ANNAMACHARYA UNIVERSITY

EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) RAJAMPET-516126:A.P; INDIA

DEPARTMENT OF MECHANICAL ENGINEERING

LECTURE NOTES

BASIC THERMODYNAMICS [24AMEC31T]

ANNAMACHARYA UNIVERSITY

(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016)
(UNIVERSITY LISTED IN UGC AS PER THE SECTION 2(f) OF THE UGC ACT, 1956)

RAJAMPET, Annamayya District, AP - 516126, INDIA

Title of the Course: Basic Thermodynamics

Category: ES
Year: ||
Semester: |

Course Code: 24AMEC31T

Branch: ME

Lecture Hours	Tutorial Hours	Practice Hours	Credits
3	0	0	3

Course Objectives:

- 1. To impart the awareness on laws of thermodynamics.
- 2. To enable the students to understand second law of thermodynamics and its applications to various systems.
- 3. To familiarize steam properties to understand working of steam power plants.
- 4. To acquire knowledge on equations of state and properties of gas mixtures.
- 5. To understand the inter-relationship between various air standard cycles used in gas power cycles.

Course Outcomes:

At the end of the course, the student will be able to

- 1. apply the first law of thermodynamics for various energy systems
- 2. analyze the performance of thermal engineering devices by using Second law of Thermodynamics.
- 3. solve the properties of pure substances by using steam tables.
- 4. calculate the P-V-T properties of gases and mixtures.
- 5. analyze the Air standard cycles by using the thermodynamic principles

Unit 1 Basic Concepts & First Law of Thermodynamics

12

System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Cycle – Reversibility, Quasi – static Process, Irreversible Process, Causes of Irreversibility – Energy in State and in Transition - Types, Work and Heat, Point and Path function.

Zeroth Law of Thermodynamics –Ideal Gas Scale – PMM I - Joule's Experiments – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system – Steady Flow Energy Equation

Unit 2 Second Law of Thermodynamics

12

Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature.

Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation, Availability and Irreversibility Elementary Treatment of the Third Law of Thermodynamics.

Pure Substances-, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations — Triple point at critical state properties during change of phase, Dryness Fraction — Clausius — Clapeyron Equation, Constructional use of Property tables, Mollier charts — Various Thermodynamic processes and energy Transfer — Steam Calorimetry.

Thermodynamic relations: -Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations.

Unit 4 Perfect Gas Laws & Mixture Of Perfect Gases

13

Equation of State, specific and Universal Gas constants – various Non-flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy – Throttling and Free Expansion Processes – Flow processes – Deviations from perfect Gas Model – Vander Waals Equation of State – Compressibility charts – variable specific Heats – Gas Tables.

Mole Fraction, Mass fraction Gravimetric and volumetric Analysis – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction, Volume fraction and partial pressure, Equivalent Gas constant and Molecular Internal Energy, Enthalpy, specific heats and Entropy of Mixture of perfect Gases and Vapour.

Unit 5 Air Standard Cycles

06

Otto, Diesel and Dual cycles, P-V and T -S diagrams - Description and Efficiencies- Mean effective pressures. Comparison of Otto, Diesel and Dual cycles.

Prescribed Textbooks:

- 1. Engineering Thermodynamics. PK Nag, TMH, 6th edition, 2017.
- 2. Thermodynamics An Engineering Approach. Yunus Cengel Boles, TMH. Mcgraw Higher Education 9th edition, 2019.

Reference Books:

- 1. Fundamentals of Thermodynamics. Sonntag, Borgnakke and Van wylen, John Wiley & sons (ASIA) Pt Ltd. Publisher: Wiley; 8 edition (December 26, 2012).
- 2. Thermodynamics. Mc Graw Hill J. P. Holman, McGraw-Hill College; 4th edition (January 1, 1988).
- 3. An introduction to Thermodynamics. YVC Rao, Universities Press, 3rd edition 2004.
- 4. Engineering Thermodynamics, Jones & Dugan, PHI INDIA (2011).
- 5. Basic Engineering Thermodynamics. A. Venkatesh, Universities Press; First edition (2007).

Web resources:

- 1. https://www.youtube.com/watch?v=9GMBpZZtjXM&list=PLD8E646BAB3366BC8
- https://www.youtube.com/watch?v=pMmHdWvN_FI&list=PLyqSpQzTE6M_QOKxVxZ5nQ48gOkz g7zWP&index=1
- https://www.youtube.com/watch?v=2LPQX4F-GoA&list=PLwdnzIV3ogoWVn1YItO933MxgPXfEiM
- 4. https://www.youtube.com/watch?v=ZXHbqJj5mk4&list=PLjA7uIhseb0-tML7elONaelFTts6xoG5B

CO-PO Mapping:

3ddm.r.													
Course Outcomes	Engineering Knowledge	Problem Analysis	Design/Development of solutions	Conduct investigations of complex problems	Engineering tool usage	The Engineer and the World	Ethics	Individual and Collaborative Team work	Communication	Project management and finance	Life-long learning	PSO1	PSO2
24AMEC31T .1	3	2	1	1	-	-	-	-	1	-	1	2	2
24AMEC31T .2	3	3	1	1	1	-	1	-	1	-	1	2	3
24AMEC31T .3	3	2	1	1	1	-	1	-	1	-	1	2	1
24AMEC31T .4	3	2	1	1	1	-	1	-	1	-	1	2	1
24AMEC31T .5	3	3	1	1	-	-	-	-	1	-	1	2	2

THERMODYNAMICS

- -> It is the science which deals with Energy.
- -> Energy can be viewed as the ability to cause changes.
- Thermodynamics includes the aspectifung of energy & energy transformation, energy conversions, including power generation, reprogration. & energy sawings.
- -> It studies the relationship blu the properties of system.
- → It is based upon the observation of common experience which have been formulated into thermodynamic laws.

Thermodynamics

(Greek word) Dynamics (power or fosce)

- Thermodynamics is based on four laws namely zerolts, first, second & third law of theomodynamics.
 - -> Zeroth law builde the knowledge of thermal equilibrium and establisher the concept of temperature.
 - -> First law introducer the concept of interesal energy.
 - -> Second low introducer the concept of Entropy.
 - -> Third law enables the evaluation of absolute entropy.

Applications of Thermodynamics: All activities in nature involve some interactions Hu energy & malter. Human body, where heart is purposing the bood to all partie of human body. Various energy conservious occur parts of human body. Various energy conservious occur on body cells & the heart generated by the body of the body. ix constantly rejected to the environment. -> Hany house hold appliancer are designed by curing the principles of thermodynamics. Some of the examples are or Heating & air conditioning systems ax Expiguations, humidifierr & pressure cookers 0) Water heater, Shower & the iron es Even the conspiter & T.V. -> Thermodynamica plays a major part in the design & auditysis as Automotive engineer 0> Rockets & jet enginer as consultional or nuclear power plante & lober collectors ex Design of vehicles from car to aeroplanes. and Design of limbines 0> In chemical process plants & many Industrial applications etc

A system is defined on a quantily of nother or a segion in space choosen for study.

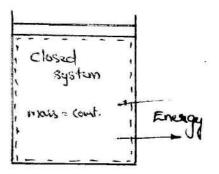
Surroundings !-

The man or ragion outside the system ?x called surroundings.

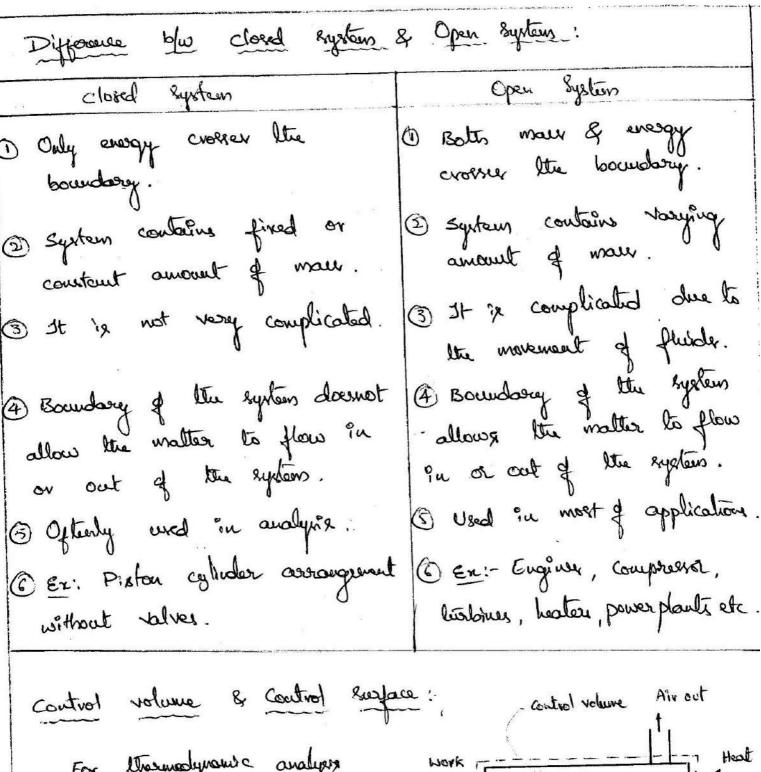
| System | Boundary Survoundings

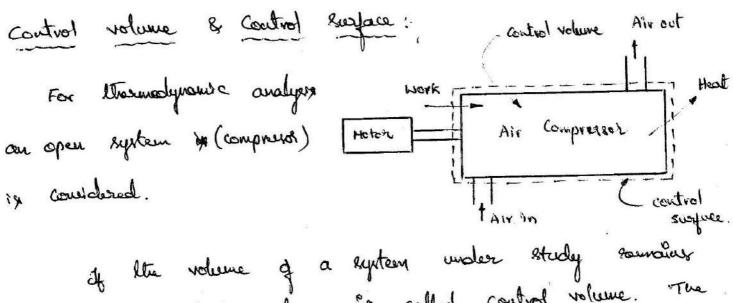
Boundary: The roal of imaginary

surface that experates the system from its surroundings is called the boundary. It may be fixed or movable.


Boundary has zoro brickness, and thus it can neither contain any man not occupy any volume in space.

System & Russoudings lægetter congrèser au Universe. viewerer = system + hurroundings.


* In order to understand this concept, best example is pixton & cylinder avangament. It hav 3 fixed & one movable boundary.

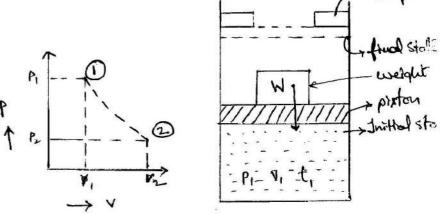

Types of Systems:

- (1) cloved system (2) open system (3) Isolated system.
- (i closed system: In this system, mall remains constant within the boundary of the system of energy

may transfer across its boundary. Ex: - Gar contained in pirton cylinder arrangement with non-flow process. In this case when the gar is healed, no main transfers acrow the boundary, but the volume may get changed. So energy transfer takes place. 2 Open System: - (control volume) Both mark & every bransfer across the boundary. Ex: - compressor, Gas turbines, engines et. Neither mou nor energy het brauger across its (3) Irolated System :-Ex:- A fluid enclosed in a perfectly insulated closed versel. (thermaflask). A system may be classified as * Homogeneous * Hetrogenous (i) Homogenione system: - If the system consists of single phase it is called our homogeneous system. It may be either solid, liquid or geneous state. Ex: - Mixture & gara, water + vitric acid (ii) Heterogeneour lystem !- If the system consists of more than one phase it is called heterogeneous system. Ex: - water & steam, ice & water, water & orl etc.

Constant then that volume is called control volume. The control volume is surrounded by a control surface. Hatter as well as energy crosser the control surface.

Stale: - Stale in the condition of a system at an instant of time described by the properties such as P 0 01 proserure, loup, density etc. Point O & D in the figure shows two different states of a systems. Fath: A thermodynamic system pairing through a serier of states constitutes a path. (or) It is a line storage which system parker when it undergoer a change in state. Froces: - d process is defined as a transition in which a system changer from initial state to a final state. ex:- For example state A is the Rustial estate (C)


q the system. Due to expansion of the system the final state is B. The line AB is the process that how taken place an shown in the figure @ Turmodynamie Cycling (or) Cyclic process: of a system undergoes a number of depend processes and finally reaches to "the sisted state by forming a complete cycle :+ is known as agelic process.

Thermodynamic Equilibrium: at system is said to be in a state of themadyeaure equilibrium if there is no change in any property at all pointe in a system. A system will be in a state of thermodynamic equilibrium if the photouring equilibrium are ratinfied. 1 Mechanical Equilibrium: A Rystem is said to be in a state of mechanical equilibrium if there no unbalanced forces within the system and or blu system & surroundings. [pressure should be contract (2) Chemical Equilibrium: - There should not be any cheental reaction within the rystem and blu hydren & hurroundings. (3) Thermal Equilibrium: It there exists an uniformity of temperature)
lemperature throughout system or blu the system & humandings (4) Electrical Equilibrium: - If there exists an uniformity of dectrical potential throught the systems. Quari - Static Process: - (Quar - Equilibrium process)

Let us consider a english of gas contained in a cylinder. The system instially is in an equilibrium state, represented by the properties P.V., t., The useight on the picton just balances the represent force exected by the gas. If the useight is removed, there will be an unbalanced force blue the hydren & surroundings and unbalanced force blue the hydren & surroundings and ender gas prosence, the picton will move up till it hits the stops. The system again comes to an equitionium

State, being described by the proposition P2, V2, t2. But the intermediate states passed through by the septem are nonequilibrium states which cannot be described by themselynamic coordinates. Figure shows point 0 & 3 ar the initial & final equilibrium states joined by a dotted line, which have got no meaning otherwise.

Such of process, which is but a locus of all the equilibrium points passed through by the system, ix

Rouseur is the characteristic feature of a quasistatic process.

A quasi-static process is then a succession of equilibrium states

A quasi-static process is also called as reversible process.

MICROSCOPIC & MACROSCOPIC CAPPROACHES:

Let us consider a gar filled in the container which are containing namber of molecules. These molecules will have containing namber of molecules. These molecules will have certain characteristics like position, momentum, relocity, preserve & the analysis of these molecules can be explained and the analysis of these molecules.

- Microscopic view
- -> Macrolapac view.

Microscopic Approach: mix approach considere a system being composed of large no. à particles known au molecules. Each molecule is having different energy & relocity.

These values constantly changes with time on the molecules collède with one another. So the microscopic approach is considered with structure of matter hance it Le also called as statistical tuesmodynamics. Ex: relatity, K.E., monadam etc.

Macroscopic approach:

d macroscopic approach is concerned with certain quantity of matter by taking into account which is going at guage level or overall level behaviour. Hence it is referred as classical transmody variates.

Ex: premure, volume, temperature etc.

4 a premire garage is fitted to the you felled container the pressure can be measured at any instant.

It is very difficult to measure the physical parameters such au proseure, temporature, volume, impulse etc., with microscopic approach.

- hours ?ts own proporties & trey nove with independent relocation.
- (2) Large no . of variables all required for describing a system.
- 3 Heavement of variable ix very difficult.
- Time required for measuring the variable is more.
- Both mathematical & Statistical methods are required for descriloring a system.
- Cost explaine lie structure of
- applications of engineering problems.
- 1 st is also known as statistical

- 1 It is arrived that all the molecular behave in the Saw. warner in the system.
- (2) Only few rasiables are required to describe the Rystem
- 3) The properties are easily measured at any point of fine with the help of quages.
- Time required for measuring. the variables is less.
- 3 Simple mathematical formulae are sufficient for analysis.
- © It don't explaien les structures of matter.
- It provider an early way to
- 1) It is also known as classical tresundenamics.

Concept of Continuum:

It is vory much careful in classical thermodynamics. From the continuum point of view, the matter is seen as being detributed through space & not an in the particle view localised.

Hatter exists in big chanks having man, energy of monadans as do particles, but it also possesses some additional continuum; characteristics such as volceme, density of lemp etc.

du otherworde continuem idealisation treat lu substance au being continour dis regarding the action of system Sv sudividual moleculer. het ur consider the maker Sm in a volume Sv surrounding the point P. The realis Sus/84 Ex the any mass doubty of the system within the volume 81. We suppose that at first SV is rather large, and is subsequently shrunk about the point P. If we plot Sm/8V against 8v, the ang density leads to approach an anymptote as Sv increases. However when Sv becomes so small on to contain relatively few molecules, pour substantially with time at molecular pour into & out of the volume in roadon motion & so it ix impossible to speak of a definite value of Sm/Sv. The smallest volume which many be regarded as Hathematically, density at a point many be expressed as, e = 8v → 8v' 8v Kg/m³ where SVI is the smallest volume about point P in which the fleid can be called in continuum.

REVERSIBILITY (Or) JOEAL PROCESS:

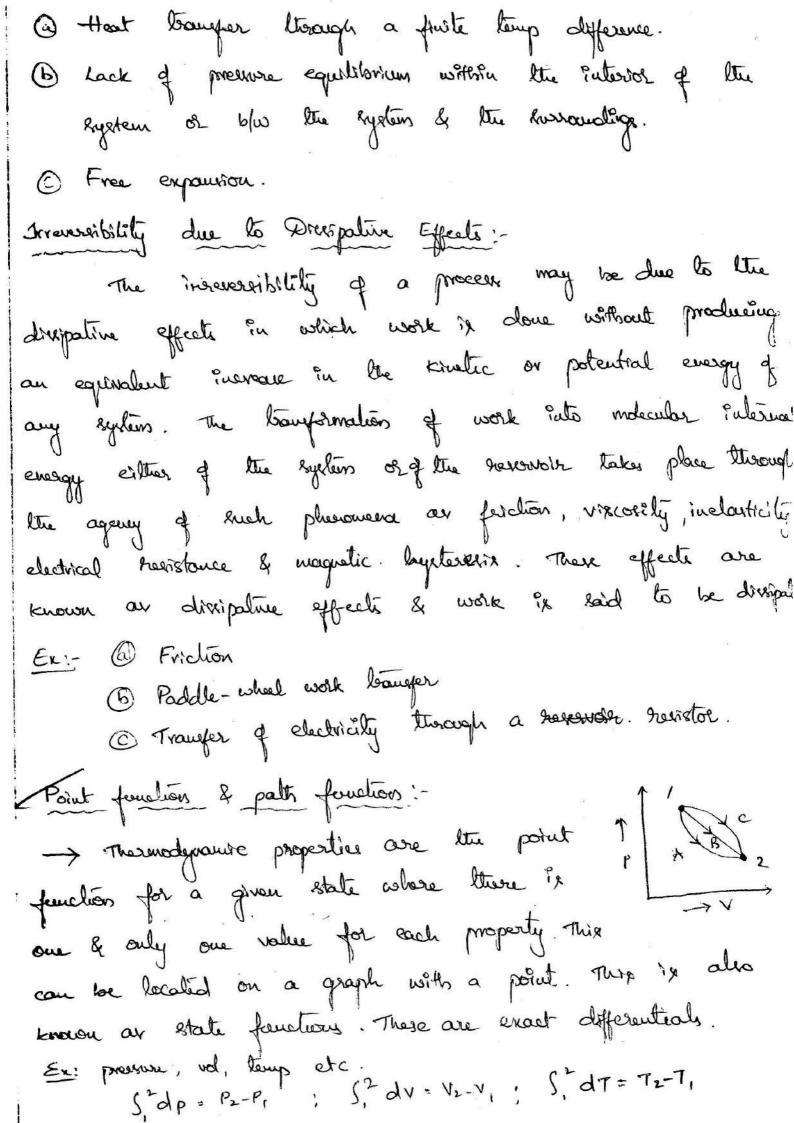
such a way that at conclusion of the process, both the system of surroundings may be restored to their faitial states, without producing any changes in the root of the cumulity test the state of a system be

represented by A & let the system be taken to state B by following the paths

A-B. if the system & also the surroundings

change in the universe is produced, then the process A-B will be a reversible process.

A reversible process in courted out injuritely slowly with an infinitesimal gradient, so that every state passed through by the system in an equilibrium state. So a reversible process coincider with a quari-static process.

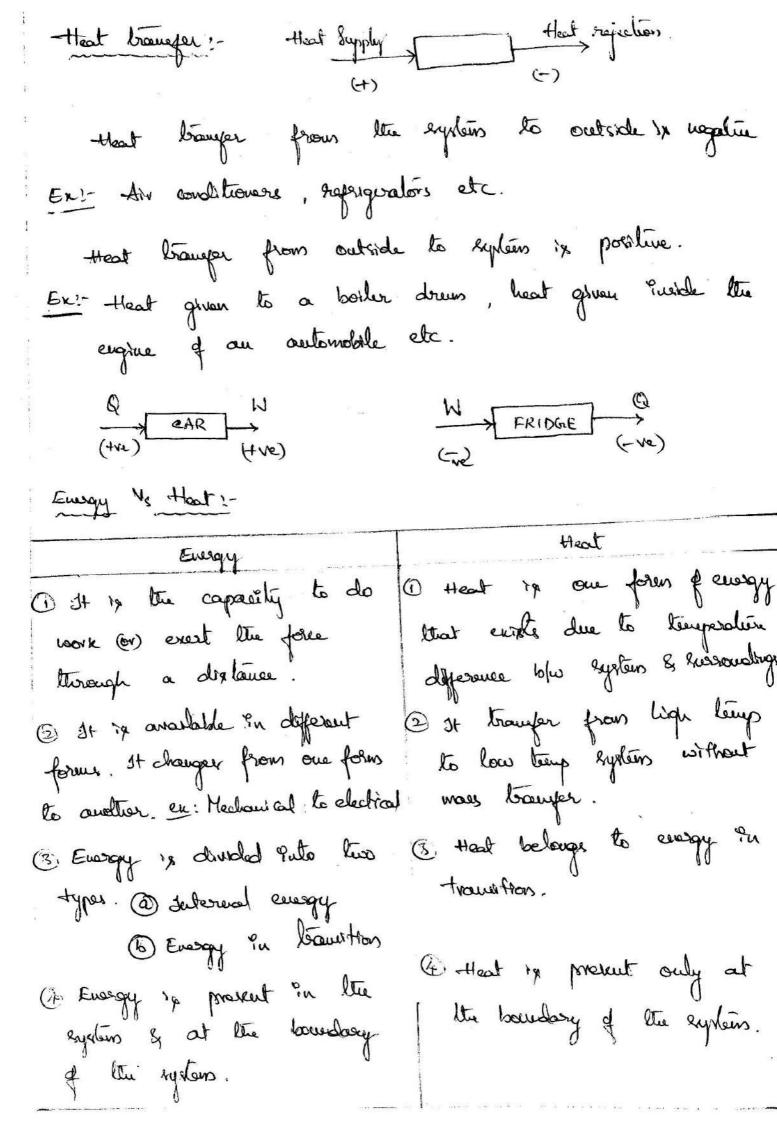

Ex:-

- -> Frictionles relative motion
- -> Electrolyist process
- -> Polytropic expansion or compression of a fluid.
- -> I soltierenal expansion or compression.

Ineversible Proces (Irreversibility):

in an irreversible process. A reversible process which course.

of a succession of equilibrium states, is an idealized hypothetical process, approached only as a limit. It is said to be an asymptoti to reality. All spontameous proceeded are insuversible. Time how our suportant effect ou reuseibility of the time allowed for a process to occur is infinitely large, even though the gradient is fruite, bu process becomes reversible. However, if this time is equezzed to a fruite value, lu fruite gradient maken lu procese ironeersble. -> Fluid flow with ferction -> combustion of arm & feel. -> Plantre dejourations -> Heat bauger -- etc. cause of Irreversibility: The irrementability of a process may be due to either one or both of the following. -> Lack of equilibrium during the process. -> Touolvement of descapative effects. Irremailerlity du le lack of equilibrium: The lack of equilibrium (nechanical, thermal or chamical)
blu the system & its surroundings, or blu two systems or two parts of the same system, causer a spontaneous change which is irreversible The following are specific exampler in this regard:


-> Path femilion are certain quantities which came be located on a graph by a point. There are generally given by area cender lie curve. There are "vexact ex partial differentials. Ex! Heat, work, every etc. : J, Sw & W2-W, 5, SQ + Q2-Q, Path fuertions Point function 1 The change in a function O change in function depende depender on a patts Hollowed by only on "withal & Atual state a kystein ie., palls fouctions. of a process is., point familiers @ Function depender on paths 1 Function does not depend on followed by the system. path followed log le rylans. 3) Differentials are mexacted) postal 3 Differentials are exact & perfect. (4) Ex: work, emongy etc. (4) preserve, vol, lamp etc.

work is the energy boungered (with bounger of warr) becent exten & Russoudings. work = force & displacement N-m (or) Joules. Every is the copacity to do work. In other words, every is defined as capacity to exert a force through a distance. It can be closerfied Puls -> Stored evergy (PE, KE, IE etc)

-> Evergy for boardt. (Heat, work, electricity etc) Europy possessed by a system when it is static in collect energy en state ie., storad energy. It is also known as Energy in transition are wally a work bauch Theat banger work done on work done by the system work done by the system (+) work transfer from the explains to the outside is positive Ex:- Power plants, automobiler, elips, aeroplaner, rockets etc.

Nork transper from outside to the system ix negative is ie., pour produing systems. power consuming systems.

Ex:- pumps, motors, inou look, freezers, out conditionary wantered

Typer of TD Process !-Proces Relation law P. = P2 = P3 at all state potals 1 court pressure process P= C N= c VIEV2=Vs, at all state politic @ court. vol. process T = C ! PV=C 3 court temp process P,V, = P2V2 ----P, V, 1 = P2V2 = P3V5 ---Pu1 = C 4 Advaloatre procesur P,V, n = P2V2 ----3 Polytropre moceur pun = c workdone is given by W: Sp.dv Dosvation for work: O court. Preserve proceed (Jaobastic): $P_1 = P_2$ $W = \int P dv$ $V = \int P dv$ W, = 52 p.dv = $P \int_{1}^{2} dV = P[V]_{1}^{2} = P(V_{2}-V_{1})$ W = P, (12-V,) @ courtant volume process (Jeocharic) !-V, = V2 $W = \int P \cdot dv$ $W_{1-2} = \int_{1}^{2} P \cdot dv = P \int_{1}^{2} dv = P \left[V \right]_{1}^{2}$

> = $P(V_2-V_1)$ = P(V-V) = 0 $\rightarrow V$ W = 0 [work done by a closed system in a constant vol. process: a zero]

Combrangon Mocers: For combrenzon buccer bresons increases & volume decreaser. Movement of pixlos in apassed descertion enercouer ou produce of gar acting on prolon. In compression process $\frac{V_2}{V} \geq 1$: work = Negative ie., workdone on the hysters. Expanson process: du tres proceses proceses decreares y volume mercares. In expansion process 1/2 >1 .. work : Pointre ie., workdone by the lythens. D'Re propertier of closed explains change following relations blu preserve & vol. or pv = 3, where Pix in boar & Vix in m3. Cakalate the workdown when proserve increaser from 1.5 bar ed: Goven, P1 = 1.5 box P2 = 7.5 box 1.5 V1 = 3 => V1 = 2 m3 7-5 V2 = 3 > V2 = 0-4 m3 27gn = [un]= $N = \int_{V_1}^{V_2} p.dv = \int_{2}^{0.4} \frac{3}{2} dv$ = 3 [(0.4) - (2)] = -4-828x10 book m3

= -483 tJ

-4-828 × 100 KPa xm3

(3) Countain temperature process (Shothand):-
$$\begin{bmatrix} T_1 = T_2 = T_3 = 1 \end{bmatrix}$$
 $P_1 V_1 = P_2 V_2 = 1$
 $P_2 V_3 = C$
 $P_3 V_4 = C$
 $P_4 V_5 = C$
 $P_4 V_5 = C$
 $P_5 V_6 = C$
 $P_5 V_6 = C$
 $P_6 V_6 = P_6 V_6$
 $P_6 V_6$

O A new of 1.5 kg of air is compressed in a Quari-static process from 0.1 Mpa to 0.7 Mpa for which pv=c ie., isothermal process. The "withal density of air is 1.16 kg/m².

Find the work done by the piston to compress the air.

9d. Given:
$$M = 1.5 \text{ kg}$$
 $P_1 = 0.1 \text{ MPa}$
 $P_2 = 0.7 \text{ MPa}$
 $P_3 = 0.7 \text{ MPa}$
 $P_4 = 0.7 \text{ MPa}$
 $P_5 = 0.7 \text{ MPa}$
 $P_6 = 1.16 \text{ kg/m}^3$

Deautly =
$$\frac{m}{v}$$
 \Rightarrow $P_1 = \frac{m}{v_1}$ \Rightarrow $1.16 = \frac{1.6}{v_1}$ $v_1 = 1.293$ m³

$$V_{2} = \frac{P_{1}V_{1}}{P_{2}} = \frac{0.1 \times 1.193}{0.7}$$

$$W = P_{1}V_{1} \ln \left(\frac{P_{1}}{P_{2}}\right) = 0.1 \times 1.293 \ln \left(\frac{0.1}{0.7}\right) \times 10^{3}$$

$$= -252.38 \text{ RJ}$$

3 A gue undergoer reversible non flow process according to the relation $P = -3V + 11^{\circ}$ where $V \approx 20$ whene is and $P \approx 10$ the prosture in load. Determine the workdoor when the volume changes from 3 m³ to 6 m³.

When the volume changes from 3 m³ to 6 m³.

Where P = -3V + 15 $W = \int_{-3}^{3} P \cdot dV = \int_{-3}^{6} (-3V + 15) dV$

 $W = \int_{V_{1}}^{V_{2}} p.dv = \int_{3}^{6} (-3V + 15V) dV$ $= \left[-\frac{3V^{2}}{2} + 15V \right]_{3}^{6}$ $= \left[-\frac{3(6)^{2}}{2} + 17(6) \right] - \left[-\frac{3(3)^{2}}{2} + 15(3) \right]$ $= 4.5 \text{ bal} \implies 4.5 \times 100 \text{ kJ}$ = 450 kJ

During non flow reversible process a gave enclosed in a cylinder priston aesembly expande from 2 m^3 to 4 m^3 with the relation $p = V^2 + \frac{6}{3}$ where P is the pressure in boar. Determine the work.

 $\frac{4}{3} + \frac{6}{3} = \left[\frac{4}{3} + \frac{6}{3} \right]^{4}$ $= \left[\frac{4}{3} + \frac{6}{3} \right]^{4} = \left[\frac{2}{3} + \frac{6}{3} \right]^{2}$ $= \left[\frac{4}{3} + \frac{6}{3} \right] - \left[\frac{2}{3} + \frac{4}{3} \right]^{2} = 18.66 + 4 = 22.66$ Farm

End gar contained in a piston cylinder arrangement expander from 0.75 m³ to 1.85 m³ whome whole the pressure Genomic constant at 200 kpc. If the genome system recieves constant at 200 kpc. If the genome the net workdown

by the system.

V1 : 0.75 m3 P = 200 KPa V2 = 1-25 m3 Rechwer work (-80 KJ) (+ 100 KJ) presure genains constant W= P. [V2-V1] = 200 [1-25-075] = 100 KJ Stree it is recteving 80 KJ of work from outstile. :. Net workdone = 100-80 = 20 KJ dir at pressure of so box & 0.2 m3 % expanded at court. pressure until the volume ix doubted, it is then expanded according to the polytropse process pv = court., entil the volume is 0.8 m3. calculate the workstone in each process. Indicate the process on P,=P2 6 2 1 1 6 3 pv = court. F. P. = 50 box x00 V, = 0-2 m3 W= P, (V2-V1) N2 = 0.4 m3 = 500 (0-4-0-2) = 100 KJ -> V 13 = 0.8 m3 (1-2) is constant $P_1 V_1^{1.3} = P_2 V_2 \implies P_2 = (2-3)$ 10 polytropic Polytropic process $W = \frac{P_2 V_2 - P_3 V_3}{n-1}$ P2V2 = P3 V3 => P3 = 2.3 × 10 KJ W = 1251.7 KJ

processes its con expansion that is carried out according to the processes is an expansion that is a constant pressure process have present becomes present it as constant pressure process its returns the green to the scattal volume of the 1st process

The starting of the 1st process is at 400 kPa 4 = :-: with the expension to a precure of 200 kpc. 8ketch in process on pv diagram à determène work of combined process. 2 proces (1-2) -> pv constant (2-3) -> pressure ? constant. V1 = 0.028 m3 P, = 400 kpa $P_1V_1 = P_2V_2 \implies \frac{P_1V_1}{P_2} = V_2 = 0.05 \text{ m}^3$ P2=P3 = 200 kpa N3 = V1 = 0.025 m3 workdone in 1st process $W = P_1 V_1 \log \left[\frac{P_1}{P_2} \right] = 6.93 \text{ kJ}$ 2nd moreur w = P2 (V3-V2) = 200 (0.025-0.05) = -5 KJ : Potal workdove = 6.93-5 = 1.93 KJ 8) A fluid at a pressure of 3 box in the sp. volume 0.18 miltig Contained for a cylinder behind priston expand reversably to a previone q 0.6 box et fellows the law processor. Calculate the weekdone by the fluid on the path. $P_1 = 3$ been Puz C $P_2 = 0.6$ bar V, = 0.18 m3/kg $= C \left[\frac{1}{-2+1} \right]_{1}^{2}$ w= S.p.dv = Cic dr = c (x-1) = 1 = 5 cv2, dv · c [v-1] *2

$$= -c[v_2^{-1}-v_1^{-1}]$$

$$\omega = C \left[\frac{1}{V_1} - \frac{1}{V_2} \right]$$

$$V_2^2 = \frac{P_1 V_1^2}{P_2} = \sqrt{0.162} = 0.4024 \text{ }^2$$

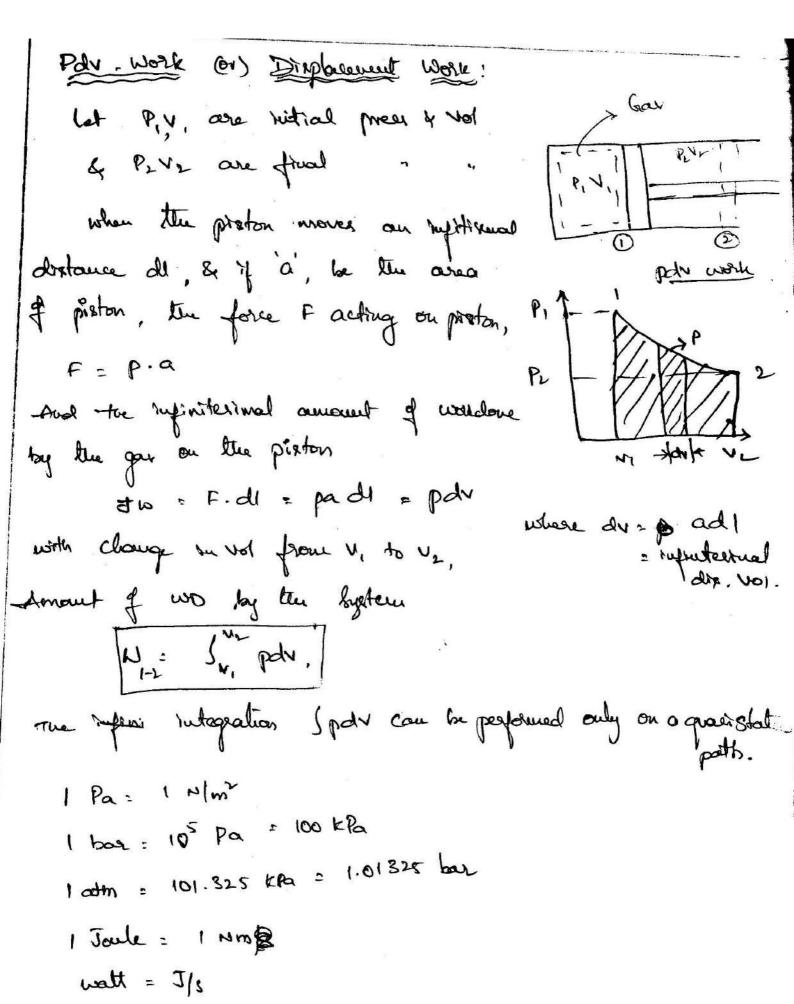
$$W = C \left[\frac{1}{V_1} - \frac{1}{V_L} \right]$$

= 0.2984 bor
$$\frac{m^3}{kq}$$
 \Rightarrow 0.298 × (00 K Pa $\frac{m^3}{kq}$. [NM: $\frac{1}{4}$]

O courtant previous process:

D) constant volume process:

$$\frac{P_1}{P_2} = \frac{T_1}{T_2}$$

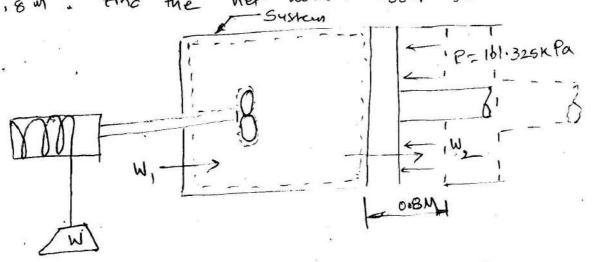

P₁ T₁ where V is courtout.

3 contout temperature process (Teatharmic):

$$\frac{P_1V_1}{P_2V_2} = \frac{mRT_1}{mRT_2} \Rightarrow P_1V_1 = P_2V_2$$

@ Oldrabatic precent :

$$\frac{P_1 V_1}{P_2 V_2} = \frac{y_1 R_1 T_1}{y_1 R_1 T_2} \Rightarrow \frac{T_1}{T_2} = \left(\frac{P_1}{P_2} \left(\frac{V_1}{V_2}\right) \rightarrow 0\right)$$


Polytropic Proces: In this process the condition is PV=C where pirita kerour au polytropse qualen. pun = c => P = cn w= Spdv => w_1-2 = 52 p.dv = 5, Endv = c 5, vndv $= C \left[\frac{1}{\sqrt{-n+1}} \right]^{2} = C \left[\frac{\sqrt{2} - \sqrt{1}}{-n+1} \right]$ = (P2V2) V2 - (P,V,) V, $= \frac{P_2V_2 - P_1V_1}{-n+1} \implies W = \frac{P_1V_1 - P_2V_2}{n-1}$

State or show that work is a path femalion it not a point In the figheres shown, the eyelans in al 8tale (1). To move the system point (1) & (2), It can p follow any paths such as A (01) B (01) (. etc. The area under the curve represente the workdone. In the diagrame, the area under each curve is not equal even though initial & final points are sauce. Hence work in a path frenchion and

not a point functions.

\$ B

P) A piston and Cylinder machine containing a pluic system has a stirring device on he Cylinter, me; if the thousand is held down against me thus due atm. Pressure of 101.325 KPa. The stirring device is 1,275 Nm, Mean white the piston of 0.6m diagneter move of 0.8m. Find the net work transfer for the System

work done by the stirring device who system

W1 = 211 NT

=211 × 10000 × 1,275 = 80 K5

This is the Negative work for 84 sten

worke done by the Systems whom furrounder.

We = (PA). L

= 101.325 yth (0.6)2 x0.8 =22.9 KJ

this is positive work. For me system.

Hence me pet more transfer for he Sixty

 $N = W_1 + W_2 = -80 + 21.9 = -57.1 \text{ K}$

ZEROTH LAW OF THERMODYNAMICS :

When two bodies are in thermal equilibrium with a third body, they are also in themal equilibrium with eachother This can be stated as, when a body A is in thermal equilibrium with a body B & when B is seperately in thermal equilibrium with a body C, then A & C will also be in themal equilibrium with each other ie., A & C will not undergo any physical changer when brought in contact.

A = B

B = C then A = C

Note: Zeroth law is the boaris of languagesatters measurement.

Emperature in generally defined as the degree of hothers

a saturity of heat. The physical meaning of languature ix that it describer whether the body ix hot or cold.

Let two bodies, one hot (at lunp 0,) & one cold (at the Oz) se placed in contact with each other (0, > Oz) rolated from all other bodies. After some time , we closere that hot body becomes colder wherear the colder one because botter. It indicates that both the bodies have experienced a change in one or more of their properties. We also find that both the booker were now at same temp On. (Om 20, 7 Om>Oz). The state, that there live books attained same temp. Is a state of thermal equilibrium.

The condition of equality of temp ix stated an follows: "Two systems have equal l'emperatures if there are no. changer en their properties when they are brought in them contact with each other." Themometry: It is the moneywardingent of lemperature. Principler q Phermonobry: In order to obtain a quantifative moceure of leavy, a reprence body is used. Besides this a certain physical

characteristice is to be selected, which change with lemp. Plies reférence body 12 called ltresmondées. & its beleeted characteristics is called thermodynamic property. The Principle of themometer hav in the thermometer property of fluid used in it. A very common thermometer consists of a small amount of nearness in an exacuated capillary teste. The exposerion of marcary on the tesse when it comes in contact with hot body, is used as thermometric property. The Hollowing properties are generally und.

1) Pressure enertied by gater.

- 2) volume enpausion of bolide, liquide & gares
- 3) Vapouer prouver of liquide
- 4) Electoral rosistance of Solids
- 5) Thermo electricity.

Types of thermoneters.

Range. Theomorales Themometric -40 to 525 c 1) Hg in Glass themonolis length -200 to 1500 C 2) court. vol gas thermonetes busenne -200 to 1500°C volume 3) court pressure gas themouster - 200 to 120 C Revistance 2) Electrical Presistance Musuoneler o to 100° c eny 5) Themo couple > 400°C wave length 6) Zadoations pyrameter FIRST LAW OF THERMODYNAMICS :-

This is also known as low of conservation of energy.

It states that energy can writter be created not destroyed but can be compatible from one form to another form. It many two forms of energy heat & week are mutually convertable.

whomever heat in aborothed by a hystem it inevalue internal energy phonto do some extremal work. This can be supresented as pollows. Q system > W Q = DU +W. where Q is heat energy entering a rythin DU in Enternal emeggy, W is external work. Finet law con also be stated as, If a system undergoer a cyclic change (the end state) then the being precisely the same or the initial state), then the algebraic sum of the work delivered to the surroundings is proportional to the algebraic Rum of heat taken from the hurroudings. It is expressed as \$ da = \$ dw (or) EQ = EW Energy stored in a system which is weither heat not Suternal Energy! work is called internal energy. Ex: when a got is heated it expands moduling some work but the amount of work produced will be less than heat supply. This difference blu heat & walk is known as internal emogy which is stored for the system. 100 km 20 km [N-0 = N]

Ideal gas leng Scale: Arrive that the bolb of a constant vol. goe Mismondie contains certain amount of ger such that where the bulb ix

surrounded by water at its leaple point, the pressure Pt is 1000 men morery. (Triple point is the lemp at which hubstance

exists in all three states.) teeping the vol. of gan V constant

let the following procedure be carried out. where C. 273.16

Ptr

(i) Ballo of the thermometer is surrounded by streem condensing at 1 atm of pressure P, is determined. Then calculate the

temp ou $\theta_1 = 273.16 \frac{P_1}{P_2} = 273.16 \frac{P_4}{1000}$

(ii) Some amount of gar is removed from the bull so that when it to surrounded by water at its briple point, the pressure Pt is 500 mm of Hg. At this instant, meetine is determined, Boy P2 - Then O2 for steam condensing at 1 atom is calculated

 $\theta_2 = 273.16 \frac{12}{500}$

Southerly 03, 04... On are found from the enperimentally determed values of P= P3, P4... Pn by going on reducing the vol. of gar against Pt: 200, 100... mm Hg.

Note Steet 8 = 273.16 Pt

O Vs Pt is plotted & explorate the come to the anse where Pt = 0. Read from the geaple lion 0

The temp of triple point of water ix 273.16 k

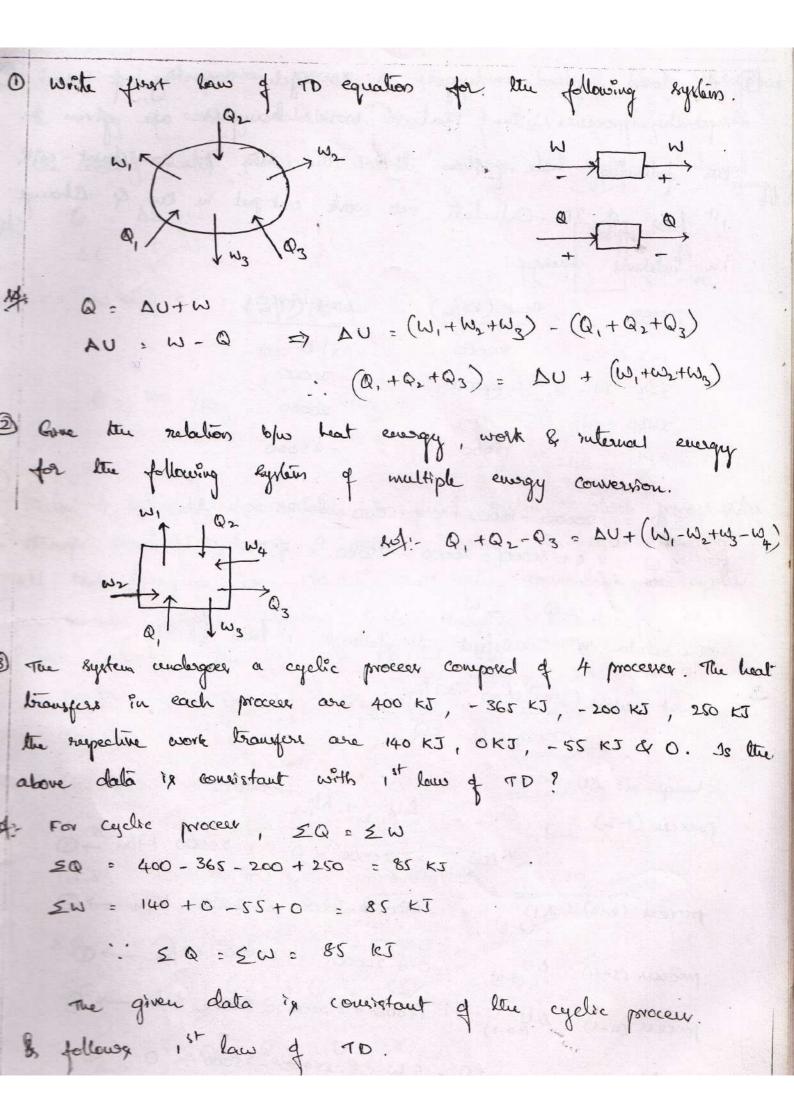
It may be shown that all the gaver indicate the Same temp on Pt in lowered & made to approach geno. 7 Steam 373.2 Point 373.1 He & surlar sorter of texts can be conducted with a court prosture gar eturnomelée. :. 0 = 273-16 Vt O us p is plotted. Replacing o by T. the ideal gas temp is given by $T = 273.16 \quad \lim_{P_t \to 0} \frac{P}{P_t}$ (01) $T = 273.16 \quad \lim_{P \to 0} \frac{V}{V_t}$

JOULE'S EXPERIMENT

I quantity of liquid is taken in our insulated would Work is done on the fluid by stirring the paddle wheel. This work Papet to the fluid couver a risk in leap of fluid. The amount of work done is calculated by the product of weight & the vertical height of weight dreplaced.

Next by Fremering the runner the experience of the experience of the that heat is beauty read to the final till the original which stead is reached which is reached by temp & presting. Next by removing the Punctation In this way enjeten undergoer a complete cycle. The amount of best nejected by the fluid is equal le tre fucuence & energy of water bater.

Construction: The net work ruput W was directly proportioned to the net heat a transferred from the system regardleer of the kind of workdone, the rate at which the work was done of the Rehame used for transpering it into heat. Ther for a dosed hystem undergoing Cyclic process \$ 30 = § SW Q1-2 +Q21 = W1-2 + W2-1 Perpetual Motton Machine I: PMM-I [Appetual -> continuing former] PMN-I refer to lu Perpetual Motion machine of first that It is hapothetical machine that will contravely charn out work but without absorbing heat from its surroundings. But buch a machine ix not Q=0 PMM1 -> W tasible from the a mactical point of of every (1 tas 70). voew, for it violates lous q' conservations The suverex of PHH3 is also not N=0 PHM I -> Q true. It is a hypothetical machine which is not fearthe ar it violates the 1st law of 70. Concllarier of First law: - Grallary: Theathat is borned from squency nat is proved afread. There exists a properly of a closed system, such that a change in its value during any change of state in given by the defence blu the heat supplied & workdone. And this property in called subserved energy of the explains. Mathematically


[Du increases or decreases with change

[Du increases or decreases with change This energy equation is called Non-flow energy equation (NFEE).

The energy of an isolated system is constant." By modeled system we mean a system which exchanges neither heat not work with its surroundings. In otherworder both Q&W are zero and DU=0 Alternatebely, the second corollary may be stated our, that the "internal energy of a closed system nemains unclarged if the Repteur is isolated from the hurroundings." In a way true in Law of Conservation of Energy. a meetine that producer & supplier works by "trely without absorbing any energy from the surroundings. Evergy stored in a system which is weither heat non Internal Energy: work is called internal energy. Exemples a gas is hasted it expands producing some coord, but amount of work produced will be less than heat Supply This difference you host & work is known as

internal energy which is stored in a system.

[DE = D-W]

3) A closed system verdergoer a TD eycle converting of 4. separate processer. The heat & work townsper are given in the following table. Show that the data is consistant with 1st land of 7D. Cabulate net work out put in two of Bhange in Enternal energy.

work (tilm) Heat (KU/M) 00000 _ loco0 1-2 2-3 20000 15000 -25000

EQ = 20000 - 10000 + 0 + 15000 = 25000 KJ/m EW = 0+80000 + 20000 - 25000 = 25000 KJ/m

:. EQ = EW

The data is consistent. It follows is low of PD.

Net work: 25000 KT m = 416.66 KW

change in DU,

Proces (1-2): Q1-2 = DU1-2 + W1-2

Δυ₍₁₋₂₎ = 20000 - 0 = 20000 κ5/m → 0

50 = -10000 €-30000 = -20000 KJ/m → 0

DU (3-4) = 0 + 20000 = 20000 €J/m → 3 moder (3-4)

MOCEEN (U-1) DU : 15000 + 250000 = . 40000 KJ/W -> 4

 ΔU = $\Sigma Q - \Sigma W = 25000 - 25000 = 0$

DE = 240 J/kg.

Proton & cylinder me contains a fluid eysteur which possesser through complete cycle of 4 process. During the cycle same of all heat transfers is -170 kJ. The system completes no cycles per wante. Complete following table showing method for each stem. Calculate the net work op in KW.

Process	80 (KJ/M)	SW (KJ/m)	DE (KJ/m)
(a-b)	0	2170	-2170
(b-c)	21600	0	51000
(c-d)	-2100	34500	- 36,600
(d-a)	- 35,900	-53,670	17770
EQ : 170	\$5/m x100	- 17000	
≥Q = Q	+ Q b-c + C	De-d + Qd-a	

 $Q_{d-a} = SQ - Q_{a-b} - Q_{b-c} - Q_{c-d}$ = -17000 - 0 - 21000 + 2100 = -35900 KJ/min

```
for Qab = DE+W
DE = Q-W
                  DE = 0-2170 = -2170 Kilwin
    Por Qb-c => DE =Q-W
                 DE = 21000 - 0 = 21000 KJ/Why
                 DE = Q-W
                   Q : DE+W => W=Q-DE
                                      = -2100 # 36600 = 34500 KJustu
    For Bcd =>
    EW: EQ for cyclic process.
        EW = Nato + Wb-c + Wed + Wda
         Wd-a = ≤W - Wa-6 - Wb-c - Wd-a = -53670 KJ/mm.
   For Wda => DE = Q-W = -35900 + 53670
                            DE = 17740 KJ WW
   Alc to I " law of TO EQ = 2 W
                           DE ceptre = 0
     70fal work => - 17000 to/m.
                    -17000 = -283.33 \text{ KW}
of beginning at withal estage where Pi=1 bar, Vi=1.5 m3 &
    U, = 512 KJ. The process are as follows.
      (a) process (1-2) => Compression with PV: count, P_2 = 2 bour U_2 : 690 \text{ kJ}
      (6) process (2-3) => W<sub>2-3</sub> = 0 , Q<sub>2-3</sub> = -150 KJ
      @ Maceri (3-1) => Mars = 50 KI
    Neglecting KE & PE changer, determine Q valuer, Q1-2, Q3-1
 80; (a) PN = Court
        P_1V_1 = P_2V_2 \Rightarrow |Y| = 2XV_2
                            V2 = 0.75
```

```
@ 2-3 :- Court. Melhon.
          Q_{2-3} = -220 \text{ kJ} W_{2-3} = -40 \text{ kJ}
           Q = DU2-3+W
           -220+40 : U3-U2 => U3 = -220+40+U2
                                          = -220 +40+440
                                      Ug : 260 KJ
  3 3-1: Advaloatic process.
                PU=C, For agalic process SQ=EW & ZEOISU=O.
            Q301 = DUS-1+W3-1
                   = U1-U3 = W8-1
         In adiabatic process [heat framely:0]
                    : Q3-1 =0 : U1-U3 = -W3-1
                                 W3-1 = 20 KJ
                     . Adrabatic mocell, W3+ = 20 ks
                             :. Uz = 440 kJ, U3 = 260 kJ.
1) The system is composed of 2 kg of flied expands in a pixton
  cylinder maehine from suital state of 1 MPa, 100°C la foral
  temp of 80°C. of there is no heat transfer find not work
  for process. Assume R = 0.287 K5/kg K.
S_{1}^{-1} M = 2 kg T_{1} = 100 C R = 0.287 kJ kg k

P = 1 MPa T_{2} = 30 C
       Adiabatic mocesi :- (Head braneper in zero)
       PV = C, W = P_1 V_1 - P_2 V_2 = MRT_1 - MRT_2

PV = MRT

PV = MRT

PV = MRT

PV = MRT

PV = MRT_1 - MRT_2

PV = MRT_1 - MRT_2
                                    : 2 to . 287 (100 - 30)
                                N= 100.45 KJ
```

First law applied to flow process: (Open System)

In open system, we know that everyy (had & work) as well ar watter cross the boundary. The watter way take internal, kinetic, potential, chemical & magnetic energier along with it while crothing the boundary towever, chemical & maquetre energier are generally neglected.

In open system there are 2 ligner of flow moceur, examply

- 1) steady flow process
- 2) Unsteady flow moreer
- I) In steady flow process the war flowing out the system. In a given time & equal to the mass flowing out of the system. In a given time & there is no change in the storaged everyop of the system.

Imagine a bath teels with a closed obain of turn on water which file the tub & stants overflowing.

- 2) In unteady flow process, the man flowing into the system is not equal to the man flowing out from the system in a given line & there is change in storage energy of the System ie, the rate of net flow of matter is not constant.
- Ex: Imagine a bath tub with a closed drain at the bottom or with an open drain & turn on water. Is the quantity of the tess is not constant, it is an unsteady process

Joaks law . Interval Energy of perfect gas:

Jouke law states that internal energy of a perfect gar in independent of vol & menure. It only depends on lemperature. There du m c v dT is applicable for any

change of state b/w 18 2 insuspective of the process since internal energy is a point function. From above defruition we can explain the sp. heat at countout vol. as $C_v = \frac{\partial y}{\partial T}$ where du ix specific change in internal energy on KJ/kg that Transfer in various Non-flow process: First law for a closed systems by given by Q1-2 - W1-2 = AU For an ideal gar internal energy is a femalion of lamp alone. · Du: MCV (T2-T1) -> eq. This eq. is applicable for any process state it is a point function & door not depend. on palls of the process and depender only on the state temp's. hat we Apply. This eq. to various possible process of a closed systems which changer from one state les avolter la develop relations for beat transfer. @ Constant rolume Process P Q1 Applying 1st law, Q1-2 - W1-2 : AU " WI-T = 0 Q = AU = MCV(T2-T1)

change of state b/w 18 2 insuspective of the process since internal energy 1/2 a point function. From above défriétion we com emplace the sp. heat at countant vol. on $C_v : \frac{\partial y}{\partial T}$ where du is specific change in inlinal enough on KJ/kg Heat Transfer in various Non-flow process: First law for a closed expeliens in given by O1-2 - W1-2 = AU for an ideal gar internal energy is a femalion of lamp alone. : Du = MCV (T2-T1) -> eq. This eq. is applicable for any moreen stace it is a point function & door not depend. on palts of the process and depender only on the state temp's. hat weapply. This eq. to various possible process of a closed systems which changer from one state les another to develop relations for beat brouger. @ Courtant Volume process PT DE CO Applying 1st law, Q1-2 - W1-2 : AU " W1-1 = 0 0,-2 = AU = MCV(T2-T1)

It indicates that the latest amount of energy supplied on the form of heat is stored by the systems ar rulitud severagy & lives (Q1-1), s. w.c. (72-71) 6 Constant Presence process: Applying 1st law, 0,-2 - W,-2 = Du W1-2 : P. (2-V); Au: mev(T2-T1) .. O = MCV (T2-T1) + P1 (V2-V1) = m cv (72-71) + (P2V2-P1V1) [...P1=P2] = m C (92-71) + mR (T2-71) [-! P,V, = MRT.] m cp (72-T1): m (T2-T1) (CV+R) [: Q = M Cp(P2-T,)] Cp = Cv+R Cp-Cv=R -> eq. This indicates that cp is always greater thous CV & the amount of heat required in a court mouse in greater than the court. vol. proceen to bring the same change in lamp. 3 Jeolternal Moces: - [PV=C] Q1-2 - W1-2 = DU DU: MCV (T2-T1) (: Toup = coust)

It indicates that the total amount of energy supplied in the form of heat is stored by the systems as rulinal severgy & these (Q1-2), MCV (T2-71) @ constant Presence process: Applying 1st law, 0,-2 - W1-2 = DU N_1-2 : P. (V2-V.); AU: MCV(T2-T1) .. 0,-2 = MCV (T2-T1) + P, (42-V1) = m cv (72-7,) + (P2V2-P1V1) [: P1=P2] [- P, V, = MRT.] = m C (92-71) + MR (72-71) m cp (T2-T1): m (T2-T1) (Cu+R) [: Q = W Cp(72-7,)] Cp : Cv+R Cp-Cv=R -> eq. This indicates that cp is always greater than CV & the amount of heat required in a court more in greater How the court vot. proceer to bring the same change in lang. 3 Isolturnal proces: - [PV=C] Q1-2 - W1-2 = DU

DU = MCV (T2-T1) (: Temp = coust)

DU = 0

... O+7 = M'-7 P1-2 = P1V1 lu 1/2 i.e., In isothermal process the system will not store any energy & total amount of heat supplied will conhert Though the temp is constant in isothernal process Q to, moheover it is equal to W. @ Adrabatic Freeer: (Reversible) Q1-2 - W1-2 = AU $\Delta U = MCV(T_2-T_1)$; $W_{1-2} = \frac{P_1V_1 - P_2V_2}{\sqrt{1-1}} \cdot \frac{MR(T_1-T_2)}{\sqrt{1-1}}$ W1-2 = MCV (7,=12) [. R = CV Q₁₋₂ = 0

In adiabatic process heat brouger is zero ie., the system does work without very heat interaction but at the expense of its own internal energy. So the lemp changer.

"Ju adiabatic process heat brouger is zero but lemp

② Polytropic proceeds:

$$\begin{array}{lll}
\bigcirc & P_1V_1 - P_2V_2 + mcv(7z-T_1) \\
& = \frac{P_1V_1 - P_2V_2}{n-1} + mR v_1(7z-T_1)
\end{array}$$

$$= \frac{mR(T_1 - T_2)}{n-1} + \frac{mR}{V-1} (T_2 - T_1) \quad [\because cv : R]$$

$$= mR(T_1 - T_2) \left[\frac{1}{n-1} - \frac{1}{V-1} \right]$$

$$= mR(T_1 - T_2) \left[\frac{(N-1) - (N-1)}{(N-1)} \right]$$

$$= mR(T_1 - T_2) \left[\frac{N-n}{N-1} \right]$$

$$= mR(T_1 - T_2) \left[\frac{N-n}{N-1} \right]$$

$$= mR(T_1 - T_2) \left[\frac{N-n}{N-1} \right]$$

$$= mR(T_1 - T_2)$$

$$= mR(T_1 - T_2) \left[\frac{N-n}{N-1} \right]$$

$$= mR(T_1 - T_2)$$

$$= mR(T_1$$

First law for an isolated system:

In an indaled rystem dQ=0 & dW=0 & house DE &0

The E = combat. There it states that in an isolated system

compy someoner constant. For example converse is an isolated

green for which the energy semain constant.

(1) A dementic reprogration in loaded with vegetable food extra and then door in closed, during a certain period the m/c consumed 1 kw-hr of energy & I.E of a Rydian drops by soon KJ. Find the net heat branger for the system? Green Internal energy DE = - 5000 KJ W= 1 KW-hr - 3600 KJ PO = DE +M = -5000 - 3600 = -8600 KI 1 An are telement of vol. 55 m3 contains our at 16 bar & sic a coall is opended to home quantity of air exape to admosphere. The preasure of all he the reciever reducted to 12 bor, when the wastre is closed. Calculate the many of the over left in the someone. receiver, Amene advabable process. J. V, = 5-5 m pv = coust. P, = 16 box: 1600 kA PIVI = PZV2 P2 = 12 box = 1200 KPa T, = 42 +273 = 315 K P,V,= MRT, 0 m, = P.V. = 1600 x 5.5.

MRT1 0.287 x 315 97.34 kg. D P.V. = P2V2 $\frac{P_1}{P_2} = \left(\frac{v_2}{v_1}\right)^{N} \Rightarrow \left(\frac{v_2}{v_1}\right) = \left(\frac{P_1}{P_2}\right)^{N}$ $\frac{1}{7} = \left(\frac{V_2}{V_1}\right)^{N-1} = \left(\frac{P_1}{P_2}\right)^{\frac{N-1}{N}} \qquad \frac{T_1}{T_2} = \left(\frac{P_1}{P_2}\right)^{\frac{N}{N}}$ $\Rightarrow \frac{315}{72} : \left[\frac{1600}{1200}\right]^{\frac{1.4-1}{1.4}} \Rightarrow 72 = 291.6 \text{ K}$ $N_1 = V_2 = 5.5 \text{ m}^3.$

```
P_2V_2 = \frac{m_R T_2}{m_2}

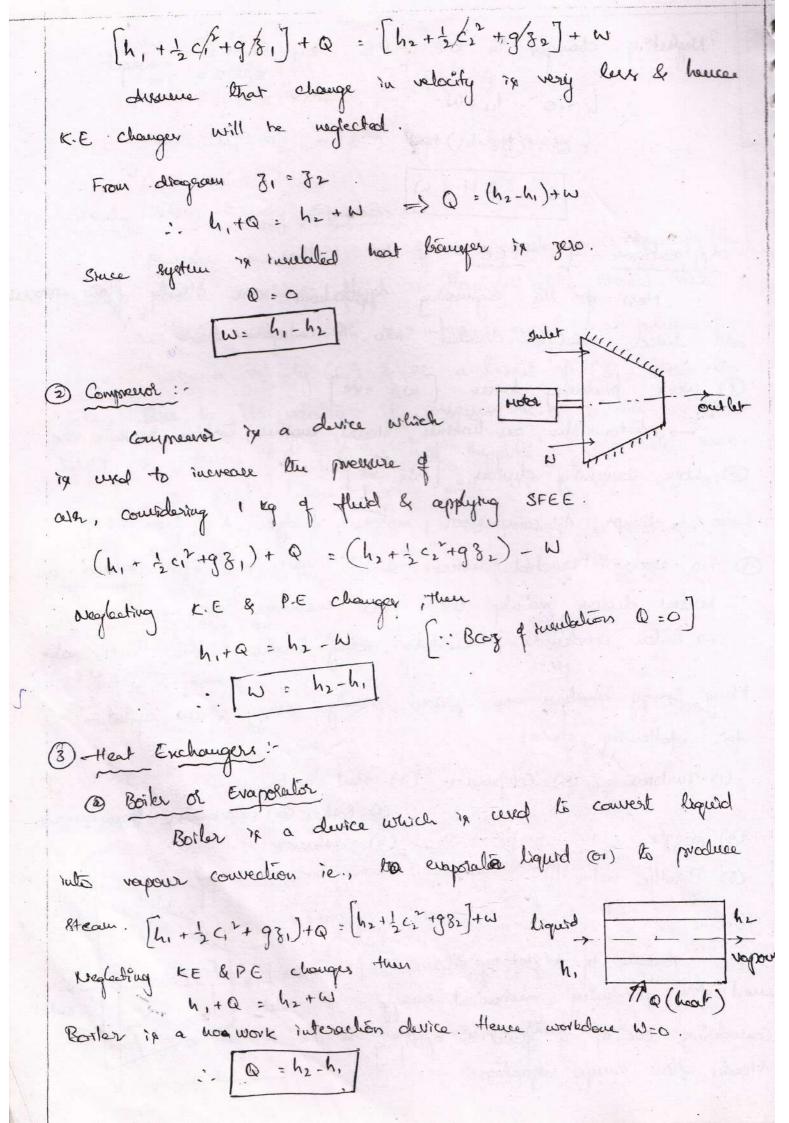
m_2 = \frac{1200 \times 5.5}{0.287 \times 291} = 79.02 \text{ kg}

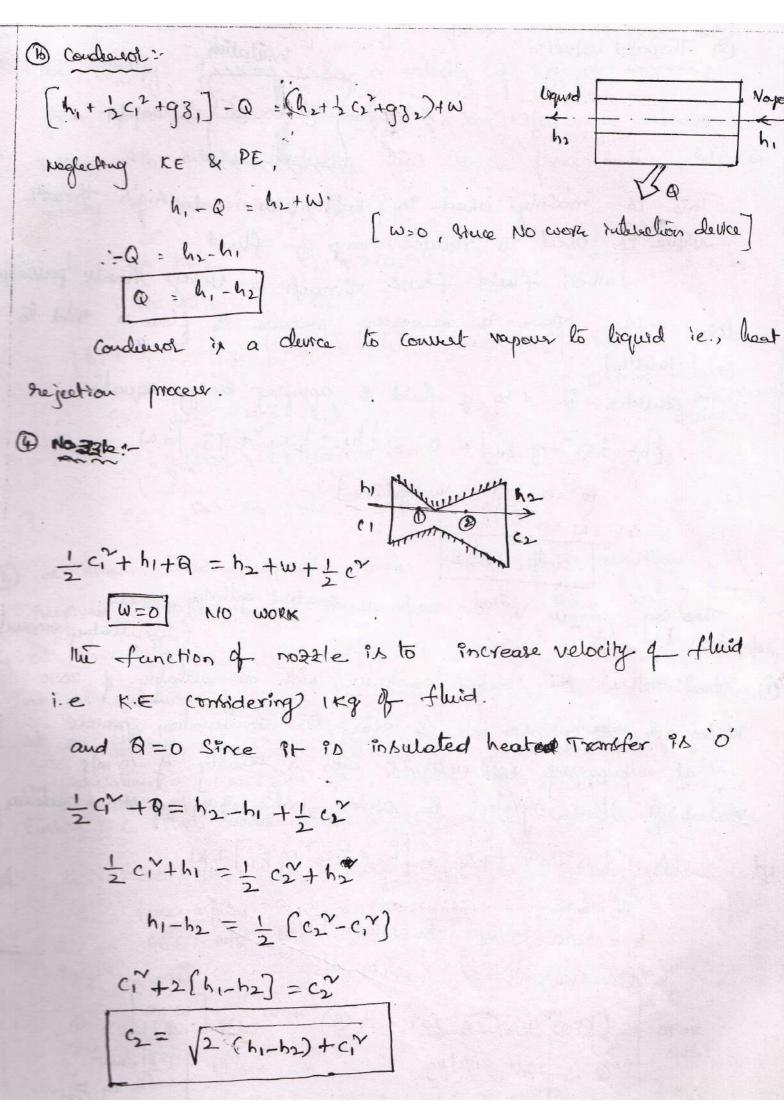
m = m_1 - m_2 = 18.3 \text{ kg} \left( \text{left main} \right)
```

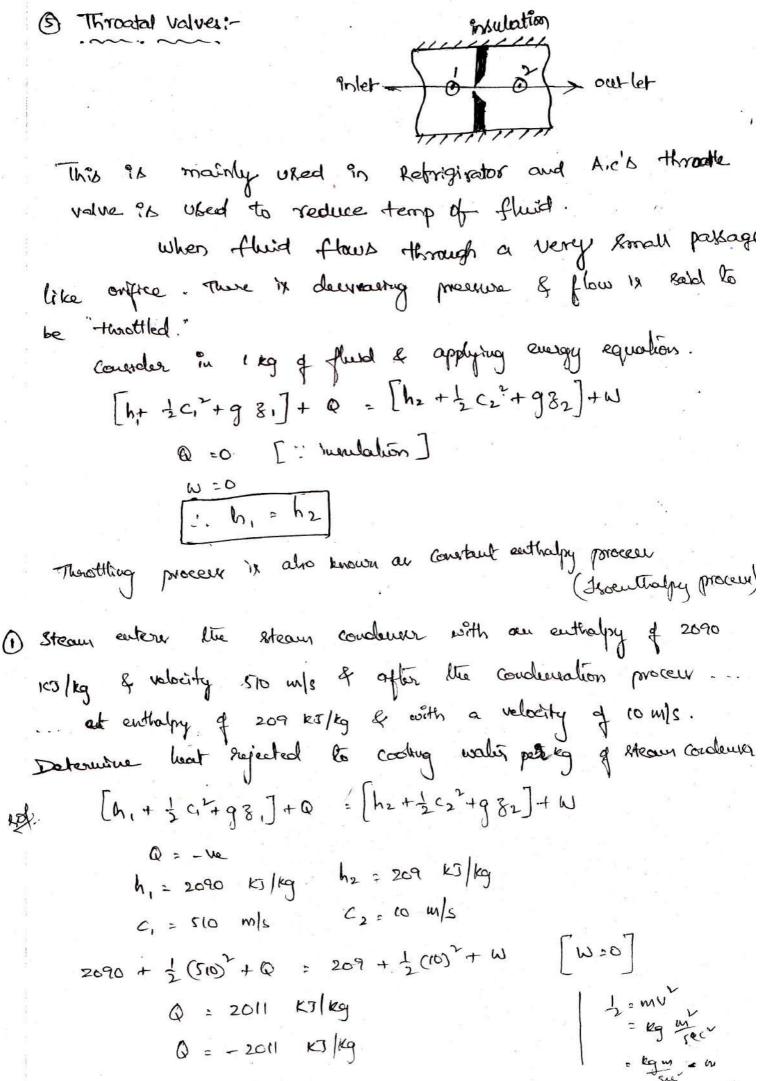
Steady Flow Every Equation:

Countries a control vol of a thermodynamic open system through which working fluid is flowing at a steady state.

The fluid enter with an interval energy (0,), pressure (p.)


Vel (v.), with a solveity (C.) & at a beight of (3,) from the doctors. Due to its velocity it possesses K.E. of due to its before its possesses P.E. O is heat supplied of Wix the work produced. If fluid leaves system with U2, P2, V2 & C2 at a hight 32. A/C to , it law of TD energy 1/p must be equal to energy 0/p. Assesses m = 1 kg of fluid.


	Emegy	Supert	output
0	Internal energy	u,	02
	K.E	42 c.2	112 C22
1	P.E	981	982 P2V2
(A)	flow work	P,V,	1


Total energy entering = Total energy leading $Q + [v_1 + p_1v_1 + \frac{1}{2}c_1^2 + 981] = [v_2 + p_2v_2 + \frac{1}{2}c_1^2 + 982] + W$ $[h_1 + \frac{1}{2}c_1^2 + 931] + Q = [h_2 + \frac{1}{2}c_1^2 + 982] + W$ [where h = U + pv] $[h_1 + \frac{1}{2}c_1^2 + 931] + Q = [h_2 + \frac{1}{2}c_1^2 + 982] + W$ [entropy]

Enthalpy in defined as the him of IE & flow work h = U + pV

Neglecting changer in R.E & P.E. ie., C:=C2 weight Z:=Z2
, h, to = h2+W
Q = (h2-h1)+W
Q : AH+W
Applications of SFEE:
Most of the engineering applications are steady flow process and devices can be divided into 8 categorises.
All devices can be considered
(i) work producting durices [w = +ve]
- Automobiler, gar histories, steam engineer, wishous, nockell erc.
@ work conjuming durices [W= -ve]
-> Pumps, Ask compressor, motions, feidger, A.C., faires et.
3) No work interacted devicer [w=0]. These are also known or
neutral devices mainly used heat exchange etc.,
neutral devices mainly used heat exchanges etc., -> Boilers, condensor, radioters, cooling towers, noggles, throttle value etc.
Havy Evergy Analysis are detrived steady evergy flow equations
for following dentat:
(1) Turbine (2) Comprouvoit (3) Heat exchangers (a) Boilers (a) evaporator (a) Brain generator
(4) Noggle (5) Theothe value Torbine:
Porbine !-
Tuesdone in a notary device O ②
Twelstree is a motory device wed for producing mechanical energy. Steady flow energy equations.
coundering one by of fluid & applying
steady flow averagy expections.

= N m = J

1 A gar leaving turbojet eague flower into jet pipe with an eatherpy of 960 K5/kg or velocity of 250 m/s. The ext from pipe is at our enthalpy of 800 KJ/kg. The exhaust is pulse with intake Neglecting heart losser from system, determine relocity of gar leaving the pipe. hici from hich ed: h, = 960 kg/kg C, = 200 mls hz = 800 ks/kg Cz = ? [hi+ 12c12+93,]+0 = [hz+ 2c2+982]+W (N = 0 => ho work hakrouth c2 = \ C, 2 + 2(h, -h2) = (250) + 2 (960-800) x 600 Cz = 8+2.39 mfs - 258.63 m/s 3) of steam tuebone operates under steady flow conditions, it necesser 7200 tg/ha q eteam from borter. Steam enters turbone at an enthalpy of 2800 KT/pig. The relacity of steam ix 4000 m/min at an elevation of 4 m. The velocity of exteam a leaver tempore at an enthalpy of 2000 kJ/kg with an relocity 8000 m/min at an elevation of in. Due to radiation heat losser from the tuestime to the surrounding of 1580 KJ/m. Cadalate op. of tentine. $n_1 = 2800 \text{ kJ/kg}$ $h_2 = 2000 \text{ kJ/kg}$ m = 7200 kg/hr $c_1 = 4000 \text{ m/m/g}$ $c_2 = 9000 \text{ m/m/g}$ $c_3 = 2 \text{ kg/ke}$ $c_4 = 66.67 \text{ m/s}$ $c_5 = 1 \text{ m}$ $c_6 = 7200 \text{ kJ/hr}$ $c_6 = 7200 \text{ kJ/hr}$ 4: h, = 2800 kJ/kg h_ = 2000 kg/kg Rober z_1 outlet z_2 Q = -1580 K3/har = -1180 KJ/KC = - 0.438 KJ/KC

$$N = ?$$
 $[h_1 + \frac{1}{2}c_1^2 + q g_1] + Q = [h_2 + \frac{1}{2}c_1^2 + q g_2] + W$
 $W = [(h_1 - h_2) + \frac{1}{2}(\frac{c_1^2 - c_2^2}{1000}) + \frac{g(g_1 - g_2)}{1000}] + Q$

that low per kg of steam = $\frac{Q}{M} = -0.219$ kJ/kg

 $W = \frac{800}{2} + \frac{1}{2}(\frac{c_1^2 + c_2^2}{4}) + \frac{g(g_1 - g_2)}{1000} + \frac{g(g_1 - g_2)}{1000}] + Q$

Output of bu liabone $W = \frac{793.6}{2} \times \frac{1}{2} \times \frac{1}{2}$

3 Egrogerant vapour enters condenser of refregiration plant with enthalpy of 223.75 KT/Rg & leaven with an enthalpy of 24-6. KJ/kg. Cooling water entres at 15°C & leaver at 20°C. Calculate man flow nater of water per cuirt flow nate of Vapour liquidout

h, Tom h2

T1=15c represent.

80; h, = 223.75 KJ/Rg hz = 64.6 KS/kg

T1 = 15+273 = 288 K; T1: 20+273 A/c to 1st law heat loss by repriegrant = heat gained by water. my (h2-h1) = Mw Cpw (T2-T1) [mn = 1 1 (64.6-223.75) = mw (4.187) (293-288) Cpw = 4.187 KJ kg K CPON = 1.000 KS/KgK ww = - 7.602 kg/exc

@ Show that I.E of a system is a point function & theseno dynamic property of a system?

ed: Suternal Energy: Energy external in the body 1x called I.E. It is neither heat now work. It is competated with

$$N = ?$$

$$[h_1 + \frac{1}{2}c_1^2 + \frac{1}{9}8_1] + Q = [h_2 + \frac{1}{2}c_1^2 + \frac{1}{9}3_2] + W$$

$$\therefore W = [(h_1 - h_2) + \frac{1}{2}(\frac{1}{9}c_2^2) + \frac{1}{9}(\frac{1}{3}, \frac{1}{3})] + Q$$

$$\text{Heat law park kg } d \text{ Recur} : Q = -0.43? = -0.219 \text{ KJ/kg}$$

$$\text{th} = \frac{1}{9}80.4 + \frac{1}{2}(\frac{1}{9}444)$$

$$W = \frac{1}{7}43.6 \times 2 \text{ kg/cc}$$

$$\text{Optput } d \text{ But labbe } W = \frac{7}{7}43.6 \times 2 \text{ kg/cc}$$

$$W = \frac{1}{5}87.2 \text{ kw}$$

Show that I.E of a system is a point function of thesenso dynamic property of a system?

At the neither heat not work It is aerocrated with

motion q molecular, atomir & hab-atomire particles. Consider a closed system from (1) to (2) through paths A & noturned to its initial Rtale Brough B. The ceple in 1-A-2-B-1 Ac to 1st law of 70 for cyclic process QA+QB = WA+WB -> 0 Applying 1st law for states A & B Q+ = DE, +WA -> @ QB = DEB + WB -> 3 QA+QB = (DEA+DER) + (WA+WB) WATUR = (DEA + DEB) + (WATUR) DEA + DER 20 DEA = - DEB - (4) Change in I.E of hystem of path A & B is Same. change in

Ne) sign is due to change in direcum.

Change in direction.

Change in direction. ((ve) sign is due to change in directions). coverdering a system returning to its initial state through path C. Now tu cycle 1/2 1-A-2-C-1. 2Q = 2W QA+Qc = WA+We -> 1 QA = DEA + WAA -> 6 QE = AEc + We -> A QA+Qc = (DEA+DEC) + (WA+We) DEA = - DEJ -> 8

From eq. @ it is evadent that change in I.E. 1x same for path A & path C. From eq 4 & eq. 8, we can verte as follows $\Delta E_{A} : \Delta E_{B} = \Delta E_{C}$ (Newfeeling sign) Hence I.E ix a point function. From above I.E ix same blu livo fixed state point & it ix not depend on patrs (ov) process. Hence the I.E of system is point feuction & properties of enplein. A cylinder contains 0.115 m3 q gas at 1 boar & 90°C. The goer ix compressed to a volume of 0.0288 m3, the final procuure being 5.67 bor. Calculate @ the waer of gar. 6) the value of Guden of compression @ the Guerrage in interval evergy of gar a tre heat teranger during the compression. If after the above confraence, the gas is to be cooled at courtant pressure to its original lamp of 90 c, find the feelther work of compression required, assume $N_{e,1.4} & R = 0.3 \text{ KI/kg/k}$. N, = 0-115 m3 m = 3 4 P3=P2 P, = 1×102 KPa N = 5 T3=T1=363 K T, = 90°C = 363 K DU1-2 ? $w_{2-3} = ?$ V2 = 0.0288 m3 Q1-2=? P2: 567 KPa N = 1.4 R = 3 KJ/kg/K

we have P, V, = MRT, m = P, V, = 1.056 x10 kg. $P_1 V_1 = P_2 V_2^N \Rightarrow \left(\frac{V_1}{4_2}\right)^n = \left(\frac{P_2}{P_1}\right)$ $\left[n = \log_{(0.25)} (0.176) \right]$ $\left(\frac{0.115}{0.0288}\right)^n = \left(\frac{567}{100}\right) \Rightarrow n = 1.253.$ & $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{1/2} = \left(\frac{0.115}{0.018}\right)^{0.253}$ T2 = 515.27 K $C_{V} = \frac{R}{V-1} = \frac{0.3}{1.4-1} = 0.75 \, \text{Restrictions}$ [R=Cp-Cv] cp = R+CN = 1.05 K5/kg K DU = M C, (T2-T1). = 12.059 KJ W_{1-2} = $\frac{P_1V_1 - P_2V_2}{p_{-1}}$ = -19.08 kJ : Q = Du + W = 12.059 - 19.08 = -7003 KJ W₂₋₃ = m C_p (T₃-T₂) = 1.056 × 10 × 1.05 (363 - 515.27) = -24.94 KJ/ show that pr'=c for swereible adiabatic process.

Differentialing on both Rides, we get pdv + Vdp = MRdT

mRdT = Pdv + Vdp $dT = \frac{pdv + vdp}{mR} \rightarrow 0$ In adobabatic, heat transfer 80 =0 SQ = Su + Sw => Sw = - Su pdu = -mcvdT pdv+mcyd7 =0 -> 3 Substitute eq 10 hu 10 pdu + when (pdut volp) = 0 PRdu + Cu (pdu+vdp) = 0 => cu(pdu+vdp)+ prdu=0 e, (bqn+nqb) + b (cb-ch) qn =0 [: 1 = cb-cn] cupár+ crudp + pcpdr - pcydr = 0 Cr Vdp + Cp Pdv = 0; Daviding both Rider by Cr PV Chen + chapp = 0 [ch = 1] dP + Ndy = 0 (Integrate) [dervue .: C, = loge c] logeP + N logeV = C, logeP+logeV12C, loge (pv") - c, loge (pv") = loge c . PV = C

To a chosed System 150k5 of work is sufficed. 24 quip vo 1, 40.6 m3 of pressure of Surray enamples as P=8-42 were pis so bar qvison m3. Detente trad volue $\frac{1}{-150\times10^{3}} = \int (8-4V) \times V = 8(V_{2}-V_{1}) - \frac{1}{2} (V_{2}^{2}-V_{1}^{2})$ $= -\frac{1}{2} \times 10^{5}$ $V_{2} = 0.353 \text{ m}^{3}$ mal prent P2 - 8-4 V2 = 6.588 bay me prince & sp. votre et atar, are related acody to egg PV 1.4 = 2.5 ×10 5, more P= N/m2 & v= m/g west deph of atability is reged to produce in prime at 1.033 hor at cam histail. Amure 9 = 9.81 m/st

Crit he atmosphere as find column

P. Atm. Column

obtained

obtained

contract Prop

contract Prop

contract an elevent at 1000. cour or elevent or loss of hy fore bolance A CP +dp) = mg+PA 12 + AJP = FADAN +PA

1th 2 for 10 14 = 694621

P) me flow every of 0.129 m3/min of a Hour crossing a boundary to a system is 1810 W find me Prosere at. furt port VI A1 Pi = From AT = Area NI = reloy volue flor save (Q) = 4, V, - Pour : Force & volue. = PM X VI VP-8 一个大品 18 = PIX 0.124 PI - 18×60 - 8 8.71 Mg

1.5 Kg or 119md havery a Cont. 8p. heart of 2.5 KJ/byle

g physical in a west 9m 8thlested Charger Causing texp. to

Hear by 15°C. Find AF 9 W by Braces

Hear add = 1.5 x 2.5 x 1x = 56.25 kg

AS It 4 9m fulade AA = 0

AB = 28 + W

0 = 36.25 kg

W = - 56.25 kg

W = - 56.25 kg

1) An engine is terred by nears of water booke it 1000 Pm. me nearmed horque ist egire is 10000 mN & water Condemphics of brake is 5 m3/8 its gutet temp. being 20°C. Calculate water texp. at exit, assurpthat unole of lugine power is ultimately partioned the heat union is absorbed by Cooling water

P = To as $= 10000 \times \left(\frac{271\times1000}{60}\right) = 1.0472\times10^{6} \text{W}$ let trual texp. == t°C

Here associatly cooling webstlowit = w cp st = Y.P.CPST = 0.5 × 1000 × 4.2(1-20)

-. 0.5 N 1000 x 4.2x (+-20) = 1.0472×106

t = 20+0.5-205°C aiv expand of 2+8 of above flood expand 9n a brictionless pisson & cylinder machine from Init. State of 1. Mg 1000 to a River Feep. of 30°C. It were & no hear hastor, find net were for footen franks) (8)

Q = WIDE => W= - AE = -AU = - SerdT = -0.718 (T2-T1) = -0.718 (100-3) = -50028 KJ/A total work w = 2x (-50.16) 2-100.520

1) An engine is terred by nears of water booke it 1000 rpm. me nearmed torque ist eight is 10000 mN & water Condemphics of brake is 5 m3/8 its gutet temp. being 20°C. Calculate water texp. at exit, assurpthat under ot lugine power is ultimately partioned the heat union is absorbed by Cooling water P = To a = 10000 x (2TIX 1000) = 1.0472 X106W let truel texp. == t°C

Here asselled by cooling weder/vinit = w cp st = Y.P.CPST

Tere associated of = V.P. CPST = 0.5 x 1000 x 4.2 (1-20) = 1.0 472 x 106

t = 20+0.5-205°C

aiv fait expands on a

friction of piston & cylindy machine from Init. State of). Mg 100°C

friction of piston & cylindy machine from Init. State of). Mg 100°C

for chiodos piston & cylindy machine from Init. State of). Mg 100°C

to a final text. of 30°C. It have & no heat hastor, find

wet work for footon

Q = 0 $Q = \omega + \Delta E = 0$ $Q = \omega + \Delta E = 0$ $Q = -\Delta U = -\int CV dT$ $Q = -0.718 (T_2 - T_1)$ Q = -0.718 (100 - 30) = -50028 KM/M Q = -0.718 (100 - 30) = -50028 KM/M

2-100.520

Limitation

1) NO Restaction on dich of Plow ob-heat . Me

Forst law entatolishes debruice relativished by hear & work

No town law ben't and care when hear an trow brown

No town law ben't and or not . ext we can't extract

Cold ent to not end or not . ext we can't extract

by tooling the some east work hasho be done

hear from the getto low teep . Some east work hasho be done

hear from the getty hat process is beautible of not for

law ben't specity hat process is beautible of not for

law ben't specity hat process is beautible of not for

ext when rod is really as one end hen equil, has

ext when rod is really as one end hen equil, has

or we obtained

which show buy low rep Body to

ob every. C hogh resp body. It is sitted about a

3) practically of is not possible to could hear engry

3) Practically of is not portable to come has limitated que against huant of work. To overcome has limitated and to be much he of to much he of to much he of the directory predict reaction is transfer or not & also that directory of blow ob head

4) Q ->w - Fearisiting
W can'the converted awheat, equally

\$) Emmond

Limitations of First law of TD:

- (i) According to 1st law of FD, heat & work are mutually convertable. This is not true in real practice.
- (ii) These is no scentriction on the direction of flow of work & heat which is not brue.
- (iii) In general heat & not completely converted Ento work
- (iv) High prosesure gar expressed to low pressure, but the greater is not possible in greated ie., some enternal courage is required which violets the 1st law of TD.
 - (1) In on automobile, if braker are applied the brake work is converted into heat & dirripated into the atmosphere. If reverse process is consolered i.e., by giving the heat to breaker wheel, it should notate, which is not possible.
 - (vi) A/c to Joule's experiment work can be completely converted into heat but in general complete convertions of heat into wolle ix not possible becog of lovers.

 $0 \stackrel{>}{\rightarrow} M$

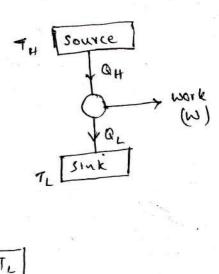
> It is a reservoir housing sufficite amount of heat quantity in it such that when we add or remove facile amount of had from it. Its temp will not change. -> Thermal transvole is a body of controlle heat copacily,

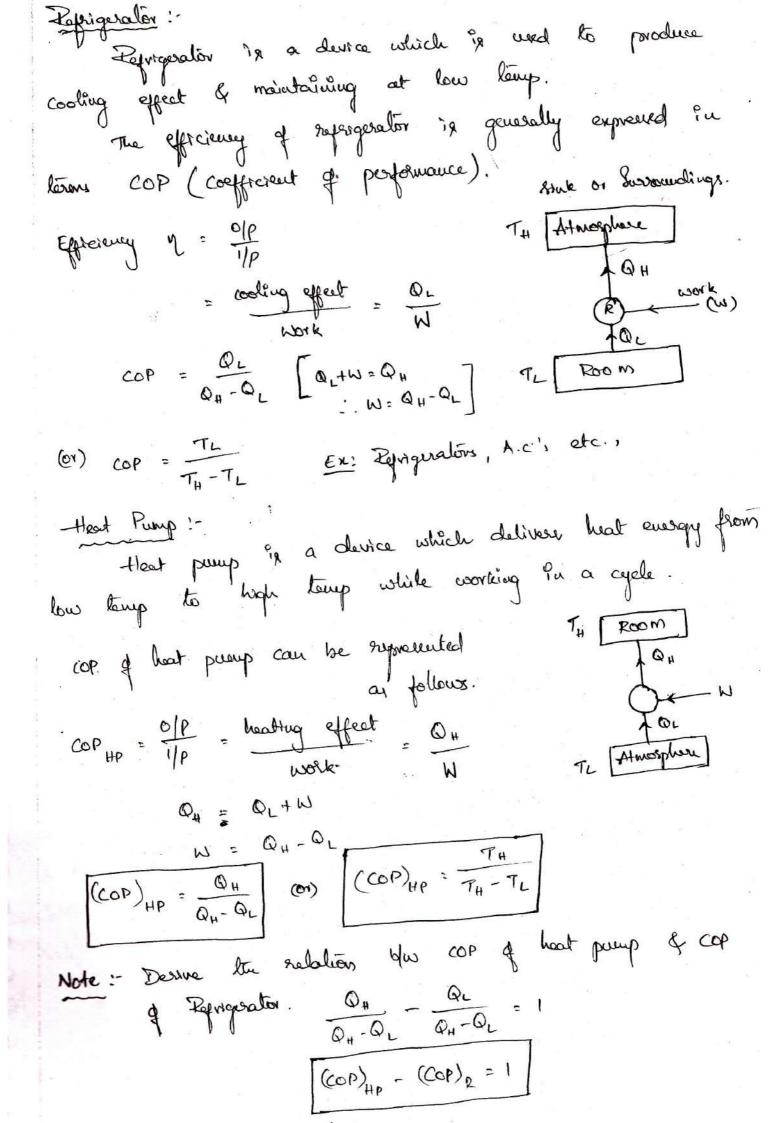
which is appable of obserbing or rejecting unlimited offy a heat without affecting its lamp arature. -> -All the process associated with a thermal resorvoir are arrund to be quart-static. [ex:-ocean water, atmain]

-tleat Source:

The thermal newworr from which heat is transferred to a system during a cycle is called heat source.

Ex: Boiler farnale, Sun, Nuclear mactors, combactions chamber of an engine or tensorme etc.


-tleat Sink !-


The Steerman traspersation to which heat is sujected from the system during a cycle is called as heat stul!

Ex: Atmospheric air, river, ma (or) ocean water etc.

I heat engine is a device which converts heat energy Heat Engine: into mechanical work (High grade energy) [ex: Steam power plant] Thosard efferency 1/th = 1/p that supplied.

Q . > heat supply from house OL - heat rejected to suk · TH -> highest (ON) hat body lemp TL -> bowest car cold loody long y = 0/P = W where w = Q4-Q_ ". M = QH-OL QH (GV) U = TH-TL TH

1 A heat engène, one heat pump & a refrigeration are working b/w two heat reservoir one at 600 K, the other at 300 k calculate 1 Effrerency of heat engine (9) (a) Expressing of HE = $\frac{T_H - T_L}{T_H} = \frac{600 - 300}{600} = \frac{3}{6} = 0.5 = 10 \text{ }\%$ ① $COP_{HP} = \frac{T_H}{T_H - T_L} = \frac{600}{800 - 300} = 2$ (3) $COP_R = \frac{T_L}{P_H - T_L} = \frac{300}{600 - 300} = 1$ 2) A Heat engine ruceives heat at the rate of 1000 KJ/min & giver au op q 8.2 km. Determine Source @ Rate of heat rejection 25 kw & QH Q + = 1500 KT min SINK OH = 1500 \$ KJ | xc = 25 kw W = 8.2 KW $N = \frac{Q_{H} - Q_{L}}{Q_{H}} = \frac{N}{Q_{H}} = \frac{8.2}{25} = \frac{32.87}{25}$ W = OH - OL = - 16.8 KW QL = 16.8 KW (3) A H.E, H.P & nefrigerator necessiver soo KJ of heat each but they neject 200 KJ, 1500 KJ & 600 KJ of heat negrectively. Determine (1) 1 4 HE (2) COPR (3) COPHP Represent these values with the help of diagrams. 301- Efficiency HE, (1) :-

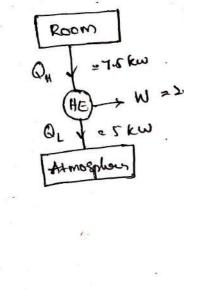
Lonk

$$W = 2.5 \text{ kJ}$$

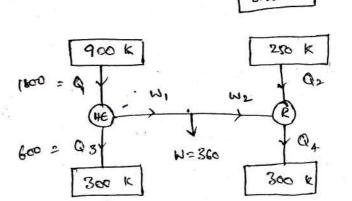
$$Q_{H} = Q_{L} + W$$

$$M = \frac{O|P}{1|P}$$

$$0.333 = \frac{W}{Q_{H}} = \frac{2.5}{Q_{H}}$$

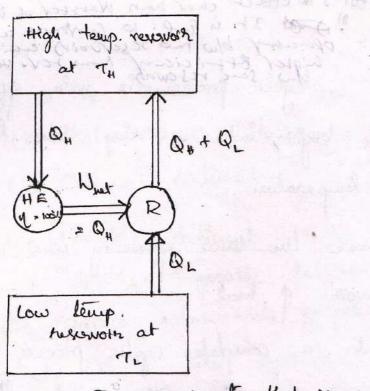

$$\therefore Q_{H} = 7.5 \text{ kJ}$$

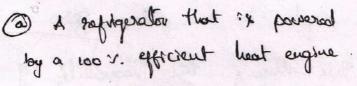
$$W + Q_{L} = Q_{H} \implies Q_{L} = Q_{H} - W = 5 \text{ kJ}$$

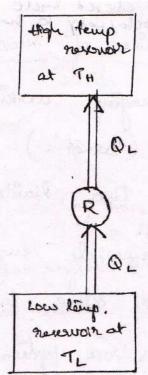

$$CoP_{HP} = \frac{420}{420 - 280} = 3$$

$$3 = \frac{Q_{H}}{Q_{H} - Q_{L}} \implies Q_{H} = 3Q_{H} - 3Q_{L}$$

$$Q_{H} = \frac{3}{2} \times S = 7.5 \text{ kW}$$

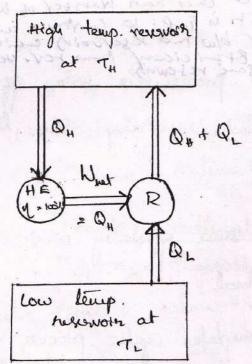

6 A reversible heat engine operating blu 900 k & 300 k is eved to a nevertible representer for which temp limits are 300 k & 250 k. The engine absorbs 1800 kT of energy and heat from reversion at 900 k. The net output from engine & happroparation system is 360 kJ. Make calculation for heat extracted from refrigeration advised & total heat rejected at 300 k.

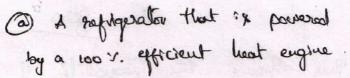


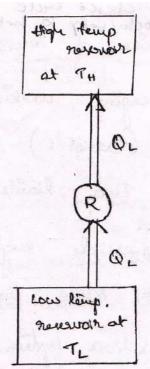

SECOND LAW OF TD: It is stated in two ways is, trough (ii) Clausius Statement , Agent net were in a Corplete yell Lelvin-Planck's Statement; at 5 yell to byteld tep.) "It is impossible to construct an engine working on a cyclic process, whose sole purpose is to convert all the heat Supplied to of into equivalent amount of work." If $Q_2 = 0$ (ie, $W_{\text{net}} = Q_1$ or $N_1 = 100 \times 1$) $W = Q_1 - Q_2$ $W = Q_2 + Q_2$ Source T, the heat engine will produce net work Stuk 72 In a complete cycle by exchanging heat with only one neservola, their violating the Kelvin-Phucks Statement. Such a heat engine is called a Perpetual motion machine of the second Kind (PMM2). A PMM2 is impossible. Clarius Statement: "It is forpossible for the heat to flow from a body at a lower temp without aid of that body. external agency" (O1) R W=0 "that flows from a hot body to a cold body " It's 9-positive & conferent a della no esteet own man transfer of heat han cooler soy

Corallaries of Second law - process blw me reservoirs and and higher letting him rev. theat and higher letting him rev. theat any higher letting him rev. theat any him services in the services of the services and him services and him services that any him rev. theat any him services is the services of the services and the services are t tous (Carnot's) reveretble engine when working blu lie Same two liants of temperature. 1) 3 All reversible engineer have the same efficiency when working blu the same two neservoiou of heat. 3 whenever a system executes a complete cyclic procese the & do/ around the cycle is her than zero or in the limit is equal to zero. This shows the inequality of Clausius. # of da/T = 0 for any reversible cyclic process & consequently for any reverible process blu reference states O & 3 ix a peroperty of the system in state 2. This property ix called entropy. 3 A true absolute 70 lung scale may be defined which is independent of the characteristics of the thermodynamic medium.

A scale of terp. On be defined amon is undefendent of
any particular nerrovenic systemate by union provides absizero of
Equivalence of the live statements: The Kelvin Planck & the Clausius statements are equivalent on their consequence, & either statement can be used as the expression of II law of TD. Any device that violates the telvin-Plancko Statement also violates les clausieur statement & vice versa. Consider the heat engine reprigeration combination as shown in frg., operating blu the same lies reservoires. The heat englue is arrund to have, in violation of Kelvin-Planche Statement, a thermal 4 of 100%. & therefore it converts






6) The equivalent representor

all the heat Q_H ?t recieives to work M. This work is now supplied to a refrigeration that removes heat in the amount of Q_L from the low long reservoir & rejects heat in the amount of $Q_L + Q_H$ to the high long reservoir. During this process, the high long reservoir receives a net amount of heat Q_L (the diff blue $Q_L + Q_H$) and Q_H). Thus, the combination of these two devices can be viewed as a refriguestor, that transpers heat in an amount of Q_L from a cooler body to a cooler body to a cooler body to a cooler outside. This is

It can also be shown in a studen manner that a violation of the Clausius statement leads to the violation telvin-Plantek statement. Therefore, both are two equivalent expressions of I Row of TD.

6 The equivalent refragosator

all the heat Q_H ?t recieves to work W. This work is now supplied to a refigeration that removes heat in the amount of Q_L from the low lamp reservoirs & rejects heat in the amount of $Q_L + Q_H$ to the high lamp reservoirs. During this process, the high lamp reservoirs as net amount of the Q_L (the diff blue $Q_L + Q_H$) and Q_H). Thus, the combinations of these two devices can be viewed as a refrigeration, that transpers heat in an amount of Q_L from a cooler body to a cooler one without requiring any input from outside. This is clearly a violation of the clausius statement.

It can also be shown in a studen manner that a widelien of the Clausius statement leads to the violation telvinPlantek statement. Therefore, both are two equivalent expressions
of I low of TD.

Peopletual Motion Machine of Second Know (PMM II): It ix impossible to construct a PMM II. It ix a hypothetical mic that continuously supply host from low lamp revenuder to high laws without taking any input or work from hurroundings. But such a me is not feasible from practical point of wew. It upolates I law of TD. (claurer statement) (that temp Source Diahormic PHM-11 Noo (A) Count Carele/Engine: It is a revereible SINK Dachermic Cover cycle which comists of all reverible procese. ie., -> Reversible isothermal heat addition -> Revereible addiabatic expansion -> Roversible isothermal heat rejection tig: CARNOT ENGINE -> Reventble adiabatic compression. Carnot how proposed a pixton cylinder arrangement with westing medium & livo coverer as shown in fig. Process (1-2): TH = C

By explained distribution cover an amount P

By explained distribution line source

The formation the source

A heat Q, is supplied from the source

The total (distribution to the total) at constant temp T.

(drops TH+5TL)

Process (2-3): The dialluluic cover in suplaced by an adiabatic cover & these medium with its stored energy pusher law piston forward by developing work WE advalatically & turnsibly & the temp of medium decreases from 7, to 72

Process (8-4): The advabatic cover is replaced by diathernic cover & Q2 amount of heat is wade to leave the systems at 72 to a sink at T2 resensibly.

Process (8-1): The abothernic cover is again replaced by adiabatic

Proces (4-1):- The drathernic cover in again replaced by describing & cover & pump work up is done on the medium reversibly & adjulationally till the temp riser to T. & system return to the suitial state, or shown in PV diagram.

For a steady flow process, Alc to I law of TD for a cycle,

50 = 5W

QH-QL = WE-WC

Efficiency of Carmot engine = Not work output

Heat happy $V_{\text{count}} = \frac{W_{\text{E}} - W_{\text{E}}}{Q_{\text{H}}} = \frac{Q_{\text{H}} - Q_{\text{H}}}{Q_{\text{H}}}$

-: Vernet = TH-TL

Levereible Carnot Heat Engline:

Since all the process in the Carnot cycle are ruerestole, it may possible to ruere the engine. Let individually all the process are ruerted then

Process (1-2) -> Isothermal heat rejection

(2-3) -> Adiabatic pumping

(3-4) -> Shothermal heat addition

(4-1) -> Adiabatre enpaneiron.

There all the energy townspers accounted with the process are reversed in direction but their magnificate rumains the same.

Thur the West ix negative & heat is bransferred from lower laws revenues to higher laws revenues thus out as a heat pump or suprogerator.

1 Development of Count cycle is practically Emporeible becog.,

- -> du proces su hature are soverersible.
- It is not possible to replace the coveres diatherenic & adhabatic continuely.
- > Inothermal heat addition & rejection requires infinite time is, pixton has to move infinitely show where adiabatic process want he completed very quickly. Two tands of motion could be obtained.
- -> Friction leu molton of piston in not possible.

s taken ou standard reference point.

The curves isothermal & adiabatic when drawn on P-V diagrams due to the small diff. in their stope they will not converge early & requires a large stroke. There Vs will be very high with less enclosed area i.e., work development.

The absolute temp scale is also known as telvin the absolute on heat absolute & heat rejected & ix dependent of peculiar characteristics of working substance.

- Thur the West ix negative & heat is transferred from lower laws reservoir to higher laws reversors there are a heat pump or reprogrator.
- 1 Development of Count cycle is machically Emporable becog.,
- -> du process en hature are vouversible.
- -> It is not possible to replace the coveres diatherente & adiabatic continuously.
- -> Inothermal heat addition & rejection requires infinite line ie.,
 pixton have to move infinitely show where adiabatic process
 would be completed very quickly. Two tands of motion could be obtained.
- -> Friction leu motion of piston in not possible.
- The curves isothermal & adiabatic when drawn on P-V diagrams due to the small diff. In their stope they will not converge early & requires a large stroke. There Vs will be very high with less enclosed area i.e., work development.

Thermodynamic temp Scale:

use know that of francientale controt hook leighte

The absolute temp scale in also known as telvin scale. It depends on heat absorbed & heat rejected & in dependent of peculiar characteristics of working substance.

Limited telvin scale the briph point of water (o'c = 273.16 k)

Laken our standard reference point.

De Te To Cor) T = 273.16 De [] Tep]

Thus the absolute TO laws scale how a definite

Thus the absolute TO laws scale how a definite

Berro point & water which can be attained by imaging

a sorier of quarritale enginer contending from source T, to

a lower laws. If enough enginer are placed in series to

wake the total work output equal to Q, then the heat right of

wake the total work output equal to Q, then the heat right of

boy last engine is zero. However 2nd law do not allow to

develop such an engine.

when the heat rejected approacher zero the lamp of heat

when the heat rejected approacher zero the lamp of heat

rejection also approacher a zero limit. Thus it appears a definite

rejection also approacher a zero limit. Thus it appears a definite

rejection also approacher a zero limit. Thus it appears a definite

rejection also approacher a zero limit. Thus it appears a definite

rejection also approacher a zero limit. Thus it appears a definite

De An engine operating on Carnot cycle worker within lamp limit of 600 k & 300 k. If engine neceiver 2000 kJ of heat. Calculate workdone & thermat efferency of engine.

201: $T_1 = 600 \text{ K}$ $T_1 = 600 \text{ K}$ $Q_{+} = 7000 \text{ KJ}$ $Q_{+} = 2000 \text{ KJ}$ $Q_{+} = 2000 \text{ KJ}$ $Q_{+} = Q_{-} = W$ $Q_{+} = 0000 \text{ KJ}$ $Q_{+} = 0000 \text{ KJ}$

2000 - QL = 1000 KJ.

QL : 1000 KJ.

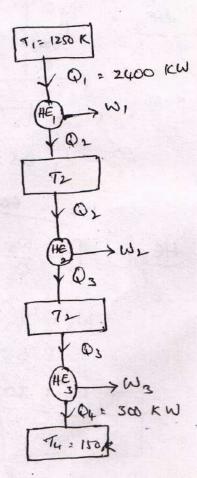
Determine power sequired to seen sufvigoration that transfers

2000 KI prim heat forms cooled space at o'c to the survounding

atomosphere at 27°C. The sufvigoration operates on survey corner cycle.

$$COP = \frac{273}{300-273} = 10.111$$

$$Q_{H} = 2197.8$$
 = $2197.8 - 2000$
 $W = 0_{H} - Q_{L} = 2197.8 \times 5 | win$


$$\frac{HE_{1}!}{V_{1}} = \frac{Q_{1} - Q_{2}}{Q_{1}} = \frac{T_{1} - T_{2}}{T_{1}}$$

$$= 1 - \frac{Q_{2}}{Q_{1}}$$

$$1-\eta = \frac{Q_L}{Q_1} \longrightarrow 0$$

$$\frac{HE_{2}}{V_{2}} = \frac{Q_{2} - Q_{3}}{Q_{2}} = 1 - \frac{Q_{3}}{Q_{2}}$$

$$-1-\eta_2:\frac{0}{0}$$

HE₃:
$$O_3 - O_4$$
: $1 - O_4$
 $O_3 - O_4$: $1 - O_4$
 $O_3 - O_4$: O_4

Haltiplying $O_1 O_2 O_3 O_4 O_4$: O_4
 $O_4 - O_4 O_5$: $O_4 O_4 O_5$: O_4
 $O_1 - O_4 O_5$: $O_4 O_4$: $O_4 O_4$: O_4

·W3 = 300 kW,

2 Reversible heat engineer A & B are connected in series with A rejecting heat denetly to B' through an intermediate reservoire Engine d' raceiver 200 KJ of heat from a raceivoir at 421°C & engine B'in in thermal commendation with a place at 4.4 C If work output of A is twice of B, calculate

(1) suteremediate temp b/w A&B.

(2) 1 q each engine.

(3) Heat rejected to cold stute.

Draw the operating system for the above data.

$$\frac{HE_1!}{T_1} = \frac{T_1 - T_2}{T_1} = \frac{O_1 - O_2}{O_1}$$

$$\frac{T_1-T_2}{T_1}:\frac{W_4}{Q_1}$$

$$W_A : Q_1 \left[\frac{7_1 - 7_2}{T_1} \right] \longrightarrow 0$$

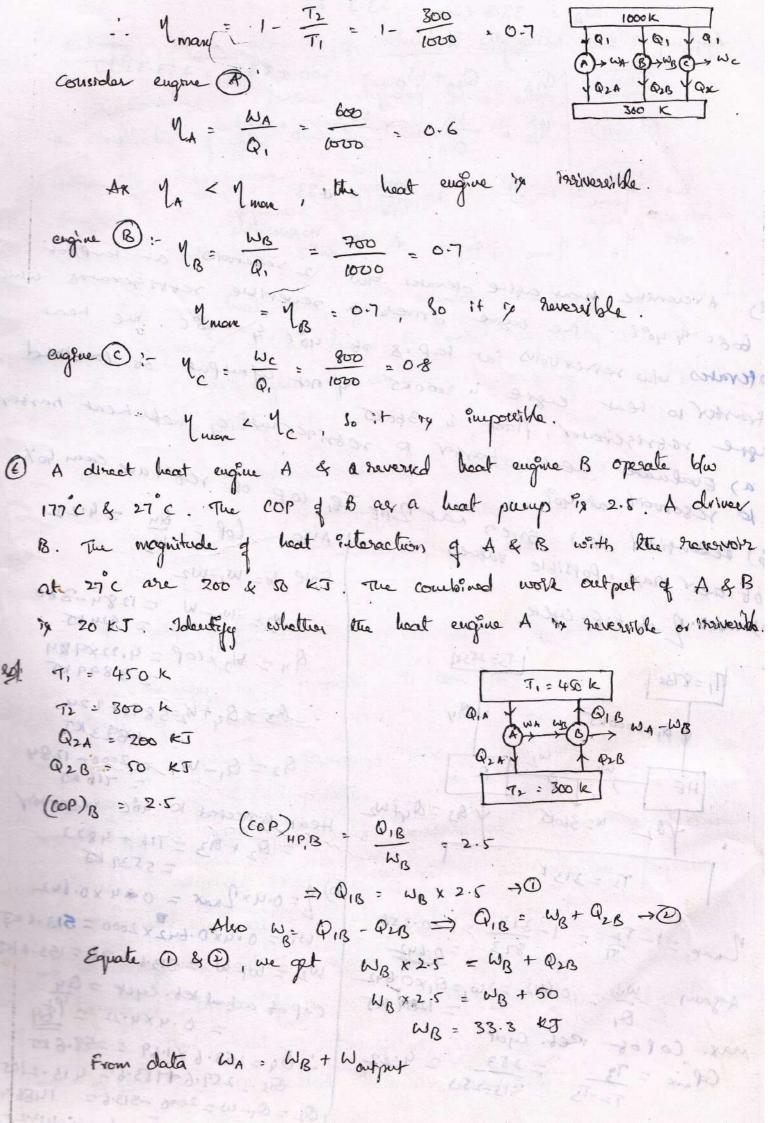
$$V_{B} = \frac{T_{2} - T_{3}}{T_{2}} = \frac{O_{1} - Q_{3}}{Q_{L}}$$

$$\omega_{R}: O_{2}\left[\begin{array}{c} T_{2}-7_{3} \\ \hline T_{2} \end{array}\right] \rightarrow \bigcirc$$

we know that WA = 2WB

$$Q_1 \begin{bmatrix} \overline{7}_1 - \overline{7}_2 \\ \overline{1}_1 \end{bmatrix} : 2 Q_2 \begin{bmatrix} \overline{7}_2 - \overline{7}_3 \\ \overline{1}_2 \end{bmatrix}$$

$$T_1 - T_2 = 2T_2 - 2T_3$$


$$Q_1 = T_1$$
; $Q_2 = T_2$
 $Q_1 = T_1$
 $Q_2 = T_2$
 $Q_1 = T_2$
 $Q_2 = T_1$
 $Q_1 = T_2$

: Q3 = Q2 - WB Q3 = 120-39.6 = 80.4 KJ.

(3) Countries 3 hypothetical heat engines A, B & C, each operating to be 1000 k & 300 k. when each engine involver itself with a heat interaction of 1000 kJ with high lemps successor, it is claimed interaction of 1000 kJ with high lemps successor, it is claimed that while A develops a work of 600 kJ, B & C develops 700 & that while A develops a work of 600 kJ, B & C develops 700 & soo kJ. Use carnot statement & identify the organer A, B, & C are somewhile, inseventible or impossible.

 $M_1 = 1000 \text{ K}$ $W_2 = 600 \text{ kJ}$ $W_3 = 600 \text{ kJ}$ $W_3 = 700 \text{ kJ}$ $W_4 = 600 \text{ kJ}$ $W_6 = 800 \text{ kJ}$

All the engineer are operating blu same two lamp sourcestra,

WA: 33.3 +20 = 53-3 KJ Applying I law to engine A. O1A = O2A+WA = 200 +883 = 253.3 KJ $M_{A} = \frac{W_{A}}{Q_{1}A} = \frac{S3.3}{253.5} = 0.21$ but $\sqrt{|uon|^2} - \frac{72}{7} = 1 - \frac{300}{400} = 0.33$. 4) A revenible hear evene operates the 2 referrois at temphot which of 608c 946°C. The evene drives a severible restriction which of ofcrates viw repression at tep. 8 of 48c 4 -28c. we heat traver to hear eight is 2000K5 & net what of combined a) Evaluate heat Fraybor to rebriggerant by well heat trasper to rebriggerant by well heat trasper to reservoir at 489 agre reprigerator plant 4 360KJ. b) pelorpided (a) given par 2HE & cop of yet are earn 40% A180 - Cop = Qy = 4:22 Since w= W1-W2 of men max . Possible values W2 = W1-W = 1284-360 a) week. 2 of A.E. Cycle 94= W2x COP 24.22×924 = 8899 KD 1 = 873K | [T5=2534] .. 03 = Qy+Wz=3899+924 · 92=91-W1 = 2000=1284 - 716 Kg HE WI WI P T2 = 313 K Hear Researed to you reservoly = 92 + 83 = 716 + 4823 = 5539 KO D) [=0.4x2mx = 0 +4 x0.642 WI = 0.4x D.642 x 2000 = 513.6 KJ Mar = 1- 12 = 1-313 = 1-0.358 WZ = WI-W = 513.6 - 360 = 153-6105 Agam $\frac{W_1}{Q_1} = 0.691 = 3 \, \frac{1284 \, \text{kg}}{1284 \, \text{kg}} = 1284 \, \text{kg}$ Max. Colob Ret. Cycle

Colob Ret. Cycle $\frac{13}{72.75} = \frac{2.53}{313.253} = 2.9.22$ Copot adral set. eyel = ay = 0.4×4.22 = 189 1. Bu=153.6 × 1.69 = 259.6 Kg Q3-259.64153.6= 413.2105 Q2 = Q1-W= 2000 -513.62 1486.416 Hear rescend to hose reported 34192 freq.

Entropy is a measure of molecular disorder. Consider a touk containing gar. entropy gars The moleculer of gow are in toudon (liquids) motion & they move in different solds directions with different relocities Degree of discorder -> colloinding with each other. let us heat the gas, random motion of gas molecules further increaser which leads to more inagularity (or) more disorderneur. This degree of dix orderneur austing in a system es known av entropy. The units of entropy s= = = KJ/kgk I law of TD = Q = AU+W

I law of TD = Tds User of study of Entropy: Since entropy of the a property, it can be und to determine State of a hubstance.

State of a hubstance. Stace et depende on man, entropy is an extensive property. = entropy / wit man = sp. entropy (intensive moperty) -> A change on entropy shows that heat energy has been in transfered to or from a system of the lemp level at him which that heat is transferred . 1001 1 → g do <0 is called Charian Inequality.

Entropy is a measure of molecular disorder. Courder a tank containing gar. entrops (gars) The moleculer of gow are on toudon (liqued) undron & they move in different (schole) directions with different relocities Degree of discorder -> colloinding with each other. let us heat the gas, naudons motion of gas molecules forther increaler which leads to more inagularity (or) more disorderneur. Their degree of dix orderneur existing in a system es known av entropy. The write of entropy s= = = KJ/kgk I law of TD \Rightarrow Q = AU+W

I law of TD \Rightarrow Q = Tds User of study of Entropy: 3 mae culsiony In a property, it can be dud to determine State of a hubstance.

State of a hubstance. Stace it depends on man, entropy is an extensive property of entropy (interesting property) - A change on entropy shows that heat energy whom been and transfered to or from a system & the least level at the which that heat is transfered was from → g de <0 is called classicus Jusquality.

Applications :-Heat bought liveright friste leup différence: let A&B are two bodier

with temp's 7, & 72 heep. change in entropy of body A = ASA = T, B = DSR = OTI For total Molated System as = ASA + ASB $\Delta S = -\frac{Q}{T_1} + \frac{Q}{T_2} \Rightarrow \Delta S = Q \left[\frac{T_1 - T_2}{T_1 T_2} \right]$ cauci): if T, >Tz litery As >0 ie., inoccueratible procesur TICTE they SS <0 ie., improvible Ti=72 then Bs=0 ie., reverethe process 1 law of TD -> Julianos evergy (culturin property) 1 law of TD -> Entropy (entreuse property) Limitation of Frotouble T.D 1) when a closed system undergoes a thermodynamic cycle me not heat Howser 4 equal to net work transfer, his franceur does it specity The direction of How of heat and worke moder books not given dirth not given condition) The west are meaniful work are intrody convertible mough mechant out books can be budy converted guto heat energy, but only

The heat energy & meanon's col work on verted guto heat energy, but only two me me chanical house a part of near energy can be converted guto me chanical house it was near energy by meanon's unk are not tour.

Theat work.

Entropy :- (s)

-> It is a morner of molecular disorder

→ It is a thermodynaetic property

→ It is a point faintier ie., its value does not change when the state of the system changes.

-> Therefore entropy change of a system ix zwo, if state of system does not change during the process.

Ex: Nozzler, compressor, leerbours, pumps etc.

CLASIUS JNEQUALITY :-

It is defined as,

"wherever a system executes a complete cycle, the cyclic integral of SQ ix lear than or in the limit equal to goo.

compler our engine operating tops two fixed temp reservois, let da, units of heat be supplied at temp T, & daz with a heat be rejected at temp 72 during a cycle. Then

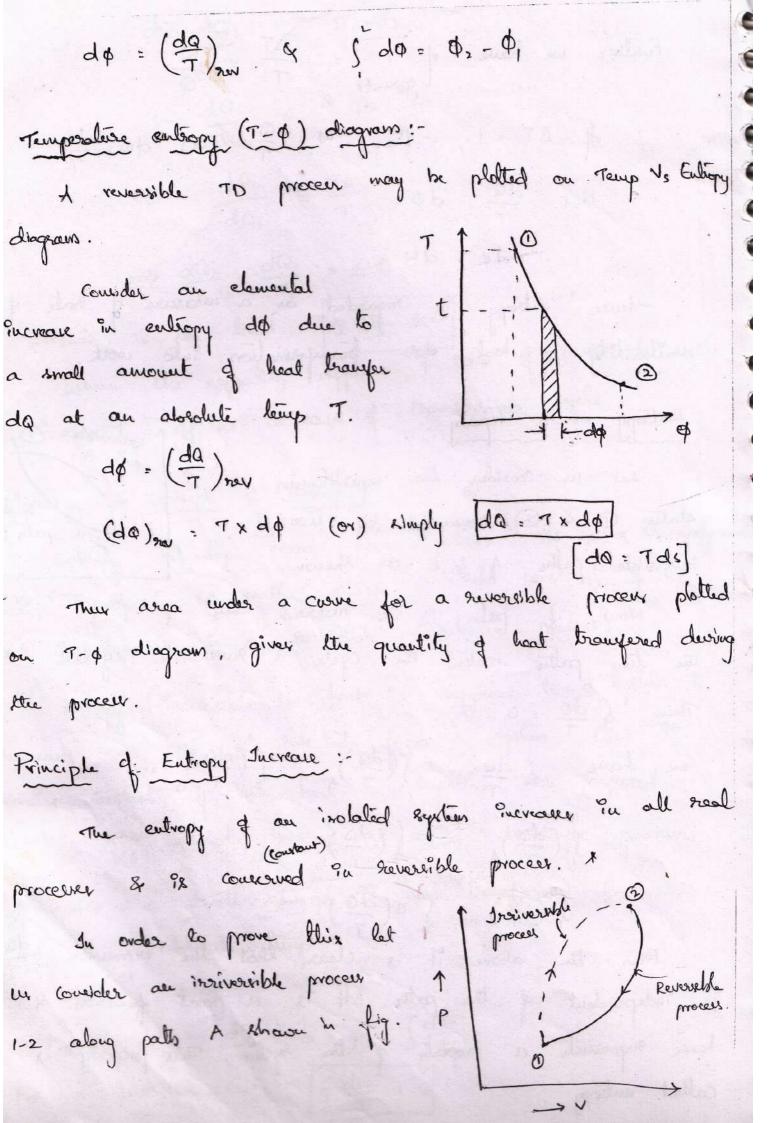
thermal efficiency of this engine,

ME = do, -dor

Thomas effectively of a nevertible engine operating blu some temp in given log le TI-TZ

He know that LE X 1/2 or in limiting case NE = 4/2
since no engine can be more efficient than a grancesoble engène (Cornot's theorem)

 $\frac{dQ_1 - dQ_2}{dQ_1} = \frac{T_1 - T_2}{T_1}$ 1- dQ2 & 1- T2 $\frac{dO_2}{dO_1} \leq \frac{7_2}{T_1}$ $\Rightarrow \frac{dQ_2}{T_2} - \frac{dQ_1}{T_1} = \leq 0$ Have in the limit & do = 0 where the equality applier in case of remercible cycle & susquality applies in cour of inserversible cycle. Meaning & concept of Enlipy: Entropy literally means transformation. It is a thermodynamic state property of matter which is held constant of most kant of supplied in a reversible adiabatic process." Entropy increases as host ex supplied to a eyelin & decreaves as heat in rejected from a Ryslin. But it rumaine constant if no heat is supplied not rejected. That is coly adiabatic process is called sentropic process. If do: a small change in heat branger at T T = absolute lings


d = change in entropy Then $d\phi = \frac{d\theta}{T}$ or $\phi = \int \frac{d\theta}{T}$ For a reversible cycle, 6 do = 0

Fuerther we have $1 = \frac{\Delta I}{T} = \frac{W}{Q}$ H = Q (or) dw = dQ T of DT = 1, then But da : da : dp : dw Hence entropy is regarded as a measure of rate of availability of heat for bransformation into work. P Reversible (2)

A path A

Proversible

path B Entropy - A Property: Let un consider two equalibrium statu (1) & (2) connected by live reversible paths A & B as shown. Now, if path B is runred then the two paths maker the cycle a suvereible cycle. Then of do = 0 we have $\int \frac{dQ}{T} = \int_{T}^{\infty} \frac{dQ}{T} + \int_{A}^{\infty} \left(\frac{dQ}{T}\right)_{B} = 0$ $\int_{1}^{1} \left(\frac{dQ}{T}\right)_{A} = -\int_{2}^{1} \left(\frac{dQ}{T}\right)_{R}$ 5,2(do) · 5 B(do) From the above it is clear that the expression 1 da ix independent of the patts. It is a point function & have represente a property of the system. This property is called entropy.

Let the cycle be completed by a runeseible proce 2-1 along path B, so that process 1-A-2 & 2-B-1 together forms au inneverible cycle. From the Clausius & SQ 20 for insuversible proceer Inquality, (or) $\int_{1}^{2} \left(\frac{SQ}{T}\right)_{\text{inse}} + \int_{2}^{2} \left(\frac{SQ}{T}\right)_{\text{par}} < 0$ path A path -B But $\int_{2}^{1} \left(\frac{SQ}{T}\right)_{TW} = \int_{2}^{1} ds$ path-B path-B But stuce patts -B is nevervible, the limits of the Entegral can be reversed & therefore S2 (80) = - S, ds path A path B (or) 5,2 ds > 5,2 (SQ); were (O1) ds > (SO) now But ds = (SO) how Hence in general, we many write $ds \geq \frac{90}{7}$ or $\Delta S = S_2 - S_1 \geq \int_1^2 \frac{dS_0}{T}$ where equality & inaquality signer shows the suversibility & isorwessibility suspectively.

For adiabatic process whether reversible or inviverentible SQ=0 have $\Delta S \geq 0$.

This warm that entropy in zero in revessible adiabatus & greater than zero in irripresentale adiabatus.

Although eartropy changes blu lies fixed states is the same for any path, surevible or inscrerible, the heat bransper to the system is less (note, if heat is branspersed from the systems) for inversesble path than for the nevertible one.

This is obvious from the fact that entropy increases in insuresible process & is conserved in reversible process.

- 1) A gly of 400 kJ of heat ix supplied per second to a heat eigene at a fixed lawp of 580 K. The heat rejection takes place at 280 K. The following results are obtained.
 - @ 320 KJ/s are rojected @ 193 KJ/s are rejected.
 - © 80 RT/s are rejected; classify which of results report a seversible cycle or insiderable cycle of impossible results.

Applying classics Inequality to the cycle in each case, we have

(a)
$$\int \frac{dQ}{T} = \frac{400}{580} = \frac{320}{280} = -0.4532 < 0$$

Since of \$10 20, cycle is iterementale

(b) $\oint \frac{d0}{T} = \frac{400}{580} - \frac{193}{280} = 0$: $\oint \frac{d0}{T} = 0$, Cepcle is Puneraible

© $\int \frac{d0}{T} = \frac{400}{780} - \frac{80}{280} = 0.4039 > 0$: $\int \frac{d0}{T} > 0$, cycle is impossible.

This shows clauses inequality.

The state of the s

S S COLORO

Down to of our in heated nevertibly from an furtial state of 1 atm & 15°C to 100m & 7°C. For reversible heating of our at court pressure, do : 1.2 KJ/K. Determine the change on entropy.

34. For a closed system endergoing a supersible process, change of entropy, by definition do: do T

do: 1.2 KJ/K (given)

do: 1.2 AJ/K (given)

do: 1.2 AJ/K (given)

 $\int_{1}^{2} ds = \frac{1 \cdot 2}{T} \int_{T}^{2} dt = \frac{1$

AVAILABLE ENERGY !-

Heat energy derived from combonstions of form fuels or from muchas fusion to baid to be low grade energy.

on the other hand, mechanical (shaft) work, electrical and many, water power, tidal power etc are rated as high grade energy.

The bulk of high grade evergy is obtained from hourcer of low grade energy. But the complete conversion of low grade evergy i.e., heat into high goode evergy i.e., shaft work in impossible alc to I law of TD. "That part of low grade energy which is available for conversion into high grade energy is called available energy." dvailable evergy & also called as Energy. Obviously the other part of evergy, all to I law, must be nejected. It is known as Onavailable every, which is also known In a theremodynamically reversible cycle cugine, max. work ofp oer vuovoilable Avergy. obtainable from a certain heat input is called available energy (A.E.). The minimum energy that have to be sujected to the Bank in called unavailable every (U.E). If Q, in hast input, Q, - A.E + U.E [Europy = Exerqy + Avergy] (OV) Whom: A.E.

Q, -U.E

4 T, 4 T2 are temp's of source & stuck, The stressible regime Many.

For a given T, the efficiency of reversible regime Many. will increase with the decrease of Try The lowest practicable value à temp à hait réjection is the temp à merranding, To.

Thee, North I To work we know, : Wmon = 0, [1-70] Wmax = AE 0,= Q (sou) AE = Q [1-To] = Q - To (Q) AE = Q-70.ds Figure Rhouse the avoidabletity concept. To ix the dead state which is a level below which the system councit by ofsely go down, like dtm. lemp, zero altitude (PE=0), zero velocity (KE=0).

O Calculate AE & VE of a system that absorbs 15000 KT of heat from heat source at 500 k, while envisconment temp is 290 k.

 $AE = Q_H - \frac{Q_H T_L}{T_H} = 15000 - \frac{15000 \times 290}{500} = 6300 \text{ kJ}$

ue = 8700 kJ

(e1) QH = TH ds ds = QH = 15000 = 30 KJ/K

UE = TLds = 290×30 = 8700 Kg

W = TH-TL = Whax

OH

Whax

TH-TL) QH

TH

6300 KJ

(2) In a cornet cycle heat is supplied at 350 c & rejected at 27 c. Working flield is writer which absorbes heat and emposated liquid at 350 c to 8 team at 350 c. The and emposated liquid at 350 c to 8 team at 350 c. The ausociated entropy change is 1.44 KJ/kg/k.

1. cycle operates with mose flow rate of 1 kg of water. PH = 628 K Calculate (1) Heat Supplied, workdorn Degele operates in steady flow with power output of 20 km. Determine man flowbalt of TL : 300 K V = 74-76 623 - 527.

ds = 1.44 KJ/gK

QH = PH ds = 632×1.44 = 897.12 KJ

QL = TLds = 300 × 1.44 = 432 KJ

W= QH-QL = 465 KJ/kg = AE

Power = Markymum flow sale x work

Mare flow rate = Power = 20 = 0.043 kg/eee work = 465 = 0.043 kg/eee

(3) Air at 1 bar & 30 c 1/2 heated on nevertible wanter at Constant pressure unique its lamp reacher to 205°C O calculate amount of heat added per kg of air. 2 Available evergy if the laws in 4°C.

@ 0.2 kg of over suitably at 575 k lemp sectiver 300 kJ of heat reveres by at court preserve. Determine the available & curavailable energy's of the heat radial. Op of are: 1.005 107/19) hurrousling kings = 300 K. da = map DT T, = 575 K 300 = 0.241005x (T2 - 575) Q = 300 KJ Cp = 1.005 Kilky k TL = 2067-5 K as = da = mcpln(12) = 0.2x1.001 lu (2067.5) = 0.2572 15/kg K violable energy = Toxds => UE = 2067.5 x 0.2572 Entropy change during a Process: do. du + dw = du + pdv

do: du + dw= du + pdventropy $ds: \frac{dQ}{T} \Rightarrow T.ds: dQ$ $T.ds: du + pdv \Rightarrow Q$ we know h: u+pv dh: du + d(pv) dh: du + pdv + vdp dh: du + pdv + vdp dh: vdp: du + pdv

T.ds: dh-vdp -> 1

Constant volume Proces :-

da = mcvdT

ds = da = mcvdT sutegrate on both sider,

Sds · Simcv dt

S2-S7 = m Cv (RNT)

Sist = MCV Ru(Tr) (on) = MCV lu (Px)

1 1 PM = 1-152

P1 : V2

P = RT. [where T = C]

(2) constant Prenure proces :-

da = mcp dT

ds = da . mcp dt Jutegrale,

Sas = S, mcp di

Sz-Sz = Mcpln(Tz) or mcpln \frac{\frac{1}{7}}{\frac{1}{7}})

I nothermal proces: (3)

do = du + dw

[For isothermal du=0]

= du+pdv

da = pdv

ds: da: pdv

ds = Rdv , Jutegrate

 $\int_{1}^{\infty} ds = \int_{1}^{\infty} \frac{R}{S} dv \Rightarrow ds = R \ln \left(\frac{V_{2}}{V_{1}}\right) \left(\frac{P_{1}}{P_{2}}\right)$

@ Zeversible Adiabatic proces:

dQ = 0

 $\Rightarrow S_2 - S_1 = 0 \Rightarrow S_2 = S_1$

Entropy is constant. This 95 also known as Sentropic Proceer. (5) Polytropic Process: - [PV"=C] couris) de = de de = du + dw = cvdT + pdv PV= RT P= RT ds: cvdT + pdv; Jutegrale 172 36 S. ds = S Cv = + S Pdy de = 80+ 20 De CAGES AS $|s_{2-s_{1}}| = c_{v} \ln \left(\frac{\tau_{1}}{\tau_{1}}\right) + R \ln \left(\frac{v_{1}}{v_{1}}\right) \rightarrow 0$ This is in terms of temp & volume. : Eq (1) can be avritten av, 52->1=9 lulery Cauci): S2-S1 : CV ln [P2V2] + R ln (V2) = Cylup, aylay = cv lu (Pz) + cv lu (Vz) + P lu (Vz) Ficp = Cv+R = cv lu (Pz) + (Cv+R) lu (V) Lydnball Sz-S, : Cu lu (Pz) + Cp lu (VI) -> (2) coefficient : $\frac{P_1V_1}{T}$: $\frac{P_2V_2}{T_2}$ $\Rightarrow \frac{V_1}{V_1}$: $\frac{P_1T_2}{P_2T_1}$. Eq (1), can be written an, Sz-Sz=(VMOZ) S2-S1 = CV lu (T2) + R lu (P, TL) = CV lu (+ R lu (P) + R lu (T2) = (CV+R) lu (T) + R lu (P) S2-S1 = Cp lu Th + R lu (P1) -> (3)

coveries of n&N P= RT V do = [1-1] dw ds, de : [1/2] du : [1/2] pdv ds: [1-n] R dv, Juligrate ... 1, ds = 5 (1m) R dy S>-S1 > 1-1 R ln (1/2) → 1 CP = 1 But R = CV 12 = Cp : 82-5, . (V-n) cy ln(V2) = (1.c, -ncy) lu (2/1) [S2-S1 = (cp - n.cv) en(V2/V1)] -> (3) [intering of vol] V2 = (P1) /n tue eq @ becomes, 52-5, = (cp - N.CV) lu (P1)/n

The second section on both ender, $\lim_{T \to \infty} \frac{(P_{\perp})^{n-1/n}}{P_{\perp}} = \lim_{T \to \infty} \frac{(n-1)^{n}}{P_{\perp}} = \lim_{T \to \infty} \frac{(n-1)^{$

$$I_{n}\left(\frac{P_{n}}{P_{1}}\right) = \left(\frac{n}{n+1}\right) I_{n}\left(\frac{T_{n}}{T_{1}}\right) \Rightarrow Q_{n}\left(\frac{P_{1}}{P_{1}}\right) = -\left(\frac{n}{n+1}\right) Q_{n}\left(\frac{T_{n}}{T_{1}}\right)$$

$$\therefore S_{q} \otimes C_{n} \text{ the constiten aw,}$$

$$S_{1} - S_{1} = \left(\frac{C_{p} - n \cdot C_{v}}{r_{1}}\right) \cdot \frac{1}{r_{1}} \cdot \left(\frac{r_{1}}{r_{1}}\right)$$

$$= \frac{n \cdot C_{v} - C_{p}}{n-1} \cdot \ln\left(\frac{T_{2}}{T_{1}}\right)$$

$$S_{2} - S_{1} = \frac{C_{v}\left(u - \frac{C_{p}}{C_{v}}\right)}{n-1} \cdot \ln\left(\frac{T_{2}}{T_{1}}\right)$$

$$= \frac{1}{r_{1}} \cdot S_{2} - S_{1} = \left(\frac{n-1}{n-1}\right) C_{v} \cdot \ln\left(\frac{T_{2}}{T_{1}}\right) \rightarrow \mathcal{F}$$

1) Heat flows from a greenwork at 800 k to another have work at 200 k. If entropy change of the heat reservoir is -4 KJ/kg K. Determine the entropy change of cold reservoise

da , (ds),

dQ = -4 ⇒ dQ = -3200 kJ

Same amount of heat is supplied to cold body. [250 k]

For cold body,

$$\frac{do}{T}:(ds)_{c} \Rightarrow \frac{+3200}{210} = ds$$

(ds)c = 12.8 k7/69 k.

1 Heat flows from a hot sukrivoir at 800k to another neverin at 200 k. if the entropy change of Overall process is 4.25 KJ/kg K. Make calculations for heats flowing out of high temps surework.

95% change of entropy of hot & cold body = 4.25 KJ/kg K (da) + (da) = 4.25 - do + do : 4.25 Q: 1545-45 KJ. 3 Hater 19 heated at court proseure of 0.7 MB, boiling point is 164.97 c. The Puitfal lenes of water is oc. Latent had of evaporation is 2066.3 KI/kg. Find the increase in entropy of water if final state is steam at 164.97°C. Co qualte = 4.2 KJ/kgk. 1 2 3 8d! From (1-2) (M=1) 82-5, = MCp 12 T1 = $4.2 \times 10^3 \times \ln \left(\frac{437.97}{2.73} \right)$ From (2-3) $S_3-S_2=T=\frac{0}{T}=\frac{\text{latent heat}}{\sqrt{437.97}}=\frac{2066.3}{437.97}=\frac{4.717}{7}\frac{\text{RJ/kg/k}}{\sqrt{1000}}$ Total change in entropy S2-8, + S3-S2 = 1.985 + 4.717 = 6.7029 KJ/kg K 4) 2 kg q water at 80°C ix niexed adiabatically with 3kg of water at soic at a countant presence process of 1 atm. Frid the Evenous En entropy of total man of water due

to mixing process.

Ti : 293 k

(1) work branefer =
$$\frac{P_1V_1 - P_2V_2}{n-1}$$
 | mRT₁ - mRT₂

Given $\frac{V_2}{v_1} = 9$ In phytropic process

"V₂

Fivea
$$\frac{N_{2}}{V_{1}} = 9$$
 In polytropic (moreu)

 $V_{2} = 1203 \text{ k}$
 $V_{1} = 2773 \text{ k}$
 $V_{1} = 2773 \text{ k}$
 $V_{2} = 2773 \text{ k}$
 $V_{3} = 2773 \text{ k}$
 $V_{4} = 2773 \text{ k}$
 $V_{5} = 2773 \text{ k}$
 $V_{7} = 2773 \text{ k}$

$$work = \frac{mR(T_1 - T_2)}{n-1}$$

$$= 0.2c(2773 - 1203) = 1074 kJ$$

$$= 1.38 - 1$$

```
3 Q, Dutw
            = -1287 + 1074 = -213 RJ
        Heat bouger Q: 213 KJ (rejected).
A cybrider contains 0.115 m3 q gas at 1 bas & 90 c. The
   gar 9x compressed to a vol. of 0.0288 m3. the final pressure
   9 gar 1/2 5.67 bar. Calculate
  (i) Hau of gar (ii) Value of index of Comprension
  (iii) Therease in internal energy of the gas
  (iv) Heat transfer during Compression.
  Assure N=1.4, R=0.3 KJ/kgk, CV=0.75 KJ/kgk.
ed: V1 = 0.115 m3
    P . = 1 how = 100 KP
                                (i) we have P,V, = MRT,
     V2 = 0.0288 m3
                                            m = \frac{P_1 V_1}{P_1 T_2}
     P2 = 5-67 ×102 KP
      Ti : 90 C : 363 K
                                             m = 0.1056 kg
  (i) Pu" = C ie., P.U" - P2U2"
                   100x (0.115)" = 567 x (0.0288)
                           N = 1.253.
                                              T1 = (12)
   (iii) Du = mcv (72-T1)
                                           363 : [0.0285]
Th [0.115]
             = 0.1056 x 0.75 (515.27-363)
          Du = 12.06 KJ
                                                92; 515.27 K
  (iv) Q : Du+W
           = 12.06 - 19.089 KS
                                     W= P1V1 - P2V2
                                       _ 19.089 KJ
         Q = -7.029 RJ
      Heat Promper Q = 7 KT
```

```
(3) Q, Dutw
           = -1287 + 1074 = -213 EJ
        Heat bourger Q: 213 KJ (rejected).
A cylinder container 0.115 m³ of gar at 1 bar & 90 c. The
   gar is compressed to a vol. of 0.0288 m3. The final measure
  9 gar 1/2 5.67 bar. Calculate
  (i) Have of gar (ii) Value of index of Compression
  (iii) Therease on internal energy of the gar
  (iv) Heat transfer during Compression.
  Assure N=1-4, R=0.3 KJ/kgk, ev=0.75 KJ/kgk.
ed: V, = 0.115 m3
    P .: 1 how = 100 12P
                                (i) we have P,V, = MRT,
     V2: 0.0288 m3
                                            m = \frac{P_i V_i}{RT_i}
     P2 = 5-67 ×10 KP
     Ti = 90 C = 363 K
                                             w = 0.1056 kg
  (i) Pu" = C ie., P.U," - P2U,"
                   100 x (0.115)" = 567 x (0.0288)
                          N = 1.253.
                                              72 2 (V2) 4-1
   (iii) Du: mc, (92-71)
                                            363 : [0.0288]
12 0.115]
             = 0.1086 x 0.75 (515.27-363)
           Du : 12.06 KJ
                                                72; 515.27 K
  (iv) Q : Du+W
                                     W= P1V1-P2V2
           = 12.06 - 19.089 KS
                                       = -19.089 KJ
         Q: -7.029 RJ
      Heat Promper Q = 7 KT
```

O The HE Greenver heat at the frate of 500 kw, from a source limp of 1200 k. It rejects weeks heat at 300 k.

Source limp of 1200 k. It rejects weeks heat at 300 k.

The this process it delivers a power of of 180 kw. Determine

O y of engine © Ideal power of 3 Juriversibility.

401: 0 M = TH-TL 1200-300 = 75%.

@ John power ofp = heat ofp = 500 km

3 Wastral y: QH-QL = WH

W = 0.75 × 500 : 375 KW

Insuversitällity = Ideal power - Actual power = 375-180

= 195 KW

Heat garned by 3 kg of wester at Heat lost by 2 kg of Q= mcp DT] 2 4p (80-t) = '3 4p (t-30) [CPuster = 4.2 KJ/kgk] t = 50° c (As), = 5 to so so m cpdT 2 x 4.2 ln (72) 323 8.4 $\ln\left(\frac{323}{353}\right)$ = -0.746 KJ/kg K Entropy change for 3 kg of water,

(AS)₂: $\int_{\Gamma_1}^{\infty} \frac{dQ}{T} = \int_{303}^{323} \frac{m cp dT}{T}$ = 3×4.2× ln (323) = 0.8054 KJ/49K Entropy inevoice of total mous of water due to niving, = (DS), + (AS)2 -0.746 +0.8054

= 0.059 KJ/69 K

Available energy [A.E.] - the every union we are actually going to otherise is coved Exergy also coved Available every - me every union one are not going to achooly Unilize is cowed Averagy also coved underaliance every . Basically me source or hear contain Bom prings che. A.E. A. U. A.E. rate on exaple TRI = (AE. + U.E) (HER) = A.E. Some part or energy is while to produced for = UE estèbil non il caled 1. [7] Some par or every mian in nor whiled to spectured Available em work is and u.E. WIRE. PHIE = 1-TZ Mex = A1 [1- T2] TO understand concert of A.E. 104 as consider a finite process blu xxx The Final temp. is assured as To.brxy uniar is Surrounding resp. or alub. Tep. Disary Tep. To quelong Process to or known cleverant tritip. . Ele & hadt tidded to him of dentroy ship by sev. Proces.

X Y Proces for bin. for elem. My P. 8R, [1- To = 80, - 80, 70 To [12] - To [801 -108 (Sy - 5x) To To [Sy - Sx] for whole Part 8how AE LUE gives

by an open sustem exchangely heat only with Surroundings. dwmax = dm, [h, - Tos, + Vit + 921] - dm, [h2-Tos2 + Vit + 92] - d [U-TOJ + myt + mgz] Revenie work an a steady flow Proces $N_{\text{max}} = (H_1 - T_0 S_1 + m_{V_1}^2 + m_{Q_2}^2) - (H_2 - T_0 S_1 + m_{Q_2}^2 + m_{Q_2}^2)$ H-TOS in caued Keen in Punction Nep. by B - Wacro = (B, + movit + mg21) - (B2 + mv2 + mg22) p, - 42. of = Availability function of skary blow process $p = B + \frac{mv^2}{I} + mgZ$ Sy Mens would Au me work 60 06 not be available for deliever, since a certain position of it would be spend in further out we aprosphere.

not be available for deliver, since a certain formation where delivered by be spend in further out we appropried.

The obebul cook is deptined as we actual work delivered by the observable of performed on me admissible a hypion less me cook performed on me admissible a hypion less me cook performed in his is for cooked from the performed of poisme admissible propried in the propried of poisme admissible propried in the propried of poisme admissible propried in the propried of the propried of the propried of the performance of the performan

16/7 Aldry = E, - E 2 + Po (V, -V2) - To (St -S2) It k.E & P.E chapes one neglected 304 (Wu) mey = U1-U2 + Po (V1-V2) - TO (S1-S2) 105 309 (Wolman = [U, + PoV, - ToS,] - [U2+PoV2-ToS2] Here of is Comed Availating tunotes for a cloted by Hern where \$ = U+ POV - TOS Irreversibility - he achool work done by Sythem is always less rens 9 dealisted sev. work & ditt. Hw mo is cared Irraventedity Z = What - W bound of the Process. Freveriting also and degritation of Linipation. I = To (AS sum + AS surround) I = TO [AS only.] Gory - Rodola Reosan : re Rote at 610 of available every or exercy in a process is proportional to rate of entropy generates (Sgen.) I = Wlost = TO ASUNIV = To Sogen P) Air expans through a Turbine from 600 Kfa, 520c to lookfa, 300°c. During expy 10 KJ/kg of heat is lost to surrounding union is at 98 Kpa, 20° c Neglectif LE & P. E chapes Determine Per of at 1) The decrease as availability I me max. work 3) Inevenibility for any table Cp = 1.005 k5/kg/k. From SFIEE Pan It law 9+h1= Wthz enropy chart of out 24 =) Sds = Jan GodT - Jankop

P W= (h-h2)+A WZCP(T,-T,)+R W= 1:005 (520-300) -10 Se-s, = mcplute - mkluke exph process W 22Hot 21101 KJKY Incuents by . 52-5, = Cp en T2 -I=Wwax -W Charge in availabilit = 4,-4 = bi-bz = 260.7 211.1 = 49.615/H (0x) = (1-105)-(42-105) F = TOCASEY + ASeum) = Gp (T,-T,) -To [Rlen[P2] - Gp (n T2) - 293 [0.287 ln (5) - 1.005 ln [573]) = 260.7 K5/by -(p(1,-1)- 10 (S1-Je) = = 293 [1:005 ln (573) -0.287 ln(f) & bo 7 E = 49.6 KS/GY Maximone 2 Whap = Charlindownability = 90, -402