and
consistent test criteria. A specification written in that language could theoretically be compiled
into object code (ignoring efficiency and practicality issues). But this is just programming in
HOL squared. The specification problem has been shifted to a higher level but not
eliminated. Theoretical considerations aside, given a system which can generate functional
tests from specifications, the likeliest impact is a further complexity escalation facilitated by
the reduction of another class of bugs (the complexity barrier law).

» The long-term impact of formal specification languages and systems will probably be that
they will influence the design of ordinary programming languages so that more of current
specification can be formalized. This approach will reduce, but not eliminate, specification
bugs. The pesticide paradox will work again to eliminate the kinds of specification bugs we
now have (simple ambiguities and contradictions), leaving us a residue of tougher
specification bugs that will need an even higher order specification system to expose.

(e) Testing Techniques:

» Most functional test techniques—that is, those techniques which are based on a
behavioral description of software, such as transaction flow testing (Chapter 4), syntax
testing (Chapter 9), domain testing (Chapter 6), logic testing (Chapter 10), and state
testing (Chapter 11) are useful in testing functional bugs. They are also useful in testing for
requirements and specification bugs to the extent that the requirements can be expressed in
terms of the model on which the technique is based.

(i) _Structural Bugs:

(a) Control and Sequence Bugs:

» Control and sequence bugs include paths left out, unreachable code, improper nesting of
loops, loop-back or loop-termination criteria incorrect, missing process steps, duplicated
processing, unnecessary processing, rampaging GOTO’s, ill-conceived switches, spaghetti
code, and worst of all, pachinko code.

» Although much of testing and software design literature focuses on control flow bugs, they
are not as common in new software as the literature might lead one to believe. One reason
for the popularity of control-flow problems in the literature is that this area is amenable to
theoretical treatment. Fortunately, most control-flow bugs (in new code) are easily tested and
caught in unit testing.

» Another source of confusion and therefore research concern is that novice programmers
working on toy problems do tend to have more control-flow bugs than experienced
programmers. A third reason for concern with control-flow problems is that dirty old code,
especially assembly language and COBOL code, can be dominated by control-flow bugs. In
fact, a good reason to rewrite an application from scratch is that the old control structure has
become so complicated and so arbitrary after decades of rework that no one dare modify it
further and, further, it defies testing.

» Control and sequence bugs at all levels are caught by testing, especially structural testing,
more specifically, path testing (Chapter 3), combined with a bottom-line functional test based
on a specification. These bugs are partially prevented by language choice (e.g., languages

Prepared by: S.Prasanna

Software Testing Methodologies

that restrict control-flow options) and style, and most important, lots of memory. Experience
shows that many control-flow problems result directly from trying to “squeeze” 8 pounds of
software into a 4-pound bag (i.e., 8K object into 4K). Squeezing for short execution time is as
bad.

(b) Logic Bugs:

>

Bugs in logic, especially those related to misunderstanding how case statements and logic
operators behave singly and in combinations, include nonexistent cases, improper layout of
cases, “impossible” cases that are not impossible, a “don’t-care” case that matters, improper
negation of a boolean expression (for example, using “greater than” as the negation of “less
than”), improper simplification and combination of cases, overlap of exclusive cases,
confusing “exclusive OR” with “inclusive OR.”

Another problematic area concerns misunderstanding the semantics of the order in which a
boolean expression is evaluated for specific compilers, especially in the context of deeply
nested IF-THEN-ELSE constructs. For example, the truth or falsity of a logical expression is
determined after evaluating a few terms, so evaluation of further terms (usually) stops, but
the programmer expects that further terms will be evaluated. In other words, although the
boolean expression appears as a single statement, the programmer does not understand
that its components will be evaluated sequentially. See index entries on predicate coverage
for more information.

If these bugs are part of logical (i.e., boolean) processing not related to control flow, then
they are categorized as processing bugs. If they are part of a logical expression (i.e.,
control-flow predicate) which is used to direct the control flow, then they are categorized as
control-flow bugs.

Logic bugs are not really different in kind from arithmetic bugs. They are likelier than
arithmetic bugs because programmers, like most people, have less formal training in logic at
an early age than they do in arithmetic. The best defense against this kind of bug is a
systematic analysis of cases. Logic-based testing (Chapter 10) is helpful.

(c) Processing Bugs:

>

Processing bugs include arithmetic bugs, algebraic, mathematical function evaluation,
algorithm selection, and general processing. Many problems in this area are related to
incorrect conversion from one data representation to another. This is especially true in
assembly language programming. Other problems include ignoring overflow, ignoring the
difference between positive and negative zero, improper use of greater-than, greater-than-or-
equal, less-than, less-than-or-equal, assumption of equality to zero in floating point, and
improper comparison between different formats as in ASCII to binary or integer to floating
point.

Although these bugs are frequent (12%), they tend to be caught in good unit testing and also
tend to have localized effects. Selection of covering test cases, especially domain-testing
methods (Chapter 6) are the testing remedies for this kind of bug.

(d) Initialization Bugs:

>

Initialization bugs are common, and experienced programmers and testers know they must
look for them. Both improper and superfluous initialization occur. The latter tends to be less
harmful but can affect performance. Typical bugs are as follows: forgetting to initialize
working space, registers, or data areas before first use or assuming that they are initialized
elsewhere; a bug in the first value of a loop-control parameter; accepting an initial value
without a validation check; and initializing to the wrong format, data representation, or type.
The remedies here are in the kinds of tools the programmer has. The source language also
helps. Explicit declaration of all variables, as in Pascal, helps to reduce some initialization
problems. Preprocessors, either built into the language or run separately, can detect some,

Prepared by: S.Prasanna

Software Testing Methodologies

but not all, initialization problems. The test methods of Chapter 5 are helpful for test design
and for debugging initialization problems.

(e) Data Flow Bugs and Anomalies:

>

Most initialization bugs are a special case of data-flow anomalies. A data-flow anomaly
occurs when there is a path along which we expect to do something unreasonable with data,
such as using an uninitialized variable, attempting to use a variable before it exists, modifying
data and then not storing or using the result, or initializing twice without an intermediate use.
Although part of data-flow anomaly detection can be done by the compiler based on
information known at compile time, much can be detected only by execution and therefore is
a subject for testing. It is generally recognized today that data-flow anomalies are as
important as control-flow anomalies. The methods of Chapters 5 and 12 will help you design
tests aimed at data-flow problems.

(iv)_Data Bugs:
(a)_General:

>

Data bugs include all bugs that arise from the specification of data objects, their formats, the
number of such objects, and their initial values. Data bugs are at least as common as bugs in
code, but they are often treated as if they did not exist at all. Underestimating the frequency
of data bugs is caused by poor bug accounting. In some projects, bugs in data declarations
are just not counted, and for that matter, data declaration statements are not counted as part
of the code. The separation of code and data is, of course, artificial because their roles can
be interchanged at will. At the extreme, one can write a twenty-instruction program that can
simulate any computer (a Turing machine) and have all “programs” recorded as data and
manipulated as such. Furthermore, this can be done in any language on any computer—but
who would want to?

Software is evolving toward programs in which more and more of the control and processing
functions are stored in tables. | call this the third law:

Third Law—Code migrates to data.

Because of this law there is an increasing awareness that bugs in code are only half the
battle and that data problems should be given equal attention. The bug statistics of Table 2.1
support this concept; that is, structural bugs and data bugs each have frequencies of about
25%. If you examine a piece of contemporary source code, you may find that half of the
statements are data declarations. Although these statements do not result in executable
code, because they are specified by humans, they are as subject to error as operative
statements. If a program is designed under the assumption that a certain data object will be
set to zero and it isn’t, the operative statements of the program are not at fault. Even so,
there is still an initialization bug, which, because it is in a data statement, could be harder to
find than if it had been a bug in executable code.

This increase in the proportion of the source statements devoted to data definition is a direct
consequence of two factors: (1) the dramatic reduction in the cost of main memory and disc
storage, and (2) the high cost of creating and testing software. Generalized software
controlled by tables is not efficient. Computer costs, especially memory costs, have
decreased to the point where the inefficiencies of generalized table-driven code are not
usually significant. The increasing cost of software as a percentage of system cost has
shifted the emphasis in the software industry away from single-purpose, unique software to
an increased reliance on prepackaged, generalized programs. This trend is evident in the
computer manufacturers’ software, in the existence of a healthy proprietary software industry,
and in the emergence of languages and programming environments that support code
reusability (e.g., object-oriented languages). Generalized packages must satisfy a wide range
of options, host configurations, operating systems, and computers. The designer of a

Prepared by: S.Prasanna

Software Testing Methodologies
generalized package achieves generality, in part, by making many things parametric, such as
array sizes, memory partition, and file structure. It is not unusual for a big application
package to have several hundred parameters. Setting the parameter values particularizes
the program to the specific installation. The parameters are interrelated, and errors in those
relations can cause illogical conditions and, therefore, bugs.

» Another source of database complexity increase is the use of control tables in lieu of code.
The simplest example is the use of tables that turn processing options on and off. A more
complicated form of control table is used when a system must execute a set of closely
related processes that have the same control structure but are different in details. An early
example is found in telephony, where the details of controlling a telephone call are table-
driven. A generalized call-control processor handles calls from and to different kinds of lines.
The system is loaded with a set of tables that corresponds to the protocols required for that
telephone exchange. Another example is the use of generalized device-control software
which is particularized by data stored in device tables. The operating system can be used
with new, undefined devices, if those devices’ parameters can fit into a set of very broad
values. The culmination of this trend is the use of complete, internal, transaction-control
languages designed for the application. Instead of being coded as computer instructions or
language statements, the steps required to process a transaction are stored as a sequence
of constants in a transaction-processing table. The state of the transaction, that is, the
current processing step, is stored in a transaction-control block. The generalized transaction-
control processor uses the combination of transaction state and the control tables to direct
the transaction to the next step. The transaction-control table is actually a program which is
processed interpretively by the transaction-control processor. That program may contain the
equivalent of addressing, conditional branch instructions, looping statements, case
statements, and so on. In other words, a hidden programming language has been created.
It is an effective design technique because it enables fixed software to handle many different
transaction types, individually and simultaneously. Furthermore, modifying the control tables
to install new transaction types is usually easier than making the same modifications in code.

» In summary, current programming trends are leading to the increasing use of undeclared,
internal, specialized programming languages. These are languages—make no mistake about
that—even if they are simple compared to normal programming languages; but the syntax of
these languages is rarely debugged. There’s no compiler for them and therefore no source
syntax checking. The programs in these languages are inserted as octal or hexadecimal
codes—as if we were programming back in the early days of UNIVAC-I. Large, low-cost
memory will continue to strengthen this trend and, consequently, there will be an increased
incidence of code masquerading as data. Bugs in this kind of hidden code are at least as
difficult to find as bugs in normal code. The first step in the avoidance of data bugs—whether
the data are used as pure data, as parameters, or as hidden code—is the realization that all
source statements, including data declarations, must be counted, and that all source
statements, whether or not they result in object code, are bug-prone.

» The categories used for data bugs are different from those used for code bugs. Each way of
looking at data provides a different perspective. These categories for data bugs overlap and
are no stricter than the categories used for bugs in code.

(b)_Dyvnamic Versus Static:

» Dynamic data are transitory. Whatever their purpose, they have a relatively short lifetime,
typically the processing time of one transaction. A storage object may be used to hold
dynamic data of different types, with different formats, attributes, and residues. Failure to
initialize a shared object properly can lead to data-dependent bugs caused by residues from
a previous use of that object by another transaction. Note that the culprit transaction is long

Prepared by: S.Prasanna

Software Testing Methodologies
gone when the bug’s symptoms are discovered. Because the effect of corruption of dynamic
data can be arbitrarily far removed from the cause, such bugs are among the most difficult to
catch. The design remedy is complete documentation of all shared-memory structures,
defensive code that does thorough data-validation checks, and centralized-resource
managers.

» The basic problem is leftover garbage in a shared resource. This can be handled in one of
three ways: (1) cleanup after use by the user, (2) common cleanup by the resource manager,
and (3) no cleanup. The latter is the method usually used. Therefore, resource users must
program under the assumption that the resource manager gives them garbage-filled
resources. Common cleanup is used in very secure systems where subsequent users of a
resource must never be able to read data left by a previous user in another security or
privacy category.

» Static data are fixed in form and content. Whatever their purpose, they appear in the source
code or data base, directly or indirectly, as, for example, a number, a string of characters, or
a bit pattern. Static data need not be explicit in the source code. Some languages provide
compile-time processing, which is especially useful in general-purpose routines that are
particularized by interrelated parameters. Compile-time processing is an effective measure
against parameter-value conflicts. Instead of relying on the programmer to calculate the
correct values of interrelated parameters, a program executed at compile time (or assembly
time) calculates the parameters’ values. If compile-time processing is not a language feature,
then a specialized preprocessor can be built that will check the parameter values and
calculate those values that are derived from others. As an example, a large commercial
telecommunications system has several hundred parameters that dictate the number of lines,
the layout of all storage media, the hardware configuration, the characteristics of the lines,
the allowable user options for those lines, and so on. These are processed by a site-adapter
program that not only sets the parameter values but builds data declarations, sizes arrays,
creates constants, and inserts processing routines from a library. A bug in the site adapter, or
in the data given to the site adapter, can result in bugs in the static data used by the object
programs for that site.

» Another example is the postprocessor used to install many personal computer software
packages. Here the configuration peculiarities are handled by generalized table-driven
software, which is particularized at run (actually, installation) time.

» Any preprocessing (or postprocessing) code, any code executed at compile or assembly time
or before, at load time, at installation time, or some other time can lead to faulty static data
and therefore bugs—even though such code (and the execution thereof) does not represent
object code at run time. We tend to take compilers, assemblers, utilities, loaders, and
configurators for granted and do not suspect them to be bug sources. This is not a bad
assumption for standard utilities or translators. But if a highly parameterized system uses
site-adapter software or preprocessors or compile-time/assembly-time processing, and if
such processors and code are developed concurrently with the working software of the
application—watch out!

Software used to produce object code is suspect until validated. All new software must be
rigorously tested even if it isn’t part of the application’s mainstream. Static data can be just as
wrong as any other kind and can have just as many bugs. Do not treat a routine that creates
static data as “simple” because it “just stuffs a bunch of numbers into a table.” Subject such
code to the same testing rigor that you apply to running code.”

» The design remedy for the preprocessing situation is in the source language. If the language
permits compile-time processing that can be used to particularize parameter values and data
structures, and if the syntax of the compile-time statements is identical to the syntax of the

Prepared by: S.Prasanna

Software Testing Methodologies
rest of the language, then the code will be subjected to the same validation and syntax
checking as ordinary code. Such language facilities eliminate the need for most specialized
preprocessors, table generators, and site adapters. For postprocessors, there is no magic,
other than to recognize that users judge developers by the entire picture, installation software
included.

(¢)_Information, Parameter. and Control:

» Static or dynamic data can serve in one of three roles, or in a combination of roles: as a
parameter, for control, or for information. What constitutes control or information is a matter
of perspective and can shift from one processing level to another. A scheduler receives a
request to start a process. To the scheduler the identity of the process is information to be
processed, but at another level it is control. My name is used to generate a hash code that
will be used to access a disc record. My name is information, but to the disc hardware its
translation into an address is control (e.g., move to track so-and-so).

» Information is usually dynamic and tends to be local to a single transaction or task. As such,
errors in information (when data are treated as information, that is) may not be serious bugs.
The bug, if any, is in the lack of protective data-validation code or in the failure to protect the
routine’s logic from out-of-range data or data in the wrong format. The only way we can be
sure that there is data-validation code in a routine is to put it there. Assuming that the other
routine will validate data invites latent bugs and maintenance problems. The program evolves
and changes, and it is forgotten that the modified routine did the data validation for several
other routines. If a routine is vulnerable to bad data, the only sane thing to do is to block such
data within the routine; but it's even better to redesign it so that it is no longer vulnerable.

Inadequate data validation often leads to finger pointing. The calling routine’s author is
blamed, the called routine’s author blames back, they both blame the operators. This
scenario leads to a lot of ego confrontation and guilt. “If only the other programmers did their
job correctly,” you say, “we wouldn’t need all this redundant data validation and defensive
code. | have to put in this extra junk because I’'m surrounded by slobs!” This attitude is
understandable, but not productive. Furthermore, if you really feel that way, you’re likely to
feel guilty about it. Don’t blame your fellow programmer and don’t feel guilt. Nature has
conspired against us but given us a scapegoat. One of the unfortunate side effects of large-
scale integrated circuitry stems from the use of microscopic logic elements that work at very
low energy levels. Modern circuitry is vulnerable to electronic noise, electromagnetic
radiation, cosmic rays, neutron hits, stray alpha particles, and other noxious disturbances. No
kidding—alpha-particle hits that can change the value of a bit are a serious problem, and the
semiconductor manufacturers are spending a lot of money and effort to reduce the random
modification of data by alpha particles. Therefore, even if your fellow programmers did
thorough, correct data validation, dynamic data, static data, parameters, and code can be
corrupted. Program without rancor and guilt! Put in the data-validation checks and blame the
necessity on sun spots and alpha particles!”

(d)_Contents. Structure, and Attributes:

» Data specifications consist of three parts:

» Contents—The actual bit pattern, character string, or number put into a data structure.
Content is a pure bit pattern and has no meaning unless it is interpreted by a hardware or
software processor. All data bugs result in the corruption or misinterpretation of content.

» Structure—The size and shape and numbers that describe the data object, that is, the

memory locations used to store the content (e.g., 16 characters aligned on a word boundary,

122 blocks of 83 characters each, bits 4 through 14 of word 17). Structures can have

substructures and can be arranged into superstructures. A hunk of memory may have

>

Prepared by: S.Prasanna

Software Testing Methodologies
several different structures defined over it—e.g., a two-dimensional array treated elsewhere

as N one-dimensional arrays.

> Attributes—The specification of meaning, that is, the semantics associated with the contents
of a data object (e.g., an integer, an alphanumeric string, a subroutine).

» The severity and subtlety of bugs increases as we go from content to attributes because
things get less formal in that direction. Content has been dealt with earlier in this section.
Structural bugs can take the form of declaration bugs, but these are not the worst kind of
structural bugs. A serious potential for bugs occurs when data are used with different
structures. Here is a piece of clever design. The programmer has subdivided the problem
into eight cases and uses a 3-bit field to designate the case. Another programmer has four
different cases to consider and uses a 2-bit field for the purpose. A third programmer is
interested in the combination of the other two sets of cases and treats the whole as a 5-bit
field that leads to thirty-two combined cases. We cannot judge, out of context, whether this is
a good design or an abomination, but we can note that there is a different structure in the
minds of the three programmers and therefore a potential for bugs. The practice of
interpreting a given memory location under several different structures is notintrinsically bad.
Often, the only alternative would be increased memory and many more data transfers.

> Attributes of data are the meanings we associate with data. Although some bugs are related
to misinterpretation of integers for floating point and other basic representation problems, the
more subtle attribute-related bugs are embedded in the application. Consider a 16-bit field. It
could represent, among other things, a number, a loop-iteration count, a control code, a
pointer, or a link field. Each interpretation is a different attribute. There is no way for the
computer to know that it is proper or improper to add a control code to a link field to yield a
loop count. We have used the same data with different meanings. In modern parlance, we
have changed the data type. It is generally incorrect to logically or arithmetically combine
objects whose types are different. Conversely, it is almost impossible to create an efficient
system without doing so. Shifts in interpretation usually occur at interfaces, especially the
human interface that is behind every software interface. See GANN76 for a summary of type
bugs.

» The preventive measures for data-type bugs are in the source language, documentation, and
coding style. Explicit documentation of the contents, structure, and attributes of all data
objects is essential. The database documentation should be centralized. All alternate
interpretation of a given data object should be listed along with the identity of all routines that
have access to that object. A proper data dictionary (which is what the database
documentation is called) can be as large as the narrative description of the code. The data
dictionary and the database it represents must also be designed. This design is done by a
high-level design process, which is as important as the design of the software architecture.
My point of view here is dogmatic. Routines should not be administratively treated as if they
have their “own” data declarations.” All data structures should be globally defined and
centrally administered. Exceptions, such as a private work area, should be individually
justified. Such private data structures must never be used by any other routine but the
structure must still be documented in the data dictionary.

> It'simpossible to properly test software of any size (say 10,000+ statements) without central
database management and a configuration-controlled data dictionary. | was once faced with
such a herculean challenge. My first step was to try to create the missing data dictionary
preparatory to any attempt to define tests. The act of dragging the murky bottoms of a
hundred minds for hidden data declarations and semiprivate space in an attempt to create a
data dictionary revealed so many data bugs that it was obvious that the system would defy

Prepared by: S.Prasanna

Software Testing Methodologies

>

integration. | never did get to design tests for that project—it collapsed; and a new design
was started surreptitiously from scratch.

The second remedy is in the source language. Strongly typed languages prevent the
inadvertent mixed manipulation of data that are declared as different types. A conversion in
usage from pointer type to counter type, say, requires an explicit statement that will do the
conversion. Such statements may or may not result in object code. Conversion from floating
point to integer, would, of course, require object code, but conversion from pointer to counter
might not. Strong typing forces the explicit declaration of attributes and provides compiler
facilities to check for mixed-type operations. The ability of the user to specify types, as in
Pascal, is mandatory. These data-typing facilities force the specification of data attributes into
the source code, which makes them more amenable to automatic verification by the compiler
and to test design than when the attributes are described in a separate data dictionary. In
assembly language programming, or in source languages that do not have user-defined
types, the remedy is the use of field-access macros. No programmer is allowed to directly
access a field in the database. Access can be obtained only through the use of a field-access
macro. The macro code does all the extraction, stripping, justification, and type conversion
necessary. If the database structure has to be changed, the affected field-access macros are
changed, but the source code that uses the macros does not (usually) have to be changed.
The attributes of the data are documented with the field-access macro documentation.
Another advantage of this approach is that the data dictionary can be automatically produced
from the specifications of the field-access macro library.

()_Coding Bugs:

>

Coding errors of all kinds can create any of the other kinds of bugs. Syntax errors are
generally not important in the scheme of things if the source language translator has
adequate syntax checking. Failure to catch a syntax error is a bug in the translator. A good
translator will also catch undeclared data, undeclared routines, dangling code, and many
initialization problems. Any programming error caught by the translator (assembler, compiler,
or interpreter) does not substantially affect test design and execution because testing cannot
start until such errors are corrected. Whether it takes a programmer one, ten, or a hundred
passes before a routine can be tested should concern software management (because itis a
programming productivity issue) but not test design (which is a quality-assurance issue). But
if a program has many source-syntax errors, we should expect many logic and coding
bugs—because a slob is a slob is a slob.

Given good source-syntax checking, the most common pure coding errors are typographical,
followed by errors caused by not understanding the operation of an instruction or statement
or the by-products of an instruction or statement. Coding bugs are the wild cards of
programming. Unlike logic or process bugs, which have their own perverse rationality, wild
cards are arbitrary.

The most common kind of coding bug, and often considered the least harmful, are
documentation bugs (i.e., erroneous comments). Although many documentation bugs are
simple spelling errors or the result of poor writing, many are actual errors—that is, misleading
or erroneous comments. We can no longer afford to discount such bugs because their
consequences are as great as “true” coding errors. Today, programming labor is dominated
by maintenance. This will increase as software becomes even longer-lived. Documentation
bugs lead to incorrect maintenance actions and therefore cause the insertion of other bugs.
Testing techniques have nothing to offer for these bugs. The solution lies in inspections, QA,
automated data dictionaries, and specification systems.

Prepared by: S.Prasanna

Software Testing Methodologies
(vi) _Interface. Integration. and System Bugs:

(a)_External Interfaces:

>

The external interfaces are the means used to communicate with the world. These include
devices, actuators, sensors, input terminals, printers, and communication lines. Often there is
a person on the other side of the interface. That person may be ingenious or ingenuous, but
is frequently malevolent. The primary design criterion for an interface with the outside world
should be robustness. All external interfaces, human or machine, employ a protocol.
Protocols are complicated and hard to understand. The protocol itself may be wrong,
especially if it's new, or it may be incorrectly implemented. Other external interface bugs
include: invalid timing or sequence assumptions related to external signals;
misunderstanding external input and output formats; and insufficient tolerance to bad input
data. The test design methods of Chapters 6, 9, and 11 are suited to testing external
interfaces.

(b) _Internal Interfaces:

>

Internal interfaces are in principle not different from external interfaces, but there are
differences in practice because the internal environment is more controlled. The external
environment is fixed and the system must adapt to it but the internal environment, which
consists of interfaces with other components, can be negotiated. Internal interfaces have the
same problems external interfaces have, as well as a few more that are more closely related
to implementation details: protocol-design bugs, input and output format bugs, inadequate
protection against corrupted data, wrong subroutine call sequence, call-parameter bugs,
misunderstood entry or exit parameter values.

To the extent that internal interfaces, protocols, and formats are formalized, the test methods
of Chapters 6, 9, and 11 will be helpful. The real remedy is in the design and in standards.
Internal interfaces should be standardized and not just allowed to grow. They should be
formal, and there should be as few as possible. There’s a trade-off between the number of
different internal interfaces and the complexity of the interfaces. One universal interface
would have so many parameters that it would be inefficient and subject to abuse, misuse,
and misunderstanding. Unique interfaces for every pair of communicating routines would be
efficient, but N programmers could lead to N? interfaces, most of which wouldn’t be
documented and all of which would have to be tested (but wouldn’t be). The main objective of
integration testing is to test all internal interfaces (BEI1Z84).

(¢)_Hardware Architecture:

>

It's easy to forget that hardware exists. You can have a programming career and never see a
mainframe or minicomputer. When you are working through successive layers of application
executive, operating system, compiler, and other intervening software, it's understandable
that the hardware architecture appears abstract and remote. It is neither practical nor
economical for every programmer in a large project to know all aspects of the hardware
architecture. Software bugs related to hardware architecture originate mostly from
misunderstanding how the hardware works. Here are examples: paging mechanism ignored
or misunderstood, address-generation error, I/O-device operation or instruction error, 1/O-
device address error, misunderstood device-status code, improper hardware simultaneity
assumption, hardware race condition ignored, data format wrong for device, wrong format
expected, device protocol error, device instruction-sequence limitation ignored, expecting the
device to respond too quickly, waiting too long for a response, ignoring channel throughput
limits, assuming that the device is initialized, assuming that the device is not initialized,
incorrect interrupt handling, ignoring hardware fault or error conditions, ignoring operator
malice.

Prepared by: S.Prasanna

Software Testing Methodologies

>

The remedy for hardware architecture and interface problems is two-fold: (1) good
programming and testing and (2) centralization of hardware interface software in programs
written by hardware interface specialists. Hardware interface testing is complicated by the
fact that modern hardware has very few buttons, switches, and lights. Old computers had lots
of them, and you could abuse those buttons and switches to create wonderful anomalous
interface conditions that could not be simulated any other way. Today’s highly integrated
black boxes rarely have such controls and, consequently, considerable ingenuity may be
needed to simulate and test hardware interface status conditions. Modern hardware is better
and cheaper without the buttons and lights, but also harder to test. This paradox can be
resolved by hardware that has special test modes and test instructions that do what the
buttons and switches used to do. The hardware manufacturers, as a group, have yet to
provide adequate features of this kind. Often the only alternative is to use an elaborate
hardware simulator instead of the real hardware. Then you're faced with the problem of
distinguishing between real bugs and hardware simulator implementation bugs.

(d)_Operating System:

>

Program bugs related to the operating system are a combination of hardware architecture
and interface bugs, mostly caused by a misunderstanding of what it is the operating system
does. And, of course, the operating system could have bugs of its own. Operating systems
can lull the programmer into believing that all hardware interface issues are handled by it.
Furthermore, as the operating system matures, bugs in it are found and corrected, but some
of these corrections may leave quirks. Sometimes the bug is not fixed at all, but a notice of
the problem is buried somewhere in the documentation—if only you knew where to look for it.
The remedy for operating system interface bugs is the same as for hardware bugs: use
operating system interface specialists, and use explicit interface modules or macros for all
operating system calls. This approach may not eliminate the bugs, but at least it will localize
them and make testing easier.

(e) _Software Architecture:

>

Software architecture bugs are often the kind that are called “interactive.” Routines can pass
unit and integration testing without revealing such bugs. Many of them depend on load, and
their symptoms emerge only when the system is stressed. They tend to be the most difficult
kind of bug to find and exhume. Here is a sample of the causes of such bugs: assumption
that there will be no interrupts, failure to block or unblock interrupts, assumption that code is
reentrant or not reentrant, bypassing data interlocks, failure to close or open an interlock,
assumption that a called routine is resident or not resident, assumption that a calling program
is resident or not resident, assumption that registers or memory were initialized or not
initialized, assumption that register or memory location content did not change, local setting
of global parameters, and global setting of local parameters.

The first line of defense against these bugs is the design. The first bastion of that defense is
that there be a design for the software architecture. Not designing a software architecture is
an unfortunate but common disease. The most elegant test techniques will be helpless in a
complicated system whose architecture “just growed” without plan or structure. All test
techniques are applicable to the discovery of software architecture bugs, but experience has
shown that careful integration of modules and subjecting the final system to a brutal stress
test are especially effective (BEIZ84)."

() _Control and Sequence Bugs:

>

System-level control and sequence bugs include: ignored timing; assuming that events occur
in a specified sequence; starting a process before its prerequisites are met (e.g., working on
data before all the data have arrived from disc); waiting for an impossible combination of

Prepared by: S.Prasanna

Software Testing Methodologies
prerequisites; not recognizing when prerequisites have been met; specifying wrong priority,
program state, or processing level; missing, wrong, redundant, or superfluous process steps.

» The remedy for these bugs is in the design. Highly structured sequence control is helpful.
Specialized, internal, sequence-control mechanisms, such as an internal job control
language, are useful. Sequence steps and prerequisites stored in tables and processed
interpretively by a sequence-control processor or dispatcher make process sequences easier
to test and to modify if bugs are discovered. Path testing as applied to transaction
flowgraphs, as discussed in Chapter 4, is especially effective at detecting system-level
control and sequence bugs.

(@) _Resource Management Problems:

» Memory is subdivided into dynamically allocated resources such as buffer blocks, queue
blocks, task control blocks, and overlay buffers. Similarly, external mass storage units such
as discs, are subdivided into memory-resource pools. Here are some resource usage and
management bugs: required resource not obtained (rare); wrong resource used (common, if
there are several resources with the same structure or different kinds of resources in the
same pool); resource already in use; race condition in getting a resource; resource not
returned to the right pool; fractionated resources not properly recombined (some resource
managers take big resources and subdivide them into smaller resources, and Humpty
Dumpty isn’t always put together again); failure to return a resource (common); resource
deadlock (a type A resource is needed to get a type B, a type B is needed to get a type C,
and a type C is needed to get a type A); resource use forbidden to the caller; used resource
not returned; resource linked to the wrong kind of queue; forgetting to return a resource.

» A design remedy that prevents bugs is always preferable to a test method that discovers
them. The design remedy in resource management is to keep the resource structure simple:
the fewest different kinds of resources, the fewest pools, and no private resource
management.

» Complicated resource structures are often designed in a misguided attempt to save memory
and not because they're essential. The software has to handle, say, large-, small-, and
medium-length transactions, and it is reasoned that memory will be saved if three different-
sized resources are implemented. This reasoning is often faulty because:

» 1. Memory is cheap and getting cheaper.

» 2. Complicated resource structures and multiple pools need management software; that
software needs memory, and the increase in program space could be bigger than the
expected data space saved.

» 3. The complicated scheme takes additional processing time, and therefore all resources are
held in use a little longer. The size of the pools will have to be increased to compensate for
this additional holding time.

> 4. The basis for sizing the resource is often wrong. A typical choice is to make the buffer
block’s length equal to the length required by an average transaction—usually a poor choice.
A correct analysis (see BEIZ78, pp. 301-302) shows that the optimum resource size is
usually proportional to the square root of the transaction’s length. However, square-root laws
are relatively insensitive to parameter changes and consequently the waste of using many
short blocks for long transactions or large blocks to store short transactions isn’t as bad as
naive intuition suggests.

» The second design remedy is to centralize the management of all pools, either through
centralized resource managers, common resource-management subroutines, resource-
management macros, or a combination of these.

» | mentioned resource loss three times—it was not a writing bug. Resource loss is the most
frequent resource-related bug. Common sense tells you why programmers lose resources.

Prepared by: S.Prasanna

Software Testing Methodologies

You need the resource to process—so it’s unlikely that you’ll forget to get it; but when the job
is done, the successful conclusion of the task will not be affected if the resource is not
returned. A good routine attempts to get resources as soon as possible at a common point
and also attempts to return them at a common point; but strange paths may require more
resources, and you could forget that you’re using several resource units instead of one.
Furthermore, an exception-condition handler that responds to system-threatening illogical
conditions may bypass the normal exit and jump directly to an executive level—and there
goes the resource. The design remedies are to centralize resource fetch-and-return within
each routine and to provide macros that return all resources rather than just one. Resource-
loss problems are exhumed by path testing (Chapter 3), by transaction-flow testing (Chapter
4), data-flow testing (Chapter 5), and by stress testing (BEIZ84).

(h_Integration Bugs:

> Integration bugs are bugs having to do with the integration of, and with the interfaces
between, presumably working and tested components. Most of these bugs result from
inconsistencies or incompatibilities between components. All methods used to transfer data
directly or indirectly between components and all methods by which components share data
can host integration bugs and are therefore proper targets for integration testing. The
communication methods include data structures, call sequences, registers, semaphores,
communication links, protocols, and so on. Integration strategies and special testing
considerations are discussed in more detail in BEIZ84. While integration bugs do not
constitute a big bug category (9%) they are an expensive category because they are usually
caught late in the game and because they force changes in several components and/or data
structures, often during the height of system debugging. Test methods aimed at interfaces,
especially domain testing (Chapter 6), syntax testing (Chapter 9), and data-flow testing when
applied across components (Chapter 5), are effective contributors to the discovery and
elimination of integration bugs.

(i) _System Bugs:

> System bugs is a catch-all phrase covering all kinds of bugs that cannot be ascribed to
components or to their simple interactions, but result from the totality of interactions between
many components such as programs, data, hardware, and the operating system. System
testing as a discipline is discussed in BEIZ84. The only test technique that applies obviously
and directly to system testing is transaction-flow testing (Chapter 4); but the reader should
keep in mind two important facts: (1) all test techniques can be useful at all levels, from unit
to system, and (2) there can be no meaningful system testing until there has been thorough
component and integration testing. System bugs are infrequent (1.7%) but very important
(expensive) because they are often found only after the system has been fielded and
because the fix is rarely simple.

(vii)_ Test and Test Design Bugs:

(a)_Testing:

» Testers have no immunity to bugs (see the footnote on page 20). Tests, especially system
tests, require complicated scenarios and databases. They require code or the equivalent to
execute, and consequently they can have bugs. The virtue of independent functional testing
is that it provides an unbiased point of view; but that lack of bias is an opportunity for
different, and possibly incorrect, interpretations of the specification. Although test bugs are
not software bugs, it’s hard to tell them apart, and much labor can be spent making the
distinction. Also, consider the maintenance programmer—does it matter whether she’s
worked 3 days to chase and fix a real bug or wasted 3 days chasing a chimerical bug that
was really a faulty test specification?

Prepared by: S.Prasanna

Software Testing Methodologies
(b)_Test Criteria:

» The specification is correct, it is correctly interpreted and implemented, and a seemingly
proper test has been designed; but the criterion by which the software’s behavior is judged is
incorrect or impossible. How would you, for example, “prove that the entire system is free of
bugs?” If a criterion is quantitative, such as a throughput or processing delay, the act of
measuring the performance can perturb the performance measured. The more complicated
the criteria, the likelier they are to have bugs.

(c)_Remedies:

» The remedies for test bugs are: test debugging, test quality assurance, test execution
automation, and test design automation.

> Test Debugging—The first remedy for test bugs is testing and debugging the tests. The
differences between test debugging and program debugging are not fundamental. Test
debugging is usually easier because tests, when properly designed, are simpler than
programs and do not have to make concessions to efficiency. Also, tests tend to have a
localized impact relative to other tests, and therefore the complicated interactions that usually
plague software designers are less frequent. We have no magic prescriptions for test
debugging—no more than we have for software debugging.

> Test Quality Assurance—Programmers have the right to ask how quality in independent
testing and test design is monitored. Should we implement test testers and test—tester
tests? This sequence does not converge. Methods for test quality assurance are discussed in
Software System Testing and Quality Assurance (BEIZ84).

> Test Execution Automation—The history of software bug removal and prevention is
indistinguishable from the history of programming automation aids. Assemblers, loaders,
compilers, and the like were all developed to reduce the incidence of programmer and/or
operator errors. Test execution bugs are virtually eliminated by various test execution
automation tools, many of which are discussed throughout this book. The point is that
“‘manual testing” is self-contradictory. If you want to get rid of test execution bugs, get rid of
manual execution.

» Test Design Automation—Just as much of software development has been automated (what
is a compiler, after all?) much test design can be and has been automated. For a given
productivity rate, automation reduces bug count—be it for software or be it for tests.

(viii) _ Testing and Design Style:

» This is a book on test design, yet this chapter has said a lot about programming style and
design. You might wonder why the productivity of one programming group is as much as 10
times higher than that of another group working on the same application, the same computer,
in the same language, and under similar constraints. It should be obvious—bad designs lead
to bugs, and bad designs are difficult to test; therefore, the bugs remain. Good designs inhibit
bugs before they occur and are easy to test. The two factors are multiplicative, which
explains the large productivity differences. The best test techniques are useless when
applied to abominable code: it is sometimes easier to redesign a bad routine than to attempt
to create tests for it. The labor required to produce new code plus the test design and
execution labor for the new code can be much less than the labor required to design
thorough tests for an undisciplined, unstructured monstrosity. Good testing works best on
good code and good designs. And no test technique can ever convert garbage into gold.

Prepared by: S.Prasanna

Software Testing Methodologies

Prepared by: S.Prasanna

Software Testing Methodologies

UNIT -11

FLOW GRAPHS AND PATH TESTING

(1)_Basics concepts of path testing:
(i_Motivation and Assumptions:
(a) _Path testing
» A sequence of statements which starts at an entry and ends at an exit by passing all the
existing junctions, decisions etc is known as path.
» Path testing is a process which involves all the available paths in a program from an entry
to an exit in such a way that the entire path is thoroughly tested.
> If the set of paths is properly chosen, then we have achieved some measure of test
thoroughness.
(b) Motivation
Path—testing techniques are the oldest of all structural test techniques.
Path—testing techniques were also the first techniques to come under theoretical scrutiny.
There is considerable evidence that path testing was independently discovered and used
many times in many different places.
Path testing is most applicable to new software for unit testing. Itis a structural technique. It
requires complete knowledge of the program’s structure (i.e., source code).
It is most often used by programmers to unit—test their own code.
) The Bug Assumption:
The bug assumption for the path—testing strategies is that something has gone wrong with
the software that makes it take a different path than intended.
As an example, “GOTO X’ where “GOTO Y” had been intended. As another example, “IF
Ais true THEN DO X ELSE DO Y”, instead of “IF A is false THEN . . .”
We also assume, in path testing, that specifications are correct and achievable, that there
are no processing bugs other than those that affect the control flow, and that data are
properly defined and accessed.

(@_About control flowgraphs:
» The control flowgraph is a graphical representation of a program’s control structure.
» A control flowgraph is a form of a flowchart which does not deal with the internal structure
of the process rather it shows the data flow and the control flow between the processes.
» ltuses the elements process blocks, decisions and junctions.
() _Process Block
< A process block’ is a sequence of program statements uninterrupted by either decisions
or junctions.
% Formally, itis a sequence of statements such that if any one statement of the block is
executed, then all statements are executed.
Here once a process block is initiated, every statement within it will be executed.
Every process has an entry and an exit and consists of a single or series of statements.
Control flow graph are not concerned with the details of operations in a process block
so, the test cases are.

vV V VgV YV VVYV

%

%

K/ K/
R X X

Prepared by: S.Prasanna

Software Testing Methodologies

Processes Do process A
BERRSSN EE—

Decisions and Case Statements:
% Adecision is a program point at which the control flow can split.

0,

% Machine language conditional branch and conditional skip instructions are examples of
decisions.
% The FORTRAN IF and the Pascal IF-THEN-ELSE constructs are decisions, although
they also contain processing components.
While most decisions are two—way or binary, some (such as the FORTRAN IF) are
three—way branches in control flow.
» The design of test cases is generally easier with two—way branches than with three—way
branches, and there are also more powerful test—design tools that can be used.
» Any decision can split the control flow into different way branches.
This multi way branches can be termed as case statements.
The designing of test cases for decision and case statements are same.
Yes : THEN DO

X/
*

S

DS

DS

X/
X4

L)

7/
o

N IF A=B NO: ELSE -
Decision > 9 >
CASE—OF--
CASE 1
) 7N
Case Statement > 1 >
N _/
CASE 2
() R
NG
| (N)_CASEN
i) _Junctions: \J

% Ajunction is a point in the program where the control flow can merge.

% Thatis all the control flows can merge at a point in a program which is known as
junction.

** In other words a node with more than one input line is known as junction.

s Examples of junctions are: the target of a jump or skip instruction in assembly language,
a label that is the target of a GOTO, the END—IF and CONTINUE statements in
FORTRAN, and the Pascal statement labels, END and UNTIL.

Junctions \:fl\ ‘ fz\
_/

/3\/

v

Prepared by: S.Prasanna

Software Testing Methodologies

Control flowgraph advantages:

% Control flowgraph eliminates the occurrence of some problems which results from
expanding the visual complexities.

% Control flowgraph treats all the steps inside a process as a single process entity and
shows only data and control flow to and from that entity there by reducing the
complexity of structure.

% Control flowgraphs can be referred to as a modern approach for representation of flows.

% Control flowgraph gives the precise and clear view of the program structure, the
directions of data flow etc.

Control flowgraph disadvantages:

% Control flowgraph plays an important role in representing the program control structure,
but are sparsely available due to the scarcity of control flowgraph generators.

% The information needed to produce a control flowgraph is not provided by most of the
compilers.

% Although the control flowgraphs are informative, but causes inconveniency while
working.

% Control flowgraph structure is similar to many programming structures and is very
difficult to differentiate..

(_b_} Control Flowgraphs Versus Flowcharts

Y

vV Vv ¥V Vv VvV V V VY

Flowchart is a graph which represents the control structure of the program, as well as the
internal structure of each and every process or process block.

Control flowgraph is also a graph which represents the control structure of a program, but it
excludes the detailed structure of process blocks.

All the steps inside a process are shown using flowchart in addition to the control flows, but
control flowgraph considers all the steps as a single process entity and shows only the
control flows to and from that process entity.

Flowchart shows the internal flows of each process so, itis difficult to identify the actual
control flows between different processes.

Whereas control flowgraphs shows the control and data flow only between processes,
there by complexity is reduced.

Flowcharts had lost its importance because of the detailed information, it provides which is
not in use for process design.

We can also use flowchart for representing the control and data flows in a traditional way
and control flowgraphs as the modern approach for representation of flows.

Flowcharts can easily be drawn manually using available flowchart generators whereas
control flowgraph can be drawn difficult.

In control flowgraphs, we don’t show the details of what is in a process block; indeed, the
entire block, no matter how many statements in it, is shown as a single process.

In flowcharts, conversely, every part of the process block is drawn: if a process block
consists of 100 steps, the flowchart may have 100 boxes.

Flowchart has a box to represent each and every process step which is not the case with
control flowgraph, only the outline of process block is shown in control flowgraph.

(¢c)_Notational Evolution

>
>

>

The control flowgraph is a simplified representation of the program’s structure.

To understand its creation and use, we’ll go through an example, written ina FORTRAN-
like program design language (PDL).

The code is given below.

Prepared by: S.Prasanna

Software Testing Methodologies

CODE* (PDL)
INPUT XY
7:=X+Y
V:=X-Y
IF Z>=0 GOTO SAM
JOE:Z:=7-1
SAM:Z:=7Z+V
FORU=0TO Z
V(U),U(V):=(Z+V)*V
IF V(U)=0 GOTO JOE
7:=7-1
IF Z=0 GOTO ELL
U:=U+1
NEXT U
V(U+D)+U(V-1)
ELL:V(U+U(V)):=U+V

> V(U-1D)=V(U+D)+U(V-1)

END
» One-to-one Flowchart for the above code is given by
YES
INPUTX)Y —»| Z=X+Y |—»| V=X-Y }—
NO
7=7-1 . 7=7+V » U=0 >
yes
-
V(U)=(Z+V)*U » U(V)=(Z+V)*U
NO
_ NO NO
=21 | L= U=U+l | —» U=U+1
YES | YES

VU+U(V))=U+V

Prepared by: S.Prasanna

Software Testing Methodologies
» Control flowgraph for the above example is given by

NO
— PROCESS1 — PROCESS 2 4’.
YES
YES
+ PROCESS 3 LOOP PROCESS 4
7y NO
PROCESS 7 [*
NO
NO
PROCESS 5 — | PROCESS 6
YES
PROCESS 9 PROCESS 8
Ldl —
» Aflowgraph is a pictorial representation of a program and not the program itself.

VvV V V¥V V

Y

We can’t always associate the parts of a program in a unique way with flowgraph parts
because many program structures, such as IF-THEN—-ELSE constructs, consist of a
combination of decisions, junctions, and processes.

Furthermore, the translation from a flowgraph element to a statement and vice versa is not
always unique.

A FORTRAN DO has three parts: a decision, an end—point junction, and a process that
iterates the DO variable.

The FORTRAN IF-THEN-ELSE has a decision, a junction, and three processes (including
the processing associated with the decision itself).

Therefore, neither of these statements can be translated into a single flowgraph element.
Some computers have looping, iterating, and EXECUTE instructions or other instruction
options and modes that prevent the direct correspondence between instructions and
flowgraph elements.

Such differences are so familiar to us that we often code without conscious awareness of
their existence.

It is, however, important that the distinction between a program and its flowgraph
representation be kept in mind during test design.

Prepared by: S.Prasanna

Software Testing Methodologies

» An improper translation from flowgraph to code during coding can lead to bugs, and an
improper translation (in either direction) during test design can lead to missing test cases
and consequently, to undiscovered bugs.

(e)_FI raph and Flowch neration

» The control flowgraph is a simplified version of the earlier flowchart.

» Flowcharts can be (1) hand—drawn by the programmer, (2) automatically produced by a
flowcharting program based on a mechanical analysis of the source code, or (3)
semiautomatically produced by a flowcharting program based in part on structural analysis
of the source code and in part on directions given by the programmer.

» The semiautomatic flowchart is most common with assembly language source code.

» A flowcharting package that provides controls over how statements are mapped into
process boxes can be used to produce a flowchart that is reasonably close to the control
flowgraph.

» You do this by starting process boxes just after any decision or GOTO target and ending
them just before branches or GOTOs.

(iii) _Path Testing:

(a) _Paths, Nodes, and Links
» A path through a program is a sequence of instructions or statements that starts at an

entry, junction, or decision and ends at another, or possibly the same, junction, decision, or
exit.
A path may go through several junctions, processes, or decisions, one or more times.
Every path consists of a set of processes known as links.
A direct connection between two nodes is also called a “process”.
Links can be denoted by an arrow and can represented by the lower case letters.
A path segment is a succession of consecutive links that belongs to some path.
The length of a path is measured by the number of links in it and not by the number of
instructions or statements executed along the path.
An alternative way to measure the length of a path is by the number of nodes traversed.
Nodes are mainly denoted by small circles. A node which has more than one input link is
known as a junction, and a node which has more than one output link is referred to as a
decision.
» Nodes can be labeled by an alphabets or numbers.
» |If programs are assumed to have an entry and an exit node, then the number of links

traversed is just one less than the number of nodes traversed.
» Because links are named by the pair of nodes they join, the name of a path is the name of

the nodes along the path.

D

» There are two different paths from an entry (A) to an exit (B), they are ACDEFB and
ACDFB respectively. In these two ACDFB is the shortest path between an entry and an
exit.

> In all the nodes (A,B,C,D,E,F), Dis the decision which has 2 output links, and F is a
junction which has two input links.

» The a,b,c,d,efare all the available links.

YV VVVVVY

Prepared by: S.Prasanna

Software Testing Methodologies

(b)_Multi-Entrv/Multi-Exit Routines

» Multi-entry means, multiple entry points and multi-exit refers to multiple exit points.

» Generally all routines and programs have a single entry and a single exit.

» There are certain situations in which it is appropriate to change the routine and choose an

alternate way to normal control structure.

» Thereis no justifiable reason which forces you to change the routine.

» You may want to choose an alternate routine, when an illegitimate condition occur and will

damage the system’s data, if that path is continued further.

» The other reason might be the occurrence of several fluctuations during the processing of

same path.

» Hence changing of route is advantageous in such situations by placing an entry pointin a

routine which sends the flow to appropriate location.

» If aroutine can have several different kinds of outcomes, then an exit parameter should be

used.

> As there is no direct connection between entry and exit so control flow is managed by

reviewing the parameter values of entry and exit in both directions of the routine.

» The main drawback of multi-entry and multi-exit routines is that all the test cases are
difficult to cover because the control flow between various processes can’t be determined
easily due to multiple entry and exit points.

(¢)_Fundamental Path Selection Criteri

» There are many paths between the entry and exit of a typical routine.

> Path selection mainly deals with the selection of an optimal path between its entry and exit.

» If a routine contains decisions or loops inside it, then there will be more number of paths.

» For example every decision doubles the number of potential paths, and every loop
multiplies the number of potential paths by the number of different iteration values possible
for the loop.

» If aroutine has one loop, each pass through that loop (once, twice, three times, and so on)
constitutes a different path through the routine, even though the same code is traversed
each time.

» A lavish test approach might consist of testing all paths, but that would not be a complete
test, because a bug could create unwanted paths or make mandatory paths unexecutable.

» Complete testing involves

1. Exercise every path from entry to exit.
2. Exercise every statement or instruction at least once.
3. Exercise every branch and case statement, in each direction, atleast once.

> |If prescription 1 is followed then prescriptions 2 and 3 are automatically followed, but
prescription 1 is impractical for most routines.

Example yes

no X=X+A
— X=X+A _’

» For Xisless than zero, the output is X+A while X is greater than or equal to zero the output
is X+2A because decision doubles the number of paths.

> If we execute all the statements but not the branches in the above example we would get
the bug.

Prepared by: S.Prasanna

Software Testing Methodologies
yes

no X=X+A

o

» For the above example if Xis less than zero the output is correct, but for any positive value
the output will be X=X+A which is wrong.

» A static analysis thatis an analysis based on examining the source code or structure
cannot determine whether a piece of code is or is not reachable.

» Only a dynamic analysis thatis an analysis based on the code’s behavior while running can
determine whether code is reachable or not.

(d_Path-T

» There are three path testing criteria.

» The notation Py, P2, ..., Poo should alert you to the fact that there is an infinite number of
such strategies, but even that’s insufficient to exhaust testing.
(_Path Testing (Px):
% Path testing deals with the execution of paths if we have tested all the available control

flow paths we have achieved 100% path coverage which is mostly impossible.

% The word coverage refers to combinational value of 100% statement coverage and

branch coverage.

It is represented as (C1+C2), where C1refers to statement coverage and Czrefers to

branch coverage.

% Hence this type of coverage is also referred as completed coverage.

(il Statement Testing (P1):

% Statement testing deals with the execution of all the statements inside a program at
least once.

7
A X4

7
L X4

The process of performing possible tests in order to achieve statement testing is called
100% statement coverage.
Statement coverage is also known as 100% node coverage.

% We denote this by Cs.

Branch Testing (P2):

Branch testing deals with the execution of all the branches at least once in the program.

% The process of performing possible tests in order to achieve branch testing is called

100% branch coverage.

Branch coverage is also known as link coverage.

% We denote branch coverage by Co.

@LqmmmMnd_S.tmmgms
Branch and statement coverage are accepted today as the minimum mandatory testing
requirement.

» Statement coverage is established as a minimum testing requirement in the IEEE unit test
standard.

» Statement and branch coverage have also been used for more than two decades as
minimum mandatory unit test requirements for new code at IBM and other major computer
and software companies.

» The justification for insisting on statement and branch coverage isn’t based on theory but
on common sense.

Prepared by: S.Prasanna

Software Testing Methodologies

» Also with our common sense, we can classify code with much probability of having bugs
and code with less probability, separately.

> Keeping the code with lower probability of bugs untested may not be wrong because this
code will probably have less or no bugs.

» The code with higher probability of bugs is tested thoroughly to remove all the bugs. Even if
we are skipping some part of this code it will not create a big one because this portion is
tested many times in the entire testing process.

(f)_Which Paths

» We must pick enough paths to achieve C1 + C2.

> It's better to take many simple paths than a few complicated paths.

» An example of path selection is given below.

6 END

NO

Y

h
| k j M=5

m NO

> As we trace the paths, create a table that shows the paths, the coverage status of each
process, and each decision.
» Start at the beginning and take the most obvious path to the exit—it typically corresponds
to the normal path.
» The most obvious path in above figure is (1,3,4,5,6,2), if we name it by nodes, or abcde if
we name it by links.
» Then take the next most obvious path, abhkgde. All other paths in this example lead to
loops.
» Take a simple loop first—building, if possible, on a previous path, such as abhlibcde.
» Then take another loop, abcdfjgde. And finally, abcdfmibcde.
» The above paths lead to the following table.
PATHS DECISIONS PROCESS-LINK
4 6 7 9 abcdefghijkIm
abcde YES YES
abhkgde NO YES NO
abhlibcde NO,YES | YES YES

abcdfjgde YES NO,YES | YES
abcdfmibcde | YES NO,YES | NO

Prepared by: S.Prasanna

Software Testing Methodologies
» After you have traced a covering path set on the master sheet and filled in the table for
every path, check the following.
1. Does every decision have a YES and a NO inits column? (C2)
2. Has every case of all case statements been marked? (C2)
3. Is every three—way branch (less, equal, greater) covered? (C2)
4. |s every link (process) covered at least once? (C1)’
Select successive paths as small variations of previous paths.
Try to chance only one thing at a time that is only one decision’s outcome if possible.
It is better to have several paths, each differing by only one thing, than one path that covers
more but along which several things change.
The abcd segment in the above example is common to many paths
(g)_Path selection rules:
(a)_Selection of simple path:
% Select an entry/exit path which is simple and assign selected path with either nodes or
links.
(b)_Selection of additional paths:
s After selection of simple path, the next obvious path is selected.
% This method of selecting successive paths can be done by making small changes to the
previous paths.
+ Unlike long and complex paths, various small paths are selected which involves gradual
variations.
¢ In path selection Select paths with no loops, Select shorter paths and Select simple and
sensible paths.
(¢)_Selecti f Non-functional Sensibl hs:
% Select additional paths in such a way that coverage is achieved through the non-
functional sensible paths.
% This type of selection should be preferred only if coverage is essential.
il i H
% All possible paths should be selected in order to meet the requirements of a user.
% This process is repeated until statement (C1) and branch (C2) coverages are achieved.
¢ During this process checking is carried out on each and every decision statement,
branch covering, link covering etc.
% Statement coverage and branch coverage (C1+Cz) does not support loop-related bugs.

(iv) _TL.oops:
(@_The Kinds of Loops

» There are three kinds of loops.

» They are nested, concatenated and horrible loops.

» Asingle loop can be covered with two cases: looping and not looping.

The different cases for a single loop are

Case 1—Single Loop, Zero Minimum, N Maximum, No Excluded Values.

» Case 2—Single Loop, Nonzero Minimum, No Excluded Values.

% Case 3—Single Loops with Excluded Values.

(ii) Nested Loops:

« The nested loops are quite complicated i.e. aloop within another loop is known as
nested loop.

% ltis very expensive to test the path which contains nested loop because of its
complexity.

YV YVV

K/ R/ R/ R/
IR XS IR X X

Prepared by: S.Prasanna

Software Testing Methodologies
% If you had five tests for one loop, a pair of nested loops would require 25 tests, and
three nested loops would require125.
% To overcome this complexity we have to follow some steps.

1. Start at the innermost loop. Set all the outer loops to their minimum values.

2. Test the minimum, minimum + 1, typical, maximum — 1, and maximum for the
innermost loop, while holding the outer loops at their minimum—iteration—parameter
values. Expand the tests as required for out—of-range and excluded values.

3. If you've done the outermost loop, GOTO step 5, ELSE move out one loop and set
it up as in step 2—with all other loops set to typical values.

4. Continue outward in this manner until all loops have been covered.

5. Do the five cases for all loops in the nest simultaneously.

¢ This procedure works out to twelve tests for a pair of nested loops, sixteen for three
nested loops, and nineteen for four nested loops.

% Practicality may prevent testing in which all loops achieve their maximum values
simultaneously.

% Example f

a

(iii) Concatenated L.oops:

% Concatenated loops are the loops which reside one beside the other on the same path.
* In other words, when there exits two adjacent loops on the same path such that, an exit
of one loop serves as an entry point for the other loop, then the loops are said to be

concatenated.

% If the loops cannot be on the same path, then they are not concatenated and can be
treated as individual loops.

% If one loop’s repetition value depends on the repetition value of other loop and both lie
on same path they can be termed as nested loops.

C

Prepared by: S.Prasanna

Software Testing Methodologies
(iv) Horrible Loops:

% If the loops cannot be on the same path, then they are not concatenated and can be
treated as individual loops.

* Horrible loops are the complexed of all the three loops. This complex structure of
horrible loops makes it very difficult to be tested.

% The design of test cases for horrible loops is indefinite and is too many to execute.
Hence horrible loops must be avoided.

v i

'
()
) k

J

T
(=<3 (< O
a b wc d (M=5)
e Tf
8
X g

Loop-—Testing Time
Any kind of loop can lead to long testing time, especially if all the extreme value cases are
to be attempted (MAX — 1, MAX, MAX + 1).
This situation is obviously worse for nested and dependent concatenated loops.
In the context of real testing, most tests take a fraction of a second to execute, and even
deeply nested loops can be tested in seconds or minutes.
The unreasonably long test execution times (i.e., hours or centuries) could indicate bugs in
the software or the specification.
Consider nested loops in which testing the combination of extreme values leads to long test
times. You have several options:
1. Show that the combined execution time results from an unreasonable or incorrect
specification. Fix the specification.
2. Prove that although the combined extreme cases are hypothetically possible, they are
not possible in the real world. That is, the combined extreme cases cannot occur.
3. Putinlimits or checks that prevent the combined extreme cases. Then you have to test
the software that implements such safety measures.
4. Test with the extreme—value combinations, but use different numbers.
(v)_More on Testing Multi—Entr ulti-Exit Routines:
Lal_AJN_eak.Annmas:h
To test the program with multi-entry and multi-exit routines are as follows.
First, built the fictitious single entry routine and fictitious exit routine with fictitious case
statements and processes respectively.
Secondly concentrate on fictitious common junction. This fictitious code will help you to
organize the test case design for multi-entry and multi-exit routines.
This technique involves a lot of extra work because you must examine the cross-reference
listings to find all references to the labels that correspond to the multiple entries.
All the designers of routines should know how they want to exit, butit’s difficult to control an
entry that can be initiated by many other programmers.
The Conversion of Multi-exit or Multi-entry routines is given by the following figures.

y

vV V VV Vb

Y VY

vV V VYV V¥V

Prepared by: S.Prasanna

Software Testing Methodologies
(i) A Multi-entry routine is converted to an equivalent single-entry routine with an entry
parameter and a controlling case statement.

CASE

TS eNO=
G
OR

(i) A Multi-exit routine is converted to an equivalent single-exit routine with an exit
parameter.

SET E=1

EXIT 1

EXIT 2 |:> —»@—» SET E=2 —(3* EXIT

A

EXIT N SET E=N

> Treating the multl—entry/multl—exit routine by using a fictional entry case statement and a
fictional exit parameter is a weak approach because it does not solve the essential testing
problem.

» The essential problemis an integration testing issue and has to do with paths within called
components.

» For example we have a multi—entry routine with three entrances and three different callers.
The first entrance is valid for callers A and B, the second is valid only for caller A, and the
third is valid for callers B and C.

» Just testing the entrances doesn’t do the job because inintegration testing it’s the interface,
the validity of the call that must be established.

> In integration testing, we would have to do at least two tests for the A and B callers—one
for each of their entrances. Note also that, in general, during unit testing we have no idea
who the callers are to be.

Prepared by: S.Prasanna

Software Testing Methodologies

>

Multi-entry components are shown in the following figure.

VALID FOR CALLER A,B —»

VALID FOR CALLER A’ ——»| —

VALID FORCALLERB,C —*

» Multi-exit routine is shown in the following figure.
(1) VALID ONLY FOR X
—>
CALLEDBY XY —* 4_2’) VALID FOR XORY
(3) VALID ONLY FOR Y
—>

» The above multi-exit routine has three exits labeled 1, 2, and 3.

» It can be called by components X or Y. Exits 1 and 2 are valid for the X calls and 2 and 3
are valid for the Y calls.

» Component testing must not only confirm that exits 1 and 2 are taken for the X calls, but
that there are no paths for the X calls that lead to exit 3—and similarly for exit 1 and the Y
calls.

» But when we are doing unit tests, we do not know who will call this routine with what
restrictions. As for the multi—entry routine, we must establish the validity of the exit for every
caller.

> Note that we must confirm that not only does the caller take the expected exit, but also that
there is no way for the caller to return via the wrong exit.

» When we combine the multi—entry routine with the multi—exit routine, we see that in
integration testing we must examine every combination of entry and exit for every caller.

» Since we don’t know, during unit design, which combinations will or will not be valid, unit
testing must at least treat each such combination as if it were a separate routine.

» Thus, a routine with three entrances and four exits results in twelve routines’ worth of unit
testing.

> Integration testing is made more complicated in proportion to the number of exits, or
fourfold.

(0_The Theory and Tools Issue

» A well-formed software is a software, which has single entry and single exit with a rigid
structure.

» Software which does not have this property is called ill-formed.

» The other characteristic of well-formed software is to insist on strict structuring in addition
to single—entry/single—exit.

» An assumption that multi-entry and multi-exit routines can’t occur in testing theory has been
followed.

» Such multi-entry and multi-exit routines come under ill formed routines.

» Before applying the theoretical rules, itis better to confirm whether the software is well-
formed or ill-formed.

> lll-formed (multi-entry and multi-exit) software does not have any structure so, testing of
one component does not guarantee the test results for another.

» Even test generators may not be able to generate test cases for ill-formed software.

Prepared by: S.Prasanna

Software Testing Methodologies
(d)_Strategy éi;mmary

The proper way to test multi-entry or multi—exit routines is:
1. Get rid of them.
2. Completely control those you can’t get rid of.
3. Supply the imaginary input case statements, and exit parameters to control flowgraph in
order to design test cases for these routines.
4. Do stronger unit testing by treating each and every entry/exit combination considered as a
completely different routine.
5. Multi-entry and multi-exit routines are assumed to be more unusual and dangerous so,
integration testing is performed with more efforts and concentration.
6. Be sure you understand that test cases designed based on your assumption are suitable for
multi-entry and multi-exit routines.
(vi)_Effectiveness of Path Testing:
(a) _Effectiven nd Limitati
> Unit testing is comparatively stronger than path testing which is stronger than statement
and branch testing.
» Unit testing can catch up to 65% of bugs in overall structure, this implies that path testing
captures approximately 35% of bugs in the overall structure as per statistical reports.
» Path testing is more effective for unstructured than for structured software.
» Apart from effectiveness, path testing also has certain limitations.
1. Planning to cover does not mean you will cover. Path testing may not cover if you have
bugs.
2. Path testing has to be combined with other methods to improve the overall performance in
terms of percentage.
Unit level path testing does not concentrate on integration issues which may result in
interface errors.
Database and data—flow errors may not be caught.
lllegitimate functions or missed functions cannot be identified during path testing.
Not all initialization errors are caught by path testing.
. Specification errors can’t be caught.
(b)_A Lot of Work?
» Path testing involves a lot of work that is.
% Development of control flowgraph.
% Choosing a route that can cover all the paths, decisions and junctions in a flowgraph.
s Determining the input values which satisfies each path expression for selecting the
respective paths.
%+ Writing test cases for loops.
» The statistics indicate that you will spend half of your time testing and debugging—
presumably that time includes the time required to design and document test cases.
» Furthermore, the act of careful, complete, systematic, test design will catch as many bugs
as the act of testing.
> ltis worth that, the test design process, at all levels, and is at least as effective at catching
bugs as is running the test designed by that process.
(c)More on How to Do It
» To trace the path from your code, you need a marking pen, a copying machine and a
source code list.
> At first you may want to create the control flowgraph and use that as a basis for test design,
but as you gain experience with practice, you'll find that you can select the paths directly on
the source code without bothering to draw the control flowgraph.

w

No ok

Prepared by: S.Prasanna

Software Testing Methodologies

>

>

A\

Y VY

If you can path trace through code for debugging purposes then you can just as easily trace
through code for test design purposes.

And if you can’t trace a path through code, are you a programmer then you do it with code
almost the same way as you would with a pictorial control flowgraph.

Choose your path and mark only the executed statements in case of “if-then-else
statements”.

Also mark all the ongoing statements on a path with a marking pen by doing this you will
accomplish Ci.

Place or draw your marking on a master sheet with the marking pen (yellow).

For achieving C2 we need to identify and mark all the statements irrespective of its
execution even for the if-then-else statements.

(vii) _Variations:

» Branch and statement coverage as basic testing criteria are well established as effective,
reasonable, and easy to implement.

» There are two main classes of variations:

1. Strategies between P2 and total path testing.
2. Strategies weaker than P1 or Pa.

» The stronger strategies typically require more complicated path selection criteria, most of
which are impractical for human test design.

> Typically, the strategy has been embedded in a tool that either selects a covering set of
paths based on the strategy or helps the programmer to do so.

» While research can show that strategy A is stronger than B in the sense that all tests
generated by B are included in those generated by A, itis much more difficult to ascertain
cost—effectiveness.

» For example, if strategy A takes 100 times as many cases to satisfy as B, the effectiveness
of A would depend on the probability that there are bugs of the type caught by A and not by
B.

» We have almost no such statistics and therefore we know very little about the pragmatic
effectiveness of this class of variations.

» As an example of how we can build a family of path—testing strategies, consider a family in
which we construct paths out of segments that traverse one, two, or three nodes or more.

» If we build all paths out single—-node segments P+ (hardly to be called a “path,” then we
have achieved C1. If we use two—node segments (e.g., links = P2) to construct paths, we
achieve C2.

(2)_Predicates, Path Predicates. and Achievable Paths:

()_General

» Selecting a path does not mean that itis achievable.

> If all decisions are based on variables whose values are independent of the processing and
of one another, then all combinations of decision outcomes are possible (2" outcomes for n
binary decisions) and all paths are achievable: in general, this is not so.

» Every selected path leads to an associated boolean expression, called the path predicate
expression, which characterizes the input values (if any) that will cause that path to be
traversed.

(i) Predicates

(a)_Definition and Examples

>
>

The direction taken at a decision depends on the value of decision variables.
For binary decisions, decision processing ultimately results in the evaluation of a logical
(i.e., boolean) function whose outcome is either TRUE or FALSE.

Prepared by: S.Prasanna

Software Testing Methodologies
» Although the function evaluated at the decision can be numeric or alphanumeric, when the

decision is made it is based on a logical function’s truth value.

» The logical function evaluated at a decision is called a predicate.

» Thatis Predicate is a function which is logically executed during the decision processing.

> The result of this function decides the direction of flow.

Example

> “Alis greater than zero,” “the fifth character has a numerical value of 31,” “Xis either
negative or equal to 10,” “X + Y = 3Z2 — 44,” “Flag 21 is set.”.

» Every path corresponds to a succession of TRUE/FALSE values for the predicates
traversed on that path.

» As an example:

“‘Xis greater than zero’is TRUE.”
AND
“X+Y=3Z2-44"isFALSE.”
AND
“‘W is either negative or equal to 10’is TRUE.”
» is a sequence of predicates whose truth values will cause the routine to take a specific path.
A predicate associated with a path is called a path predicate.
(b _Multiway Branches

» The path taken through a multiway branch such as computed GOTO’s (FORTRAN), case
statements (Pascal), or jump tables (assembly language) cannot be directly expressed in
TRUE/FALSE terms.

» Although it is possible to describe such alternatives by using multivalued logic, an easier
expedientis to express multiway branches as an equivalent setof IF ... THEN . . . ELSE
statements.

» Forexample, a three—way case statement can be written as:

IF case=1 DO A1 ELSE
(IF case=2 DO A2 ELSE DO A3 ENDIF) ENDIF

» The translation is not unique because there are many ways to create atree of IF . . . THEN
.. . ELSE statements that simulates the multiway branch.

» We treat multiway branches this way as an analytical convenience in order to talk about

M«

testing.

» we don’t replace multiway branches with nested IF’s just to test them.

() Inputs

» In testing, the word input is not restricted to direct inputs, such as variables in a subroutine
call, but includes all data objects referenced by the routine whose values are fixed prior to
entering it.

» for example, inputs in a calling sequence, objects in a data structure, values leftin a
register.

» Although inputs may be numerical, set members, boolean, integers, strings, or virtually any
combination of object types, we can talk about data as if they are numbers.

(iii) Predicate Expressions

(a)_Predicate Interpretation

» Predicate interpretation refers to the process of expressing the predicate in terms of the

given input vector by performing various symbolic replacement of operations.

For example if X1 and Xz are inputs, the predicate might be “X1+ X2 > 0”.

Now let the value of Xz be given using another predicate as X2:=Y+5

The substitution of Xz value in the first predicate gives you another predicate which is

X+Y+5 > 0. This process is known as predicate interpretation.

YV V

Prepared by: S.Prasanna

Software Testing Methodologies

>

(b)
>

A\

YVV VV VVV VY

v VV VE

>

The path predicates are the specific form of the predicates of the decisions along the
selected path after interpretation.
Independence and Correlation of Variables and Predicates

The path predicates take on truth values (TRUE/FALSE) based on the values of input
variables, either directly (interpretation is not required) or indirectly (interpretation is
required).

If a variable’s value does not change as a result of processing, that variable is independent
of the processing.

Conversely, if the variable’s value can change as a result of the processing the variable is
process dependent.

Similarly, a predicate whose truth value can change as a result of the processing is said to
be process dependent and one whose truth value does not change as a result of the
processing is process independent.

Process dependence of a predicate does not always follow from dependence of the input
variables on which that predicate is based.

For example, the input variables are X and Y and the predicate is “X + Y = 10”.

The processing increments X and decrements Y.

Although the numerical values of X and Y are process dependent, the predicate “X+Y =
10” is process independent.

Variables, whether process dependent orindependent, may be correlated to one another.
Two variables are correlated if every combination of their values cannot be independently
specified.

Variables whose values can be specified independently without restriction are uncorrelated.
By analogy, a pair of predicates whose outcomes depend on one or more variables in
common (whether or not those variables are correlated) are said to be correlated
predicates.

Path Predicate Expressions

Path predicate expressions are the collection of expressions that must be fulfilled in order
to achieve the desired path.

This collection of expressions is satisfied based on input values provided.

These input values must meet all the expressions. If all the expressions are met then the
path is chosen else the path is rejected.

This is shown by means of an example

X1=18

X2 +5 X3 +2>0

Xa—X2>=10 X3

Let the input values of Xz, X3, X4be 2,1,12 respectively.

Substituting the values in above predicates, we get

X1=18

X2 +5 X3 +2=2+5%1+2=9 >0

X4—=X2>=10 X3 i.e.12-2>=10(1) i.e.10>=10

All the conditions appear to be correct as per the values so this path can be chosen.

(iv) Predicate Coverage
,(_1 Compound Predicates

Most programming languages permit compound predicates at decisions—that is,
predicates of the form A .OR. B or A .AND. B. and more complicated boolean expressions.
The branch taken at such decisions is determined by the truth value of the entire boolean
expression.

Simply the compound predicate is the combination of two predicates.

Prepared by: S.Prasanna

Software Testing Methodologies

» Even if a given decision’s predicate is not compound, it may become compound after
interpretation because interpretation may require us to carry forward a compound term.

(b)_Predicate Coverage

» Predicate coverage is the process of testing all the truth values related to a specific path in
all the possible ways.

> If all the values are tested in all possible directions then we can say that 100% predicate
coverage is achieved which needs lots of efforts.

» Predicate coverage is slightly comparable to path coverage and is much powerful than the
branch coverage.

» If we are using a compound predicate then predicate coverage involves testing of both the
predicates in any order.

(v)_Testing Blindness

(a)_The Problem

» Blindnessis a situation which results in the correct path via wrong route unintentionally.

» Testing blindness is a pathological situation in which the desired path is achieved for the
wrong reason.

» It can occur because of the interaction of two or more statements that makes the buggy
predicate “work” despite its bug and because of an unfortunate selection of input values
that does not reveal the situation.

» There are three kinds of predicate blindness: assignment blindness, equality blindness, and
self-blindness

(b)_Assignment Blindness

» Assignment blindness comes into consideration when both the predicates irrespective of
their correctness are satisfied by a value assigned to the assignment statement.

» Assignment blindness may also lead to wrong path selection.

Correct Buggy (Incorrect)
X:= X =
IFY>0THEN IF X+Y>0THEN

> If the test case sets Y := 1 the desired path is taken in either case, but there is still a bug.

» Some other path that leads to the same predicate could have a different assignment value
for X, so the wrong path would be taken because of the error in the predicate.

(0 Equality Blindness

» Equality blindness occurs when the path selected by a prior predicate results in a value that
works both for the correct and buggy predicate.

Correct Buggy
IFY=2THEN... IFY=2THEN...
IF X+Y>3THEN... IF X>1THEN...

» The first predicate (IF Y = 2) forces the rest of the path, so that for any positive value of X,
the path taken at the second predicate will be the same for the correct and buggy versions.

(d)_Self-Blindness

» Self-blindness occurs when the buggy predicate is a multiple of the correct predicate and
as a result is indistinguishable along that path.

Prepared by: S.Prasanna

Software Testing Methodologies

>

Correct Buggy
X:=A X:=A
IF X—-1>0THEN... IFX+A-2>0THEN

The assignment (X := A) makes the predicates multiples of each other (for example,
A—-1>0and2A -2 >0), so the direction taken is the same for the correct and buggy
version.

(3)_Path Sensitizing:

iR

>

E vv v

VVEY V V

Y

:Achi le and Unachi le Path
In order to accomplish test completeness (i.e. C1or Cz2) for sufficient paths the procedure is
as follows.
1. Extract the programs control flowgraph and select a set of tentative covering paths.
2. After path selection, determine the predicates for all paths that existin the selected path
set. This makes the basic nature of each predicate compound.
3. In order to achieve a Boolean expression, the path is traced by multiplying the individual
compound predicates. For instance, let the compound predicate be
(A+BC)(D+E)(FGH)(IJ)(K)(L)
where the terms in the parentheses are the compound predicates met at each
decision along the path and each letter (A,B,...) stands for simple predicates.
4. The Boolean expression is converted into SOP (Sum of Products) format by multiplying
the terms in the given expression as follows
ADFGHIJKL + AEFGHIJKL + BCDFGHIJKL + BCEFGHIJKL
Path predicate expressions are the collection of expressions that must be fulfilled in order
to achieve the desired path.
If all the expressions are met then the path is achievable else the path is not achievable.
The act of finding a set of solutions to the path predicate expression is called path
sensitization.

-Pragmatic Observations

The purpose of the above discussion has been to explore the sensitization issues and to
provide insight into tools that help us sensitize paths.

If in practice you really had to do the above in the manner indicated then test design would
be a difficult procedure suitable only to the mathematically inclined.

It doesn’t go that way in practice: it's much easier

Heuristic P ! for Sensitizing Pat]

Heuristic procedures are the most optimistic ways for sensitizing paths.

The first preference for selecting a path must be given to the paths which can be easily
sensitized there by delaying the paths whose solution to the path predicate expression is
difficult to obtain.

This convention is followed just for the sake of coverage. Heuristic procedures for path
sensitization involve discovery and problem solving using past experience and reasoning.
1. All the process dependent process independent and correlated input variables are first
determined and classified accordingly. Show the type of relation that is (logical, arithmetic,
functional) and dependency by means of equations for the correlated and dependent
variables respectively.
2. After classifying the variables, determine and classify the predicates depending on the
input variables into dependent, independent or correlated predicates and also show the type
of relation that exists among them.

Prepared by: S.Prasanna

Software Testing Methodologies

3. Consider the uncorrelated and independent predicates for selection or path. During the
selection, if you have found any dependent predicate, then there may be a classification error
or there might be a bug or complete path coverage is not yet achieved.

4. Now, consider the correlated and independent predicates if they are not covered then
start considering the dependent and uncorrelated, predicates. If the complete coverage is not
yet accomplished then move on to the last selection i.e. consider correlated, dependent
variables.

5. Display all the input variables, its values, relationship among the variables, type of links
for all independent, dependent and correlated variables respectively of every selected path.
6. Every path will produce some set of inequalities, which must be met in order to select that
path.

iy _Examples

(a)_Simple. In ndent. Uncorrel Predi

YV VYVVVY

Consider the independent, uncorrelated predicates.
The uppercase letters in the decision boxes of the above figure represent the predicates.
There are four decisions in this example and, consequently, four predicates.
False predicates are denoted by a bar on the variable. True predicates are represented by
the variables without any bar over them.
From the above figure, we can retrieve the entire covering path and the predicate values
which can be represented as follows.

Path Predicate values

abcdef AC

aghcimkf ABCD

agimjef ABD
Using a few more but simpler paths with fewer changes to cover the same flowgraph is

Path Predicate values

abcdef AC

abcimjef ACD

abcimkf ACD

aghcdef ABC

aglmkf ABD

Prepared by: S.Prasanna

Software Testing Methodologies

rrel In ndent Pr

T

YV V VY V

The two decisions in the above figure are correlated because they used the identical
predicate (A).

If you picked paths abdeg and acdfg, which seem to provide coverage, you would find that
neither of these paths is achievable.

If the A branch (c) is taken at the first decision, then the A branch (e) must also be taken at
the second decision.

There are two decisions and therefore a potential for four paths, but only two of them, abdfg
and acdeg, are achievable.

—

>

)

The flowgraph can be replaced with the above figure, in which we have reproduced the
common code, or alternatively, we can embed the common link d code into a subroutine.

(0 _Dependent Predicates

>
>
>
>

>

Finding sensitizing values for dependent predicates may force you to “play computer.”
Usually, and thankfully, most of the routine’s processing does not affect the control flow and
consequently can be ignored.

Simulate the computer only to the extent necessary to force paths.

Loops are the most common kind of dependent predicates; the number of times a typical
routine will iterate in the loop is usually determinable in a straightforward manner from the
input variables’ values.

Consequently it is usually easy to work backward to determine the input value that will force
the loop a specified number of times

(d)_The General Case

>

There is no simple procedure for the general case. Itis easy to state the steps involved but
much harder to accomplish them.

1. Select cases to provide coverage on the basis of functionally sensible paths. If the routine
is well structured, you should be able to force most of the paths without deep analysis.
Intractable paths should be examined for potential bugs before investing time solving
equations or whatever you might have to do to find path—forcing input values.

Prepared by: S.Prasanna

Software Testing Methodologies

2. Tackle the path with the fewest decisions first. Give preference to non looping paths over
looping paths.

3. Start at the end of the path and not the beginning. Trace the path in reverse and list the
predicates in the order in which they appear. The first predicate (the last on the path in the
normal direction) imposes restrictions on subsequent predicates (previous when reckoned in
the normal path direction). Determine the broadest possible range of values for the predicate
that will satisfy the desired path direction.

4. Continue working backward along the path to the next decision. The next decision may be
restricted by the range of values you determined for the previous decision (in the backward
direction). Pick a range of values for the affected variables as broad as possible for the
desired direction and consistent with the set of values thus far determined.

5. Continue until you reach the entrance and therefore have established a set of input
conditions for the entire path.

(4)_Path Instrumentation:
(i_Coincidental Correctness:

>

Coincidental Correctness is described as follows.

X:=16

A 4

A 4
A 4

CASE SELECT Y:=X-14

VV VV VV VY 'V

Y

Y:=2

A 4

Y:=X/8

Y

A 4

Y:=loga(x)

Y:=Xmod14

Y

Since the test outcome is considered as a part of design process, the testis made to run
for comparing the actual outcome with the desired outcome.

Even if the desired outcome is equal to the actual outcome, only some of the conditions are
satisfied by the test which are not sufficient enough.

This type of condition is named as coincidental correctness.

Simply it can be defined as a condition in which we check whether the expected outcome of
a test is generated truly.

Forinstance, the coincidental correctness is represented as follows.

Let us consider an input variable X with an initial value 16 (X=16) which produces a single
outcome Y with a value 2 (Y=2) no matter which case we select.

Therefore the tests chosen this way will not tell us whether we have achieved coverage.
For example, the five cases could be totally jumbled and still the outcome would be the
same.

Path instrumentation is what we have to do to confirm that the outcome was achieved by
the independent path.

Prepared by: S.Prasanna

Software Testing Methodologies
(ii) Path Instrumentation.

>

>

Y VY

Path instrumentation is a technique used for identifying whether the outcome of a test is
achieved through the desired path or a wrong path.

Path instrumentation technique is another form of interpretive trace program, which will run
each and every statement sequentially there by storing all labels and values of the
statements covered for.

The trouble with traces is that they give us far more information than we need, which is of
no use.

To overcome this drawback many different instrumentation methods have evolved.

(iii) Link Markers

YV VYV VYV

Q ‘? —> PROCESSA [——* PROCESS B
L 4 PROCESSC » PROCESSD
C} —> PROCESSA —5—* PROCESSB |— o
—
L, PROCESSC | » PROCESSD

A simple and effective form of instrumentation is called a traversal marker or link marker.
Name every link by a lowercase letter. Whenever a link is passed, it's name is recorded in
the marker.

The concatenation of the names of all the links starting froman entry to an exit gives the
path name.

The single link marker may not serve the purpose, because there is every possibility of bug
which may result in a new link in the middle of the link being traversed.

\ 4

A 4

A 4

[
»

Weintended to traverse the ikm path, but because of a GOTO in the middle of the mlink,
we go to process B.

If coincidental correctness is against us, the outcomes will be the same and we won’t know
about the bug.

The solution is to implement two markers per link: one at the beginning of each link and

one at the end.

The two link markers now specify the path name and confirm both the beginning and end of
the link.

The double link markers are shown in the following figure.

A\ 4

Prepared by: S.Prasanna

Software Testing Methodologies
(iv) Link Counters

>

VvV VY

YV VWV VYV

>

Link counter is one of the instrumentation techniques which usually based on the concept
of counters.

This method provides comparatively less information than interpretive trace method.

Link counter method of instrumentation follows same procedure as that of link marker but
make use of counters instead of using labels for each link which has executed.

Counters in this method goes on increasing with respect to each link traversed.

Single counter may not serve the purpose so, we move little deeper and introduce a
separate counter for every link.

With this in practice, we can cross check the total link count against the expected path
length.

This format is not reliable because there is every possibility of having a bug, which may
result in a new link in the middle of the link being traveled.

The same problem that led us to double link markers also leads us to double link counters.

(iv) Other Instrumentation Methods.

>

>

The methods you can use to instrument paths are limited only by your imagination. Here’s
a sample:

1. Mark each link by a unique prime number and multiply the link name into a central
register. The path name is a unique number and you can recapture the links traversed by
factoring.

2. Use a bit map with a single bit per link and set that bit when the link is traversed.

3. Use a hash coding scheme over the link names, or calculate an error—detecting code over
the link names, such as a check sum.

4. Use your symbolic debugger or trace to give you a trace only of subroutine calls and
return.

5. Set a variable value at the beginning of the link to a unique number for that link and use
an assertion statement at the end of the link to confirm that you’re still on it.

Every instrumentation probe (marker, counter) you insert gives you more information, but
with each probe the information is further removed from reality.

(vi) Implementation

>

>

>

>

For unit testing, path instrumentation and verification can be provided by a comprehensive
test tool that supports your source language.

Itis easiest to install probes when programming in languages that support conditional
assembly or conditional compilation.

The probes are written in the source code and tagged into categories. Both counters and
traversal markers can be implemented, and one need not be parsimonious with the number
and placement of probes because only those that are activated for that test will be compiled
or assembled.

For any test or small set of tests, only some of the probes will be active. Rarely would you
compile with all probes activated and then only when all else failed.

(3)_Implementation and Application of path testing:

>

>

Path testing is a process which involves all the available paths in a program from an entry
to an exit in such a way that the entire path is thoroughly tested.
Path testing implementation and application can be categorized as follows.

(i_Integration. Coverage. and Paths in Call omponent,

>
>

Path—testing methods are mainly used in unit testing, especially for new software.
Classical unit testing mainly involves the use of stubs for replacement of all called
components and corequisite components thereby testing the new component individually.

Prepared by: S.Prasanna

Software Testing Methodologies

>

>

>

YV V V¥V \7\7% vV VvV Y VYV VYV VE

v VvV Vv VvV VE

Path testing process which is carried out at this phase is to analyze the control flow errors
rather than focusing on bugs in called or corequisite components.

We then integrate the component with its called subroutines and corequisite components,
one at a time, carefully probing the interface issues.

Once the interfaces have been tested, we retest the integrated component, this time with
the stubs replaced by the real subroutines and corequisite component.

The component is now ready for the next level of integration. This bottom—up integration
process continues until the entire system has been integrated.

Coverage issue arises since, subroutines and corequisite components are considered to be
a part of the component and hence, increasing the complexity as large code need to be
processed which makes path sensitization much difficult.

The main intention behind path testing is that, testing each level at any time increases the
effectiveness of the test but the drawback associated with this approach is that it results in
i.e. predicate coverage and blindness i.e. outcome of one level may not be compatible with
the outcome of other consecutive levels.

New Code

The new code (components) has to be given higher priority for testing than the old trusted
components.

Stubs are used where itis clear that the bug potential for the stub is significantly lower than
that of the called component.

That means that old, trusted components will not be replaced by stubs.

Some consideration is given to paths within called components, but only to the extent that
we have to do so to assure that the paths we select at the higher level is achievable.
Paths within the low level components are also tested, so that there should not be any un-
achievable path at higher level.

Typically, we’ll try to use the shortest entry/exit path that will do the job; avoid loops; avoid
lower—level subroutine calls; avoid as much lower—level complexity as possible.

Unit testing must be automated in such a way, thatit must perform the testing at each level
of integration.

_Maintenance

The maintenance situation is distinctly different.

Path testing will be carried out on the modified components but called and corequisite
components will be kept unchanged.

If we have a configuration—controlled, automated, unit test suite, then path testing will be
repeated entirely with such modifications as required to accommodate the changes.
Otherwise, selected paths will be chosen in an attempt to achieve C2 over the changed
code.

As the maintenance methods are studied further a new methodology will be discovered,
which will help us to achieve the desired coverage.

—Rehosting

Rehosting is a process of transforming the old software environment into a new more
friendly environment in which rehosted software can run cost effectively.

When used in conjunction with automatic or semiautomatic structural test generators, we
get a very powerful, effective, rehosting process.

The objective of rehosting is to change the operating environment and not the rehosted
software.

You cannot rehost the software, while performing changes inits environment i.e., the two
things cannot be done simultaneously.

Rehosting can be done in the following ways.

Prepared by: S.Prasanna

Software Testing Methodologies

>

A\

YV VYV V¥V

First, a translator fromthe old to the new environment is created and tested as any piece of
software would be. The bugs in the rehosting process, if any, will be in the translation
algorithm and the translator, and the rehosting process is intended to catch those bugs .
Second, a complete (C1 + C2) path test suite is created for the old software in the old
environment.

Components may be grouped to reduce total testing labor and to avoid a total buildup and
reintegration, but C1 + C2 is not compromised.

The suite is run on the old software in the old environment and all outcomes are recorded.
These outcomes serve as a guideline for rehosted software. The outcomes and test cases
are adapted by the new environment with the help of another interpreter.

These adapted environment and software are integrated and retested.

This approach might be even more costly than building the new software, but it provides us
with an environment which suites the requirements of software there by providing stable
and reliable software base without bothering about the issues pertaining to software
security.

Prepared by: S.Prasanna

Software Testing Methodologies

Prepared by: S.Prasanna

Software Testing Methodologies
UNIT —III
Transaction Flow Testing&Domain
Testing

(1) Transaction Flows:
(i_Definitions:
» Atransaction is defined as a set of statements or a unit of work handled by a system user.
» A transaction consists of a sequence of operations, some of which are performed by a
system, persons, or devices that are outside of the system.
» Each transaction is usually associated with an entry point and an exit point.
» The execution of a transaction begins at the entry point and ends at an exit point there by
producing some results.
After getting executed, the transaction no longer exists in the system.
All the results are finally stored in the form of records inside the system.
A transaction for an online information retrieval system might consist of the following steps:
Accept input (tentative birth).
Validate input (birth).
Transmit acknowledgment to requester.
Do input processing.
Search file.
Request directions from user.
Accept input.
Validate input.
. Process request.
10. Update file.
11. Transmit output.
12. Record transaction in log and cleanup (death).
» The user processes these steps as a single transaction.
» Fromthe system’s point of view, the transaction consists of twelve steps and ten different
kinds of subsidiary tasks.
» Most online systems process many kinds of transactions.
» For example, an automatic bank teller machine can be used for withdrawals, deposits, bill
payments, and money transfers.
» Furthermore, these operations can be done for a checking account, savings account,
>
>
>
>

Y VY

WoOoNoOOGORWN =

vacation account, Christmas club, and so on.
Although the sequence of operations may differ from transaction to transaction, most
transactions have common operations.
For example, the automatic teller machine begins every transaction by validating the user’'s
card and password number.
Tasks in a transaction flowgraph correspond to processing steps in a control flowgraph.
As with control flows, there can be conditional and unconditional branches, and junctions.
(i) _Example:
» The following figure shows part of a transaction flow.
» Atransaction flow is processed in Forms. Each form consists of several pages with records
and fields in it.
> Asystemis taken as the terminal controller to process these form.

Prepared by: S.Prasanna

Software Testing Methodologies

Request
t Order form
From CPU
Accept Process
» Wait Order form form
From CPU
Transmit Accept
. Any
page to > Wait field |—» more
terminal input fields
Transmit
answers to >
CPU
Wait for Accept
CPU — | CPU —_
; confirm confirm
User Transmit
More want EXIT » diagnostic —»
Pages review terminal

Set up
review

Prepared by: S.Prasanna

Software Testing Methodologies

>

YV VYVYV

Long forms are compressed and transmitted by the central computer to minimize the
number of records in it.

The output of each page is transmitted by the terminal controller to the central computer.
If the outputis invalid, the central computer transmits a code to the terminal controller.
The terminal controller in tern transmits the code to the user to check the input. At the end
the user reviews the filled out form.

The above figure shows the processing of a transaction using forms.
% When the transaction is to be initiated, the process p1 requests forms from CPU.

The central computer accepts the formin the process ps. ps process the form.

The characteristics of the transactions are shown by using a decision box D1 to
determine whether to cancel or process further.

These decisions are handled by the terminal controller.
Ps transmits the page to the terminal.

D2 and D4 are the decision boxes to know whether the form needs more pages or not.
Dsis a decision for the structure of the form, to validate the input.
If necessary, the user reviews whole system in process p12

The central computer then transmits a diagnostic code back to the terminal controller
in p11. After reviewing, the transaction flow is closed and exit operation is performed.

X/ X/
L X X4

X/ X/ X/ KR/
A X R X IR X I X X4

e

*

(iii) Usage:

>

iv

Y VV VVVI: v V V¥V

Transaction flows are indispensable for specifying requirements of complicated systems,
especially online systems.
A big system such as an air traffic control or airline reservation system has not hundreds,
but thousands of different transaction flows.

The flows are represented by relatively simple flowgraphs, many of which have a single
straight-through path.
An ATM system, for example, allows the user to try, say three times, and will take the card
away the fourth time.

Implementation:

Transaction flow has an implicit representation of system control structure.
That s, there is no direct relation between the process and decisions.
A transaction flow is represented by a path taken by a transaction through a succession of
processing modules. These transactions are placed in a transaction-control block.
The transactions present in that block are processed according to their flow.
Each transaction is represented by a token and the transaction flowgraph shows a pictorial
representation of these tokens.
The transaction flowgraph is not the control structure of the program.

% The below figure a shows transaction flow and corresponding implementation of a
program that creates that flow.
This transaction goes through input processing, and then passes through process A,
followed by B.
The result of process B may force the transaction to pass back to process A.
The transaction then goes to process C, then to either D or E, and finally to output
processing.
Figure b is a diagrammatic representation of system control structure.
This system control structure is controlled either by an executive or scheduler or
dispatcher operating system.
The links in the structure either represents a process queue or a dispatcher queue.
The transaction is created by placing a token on an input queue.

K/
°e

K/
L X4

e

2

7/ K/
X EIR X 4

K/ K/
R X4

Prepared by: S.Prasanna

Software Testing Methodologies

R/
A X4

X/
°e

X/
°e

X/
°e

X/
°e

The scheduler then examines the transaction and places it on the work queue for
process A, but process A will not necessarily be activated immediately.

When a process has finished working on the transaction, it places the transaction-
control block back on a scheduler queue.

The scheduler then examines the transaction control block and routes it to the next
process based on information stored in the block.

The scheduler contains tables or code that routes the transaction to its next process.
In systems that handle hundreds of transaction types, this information is usually stored
in tables rather than as explicit code.

Alternatively, the dispatcher may contain no transaction control data or code; the
information could be implemented as code in each transaction processing module.

1 /2

Input > S| A S B M s— c —* s S »| Output
(@) Transaction Flow /
E
DISC TAPES
HANDLER
7'} 7'}
v v
EXECUTIVE-
OUTPUT
> SCHEDULER- AND/OR OPERATING SYSTEM | yiopuLe
DISPATCHER
| A [l A [A | A
l l .|- l .|- l | v TDISPATCHER
QUEUES
PROCESS A Processor B Processor C Processor D Processor E Processor
QUEUES
Application Processes

DO ALL DISC PO TAPE DONEW | .| DISC
—> e —p B — P
@ Bs READS Cs WRITES Bs WRITES @
,| po)| pIsc DO TAPE »| DONEW | | DISC
Ds READS g ™ READS Es WRITES

(b) System Control Structure

(c) Executive/Dispatcher Flowchart

Prepared by: S.Prasanna

Software Testlng Methodologies

Figure c shows a simplified representation of transaction flow.
% Let’s say that while there could be many different transaction flows in the system, they
all used only processes A, B, C, D, E, and disc and tape reads and writes, in various
combinations.
Just because the transaction flow order is A,B,C,D,E is no reason to invoke the
processes in that order.
For other transactions, not shown, the processing order might be B,C,A,E,D. A fixed
processing order based on one transaction flow might not be optimum for another.
Furthermore, different transactions have different priorities that may require some to
wait for higher-priority transactions to be processed.
Similarly, one would not delay processing for all transactions while waiting for a
specific transaction to complete a necessary disc read operation.

X/ X/
°e °e

X/
°e

X/
°e

(v)_Perspective:

>

>

There were no restrictions on how a transaction’s identity is maintained: implicit, explicit, in
transaction control blocks, or in task tables.

Transaction-flow testing is the ultimate black-box technique because all we ask is that there
be something identifiable as a transaction and that the system will do predictable things to
transactions.

Transaction flowgraphs are a kind of data flowgraph.

Data flowgraphs and control flowgraphs the most important difference is in control
flowgraphs we defined a link or block as a set of instructions such that if any one of them
was executed, all (barring bugs) would be executed.

For data flowgraphs in general, and transaction flowgraphs in particular, we change the
definition to identify all processes of interest.

Another difference to which we must be sensitive is that the decision nodes of a transaction
flowgraph can be complicated processes in their own rights.

(vi) Complications:

(a)_General

% Transaction flows don’t have a good structured design for code.

% The problems of transaction flows result in problems like error conditions, malfunctions,

recovery actions etc.

% These errors are unstructured. As features are added into the transaction flows the
complexity of the transaction flow increases.

% Transactions are interactions between modules. A good system design indicates that
there is no implementation of new transaction or changing of an existing transaction.

¢ Hence transaction flow model results in consequences such as poor response times,

security problems, inefficient processing, dangerous processing etc.

The decision nodes of a transaction flowgraph can be complicated.

These nodes have exists that go to central recovery processes.

The effect of interrupts in a transaction flow model converts every process box into

many, with exit links.

Therefore the test design is no longer fit for transaction flow model.

» Examples for the transaction flow to be imperfect.

7/
X

K/
LX)

7/
X

L)

K/
°e

<

(b)_Births

% A transaction can give birth to others and can also merge with others in many of the
systems. From the time they are created to the time they are completed, transaction
flows have a unique identity.

Prepared by: S.Prasanna

Software Testing Methodologies _ o _ o
% The following figure shows three different possible interpretations of the decision nodes

with two or more outlinks.

Alternate 1 Parent Daughter
—> > —
Parent Parent
—O) —(O) —()
L 5 >
Alternate 2 Daughter Daughter
(a) Decision (b) Biosis (c) Mitosis

7
%

In figure a, a transaction (Birth) has been created. The incoming transaction at decision
node gives birth of two new transactions.
The two transactions alternate 1 and alternate 2 has a different or same identity.
The figure b shows a different situation compared to figure a.
The parent transaction gives birth to two new transactions.
One transaction has the same identity as Parent the other transaction results in a
different identity Daughter. This situation is called Biosis.
The figure cis similar to figure b, except that the parent transaction is destroyed and
two new transactions (daughters) are created. This situation is called mitosis.
(c)_Mergers

% Merging is as troublesome as transaction flow splitting. The two transactions are
merged at decision node giving a new transaction with the same or different identity.

3

*

%

*

%

*

%

*

7
%

Path 1 Predator Parent

;Continue :T: Predator | Daughter
Path 2 Prey Parent
(a) Junction (b) Absorption (c) Conjunction

* In figure a path 1 and path 2 merge at a junction resulting in a single one Continue.

% The figure b is a predator transaction absorbs a prey. The prey is gone but the predator
retains its identity.

% The figure c shows a slightly different situation in which two parent transactions merge
to form a new daughter.

(d)_Theoretical Status and Pragmatic Solutions (Solutions for the above examples)

% Transaction flow model doesn’'t meet the requirements of multiprocessor system.
Therefore a generic model called Petri is taken.

% Petri nets use operations that include explicit representation of tokens in the stages of
process.

% Petri net have been used to test the problems in protocol testing, network testing and so
on. The application to software testing is still in its beginning stage to determine whether
it is a productive model or not.

Prepared by: S.Prasanna

Software Testing Methodologies
% As long as test results are good, the imperfect model doesn’t not matter because the

complexities that can invalidate the model have been ignored.
% The following are some of the possible cases:
L__Biosis
% The parent flow is followed from beginning of a transaction flow to the end of a
transaction flow.
% A new birth is treated as a new flow, either to end or to absorb that birth.
) _Mitosis
% It begins from the parent’s flow to the mitosis point. From mitosis point, an
additional flow starts and get destroyed at their respective ends.
3._Absorption
% In this situation, the parent’s flow is treated as the primary flow. The parent flow
is modeled from its absorption point to the point at which it gets destroyed.
4, Conjugation
¢ This situation is the opposite of mitosis situation. Each parent flow is modeled
from its birth to the conjugation point.
% And from the conjugation point, the resulting child flow starts and get destroyed.
¢ Births, Mitosis, Absorptions, and conjugations are as problematic for the software
designers.

¢ lllegal births, wrongful deaths and lost children are some of the common problems.

¢ Although the transaction flow is modeled by simple flowgraphs, they recognize bugs
where transactions are created, absorbed and conjugated.

(vii) _Transaction flow structure:

% A sequential flow of operations is represented by a structure called a transaction flow

structure.

* Even transaction flows are analogous to control flowgraphs, it is not necessary that
good structure provided for code should also exist for transaction flows.
* Transactions flows are often considered as ill-structured due to the following reasons.

1. It's a model of a process, not just code. While processing the transaction, humans
can’t be forced to follow the rules of a specific software structure, as they may
incorporate decisions, loops, etc

2. Behavior of other uncontrolled systems may be incorporated by some parts of the
transactional flow.

3. Permanent ill-structured nature of the transaction flow leads to loop jumps
uncontrollable GOTO statements etc. Not even a small part of the transaction flow
has the ability to handle error detection, failures, malfunctioning, recovery actions etc

4. If any new features are added and enhancements are made in transactional flows,
then the complexity of each and every transaction inherently increases. For instance
one can’t expect a good transaction flow from lawyers, politicians, salesman etc

5. Basically systems are designed from specific modules and the transaction flows are
designed or produced through the module of interaction..

6. Modeling of interrupts, multitasking, synchronization, polling, queue disciplines are
not related to structuring..

(2)_Transaction Flow Testing Techniques:
(i)_Get the Transaction Flows:
» Complicated systems that process a lot of different complicated transactions should have
explicit representations of the transaction flows, or the equivalent documented.

Prepared by: S.Prasanna

Software Testing Methodologies
» The transaction flows can be mapped into programs such that the flow of transaction will be

created easily.

» The processing of the transactions is done in the design phase.

» The overview section in design phase contains the details of the transaction flows.

» Detailed transaction flows are necessary to design the system’s functional test.

» Transaction flows are similar to control flow graphs where the act of getting information can
be more effective.

» Therefore the bugs can be determined. The flow of transaction in design phase is done
step by step such that the problems would not arise and a bad design can be avoided.

(i) _Transaction Flow testing:

» Transaction flow testing is a technique used in computerized applications.

» The transaction flow testing technique is used to control the documents that require the
auditor to specify the following.

% The business cycle in the flow.
% The various types of transaction that flow through individual cycle.
% The operations that are carried out within the cycle.

% The objectives of internal control
% Theinternal control methods used to attain each objective.

» The testerin the transaction flow testing is used to develop a flowchart. The tester tracks
the transaction flow and performs various functions in the same order as that of the
transaction.

» The internal control methods are recognized at each point of the transaction flow.

(iii) _Inspections. Reviews, Walkthroughs:

» Transaction flows are a natural agenda for system reviews or inspections.

» Start transaction-flow walkthroughs at the preliminary design review and continue them in
ever greater detail as the project progresses.

1. In conducting the walkthroughs, you should:
a. Discuss enough transaction types (i.e., paths through the transaction flows) to
account for 98%—99% of the transactions the system is expected to process.
b. Discuss paths through flows in functional rather than technical terms.
c. Ask the designers to relate every flow to the specification and to show how that
transaction, directly or indirectly, follows from the requirements.

2. Make transaction-flow testing the cornerstone of system functional testing just as path
testing is the cornerstone of unit testing. For this you need enough tests to achieve C+
and C» coverage of the complete set of transaction flowgraphs.
3. Select additional transaction-flow paths (beyond C+ + C>) for loops, extreme values,
and domain boundaries.
4. Select additional paths for weird cases and very long, potentially troublesome
transactions with high risks and potential consequential damage.
5. Design more test cases to validate all births and deaths and to search for lost
daughters, illegitimate births, and wrongful deaths.
6. Publish and distribute the selected test paths through the transaction flows as early as
possible so that they will exert the maximum beneficial effect on the project.
7. Have the buyer concur that the selected set of test paths through the transaction flows
constitute an adequate system functional test.
8. Tell the designers which paths will be used for testing but not (yet) the details of the
test cases that force those paths.

*

X/

Prepared by: S.Prasanna

Software Testing Methodologies
(iii)_Path Selection:

>

>

YV VV V¥V

>

Path selection for system testing based on transaction flows should have a distinctly
different flavor from that of path selection done for unit tests based on control flowgraphs.
Start with a covering set of tests (C1 + C2) using the analogous criteria you used for
structural path testing, but don’t expect to find too many bugs on such paths.

Select a covering set of paths based on functionally sensible transactions as you would for
control flowgraphs.

Confirm these with the designers.

Try to find the most tortuous, longest, strangest path from the entry to the exit of the
transaction flow. Create a catalog of these weird paths.

This procedure is best done early in the game, while the system design is still in progress,
before processing modules have been coded. The covering set of paths belongs in the
system feature tests.

It gives everybody more confidence in the system and its test.

(iv) _Sensitization:

>
>

>

>
>

v)
>

The Good news is most of the normal paths are very easy to sensitize—80%—95%
transaction flow coverage (C1 + C2) is usually easy to achieve.

The bad news is that the remaining small percentage is often very difficult, if not
impossible, to achieve by fair means.

While the simple paths are easy to sensitize there are many of them, so that there’s a lot of
tedium in test design.

Sensitization is the act of defining the transaction. If there are sensitization problems on the
easy paths, then bet on either a bug in transaction flows or a design bug.

The reason these paths are often difficult to sensitize is that they correspond to error
conditions, synchronization problems, overload responses, and other anomalous situations.

L_Use Patches

% The dirty system tester’s best, but dangerous, friend.

% It's a lot easier to fake an error return from another system by a judicious patch
than it is to negotiate a joint test session.

)__Mistune

% Testin a system sized with grossly inadequate resources.

» By “grossly” | mean about 5%—-10% of what one might expect to need.

% This helps to force most of the resource-related exception conditions.
3.__Break the Rules

% Transactions almost always require associated, correctly specified, data structures
to support them.

% Often a system database generator is used to create such objects and to assure
that all required objects have been correctly specified.

% Bypass the database generator and/or use patches to break any and all rules
embodied in the database and system configuration that will help you to go down
the desired path.

4 _Use Breakpoints

% Put breakpoints at the branch points where the hard-to-sensitize path segment

begins and then patch the transaction control block to force that path.
You can use one or all of the above methods, and to sensitize the strange paths.
These techniques are especially suitable for those long tortuous paths that avoid the exit.

Instrumentation:

%

DS

>

Instrumentation plays a bigger role in transaction-flow testing than in unit path testing.

Prepared by: S.Prasanna

Software Testing Methodologies

>
>
>
>

>
>

Counters are not useful because the same module could appear in many different flows
and the system could be simultaneously processing different transactions.

The information of the path taken for a given transaction must be kept with that transaction.
It can be recorded either by a central transaction dispatcher (if there is one) or by the
individual processing modules.

You need a trace of all the processing steps for the transaction, the queues on which it
resided, and the entries and exits to and from the dispatcher.

In some systems such traces are provided by the operating system.

In other systems, such as communications systems or most secure systems, a running log
that contains exactly this information is maintained as part of normal processing.

(vi)_Test databases:

>

Y VYV

About 30%—40% of the effort of transaction-flow test design is the design and maintenance
of the test database(s).

The first error is to be unaware that there’s a test database to be designed.

The result is that every programmer and tester designs his own, unique database, which is
incompatible with all other programmers’ and testers’ needs.

The consequence is that every tester (independent or programmer) needs exclusive use of
the entire system. Furthermore, many of the tests are configuration-sensitive, so there’s no
way to port one set of tests over from another suite.

(vii) _Execution:

>

>

>

>

>

If you’re going to do transaction-flow testing for a system of any size, be committed to test
execution automation from the start.

If more than a few hundred test cases are required to achieve C1 + C2 transaction-flow
coverage, don’t bother with transaction-flow testing if you don’t have the time and
resources to almost completely automate all test execution.

You'll be running and rerunning those transactions not once, but hundreds of times over the
project’s life.

Transaction-flow testing with the intention of achieving C1 + C2 usually leads to a big
increase in the number of test cases.

Without execution automation you can’t expect to do it right.

DATA FLOW TESTING

(3)_Basics of Data-Flow Testing:
(i)_Motivation and assumptions:

(a)_What is it?

+ Data-flow testing is the name given to a family of test strategies based on selecting
paths through the program’s control flow in order to explore sequences of events related
to the status of data objects.

% For example, pick enough paths to assure that every data object has been initialized
prior to use or that all defined objects have been used for something.

(b)_Motivation

% Itis our belief that, just as one would not feet confident about a program without
executing every statement in it as part of some test, one should not feel confident about
a program without having seen the effect of using the value produced by each and
every computation.

% To the extent that we achieve the widely sought goal of reusable code, we can expect
the balance of source code statements to shift ever more toward data statement
domination.

Prepared by: S.Prasanna

Software Testing Methodologies

R/
A X4

In all known hardware technologies, memory components have been, are, and are
expected to be cheaper than processing components.

(00_New Paradigms-Data-Flow Machines

K/
L X4

R/
A X4

R/
L X4

Data flow machines are programmable computers that use packet switching
communication.

The hardware in data flow machines is optimized for data-driven execution and for fine
grain parallelism.

Data flow machines support recursion. Recursion is a mechanism used to map virtual
space to a physical space of realistic size. It is the fastest mechanism.

The prototype in data flow machines is taken as a processing or working element.
The overhead in data flow machines can be made acceptable by sophisticated
hardware.

There is a sufficient parallelism in many computer programs.

The problem in data flow machine is in distribution of computation and storage of data
structures.

Another problem in data flow machines is to cease (stop) parallelism when resources
tend to get overloaded.

Some of the data flow machines are Von Neumann machines and MIMD (multi
instruction, multi data) machines.

Von Neumann machines

R/
L X4

The Von Neumann architecture executes one instruction at a time in the following,
typical, microinstruction sequence.

Fetch instruction from memory.

Interpret instruction.

Fetch operand(s).

Process (execute).

Store result (perhaps in registers).

Increment program counter (pointer to next instruction).

. GOTO 1.

The pure Von Neumann machine has only one set of control circuitry to interpret the
instruction, only one set of registers in which to process the data, and only one
execution unit (e.g., arithmetic/logic unit).

This design leads to a sequential, instruction-by-instruction execution, which in turn
leads to control-flow dominance in our thinking.

The Von Neumann machine forces sequence onto problems that may not inherently be
sequential.

NoarONS

MIMD (multi-instruction, multi data) machines

X/
X4

7/ K/ K/ K/ 7/
R X I X IR X IR X)

7/
X

L)

7/
o

MIMD machines are massively parallel machines.

They fetch several instructions in parallel.

Therefore they have several mechanisms for executing the above steps 1-7.

MIMD machines can also perform arithmetic or logical operation simultaneously.

These operations are done on different data objects.

In these machines parallel computation is left to the compiler for processing instructions.
For a MIMD machine, the instructions are produced in parallel flow while for a
conventional machine the instructions are produced in sequential flow.

The Parallel machine is MIMD machine with multiple processors and sequential
machine is Von Neumann machine with only one processor.

Prepared by: S.Prasanna

Software Testing Methodologies

(d)_The Bug Assumptions
% The bug assumption for data-flow testing strategies is that control flow is generally

correct and that something has gone wrong with the software so that data objects are
not available when they should be, or silly things are being done to data objects.

% Also, if there is a control-flow problem, we expect it to have symptoms that can be
detected by data-flow analysis.

(ii)_Data Flowgraphs:

(a)_General:
% The data flowgraph is a graph consisting of nodes and directed links (i.e., links with
arrows on them). The data flow is between the data objects in the data flowgraph.
* The data flowgraph not only shows the flow of data but also shows the deviation
between the data objects to be implemented.
(b)_Data Object State and Usage:
* Data objects can be three states i.e. created, killed and used states.
% They can be used in two distinct ways: in a calculation part and in the control flowgraph
part. The following symbols denote these possibilities.
d—defined, created, initialized, etc.
k—Kkilled, undefined, released.
u—used for something.
c—used in a calculation part.
p—used in a predicate for operation purpose.
% Every symbol in data flowgraph has a meaning. Each symbol is described below.
L__Defined:

% An object is defined explicitly when it appears in a data declaration or implicitly

when it appears on the left-hand side of an assignment statement.

% “Defined” can also be used to mean that a file has been opened, a dynamically
allocated object has been allocated, something is pushed onto the stack, and so
on.

L _ Killed or Undefined

% When an object is released and is no longer in use, then itis known as a killed

object. Killed object is similar to an undefined object.

An object that is not available in the statement is known as Undefined object.

For example, aloop in FORTRAN language gets terminated when an undefined

variable exists.

% Another example for a killed variable is that, if an object A has been assigned a
value such as A:=8 and another assignment is done for the same object A, such as
A:=11 then the previous value of A (i.e. 8) is killed and redefined (i.e.11). Therefore
the value of Ais 11.

% Define and kill are complementary operations. That is, they generally come in pairs
and one does the opposite of the other.

3._Usage
% A used variable is for computation (c) use and is on the right side of an assignment
statement.
% Itis also used in a predicate (P) such asif z > 0, to evaluate the flow of control.
¢ Hence usage variables are used both in predicate and computational purposes.

(¢)_Data-Flow Anomalies:

% An anomaly is a situation or condition where an object is defined but not used. For
example
IF A>0 THEN X:=1 ELSE X:=-1

e

AS

K/
L X4

Prepared by: S.Prasanna

Software Testing Methodologies
A:=0

A:=0
A:=0
A:=B+C
% Fromthe above example, we notice that object A is defined trice to zero. Hence an
anomaly occurs.
% There are nine possible two-letter combinations for d, k and u. Some are bugs state,
some are suspicious (dangerous) state, and some are normal state.
dd—Itresults in a suspicious state where an object is defined twice.
dk—results in a bug state.
du—the normal case. The object is defined, then used.
kd—normal situation. An object is killed, then redefined.
kk—harmless but probably buggy.
ku—A bug state.
ud—suspicious state.
uk—normal situation.
uu—normal situation
% The three variables (d,k,u) show the representation of anomalous state.
« In addition to the above two-letter situations there are six single-letter situations
-k: possibly anomalous.
—d: okay. This is just the first definition along this path.
—u: possibly anomalous. Not anomalous if the variable is global and has been
previously defined.
k—: not anomalous. The last thing done on this path was to kill the variable.
d—: possibly anomalous.
u—: not anomalous.
% The single-letter situations do not lead to clear data-flow anomalies but only the
possibility thereof.
(d)_Data-Flow Anomaly State Graph :
% The data flow anomaly defines an object to be in one of the following four different
states. The states are
K—undefined, previously killed, does not exist.
D—defined but not in use.
U—nhas been used for computation orin predicate.
A—anomalous

9

G

“))

Prepared by: S.Prasanna

Software Testing Methodologies

R/
L4

7/
L 44

>

.
*

*

&
°
R/
°o

R/
**

Don’t confuse these capital letters (K,D,U,A), which denote the state of the variable,
with the program action, denoted by lowercase letters (k,d,u).

The data flow anomaly starts in K state.

An attempt is made to use an undefined variable. Hence it goes in an anomalous (A)
state. The killed (K) state defines a variable d in defined (D) state.

If a variable is killed from a defined (D) state then it becomes anomalous.

The variable u is used in U state and is redefined d in D state.

Variable k get killed in K state.

(e) _Static versus Dynamic Anomaly Detection:

X/

0‘0
/7
0‘0

7
%

7
%

o

o

o

o

o

Static analysis is an analysis done at compile time.
The source code is checked and the quality is improved by removing the bugs in the
program.
Syntax errors are detected in static analysis.
To improve the quality of a document, the document is analyzed and checked by a tool.
If a problem, such as a data-flow anomaly, can be detected by static analysis methods,
then it does not belong in testing—it belongs in the language processor.
Static analysis tools are typically used by tools.
Static analysis is done in design phases so that the whole model can be analyzed and
the inconsistencies can be detected.
Static analysis can be used in the detection of security problem.
Dynamic analysis is done at run time. Dynamic analysis detects anomalous situations at
run time with some of the data structures like Arrays, Pointers, Records etc..
L__Dead Variables
% Although it is often possible to prove that a variable is dead or alive at a given
point in the program, the general problem is unsolvable.
L_Arrays
% Arrays are problematic in that the array is defined or killed as a single object, but
reference is to specific locations within the array.
% Array pointers are usually dynamically calculated, to know whether the values
are within the boundary range or out of boundary range.
3.__Records and Pointers
% The array problem and the difficulty with pointers is a special case of multipart
data structures.
s We have the same problem with records and the pointers to them.
+» In the case of records, files are created and the names of such files are
dynamically known.
% Without execution there is no way to determine the state of such objects.
4, _Dynamic Subroutine or Function Names in a Call
% A subroutine or function name is a dynamic variable in a call. What is passed, or
a combination of subroutine names and data objects, is constructed on a specific
path.
% There’s no way, without executing the path, to determine whether the call is
correct or not.
5.__False Anomalies
% Anomalies don’t occur when the path of objects is not completed.
% Such anomalies are false anomalies. The problem of identifying whether a path
is completed or not is not solved.

Prepared by: S.Prasanna

Software Testing Methodologies
6._Recoverable Anomalies and Alternate State Graphs
% What constitutes an anomaly depends on context, application, and semantics.
% Huang provided two anomaly state graphs
L_Concurrency, Interrupts. System Issues
% Anomalies become more sophisticated while moving from single processor
surroundings to multi processors environment.
% The main purpose or task of interrupt is to develop correct anomalous which is
even performed in true concurrency or pseudo concurrency.
% The objective of system integration testing is to detect data flow anomalies at run
time that was not possible using context level testing.

+ Although static analysis methods have limits, they are worth using and a continuing
trend in language processor design has been better static analysis methods, especially
for data flow anomaly detection.

+ That’s good because it means there’s less for us to do as testers and we have far too
much to do as it is.

() _Anomaly detection & tvpes of data flow anomalies:

* An anomaly is a termthat leads to inconsistency in the data flow analysis.

The data flow is referred to as reading variables and data flow anomaly is referred to as
reading variables without having an idea that the value of the variable is in use or not.
» During data flow analysis, every variable is referred to and inspected.

» There are different variables in data flow analysis.

» They are classified as

0‘0
\/
0‘0

D

o

oS

S.No Variables Definition
1 Defined (d) Value assigned to a variable
2 Referenced (r) Value read or used by a variable
3 Undefined (u) | Variable that has no defined value
% Depending on these variables, three different data flow anomalies are distinguished.
They are

1. ur-anomaly
2. du-anomaly
3. dd-anomaly
1. ur-anomaly:
% During data flow analysis if the undefined value of a variable (u) is read
(r) theniitis known as a ur-anomaly.
2. du-anomaly:
% A defined (d) variable becomes invalid or undefined (u) variable when a
variable is not used within a particular time.
3. dd-anomaly:
% This anomaly occurs when the variable accepts a value at the second
assignment (d) and the first assignment value had not been used.
% This situation occurs in dd-anomaly. For example if A:=7,A:=11 then it
accepts A:=11.

% Depending on the usage of variables the anomalies can be detected.

% For example consider c++example The example shows an exchange of values of the
variables A and B with the help of another variable get if the value of the variable A is
greater than the value of the variable B.

void exchange(int &A,int &B)

{

Prepared by: S.Prasanna

Software Testing Methodologies
int get;
if(A>B)

{
B=get;
B=A,
get=A,

}

}
% The detection of anomalies are
1. ur-anomaly:

% Inthe above example, the variable get is used on the right side of an
assignment.

% The variable get has an undefined value because it is not initialized
where it is declared.

% This undefined variable is being read or referred to and hence it results in
ur-anomaly.

2. dd-anomaly:

% The variable B is used twice on the left side of an assignment.

% The first assignment value becomes invalid or unused and the second
assignment value is taken or used.

% Therefore the unused variable B of the first assignment results in dd-
anomaly

3. du-anomaly:

% The variable get has a defined value in the last assignment. The defined
variable cannot be used anywhere in the function because only those
variables are valid which are inside the function.

% Therefore the unused variable results in du-anomaly.

(iii) _The Data-Flow Model:
(a)_General:
% Our data-flow model is based on the program’s control flowgraph—don’t confuse that
with the program’s data flowgraph.

So Data-flow model is considered as the heart of programs control flowgraph.

It consists of links which are denoted by symbols d,k,u,c,p or a sequence of the symbols

like dd, du, ddd etc.

» This sequence specifies the sequential flow of data operations on the link with respect

to the given variable.

These symbols are called link weights as each link is assigned with weights (d,k,u,c,p).

For all variables and array elements, different set of link weights exist.

The symbols are defined as
d= Defined object , k=Killed object, u=Used object
c=0biject for calculation purpose, p=predicate

(b)_Components of the model:
% Here are the modeling rules.
1. To every statement there is a node, whose name (number) is unique.
Every node has at least one outlink and at least one inlink except exit nodes, which do
not have outlinks, and entry nodes, which do not have inlinks.

X/
X4

L)

X/
°e

oS

e

A

7/
X

L)

Prepared by: S.Prasanna

Software Testing Methodologies

2. Exit nodes are dummy nodes placed at the outgoing arrowheads of exit statements
(e.g., END, RETURN), to complete the graph. Similarly, entry nodes are dummy nodes
placed at entry statements (e.g., BEGIN) for the same reason.
3. Another components is simple statements. These are the statements with only one
outlink. The weight of simple statement is determined by sequential actions of data-flow
with respect to the given statement.

For example, consider a simple statement A:= A + B in most languages is weighted
by cd or possibly ckd for variable A.
4. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are weighted with the p-
use(s) on every outlink, appropriate to that outlink.
5. Every sequence of simple statements (e.g., a sequence of nodes with one infink and
one outlink) can be replaced by a pair of nodes that has, as weights on the link between
them, the concatenation of link weights.
6. If there are several data-flow actions on a given link for a given variable, then the
weight of the link is denoted by the sequence of actions on that link for that variable.
7. If multiple data-flow actions are available on a link for a variable, then its
corresponding weight is determined by the sequence of actions. Inversely a sequence
of equivalent links are used to replace the link with more data flow actions.

(c)_Putting it together:
% The following figure a shows the control flowgraph. The figure b shows this control

flowgraph annotated for variables X and Y data flows.

% The figure ¢ shows the same control flowgraph annotated for variable Z. Z is first

defined by an assignment statement on the first link.

% Zis used in a predicate (Z >= 07?) at node 3, and therefore both outlinks of that node—

(3,4) and (3,5)—are marked with a p. The data-flow annotation for variable V is shown
in figure d.

(4)_Strategies in Data-Flow Testing:
(i)_General:

>
>
>
>

>
>

Data-flow testing strategies are structural strategies.

Data-flow testing strategies are based on the program’s control flowgraph.

Data-flow testing strategies are based on selecting test path segments (also called
subpaths) that satisfy some characteristic of data flows for all data objects. For example, all
subpaths that contain a d (or u, k, du, dk).

These strategies differ in determining whether the paths of a given type are required or only
one path of that type is required.

The test setincludes the predicate uses and computational uses of variables.

This usage also differs in the test set that is either computational use or predicate use of
variables.

(ii)_Terminology:
» We’'ll assume for the moment that all paths are achievable. Some terminology.
» A definition-clear path segment

% A path segment is a sequence of connected links between nodes. This first link of
the path is defined and the subsequent link of that path is killed.

% A definition-clear path segment is a connected sequence of links such that X is
(possibly) defined on the first link and not redined or killed on any subsequent link of
that segment.

% All paths in figure b are definition clear because variables X and Y are defined only
on the first link (1,3) and thereafter. Similarly for variable V in figure d.

Prepared by: S.Prasanna

Software Testing Methodologies
% In Figure c we have a more complicated situation. The following path segments are

definition-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7), (7,8,9,10), (7,8,10), (7,8,10,11).
% Subpath (1,3,4,5) is not definition-clear because the variable is defined on (1,3) and

again on (4,5).
% For practice, try finding all the definition-clear subpaths for this routine (i.e., for all

variables).
> NN \f

&
<

@«@@ (>)

10 |«

) 4

%

(@) Unannotated Control Flowgraph

(b) Control Flowgraph Annotated for X and Y Data Flows.

4 6 7

A A

<
il

@~@~Q< () o

(c) Control Flowgraph Annotated for Z Data Flow

Prepared by: S.Prasanna

Software Testing Methodologies

@@9{%@; () o

(d) Control Flowgraph Annotated for V Data Flow

% The fact that there is a definition-clear subpath between two nodes does not imply
that all subpaths between those nodes are definition-clear; in general, there are
many subpaths between nodes, and some could have definitions on them and some
not.

% A definition clear sub path does not include loops. For example a loop consists of
(i,j) and (j,i) links.

% These links have a definition on (i,j) and a computational use on (j,i). If we include
loops in a path by definition-clear path segment then there is no need to go around
such path.

% Because of this the testing strategies will have a finite number of test paths.

% The strategies must be weaker than the paths because a bug can be created
whenever a loop has been traversed and iterated.

2. A loop-free path segment
% Aloop-free path segment is a path segment for which every node is visited at most

once.
% Path (4,5,6,7,8,10) in figure cis loop free, but path (10,11,4,5,6,7,8,10,11,12) is not
because nodes 10 and 11 are each visited twice.
3.A simple path segment
% Asimple path segment is a path segment in which at most one node is visited twice.
% For example in figure c (7,4,5,6,7) is a simple path segment.
% A simple path segment is either loop-free or if there is a loop, only one node is
involved.
4. A du path
% Adu path fromnode ito k is a path segment such that if the last link has a
computational use of X then the path is simple and definition-clear path.
% if the penultimate node is j/—that is, the path is (i,p,q,...,1,s,t,j,k) and link (j,k) has a
predicate use—then the path from i to j is both loop-free and definition-clear.
(i) _The Strategies:
(a)_Overview:
% The structural test strategies are based on the program’s control flowgraph.
% These strategies differ in determining whether the paths of a given type are required or
only one path of that type is required.
s The test setincludes the predicate uses and computational uses of variables.

Prepared by: S.Prasanna

Software Testing Methodologies

R/
A X4

K/
L X4

This usage also differs in the test set that is either computational use or predicate use of
variables.
The different data flow testing strategies are given below.

(b)_All-du Paths (ADUP) strategy:

R/
A X4

X/
°e

X/ X/ R/
LXK X4

The all-du-paths (ADUP) strategy is the strongest data-flow testing strategy discussed
here. It requires that every du path from every definition of every variable to every use
of that definition be exercised under some test.

In the above figure b variables X and Y are used only on link (1,3), any test that starts at
the entry satisfies this criterion (for variables X and Y, but not for all variables as
required by the strategy).

The situation for variable Z in figure c is more complicated because the variable is
redefined in many places. For the definition on link (1,3) we must exercise paths that
include subpaths (1,3,4) and (1,3,5). The definition on link (4,5) is covered by any path
that includes (5,6), such as subpath (1,3,4,5,6, ...).

The (5,6) definition requires paths that include subpaths (5,6,7,4) and (5,6,7,8).
Variable V in figure d is defined only once on link (1,3).

Because V has a predicate use at node 12 and the subsequent path to the end must be
forced for both directions at node 12, the all-du-paths strategy for this variable requires
that we exercise all loop-free entry/exit paths and at least one path that includes the
loop caused by (11,4).

Note that we must test paths that include both subpaths (3,4,5) and (3,5) even though
neither of these has V definitions.

They must be included because they provide alternate du paths to the V use on link
(5,6). Although (7,4) is not used in the test set for variable V, it will be included in the
test set that covers the predicate uses of array variable V() and U.

The all-du-paths strategy is a strong criterion, but it does not take as many tests as it
might seem at first because any one test simultaneously satisfies the criterion for
several definitions and uses of several different variables.

(c)_All-uses Strategy:

7
A X4

7
A X4

Just as we reduced our ambitions by stepping down from all paths (P-) to branch
coverage (P2), say, we can reduce the number of test cases by asking that the test set
include at least one path segment from every definition to every use that can be
reached by that definition—this is called the all-uses (AU) strategy.

The strategy is that at least one definition-clear path from every definition of every
variable to every use of that definition be exercised under some test.

In figure d, ADUP requires that we include subpaths (3,4,5) and (3,5) in some test
because subsequent uses of V, such as on link (5,6), can be reached by either
alternative. In AU either (3,4,5) or (3,5) can be used to start paths, but we don’t have to
use both.

Similarly, we can skip the (8,10) link if we’ve included the (8,9,10) subpath.

(d)_All-p-Uses/Some-c-Uses and All-c-Uses/Some-p-Uses Strategies:

7
A X4

R/
A X4

Weaker criteria require fewer test cases to satisfy. We would like a criterion that is
stronger than P2 but weaker than AU.

Therefore, select cases as for All (Section 3.3.3) except that if we have a predicate use,
then (presumably) there’s no need to select an additional computational use (if any).
More formally, the all-p-uses/some-c-uses (APU+C) strategy is defined as follows: for
every variable and every definition of that variable, include at least one definition-free
path from the definition to every predicate use; if there are definitions of the variable that

Prepared by: S.Prasanna

Software Testing Methodologies

X/
°

X/
°e

X/

are not covered by the above prescription, then add computational-use test cases as
required to cover every definition.

The all-c-uses/some-p-uses (ACU+P) strategy reverses the bias: first ensure coverage
by computational-use cases and if any definition is not covered by the previously
selected paths, add such predicate-use cases as are needed to assure that every
definition is included in some test.

In figure b for variables X and Y, any test case satisfies both criteria because definition
and uses occur on link (1,3). In figure c, for APU+C we can select paths that all take the
upper link (12,13) and therefore we do not cover the c-use of Z: but that’s okay
according to the strategy’s definition because every definition is covered.

Links (1,3), (4,5), (5,6), and (7,8) must be included because they contain definitions for
variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6), and (9,10) must be included because
they contain predicate uses of Z.

Find a covering set of test cases under APU+C for all variables in this example—it only
takes two tests. In figure d, APU+C is achieved for V by
(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and (1,3,5,6,7,8,10,11,12[lower],
13,2). Note that the c-use at (9,10) need not be included under the APU+C criterion.
The figure d shows a single definition for variable V. C-use coverage is achieved by
(1,3,4,5,6,7,8,9,10,11,12,13,2). In figure ¢, ACU+P coverage is achieved for Z by path
(1,3,4,5,6,7,8,10, 11,12,13[lower], 2), but the predicate uses of several definitions are
not covered. Specifically, the (1,3) definition is not covered for the (3,5) p-use, the (7,8)
definition is not covered for the (8,9), (9,6) and (9, 10) p-uses.

The above examples imply that APU+C is stronger than branch coverage but ACU+P
may be weaker than, or incomparable to, branch coverage.

(e)_All definitions Strategy:

R/
L X4

7
A X4

The all-definitions (AD) strategy asks only that every definition of every variable be
covered by at least one use of that variable, be that use a computational use or a
predicate use.

Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z, whereas any entry/exit path
satisfies it for variable V. From the definition of this strategy we would expect it to be
weaker than both ACU+P and APU+C.

(f)_All-Predicate Uses, All-Computational Uses Strategies:

*
A X4

The all-predicate-uses (APU) strategy is derived from the APU + C strategy by dropping
the requirement that we include a c-use for the variable if there are no p-uses for the
variable following each definition.

Similarly, the all-computational-uses (ACU) strategy is derived from ACU+P by dropping
the requirement that we include a p-use if there are no c-use instances following a
definition.

It is intuitively obvious that ACU should be weaker than ACU+P and that APU should be
weaker than APU+C.

(g)_Ordering the Strategies:

7
A X4

R/
A X4

7
A X4

The below figure compares path-flow and data-flow testing strategies. The arrows
denote that the strategy at the arrow’s tail is stronger than the strategy at the arrow’s
head.

The right-hand side of this graph, along the path from “all paths” to “all statements” is
the more interesting hierarchy for practical applications.

Variations of data-flow strategies exist, including different ways of characterizing the
paths to be included and whether or not the selected paths are achievable.

Prepared by: S.Prasanna

Software Testing Methodologies
% The strength relation graph of the above figure can be substantially expanded to fit
almost all such strategies into it. Indeed, one objective of testing research has been to
place newly proposed strategies into the hierarchy.

ALL PATHS
ALL du PATHS
ALL USES
ALL-c/SOME-p ALL-p/SOME-c
!
ALL-c USES ALL DEFS ALL-p USES
BRANCH
STATEMENT

(iv) _Slicing, Dicing, Data Flow and Debugging:
(a)_General:

0,

% Slicing is a program originally developed for conventional languages.

RS

% It helps in understanding data flow and debugging techniques. The Slicing is done
based on variable sharing.

% Dicing and debugging are the concepts related to removal of unwanted bugs.

(b)_Slices and Dices:

There are two types of slicing technique. i.e. Static slicing & dynamic slicing.

Static slicing is a part of a program defined with respect to a given variable X and a

statement i

It consists of all statements that could affect the value of X at statement /.

The result of a false statement effect in an improper computational use or predicate use

of some other variable.

If the variable X is correct then the bug is detected in the program itself.

A program dice is a part of a slice in which the statements which are correct has been

removed.

% Theidea behind slicing and dicing is based on Weiser’s observation that these
constructs are at the heart of the procedure followed by good debuggers.

% Dynamic slicing is a refinement of static slicing. Dynamic slicing compares the data flow
relationship with respect to static data flows.

% Dicing is defined as the process of refining slice by removing all the unwanted bug
statements in a program.

% Basically a dice is generated from a slice which posses the information about testing or
debugging the function of a dice is to improve or refine a slice by removing the
unwanted statements from a program.

% The process of dicing is often employed by debuggers. The current methods of dicing
encompass assumptions related to bugs and programs.

% Due to the existence of bugs the usage of real program is declined.

e

A

X/
X4

L)

K/ X/
0‘0 0‘0

e

A

K/
L X4

Prepared by: S.Prasanna

Software Testing Methodologies
(¢)_Data-flow:

% Data flow is defined as the process of reading variables. The central concept of data-
flow is to bridge the gap between debugging and testing.

% Theidea of slices was extended to arrays and data vectors and the data-flow relations
(such as dc and dp) in dynamic slices are analogous compared to the data-flow
relations in static slices (dc and dp).

% Where dc and dp are the data objects. Here

d=Object definition,
c=Computation
p=Symbol used in a predicate for operation purpose.
(d)_Debugging:
% Debugging is defined as an iterative method in which refinement of slices is carried out
through dices so as to obtain the dicing information.
% Basically debugging is carried out after a test case is successfully executed.
% The process of debugging terminates when all the bugs that exists in the program
statements are corrected.
% Methods of slicing leads to commercial testing or development of different debugging
tools.
% The test cases involved in integration and testing are modeled for efficient error
detection, where as the cases involved in debugging are modeled for efficient error
isolation.

(5)_Application of Data-Flow Testing:

Data flow testing is used to detect the different abnormalities that may arise due to data
flow anomalies.

Data flow testing shows the relationship between the data objects that represents data.
Data flow testing strategies help in determining the usage of variables that are included in
the test set.

Data flow testing is cost effective.

Data flow testing solves the problems that are encountered while performing.

Data flow testing uses practical applications rather than mathematical applications.

Data flow testing is used in developing web applications with Java technology.

VVVYV VYV 'V

Prepared by: S.Prasanna

Software Testing Methodologies

(1)_Domains and paths:

(i_The Model:

» Domain testing can be based on specifications and/or equivalent implementation
information.

» If domain testing is based on specifications, it is a functional test technique; if based on
implementations, it is a structural technique.

» Domain testing is applied to one input variable or to simple combinations of two variables,
based on specifications.

A
y

INPUT OUTPUT

CLASSIFY ——()———{DO CASE 1

DO CASE 2

\4

\

[DO CASE 3

v

DO CASE nJ

First the different input variables are provided to a program.
The classifier receives all input variables and divides them into different cases.
Every case there should be atleast one path to process that specified case.
Finally output is received from this do cases..

A domain is a set:
An input domain is a set. If the source language supports set definitions less testing is
needed because the compiler (compile-time and run-time) do much of it for us.
i) _Domains. paths and predicates:
In domain testing, predicates are assumed to be interpreted in terms of input vector
variables.
If domain testing is applied to structure (implementation), then predicate interpretation must
be based on control flowgraph.
If domain testing is applied to specifications, then predicate interpretation is based on data
flowgraph.
For every domain there is at least one path through the routine.
There may be more than one path if the domain consists of disconnected parts.
Unless stated otherwise, we’ll assume that domains consist of a single, connected part.
We'll also assume that the routine has no loops.
Domains are defined by their boundaries. For every boundary there is at least one
predicate.
For example in the statement, IF X >0 THEN ALPHA ELSE BETA we know that number
greater than zero, belong to ALPHA, number smaller to zero, belong to BETA.

=

YV VYVVVYVY VY Vv VE VEvvVvVy

Prepared by: S.Prasanna

Software Testing Methodologies
Review:

1. A domain is a loop free program.
2. Forevery domain there is at least one path through the routine.
3. The set of interpreted predicates defines the domain boundaries.
(iv) _Domain Closure:
» To understand the domain closure, consider the following figure.

MIN MAX
D1 D2 D3

* ®

(@) Both side closed

MIN MAX
D1 D2 D3
e
\[/
(b) One side open
MIN MAX
D1 D2 D3
S AN
b o b 3

(c) Both side open

» If the domain boundary point belongs to the same domain then the boundary is said to
close. If the domain boundary point belongs to some other domain then the boundary is
said to open.

> In the above figure there are three domains D1, D2, D3.

» In figure a D2’s boundaries are closed both at the minimum and maximum values. If D2 is
closed, then the adjacent domains D1 and D3 must be open.

> In figure b D2 is closed on the minimum side and open on the maximum side, meaning
that D1 is open and D3 is closed. In figure ¢ D2 is open on both sides, which mean that the
adjacent domains D1 and D3 must be closed.

(v)_Domain Dimensionality:

» Depending on the input variables, the domains can be classified as number line domains,
planer domains or solid domains.

» Thatis for one input variable the value of the domain is on the number line, for two
variables the resultant is planer and for three variables the domain is solid.

» One important thing here is to note that we need not worry about the domains
dimensionality with the number of predicates. Because there might be one or more
boundary predicates.

(vi)_The Bug Assumptions:

» The bug assumption for domain testing is that processing is okay but the domain definition
is wrong.

» Anincorrectly implemented domain means that boundaries are wrong, which mean that
control-flow predicates are wrong.

» The following are some of the bugs that give to domain errors.

(a) Double-Zero Representation:
% Boundary errors for negative zero occur frequently in computers or programming
languages where positive and negative zeros are treated differently.

Prepared by: S.Prasanna

Software Testing Methodologies
(b)_Floating-Point Zero Check:

% A floating-point number can equal to zero only if the previous definition of that number is
set it to zero or if it is subtracted from itself, multiplied by zero.
* Floating-point zero checks should always be done about a small interval.
(¢)_Contradictory Domains:
% Here atleast two assumed distinct domains overlap.
(d)_Ambiguous Domains:
s These are missing domain, incomplete domain.
(e)_Over specified Domains:
% The domain can be overloaded with so many conditions.
() Boundary Errors:
% This error occurs when the boundary is shifted or when the boundary is tilted or missed.
(g)_Closure Reversal
+* This bug occurs when we have selected the wrong predicate such as x>=0 is written as
x<=0.
(h) Faulty Logic:
% This bug occurs when there are incorrect manipulations, calculations or simplifications
in a domain.
(vii) _ Restrictions:
(a)_General
% Domain testing has restrictions. i.e. we cannot use domain testing if they are violated.
In testing there is no invalid test, only unproductive test.
Coincidental Correctness
Coincidental correctness is assumed not to occur.
Domain testing is not good for which outcome is correct for the wrong reason.
One important point to be noted here is that, domain testing does not support Boolean
outcomes (TRUE/FALSE).
If suppose the outputs are some discrete values, then there are some chances of
coincidental correctness.
(c)_Representative Outcome
Domain testing is an example of partition testing.
Partition testing divide the program’s input space into domains.
If the selected input is shown to be correct by a test, then processing is correct, and
inputs within that domain are expected to be correct.
% Most test techniques, functional or structural fall under partition testing and therefore
make this representative outcome assumption.
(d)_Simple Domain Boundaries and Compound Predicates
% Each boundary is defined by a simple predicate rather than by a compound predicate.
% Compound predicates in which each part of the predicate specifies a different boundary
are not a problem: for example, x >= 0 .AND. x < 17, just specifies two domain
boundaries by one compound predicate.
(¢)_Functional Homogeneity of Bugs
s Whatever the bugis, it will not change the functional form of the boundary predicate.
(f)_Linear Vector Space
% Alinear predicate is defined by a linear inequality using only the simple relational
operators >, >=, = <= <> and <.
< Example x? +y? > a2,
(2)_Loop-free Software
% Loops (indefinite loops) are problematic for domain testing.

%

ACH
0.0 0.0 0.0

X/
X4

L)

K/
L X4

X/
X4

L)

X/
X4

L)

X/
X4

L)

Prepared by: S.Prasanna

Software Testing Methodologies
% If aloop is an overall control loop on transactions, say, there’s no problem.

% If the loop is definite, then domain testing may be useful for the processing within the
loop, and loop testing can be applied to the looping values.
(2)_Nice Domains:

(i)_Where Do Domains Come From?

» Domains are often created by salesmen or politicians.

» The first step in applying domain testing is to get consistent and complete domain
specifications.

(i) _Specified versus Implemented Domains:

» Implemented domains can’t be incomplete or inconsistent but specified domains can be
incomplete or inconsistent.

» Incomplete means that there are input vectors for which no path is specified and
inconsistent means that there are at least two contradictory specifications.

(iii) _Nice Domains:

(1)_General
% The representation of Nice two-dimensional domains is as follows. .
N Ul N Uz N U3 | u4 N us N
AN N \\\\\\ \\\\\\\\\\\\\\\ \\\\
Vi N bp11 D12 N D13 N D14 N D15 N
AN N \\\\\\ \\\\\\\\\\\\\\\ \\\\
V2 § D21 § D22 § D23 § D24 § D25 §
NR NR R N
AN N NN \\\\\\\\ \\\\
NISUEN NN N
V3. D31 N b3z N D33 D34 N D35 N
N N R N
AN NN NN NN NN NN\
N N N N N N

e

A

The U and V represent boundary sets and D represents domains.
The boundaries have several important properties. They are linear, complete,
systematic, orthogonal, consistently closed, simply connected and convex.
% If domains have these properties, domain testing is very easy otherwise domain testing
is tough.
(2)_Linear and Nonlinear Boundaries
% Nice domain boundaries are defined by linear inequalities or equations.

*

% The effect on testing comes from only two points then it represents a straight line.

% If it considers three points then it represents a plane and in general it considers n + 1
points then it represents an n-dimensional hyperplane.

% Linear boundaries are more frequently used than the non-linear boundaries.

% We can linearize the non-linear boundaries by using simple transformations.

(3) Complete Boundaries

Complete boundaries are those boundaries which do not have any gap between them.

Nice domain boundaries are complete boundaries because they cover from plus infinity

to minus infinity in all dimensions.

Incomplete boundaries are those boundaries which consist of some gaps between them

and are not covered in all dimensions.

The following figure represents some incomplete boundaries.

K/
L X4

%

%

7/
o0

7/
°

K/
°e

Prepared by: S.Prasanna

Software Testing Methodologies

D -

- \

A~
B B
— \

D \

% The Boundaries A and E have gaps so they are incomplete & the boundaries B, C, D
are complete.

% The main advantage of a complete boundary is that it requires only one set of tests to
verify the boundary

(4)_Systematic Boundaries

% Systematic boundaries refer to boundary inequalities with simple mathematical

functions such as a constant.

* Consider the following relations,
JiX) >= ki or fi(X) >=g(1,¢)
LX) >=k fo(X) >=g2,c)

filX) >=ki fiX) >=g(i,c)
% Where fiis an arbitrary linear function, X'is the input vector, kiand c are constants,

and g(i,c) is a decent function that yields a constant, such as k + ic.

(5)_Orthogonal Boundaries

% The Uand Vboundary sets in Nice two-dimensional domains figure are orthogonal; that

is, the every boundary V is perpendicular to every other boundary U.

If two boundary sets are orthogonal, then they can be tested independently.

If we want to tilt the above orthogonal boundary we can do it by testing its intersection

points but this can change the linear growth, O(n) into the quadratic growth O(n?).

% If we tilt the boundaries to get the following figure then we must test the intersections.

N

L)

e

A

e

A

TS e X v

(6)_Closure Consistency

% Consistent closures are the most simple and fundamental closure.
% It gives consistent and systematic results.

% The following figure shows the boundary closures are consistent.

L)

X3

Prepared by: S.Prasanna

Software Testing Methodologies

y = k1 + bx
y = k2 + bx
y = k3 + bx
v v v - v
x =A1 x =Az x = A; x = A4 x =As
% In the above figure, the shading lines show one boundary and thick lines show other
boundary.

% It shows Non orthogonal domain boundaries, which mean that every inequality in
domain x is not perpendicular to every inequality in domain vy.
(7)_Convex
% A figure is said to be convex when for any two boundaries, with two points placed on
them are combined by using a single line then all the points on that line are within the
range of the same figure.
% Nice domains support convex property, where as dirty domains don’t.
(8) Simply Connected
+ Nice domains are usually simply connected because they are available at one place as
a whole but not dispersed in other domains..
% Simple connectivity is a weaker requirement than convexity; if a domain is convexitis
simply connected, but not vice versa.
(i) _Ugly Domains:
(a)_General
» Some domains are born ugly. Some domains are bad specifications.
» So every simplification of ugly domains by programmers can be either good or bad.
% If the ugliness results from bad specifications and the programmer’s simplification is
harmless, then the programmer has made ugly good.
% Butif the domain’s complexity is essential such simplifications gives bugs.
(b)_Nonlinear Boundaries
¢ Non linear boundaries are rare in ordinary programming, because there is no
information on how programmers correct such boundaries.
% So if a domain boundary is non linear, then programmers make it linear.
(c)_Ambiguities and Contradictions:.

DS

oS

>

(a) Ambiguities

(c) Overlapped Domains

N

A Hole \B\

(d) Contradiction:
Dual Closure (b) Ambiguity:
Missing Boundary

Prepared by: S.Prasanna

SOftware Testlng Methodologies
Domain ambiguity is missing or incomplete domain boundary.

In the above figure Domain ambiguities are holes in the A domain and missing
boundary in the B domain.
An ambiguity for one variable can be see easy.
An ambiguity for two variables can be difficult to spot.
An ambiguity for three or more variables impossible to spot. Hence tools are required.
Overlapping domains and overlapping domain closure is called contradiction.
There are two types of contradictions are possible here.
(1) Overlapped domain specifications
(2) Overlapped closure specifications.
% Inthe above figure there is overlapped domain and there is dual closure contradiction.
This is actually a special kind of overlap.
(d) Simplifying the Topology
% Connecting disconnected boundary segments and extending boundaries is called
simplifying the topology
% There are three generic cases of simplifying the topology.

X/
LX)

7 7 7 7 X/
RS XX IR XC IR X QI X4

]

1y

i

(a) Making it convex

(c) Joining the Pieces
s Programmers introduce bugs and testers misdesign test cases by, smoothing out
concavities, filling in holes, joining disconnected pieces.
(e) Rectifying Boundary Closures
+ Different boundaries in different directions can obtain in consistent direction is called
rectifying boundary closures.
%+ Thatis domain boundaries which are different directions can obtain in one direction.

f7L L

(a) Consistent Direction

Prepared by: S.Prasanna

Software Testing Methodologies

OONUNNIONNNNNNNNNNNNNNNY OIONUNNNIONNNNNNNNNNNNNNY

(b) Inclusion/Exclusion Consistency
% In the above figure the hyper plane boundary is outside that can obtain inside. This is
called inclusion / exclusion consistency.
(3)_Domain Testing:
(i)_Overview:
» Domains are defined by their boundaries. So domain testing concentrates test points on
boundaries or near boundaries.
» Find what wrong with boundaries, and then define a test strategy.
» Because every boundary uses at least two different domains, test points used to check one
domain can also be used to check adjacent domains.
» Run the tests, and determine if any boundaries are faulty.
» Run enough tests to verify every boundary of every domain.
(ii)

Domain Bugs and How to Test for Them:
(a)_General:

EXTREME POINT

BOUNDARY POINT

INTERIOR POIN

EPSILON NEIGHBORHOOD
An interior point is a pointin a domain. It can be defined as a point which specifies
certain distance covered by some other points in the same domain.
This distance is known as epsilon neighborhood.
A boundary pointis on the boundary that is a point with in a specific epsilon
neighborhood.
% An extreme point is a point that does not lie between any other two points.

K/
L X4

X/
X4

L)

e

AS

OFF POINTS

% An on point is a point on the boundary. An off point is outside the boundary.

» If the domain boundary is closed, an off pointis a point near the boundary butin the
adjacent domain.

Prepared by: S.Prasanna

Software Testing Methodologies
% If the domain boundary is open, an off pointis a point near the boundary but in the

same domain.
s+ Here we have to remember CLOSED OFF OUTSIDE, OPEN OFF INSIDE
% ie. COOO0O0I
% The following figure shows a generic domain ways.

_”
& - ®
- ' -]
TILTED BOUNDARIES MISSING BOUNDARY

e S——— — CORRECT

OPEN / CLOSE ERROR INCORRECT -------

(b)_Testing One-Dimensional Domains:
% The following figure shows one dimensional domain bugs for open boundaries.

B N A
N

a) An Open Domain (A)
X

B i A
/

b) Closure bug

+— X

B N [A
/ Nt

c) Boundary shifted left

X —»
B 7, C A

c) Boundary shifted right

X
B Fidai

)
v

e) Missing Boundary
B X A X
O 0

f) Extra Boundary

Prepared by: S.Prasanna

SOftware Testlng Methodologies
In the above figure a) we assume that the boundary was to open for A.

In figure b) one test point (marked X) on the boundary detects the bug.

In figure c) a boundary shifts to left.

In figure d) a boundary shifts to right.

In figure e) there is a missing boundary. In figure f) there is an extra boundary.
The following figure shows one dimensional domain bugs for closed boundaries.

B /Y A
/

a) A closed Domain (A)
X

B Vo A
/

b) Closure bug

7 X/ 7 X/ X/
RS XX R IR X QIR X Qi)

- X

B Y A
N

c) Boundary shifted left

X —

B I A
N

c) Boundary shifted right

X
B f"\.
e) Missing Boundary
X X
B ™ B M ¢
L) Nt L

f) Extra Boundary

e

A

In the above figure a) we assume that the boundary was to close for A.

In figure b) one test point (marked X) on the boundary detects the bug.

In figure c) a boundary shifts to left. In figure d) a boundary shifts to right.

In figure €) there is a missing boundary. In figure f) there is an extra boundary.

Only one difference from this diagram to previous diagram is here we have closed
boundaries.

(¢)_Testing Two-Dimensional Domains:

» The following figure shows domain boundary bugs for two dimensional domains.

» Aand B are adjacent domains, and the boundary is closed with respect to A and the
boundary is opened with respect to B.

(i)_Closure Bug:
% The figure (a) shows a wrong closure, that is caused by using a wrong operator for

example, x>=k was used when x > k was intended.

% The two on points detect this bug.

(ii) _Shifted Boundary:

% In figure (b) the bug is shifted up, which converts part of domain B into A’.

% This is caused by incorrect constant in a predicate for example x + y >= 17 was used
when x + y > =7 was intended. Similarly figure (c) shows a shift down.

K/
L X4

X/
°

K/ K/
LCEIR X4

Prepared by: S.Prasanna

Software Testing Methodologies

(a) Closure Bug

(b) Shifted Up

/-\ e -i\\

(e) Extra Boundary

®X

&N
X

A
(f) Missing Boundary

Prepared by: S.Prasanna

Software Testing Methodologies
(iii) _Tilted boundary:

A tilted boundary occurs, when coefficients in the boundary inequality are wrong.
For example we used 3x+ 7y > 17 when 7x + 3y > 17 is needed.
Figure (d) shows a tilted boundary which creates domain segments A’ and B'.
Extra Boundary:
An extra boundary is created by an extra predicate.
Figure (e) shows an extra boundary. The extra boundary is caught by two on points.
(v)_Missing Boundary:
* A missing boundary is created by leaving out the predicate.
% A missing boundary shown in figure (f) is caught by two on points.
» The following figure summarizes domain testing for two dimensional domains.

7
L X4

7

*

O3 |'-' o
DR X ST

There are two on points (closed circles) for each segment and one off point (open circle)
Note that the selected test points are shared with adjacent domains.

The on points for two adjacent boundary segments can also be shared.

The shared on points is given below.

YV VYV

(d)_Equality and Inequality Predicates:
Equality predicates are defined by equality equation such as x +y =12.
< Equality predicates supports only few domain boundaries

AS

)

A HE
[+4 E c'
lllll‘llllllllllll‘lllllllllllll‘llllll — C
s |
B :
- b

7/
X

L)

Inequality predicates are defined by inequality equation suchas x+y >12 orx+y <12
Inequality predicates supports most of the domain boundaries.

In domain testing, equality predicate of one dimension is a line.

Similarly equality of two dimensions is a two dimensional domain and equality of three
dimensions is a planer domain.

K/
°e

7/
X

L)

7/
o0

Prepared by: S.Prasanna

Software Testing Methodologies

% Inequality predicates test points are obtained by taking adjacent domains into
consideration.

% In the above figure the three domains A, B, C are planer. The domain C is aline.

% Here domain testing is done by two on points & two off points.

% Thatis test point b for B, and test point a for A and test points ¢ and ¢’ for C.

(e_Random Testing:

% Random testing is a form of functional testing that is useful when the time needed to
write and run directed tests are too long.

% One of the big issues of random testing is to know when a test fails.

% When doing random testing we must ensure that they cover the specification.

% The random testing is less efficient than direct testing. But we need random test
generators.

(f)_Testing n-Dimensional Domains:

% If domains defined over n-dimensional input space with p-boundary segments then the
domain testing gives testing n-dimensional domains.

(i) _Procedure:

>
>

(iv)
>
>
>

>

Generally domain testing can be done by hand for two dimensions.

Without tools the strategy is practically impossible for more than two variables.

1. ldentify the input variables.

. Identify variables which appear in domain predicates.

Interpret all domain predicates in terms of input variables.

For p binary predicates there are 2° domains.

Solve the inequalities to find all the extreme points of each domain.

Use the extreme points to solve for near by on points.

Varlatlons Tools. Effectiveness:

Variations can vary the number of on and off points or the extreme points.

The basic domain testing strategy discussed here is called the N X 1 strategy, because it
uses N on points and one off point.

In cost effectiveness of domain testing they use partition analysis, which includes domain
testing, computation verification and both structural and functional information.

Some specification tools are used in domain testing.

@@%ww

(4) Domains and Interface Testing:

(i)_General:

>

>

The domain testing plays a very important role in integration testing. In integration testing
we can find the interfaces of different components.
We can determine whether the components are accurate or not.

(i) _Domains and Range:

YVVVYVYYVYY

Domains are the input values used. Range is just opposite of domains.

i.e. Range is output obtained.

In most testing techniques, more forces on the input values.

This is because with the help of input values it will be easy to identify the output.
But interface testing gives more forces on the output values.

An interface test consists of exploring the correctness of the following mappings.

Caller domain - Callerrange
Caller range ——— Called domain
Called domain —_— Called range

Prepared by: S.Prasanna

Software Testing Methodologies
(iii) _ Closure Compatibility:

>

>
>
>

>

>

Assume that the caller’s range and the called domain spans the same numbers say 0 to 17
The closure compatibility shows the four cases in which the caller’s range closure and the
called’s domain closure can agree.

The four cases consists of domains that are closed on top (17) & bottom (0), open top &
closed bottom, closed top & open bottom and open top & bottom.

Here the thick line represents closed and thin line represents open.

calle1r7 called open tops open bottoms both bottom
-0 - - -— L] L _
both closed

The following figure shows the twelve different ways the caller and the called can disagree
about closure. Not all of them are necessarily bugs.

—17 — — —_ — —_ — —_ — — — —_

Here the four cases in which a caller bou_ndary is c?pen and the called is closed are not
buggy.

(iv)_Span Compatibility:
» The following figure shows three possibly harmless of span incompatibilities.

>

In this figure Caller span is smaller than Called.
9 - -9 9 9 —

7 —

3 —3
1 1 —1 1

» The range of a caller is a sub set of the called domain. That is not necessarily a bug.
» The following figure shows Called is Smaller than Caller.

Prepared by: S.Prasanna

Software Testingg Methodologies o o 0

7 7

3 3 -
1 — 1 —1 1 -
(v)_Interface Range/ Domain Compatibility Testing:
» The application of domain testing is also very important for interface testing because it tests
the range and domain compatibilities among caller and called routines.
> ltis the responsibility of the caller to provide the valid inputs to the called routine.
> After getting the valid input, the test will be done on every input variable.
(i) _Finding the values:
» Start with the called routine’s domains and generate test points.
» A good component test should have included all the interesting domain-testing cases.
» Those test cases are the values for which we must find the input values of the caller.
(5) Domains and Testability:
(i_General:
» Domain testing gives orthogonal domain boundaries, consistent closure, independent
boundaries, linear boundaries, and other characteristics. We know that which makes
domain testing difficult. That is it consists of applying algebra to the problem.

(i) _Linearizing Transformations:
» Thisis used to transfer non linear boundaries to equivalent linear boundaries.

» The different methods used here are

() Polynomials:
% Aboundary is specified by a polynomial or multinomial in several variables.

% For a polynomial each term can be replaced by a new variable.
» i.e. X, X%, x3, ...can be replaced by y1 =X, y2= X2, y3=x3, ...
» For multinomials you add more new variables for terms such as xy, x2y, xy?, ...

» So polynomial plays an important role in linear transformations.
(i) _Logarithmic Transforms:

®,

» Products such as xyz can be linearized by substituting u =log (x), v =log (y), log (z).

®,

% The original predicate xyz > 17 now becomes u + v + w> 2.83.

iii)_ More general forms:
% Apart from logarithmic transform & polynomials there are general linearizable forms

such as x/ (a + b) and ax®. We can also linearize by using Taylor series.

(iii) _Coordinate Transformations:

» The main purpose of coordinate transformation technique is to convert Parallel boundary
inequalities into non parallel boundary inequalities and Non-parallel boundary inequalities
into orthogonal boundary inequalities.

(iv)_A Canonical Program Form:

» Testingis clearly divided into testing the predicate and coordinate transformations.

> i.e. testing the individual case selections, testing the control flow and then testing the case
processing..

(v)_Great Insights:
» Sometimes programmers have great insights into programming problems that result in
much simpler programs than one might have expected.

)

oS

o

o

=

X/

Prepared by: S.Prasanna

Software Testing Methodologies

Prepared by: S.Prasanna

Software Testing Methodologies

UNIT -1V

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS

(1)_Path products & path expression:
(1)_Explain Paths, Path products, Path expressions, path sums and loops?

(a)_Paths:

» A sequence of statements which starts at an entry and ends at an exit and passes all the
decisions, junctions & processes is known as path.
A path represents different links and we can give a simplest weight to a link is a name.
Using link names, we can convert the graphical flowgraph into an equivalent algebraic
expression.
The link name will be denoted by lower case italic letters.
In traversing a path, we traverse link names that give the name of the path.
If you traverse links a, b, c, d then the name for that path is abcd.

This path name is also called a path product. The following are some examples of paths.
a [+

O——® @ O——®
N S

b d
The different paths are: eacf, eadf, ebcf, ebdf

YVVVY VY

m
| k |

a b c d e

The different paths are: abcde, abgjfbcde, abcdimfbcde

@ a g c (:)

The different paths are: ac, abc, abbc, abbbc, abbbbc

O——C—— 0@

The different paths are: abd, abchd, abcbcbd, abcbcbchd

(b) Path Products:
» The concatenation of names of two consecutive path segments is called a path product.
» For example if Xand Y are defined as X = abcde and Y = fghij then

XY = abcdefghij YX = fghijabcde

aX = aabcde Xa = abcdea XaX = abcdeaabcde .
» Another example isif X=abc +def+ghi and Y=uvw+2z then

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz
If X = abcde then X' =abcde
X2 = (abcde)? = abcdeabcde

Prepared by: S.Prasanna

Software Testing Methodologies _ . .
» The path product is not commutative thatis XY does not necessarily equal to YX

> The path product is associative thatis (XY)Z = X(YZ).
(c) Path expression:

» Path expression is defined as an expression which represents set of all possible paths
between an entry and exit nodes. For example:

» The path expression to the above figureis: f(x+y+d)g(u+v+w+h+i+j)k
(d) Path sums:
» The path sumis the sumof all the parallel links between two nodes or sum of all parallel

paths between two nodes. Path sum is denoted by ‘+.
> Ex(i)

In the above figure, links a & b are parallel, so these parallel paths are denoted by a + b.
Similarly c and d are parallel & these parallel paths are denoted by ¢ +d.

The set of parallel paths between 1 and 2 nodes are eacf + eadf + ebcf + ebdf.

Ex (ii)

YV VYV

» The first set of parallel path is denoted by X +Y + d and second byu+v+w+h +i +j.

» The set of all pathsin this flowgraphis f(X+Y +d)glu+v+w+h+i+j)k

» Path sumis commutative and associative. Commutative is X+ Y =Y + X

Associative is (X+Y)+Z=X+(Y+Z)

(e)_Loops:

» If a single link or path expression is traversed indefinite no of times leading to infinite no of
parallel paths then it is called a loop. For example the loop consists of a single link b, then
the set of all paths through that loopis b%+ b'+b?+b"

0

b2
K3

Y

> This infinite sumis denoted by b*. So b*=b%+ b'+ b2+b".

Prepared by: S.Prasanna

Software Testing Methodologies
> If the loop is taken atleast once then itis denoted by b*.

> Ex (i)
OIAC PG
The path expression is: ab*c = a(b®)c + a(b")c + a(b?)c + a(bd)c+.......
=ac +abc+abbc+abbbc+......
Ex (ii)

C
@ a e b o d O
The path expression is: a(bc)*bd = a(bc)bd + a(bc)bd + a(bc)bd +
=abd + abcbd + abcbcbd + ...
(2)_Discuss all the rules in path representation of graphs?

Rule 1:
A(BC)=(AB)C=ABC
Rule 2:
X+Y=Y+X
Rule 3:
X+Y)+Z=X+(Y+2)=X+Y+Z
A(BC)=(AB)C=ABC
Rule 4:
» Distributive laws are A(B+C) =AB + AC

(B+C)D=BD + CD.
» For example:

ofofijoficsro

e(a+b)(c+d)f = e(ac+tad+bc+bd)f = eacf + eadf + ebcf + ebdf
Rule 5:
» The absorption ruleis, if Xand Y denote the same set paths, then the union of these sets is
not changed. Ex: X + X = X.
» Another example is: if X =a + aa + abc + abcd + def then

X+a=X+aa=X+abc=X+abcd=X+def=X

Rule 6:
X0+ Xm = X0 if nis bigger than m
= X2 if mis bigger than n
Rule 7:
XoXm = Xntm
Rule 8:
XEX* = X*X2 = X*
Rule 9:

XX = X*X2= X*
Rule 10:
XX = X*X* = X*
Identity elements:(Rule 11 to Rule 17)
> a X°denote the path whose length is zero. The rules are
Rule 1: 1+1=1

Prepared by: S.Prasanna

Software Testing Methodologies
Rule 12:

1IX=X1=X

Rule 13:

In=1n=1*=1+* =1

Rule 14:

1*+1=1"=1

Rule 15:

X+0=0+X=X

Rule 16:

X0=0X=0

Rule 17:

0*=1+0"+0%+...=1
(2)_A Reduction Procedure:

(1) _Write the steps involved in Node Reduction Procedure. Illustrate all the steps with

the help of neat labeled diagrams?

Node Reduction Procedure:

» The main aim of Node Reduction Procedure is to remove all the intermediate nodes
between entry and exit nodes. This procedure is helpful in debugging process. i.e. Instead
of gathering information about path expression of all the intermediate nodes for debugging;
it is easy to debug only the path expression between entry and exit nodes.

Procedure:

1. Combine all serial links by multiplying their path expressions.

2. Combine all parallel links by adding their path expressions.

3. Remove all selfloops by replacing them with a link of the form x”, where x s the path
expression of the link in that loop.

4. Choose the node which is to be removed other than initial and final node. The path
expression of the inlink and outlink of this node is multiplied and a directlink is applied with
the product of path expression. This step-4 is called Cross-Term Step.

5. Combine any remaining serial links by multiplying their path expressions.

6. Combine all parallel links by adding their path expressions. This Step-6 is called Parallel
Term Step.

7. Remove all self-loops asin step 3. This Step-7 is called Loop Term Step.

8. If the graph consists of a single link between the entry and the exit node, then the path
expression for that link is a required path expression. Otherwise return to step 4.

Example:
> Consider the following graph.

IO

» First remove node 8 by applying step 4 (cross-term step) and combine by step 5.
d

Prepared by: S.Prasanna

Software Testing Methodologies
» Remove node 7 by applying step 4 (cross-term step) and combine by step 5.

®a©b©‘3 d

» Add parallel links between node 5 and node 2 by applying parallel term step.
: a S b : C : d+ gh :
. gif
gjie
» Remove node 5 by apply_ifng step 4 (cross-term step) and combine by step 5.
cg

@ a @ b c(d + gh) @
L,/:gjie

» Remove selfloop at node 4 by applying loop term step.
cgjf]*c(d + gh
®a©b4[gjﬂ(g)@
[cgjf]"cgjie
» Remove node 4by applying step 4 (cross-term step) and combine by step 5.
blcgjf]*cgjie

a >3 blcgjfI*c(d + gh)

» Remove self loop at node 3 by applying loop term step.

* H * fF1* +

@D a © [blcgjf]*cgjie]*blcgjf]*c(d + gh) -2

» Remove node 3 by applying step 4.
a([blcgijf]*cgjie]*b[cgjf]*c(d + gh))
@ -2
(3)_Applications:

(1)_How many paths in a Flowgraph:
Q. Explain maximum path count arithmetic of a flowgraph with an example?
Maximum Path Count Arithmetic:
» Here eachlinkis represented by a link weight. There are three arithmetic cases that are

considered here.
» They are

»
>

Prepared by: S.Prasanna

Software Testing Methodologies
» (i) Parallel rule:

% Each term of the path expression A is added with each term of the path expression B if
there are two path expressions A and B. So itis A+B. If there are Wa paths in A and Wg
paths in B then there are Wa + Wg paths in its combination.

(ii) Series rule:

% Each term of the path expression A is multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB. If there are Wa paths in A and Wg
paths in B then there are Wa W3 paths in its combination.

(iii) Loop rule:

®,

% Loop rule is evaluated by considering number of times that the path is iterated.

CASE PATH WEIGHT
EXPRESSION EXPRESSION
PARALLEL A+B Wa +Wg
SERIES AB WaWg
LOOP An n
> Wa'
i=0

Example:
» Determine the path expression to the following figure.

\)

The path expression is given by
a(b +c) d [e(fi)*fgj(m + Dk]*e(fi)*fgh
Let each link represents a single link and is given by a link weight 1.
Assume that the outer loop will be taken exactly four times and the inner loop can be taken
zero to three times.
The reduction is as follows.

YV VVY V¥

» Now apply parallel rule.
1+1=2

1 1+1=2 1

> Nowtapply series rule.

Prepared by: S.Prasanna

Software Testing Methodologies

1x2x1=2

4-4
1 (0.3) {4-4}

x2x1=2 1 1 N 1 1

Now create inner seIfVIoop & Ap;;Iy loop rule for removiné inner self loop.

4-4)

Now apply series rule.

2

{4-4}
2 1x4x1=4 1 _

Now create outer self loop.
2(4)=8

{4-4}
2 4x1=4 .

Apply loop rule to remove the self loop.
2 84 4

\J

Apply series rule.
2x8* x4 32768
—_—

o

-

Alternatively we can calculate the maximum number of paths as follows.
The path expression is given by

a(b +c) d [e(fi)*fgj(m + Dk]*e(fi)*fgh
In the above expression each link is substituted by 1.

1(1+1)1[1(1x1)3 1x1x1 (1+1)1]* 1(1x1)3 1x1x1

=1(2)[13x 2]* 1x13

=2[4x2]* x4 [since 13=10+1"+ 12 + 13 =4]

=2 x[8]* x4 =32,768..

(2) _Approximate Minimum number of paths:
0. Define structured code. Explain about lower path count arithmetic?

Structured code:

>

>

>

A structured flowgraph is one that can be reduced to a single link by successive application
of transformations.

Based on the path expression obtained by node-by-node reduction procedure we can
determine whether the given flow graph is a structured or unstructured.

Thatis if the resultant expression is large and ugly then the graph is unstructured one
otherwise the graph is structured one.

Lower path count arithmetic:

>

The lowest number of paths in a structured flowgraph can be approximately known; it may
or may not be accurate because there is every possibility of a path being unachievable
which further lowers the number count.

Here each link is represented by a link weight. Loops are always problematic.

Prepared by: S.Prasanna

Software Testing Methodologies
» So it must be traversed only one time or zero times to achieve the coverage. There are
three arithmetic cases here. They are.
» (i) Parallel rule:

% Each term of the path expression A is added with each term of the path expression B if
there are two path expressions A and B. So itis A+B. If there are Wa paths in A and Wg
paths in B then there are Wa + Wg paths in its combination.

(ii) Series rule:

s Each term of the path expression Ais multiplied with each term of the path expression B

if there are two path expressions A and B. So it is AB.
% If there are Wa paths in A and Wg paths in B then there are MAX (Wa, Wg) paths inits

combination.
(iii) Loop rule:

% Loop rule is taken either by considering only one time that the path is iterated or zero
times the path is iterated. So it gives the value 1 or its link weight.

CASE PATH WEIGHT
EXPRESSION EXPRESSION
PARALLEL A+B Wa +Ws
SERIES AB MAX(Wa,Wg)
LOOP An 1,Wi4

Example:
» Determine the path expression to the following figure.

» The path expression is given by a(b +c) d [e(fi)*fgj(m +)k]*e(fi)*fgh
» Let eachlink represents by a link weight 1. Assume that the outer loop will be taken exactly
four times and the inner loop can be taken zero to three times. The reduction is as follows.

» Now apply parallel rule.

2
1
1{0-33 44
4 . B 1 A . Y I
» Now apply series rule.
2
4-4
1 {0-3} 4-%

2 o 1 _;m 1 S 1 _

Prepared by: S.Prasanna

Software Testing Methodologies

» Now create inner self loop & apply loop rule for removing inner self loop.

2 2
1(1)=1 {4-4} / {4-4}
"
2 1 » 1 S 1 2 /1 1 o1 N1

Now apply series rule. .

2 {4-4}
2 _ 1 - 1 -

Y VYV V

-

Now create outer self loop.
2(1)=2

2 O -4 1 _

Apply loop rule to remove self loop.
2 2 ‘ 1

\j

»
L >

Apply series rule.

2
>

Alternatively we can calculate the minimum number of paths as follows.
The path expression is given bya(b +c) d [e(fi)*fgj(m + I)k]*e(fi)*fgh
In the above expression each link is substituted by 1.

1(1+1)1[1(1x1)° 1x1x1 (1+1)1]° 1(1x1)° 1x1x1

=1(2)[1°x2]°1x19 =2x1 =2

(3) _The probability of getting there:
(. What is the probability of path expressions? Write arithmetic rules. Explain with an

example.
Probability of path expressions:

» Specify each out link of a node equal to the probability of that link. The sum of the out link

probabilities is equal to 1. For a simple loop, if the loop is taken N times then the looping
probability is N/(N+1) and non looping probability is 1/(N+1).
There are three arithmetic cases here. They are

Parallel rule:
% Each termof the path expression A is added with each term of the path expression B if

there are two path expressions A and B. So it is A+B.
% If there is a path expression A with Probability Pa and path expression B with Probability
Ps then the resultant probability is Pa + Ps.

Series rule:
% Each term of the path expression Ais multiplied with each term of the path expression B

if there are two path expressions A and B. So it is AB. If there is a path expression A
with Probability Pa and path expression B with Probability Pg then the resultant

probability is Pa Ps

Loop rule:
% If the probability of looping node is PL and the probability of link leaving the loop node is

*

Pa then Pa + PL.=1. So Pa = 1- P_

Prepared by: S.Prasanna

Software Testing Methodologies

CASE PATH WEIGHT
EXPRESSION EXPRESSION
PARALLEL A+B Pa+ Ps
SERIES AB PaPs
LOOP An Pa/(1-PL)
Example (i)
PL
O™ .
Pa=1-PL

New Probability Pnew = Pa/ (1-P) = (1-PL) / (1-P) =1

Example (ii)

Pa
PL. 1-PL

Ps
:A E‘> 1-PL

B

Pc

Pc 1-P.

Here PL+ Pa+ P + Pc =1
1-PL=Pa+Pg+Pc
Pa/(1-P)+Ps/(1-PL)+Pc/(1-P)=(Pa+Ps+Pc)/(1-PL)
=(Pa+Ps+Pc)/(Pa+Ps+Pc)=1
Example:
» Consider the following flowgraph.

/—\
_ 2

i e
R . : - 2 5
K 05 . "

» Calculate the probabilities of cases A, B, C.

Prepared by: S.Prasanna

Software Testing Methodologies

First consider case A:

.05
> In the above flowgraph if the link weight is not specified then itis specified by 1 and also
represents its nodes as follows.

®—

» The above ﬂo.wgraph is also taken by

» Remove node 5 by applying series rule

Prepared by: S.Prasanna

Software Testing Methodologies

1 ; 1 (a1 2
@ O~ D——=+2D—Aar—

» Add parallel links between node 3 and node 6 by applying parallel rule

@w\@//(;@—@% A—

025
» Remove node 7 by applying series rule

» Remove node 4 by applying series rule
8

®ML®_“
.025

» Add parallel links between node 3 and node 6 by applying parallel rule
.8

125
D13 -(6)—2—(2)—A—»
» Remove self loop at node 6 by applying loop rule

-1 -G 125 d®)—1 (@) — A~

» Remove node 3 and node 6 by applying loop rule

125
)
® D—A—

Consider case B:
.05 5 2

B—

\ /

> In the above flowgraph if the link weight is not specified then itis specified by 1 and also

represents its nodes as follows.

> = %7@%%— B —
9 -ﬁé -

» Remove node 9 by applying series rule.

@ 1 .05 (@) 5 @ 1 ,@1_.@-_2.@_3_.

j 36

» Remove node 8 by applying series rule.

Prepared by: S.Prasanna

Software Testlng Methodologles

» Add parallel links between node 3 and node 5 by applying parallel rule
O 1 3) 484 -5 1 ®) 2 2—B—

.306
» Remove node 5 by applying series rule.

@ 1 @ .484 =@ 2 @ B
.306
> Add parallel links between node 3 and node 5 by applying parallel rule

@ 1 @ .79 =@ 2 O_B—"

» Remove node 5 by applying series rule.
158 72
@ (2—B—

Consider case C.

o

C—»
> In the above flowgraph if the link weight is not specified then itis specified by 1 and also
represents its nodes as foIIows

@ 1 @.05 /'\5 5
.85
9
2)

» Remove node 9 by applying series rule.
@ 1 (-'\ .05 /'\ 5 (’,’5\ 1 (6) 1

10 {2) -
» Remove node 10 by applying series rule.

Prepared by: S.Prasanna

Software Testing Methodologies
@ 1 @ .05 (-a\ 5 (‘5‘\ 1

C -
» Remove node 8 by applying series rule.
1 A 05 5 1 1 8 /)
@ O~ Oy € 6 ? c—
459
306
» Remove node 7 & node 4 by applying series rule.
O —F——" = ~@——0c—
W"
306
085

» Add parallel links between node 3 and node 5 by applying parallel rule
1

) 484 A1 e 8
@ (3) ® 6

~ 2 C—»

» Remove node 5 by applying series rule
@ 1.5 484

»(6) 8 .
O \2) C—
w

» Add parallel links between node 3 and node 6 by applying parallel rule
@ 1 ~@ .79 ~"f€\ 8 ~f2\‘
> (6) >

w

» Remove node 6 by applying series rule
@ 1 (3 .632 +(2)

C—»

C—

.085
» Add parallel links between node 3 and node 2 by applying parallel rule

@ 1 @ 717

:@ C—
» Remove node 3 by applying series rule
@ 717 o(2) C—»
Cross check:

» Sumof case A +case B + case C =.125 +.158 + .717 =1.
(4) The mean processing time of a routine

Q. What is the mean processing time of a routine? Write arithmetic rules. Explain with
an example.

Mean processing time of a routine:
» Here every link has two weights.

Prepared by: S.Prasanna

Software Testing Methodologies
» One s the processing time for that link denoted by T, & other one is the probability of that
link denoted by P.
» There are three arithmetic cases here.

» They are

Parallel rule:
% Itis the arithmetic mean of all processing time over all parallel links.

*
Series rule:
% ltis the sum of two processing times.

Loop rule:
% Itis evaluated by considering number of times the path is iterated
CASE PATH WEIGHT EXPRESSION
EXPRESSION
PARALLEL A+B Ta+s = (PaTa+PgTg)/(Pa+Ps)
Pa+s = Pa + Ps
SERIES AB Tas=Ta+Ts
Pas = PaPs
Ta= (T|_ P|_)/(1 -PL) +Ta
LOOP A Pa = Pa/(1-PL)
Example:

» The following figure is represented by, loop probabilities, and processing time for each link.

The probabilities are given in parentheses.
20 (.95)

(-3) 25

(.7) 40
» Apply parallel rule.

10 355 16

» .Apply series rule.

63
12 (.6) (-3)
61.5 10 8\ 5 7
i g @
» Now create inner self loop.
63

20

-6) (.3)
61.5 10 13 7

(.4) (.7)
» Remove the inner self loop by applying loop rule.

Prepared by: S.Prasanna

Software Testing Methodologies

>

>

>

>

>

63
(-3)
61.5 10 30 13 7

(7)
Apply series rule.
63

(-3)
61.5 53 7

(7
Create the outer self loop.
116

61.5 Q =) 60

(.7)
Remove the outer selfloop by applying loop rule.
615 49.714 60

>

Apply series rule
171.214

(5) Push/Pop, Get/i(eturn

. What is Push/Pop, Get/Return? Write arithmetic rules. Explain with an example.

Push/Pop:

>

YV V

Here PUSH operation is used to insert elements into the stack. POP operationis used to

remove elements from the stack.

Apart from PUSH/POP other operations are GET/RETURN, OPEN/CLOSE and

START/STOP.

There are three arithmetic cases here.

They are

Parallel rule:

% Each term of the path expression A is added with each term of the path expression B if
there are two path expressions A and B. So itis A+B. If there are Wa paths in A and Wg
paths in B then there are Wa + Wg paths in its combination.

Series rule:

% Each term of the path expression Ais multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB. If there are Wa paths in A and Wg
paths in B then there are WaWg paths in its combination.

Loop rule:
% ltis evaluated by considering number of times the path is iterated.
CASE PATH WEIGHT
EXPRESSION EXPRESSION
PARALLEL A+B Wa +Ws
SERIES AB WaWsg
LOOP A W+,

PUSH/POP operations satisfy commutative, associative, and distributive law of addition
and multiplication.
The arithmetic tables for PUSH/POP are given by

Prepared by: S.Prasanna

Software Testing Methodologies

PUSH/POP MULTIPLICATION TABLE PUSH/POP_ADDITION TABLE
X H P 1 + H P 1
H H* 1 H H H P+H | H+1
P 1 P2 P P | peH| P P+1
1 H P 1 1 H+1 | P+1 1

» These tables are used to determine the weight of addition and multiplication operation.

» Here H represents the PUSH operation, P represents the POP operation and 1 represents
NO operation.

Example:
» Consider the following flowgraph.

P<>_ 1 @

% Path expression for the above flowgraph is.
P(P+1)1[P(HH)"" HP1(P+H)1]"2 P(HH)"'HPH
% Simplifying by using the arithmetic tables
PUSH/POP = (P2 + P)[P(HH)""(P+H)]"2(HH)""
= (P2+p)[H2n1(P2+1)]n2H2n1

> Let us consider M4,Mzrepresents the two looping terms. i.e. M4 represents the number of

times the inner loop is considered, M2 represents the number of times the outer loop is
considered.

CASE (i)
Consider M1=0, M2 =0 (i.e. n1=0, n2>=0)
PUSH/POP= (P+P?)[HO(P?+1)]°H° = P + P?
CASE (ii)
Consider M1=0, M2=1 (i.e. n1=0, n2=1)
PUSH/POP= (P+P?)[H(P?+1)]'H°
=(P+P?)[1+P?] =P + P2+ P3+ P*
> For different combination of M1, M2 values the following table is obtained.

M 0 0 0 0 1 1 1 1 2 2 2 2
M: 0 1 2 3 0 1 2 3 0 1 2 3
PUSH | P+P?| P+P?+ |6 8 3 5 7 7 1 16
/POP P3 + P4 Z Pi Z Pi 1+H Z Hi Z Hi Z Hi H2+H3 Z Hi Z Hi Z Hi
1 1 0 0 0 4 6 8
Get/Return:

» The arithmetic tables for GET/RETURN are.

Prepared by: S.Prasanna

Software Testing Methodologies

GET/RETURN MULTIPLICATION TABLE GET/RETURN ADDITION TABLE
X G R 1 + G R 1
G G* 1 G G G G+R G+1
R 1 R> R R G+R R R+1
1 G R 1 1 G+1 R+1 1

> The arithmetic table for GET/RETURN is same as that of PUSH/POP.

Example:
» Consider the following flowgraph.
R

G R

J_<E> G . e G Q R

» Path expression for the above flowgraph is. G(G+R) G(GR)* GGR*R

» Simplifying by using the arithmetic tables

GET/RETURN = G(G+R)G? R*R
= (G+R) G3R* = (G* + G°R) R* = (G* + G’GR)R* = (G* + G?)R*
(6) Limitations and Solutions
Q. What are the limitations and solutions of the applications?

» The main limitation to these applications is the problem of unachievable paths.

» The node-by-node reduction procedure and most graph-theory based algorithms work well
when all paths are achievable, but may provide misleading results when some paths are
unachievable.

» The solution to handling unachievable paths is to partition the graph into subgraphs so that
all paths in each of the subgraphs are achievable. But the resulting sub graphs may
overlap, because one path may be common to several different subgraphs.

» Each predicate’s truth value splits the graph into two subgraphs.

» For n predicates there may be 2" sub graphs. Here there is an algorithm for one predicate.
1. Set the value of the predicate to TRUE and strike out all FALSE links for that predicate.
2. Discard any node, other than an entry or exit node, that has no incoming links. Discard
all links that leave such nodes. If there is no exit node, the routine has a bug because there
is a predicate value that forces an endless loop or the equivalent.

3. Repeat step 2 until there are no more links or nodes to discard. The resulting graph is
the subgraph corresponding to a TRUE predicate value.
4. Change “TRUE” to “FALSE” in the above steps and repeat. The resulting graph is the
subgraph that corresponds to a FALSE predicate value.

» Only correlated predicates should be included in this analysis not all predicates that may

control the program flow.
(4 _Regular expressions and flow anomaly detection:

Q. Explain about Regular expression and Flow-Anomaly detection?

(ii_The Problem:

» The generic flow-anomaly detection problemis used to search for a specific sequence of
operations considering all possible paths through a routine.

» Let’s say the operations are SET and RESET, denoted by s and r respectively, and we
want to know if there is a SET followed immediately by a SET or a RESET followed
immediately by a RESET (i.e, an ss or an rr sequence).

Prepared by: S.Prasanna

Software Testing Methodologies

» Flow anomaly detection is used to know if particular sequence occurred, but not to know
the total impact of the procedure.

> ltis used to detect the bug sequence in the following situations.
1. Afile can be opened (0), closed (c), read (r), or written (w). If the file is read or written to
after it is closed, then it is anomalous. i.e. cr and cw are anomalous. Similarly, if the file is
read before it's been written, just after opening, we may have a bug. Therefore, oris also
anomalous.
2. The operations performed by tape transport device are read(r), write(w), rewind (d),
forward (f), skip (k) and stop (p). In a tape-transport device rewind and forward operations
cannot be performed one after the other without performing stop operation. So the following
sequences are anomalous: df, dr, dw, fd, and fr.
3. With the help of generic flow anomaly detection, itis possible to detect the data flow
bugs sequence such as dd, dk, kk, and ku.
4. A bug that occur only if two operations a and b occurred in the order aba or bab.

(i) _Huang Theorem:

» Annotate each link in the graph with the appropriate operator or the null operator 1.

» Simplify things usinga+a =aand 12=1.

» The regular expression obtained should be simplified carefully, as null operations cannot be
combined with other operations.

» For example, 1a may not be the same thing as a alone. Huang theoremis used to simplify
the regular expression and to examine the specific operation sequence.
% LetA, B, C, be nonempty sets of character sequences whose smallest string is at least

one character long. Let T be a two-character string of characters.

< Thenif T is a substring of AB"C, then T will appear in AB°C.

% Asanexample,let A=pp B=sr C=m T=ss

% The theorem states that if ssis a substring of pp(srr)"rp then ss will appear in pp(srr)xrmp.
“* Similarlylet A=p+pp+ps B=psr+ps(r+ps) C=m T=P
< If p*is a substring of AB"C then p* will appear in AB2C (p + pp + ps)[psr + ps(r + ps)|#rp

» Huang theoremis also useful in test design.

» Further Huang shows that if you substitute 1 + X2 for every expression of the form X*, the
paths that result from this substitution are sufficient to determine whether a given two-
character sequence exists or not.

» Two character string sequences are used to represent data flow anomaly. Then using
Huang’s theorem these anomalous can be detected if these loop is iterated twice.

Data Flow Testing Example:

% By assigning appropriate operators on each link the following flowgraph can be used to
detect different anomalies bugs.

r dr d
d m r m r ;; ru

» Huang’s theorem states that the following expression is sufficient to detect any two
character sequence. d(r + 1)r[1 + (udr)?Jur(1 + d?)ru
» This makes the dd bug obvious. A kk bug cannot occur and also a dk bug cannot occur.
(drr + dr)(1 + udrudr)(urru + urd?ru)
» A Dbetter way to the above is subscript the operator with the link name.

| g™ dfrf dh
d. la m rg Q riu;
1. i
» Theregular expressionis da(ro + 1c)ra(Uedsr)*Uergdn*riui

Prepared by: S.Prasanna

Software Testin%'Methodologies

>

>

Applying Huang'’s theorem:

da(re + 1c)ra(1 + (uedirs)?)uerg(1 + d2n)riui

(darbra + dacra)(Uerg + UedUediierg)(riuid?, r),

neralizations. Limitations an mments:
Huang’s theorem can be easily generalized to cover sequences of greater length than two
characters. If A, B, and C are nonempty sets of strings of one or more characters, and if T
is a string of k characters, and if T is a substring of AB"C, where n is greater than or equal
to k, then T is a substring of AB*C.
A sufficient test for strings of length k can be obtained by substituting P for every
appearance of P*
Pe=1+P+P2+P3+ ... +Pk

In order to find the starting and ending sequence of strings in a path expression, the
mathematical approaches such as application of derivations to algebraic expression makes
it easier and time consuming than the path tracing process on a flowgraph.
Static flow analysis methods can’t determine whether a path is achievable oris not
achievable.
If unachievable paths exist, then the exactness and applicability of all flow analysis
methods reduces gradually. Hence achievable paths are preferred in order to overcome the
problems of unachievable paths.

Prepared by: S.Prasanna

Software Testing Methodologies

LOGIC BASED TESTING

(1)_Motivational Overview:
()_Programmers and Logic:
» Logicis used in programming.
» Logicin its simple formis Boolean algebra.
(il_Har
» Hardware logic test design is automated.
» Many test methods developed for hardware logic can also be adapted to software logic
testing.
(ii) ification ms and Lan
» We need Specifications and requirements in test development and programming
development.
» As programming and test techniques have improved the bugs shifted to requirements and
their specifications.
» These bug range from 8% to 30% of the total.
» The trouble with specification is that they are very hard to express. So Boolean algebrais
used for all logic systems.
» Higher order logic systems are needed and used for formal specifications.
(iv) _Knowledge based systems or Expert Svstem:
» A system which is based on knowledge is known as knowledge based systems.
» The knowledge based systems is also needed in a programming construct.
» The knowledge based systems is also come from a domain such as medicine, law or civil
engineering.
» One implementation of knowledge based systemis to incorporate the expert’'s knowledge
into a set of rules.
» The user can then provide data and ask questions based on that data.
» The user’s data is then processed through the rule.
» The processing is done by a program called the inference engine.
(v)_Overview:
» We start with decision tables because they are extensively used in business data processing.
» Next Boolean algebra is used.
(2)_Decision Tables:
() _Definition and Notation
» Adecision table is a tabular form that consists of a set of conditions and their respective
actions. The decision tables provide a useful basis for program and test design.
> It consists of four parts they are
1. Condition Stub
2. Action Stub
3. Condition entry
4. Action entry.
The condition stub is a list of names of conditions. The action stub consists of a list of names
of actions
Each column of the table consists of a rule.
A rule specifies whether a condition should or should not be met.
YES means the condition must met. NO means the condition does not be met and | means
that the condition plays no part in the rule or it is immaterial to that rule.

VVV V

Prepared by: S.Prasanna

Software Testing Methodologies
» If the condition is met and if the action entry is YES then the action will taken place, if NO the

action will not taken place.

< Condition entry >
RULE 1 RULE 2 RULE 3 RULE 4
. CONDITION 1 YES YES NO NO
Cogfu'go” CONDITION2 | YES | NO |
CONDITION 3 NO YES NO I
l CONDITION 4 NO YES NO YES
¢ ACTION 1 YES YES NO NO
Action
Stub ACTION 2 NO NO YES NO
l ACTION 3 NO NO NO YES
< Action entry >
» Fromthe above table, Action 1 will take place if conditions 1 and 2 are met and if conditions
3 and 4 are not met (rule 1) or if conditions 1,3 and 4 are met (rule 2).
» Condition is another word for predicate. So replace condition with predicate.
» If a condition is met then the predicate is true. Similarly for not met is false.
» Now we can say that Action 1 will be taken if predicates 1 and 2 are true and if predicates 3
and 4 are false (rule 1) or if predicates 1,3 and 4 are true (rule 2).
» Action 2 will be taken if all the predicates are false (rule 3).
> Action 3 will be taken place if predicate 1 is false and predicate 4 is true (rule 4).
> Here we need a default rule that specifies the default action to be taken when all other rules

fail. The default rules for the above table are show below.

RULES RULE 6 RULE 7 RULE 8
CONDITION 1 I NO YES YES
CONDITION 2 I YES I NO
CONDITION 3 YES I NO NO
CONDITION 4 NO NO YES I
DEFAULT YES YES YES YES
ACTION

> |If the set of rules covers all the combinations of TRUE / FALSE (YES/ NO) for the predicates,
a default specification is not needed.

nn_lle&mnn_]lahlﬂm&esmm
Decision tables can be automatically translated into code and decision table represent higher
level language. The decision table’s translator checks the source decision table for
consistency and completeness and fills in any default rules.

> Firstitobserves rule1. If the rule is satisfied, the corresponding action is executed.

» Otherwise rule 2is tried. This process is repeated until a rule is satisfied or no rule is
satisfied.

> If the ruleis satisfied then the corresponding action will take place. If the rule is not satisfied
then the default action taken place.

Prepared by: S.Prasanna

Software Testing Methodologies

>

YV V. VYV V¥V

The advantages of using decision tables are: it provides clarity, it provides relation to
specification, and it provides maintainability. The main drawback is object code inefficiency.

ision-T is for T Design:
If a specification is implemented as a decision table, then decision tables are used for test
case design.

Similarly, if a program’s logic is implemented as decision tables, then decision tables also
used for test case design.

If this is so, then the consistency and completeness of the decision table is checked by the
decision table processor.

Itis not desirable to implement program as decision table because restrictions in decision
table language.

The following are restrictions.

1. The specifications are specified.
2. The order in which the predicates are evaluated does not effect the resulting action.
3. The orderin which the rules are evaluated does not effect the resulting action.
4. Once aruleis satisfied and an action is executed, no other rule need to be examined.
5. If several actions can result from satisfying a rule, the order in which the actions are
executed does not matter.
» ltis clear fromthe above restrictions that action selected is based on the combination of
predicate truth values. Let us consider an automatic teller machine.
» The first condition is that the card should be valid.
» The second condition is the correct password should be entered.
» The third condition is that the sufficient money should be present in the account.
» Depending on the conditions, respective actions are executed.
i¥)_E . fI ial Cases:
> In decision table immaterial entries are denoted by ‘I’
» |If there are n predicates in the decision table then 2" combination of truth values should be
considered.
» The expansion is done by converting each | entry into two entries one with YES and other
with NO. Each | entry in a rule double the number of cases.
<+— Rule 2—»>« Rule 4 >
RULE | RULE | RULE | RULE | RULE RULE
2.1 2.2 4.1 4.2 4.3 4.4
CONDITION1 | YES | YES NO NO NO NO
CONDITION 2 | YES NO YES | YES NO NO
CONDITION3 | YES | YES NO YES YES NO
CONDITION4 | YES | YES | YES | YES YES YES

VV VVVY V

In the previous table rule 2 contains one | entry and therefore it expands into two equivalent
sub rules.

Rule 4 contains two | entries and therefore it expands into four equivalent sub rules.

The expansion of rules 2 and 4 are shown in the above table.

The following table is an example of an inconsistent specification in which the expansion of
two rules gives a contradiction.

Here rules 1 and 2 are contradictory, because two column entries 1.2 & 2.3 are same.
Therefore action 1 or action 2 is taken depending on which rule is evaluated first

Prepared by: S.Prasanna

Software Testing Methodologies

RULE | RULE
1 2
CONDITION 1 | YES YES
CONDITION 2 I NO
CONDITION 3 | YES I
CONDITION 4 | NO NO
ACTION 1 YES NO
ACTION 2 NO YES

Test case Design:

Test case design by decision tables starts with examining the specification’s consistency and

completeness.

=)

RULE | RULE | RULE | RULE
1.1 1.2 23 24
CONDITION1 | YES | YES YES | YES
CONDITION 2 | YES NO NO NO
CONDITION3 | YES | YES YES NO
CONDITION4 | NO NO NO NO
ACTION 1 YES | YES NO NO
ACTION 2 NO NO YES | YES

Once the specification is verified next to show the correct action.
The following rules are followed while designing test cases.

. If there are k rules over n-binary predicates, there are atleast k cases and at most 2" cases
. The order in which the conditions are evaluated cannot be altered. But if the order s to be

altered then the test cases are increased.

3. The orderin which the rules are evaluated cannot be altered. But if the order is to be altered
then the rules are interchanged pair wise and tested.

4. Identify the places where the rules are invoked.
5. Identify the places where the actions are initiated.

(vi)_Design Tables and Structure:

» The main purpose of a decision table is to check the structure of a program.
» It can be represented in the formof a decision tree.
» The following figure shows a program segment that consists of a decision tree.

D, YES _/;3\\ (R1)

ACTION 1

ACTION 2

ACTION 3

Prepared by: S.Prasanna

v

>

» This is done by expanding all immaterial cases and checking the expanded tables.
>

>

1

2

Software Testing Methodologies

» The decision table corresponding to the above figure is.

RULE1 | RULE2 | RULE3 | RULE4 | RULES | RULE®6
CONDITION A YES YES YES NO NO NO
CONDITION B YES NO YES I I I
CONDITION C I I I YES NO NO
CONDITION D YES I NO I YES NO
ACTION 1 YES YES NO NO NO NO
ACTION 2 NO NO YES YES YES NO
ACTION 3 NO NO NO NO NO YES
» If the decision appears on a path put YES or NO.
» If the decision does not appear on the path, put I.
> Rule 1 does not contain decision C, therefore its entries are YES, YES, I, YES.
» Expanding the immaterial cases for the above table is shown in the following table.
RULE1| RULE2 | RULE3 | RULE4 | RULE5 | RULE®6
CONDITION A YY YYYY YY NNNN NN NN
CONDITION B YY NNNN YY YYNN YN NY
CONDITION C YN NNYY NY YYYY NN NN
CONDITION D YY YNNY NN NYYN YY NN
> Sixteen cases are represented in the previous table and no cases appear twice.
» Therefore the flowgraph appears to be complete and consistent.
» Count the number of Y’s and N’s in each row. They should be equal.
» Consider the following flowgraph.

0 A °)

m!

A1

N| B —(o | O)>—

al

c

A
B B
4
B
c
c

10

ol

(=)

A3

Q)

Prepared by: S.Prasanna

Software Testing Methodologies
If condition Ais met, do process A1. If condition B is met, do process A2

2. If condition C is met, do process A3
3. If none of the condition is met, do process A1, A2, and A3.
4. When more than one process is done, process A1 must be done first, then A2 and then A3.
» The following table shows the conversion of this flowgraph into a decision table.
ABC|ABC|ABC|ABCT|ABC| ABC | ABC | ABC
CONDITION A NO NO NO NO YES YES YES YES
CONDITION B NO NO YES | YES YES YES NO NO
CONDITION C NO YES YES NO NO YES YES NO
ACTION 1 YES NO NO NO YES YES YES YES
ACTION 2 YES NO YES | YES YES YES NO NO
ACTION 3 YES YES YES NO NO YES YES NO
(3)_Path Expressions:
(1)_General:
0 _Model:

» Logic based testing is a structural testing when itis applied to structure and itis functional
testing when it is applied to a specification.
> Inlogic based testing we focus on the truth values of control flow predicates.

(il Predicates and Relational Operators:
> Predicate is defined as a process which gives truth value as its output.
» Predicates are based on relational operators such as >, >=, =, < <=

» The other relational operators are is a member of, is a subset of, is a substring of, is a sub
graph of etc.

(i) _Case statements and Multivalued Logics :

» Predicates are not restricted to binary truth values (TRUE/ FALSE).

» There are multiway predicates, or multivalued logic.

» Multiway predicates include FORTRAN’s 3-way, if case statements.

» Multivalued logic includes post algebra which is responsible for evaluating the structure of
predicates. These post algebra logics are very difficult to implement.

QﬂﬂhaLgo.es_wmng_WMandmaLes_.

There are many situations where something can go wrong with predicates.

The wrong relational operator is used. Eg. > instead of <=

The predicate expression of a compound predicate is incorrect. Eg. A + B instead of AB

The wrong operands are used. Eg A>X instead of A>Z

If there is a process that leads to faulty predicate.

The first two errors can be found using logic based testing, where as last two errors can be

detected using data flow testing.

(¥)_Overview :

» We start by generating path expressions by path tracing. This time we convert the path
expressions into Boolean algebra, using the predicates truth values as weights.

(2)_Boolean Algebra:

(i) _Notation:

» There are only two numbers in Boolean algebra i.e. Zero (0) and One (1).

» One means always true and zero means always false.

VRN =Y

Prepared by: S.Prasanna

Software Testing Methodologies _
» Label each decision with an upper case letter that represents the truth value of the predicate.

> The YES or TRUE branch is labeled with a letter and the NO or FALSE branch with the same

letter overscored.
(=)

» For example consider the following figure.
M ‘

ol

C

A1

ml
~N| BD—(o| O>—

10

In the above figure the straight through path which gives via nodes 3,6,7,8,10,11,12,2 has a
truth value of ABC.

The path via nodes 3,6,7,9,2 has a value of ABC

If two or more paths merge at a node thenitis expressed by use of a plus sign (+) which
means OR.

Using the above we can write

N6=A+ABC

N8 = (N6)B +AB

N11=(N8)C +(N6)B C

N12=N11+ABC

N2 =N12 + (N8) C + (N6) BC
%g%gg%ﬂﬁmperator&

i
>

» xmeans AND. Also called multiplication. A statement such as AB means A and B both true.
» + means OR. Also called addition. A statement such as A + B mean either Ais true or Bis
>
>
>
1.

YV VV V

true or both.

A means NOT. Also called negation or complementation.
Ex A is true only when statement A is false.

The Laws of Boolean algebra is shown below.

A+A=A 10 A A=0
A+A=A 11. A=A
2. i A+1=1 12.0=1

Prepared by: S.Prasanna

Software Testing Methodologies
cA+0=A

3. = 13.1=0

4.0 A "'E =B+A 14. De Morgan’s Law: A+ B =A B

5 @ A+A=1 15.AB=A+B

6. : AA=A 16. Distributive Law: A (B+ C)=AB + AC
‘A A=A 17.(AB) C = A(BC)

- AXI=A 18.(A+B)+C=A+(B+C)
:Ax0=0 19.A+AB=A+B

- AB = BA 20.A+ AB=A

The product of several literals is called a product form (eg: ABC, DE).

i) _Examples:
» The path expressions are simplified by applying the rules.

N6=A+ABC

7

8

9

> Individual letters in a Boolean algebra expression are called literals.
>

(iii)

=A+BC [sinceletD=BC,A+ABC =A+AD=A+D=A+BC]

N8 = (N6)B + A B =(A+BC)B+AB
=AB+BCB+AB =(AB+BBC)+AB
=AB+0C+AB =AB+AB

=(A+A)B =1xB
=B
N11=(N8)C+(N6)BC = BC+(A+BC)BC
=BC+ABC+0 =C(B+AB)
= C (B + BA) =C(B+A)
=CB+CA =AC +BC
N12=N11+ABC
=AC+BC+ABC =BC+ABC+AC
=C(B+AB)+AC =C(A+B)+AC
=CA+AC +BC =C(A+A)+BC
=C (1) +BC =C+BC
=C(1+B) =C(1)
=C

N2=N12 + (N8) C +(N6) BC
=C+BC+(A+BC)BC
=C+BC+ABC+BCBC=C+BC+ABC+BC

=C+BE+E&1+A) =C+BE+EC

Prepared by: S.Prasanna

Software Testing Methodologies

i

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

=C+C (B+B)
=C+C(1)
=C+C

= 1

(iv)_Paths and domains:

Consider a loop free entry / exit path and assume all predicates are simple.

Each predicate on the path is denoted by a capital letter either overscored or not.

The result is a term that consists of the product of several literals. Forex: AB C.

If a literal appears twice in a product term then one appearance can be removed and the _
decision is redundant. For ex: consider C C, B B here we have to take only one C & one B
If a literal appears both barred and un barred in a product termthen the termis equal to zero
and the path is un achievable.

A product termon an entry / exit path specifies a Domain.

For compound predicates there is a provision of separate path for each product term.

For example, we can implement ABC + DEF +GH as one path using a compound predicate
or as three separate paths i.e. ABC, DEF, GH and specify three separate domains.

Let us say we have a specification such that there is one and only one product term for each
domain then represent these domains as D+, D2, D3, Dm.

Consider any of these product terms D;, D;.

For everyi not equal to j, D, Djequal to zero. If not equal to zero, then there is an overlap of

the domains which is a contradictory domain specification.
The sumof all the D must equal to 1 else there is an ambiguity.

(v)_Test case design:

Let us consider a hierarchy of test cases for a loop that has a compound predicate.
The routine has a single entry and single exit and has no dead end code.
Because the predicates may be compound, the Boolean algebra expression of a domain will
be a sum of products after simplification.
We can build a hierarchy of test strategies by considering how we test for each domain.
Here consider
1. Simplest: Use any prime implicant in the expression. Suppose ABC + AB + DEF reduces
by AB + DEF, then AB, DEF are called prime implicant.
2. Prime implicant cover: Pick input values so that there is at least one path for each prime
implicant at the node.
3. All Terms: Test all expanded terms for that node. For example in previous figure the node
6 has five terms.
N6=A+ABC
=AB(C+C)+AB(C+C)+ABC
=ABC+ABC+ABC+ABC+ABC

Here there are totally five terms. Similarly for node 8 has 4 terms & node 12
has 4 terms. There is at least one path for each term.
4. Path dependence: Because in general the truth value of a predicate is obtained by
interpreting the predicate, its value may depend on the path taken there.

(3)_Boolean equations:

>

Loops complicate things because we may have to solve a Boolean equation to determine
what predicate value combinations lead to where. Consider the following flowgraph

Prepared by: S.Prasanna

Software Testing Methodologies
B

B B

> Here thelink name F1, F2, F3, F4 represents the Boolean expression corresponding to that

link. . .
N4 =B + F1 N7 =(N4) A+F3
=B+ (N7)BC =AB+(N7)BCA
=B (1 +(N7)C) =AB
=B N2 = N6 + F4
N6 = (N4) A+ B =A+B+(N7)ABC
“BA+B =A+B(1+(N7)ABC)
=A+B =A+B
Example:
(1) zlegrgggstrate by means of truth tables the validity of the following theorems of Boolean

(i) Associative laws
(i) De Morgan’s theorems for three variables
(iii) Distributive law of + over.
(Ans) (i) Associative laws
(a) Associative law of addition
(A+B)+C=A+(B+C)
Let TRUE=T & FALSE =F then (A + B) +C & A + (B +C) is given by

(A+B) | (A+B)+C | (B+C) | A+(B+C)

M| ||| >
i e e e e [Tl v
I e e i s K 2)

M| || == ===

| e I |

M| ||| |||
|| || ===

Prepared by: S.Prasanna

Software Testing Methodologies
From the above table it shows that
(A+B)+C=A+(B+C)
(b) Associative law of multiplication
(AxB)xC=Ax((BxC)
Let TRUE=T & FALSE = F then (AxB) xC & A x (B xC) is given by

(AxB) | (AxB)xC [(BxC) | Ax(BxC)

M| | ||| >
||| m M- - ®
= H[m—H 0

mmmm| M4

m|m|mm| MM

MMM m
m|m|mm| M-

Fromthe above table it shows that
(AxB)xC=Ax(BxC)
(ii)_De Morgan’s law

(a) (A+B)+C=(AB)C
Let TRUE= T & FALSE = F then (A + B) + C & A (B C) is given by

A| B | C | (A+B)| (A+B}+C| (A+B)+C

T T[T T T F

T T [F | T T F

T F [T T T F

T F[F | T T F

Fl T T[] T T F

FI T F | T T F

FIF | T| F T F

FIF|F| F F T
A|lB|C|A| B| C | (AxB)| (AxB)xC
T T[T | F| F|F F F
T T F|F|F [T F F
T| F[T|F | T]|F F F
T F|F|F| T T F F
F| T | T| T F|F F F
F| T | F | T F [T F F
FIF | T[T T/ F T F
FIF | F [T T[T T T

Fromthe above two tables it is clear that

(A+B)+C=Ax(BxC)

Prepared by: S.Prasanna

Software Testin g Methodologies
(b) Z%xBixC =T§+‘B) +C

Let TRUE=T & FALSE = F then (A xB) xC & A + (B + C) is given by

A | B| C | (AxB)| (AxB)xC| (AxB)xC

T T 7T T T F

T T F T F T

T F| T F F T

T| F|F F F T

Fl T T F F T

F| T|] F F F T

F| F | T F F T

F| F| F F F T
A| B| C| A | B C | (A+B)| (A+B)+C
T T T| F F F F F
T| T F | F F T F T
T F|I T F | T F T T
T Fl F| F| T T T T
F| T[] T T F F T T
F| T F | T F T T T
FI F| T T T F T T
FI F| F| T T T T T

Fromthe above two tables itis clear that

(AxB)xC=A+ (B +C)
(ii)_Distributive law of + over
Distributive law of + over
A+BxC)=(A+B)x(A+C)
Let TRUE=T & FALSE =F then A+ (BxC) & (A + B) x(A + C) is given by

(BxC) | A+(BxC) | (A+B) | (A+C) | (A+B) x (A+C)

M| >
e I i s I I |l v s
el e

MMM, m|m

||| ||| =

| | e

||| = |||~
||| = ||| -

Fromthe above table it shows that

A+ (BxC)=(A+B)x(A+C)

Prepared by: S.Prasanna

Software Testing Methodologies

(2) Demonstrate by means of truth tables the validity of the following theorems of Boolean
Algebra.
(i) Commutative laws
(i) Absorption law
(iii) Idempotency laws
(i)_Commutative laws
(@) Commutative law of addition

A+B =B+A
Let TRUE=T & FALSE = F then A+ B & B +A is given by
A B | A+B B A B+A
T T T T T T
T F T F T T
F T T T F T
F F F F F F

Fromthe above table it shows that A+ B=B+ A
(b) Commutative law of multiplication

AxB =B xA
Let TRUE=T & FALSE = F then A xB & B x A is given by
A | B | AxB B A BxA
T T T T T T
T F F F T F
F T F T F F
F F F F F F

Fromthe above table it shows that AxB =B xA

(i) _Absorption law
Absorption law

A+AB =A+B _
Let TRUE=T & FALSE = F then A+ AB & A +B is given by

A| A| B| AxB| A+AxB | A+B
T F [T F T T
T F| F F T T
F| T | T T T T
F| T | F F F F

Fromthe above table it shows that A+ AB=A+B
(i) _Idempotency laws L
Idempotency law of additon A+ A=A;A+A=A _
Idempotency law of multiplication AxA =A ;AxA=A
Let TRUE=T & FALSE = F

A| A A+A| A A A+A | AxA x A

T T T F F F T F

F F F T T T F T

T T T F F F T F

F F F T T T F T
Fromthe above table it shows that A+ A=A ;A+ A=A
AxA=A; AxA=A

Prepared by: S.Prasanna

Software Testing Methodologies

Prepared by: S.Prasanna

Software Testing Methodologies

4)_KYV Charts:

(i)_The Problem:

» The Karnaugh-Veitch chartis known by combination of Karnaugh and Veitch with any one of
map, chart, and diagram. This chart reduces Boolean algebraic manipulations to graphical
trivia.

» Beyond six variables these diagrams get cumbersome and other techniques such as the
Quine-McCluskey method should be used.

(i) _Simple Forms:

» The following figure shows all the Boolean functions of a single variable A and their
equivalent representation as a KV chart.

A
0 1
0 0 0 The function is never true
A
0 1
A 0 1 The function is true when A is true
A
0 1
A 1 0 The function is true when A is false
A
0 1
1 1 1 The function is always true

» The following figure shows sixteen possible functions of two variables.
A o 1 A o 1 B\A o 1 a\A o 1

Prepared by: S.Prasanna

Software Testing Methodologies

B A o 1 B
N
0 1
.| 1))
—/
A+B
B A 0 1
o
’ @
A B +AB
(il _Three Variables:;

A

0 1
—
1
(KD,
—/
A +B
A 1
0)
1 @

BA 0 1
~
0 1 1)
|
A+B
B 0 1
0
1

Universal False

Universal True

» KV charts for three variables are shown below. A few examples are shown.

AB AB AB
0 A 0 0
1 1 Wl]
ABC ABC AB
AB AB
LU0 01 11 10 o8B0 01 11 10 N 00 01 11 10
R TR 1
top] I
BC BC+AB BC
AB AB AB
c\. 0 01 11 10 00 0111 10 S\ 00 01 11 10
d 1 1 0 @ @1 o 1
1 1] 1@ © 1 1 1
BC+AB+BC ABC + ABC + ABC + ABC B
AB AB AB
c 00 01 11 10 ¢ 00 01 11 10 ¢ 00 01 11 10
0 1 1 0 of 1 1 1 1
1 1 1 L 1 1 1 1
A c c
AB AB AB
c 00 01 11 10 c 00 01 11 10 c 00 01 11 10
1Ty 1 1 1 1 1 1 1 1 1
B B+C A+ BC + BC

Prepared by: S.Prasanna

Software Testing Methodologies

(iv) Four Variables:

» The same principles hold for four or more variables
AB

AB
(oF) 00 01 11 10
00 1 1
01 1 1
11 1 1
10 1 1

AC+AC

AB
Cp 00 01 11 10
00 1

01 1

11 1 1 1

10 1 1

ABCD+ABD+AC
Examples:

Cb

00

0

1 11

10

00

1

01

11

10

Cp

B D

01 11

10

00

01

11

10

(i) Using a Karnaugh map minimize
FFABCD+ABCD+ABCD+ABCD+ABD+BCD+ABCD

Ans: The Standard SOP formis:
F(AB,C.Dr-ABCD+ABCD+ABCD+ABCD+ABD(C+C)+(A+A)BCD+ABCD

=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

ABD+BD+BC

A B
Cp\—00 01 11 10
00 1 1
01 1 1
11 1 1
10 1 1
BD+BD
A B
Cp__00 01 11 10
00
01 1 1
11 1 1
10
BD

+ABCD+ABCD

A B
00 01 11 10
N :
(4 12 8
00 1
1 5 13 9
01 1 1 1
3 7 15 10
11 1 1
2 6 14 11
10 1 1 1

The minimized functionis: ABD+BD+ACD+ACD

Prepared by: S.Prasanna

Software Testing Methodologies
(i) Minimize the function using Karnaugh map method

F(A,B,C,D)=3(1,2,3,8,9,10,11,14) + >d (7,15)

Ans:
A B

Y 01 11 10
Co | a 12 8
00 1

1 5 13 9
01 1 1 1

3 7 15 10
11 1 d d 1

2 6 14 11|
10 1 1 1

The minimized functionis: AB+AC+ABD+ABC
(i) Reduce the following function using Karnaugh Map method
F(A,B,C,D)= 1(4,5,6,7,8,12,13) + d(1,15)

Ans:
A B

\ 00 01 11 10
CD 1 2 12 5
00 0 0 0

7 5 13 9
01 d 0 0

3 7 15 10
11 0 d

2 6 12 11
10 0

The minimized functionis: (B + D) (A+ B) (A+ C +D)
(3)_Specifications:
()_General:
» Using KV charts specification is validated. The procedure is given below.
1. Rewrite the specification with consistent language.
2. Identify the predicates. Name with suitable letters such as A, B, C,..
3. After predicate identification, rewrite the specification into logical or Boolean connectives
such as AND, OR, NOT.
4. This rewritten specification is then transformed into set of Boolean expressions.
5. Identify the default action if any.

Prepared by: S.Prasanna

Software Testing Methodologies
6. Enter the Boolean expressions in a KV chart and check for consistency. If the
specifications are consistent, there will be no overlaps.
7. Enter the default cases and check for consistency.
8. Ifall boxes are covered, the specification is complete.
9. If the specification is incomplete orinconsistent, translate the corresponding boxes back
and get a clarification, explanation or revision.
10. If the default cases were not specified explicitly, translate the default cases back and get
a confirmation.
(i)_Finding and translating the I
» The formation of specifications into sentences is given below.
» Specifications are formed into sentences by using the following IF-THEN format.
» |F represents predicate, THEN represents action.
» Hence predicates are used by applying certain Boolean connectives like AND, OR, and NOT
and represented by A1, A2, A3.
» The different phrases which can be used for the words are
IF: if, if and when, only if, only when, based on, because, but etc.
THEN: then, assign, shall, should, will, would, do etc.
AND: all, and, as well as, both, but, in conjunction with, coincidental with etc.
OR: or, either-or, and, and if..then, and/or, in addition to, otherwise etc.
NOT: but, but Not, excluding, less, neither, never, besides etc.
EXCLUSIVE OR: but, by contrast, conversely, nor etc.
IMMATERIAL.: irrelevant, independent of, irregardless, irrespective, whether or not etc.
» Other than these, some other dangerous phrases also exist such as respectively, similarly
etc.
» Now we have a specification of the form
IF A AND B AND C, THEN A1
IF C AND D AND F, THEN A3
IF AAND B AND D, THEN A2
(i) Ambiguities and Contradictions:
» The problem of ambiguity occurs, when more than one action is activated by many boxes of
KV chart or any box is empty in KV chart.
» Letus consider an ambiguous specification that is

A1‘BCD+ABCD

—m+mBCD+ABCD
=ABCD+ABCD+ABCD

A2=ACD+ACD+ABC+ABC
=AB+B)CD+A(B+B)CD+ABC(D+D)+ABC(+D)
=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

+ABCD+ABCD
=ABCD+ABCD+ABCD+ABCD

A3=BD+BCD
=(A+A)B(C+C)D+(A+A)BCD
-ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

Prepared by: S.Prasanna

Software Testing Methodologies
ELSE=BC+ABCD

=(A+A)BC (D+D)+ABCD
~-ABCD+ABCD+ABCD+ABCD+ABCD
> Here 1,2,3 represents the actions and the 4™ specifies the default case.
» Now represent these specifications as follows.

A B
o 00 0 1 11 10
00| 4 1 1,2 2
01 3 2,3 1,2
11 4 3 3 4
10 4 3 3 4

> In this case the ambiguity occurs in the case of AB C D, this gives many inconsistent or
contradictory solutions.
» There are several boxes that call for more than one action.
» In AB C D both action 1 and action 2 shall be taken.
» For unspecified default action do the following
¢ Insert explicit entries in the KV chart.
s Apply negation.
¢ Provide an equivalent expression as a default statement.
ﬁﬂ DQH,I care and ImDQSSihlﬂ terms:
» Don’t care terms () are the terms or conditions using which logic is simplified through KV
chart.
» The value of @ can be either 0 or 1.
» Consider the following three impossible things.
1. Creation of a universal program verifier
2. Knowing both the exact position and the exact momentum of a fundamental particle.
3. Knowing what happened before that started the universe.
» Basically impossible conditions are used to simplify the logic.
» The two types of impossible conditions are
1. The condition cannot be created orimprobable
2. The condition results from forcing a complex continuous one into a binary logical one.
Logic Simplification:
» The stepsinvolved in simplifying the logic are as follows.
1. Identify all impossible and illogical cases.
2. Next avail these cases effectively
3. For this purpose KV chart is used
4. Use the symbol & which is to be interpreted as 0 or 1.

Prepared by: S.Prasanna

Software Testingﬁl\VIBethodologies

cpN—200 01 11 10
oo| @ 1

01 1 %) o

11 (7] 1 1 1
10 14 1 1 1

The minimized functionis: CD+ABCD+CB+CA+ABD —(1)
By taking impossible conditions we get C + A, ———» (2)

The corresponding control flowgraphs for equations (1) and (2) are defined as follows.
Control flowgraph for equation (1)

ACTION —>

~_ A »()—» ACTION |—

Prepared by: S.Prasanna

Software Testing Methodologies

UNIT -V
STATES, STATE GRAPHS, AND TRANSITION TESTING

(1) _State Graphs:
(i) _States(public question)
» State is a condition or situation during which an object undergoes throughout its life time.
» States are represented by nodes.
» States are numbered or identified by characters or words or whatever else is convenient.
> A state graph consists of a set of states in order to represent the behavior of the system.
» Tounderstand the concept of states let us consider the following examples.
Example 1: A program that detects the character sequence ZCZC can be in the following states.
1. Neither ZCZC nor any part of it has been detected.
2. Z has been detected.
3. ZC has been detected.
4. ZCZ has been detected.
5. ZCZC has been detected.
Example 2: A moving automobile whose engine is running can have the following states with
respect to transmission.
1. Reverse gear.
Neutral gear.
First gear.
Second gear.
Third gear.
. Four gear.
Example 3: A person’s checkbook can have the following states with respect to bank balance.
1. Equal.
2. Less than.
3. Greater than.
Example 4: A word processing program menu can be in the following states with respect to file
transmission.

oLk W

1. Create document. 6. Saving document
2. Copy document. 7. Copy disc.
3. Delete document. 8. Format disc
4. Rename document. 9. Backup disc
5. Compress document. 10. Recover from backup
(i) 1T itions:(publi ion)
» Some thing is modeled and givenis called input. Input may be values or variables.
» A state graph takes input provided to states.
» As a result of these inputs the state changes is known as transition.
» Thatis changing from one state to other state is called transition.
» Transitions are denoted by links that join the states.
» The input that causes the transition is represented on the link. So the inputs are link weights.
> Afinite state machine is represented by a state graph having a finite number of states and a
finite number of transitions between states.
» The ZCZC detection example can have the following types of inputs.
1. Z
2. C

3. Any character other than Z or C which will be denoted by A.

Prepared by: S.Prasanna

Software Testing Methodologies

The above state graph is interpreted as follows.

1.

2.

3.

4.

5.

If a systemis in the NONE state, and it receives A or C then itisin NONE state only.

In NONE state if Z is received, the system enters into Z state. In Z state if it receives Z it will
remain in the same state. If C is received it will go to the ZC state or if any other character
say A is received then it will go back to the NONE state.

In ZC state ifit receives Z it will enter into ZCZ state. If C or Ais received it enter into NONE
state.

In ZCZ state ifit receives Z it enter into the Z state. If Ais received it enters into the NONE
state.

In ZCZ state ifit receives C it enter into the ZCZC state. In ZCZC state if it receives Z or C or
A then it will remain in the same state only.

(i) _Qutputs:
» Outputs are based on the input values.

» When aninputis applied to a state it is processed in order to produce an output.

» Each input and output of the state graph is separated by a slash ‘/’ symbol.

» Outputs are also link weights. If more than one input having the same output than it can be

represented by input1, input 2, input 3.../output.

Example: Let us consider a tape control recovery system. This system contains two inputs OK &
Error. OK means “No write errors”. Error means “There may be write errors”. The outputs are
Rewrite, Erase, None, Out of service. Here None means no special action is taken.

OK/NONE OK/NONE

EROR/
ER OUT OF SERVICE

OK/NONE ERASE
OK/NONE

EROR/
REWRITE

REWRITE

> At state 1 if no write errors are detected (input = OK) no special action is taken
(output=NONE). If erroris detected (input=ERROR) backspace the tape one block and
rewrite the block (output =REWRITE) i.e. enter into state 2.

Prepared by: S.Prasanna

Software Testing Methodologies

A\

\ A7 \7\7@\7\7\7\7 A\

At state 2 if the rewrite is successful (input= OK) no action is taken (output=NONE) and
return to state 1.

If the rewrite is not successful try another back space and rewrite (output=REWRITE) i.e.
enter into state 4.

If there are two successive rewrites and a third error occurs then backspace ten centimeters
and erase (output=ERASE) i.e. from state 4 to state 5.

If there are two successive rewrites and a third no error occurs then it enter into state 3 &
then state 1. At state 3 if any error is detected then it enter into state 2 and rewrite.

At state 5 if the erasure works (input=0OK) no action is taken and return to initial state.

If it does not work, backspace another ten centimeters and erase. i.e. enter into state 6.

At state 6 if the erasure works (input=0K) no action is taken and return to initial state

If the second erasure does not work put the tape control out of service i.e enter into state 7

State Table:

If state graph has a large number of states and transitions, then itis difficult to follow them.
Therefore a state table is used, as an easiest way to represent all the states, inputs,
transitions and outputs of the state graph.

A state table is defined as a tabular representation of a state graph.

It consists of

1. Each row represents a state.

2. Each column represents an input condition.

3. The box at the intersection of row and column represents the next state and the output.
The state table for the tape control systemis shown below.

STATE OK ERROR
1/NONE 2/REWRITE
1/NONE 4/REWRITE
1/NONE 2/REWRITE
3/NONE 5/ERASE
1/NONE 6/ERASE
1/NONE 7/0UT

N[O ORI WN =~

(v) Time Versus Sequence:

>
>
>
>

State graphs don’t represent time-they represent sequence.

A transition might take microseconds or centuries.

A system may be in one state for milliseconds or years.

The finite state machine model can be elaborated to include notions of time in addition to
sequence, such as Petri nets.

(vi)_Software Implementation(public question)

L Implementation and Operation:

» Here four tables are involved.

1. First table encode the input value. i.e. INPUT_TABLE_CODE.

2. Atable that specifies the next state i.e. TRANSITION_TABLE

3. Atable that specifies the output. i.e. OUTPUT_TABLE

4. Atable that stores the present state of every device.i.e. DEVICE_TABLE.

This routine operates as follows.
BEGIN
PRESENT_STATE:=DEVICE_TABLE
ACCEPT INPUT_VALUE
INPUT_CODE:=INPUT_CODE_TABLE

Prepared by: S.Prasanna

Software Testing Methodologies
POINTER:=INPUT_CODE#PRESENT_STATE

NEW_STATE:=TRANSITION_TABLE
OUTPUT_CODE:=OUTPUT_TABLE
CALL OUTPUT_HANDLER
DEVICE_TABLE:=NEW_STATE
END
Steps:
1. The present state is fetched from memory.
2. The presentinput value is fetched. If it is numerical it can be used directly. Ifitis not
numerical encode into a numerical value.
The present state and input code are combined.
The output table contains a pointer to the routine to be executed.
The same pointer is used to fetch the new state value, which is then stored.
nd In Alph
» Only the simplest finite state machines can use the inputs directly.
» In ZCZC detector there are 256 possible ASCII characters. But we are taken Z, C and
OTHER.
» The input encoding here is for OTHER=0, for Z=1, for C=2.
» The different encoded input values are called the input alphabet.
3 _Output encoding and Output Alphabet:
» A single character output for a linkiis rare.
» So we want to output a string of characters.
» These can be encode into a convenient output alphabet.
4 _State codes and State-Symbol products:
» The termstate-symbol productis used to convert the combined state and input code into a
pointer to compact table.
3 Application Comments for Designers:
> An explicit state table implementation is advantageous when either the control function is
likely to change in the future or when the system has many similar, but slightly different
control functions.
@Mmﬂmﬂmmmmmmﬂmmmmmm
» Independent testers are not usually taken with either implementation details or the
economics of this approach.
> If the programmers have implemented an explicit finite state machine then much of our work
has been done for us.
» Sometimes showing the programmers the kinds of tests developed from a state graph
description can lead them to consider it as an implementation technique.

(2)_Good State Graphs and Bad State Graphs: (public question
() _General:

» In testing we deal with a good state graph and also with a bad one.
» The following figure shows examples of improper or bad state graphs.
1

2
< A } ,8 In state B the initial state can never be entered again

R w
e

Prepared by: S.Prasanna

Software Teisting Methodologie1s2

> 2
G State C cannot be entered

Os

1,2

-
N

State A,B are not reachable

-—
= N

B No transition is specified for an input of 2 when in state B

O=5 O
[\ %]
Y

1,2

(230

Two transitions are specified for an input of 1 in state A

1
(2)_State Bugs(public question)
» The bugsin states are called state bugs. The state bugs arise due to the following reasons.
1 _Number of States:
A State graph consists of the number of states. It represents behavior of the system.
In practice the state is directly or indirectly recorded.
State table is used to record the number of states of the state graph.
In state table the state bugs are occurred because of missing states.
Thatisin state table if the number of states are not recorded or missed then the result
might be the bugs.
% Tofind the missing states, first find the number of states
% The number of states is founded by as follows.
1. Identify all the component factors of the state.
2. ldentify all the allowable values for each factor.
3. Now the number of states is the product of the factors and allowable values.
% Functional specifications are used to find the factors of the state. They may also
helpful to find the number of possible values for each factor.
4_Impossible States:
« A state that is not possible is called impossible states.
« For example a broken engine cannot run, so running a broken engine state is
impossible state.
% There are some combination of factors that are impossible, they are
GEAR: R, N, 1, 2, 3, 4 = 6 factors
DIRECTION: forward, reverse, stopped = 3 factors
ENGINE: running, stopped = 2 factors
TRANMISSION: ok, broken = 2 factors
ENGINE: ok, broken = 2 factors

7/ 7/ 7/
L X X IR X g

7/
X4

L)

3

¢

Prepared by: S.Prasanna

Software Testing Methodologies

TOTAL =6 x3 x2 x2 x2 =144 states.

% Abroken engine cannot run so the combination of engine is 3 states. Therefore the
total number of states is 108. A car with a broken transmission does not move for
long, there by further decreasing the number of states.

3 _Equivalent States:

% Two states A, B are equivalent if every sequence of inputs starting from one state (s)

produces exactly the same sequence of outputs.

Let us take an example of two equivalent states.

In the below figure, let us assume the system s in state S.

An input of ‘a’ begins a transition to state A and an input of ‘b’ begins a transition to

state B from S.

If all the sequence of inputs from the state A generates exactly the same sequence of

outputs as the other state B, then we say that these two states are equivalent.

X/
X4

L)

X/
X4

L)

X/
X4

L)

o

+ Because these two states are treated equally, the state graph can be minimized by
combining these two equivalent states as shown in the following figure.

a,b > «—
-— —_—

% Equivalent states can be recognized by the following procedure.
1. The two states are differentiated only by the different input values. For example

Consider the following figure.
dly

A /&\/

dly
Here except a, b inputs, the systembehavior in two states A, B are identical for every
input sequence.

Prepared by: S.Prasanna

Software Testing Methodologies
2. There are two set of rows which except for the state name, have identical state graphs
with respect to transitions and outputs. The two sets can be merged. Let consider the

following equivalent states.
aly

alu

bi/x

alu

B1 bi/x

(]

AACT

alu
aly
The Decision table to the above figure is shown below:
STATE OK ERROR
1 Allu B1/u
A1 Ally A2/x
B1 B1ly B2/x
A2 B2/w A3/u
B2 A2/w B3/u
A3 A3/u B2ly
B3 B3/u A2ly
The merged equivalent states are represented by as follows
aly alw alu
bly
The Unmergeable states are represented by as follows
aly alw alis
A1 bix (Az)—P (A3)
alu \/
bly
o N
B1 bix B2 B3

bJ)
aly alw alu

(3)_Transition Bugs(public question)
» The connectivity between two or more states is known as transition.
» The bugin transition is called Transition Bug.
1._Unspecified and Contradictory Transitions:
% Atransition is specified between states. If a transition may occur between states and
not specified (i.e. unspecified transition) then the transition bug occurs.
% If a transition is not possible in the state then there must be a method that prevents
the occurrence of input in that state.

Prepared by: S.Prasanna

Software Testing Methodologies
s Ifthere is no such method available then the occurrence of input becomes inefficient.
% So to avoid transition bug one transition must be specified for every input state
combination.

% A programdoes not contain contradictions, if one input must be processed at a time to
produce desired output. If a transition does not possible between states and the
transition is specified then a contradictory transition may occur.

% Thatis if a programmer does not take all the measures of a program then
contradictory transitions may occur because of transitions may not be possible
between some of the states. For example if a single bit of a state is misplaced by the
programmer then it doubles the number of states in the state graph and performs the
contradictory transitions. This contradiction gives a transition bug.

2._Exampl li ion

% The following example shows how to convert a specification into a state graph and

how contradictions can come out.(public question)
OK

ERROR ERROR ERROR ERROR ERROR
(2o ()) (e yen)
N L _

Rule 1:

% The program will maintain an error counter which will be incremented whenever there is
an error. Here there are only two input values OK, ERROR.

s These values make it easier to detect ambiguities and contradictions in a state table.

¢

INPUT

STATE OK ERROR
0 0/NONE 1/
1 2/
2 3/
3 4/
4 5/
5 6/
6 7/
7 8/

Rule 2:If there is an error rewrite the block.
INPUT

STATE OK ERROR
0 O0/NONE 1/REWRITE
1 2/REWRITE
2 3/REWRITE
3 4/REWRITE
4 5/REWRITE
5 6/REWRITE
6 7/REWRITE
7 8/REWRITE

Rule 3: _If there are three errors, erase 10 centimeters of tape and rewrite the block.
INPUT

STATE OK ERROR
0 O/NONE 1/REWRITE
1 2/REWRITE
2 3/REWRITE,ERASE,REWRITE

Prepared by: S.Prasanna

Software Testing Methodologies
3 4/REWRITE,ERASE,REWRITE

4 5/REWRITE,ERASE,REWRITE
5 6/REWRITE,ERASE,REWRITE
6 7/REWRITE,ERASE,REWRITE
7 8/REWRITE,ERASE,REWRITE
Rule 4: If there are three erasures and another error occur, then put out of service.
INPUT
STATE OK ERROR
0 O0/NONE 1/REWRITE
1 2/REWRITE
2 3/ERASE,REWRITE
3 4/ERASE,REWRITE
4 5/ERASE,REWRITE
5 6/0UT
6
7
Rule 5:
% If the erasure was successful return to the normal state and clear the error counter.
INPUT
STATE OK ERROR
0 0/NONE 1/REWRITE
1 2/REWRITE
2 3/ERASE,REWRITE
3 0/NONE 4/ERASE,REWRITE
4 O0/NONE 5/ERASE,REWRITE
5 O0/NONE 6/0UT
6
Rule 6:
% If the rewrite was unsuccessful increment the error counter, and try another rewrite.
Rule 7:
% If the rewrite was successful decrement the error counter and return to the previous state.
INPUT
STATE OK ERROR
0 0/NONE 1/REWRITE
1 0/NONE 2/REWRITE
2 1/NONE 3/ERASE,REWRITE
3 0/NONE 4/ERASE,REWRITE
2/NONE
4 0/NONE 5/ERASE,REWRITE
3/NONE
5 0/NONE 6/0UT
4/NONE
6
Rule 7 A:

*

% If there have been no erasures and the rewrite is successful return to the previous state.

Prepared by: S.Prasanna

Software Testing Methodologies

@
>
>

Y YVVV Y VVV V VVVY@&aV

3._Unreachable States:
¢ An un reachable state is like unreachable code If a transition is not specified between
two states then that states are unreachable. That is if any incorrect transition occurs
then the state becomes unreachable.
% There may be a transition from unreachable states to other states.
4. _Dead States:
% Adead state is a state that once entered cannot be left.
% In programming, a set of states may be dead because a program has two stages.
¥ In the first stage an initialization process takes place that consists of number of states
to be initialized.
% In the second stage strongly connected set of functional states takes place in which
operations of the states cannot be completed. So the functional states become dead
states. The only solution to this problem is system restart.

Output Errors:

X/

X/

*

X/

*

X/
*

The errorsin output are called output errors.

The states, the transitions, and the inputs may be correct & there may be no dead or
unreachable states, but the output for the transition may be incorrect.

Output actions must be verified independently for states and transitions.

Encoding Bugs:(public question)

Encoding is a process of converting or coding the inputs, transitions, and outputs of the state.
Encoding process is applied in both explicit and implicit finite state machines.

The encoding bugs are more common at the time of input coding, output coding and state
coding in an explicit state machine.

The encoding bugs may also exist in an implicit finite state machine, because of different
views made by programmer and tester.

The behavior of a finite state machine is invariant under all encodings.

Thatis say that the states are numbered 1 to n.

If you renumber the states by an arbitrary permutation, the finite state machine is unchanged.
Similarly for input and output code is unchanged.

Therefore if you present your version of the finite state machine with a different encoding and
if the programmer objects to renaming then there is encoding bugs.

You may have to look at the implementation for these, especially the data dictionary.

The implementation of the fields as bunch of bits tells you the potential size of the code.

If the number of code value is less than this potential, there is an encoding process.

In strongly typed languages with user defined semantic types the encoding process is
probably a type conversion a set membership to integer.

Again you may have to look at the program to spot potential bugs of this kind.

(3)_State Testing:
() _Impact of Bugs:

>

>

Let us say that a routine is specified as a state graph that has been verified as correctin all
details.

From the following the bugs may occur.

Wrong number of states

Wrong transition

Wrong output for a given transition

Pair of states are wrongly made equivalent

Set of states are split to create in equivalent duplicates.

Set of states become dead.

oakwh =

Prepared by: S.Prasanna

Software Testing Methodologies
7. Set of states become unreachable.

(i _Principl
» State testing is defined as a functional testing technique to test the functional bugsin the
entire system.
The principles for state testing are very similar to the principles of path testing.
For path testing itis not possible to test every possible path in a flowgraph.
Similarly for state testing itis not possible to test every possible path in a state graph.
In a state graph a path is a sequence of transitions caused by a sequence of inputs.
In state testing the primary interestis given to the states and transitions rather than outputs.
In state testing define a set of covering input sequences and for each step in each input
sequence define the expected next state, the expected transition and the expected output
code.
A set of tests consists of three sets of sequences
1. Input sequences.
2. Corresponding transitions
3. Output sequences.
(i) _Limitations and extensions:
The limitation is: State transition coverage in a state graph does not guarantee complete testing.
The extension:
» Chow defines a hierarchy of paths and methods for combining paths.
» The simplestis called a 0 switch which corresponds to test each transition independently.
» The next level consists of testing transition sequences consisting of two transitions called 1
switch. The maximum length switch is an n-1 switch where n is the number of states.
The different advantages are
» State testing is useful when the error corrections are less expensive.
> State testing is also useful when the testers want to detect a specified input.
» A state testingis specifically designed for catching the deep bugs.
> A state testing provides easiness during the design of tests.
The different disadvantages are
» State testing does not provide through testing because when a testis completed there might
be some bugs remains in the system. Testers require large number of input sequences to
catch transition errors, missing states etc..
(iv)_What to model:
» Combination of hardware & software can be modeled sufficiently complicated state graph.
» The state graph is behavioral model thatisitis functional rather than structural.
(v)_Getting the data:
» Here labor intensive data gathering is needed and needs more meetings to resolves issues.
(vi)_Tools:
» Tools for hardware logic designs are needed.
(4) _Testability tips:
(A balm for programmers:
» The key to testability design is easy that is we can easily build explicit finite state machines.
(i) _How big How small:
» For two finite state machines there are only eight good and bad ones.
> For three finite state machines there are eighty possible good and bad one.
» Similarly for Four state machines 2700 most of which are bad and for five state machines
275000 most of which are bad. For six state machines 100 millions most of which are bad.
(i) _Switches, Flags and unachievable paths :
» The functionality of switches and flags are almost similar in the state testing.

YVVVVYVYYVY

A\

Prepared by: S.Prasanna

Software Testing Methodologies

>

A\

Ej YV VVV VVY VY V VV V

vV VV VEVYY VV Vv V

Switches or flags are used as essential tool for state testing to test the finite state machine in
every possible state.

A flag or switch value is set at the initial process of finite state machine, and then this value is
evaluated and tested.

Depending on its value the specific path is selected to find an easiest way for testing the
finite state machine.

Mostly the switch or flag works on true or false condition.

In figure a flag is set to p in the program. This p variable is assigned to some value which can
be evaluated.

Depending on its value a path is separated into branches in order to proceed testing in either
way that is u or x

This also can be done by removing a flag and separating v path into two different paths w,y
as shown in the above figure.

Unachievable paths those paths which don’tinteract with each other.

Here there are four paths u,w,x,y in that two are not achievable and two are achievable.
Thatis uis not achievable to path y and path x is not achievable to path w & u is achievable
to path w and path x is achievable to path y.

Finally both the paths uw and xy are needed to cover the branches.

In the above figure there are three flag variables p,q,r in the program.

These variables are assigned some values that can be evaluated and based on which the
paths are separated into branches.

The main benefit of using this implementation is to remove the unnecessary combination
from the decision tree as shown in the figure c.

E ialand i Lfi bel

To understand an essential and inessential finite state behavior, we need to know the
concept of finite state machines and combinational machines.

There is a difference between finite state machines and combinational machines in terms of
quality.

In combinational machines a path is chosen depending on the truth values of predicates.

The predicate truth values are the values which once determined will never change and
always remains constant.

In these machines a path is equivalent to a Boolean algebraic expression over the predicates
Further more it does not matter in which order the decisions are made.

-Design guide lines:

Fine state machine is represented by a state graph having a finite number of states and a

finite number of transitions between states

Finite state machine (FSM) is a functional testing tool and programming testing tool.

Thatisitis an essential tool for state testing in order to identify or model the behavior of

software.

The different guide lines are given below.

1. Initially learn the procedure of finite state machine that are used in both hardware and
software.

2. Design an abstract machine in such a way that it works properly and satisfies the user
requirements.

3. Design an explicit finite state machine.

4. Prototype test must be conducted thoroughly to determine the processing time and space

of explicit finite state machine design.

5. If time or space is more effecting the overall system, then use shortcuts to complete the

design process.

Prepared by: S.Prasanna

Software Testing Methodologies
6. If there are more than a few numbers of states then use hierarchical design to represent
them.
7. If thereislarge number of states then software tools and programming languages must
be developed.
8. The capability toinitialize to an arbitrary state must be inbuilt together with the transition
verification instrumentation.

GRAPH MATRICES AND APPLICATIONS

(1)_Motivational Overview:

(1) What are the problems with pictorial graphs?

Problems with pictorial graphs:

1. Tracing a path in a pictorial graph is difficult task.

2. Thereis every possibility of having an error while tracing i.e. we can miss a link or cover

some links twice.
3. Even yellow marking pen also not be reliable because once the concentration is lost during
marking; we will lose the position to be marked.

4. ltis very difficult to generate test cases for a pictorial graph

5. The time is also wasted if pictorial graphs are used.

(20 What are the graph matrices and their applications?

(_) Graph Matrices:
The matrix in which every node of a graph is represented by one row and one column is
called a graph matrix. or The matrix that represents the structure of a graph is known as
graph matrix.
In a graph matrix each row and each column intersection represents, the relationship
between the respective row nodes and column nodes.
A graph is an abstract representation of a software structure.
A graph can be traced thoroughly to perform a check for covering paths, sensitizing paths,
predicate expressions etc.
Here we use either pictorial graphs or graph matrices.
Tracing a path in a pictorial graph is difficult task.
There is every possibility of having an error while tracing i.e. we can miss a link or cover
some links twice. Even yellow marking pen also not be reliable because once the
concentration is lost during marking; we will lose the position to be marked.
» Graph matrices are introduced to overcome these problems.
» A graph matrixis purely based on matrix methods.

(il _Applications:
() _Tool Building:

» Using matrix representation and its methods we construct test tools.
> ltis more difficult to generate test cases for a pictorial graph than the graph matrix.
(il Doing and understanding testing theory:
» Theoretically speaking, graphs are the simple structures but when used in theorem proving
we use graph matrices because pictorial graphs will omit some important algorithms.
(iii) _The Basic Algorithms:
» The basic algorithms represent a basic tool kit. The basic tool kit consists of
1. Matrix multiplication is used to derive the path expression from every node to every other
node.
2. A partitioning algorithmis used for eliminating loops from graphs.
3. A collapsing process is used to get the path expression.

VVV VY V

Prepared by: S.Prasanna

Software Testing Methodologies

(3) Write relative merits and demerits of different Graph Matrix representations?

(i)_Merits:

1. Using matrix representation and its methods we construct test tools.

2. Matrix representation gives the best results.

3. Graph matrices are used for developing algorithms and proving theorems of graphs.

4. Linked list representation is used to represent graph matrices.

(i) _Demerits:

1. Graph matrix representation for two dimensional arrays is useful only for small graphs
with simple link weights, however with large graphs; this matrix representation gives
inconvenience.

2. Matrix representation requires a large storage space.

3. An additional weight matrix is also needed.

4. Since many entries of the graph matrices are null, the time taken to process such entries
is a waste of time.

(2) The Matrix of a graph:
(1)_Explain he matrix of

(i)_Basic Principles:

» A graph matrix is array representation of nodes. In a graph matrix each row and each
column intersection represents, the relationship between the respective row nodes and
column nodes.

» Some examples of graphs and their associated matrices are given by.

@ [agtal 8@a 8”

Figure (a) Figure (b) Figure (c) Figure (d)
1 2 3 4
a
b
d
Figure (f)
1 2 3 4 5
1 a
2
3 d b
4 f
5 e h

Figure (f)

Prepared by: S.Prasanna

Software Testing Methodologies

1 i

2

3 b h

4 i

5 m

6 c| Il |d

7 e
8 f k)

Figure (h)

> Now observe the following
1. The size of the matrix is equal to the number of nodes.
2. Thereis a place to put every link weight between any node and any other node. i.e. The
entry at a row and column intersection is the link weight of the link.
3. Aconnection fromnode i to node jdoes not same that a connection from node jto node
i. For example in figure (h) the (5,6) entry is m but the (6,5) entryis c..
(i) _A simple weight:
> Let ‘1’ means that there is a connection and ‘0’ means that there is no connection.
» The different arithmetic rules are
1+1=1 1+0=1 0+0=0
1x1=1 1x0=0 0x0=0
» A matrix with link weights defined with 1 or O is called a connection matrix.
» Consider the following flowgraph and its matrix representation.
1 2 3 4 5 6 7 8

1 1] 1 2-1=1

y

1 1 1 2-1=1

4 1 1-1=0

5 1 1-1=0

4 1 11 3.1=2

7 1 [1-1=0

g 1 1 1 3.1=2
6+1=7

» Each row of a matrix denotes the outlinks corresponding to that node and each column
denotes the inlinks corresponding to that node.

» Abranch node is a node with more than one non zero entry in its row. For example rows
1,3,6, and 8 of the above figure have more than one entry, so these nodes are branch
nodes.

» A junction node is a node with more than one non zero entry in its column. For example
columns 5,6 and 7 of the above figure have more than one entry, so these nodes are
junction nodes

» By subtracting 1 from the total number of entries in each row and ignoring rows with no
entries we obtain the number of decisions for each row. Adding these decision values and
then adding 1 to the sum gives the graph’s cyclomatic complexity.

> In the above figure the graph’s cyclomatic complexity is 7.

(i) __Further notation:

» The link weight between node i and node j, is denoted by a;.

Prepared by: S.Prasanna

Software Testing Methodologies

>

>

YVVVY 'V

A selfloop at node i is denoted by ai The link weight for the link between nodes jand i is
denoted by a;i.
Consider the following figure.

Fromthe above figure
abmd=a13 ass ass aer
degef=ae7arsasrarsas2
ahekmlld=a13as7 ars ass ase aes Ase A67
The expression aj aj ajm denotes that a path from node i to j, with a self loop at jand then a
link from node j to m.
The transpose of a matrix is the matrix with rows and columns interchanged.
It is denoted by AT.
If C=AT then cj=aj
The intersection of two matrices is denoted by A#B. If C=A # B then cj=a;j # b;.

(3) Node Reduction Algorithm:

Write the steps involved in Node Reduction Algorithm. Illustrate with an example?

Node Reduction Algorithm:

Steps:

1.

2.

3.

4.

The reduction is done one node at a time by combining the elements in the last column with
the elements in the last row and putting the result into the entry at the corresponding
intersection. This step is called cross-term reduction. After cross term reduction the matrix
size is reduced by one.

If there is one entry in one position and we want to enter another entry in that same position
then add that two entries. This step is called parallel reduction.

If there is entry in principle diagonal then it represents a selfloop. To remove that selfloop,
multiply every term in that row by the loop term. This step is called loop reduction.

By using the above three steps a 2x2 size matrix is obtained with the path expression. This
path expression is the required path expression from node 1 to node 2.

Example:

>

>

Consider the following flow graph.

Specify the above flowgraph in the matrix format.
1 2 3 4 5
a

A BN W N =
o
o

Prepared by: S.Prasanna

Software Testing Methodologies

>

Remove the selfloop at node 5 by applying the loop reduction step.
1 2 3 4 5

1 a

2 .

3 d . b

4 c . f
5 h*g | h%

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction and parallel reduction steps.

T 2 3 4
1 a
2
3 d . b
4 ctfh*g | fh*e

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction and parallel reduction steps.

1 2 3
1 - a
2

3 d+b(c+fh*g) | bfh*e

Again a selfloop occurred at node 3. So Remove the selfloop by applying loop reduction
step.

1 2 3
11 - a

2
3 (bfh*e)*(d+b(c+fh*g))

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction.
1 2

1| 7 | a(bfh*e)*(d+b(c+fh*g))

2

Note: Refer other four examples from class notes

(4) Applications:

QI i licati f Node Reduction Algorithm:
(ii_Maximum Path Count Arithmetic:

>
>

For theory refer unit-5 material.
For example refer unit-8 notes.

(i) _Probability of path expressions:

>
>

For theory refer unit-5 material.
For example refer unit-8 notes.

Prepared by: S.Prasanna

Software Testing Methodologies

(5) Relations:

Relation? What are the different pr ies of Relations?
Relation:
The property by which two nodes are interconnected is called a relation.
A relation can be represented by a link with connecting nodes.
A link represented with link weight.
This link weight can be numerical, logical, illogical, or whatever.
The graph matrix which consists of unweighted simple links is called a connection matrix
The graph matrix which consists of weighted simple links is called a relation matrix.
Different properties of relations:
» The different properties of relations are.
(i) _Transitive Relations:
% ARelation Ris transitive if aRb and bRc then aRc.
s Examples of transitive relations are: is connected to, is greater than or equal to, is less than
or equal to, is a relative of, etc.

®,

s Examples of intransitive relations are: is a friend of, is a neighbor of, etc.

YVVVVYY

(il _Reflexive Relations:

% Arelation Ris reflexive if for every a, aRa. This relation represents a self-loop at every
node.

s Examples of reflexive relations are: equals, is a relative of, etc.

s Examples of irreflexive relations include: not equals, is a friend of, etc.

(ii)_S ic Relations:

% Arelation Ris symmetric if aRb then bRa. This relation represents if a link froma to b then
there is also a link from b to a.

% A graph whose relations are symmetric is called an undirected graph and a graph whose
relations are not symmetric is called a directed graph

s Examples of symmetric relations are: a relative of, is brother of, etc.

s Examples of asymmetric relations are: is the boss of, is greater than, etc.

1) _Anti ic Relations:

% Arelation Ris antisymmetric, if aRb and bRa, then a = b.

s Examples of antisymmetric relations are: is greater than or equal to, is a subset of, etc.

s Examples of nonantisymmetric relations are: is connected to, is a relative of, etc.

(2) What are Equivalence Relations and Partial Ordering Relations?

(i Equival Relations:

> Arelation is said to be an equivalence relation if it satisfies transitive, reflexive, and
symmetric properties. If a set of objects satisfy an equivalence relation, then it forms an
equivalence class.

» Theidea behind a partition-testing is that we can partition the input space into equivalence
classes.

(i) Partial Ordering Relations:

» A partial ordering relation satisfies the reflexive, transitive, and antisymmetric properties.

» A graph which shows partial ordering relation between its nodes is said to be partial
ordered graph. Partial ordered graphs have different properties. They are
i. loop free,
ii. Thereis atleast one maximum element.
ii. There is at least one minimum element.

Prepared by: S.Prasanna

Software Testing Methodologies . _
iv.If you reverse all the arrows the resultant graph is also partial ordered.

» The maximum element ‘a’represents the relation xRa. Similarly, the minimum element ‘a’,

represents a relation aRx. Examples are Trees and loop-free graphs.
(6) The Powers of a Matrix:

(i _Explain about Matrix Powers and Products?

Matrix Powers and Products:

» A graph matrix is array representation of nodes. In a graph matrix each row and each
column intersection represents, the relationship between the respective row nodes and
column nodes.

» The square of the matrix represents all path segments with two links long. Similarly the
third power represents all path segments with three links long and so on.

> Let A be a matrix whose entries are aj. The set of all paths between any node i and any
node jnis given by

n n n
dij+ s akay + dik akmam; + L Aikakma mi Qj
& == =

n

... n n .. aikakmaml .. aqp a
+ J
k% m§1 I; pg’l
» Given a matrix whose entities are aj the square of that matrix is given by
n
dij= = aikay
k=1

» When given two matrices A,B with entries aik and by respectively. The product of ABis a
new matrix C whose entries are ci;.
n

Cij = = aikby
_ _ k=1 _ _ _
A a2 A auis bir b1z bz b Ci1 Ci2 Ciz3 Cus
az1 az22 A3 A X D21 b22 b2z bas — | C1 C22 C23 Cau
as1 as2 a3z amu D34 D2 bss bas C3t C32 Caz Cas
A4 Qa2 Az au Dsr baz Das bas Csért Ca2 Ca3 Cu

C11 = a11b11+ @12D21+ Q@13 D31+ 214 bay
C12=a11D12+ Q1222 + A13 b3z +a14ba2
Ciz=aq1b13+a12 b2z + a13 b33 + a14ba3

C32 = Aa1b12+ Qa2b22+as3bsz + Qa4 baz

Cas = QAa1D14 +342 D24 +843b3s+a44 Daa
» The ca2entry is obtained by combining, the entries in the third row of the A matrix, with the
corresponding elements in the second column of the B matrix.

Example:
» Consider the following flowgraph and its graph matrix.

Let A

n

O N w0 N =
Q.
o

Q| o
-,

Prepared by: S.Prasanna

Softw%g ;{‘gsAting Methodologies

1 2 3 4 5 1.2 3 4 5 1.2 3 4 5
1 a 1 a 1 ad ab
A2 = 2 3 2
3 b X 3 d b = 3 bc bf
4 f 4 c 4 fg fe fh
5 g| e h 5 gl e h 5 ed+hg| he| eb | p
A3= AZ* A
1.2 3 4 5 12 3 4 5 1 2 3 4 5
1 ad ab 1 a 1 abc abf
2 y. 2
A= 3 bc bf x 3 d b = 3 bfg bfe bfh
4 fg fe fh 4 4 fed+fhg fhe | feb | fh?
5 ed+hg| he | eb | pe 5 g| e h 5 hed+ebc+h?g | h’ | heb| ebf+h?
@ d dADOU he N
(a)_The set of all paths:
> The set of all paths is given by the following infinite series of matrix powers.

Vg

Y A= AMAZHASH | +A”

i=1
Let | be an n x n diagonal matrix where n is the number of nodes, then the above
expression becomes

Y A= A(I+AT+AZHA3H | +A”)
i=1
We know that (A+A) = A
So (A+1)?2 = A2+ 2A1 + 2= A% + 2A + |2 = A2 + A+A + |°= A2+A+]. (Since A+ A= A)

Similarly
(A+D)" = [+AT+AZ+A3+ A"
Now the original expression becomes

> A= A(HATHAZHARH +A”) = A(A+H)”
i=1
If the paths oflength n-1, where n is the number of nodes, the set of all such pathsis

n-1

> A= A(A+H)2
i=1

The algorithm for finding set of all paths:

The algorithm for finding set of all paths

1. Express n-2 as a binary number.

2. Calculate the successive squares of (A+l) matrix, thatis (A+1)?, (A+1)*, (A+1)8, (A+)'®
and so on.

3. Select only the binary powers of (A+l) matrix that correspond to a value 1 in the binary
representation of (n-2).

4. The set of all paths of length less than or equal to (n-1) is obtained from the original
matrix as a result of step 3.

Prepared by: S.Prasanna

Software Testing Methodologies
» For example the set of all paths for 16 nodes is given by
15
> A= AA+HDBA+NH(A+I)?
i=1
> A matrix for which A?=A is said to be idempotent matrix. A matrix whose successive power
gives an idempotent matrix is called idempotent generator. The n'" power of a matrix A + |
over a transitive relation is called the transitive closure of the matrix.
(i) _What are thel 2H n raphs with 1 into loop-free graphs:
» Loops are infinite sum of matrix powers.
» The way to handle loops is similar like handling loops in regular expressions.
» Loop terms are displayed on the principle diagonal of the graph matrix. A loop can be
removed from a graph by using loop reduction step of Node Reduction Algorithm.

Example:
» Consider the following flowgraph and its graph matrix

1 2 3 4 5 1.2 3 4 5
(—2—(E)—L+(a)—2 1 a 1 a
f 2 2 1
e g LetA= d b A+l= 3 d| 1] b
4 c f 4 c 1 f
Oh 5 gl e h 5 gl e h+1

> In (A+l) matrix there is a selfloop at node 5. Now we can obtain (A+l)* after removing the
self loop at node 5 by applying loop reduction step.
> i.e. Toremove selfloop at node 5 multiply loop term h* with all row elements of row 5.
1 2 3 4 5

11 a
2 1
(A+l) =3 dj{ 1] b
4 c 1 f
5 h*g h*e 1

(A+1)7"= (A+1)" (A+])*

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
11 a 11 a 1] ad al ab
2 1 v 1 2 |1
= 3 d{ 1] b X ! dl 1] b = 3 |d+bc 1] b [bf
4 c 1] f 4 c 11 f 4 |ctfh*g |fh*d 1 | f
3 h*g| h*e 1 5 h*g h*e 1 5 |h*g+h*ed| h*e h*eb| 1
(A+1)%* = (A+1)?* (A+])* 1 2 3 4 5
12 3 4 5 1 2 3 4 5 11| ad+abc a | ab |abf
11 ad a| ab 11 [al [| 2 1
2 1 ? 1 3 | d+bc+ 1+ b | bf
=3 | d+bc 1] b|[bfl X8 d 1 b = bfh*g bfh*e
4 |ctfh*g |fh*¢ 1 fl 4 ¢ 1 f] | c+hg+ 1+ P
§ |n*g+hed[h’e[h'ebl 1| % [h'gh'd | 1| fh*ed fh*e| qep
4 [h*gth*ed | ., |, .1+
] +hg‘e(d+bc) he | h*el) pugps

» No new loops were found for the second power matrix

Prepared by: S.Prasanna

Software Testing Methodologies
» But the third power matrix has a loop term bfh*e at node 3. So all other entries in that row
are multiplied by (bfh*e)*. Similarly there is a loop term (fh*eb) at node 4.
» So all other entries in that row are multiplied by (fh*eb)*. Also a loop term (h*ebf)* at
node 5.
» So all other entries in the fifth row is multiplied by (h*ebf)*
(ivy Explain about Partitioning Algorithm in detail?
Partitioning Algorithm:
» ltis an algorithm which is used to transform the graphs with loops into loop free graphs.
» There are certain points to remember here. They are
1. A graphisloop free at the top level.
2. Many graphs with loops are easy to analyze, if you know where to break the loops.
3. This algorithmis used to develop a tool which can identify the loops.
» The partition algorithmrepresents.
(A+D)" # (A+)T

Example:
» Consider the following flowgraph and its graph matrix (A + I).
© 1 2 3 4 5 6 7 8
1 1 1
2 1 1 1
(8) 3 1
(3 A+l = 1
(5) 5 1
O, 6 1
7| 1 1
8 1

» The transitive closure matrix (A+I)" can be obtained by using the following steps.
Step:1: Mark all diagonal entries by 1
Step:2: The flow fromnode 1 to node 6 is 1-2-7-2-3-4-5-3-4-6
So mark nodes 1,2,3,4,5,6,7 by 1 in the first row
Step:3: The flow fromnode 2 to node 6 is 2-7-2-3-4-5-3-4-6
So mark nodes 2,3,4,5,6 by 1 in the second row.
Step:4: The flow fromnode 3 to node 6 is 3-4-5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the third row
Step:5: The flow fromnode 4 to node 6 is 4-5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the fourth row
Step:6: The flow from node 5 to node 6 is 5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the fifth row.
Step:7: The flow fromnode 6 is only 6. So mark node 6 by 1 in the sixth row.
Step:8: The flow from node 7 to node 6 is 7-2-3-4-5-3-4-6
So mark nodes 2,3,4,5,6,7 by 1 in the seventh row
Step:9: The flow fromnode 8 to node 6 is 8-3-4-5-3-4-6
So mark nodes 3,4,5,6,8 by 1in the eighth row

Prepared by: S.Prasanna

Software Testing Methodologies
» Therefore the transitive closure matrixis.

1 2 3 4 5 6 7 8
IR ERE
v HEEERERERE
: 1 1] 1] 1
(A+l)n =7 101 1]1
5 1] 1] 1] 1
4 1
1 HEEERERERE
g BERERE 1

» The transpose of (A+])"is.
1 2 3 4 5 6 7 8

(A+)"T =

EEG RN QSN TN
N N [S
I G N Y
= - -

N N R N BN N
alalal=]ala
m = alalal=

(oo BN Il o)) BN RN CE

1

> The intersection of transitive closure matrix (A+I)" and transpose matrix (A+|)"T is given by,
identifying similar rows and column entries from (A+I)" and (A+I)"T
1 2 3 4 5 & 7 8

1] 1

2 1 1

3 1 1 1

4 1 1 1
(AH)HAH)T= ¢ T

6 1

7 1 1

8 1

» Fromthe above matrix, by comparing a row/column with other rows/columns, the
equivalent nodes to be grouped.
> After grouping
Let A=[1] B=[2,7] C=[3,4,5] D=[6] E=[8]
» The graph and graph matrix representation to the above values is given by
FlowGraph

Graph Matrix

A B C D E

A1
() R
C 1] 1
D 1
E 1 1

EHB—C-C)

Prepared by: S.Prasanna

Software Testing Methodologies
(v)_Explain about Breaking L.oops And Applications:

Consider the matrix format of a flowgraph.

If there are any entries on the principal diagonal, then break the loop for that link.

Here we use successive powers of the matrix.

Another way to break the loop is applying the node reduction algorithm.

Here we break the loop or we remove the self loop at any node is, by multiplying loop term

with all other entries in that corresponding row.

(viy_Explain about Some matrix properties?

» To interchange the node names in the flowgraph, we must interchange both the
corresponding rows and the corresponding columns of the node names in the graph matrix.

» Consider the following flowgraph and its Graph matrix.

YVVVVY

A A N =
0| Q
T
-y

» Interchange rows 3 and 4 to the above graph matrix.
1 2 3 4 5

1 a
2
3 c f
4 d b
5 g | e h
» Interchange columns 3 and 4 to the above graph matrix.

1 2 3 4 5
a

d| b
g e h

ON N
0
*

» The flowgraph to the above graph matrix is given by.

» By comparing the above flowgraph with the given flowgraph, itis proved that nodes 3,4 are
interchanged

Prepared by: S.Prasanna

Software Testing Methodologies

(7)_Building Tools:
Explain about building tools of graph matrices?
i. Matrix Representation in software:
» Agraphis an abstract representation of the software structure.
» Theoretically speaking, graphs are the simple structures but when used in theorem proving
we have to apply graph matrices.
» |t consists of
a_Overview:
% We prove theorems and develop graph algorithms by using graph matrices. When we
want to process graphs in a computer we represent them as linked lists.
Node degree and graph density:
Each intermediate node may have any number of inner links and outer links.
The inner links of a node represents the in degree of the node.
Similarly the outer links of a node represents the out degree of a node.
The sumof in degree and out degree of a particular node is the degree of that node.
The average degree of a node for a graph is between 3 and 4.
The degree of a simple branch and simple junctionis 3.
The degree of a loop in a graph is 4.
Any graph with average degree of 5 or 6 is said to be a very busy flowgraph.
¢_What is wrong with arravs:
% We can represent the matrix as a two-dimensional array for small graphs with simple
weights, but this is not convenient for larger graphs because
()_Space:
« Matrix representation requires alarge storage space.
¢ Hence alinked list representation is used which requires less storage space.
(i)_Weights:
% An additional weight matrix is required for complicated link weights.
(i) _ Variable-Length Weights:
% Thelink weights in a flow graphs are represented in a two dimensional string array
(matrix format), in which most of entries are null.
(iv)_Processing time:
% Since many entries of the graph matrices are null, the time taken to process such
entries are more.
i)_Linked-list R .
% Consider following the flowgraph.

3 =

X/
X4

L)

X/
X4

L)

X/
X4

L)

X/
X4

7/ 7/
XA XA

7/
X4

L)

% The linked list for the above flowgraph is

Prepared by: S.Prasanna

Software Testing Methodologies
1,3;a
2,exit
3,2;d

5,5;h
List entries are usually placed in lexicographic (dictionary) order.
The link weight expressions are stored in a string array to which link names act as

X/
X4

L)

X/
X4

L)

pointers.
% If the link weights are values then, they are stored in an array of fixed length.
List Entry Content
1 node 1,3;a
2 node 2,exit
3 node 3,2:d
4 node 4,2;c
,5;f
S node 5,2;9
,3;€e
,9;h

% The node names appear only once, at the first link entry. A node name i.e starting node
is used for the list entry.
% And there are back pointers for the inlinks. So we get

List Entry Content List Entry Content
1 node 1,3;a 4 node 4,2;c
2 node 2,exit oNi
3, 3,
4, 5 node 5,2:g
5, ,3;e
3 node 3,2;d 5h
14;b 4’
1, 5,
5,

% ltisimportant to keep the lists sorted in lexicographic order with the following priorities:
node names or pointer outlink names, inlink names.

L_Matrix Operations:
% Parallel links after sorting are adjacent entries with the same pair of node names. Ex:
y node 17,21;x
X 44y
@D)@.W 44 a
44;w

% We have three parallel links fromnode 17 to 44. So

Prepared by: S.Prasanna

Software Testing Methodologies
Node 17,21;x

,44;y(where y=y+z+w)
b Loop Reduction:
% The loop reduction step is used to remove the loop. Here self link represents the loop.
% Forremoving aloop, the loop termis multiplied with all the outer links of the node at
which the loop presents. Consider the following example.

List Entry Content Before Content After

5 node 5,2;9 node 5,2;h*g
,3.e ,3:h*e
,9;h
4, 4,
5,

=]

¢_Cross term reduction;

% Select a node for reduction.

% The cross termreduction represents that we combine every inlink to the node with every
outlink from that node after removing that node.

% Thelinks created by node removal are stored in a separate list which is then sorted and
thereafter merged into the master list.

ition, Multiplication and other operations:

¢ Here addition of two matrices is simple. Multiplication is more complicated.

+ Transposition is done by reversing the pointer directions, resulting in a list that is not
correctly sorted. Sorting that list provides the transpose. All other matrix operations can
be easily implemented by sorting, merging, and combining parallels.

>

X/

List Entry Content Before Content After
2 node 2,exit node 2,exit
3, 3,
4, 4,
5, S,
3 node 3,2;d node 3,2;d
4b ,2:bc
,5:bf
1, 1,
5, 5,
4 node4,2;c
,9;f
3,
5 node 5,2;h*g node 5,2;h*g
,3;h*e ,3;h*e
4,

3 Reduction Optimization;

» The optimum order for node reduction is to do lowest-degree nodes first. The idea is to get
the lists as short as possible as quickly as possible. Nodes of degree 3 reduce the total link
count by one link when removed. A degree-4 node keeps the link count the same, and all
higher-degree nodes increase the link count.

» Forlarge graphs with 500 or more nodes and an average degree of 6 or 7, the difference
between not optimizing the node-reduction order and optimizing it was about 50: 1 in
processing time.

Prepared by: S.Prasanna

Software Testing Methodologies o

¢ he test suite can be executed multiple times on the application under test.

% For example, if there is a need to test the application on different browsers and environments, we
need to just change the configurations of the test automation suite and execute.

+» In case of manual execution, we would need one more resource to execute the same set of test
cases on different environment / browser.

(a)_Reusability:
% The test suite can be built in such a way that the functions or methods written are highly reusable

across the framework. Also, the entire test suite built with a proper framework can also be utilized
for different versions of the application under test.
f Test Ex

% There is a chance of manual tester making errors during execution of test cases. But, the test
suite being automated we can expect no or zero errors during execution.

% For example, if there is a need to enter a value in an edit box such as 7693178.87651, a manual
tester might make mistakes (as this is a big number with five decimal values) but the automation
tool will not make any mistakes. It will enter the same value even if the testis run for many times.

(c) Better Coverage:

% As the time required executing automated test suite will be less compared to manual test case
execution, more number of test scenarios can be covered during the execution.

** Hence, we can expect better coverage.

Prepared by: S.Prasanna

Software Testing Methodologies

UNIT -V
STATES, STATE GRAPHS, AND TRANSITION TESTING

(1) _State Graphs:
(i) _States(public question)
» State is a condition or situation during which an object undergoes throughout its life time.
» States are represented by nodes.
» States are numbered or identified by characters or words or whatever else is convenient.
> A state graph consists of a set of states in order to represent the behavior of the system.
» Tounderstand the concept of states let us consider the following examples.
Example 1: A program that detects the character sequence ZCZC can be in the following states.
1. Neither ZCZC nor any part of it has been detected.
2. Z has been detected.
3. ZC has been detected.
4. ZCZ has been detected.
5. ZCZC has been detected.
Example 2: A moving automobile whose engine is running can have the following states with
respect to transmission.
1. Reverse gear.
Neutral gear.
First gear.
Second gear.
Third gear.
. Four gear.
Example 3: A person’s checkbook can have the following states with respect to bank balance.
1. Equal.
2. Less than.
3. Greater than.
Example 4: A word processing program menu can be in the following states with respect to file
transmission.

oL A W

1. Create document. 6. Saving document
2. Copy document. 7. Copy disc.
3. Delete document. 8. Format disc
4. Rename document. 9. Backup disc
5. Compress document. 10. Recover from backup
(i) 1T itions:(publi ion)
» Some thing is modeled and givenis called input. Input may be values or variables.
» A state graph takes input provided to states.
» As a result of these inputs the state changes is known as transition.
» Thatis changing from one state to other state is called transition.
» Transitions are denoted by links that join the states.
» The input that causes the transition is represented on the link. So the inputs are link weights.
> Afinite state machine is represented by a state graph having a finite number of states and a
finite number of transitions between states.
» The ZCZC detection example can have the following types of inputs.
1. Z
2. C

3. Any character other than Z or C which will be denoted by A.

Prepared by: S.Prasanna

Software Testing Methodologies

The above state graph is interpreted as follows.

1.

2.

3.

4.

5.

If a systemis in the NONE state, and it receives A or C then itisin NONE state only.

In NONE state if Z is received, the system enters into Z state. In Z state if it receives Z it will
remain in the same state. If C is received it will go to the ZC state or if any other character
say A is received then it will go back to the NONE state.

In ZC state ifit receives Z it will enter into ZCZ state. If C or Ais received it enter into NONE
state.

In ZCZ state ifit receives Z it enter into the Z state. If Ais received it enters into the NONE
state.

In ZCZ state ifit receives C it enter into the ZCZC state. In ZCZC state if it receives Z or C or
A then it will remain in the same state only.

(i) _Qutputs:
» Outputs are based on the input values.

» When aninputis applied to a state it is processed in order to produce an output.

» Each input and output of the state graph is separated by a slash ‘/’ symbol.

» Outputs are also link weights. If more than one input having the same output than it can be

represented by input1, input 2, input 3.../output.

Example: Let us consider a tape control recovery system. This system contains two inputs OK &
Error. OK means “No write errors”. Error means “There may be write errors”. The outputs are
Rewrite, Erase, None, Out of service. Here None means no special action is taken.

OK/NONE OK/NONE

EROR/
ER OUT OF SERVICE

OK/NONE ERASE
OK/NONE

EROR/
REWRITE

REWRITE

> At state 1 if no write errors are detected (input = OK) no special action is taken
(output=NONE). If erroris detected (input=ERROR) backspace the tape one block and
rewrite the block (output =REWRITE) i.e. enter into state 2.

Prepared by: S.Prasanna

Software Testing Methodologies

A\

\ A7 \7\7@\7\7\7\7 A\

At state 2 if the rewrite is successful (input= OK) no action is taken (output=NONE) and
return to state 1.

If the rewrite is not successful try another back space and rewrite (output=REWRITE) i.e.
enter into state 4.

If there are two successive rewrites and a third error occurs then backspace ten centimeters
and erase (output=ERASE) i.e. from state 4 to state 5.

If there are two successive rewrites and a third no error occurs then it enter into state 3 &
then state 1. At state 3 if any error is detected then it enter into state 2 and rewrite.

At state 5 if the erasure works (input=0OK) no action is taken and return to initial state.

If it does not work, backspace another ten centimeters and erase. i.e. enter into state 6.

At state 6 if the erasure works (input=0K) no action is taken and return to initial state

If the second erasure does not work put the tape control out of service i.e enter into state 7

State Table:

If state graph has a large number of states and transitions, then itis difficult to follow them.
Therefore a state table is used, as an easiest way to represent all the states, inputs,
transitions and outputs of the state graph.

A state table is defined as a tabular representation of a state graph.

It consists of

1. Each row represents a state.

2. Each column represents an input condition.

3. The box at the intersection of row and column represents the next state and the output.
The state table for the tape control systemis shown below.

STATE OK ERROR
1/NONE 2/REWRITE
1/NONE 4/REWRITE
1/NONE 2/REWRITE
3/NONE 5/ERASE
1/NONE 6/ERASE
1/NONE 7/0UT

N[O ORI WN =~

(v) Time Versus Sequence:

>
>
>
>

State graphs don’t represent time-they represent sequence.

A transition might take microseconds or centuries.

A system may be in one state for milliseconds or years.

The finite state machine model can be elaborated to include notions of time in addition to
sequence, such as Petri nets.

(vi)_Software Implementation(public question)

L Implementation and Operation:

» Here four tables are involved.

1. First table encode the input value. i.e. INPUT_TABLE_CODE.

2. Atable that specifies the next state i.e. TRANSITION_TABLE

3. Atable that specifies the output. i.e. OUTPUT_TABLE

4. Atable that stores the present state of every device.i.e. DEVICE_TABLE.

This routine operates as follows.
BEGIN
PRESENT_STATE:=DEVICE_TABLE
ACCEPT INPUT_VALUE
INPUT_CODE:=INPUT_CODE_TABLE

Prepared by: S.Prasanna

Software Testing Methodologies
POINTER:=INPUT_CODE#PRESENT_STATE

NEW_STATE:=TRANSITION_TABLE
OUTPUT_CODE:=OUTPUT_TABLE
CALL OUTPUT_HANDLER
DEVICE_TABLE:=NEW_STATE
END
Steps:
1. The present state is fetched from memory.
2. The presentinput value is fetched. If it is numerical it can be used directly. Ifitis not
numerical encode into a numerical value.
The present state and input code are combined.
The output table contains a pointer to the routine to be executed.
The same pointer is used to fetch the new state value, which is then stored.
nd In Alph
» Only the simplest finite state machines can use the inputs directly.
» In ZCZC detector there are 256 possible ASCII characters. But we are taken Z, C and
OTHER.
» The input encoding here is for OTHER=0, for Z=1, for C=2.
» The different encoded input values are called the input alphabet.
3 _Output encoding and Output Alphabet:
» A single character output for a linkiis rare.
» So we want to output a string of characters.
» These can be encode into a convenient output alphabet.
4 _State codes and State-Symbol products:
» The termstate-symbol productis used to convert the combined state and input code into a
pointer to compact table.
3 Application Comments for Designers:
> An explicit state table implementation is advantageous when either the control function is
likely to change in the future or when the system has many similar, but slightly different
control functions.
ammmmmmmmmmmmmmm
» Independent testers are not usually taken with either implementation details or the
economics of this approach.
> If the programmers have implemented an explicit finite state machine then much of our work
has been done for us.
» Sometimes showing the programmers the kinds of tests developed from a state graph
description can lead them to consider it as an implementation technique.

(2)_Good State Graphs and Bad State Graphs: (public question
() _General:

» In testing we deal with a good state graph and also with a bad one.
» The following figure shows examples of improper or bad state graphs.
1

2
< A } ,8 In state B the initial state can never be entered again

R w
e

Prepared by: S.Prasanna

Software Teisting Methodologie1s2

> 2
G State C cannot be entered

Os

1,2

-
N

State A,B are not reachable

-—
= N

B No transition is specified for an input of 2 when in state B

O=5 O
[\ %]
Y

1,2

(230

Two transitions are specified for an input of 1 in state A

1
(2)_State Bugs(public question)
» The bugsin states are called state bugs. The state bugs arise due to the following reasons.
1 _Number of States:
A State graph consists of the number of states. It represents behavior of the system.
In practice the state is directly or indirectly recorded.
State table is used to record the number of states of the state graph.
In state table the state bugs are occurred because of missing states.
Thatisin state table if the number of states are not recorded or missed then the result
might be the bugs.
% Tofind the missing states, first find the number of states
% The number of states is founded by as follows.
1. Identify all the component factors of the state.
2. ldentify all the allowable values for each factor.
3. Now the number of states is the product of the factors and allowable values.
% Functional specifications are used to find the factors of the state. They may also
helpful to find the number of possible values for each factor.
4_Impossible States:
« A state that is not possible is called impossible states.
« For example a broken engine cannot run, so running a broken engine state is
impossible state.
% There are some combination of factors that are impossible, they are
GEAR: R, N, 1, 2, 3, 4 = 6 factors
DIRECTION: forward, reverse, stopped = 3 factors
ENGINE: running, stopped = 2 factors
TRANMISSION: ok, broken = 2 factors
ENGINE: ok, broken = 2 factors

7/ 7/ 7/
L X X IR X g

7/
X4

L)

3

¢

Prepared by: S.Prasanna

Software Testing Methodologies

TOTAL =6 x3 x2 x2 x2 =144 states.

% Abroken engine cannot run so the combination of engine is 3 states. Therefore the
total number of states is 108. A car with a broken transmission does not move for
long, there by further decreasing the number of states.

3 _Equivalent States:

% Two states A, B are equivalent if every sequence of inputs starting from one state (s)

produces exactly the same sequence of outputs.

Let us take an example of two equivalent states.

In the below figure, let us assume the system s in state S.

An input of ‘a’ begins a transition to state A and an input of ‘b’ begins a transition to

state B from S.

If all the sequence of inputs from the state A generates exactly the same sequence of

outputs as the other state B, then we say that these two states are equivalent.

/o
+ Because these two states are treated equally, the state graph can be minimized by
combining these two equivalent states as shown in the following figure.

a,b > «—
4.® - AB @—>
-— —_—

% Equivalent states can be recognized by the following procedure.
1. The two states are differentiated only by the different input values. For example
Consider the following figure.
dly
B

X/
X4

L)

X/
X4

L)

X/
X4

L)

o

o o

g

Here except a, b inputs, the systembehavior in two states A, B are identical for every
input sequence.

Prepared by: S.Prasanna

Software Testing Methodologies
2. There are two set of rows which except for the state name, have identical state graphs
with respect to transitions and outputs. The two sets can be merged. Let consider the

following equivalent states.
aly

alu

bi/x

alu

B1 bi/x

(]

AACT

alu
aly
The Decision table to the above figure is shown below:
STATE OK ERROR
1 Allu B1/u
A1 Ally A2/x
B1 B1ly B2/x
A2 B2/w A3/u
B2 A2/w B3/u
A3 A3/u B2ly
B3 B3/u A2ly
The merged equivalent states are represented by as follows
aly alw alu
bly
The Unmergeable states are represented by as follows
aly alw alis
A1 bix (Az)—P (A3)
alu \/
bly
o N
B1 bix B2 B3

bJ)
aly alw alu

(3)_Transition Bugs(public question)
» The connectivity between two or more states is known as transition.
» The bugin transition is called Transition Bug.
1._Unspecified and Contradictory Transitions:
% Atransition is specified between states. If a transition may occur between states and
not specified (i.e. unspecified transition) then the transition bug occurs.
% If a transition is not possible in the state then there must be a method that prevents
the occurrence of input in that state.

Prepared by: S.Prasanna

Software Testing Methodologies
s Ifthere is no such method available then the occurrence of input becomes inefficient.
% So to avoid transition bug one transition must be specified for every input state
combination.

% A programdoes not contain contradictions, if one input must be processed at a time to
produce desired output. If a transition does not possible between states and the
transition is specified then a contradictory transition may occur.

% Thatis if a programmer does not take all the measures of a program then
contradictory transitions may occur because of transitions may not be possible
between some of the states. For example if a single bit of a state is misplaced by the
programmer then it doubles the number of states in the state graph and performs the
contradictory transitions. This contradiction gives a transition bug.

2._Exampl li ion

% The following example shows how to convert a specification into a state graph and

how contradictions can come out.(public question)
OK

ERROR ERROR ERROR ERROR ERROR
(2o ()) (e yen)
N L _

Rule 1:

% The program will maintain an error counter which will be incremented whenever there is
an error. Here there are only two input values OK, ERROR.

s These values make it easier to detect ambiguities and contradictions in a state table.

¢

INPUT

STATE OK ERROR
0 0/NONE 1/
1 2/
2 3/
3 4/
4 5/
5 6/
6 7/
7 8/

Rule 2:If there is an error rewrite the block.
INPUT

STATE OK ERROR
0 O0/NONE 1/REWRITE
1 2/REWRITE
2 3/REWRITE
3 4/REWRITE
4 5/REWRITE
5 6/REWRITE
6 7/REWRITE
7 8/REWRITE

Rule 3: _If there are three errors, erase 10 centimeters of tape and rewrite the block.
INPUT

STATE OK ERROR
0 O/NONE 1/REWRITE
1 2/REWRITE
2 3/REWRITE,ERASE,REWRITE

Prepared by: S.Prasanna

Software Testing Methodologies
3 4/REWRITE,ERASE,REWRITE

4 5/REWRITE,ERASE,REWRITE
5 6/REWRITE,ERASE,REWRITE
6 7/REWRITE,ERASE,REWRITE
7 8/REWRITE,ERASE,REWRITE
Rule 4: If there are three erasures and another error occur, then put out of service.
INPUT
STATE OK ERROR
0 O0/NONE 1/REWRITE
1 2/REWRITE
2 3/ERASE,REWRITE
3 4/ERASE,REWRITE
4 5/ERASE,REWRITE
5 6/0UT
6
7
Rule 5:
% If the erasure was successful return to the normal state and clear the error counter.
INPUT
STATE OK ERROR
0 0/NONE 1/REWRITE
1 2/REWRITE
2 3/ERASE,REWRITE
3 0/NONE 4/ERASE,REWRITE
4 O0/NONE 5/ERASE,REWRITE
5 O0/NONE 6/0UT
6
Rule 6:
% If the rewrite was unsuccessful increment the error counter, and try another rewrite.
Rule 7:
% If the rewrite was successful decrement the error counter and return to the previous state.
INPUT
STATE OK ERROR
0 0/NONE 1/REWRITE
1 0/NONE 2/REWRITE
2 1/NONE 3/ERASE,REWRITE
3 0/NONE 4/ERASE,REWRITE
2/NONE
4 0/NONE 5/ERASE,REWRITE
3/NONE
5 0/NONE 6/0UT
4/NONE
6
Rule 7 A:

*

% If there have been no erasures and the rewrite is successful return to the previous state.

Prepared by: S.Prasanna

Software Testing Methodologies

@
>
>

Y YVVV Y VVV V VVVY@&aV

3._Unreachable States:
¢ An un reachable state is like unreachable code If a transition is not specified between
two states then that states are unreachable. That is if any incorrect transition occurs
then the state becomes unreachable.
% There may be a transition from unreachable states to other states.
4. _Dead States:
% Adead state is a state that once entered cannot be left.
% In programming, a set of states may be dead because a program has two stages.
¥ In the first stage an initialization process takes place that consists of number of states
to be initialized.
% In the second stage strongly connected set of functional states takes place in which
operations of the states cannot be completed. So the functional states become dead
states. The only solution to this problem is system restart.

Output Errors:

X/

X/

*

X/

*

X/
*

The errorsin output are called output errors.

The states, the transitions, and the inputs may be correct & there may be no dead or
unreachable states, but the output for the transition may be incorrect.

Output actions must be verified independently for states and transitions.

Encoding Bugs:(public question)

Encoding is a process of converting or coding the inputs, transitions, and outputs of the state.
Encoding process is applied in both explicit and implicit finite state machines.

The encoding bugs are more common at the time of input coding, output coding and state
coding in an explicit state machine.

The encoding bugs may also exist in an implicit finite state machine, because of different
views made by programmer and tester.

The behavior of a finite state machine is invariant under all encodings.

Thatis say that the states are numbered 1 to n.

If you renumber the states by an arbitrary permutation, the finite state machine is unchanged.
Similarly for input and output code is unchanged.

Therefore if you present your version of the finite state machine with a different encoding and
if the programmer objects to renaming then there is encoding bugs.

You may have to look at the implementation for these, especially the data dictionary.

The implementation of the fields as bunch of bits tells you the potential size of the code.

If the number of code value is less than this potential, there is an encoding process.

In strongly typed languages with user defined semantic types the encoding process is
probably a type conversion a set membership to integer.

Again you may have to look at the program to spot potential bugs of this kind.

(3)_State Testing:
() _Impact of Bugs:

>

>

Let us say that a routine is specified as a state graph that has been verified as correctin all
details.

From the following the bugs may occur.

Wrong number of states

Wrong transition

Wrong output for a given transition

Pair of states are wrongly made equivalent

Set of states are split to create in equivalent duplicates.

Set of states become dead.

oakwh =

Prepared by: S.Prasanna

Software Testing Methodologies
7. Set of states become unreachable.

(i _Principl
» State testing is defined as a functional testing technique to test the functional bugsin the
entire system.
The principles for state testing are very similar to the principles of path testing.
For path testing itis not possible to test every possible path in a flowgraph.
Similarly for state testing itis not possible to test every possible path in a state graph.
In a state graph a path is a sequence of transitions caused by a sequence of inputs.
In state testing the primary interestis given to the states and transitions rather than outputs.
In state testing define a set of covering input sequences and for each step in each input
sequence define the expected next state, the expected transition and the expected output
code.
A set of tests consists of three sets of sequences
1. Input sequences.
2. Corresponding transitions
3. Output sequences.
(i) _Limitations and extensions:
The limitation is: State transition coverage in a state graph does not guarantee complete testing.
The extension:
» Chow defines a hierarchy of paths and methods for combining paths.
» The simplestis called a 0 switch which corresponds to test each transition independently.
» The next level consists of testing transition sequences consisting of two transitions called 1
switch. The maximum length switch is an n-1 switch where n is the number of states.
The different advantages are
» State testing is useful when the error corrections are less expensive.
> State testing is also useful when the testers want to detect a specified input.
» A state testingis specifically designed for catching the deep bugs.
> A state testing provides easiness during the design of tests.
The different disadvantages are
» State testing does not provide through testing because when a testis completed there might
be some bugs remains in the system. Testers require large number of input sequences to
catch transition errors, missing states etc..
(iv)_What to model:
» Combination of hardware & software can be modeled sufficiently complicated state graph.
» The state graph is behavioral model thatisitis functional rather than structural.
(v)_Getting the data:
» Here labor intensive data gathering is needed and needs more meetings to resolves issues.
(vi)_Tools:
» Tools for hardware logic designs are needed.
(4) _Testability tips:
(A balm for programmers:
» The key to testability design is easy that is we can easily build explicit finite state machines.
(i) _How big How small:
» For two finite state machines there are only eight good and bad ones.
> For three finite state machines there are eighty possible good and bad one.
» Similarly for Four state machines 2700 most of which are bad and for five state machines
275000 most of which are bad. For six state machines 100 millions most of which are bad.
(i) _Switches, Flags and unachievable paths :
» The functionality of switches and flags are almost similar in the state testing.

YVVVVYVYYVY

A\

Prepared by: S.Prasanna

Software Testing Methodologies

>

A\

Ej YV VVV VVY VY V VV V

vV VV VEVYY VV Vv V

Switches or flags are used as essential tool for state testing to test the finite state machine in
every possible state.

A flag or switch value is set at the initial process of finite state machine, and then this value is
evaluated and tested.

Depending on its value the specific path is selected to find an easiest way for testing the
finite state machine.

Mostly the switch or flag works on true or false condition.

In figure a flag is set to p in the program. This p variable is assigned to some value which can
be evaluated.

Depending on its value a path is separated into branches in order to proceed testing in either
way that is u or x

This also can be done by removing a flag and separating v path into two different paths w,y
as shown in the above figure.

Unachievable paths those paths which don’tinteract with each other.

Here there are four paths u,w,x,y in that two are not achievable and two are achievable.
Thatis uis not achievable to path y and path x is not achievable to path w & u is achievable
to path w and path x is achievable to path y.

Finally both the paths uw and xy are needed to cover the branches.

In the above figure there are three flag variables p,q,r in the program.

These variables are assigned some values that can be evaluated and based on which the
paths are separated into branches.

The main benefit of using this implementation is to remove the unnecessary combination
from the decision tree as shown in the figure c.

E ialand i Lfi bel

To understand an essential and inessential finite state behavior, we need to know the
concept of finite state machines and combinational machines.

There is a difference between finite state machines and combinational machines in terms of
quality.

In combinational machines a path is chosen depending on the truth values of predicates.

The predicate truth values are the values which once determined will never change and
always remains constant.

In these machines a path is equivalent to a Boolean algebraic expression over the predicates
Further more it does not matter in which order the decisions are made.

-Design guide lines:

Fine state machine is represented by a state graph having a finite number of states and a

finite number of transitions between states

Finite state machine (FSM) is a functional testing tool and programming testing tool.

Thatisitis an essential tool for state testing in order to identify or model the behavior of

software.

The different guide lines are given below.

1. Initially learn the procedure of finite state machine that are used in both hardware and
software.

2. Design an abstract machine in such a way that it works properly and satisfies the user
requirements.

3. Design an explicit finite state machine.

4. Prototype test must be conducted thoroughly to determine the processing time and space

of explicit finite state machine design.

5. If time or space is more effecting the overall system, then use shortcuts to complete the

design process.

Prepared by: S.Prasanna

Software Testing Methodologies
6. If there are more than a few numbers of states then use hierarchical design to represent
them.
7. If thereislarge number of states then software tools and programming languages must
be developed.
8. The capability toinitialize to an arbitrary state must be inbuilt together with the transition
verification instrumentation.

GRAPH MATRICES AND APPLICATIONS

(1)_Motivational Overview:

(1) What are the problems with pictorial graphs?

Problems with pictorial graphs:

1. Tracing a path in a pictorial graph is difficult task.

2. Thereis every possibility of having an error while tracing i.e. we can miss a link or cover

some links twice.
3. Even yellow marking pen also not be reliable because once the concentration is lost during
marking; we will lose the position to be marked.

4. ltis very difficult to generate test cases for a pictorial graph

5. The time is also wasted if pictorial graphs are used.

(20 What are the graph matrices and their applications?

(_) Graph Matrices:
The matrix in which every node of a graph is represented by one row and one column is
called a graph matrix. or The matrix that represents the structure of a graph is known as
graph matrix.
In a graph matrix each row and each column intersection represents, the relationship
between the respective row nodes and column nodes.
A graph is an abstract representation of a software structure.
A graph can be traced thoroughly to perform a check for covering paths, sensitizing paths,
predicate expressions etc.
Here we use either pictorial graphs or graph matrices.
Tracing a path in a pictorial graph is difficult task.
There is every possibility of having an error while tracing i.e. we can miss a link or cover
some links twice. Even yellow marking pen also not be reliable because once the
concentration is lost during marking; we will lose the position to be marked.
» Graph matrices are introduced to overcome these problems.
» A graph matrixis purely based on matrix methods.

(il _Applications:
() _Tool Building:

» Using matrix representation and its methods we construct test tools.
> ltis more difficult to generate test cases for a pictorial graph than the graph matrix.
(il Doing and understanding testing theory:
» Theoretically speaking, graphs are the simple structures but when used in theorem proving
we use graph matrices because pictorial graphs will omit some important algorithms.
(iii) _The Basic Algorithms:
» The basic algorithms represent a basic tool kit. The basic tool kit consists of
1. Matrix multiplication is used to derive the path expression from every node to every other
node.
2. A partitioning algorithmis used for eliminating loops from graphs.
3. A collapsing process is used to get the path expression.

VVV VY V

Prepared by: S.Prasanna

Software Testing Methodologies

(3) Write relative merits and demerits of different Graph Matrix representations?

(i)_Merits:

1. Using matrix representation and its methods we construct test tools.

2. Matrix representation gives the best results.

3. Graph matrices are used for developing algorithms and proving theorems of graphs.

4. Linked list representation is used to represent graph matrices.

(i) _Demerits:

1. Graph matrix representation for two dimensional arrays is useful only for small graphs
with simple link weights, however with large graphs; this matrix representation gives
inconvenience.

2. Matrix representation requires a large storage space.

3. An additional weight matrix is also needed.

4. Since many entries of the graph matrices are null, the time taken to process such entries
is a waste of time.

(2) The Matrix of a graph:
(1)_Explain he matrix of

(i)_Basic Principles:

» A graph matrix is array representation of nodes. In a graph matrix each row and each
column intersection represents, the relationship between the respective row nodes and
column nodes.

» Some examples of graphs and their associated matrices are given by.

@ [agtal 8@a 81—@”

Figure (a) Figure (b) Figure (c) Figure (d)
1 2 3 4
a
b
d
Figure (f)
1 2 3 4 5
1 a
2
3 d b
4 f
5 e h

Figure (f)

Prepared by: S.Prasanna

Software Testing Methodologies

1 i

2

3 b h

4 i

5 m

6 c| Il |d

7 e
8 f k)

Figure (h)

> Now observe the following
1. The size of the matrix is equal to the number of nodes.
2. Thereis a place to put every link weight between any node and any other node. i.e. The
entry at a row and column intersection is the link weight of the link.
3. Aconnection fromnode i to node jdoes not same that a connection from node jto node
i. For example in figure (h) the (5,6) entry is m but the (6,5) entryis c..
(i) _A simple weight:
> Let ‘1’ means that there is a connection and ‘0’ means that there is no connection.
» The different arithmetic rules are
1+1=1 1+0=1 0+0=0
1x1=1 1x0=0 0x0=0
» A matrix with link weights defined with 1 or O is called a connection matrix.
» Consider the following flowgraph and its matrix representation.
1 2 3 4 5 6 7 8

1 1] 1 2-1=1

y

1 1 1 2-1=1

4 1 1-1=0

5 1 1-1=0

4 1 11 3.1=2

7 1 [1-1=0

g 1 1 1 3.1=2
6+1=7

» Each row of a matrix denotes the outlinks corresponding to that node and each column
denotes the inlinks corresponding to that node.

» Abranch node is a node with more than one non zero entry in its row. For example rows
1,3,6, and 8 of the above figure have more than one entry, so these nodes are branch
nodes.

» A junction node is a node with more than one non zero entry in its column. For example
columns 5,6 and 7 of the above figure have more than one entry, so these nodes are
junction nodes

» By subtracting 1 from the total number of entries in each row and ignoring rows with no
entries we obtain the number of decisions for each row. Adding these decision values and
then adding 1 to the sum gives the graph’s cyclomatic complexity.

> In the above figure the graph’s cyclomatic complexity is 7.

(i) __Further notation:

» The link weight between node i and node j, is denoted by a;.

Prepared by: S.Prasanna

Software Testing Methodologies

>

>

YVVVY 'V

A selfloop at node i is denoted by ai The link weight for the link between nodes jand i is
denoted by a;i.
Consider the following figure.

Fromthe above figure
abmd=a13 ass ass aer
degef=ae7arsasrarsas2
ahekmlld=a13as7 ars ass ase aes Ase A67
The expression aj aj ajm denotes that a path from node i to j, with a self loop at jand then a
link from node j to m.
The transpose of a matrix is the matrix with rows and columns interchanged.
It is denoted by AT.
If C=AT then cj=aj
The intersection of two matrices is denoted by A#B. If C=A # B then cj=a;j # b;.

(3) Node Reduction Algorithm:

Write the steps involved in Node Reduction Algorithm. Illustrate with an example?

Node Reduction Algorithm:

Steps:

1.

2.

3.

4.

The reduction is done one node at a time by combining the elements in the last column with
the elements in the last row and putting the result into the entry at the corresponding
intersection. This step is called cross-term reduction. After cross term reduction the matrix
size is reduced by one.

If there is one entry in one position and we want to enter another entry in that same position
then add that two entries. This step is called parallel reduction.

If there is entry in principle diagonal then it represents a selfloop. To remove that selfloop,
multiply every term in that row by the loop term. This step is called loop reduction.

By using the above three steps a 2x2 size matrix is obtained with the path expression. This
path expression is the required path expression from node 1 to node 2.

Example:

>

>

Consider the following flow graph.

Specify the above flowgraph in the matrix format.
1 2 3 4 5
a

A BN W N =
o
o

Prepared by: S.Prasanna

Software Testing Methodologies

>

Remove the selfloop at node 5 by applying the loop reduction step.
1 2 3 4 5

1 a

2 .

3 d . b

4 c . f
5 h*g | h%

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction and parallel reduction steps.

T 2 3 4
1 a
2
3 d . b
4 ctfh*g | fh*e

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction and parallel reduction steps.

1 2 3
1 - a
2

3 d+b(c+fh*g) | bfh*e

Again a selfloop occurred at node 3. So Remove the selfloop by applying loop reduction
step.

1 2 3
11 - a

2
3 (bfh*e)*(d+b(c+fh*g))

Combine the elements in the last column with the elements in the last row by applying
cross-term reduction.
1 2

1| 7 | a(bfh*e)*(d+b(c+fh*g))

2

Note: Refer other four examples from class notes

(4) Applications:

QI i licati f Node Reduction Algorithm:
(ii_Maximum Path Count Arithmetic:

>
>

For theory refer unit-5 material.
For example refer unit-8 notes.

(i) _Probability of path expressions:

>
>

For theory refer unit-5 material.
For example refer unit-8 notes.

Prepared by: S.Prasanna

Software Testing Methodologies

(5) Relations:

Relation? What are the different pr ies of Relations?
Relation:
The property by which two nodes are interconnected is called a relation.
A relation can be represented by a link with connecting nodes.
A link represented with link weight.
This link weight can be numerical, logical, illogical, or whatever.
The graph matrix which consists of unweighted simple links is called a connection matrix
The graph matrix which consists of weighted simple links is called a relation matrix.
Different properties of relations:
» The different properties of relations are.
(i) _Transitive Relations:
% ARelation Ris transitive if aRb and bRc then aRc.
s Examples of transitive relations are: is connected to, is greater than or equal to, is less than
or equal to, is a relative of, etc.

®,

s Examples of intransitive relations are: is a friend of, is a neighbor of, etc.

YVVVVYY

(il _Reflexive Relations:

% Arelation Ris reflexive if for every a, aRa. This relation represents a self-loop at every
node.

s Examples of reflexive relations are: equals, is a relative of, etc.

s Examples of irreflexive relations include: not equals, is a friend of, etc.

(ii)_S ic Relations:

% Arelation Ris symmetric if aRb then bRa. This relation represents if a link froma to b then
there is also a link from b to a.

% A graph whose relations are symmetric is called an undirected graph and a graph whose
relations are not symmetric is called a directed graph

s Examples of symmetric relations are: a relative of, is brother of, etc.

s Examples of asymmetric relations are: is the boss of, is greater than, etc.

1) _Anti ic Relations:

% Arelation Ris antisymmetric, if aRb and bRa, then a = b.

s Examples of antisymmetric relations are: is greater than or equal to, is a subset of, etc.

s Examples of nonantisymmetric relations are: is connected to, is a relative of, etc.

(2) What are Equivalence Relations and Partial Ordering Relations?

(i Equival Relations:

> Arelation is said to be an equivalence relation if it satisfies transitive, reflexive, and
symmetric properties. If a set of objects satisfy an equivalence relation, then it forms an
equivalence class.

» Theidea behind a partition-testing is that we can partition the input space into equivalence
classes.

(i) Partial Ordering Relations:

» A partial ordering relation satisfies the reflexive, transitive, and antisymmetric properties.

» A graph which shows partial ordering relation between its nodes is said to be partial
ordered graph. Partial ordered graphs have different properties. They are
i. loop free,
ii. Thereis atleast one maximum element.
ii. There is at least one minimum element.

Prepared by: S.Prasanna

Software Testing Methodologies . _
iv.If you reverse all the arrows the resultant graph is also partial ordered.

» The maximum element ‘a’represents the relation xRa. Similarly, the minimum element ‘a’,

represents a relation aRx. Examples are Trees and loop-free graphs.
(6) The Powers of a Matrix:

(i _Explain about Matrix Powers and Products?

Matrix Powers and Products:

» A graph matrix is array representation of nodes. In a graph matrix each row and each
column intersection represents, the relationship between the respective row nodes and
column nodes.

» The square of the matrix represents all path segments with two links long. Similarly the
third power represents all path segments with three links long and so on.

> Let A be a matrix whose entries are aj. The set of all paths between any node i and any
node jnis given by

n n n
dij+ s akay + dik akmam; + L Aikakma mi Qj
& == =

n

... n n .. aikakmaml .. aqp a
+ J
k% m§1 I; pg’l
» Given a matrix whose entities are aj the square of that matrix is given by
n
dij= = aikay
k=1

» When given two matrices A,B with entries aik and by respectively. The product of ABis a
new matrix C whose entries are ci;.
n

Cij = = aikby
_ _ k=1 _ _ _
A a2 A auis bir b1z bz b Ci1 Ci2 Ciz3 Cus
az1 az22 A3 A X D21 b22 b2z bas — | C1 C22 C23 Cau
as1 as2 a3z amu D34 D2 bss bas C3t C32 Caz Cas
A4 Qa2 Az au Dsr baz Das bas Csért Ca2 Ca3 Cu

C11 = a11b11+ @12D21+ Q@13 D31+ 214 bay
C12=a11D12+ Q1222 + A13 b3z +a14ba2
Ciz=aq1b13+a12 b2z + a13 b33 + a14ba3

C32 = Aa1b12+ Qa2b22+as3bsz + Qa4 baz

Cas = QAa1D14 +342 D24 +843b3s+a44 Daa
» The ca2entry is obtained by combining, the entries in the third row of the A matrix, with the
corresponding elements in the second column of the B matrix.

Example:
» Consider the following flowgraph and its graph matrix.

Let A

n

O N w0 N =
Q.
o

Q| o
-,

Prepared by: S.Prasanna

Softw%g ;{‘gsAting Methodologies

1 2 3 4 5 1.2 3 4 5 1.2 3 4 5
1 a 1 a 1 ad ab
A2 = 2 3 2
3 b X 3 d b = 3 bc bf
4 f 4 c 4 fg fe fh
5 g| e h 5 gl e h 5 ed+hg| he| eb | p
A3= AZ* A
1.2 3 4 5 12 3 4 5 1 2 3 4 5
1 ad ab 1 a 1 abc abf
2 y. 2
A= 3 bc bf x 3 d b = 3 bfg bfe bfh
4 fg fe fh 4 4 fed+fhg fhe | feb | fh?
5 ed+hg| he | eb | pe 5 g| e h 5 hed+ebc+h?g | h’ | heb| ebf+h?
@ d dADOU he N
(a)_The set of all paths:
> The set of all paths is given by the following infinite series of matrix powers.

Vg

Y A= AMAZHASH | +A”

i=1
Let | be an n x n diagonal matrix where n is the number of nodes, then the above
expression becomes

Y A= A(I+AT+AZHA3H | +A”)
i=1
We know that (A+A) = A
So (A+1)?2 = A2+ 2A1 + 2= A% + 2A + |2 = A2 + A+A + |°= A2+A+]. (Since A+ A= A)

Similarly
(A+D)" = [+AT+AZ+A3+ A"
Now the original expression becomes

> A= A(HATHAZHARH +A”) = A(A+H)”
i=1
If the paths oflength n-1, where n is the number of nodes, the set of all such pathsis

n-1

> A= A(A+H)2
i=1

The algorithm for finding set of all paths:

The algorithm for finding set of all paths

1. Express n-2 as a binary number.

2. Calculate the successive squares of (A+l) matrix, thatis (A+1)?, (A+1)*, (A+1)8, (A+)'®
and so on.

3. Select only the binary powers of (A+l) matrix that correspond to a value 1 in the binary
representation of (n-2).

4. The set of all paths of length less than or equal to (n-1) is obtained from the original
matrix as a result of step 3.

Prepared by: S.Prasanna

Software Testing Methodologies
» For example the set of all paths for 16 nodes is given by
15
> A= AA+HDBA+NH(A+I)?
i=1
> A matrix for which A?=A is said to be idempotent matrix. A matrix whose successive power
gives an idempotent matrix is called idempotent generator. The n'" power of a matrix A + |
over a transitive relation is called the transitive closure of the matrix.
(i) _What are thel 2H n raphs with 1 into loop-free graphs:
» Loops are infinite sum of matrix powers.
» The way to handle loops is similar like handling loops in regular expressions.
» Loop terms are displayed on the principle diagonal of the graph matrix. A loop can be
removed from a graph by using loop reduction step of Node Reduction Algorithm.

Example:
» Consider the following flowgraph and its graph matrix

1 2 3 4 5 1.2 3 4 5
(—2—(E)—L+(a)—2 1 a 1 a
f 2 2 1
e g LetA= d b A+l= 3 d| 1] b
4 c f 4 c 1 f
Oh 5 gl e h 5 gl e h+1

> In (A+l) matrix there is a selfloop at node 5. Now we can obtain (A+l)* after removing the
self loop at node 5 by applying loop reduction step.
> i.e. Toremove selfloop at node 5 multiply loop term h* with all row elements of row 5.
1 2 3 4 5

11 a
2 1
(A+l) =3 dj{ 1] b
4 c 1 f
5 h*g h*e 1

(A+1)7"= (A+1)" (A+])*

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
11 a 11 a 1] ad al ab
2 1 v 1 2 |1
= 3 d{ 1] b X ! dl 1] b = 3 |d+bc 1] b [bf
4 c 1] f 4 c 11 f 4 |ctfh*g |fh*d 1 | f
3 h*g| h*e 1 5 h*g h*e 1 5 |h*g+h*ed| h*e h*eb| 1
(A+1)%* = (A+1)?* (A+])* 1 2 3 4 5
12 3 4 5 1 2 3 4 5 11| ad+abc a | ab |abf
11 ad a| ab 11 [al [| 2 1
2 1 ? 1 3 | d+bc+ 1+ b | bf
=3 | d+bc 1] b|[bfl X8 d 1 b = bfh*g bfh*e
4 |ctfh*g |fh*¢ 1 fl 4 ¢ 1 f] | c+hg+ 1+ P
§ |n*g+hed[h’e[h'ebl 1| % [h'gh'd | 1| fh*ed fh*e| qep
dI [h*g+h*ed | ., |, |1+
] +hg‘e(d+bc) he | h*el) pugps

» No new loops were found for the second power matrix

Prepared by: S.Prasanna

Software Testing Methodologies
» But the third power matrix has a loop term bfh*e at node 3. So all other entries in that row
are multiplied by (bfh*e)*. Similarly there is a loop term (fh*eb) at node 4.
» So all other entries in that row are multiplied by (fh*eb)*. Also a loop term (h*ebf)* at
node 5.
» So all other entries in the fifth row is multiplied by (h*ebf)*
(ivy Explain about Partitioning Algorithm in detail?
Partitioning Algorithm:
» ltis an algorithm which is used to transform the graphs with loops into loop free graphs.
» There are certain points to remember here. They are
1. A graphisloop free at the top level.
2. Many graphs with loops are easy to analyze, if you know where to break the loops.
3. This algorithmis used to develop a tool which can identify the loops.
» The partition algorithmrepresents.
(A+D)" # (A+)T

Example:
» Consider the following flowgraph and its graph matrix (A + I).
© 1 2 3 4 5 6 7 8
1 1 1
2 1 1 1
(8) 3 1
(3 A+l = 1
(5) 5 1
O, 6 1
7| 1 1
8 1

» The transitive closure matrix (A+I)" can be obtained by using the following steps.
Step:1: Mark all diagonal entries by 1
Step:2: The flow fromnode 1 to node 6 is 1-2-7-2-3-4-5-3-4-6
So mark nodes 1,2,3,4,5,6,7 by 1 in the first row
Step:3: The flow fromnode 2 to node 6 is 2-7-2-3-4-5-3-4-6
So mark nodes 2,3,4,5,6 by 1 in the second row.
Step:4: The flow fromnode 3 to node 6 is 3-4-5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the third row
Step:5: The flow fromnode 4 to node 6 is 4-5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the fourth row
Step:6: The flow from node 5 to node 6 is 5-3-4-6.
So mark nodes 3,4,5,6 by 1 in the fifth row.
Step:7: The flow fromnode 6 is only 6. So mark node 6 by 1 in the sixth row.
Step:8: The flow from node 7 to node 6 is 7-2-3-4-5-3-4-6
So mark nodes 2,3,4,5,6,7 by 1 in the seventh row
Step:9: The flow fromnode 8 to node 6 is 8-3-4-5-3-4-6
So mark nodes 3,4,5,6,8 by 1in the eighth row

Prepared by: S.Prasanna

Software Testing Methodologies
» Therefore the transitive closure matrixis.

1 2 3 4 5 6 7 8
IR ERE
v HEEERERERE
: 1 1] 1] 1
(A+l)n =7 101 1]1
5 1] 1] 1] 1
4 1
1 HEEERERERE
g BERERE 1

» The transpose of (A+])"is.
1 2 3 4 5 6 7 8

(A+)"T =

EEG RN QSN TN
N N [S
I G N Y
= - -

N N R N BN N
alalal=]ala
m = alalal=

(oo BN Il o)) BN RN CE

1

> The intersection of transitive closure matrix (A+I)" and transpose matrix (A+|)"T is given by,
identifying similar rows and column entries from (A+I)" and (A+I)"T
1 2 3 4 5 & 7 8

1] 1

2 1 1

3 1 1 1

4 1 1 1
(AH)HAH)T= ¢ T

6 1

7 1 1

8 1

» Fromthe above matrix, by comparing a row/column with other rows/columns, the
equivalent nodes to be grouped.
> After grouping
Let A=[1] B=[2,7] C=[3,4,5] D=[6] E=[8]
» The graph and graph matrix representation to the above values is given by
FlowGraph

Graph Matrix

A B C D E

A1
() R
C 1] 1
D 1
E 1 1

EHB—C-C)

Prepared by: S.Prasanna

Software Testing Methodologies
(v)_Explain about Breaking L.oops And Applications:

Consider the matrix format of a flowgraph.

If there are any entries on the principal diagonal, then break the loop for that link.

Here we use successive powers of the matrix.

Another way to break the loop is applying the node reduction algorithm.

Here we break the loop or we remove the self loop at any node is, by multiplying loop term

with all other entries in that corresponding row.

(viy_Explain about Some matrix properties?

» To interchange the node names in the flowgraph, we must interchange both the
corresponding rows and the corresponding columns of the node names in the graph matrix.

» Consider the following flowgraph and its Graph matrix.

YVVVVY

A A N =
0| Q
T
-y

» Interchange rows 3 and 4 to the above graph matrix.
1 2 3 4 5

1 a
2
3 c f
4 d b
5 g | e h
» Interchange columns 3 and 4 to the above graph matrix.

1 2 3 4 5
a

d| b
g e h

ON N
0
*

» The flowgraph to the above graph matrix is given by.

» By comparing the above flowgraph with the given flowgraph, itis proved that nodes 3,4 are
interchanged

Prepared by: S.Prasanna

Software Testing Methodologies

(7)_Building Tools:
Explain about building tools of graph matrices?
i. Matrix Representation in software:
» Agraphis an abstract representation of the software structure.
» Theoretically speaking, graphs are the simple structures but when used in theorem proving
we have to apply graph matrices.
» |t consists of
a_Overview:
% We prove theorems and develop graph algorithms by using graph matrices. When we
want to process graphs in a computer we represent them as linked lists.
Node degree and graph density:
Each intermediate node may have any number of inner links and outer links.
The inner links of a node represents the in degree of the node.
Similarly the outer links of a node represents the out degree of a node.
The sumof in degree and out degree of a particular node is the degree of that node.
The average degree of a node for a graph is between 3 and 4.
The degree of a simple branch and simple junctionis 3.
The degree of a loop in a graph is 4.
Any graph with average degree of 5 or 6 is said to be a very busy flowgraph.
¢_What is wrong with arravs:
% We can represent the matrix as a two-dimensional array for small graphs with simple
weights, but this is not convenient for larger graphs because
()_Space:
« Matrix representation requires alarge storage space.
¢ Hence alinked list representation is used which requires less storage space.
(i)_Weights:
% An additional weight matrix is required for complicated link weights.
(i) _ Variable-Length Weights:
% Thelink weights in a flow graphs are represented in a two dimensional string array
(matrix format), in which most of entries are null.
(iv)_Processing time:
% Since many entries of the graph matrices are null, the time taken to process such
entries are more.
i)_Linked-list R .
% Consider following the flowgraph.

3 =

X/
X4

L)

X/
X4

L)

X/
X4

L)

X/
X4

7/ 7/
XA XA

7/
X

L)

% The linked list for the above flowgraph is

Prepared by: S.Prasanna

Software Testing Methodologies
1,3;a
2,exit
3,2;d

5,5;h
List entries are usually placed in lexicographic (dictionary) order.
The link weight expressions are stored in a string array to which link names act as

X/
X4

L)

X/
X4

L)

pointers.
% If the link weights are values then, they are stored in an array of fixed length.
List Entry Content
1 node 1,3;a
2 node 2,exit
3 node 3,2:d
4 node 4,2;c
,5;f
S node 5,2;9
,3;€e
,9;h

% The node names appear only once, at the first link entry. A node name i.e starting node
is used for the list entry.
% And there are back pointers for the inlinks. So we get

List Entry Content List Entry Content
1 node 1,3;a 4 node 4,2;c
2 node 2,exit oNi
3, 3,
4, 5 node 5,2:g
5, ,3;e
3 node 3,2;d 5h
14;b 4’
1, 5,
5,

% ltisimportant to keep the lists sorted in lexicographic order with the following priorities:
node names or pointer outlink names, inlink names.

L_Matrix Operations:
% Parallel links after sorting are adjacent entries with the same pair of node names. Ex:
y node 17,21;x
X 44y
@D)@.W 44 T
44;w

% We have three parallel links fromnode 17 to 44. So

Prepared by: S.Prasanna

Software Testing Methodologies
Node 17,21;x

,44;y(where y=y+z+w)
b Loop Reduction:
% The loop reduction step is used to remove the loop. Here self link represents the loop.
% Forremoving aloop, the loop termis multiplied with all the outer links of the node at
which the loop presents. Consider the following example.

List Entry Content Before Content After

5 node 5,2;9 node 5,2;h*g
,3.e ,3:h*e
,9;h
4, 4,
5,

=]

¢_Cross term reduction;

% Select a node for reduction.

% The cross termreduction represents that we combine every inlink to the node with every
outlink from that node after removing that node.

% Thelinks created by node removal are stored in a separate list which is then sorted and
thereafter merged into the master list.

ition, Multiplication and other operations:

¢ Here addition of two matrices is simple. Multiplication is more complicated.

+ Transposition is done by reversing the pointer directions, resulting in a list that is not
correctly sorted. Sorting that list provides the transpose. All other matrix operations can
be easily implemented by sorting, merging, and combining parallels.

>

X/

List Entry Content Before Content After
2 node 2,exit node 2,exit
3, 3,
4, 4,
5, S,
3 node 3,2;d node 3,2;d
4b ,2:bc
,5:bf
1, 1,
5, 5,
4 node4,2;c
,9;f
3,
5 node 5,2;h*g node 5,2;h*g
,3;h*e ,3;h*e
4,

3 Reduction Optimization;

» The optimum order for node reduction is to do lowest-degree nodes first. The idea is to get
the lists as short as possible as quickly as possible. Nodes of degree 3 reduce the total link
count by one link when removed. A degree-4 node keeps the link count the same, and all
higher-degree nodes increase the link count.

» Forlarge graphs with 500 or more nodes and an average degree of 6 or 7, the difference
between not optimizing the node-reduction order and optimizing it was about 50: 1 in
processing time.

Prepared by: S.Prasanna

Software Testing Methodologies o

¢ he test suite can be executed multiple times on the application under test.

% For example, if there is a need to test the application on different browsers and environments, we
need to just change the configurations of the test automation suite and execute.

+» In case of manual execution, we would need one more resource to execute the same set of test
cases on different environment / browser.

(a)_Reusability:
% The test suite can be built in such a way that the functions or methods written are highly reusable

across the framework. Also, the entire test suite built with a proper framework can also be utilized
for different versions of the application under test.
f Test Ex

% There is a chance of manual tester making errors during execution of test cases. But, the test
suite being automated we can expect no or zero errors during execution.

% For example, if there is a need to enter a value in an edit box such as 7693178.87651, a manual
tester might make mistakes (as this is a big number with five decimal values) but the automation
tool will not make any mistakes. It will enter the same value even if the testis run for many times.

(c) Better Coverage:

% As the time required executing automated test suite will be less compared to manual test case
execution, more number of test scenarios can be covered during the execution.

** Hence, we can expect better coverage.

Prepared by: S.Prasanna

	(1) Purpose of Testing:
	(i) What we do:
	(ii) Productivity and quality in Software:
	(iii) Goals for testing:
	(iv) Phases in a Tester’s Mental Life:
	(b) Phase 0 Thinking:
	(c) Phase 1 Thinking-The Software Works
	(d) Phase 2 Thinking-The Software Doesn’t Work:
	(e) Phase 3 Thinking-Test for Risk Reduction:
	(f) Phase 4 Thinking-A State of Mind:
	(g) Cumulative Goals:
	(v) Test Design:
	(vi) Testing Isn’t Everything:
	(vii) The Pesticide Paradox and the Complexity Barrier:

	(2) Some Dichotomies:
	(i) Testing Versus Debugging:
	(ii) Function Versus Structure:
	(iii) The Designer Versus the Tester:
	(iv) Modularity Versus Efficiency:
	(v) Small Versus Large:
	(vi) The Builder Versus the Buyer:

	(3) A Model For Testing:
	(i) The Project:
	(ii) Overview:
	(iii) The Environment:
	(iv) The Program:
	(v) Bugs:
	(vi) Tests:
	(vii) Testing and Levels:
	(viii) The Role of Models:

	(4) The Consequences of Bugs:
	(i) The Importance of Bugs:
	(ii) How Bugs Affect Us-Consequences:
	(iii) Flexible Severity Rather Than Absolutes:
	(iv) The Nightmare List and When to Stop Testing:

	(5) A Taxonomy For Bugs:
	(i) General:
	(ii) Requirements, Features, and Functionality Bugs:
	(b) Feature Bugs:
	(c) Feature Interaction:
	(d) Specification and Feature Bug Remedies:
	(e) Testing Techniques:
	(iii) Structural Bugs:
	(b) Logic Bugs:
	(c) Processing Bugs:
	(d) Initialization Bugs:
	(e) Data Flow Bugs and Anomalies:
	(iv) Data Bugs:
	(b) Dynamic Versus Static:
	(c) Information, Parameter, and Control:
	(d) Contents, Structure, and Attributes:
	(v) Coding Bugs:
	(vi) Interface, Integration, and System Bugs:
	(b) Internal Interfaces:
	(c) Hardware Architecture:
	(d) Operating System:
	(e) Software Architecture:
	(f) Control and Sequence Bugs:
	(g) Resource Management Problems:
	(h) Integration Bugs:
	(i) System Bugs:
	(vii) Test and Test Design Bugs:
	(b) Test Criteria:
	(c) Remedies:
	(viii) Testing and Design Style:

	(1) Basics concepts of path testing:
	(i) Motivation and Assumptions:
	(a) Path testing
	(b) Motivation
	(c) The Bug Assumption:

	(ii) Control Flowgraphs:
	(a) About control flowgraphs:
	(i) Process Block
	Decisions and Case Statements:
	(ii) Junctions:
	Control flowgraph advantages:
	Control flowgraph disadvantages:
	(b) Control Flowgraphs Versus Flowcharts
	(c) Notational Evolution
	(d) Flowgraph–Program Correspondence
	(e) Flowgraph and Flowchart Generation

	(iii) Path Testing:
	(a) Paths, Nodes, and Links
	(b) Multi–Entry/Multi–Exit Routines
	(c) Fundamental Path Selection Criteria
	(d) Path–Testing Criteria
	(i) Path Testing (P∞):
	(ii) Statement Testing (P1):
	(iii) Branch Testing (P2):
	(e) Common Sense and Strategies
	(f) Which Paths

	(g) Path selection rules:
	(a) Selection of simple path:
	(b) Selection of additional paths:
	(c) Selection of Non-functional Sensible paths:
	(d) Meet the user Requirements:

	(iv) Loops:
	(a) The Kinds of Loops
	(i) Cases for a Single Loop:
	. (ii) Nested Loops:
	(iii) Concatenated Loops:
	(iv) Horrible Loops:
	(f) Loop–Testing Time

	(v) More on Testing Multi–Entry/Multi–Exit Routines:
	(a) A Weak Approach
	(b) The Integration Testing Issue
	(c) The Theory and Tools Issue
	(d) Strategy Summary

	(vi) Effectiveness of Path Testing:
	(a) Effectiveness and Limitations
	(b) A Lot of Work?
	(c)More on How to Do It

	(vii) Variations:

	(2) Predicates, Path Predicates, and Achievable Paths:
	(i) General
	(ii) Predicates
	(a) Definition and Examples
	Example
	(b) Multiway Branches
	(c) Inputs

	(iii) Predicate Expressions
	(a) Predicate Interpretation
	(b) Independence and Correlation of Variables and Predicates
	(c) Path Predicate Expressions

	(iv) Predicate Coverage
	(a) Compound Predicates
	(b) Predicate Coverage

	(v) Testing Blindness
	(a) The Problem
	(b) Assignment Blindness
	(c) Equality Blindness
	(d) Self–Blindness

	(3) Path Sensitizing:
	(i) Review :Achievable and Unachievable Paths.
	(ii) Pragmatic Observations
	(iii) Heuristic Procedures for Sensitizing Paths
	(iv) Examples
	(a) Simple, Independent, Uncorrelated Predicates
	(b) Correlated, Independent Predicates
	(c) Dependent Predicates
	(d) The General Case

	(4) Path Instrumentation:
	(i) Coincidental Correctness:
	(ii) Path Instrumentation.
	(iii) Link Markers
	(iv) Link Counters
	(iv) Other Instrumentation Methods.
	(vi) Implementation

	(5) Implementation and Application of path testing:
	(i) Integration, Coverage, and Paths in Called Components
	(ii) New Code
	(iii) Maintenance
	(iv) Rehosting

	(1) Transaction Flows:
	(i) Definitions:
	(ii) Example:
	(iii) Usage:
	(iv) Implementation:
	(v) Perspective:
	(vi) Complications:
	(a) General
	(b) Births
	(c) Mergers
	(d) Theoretical Status and Pragmatic Solutions (Solutions for the above examples)
	3. Absorption
	4. Conjugation

	(vii) Transaction flow structure:

	(2) Transaction Flow Testing Techniques:
	(i) Get the Transaction Flows:
	(ii) Transaction Flow testing:
	(iii) Inspections, Reviews, Walkthroughs:
	(iii) Path Selection:
	(iv) Sensitization:
	1. Use Patches
	3. Break the Rules
	4. Use Breakpoints

	(v) Instrumentation:
	(vi) Test databases:
	(vii) Execution:

	(3) Basics of Data-Flow Testing:
	(i) Motivation and assumptions:
	(a) What is it?
	(b) Motivation
	(c) New Paradigms-Data-Flow Machines
	Von Neumann machines
	MIMD (multi-instruction, multi data) machines
	(d) The Bug Assumptions

	(ii) Data Flowgraphs:
	(a) General:
	(b) Data Object State and Usage:
	2. Killed or Undefined

	(c) Data-Flow Anomalies:
	(d) Data-Flow Anomaly State Graph :
	(e) Static versus Dynamic Anomaly Detection:
	1. Dead Variables
	3. Records and Pointers
	4. Dynamic Subroutine or Function Names in a Call
	5. False Anomalies
	6. Recoverable Anomalies and Alternate State Graphs
	7. Concurrency, Interrupts, System Issues

	(f) Anomaly detection & types of data flow anomalies:

	(iii) The Data-Flow Model:
	(a) General:
	(b) Components of the model:
	(c) Putting it together:

	(4) Strategies in Data-Flow Testing:
	(i) General:
	(ii) Terminology:
	2. A loop-free path segment
	3. A simple path segment
	4. A du path

	(iii) The Strategies:
	(a) Overview:
	(b) All-du Paths (ADUP) strategy:
	(c) All-uses Strategy:
	(d) All-p-Uses/Some-c-Uses and All-c-Uses/Some-p-Uses Strategies:
	(e) All definitions Strategy:
	(f) All-Predicate Uses, All-Computational Uses Strategies:
	(g) Ordering the Strategies:

	(iv) Slicing, Dicing, Data Flow and Debugging:
	(a) General:
	(b) Slices and Dices:
	(c) Data-flow:
	(d) Debugging:

	(5) Application of Data-Flow Testing:
	(1) Domains and paths:
	(i) The Model:
	(ii) A domain is a set:
	(iii) Domains, paths and predicates:
	Review:

	(iv) Domain Closure:
	(v) Domain Dimensionality:
	(vi) The Bug Assumptions:
	(a) Double-Zero Representation:
	(b) Floating-Point Zero Check:
	(c) Contradictory Domains:
	(d) Ambiguous Domains:
	(e) Over specified Domains:
	(f) Boundary Errors:
	(g) Closure Reversal
	(h) Faulty Logic:

	(vii) Restrictions:
	(a) General
	(b) Coincidental Correctness
	(c) Representative Outcome
	(d) Simple Domain Boundaries and Compound Predicates
	(e) Functional Homogeneity of Bugs
	(f) Linear Vector Space
	(g) Loop-free Software

	(2) Nice Domains:
	(i) Where Do Domains Come From?
	(ii) Specified versus Implemented Domains:
	(iii) Nice Domains:
	(1) General
	(2) Linear and Nonlinear Boundaries
	(3) Complete Boundaries
	(4) Systematic Boundaries
	(5) Orthogonal Boundaries
	(6) Closure Consistency
	(7) Convex
	(8) Simply Connected

	(iv) Ugly Domains:
	(a) General
	(b) Nonlinear Boundaries
	(c) Ambiguities and Contradictions:.
	(d) Simplifying the Topology
	(e) Rectifying Boundary Closures

	(3) Domain Testing:
	(i) Overview:
	(ii) Domain Bugs and How to Test for Them:
	(a) General:
	(b) Testing One-Dimensional Domains:
	(c) Testing Two-Dimensional Domains:
	(d) Equality and Inequality Predicates:
	(e) Random Testing:
	(f) Testing n-Dimensional Domains:

	(iii) Procedure:
	(iv) Variations, Tools, Effectiveness:

	(4) Domains and Interface Testing:
	(i) General:
	(ii) Domains and Range:
	(iii) Closure Compatibility:
	(iv) Span Compatibility:
	(v) Interface Range/ Domain Compatibility Testing:
	(vi) Finding the values:

	(5) Domains and Testability:
	(i) General:
	(ii) Linearizing Transformations:
	(i) Polynomials:
	(ii) Logarithmic Transforms:
	(iii) More general forms:

	(iii) Coordinate Transformations:
	(iv) A Canonical Program Form:
	(v) Great Insights:

	UNIT –IV
	(1) Path products & path expression:
	(1) Explain Paths, Path products, Path expressions, path sums and loops?
	(b) Path Products:
	(c) Path expression:
	(d) Path sums:
	(e) Loops:
	(2) Discuss all the rules in path representation of graphs?
	Rule 5:
	Rule 10:
	Identity elements:(Rule 11 to Rule 17)
	Rule 1: 1+1=1
	Rule 13:
	Rule 14:
	Rule 15:
	Rule 16:
	Rule 17:

	(2) A Reduction Procedure:
	(1) Write the steps involved in Node Reduction Procedure. Illustrate all the steps with the help of neat labeled diagrams?
	Node Reduction Procedure:
	Procedure:
	Example:

	(3) Applications:
	(1) How many paths in a Flowgraph:
	Maximum Path Count Arithmetic:
	 (i) Parallel rule:
	(ii) Series rule:
	(iii) Loop rule:
	Example:

	(2) Approximate Minimum number of paths:
	Structured code:
	Lower path count arithmetic:
	 (i) Parallel rule:
	(ii) Series rule:
	(iii) Loop rule:
	Example:
	Parallel rule:
	Series rule:
	Loop rule:
	Example (i)
	Example (ii)
	Example: (1)
	First consider case A:
	Consider case B:
	Cross check:

	(4) The mean processing time of a routine
	Mean processing time of a routine:
	Parallel rule:
	Series rule:
	Loop rule:
	Example:

	(5) Push/Pop, Get/Return
	Push/Pop:
	Parallel rule:
	Series rule:
	Loop rule:
	Example:
	Get/Return:
	Example: (1)

	(6) Limitations and Solutions
	(4) Regular expressions and flow anomaly detection:
	(i) The Problem:
	(ii) Huang Theorem:
	Data Flow Testing Example:
	(iii) Generalizations, Limitations and comments:

	LOGIC BASED TESTING
	(1) Motivational Overview:
	(i) Programmers and Logic:
	(ii) Hardware logic testing:
	(iii) Specification Systems and Languages:
	(iv) Knowledge based systems or Expert System:
	(v) Overview:

	(2) Decision Tables:
	(i) Definition and Notation
	(ii) Decision-Table Processors
	(iii) Decision-Tables as a basis for Test case Design:
	(iv) Expansion of Immaterial Cases:
	(v) Test case Design:
	(vi) Design Tables and Structure:

	(3) Path Expressions:
	(1) General:
	(ii) Predicates and Relational Operators:
	(iii) Case statements and Multivalued Logics :
	(iv) What goes wrong with predicates :
	(v) Overview :
	(2) Boolean Algebra:
	(ii) The rules of Boolean Algebra:
	(iii) Examples:
	(iv) Paths and domains:
	(v) Test case design:
	(3) Boolean equations:
	Example:
	(ii) De Morgan’s law
	(iii) Distributive law of + over
	(i) Commutative laws
	(ii) Absorption law
	(iii) Idempotency laws

	(4) KV Charts:
	(i) The Problem:
	(ii) Simple Forms:
	(iii) Three Variables:
	(iv) Four Variables:
	Examples:

	(5) Specifications:
	(i) General:
	(ii) Finding and translating the logic:
	(iii) Ambiguities and Contradictions:
	(iv) Don’t care and Impossible terms:
	Logic Simplification:

	UNIT –V
	(1) State Graphs:
	(i) States(public question)
	(ii) Inputs and Transitions:(public question)
	(iii) Outputs:
	(iv) State Table:
	. (v) Time Versus Sequence:
	(vi) Software Implementation(public question)
	2. Input encoding and Input Alphabet:
	3. Output encoding and Output Alphabet:
	4. State codes and State-Symbol products:
	5. Application Comments for Designers:
	6. Application Comments for Testers(Public Question)

	(2) Good State Graphs and Bad State Graphs: (public question)
	(i) General:
	(2) State Bugs(public question)
	1. Number of States:
	2. Impossible States:
	3. Equivalent States:
	(3) Transition Bugs(public question)
	1. Unspecified and Contradictory Transitions:
	2. Example(public question)
	Rule 1:
	Rule 5:
	Rule 6:
	Rule 7:
	Rule 7 A:
	3. Unreachable States:
	4. Dead States:
	(4) Output Errors:
	(5) Encoding Bugs:(public question)

	(3) State Testing:
	(i) Impact of Bugs:
	(ii) Principles:(public question)
	(iii) Limitations and extensions:
	(iv) What to model:
	(v) Getting the data:
	(vi) Tools:

	(4) Testability tips:
	(i) A balm for programmers:
	(ii) How big How small:
	(iii) Switches, Flags and unachievable paths :
	(iv) Essential and inessential finite state behavior:
	(v) Design guide lines:

	GRAPH MATRICES AND APPLICATIONS
	(1) Motivational Overview:
	(1) What are the problems with pictorial graphs?
	Problems with pictorial graphs:

	(2) What are the graph matrices and their applications?
	(i) Graph Matrices:
	(ii) Applications:
	(ii) Doing and understanding testing theory:
	(iii) The Basic Algorithms:

	(3) Write relative merits and demerits of different Graph Matrix representations?
	(i) Merits:
	(ii) Demerits:

	(2) The Matrix of a graph:
	(1) Explain about the matrix of a graph?
	(ii) A simple weight:
	(iii) Further notation:

	(3) Node Reduction Algorithm:
	Write the steps involved in Node Reduction Algorithm. Illustrate with an example? Node Reduction Algorithm:
	Example:

	Note: Refer other four examples from class notes
	(1) Illustrate the applications of Node Reduction Algorithm:
	(ii) Probability of path expressions:

	(5) Relations:
	(1) What is a Relation? What are the different properties of Relations? Relation:
	Different properties of relations:
	(i) Transitive Relations:
	(ii) Reflexive Relations:
	(iii) Symmetric Relations:
	(iv) Antisymmetric Relations:

	(2) What are Equivalence Relations and Partial Ordering Relations?
	(i) Equivalence Relations:
	(ii) Partial Ordering Relations:

	(6) The Powers of a Matrix:
	(i) Explain about Matrix Powers and Products? Matrix Powers and Products:
	Example:
	(ii) Explain about the set of all paths and the algorithm for finding set of all paths?
	(b) The algorithm for finding set of all paths:
	(iii) What are the loops? How to convert graphs with loops into loop-free graphs:
	Example: (1)

	(iv) Explain about Partitioning Algorithm in detail?
	Partitioning Algorithm:
	Example:

	(v) Explain about Breaking Loops And Applications:
	(vi) Explain about Some matrix properties?
	(7) Building Tools:
	Explain about building tools of graph matrices?
	a) Overview:
	b) Node degree and graph density:
	c) What is wrong with arrays:
	d) Linked-list Representation:
	2. Matrix Operations:
	b) Loop Reduction:
	c) Cross term reduction:
	d) Addition, Multiplication and other operations:
	3. Node Reduction Optimization:
	(a) Reusability:
	(b) Consistency of Test Execution:
	(c) Better Coverage:

	UNIT –V
	(1) State Graphs:
	(i) States(public question)
	(ii) Inputs and Transitions:(public question)
	(iii) Outputs:
	(iv) State Table:
	. (v) Time Versus Sequence:
	(vi) Software Implementation(public question)
	2. Input encoding and Input Alphabet:
	3. Output encoding and Output Alphabet:
	4. State codes and State-Symbol products:
	5. Application Comments for Designers:
	6. Application Comments for Testers(Public Question)

	(2) Good State Graphs and Bad State Graphs: (public question)
	(i) General:
	(2) State Bugs(public question)
	1. Number of States:
	2. Impossible States:
	3. Equivalent States:
	(3) Transition Bugs(public question)
	1. Unspecified and Contradictory Transitions:
	2. Example(public question)
	Rule 1:
	Rule 5:
	Rule 6:
	Rule 7:
	Rule 7 A:
	3. Unreachable States:
	4. Dead States:
	(4) Output Errors:
	(5) Encoding Bugs:(public question)

	(3) State Testing:
	(i) Impact of Bugs:
	(ii) Principles:(public question)
	(iii) Limitations and extensions:
	(iv) What to model:
	(v) Getting the data:
	(vi) Tools:

	(4) Testability tips:
	(i) A balm for programmers:
	(ii) How big How small:
	(iii) Switches, Flags and unachievable paths :
	(iv) Essential and inessential finite state behavior:
	(v) Design guide lines:

	GRAPH MATRICES AND APPLICATIONS
	(1) Motivational Overview:
	(1) What are the problems with pictorial graphs?
	Problems with pictorial graphs:

	(2) What are the graph matrices and their applications?
	(i) Graph Matrices:
	(ii) Applications:
	(ii) Doing and understanding testing theory:
	(iii) The Basic Algorithms:

	(3) Write relative merits and demerits of different Graph Matrix representations?
	(i) Merits:
	(ii) Demerits:

	(2) The Matrix of a graph:
	(1) Explain about the matrix of a graph?
	(ii) A simple weight:
	(iii) Further notation:

	(3) Node Reduction Algorithm:
	Write the steps involved in Node Reduction Algorithm. Illustrate with an example? Node Reduction Algorithm:
	Example:

	Note: Refer other four examples from class notes
	(1) Illustrate the applications of Node Reduction Algorithm:
	(ii) Probability of path expressions:

	(5) Relations:
	(1) What is a Relation? What are the different properties of Relations? Relation:
	Different properties of relations:
	(i) Transitive Relations:
	(ii) Reflexive Relations:
	(iii) Symmetric Relations:
	(iv) Antisymmetric Relations:

	(2) What are Equivalence Relations and Partial Ordering Relations?
	(i) Equivalence Relations:
	(ii) Partial Ordering Relations:

	(6) The Powers of a Matrix:
	(i) Explain about Matrix Powers and Products? Matrix Powers and Products:
	Example:
	(ii) Explain about the set of all paths and the algorithm for finding set of all paths?
	(b) The algorithm for finding set of all paths:
	(iii) What are the loops? How to convert graphs with loops into loop-free graphs:
	Example: (1)

	(iv) Explain about Partitioning Algorithm in detail?
	Partitioning Algorithm:
	Example:

	(v) Explain about Breaking Loops And Applications:
	(vi) Explain about Some matrix properties?
	(7) Building Tools:
	Explain about building tools of graph matrices?
	a) Overview:
	b) Node degree and graph density:
	c) What is wrong with arrays:
	d) Linked-list Representation:
	2. Matrix Operations:
	b) Loop Reduction:
	c) Cross term reduction:
	d) Addition, Multiplication and other operations:
	3. Node Reduction Optimization:
	(a) Reusability:
	(b) Consistency of Test Execution:
	(c) Better Coverage:

