
UNIT – I 

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic 

Notations.          

AVL Trees – Creation, Insertion, Deletion operations and Applications  

   B-Trees – Creation, Insertion, Deletion operations and Applications. 

 

Introduction to Algorithms: 

The word Algorithm means "A set of finite rules or instructions to be followed in calculations 

or other problem-solving operations" Or "A procedure for solving a mathematical problem in 

a finite number of steps that frequently involves recursive operations". 

 

Therefore Algorithm refers to a sequence of finite steps to solve a particular problem. 

 

 
 

Use of the Algorithms: 

Algorithms play a crucial role in various fields and have many applications. Some of the key 

areas where algorithms are used include: 

1. Computer Science: Algorithms form the basis of computer programming and are used to 

solve problems ranging from simple sorting and searching to complex tasks such as 

artificial intelligence and machine learning. 

2. Mathematics: Algorithms are used to solve mathematical problems, such as finding the 

optimal solution to a system of linear equations or finding the shortest path in a graph. 

3. Operations Research: Algorithms are used to optimize and make decisions in fields such 

as transportation, logistics, and resource allocation. 

4. Artificial Intelligence: Algorithms are the foundation of artificial intelligence and 

machine learning, and are used to develop intelligent systems that can perform tasks such 

as image recognition, natural language processing, and decision-making. 

5. Data Science: Algorithms are used to analyze, process, and extract insights from large 

amounts of data in fields such as marketing, finance, and healthcare. 
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These are just a few examples of the many applications of algorithms. The use of algorithms 

is continually expanding as new technologies and fields emerge, making it a vital component 

of modern society. 

Algorithms can be simple and complex depending on what you want to achieve.  

It can be understood by taking the example of cooking a new recipe. To cook a new recipe, 

one reads the instructions and steps and executes them one by one, in the given sequence. The 

result thus obtained is the new dish is cooked perfectly. Every time you use your phone, 

computer, laptop, or calculator you are using Algorithms. Similarly, algorithms help to do a 

task in programming to get the expected output. 

The Algorithm designed are language-independent, i.e. they are just plain instructions that can 

be implemented in any language, and yet the output will be the same, as expected. 

 

What is the need for algorithms? 
1. Algorithms are necessary for solving complex problems efficiently and effectively.  

2. They help to automate processes and make them more reliable, faster, and easier to 

perform. 

3. Algorithms also enable computers to perform tasks that would be difficult or impossible 

for humans to do manually. 

4. They are used in various fields such as mathematics, computer science, engineering, 

finance, and many others to optimize processes, analyze data, make predictions, and 

provide solutions to problems. 

What are the Characteristics of an Algorithm? 

 

 

As one would not follow any written instructions to cook the recipe, but only the standard 

one. Similarly, not all written instructions for programming are an algorithm. For some 

instructions to be an algorithm, it must have the following characteristics: 

 

 Clear and Unambiguous: The algorithm should be unambiguous. Each of its steps 

should be clear in all aspects and must lead to only one meaning. 
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 Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined 

inputs. It may or may not take input. 

 Well-Defined Outputs: The algorithm must clearly define what output will be yielded 

and it should be well-defined as well. It should produce at least 1 output. 

 Finite-ness: The algorithm must be finite, i.e. it should terminate after a finite time. 

 Feasible: The algorithm must be simple, generic, and practical, such that it can be 

executed with the available resources. It must not contain some future technology or 

anything. 

 Language Independent: The Algorithm designed must be language-independent, i.e. it 

must be just plain instructions that can be implemented in any language, and yet the 

output will be the same, as expected. 

 Input: An algorithm has zero or more inputs. Each that contains a fundamental operator 

must accept zero or more inputs. 

  Output: An algorithm produces at least one output. Every instruction that contains a 

fundamental operator must accept zero or more inputs. 

 Definiteness: All instructions in an algorithm must be unambiguous, precise, and easy to 

interpret. By referring to any of the instructions in an algorithm one can clearly 

understand what is to be done. Every fundamental operator in instruction must be defined 

without any ambiguity. 

 Finiteness: An algorithm must terminate after a finite number of steps in all test cases. 

Every instruction which contains a fundamental operator must be terminated within a 

finite amount of time. Infinite loops or recursive functions without base conditions do not 

possess finiteness. 

 Effectiveness: An algorithm must be developed by using very basic, simple, and feasible 

operations so that one can trace it out by using just paper and pencil. 

 

Properties of Algorithm: 
 It should terminate after a finite time. 

 It should produce at least one output. 

 It should take zero or more input. 

 It should be deterministic means giving the same output for the same input case. 

 Every step in the algorithm must be effective i.e. every step should do some work. 

Advantages of Algorithms: 
 It is easy to understand. 

 An algorithm is a step-wise representation of a solution to a given problem. 

 In an Algorithm the problem is broken down into smaller pieces or steps hence, it is easier 

for the programmer to convert it into an actual program. 

Disadvantages of Algorithms: 

 Writing an algorithm takes a long time so it is time-consuming. 

 Understanding complex logic through algorithms can be very difficult. 

 Branching and Looping statements are difficult to show in Algorithms(imp). 

How to Design an Algorithm? 

To write an algorithm, the following things are needed as a pre-requisite:  

1. The problem that is to be solved by this algorithm i.e. clear problem definition. 

2. The constraints of the problem must be considered while solving the problem. 

3. The input to be taken to solve the problem. 
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4. The output is to be expected when the problem is solved. 

5. The solution to this problem is within the given constraints. 

Then the algorithm is written with the help of the above parameters such that it solves the 

problem. 

 
Example: Consider the example to add three numbers and print the sum. 

Step 1: Fulfilling the pre-requisites  
As discussed above, to write an algorithm, its prerequisites must be fulfilled.  

1. The problem that is to be solved by this algorithm: Add 3 numbers and print their sum. 

2. The constraints of the problem that must be considered while solving the problem: 

The numbers must contain only digits and no other characters. 

3. The input to be taken to solve the problem: The three numbers to be added. 

4. The output to be expected when the problem is solved: The sum of the three numbers 

taken as the input i.e. a single integer value. 

5. The solution to this problem, in the given constraints: The solution consists of adding 

the 3 numbers. It can be done with the help of the '+' operator, or bit-wise, or any other 

method. 

Step 2: Designing the algorithm 

Now let's design the algorithm with the help of the above pre-requisites: 

Algorithm to add 3 numbers and print their sum:  

1. START 

2. Declare 3 integer variables num1, num2, and num3. 

3. Take the three numbers, to be added, as inputs in variables num1, num2, and num3 

respectively. 

4. Declare an integer variable sum to store the resultant sum of the 3 numbers. 

5. Add the 3 numbers and store the result in the variable sum. 

6. Print the value of the variable sum 

7. END 

Step 3: Testing the algorithm by implementing it. 
 

Performance Analysis: 

What is Performance Analysis of an algorithm? 

If we want to go from city "A" to city "B", there can be many ways of doing this. We can go by 

flight, by bus, by train and also by bicycle. Depending on the availability and convenience, we 

choose the one which suits us. Similarly, in computer science, there are multiple algorithms to 

solve a problem. When we have more than one algorithm to solve a problem, we need to select 

the best one. Performance analysis helps us to select the best algorithm from multiple algorithms 

to solve a problem. 

 

When there are multiple alternative algorithms to solve a problem, we analyze them and pick the 

one which is best suitable for our requirements. The formal definition is as follows... 

Performance of an algorithm is a process of making evaluative judgement about 

algorithms. 
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It can also be defined as follows... 

Performance of an algorithm means predicting the resources which are required to an 

algorithm to perform its task. 

That means when we have multiple algorithms to solve a problem, we need to select a suitable 

algorithm to solve that problem. 

 

We compare algorithms with each other which are solving the same problem, to select the best 

algorithm. To compare algorithms, we use a set of parameters or set of elements like memory 

required by that algorithm, the execution speed of that algorithm, easy to understand, easy to 

implement, etc., 

 

Generally, the performance of an algorithm depends on the following elements... 

1. Whether that algorithm is providing the exact solution for the problem? 

2. Whether it is easy to understand? 

3. Whether it is easy to implement? 

4. How much space (memory) it requires to solve the problem? 

5. How much time it takes to solve the problem? Etc., 

When we want to analyse an algorithm, we consider only the space and time required by that 

particular algorithm and we ignore all the remaining elements. 

Based on this information, performance analysis of an algorithm can also be defined as follows... 

Performance analysis of an algorithm is the process of calculating space and time required 

by that algorithm. 

Performance analysis of an algorithm is performed by using the following measures... 

1. Space required to complete the task of that algorithm (Space Complexity). It includes 

program space and data space 

2. Time required to complete the task of that algorithm (Time Complexity) 

Space Complexity: 

What is Space complexity? 

When we design an algorithm to solve a problem, it needs some computer memory to complete 

its execution. For any algorithm, memory is required for the following purposes... 

1. To store program instructions. 

2. To store constant values. 
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3. To store variable values. 

4. And for few other things like funcion calls, jumping statements etc,. 

Space complexity of an algorithm can be defined as follows... 

Total amount of computer memory required by an algorithm to complete its execution is 

called as space complexity of that algorithm. 

Generally, when a program is under execution it uses the computer memory for THREE reasons. 

They are as follows... 

1. Instruction Space: It is the amount of memory used to store compiled version of 

instructions. 

2. Environmental Stack: It is the amount of memory used to store information of partially 

executed functions at the time of function call. 

3. Data Space: It is the amount of memory used to store all the variables and constants. 

 Note - When we want to perform analysis of an algorithm based on its Space complexity, we 

consider only Data Space and ignore Instruction Space as well as Environmental Stack. 

That means we calculate only the memory required to store Variables, Constants, Structures, etc., 

To calculate the space complexity, we must know the memory required to store different 

datatype values (according to the compiler). For example, the C Programming Language 

compiler requires the following... 

1. 2 bytes to store Integer value. 

2. 4 bytes to store Floating Point value. 

3. 1 byte to store Character value. 

4. 6 (OR) 8 bytes to store double value. 

Consider the following piece of code... 

Example 1 

int square(int a) 

{ 

 return a*a; 

} 

In the above piece of code, it requires 2 bytes of memory to store variable 'a' and another 2 bytes 

of memory is used for return value. 

That means, totally it requires 4 bytes of memory to complete its execution. And this 4 

bytes of memory is fixed for any input value of 'a'. This space complexity is said to 

be Constant Space Complexity. 

If any algorithm requires a fixed amount of space for all input values then that space 

complexity is said to be Constant Space Complexity. 
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Consider the following piece of code... 

Example 2 

int sum(int A[ ], int n) 

{ 

   int sum = 0, i; 

for(i = 0; i< n; i++) 

      sum = sum + A[i]; 

   return sum; 

} 

In the above piece of code it requires 

'n*2' bytes of memory to store array variable 'a[ ]' 

2 bytes of memory for integer parameter 'n' 

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each) 

2 bytes of memory for return value. 

 

That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the 

total amount of memory required depends on the value of 'n'. As 'n' value increases the 

space required also increases proportionately. This type of space complexity is said to 

be Linear Space Complexity. 

If the amount of space required by an algorithm is increased with the increase of input 

value, then that space complexity is said to be Linear Space Complexity. 

 

Time Complexity: 

What is Time complexity? 

Every algorithm requires some amount of computer time to execute its instruction to perform the 

task. This computer time required is called time complexity.  

The time complexity of an algorithm can be defined as follows... 

The time complexity of an algorithm is the total amount of time required by an algorithm 

to complete its execution. 

Generally, the running time of an algorithm depends upon the following... 

1. Whether it is running on Single processor machine or Multi processor machine. 

2. Whether it is a 32 bit machine or 64 bit machine. 

3. Read and Write speed of the machine. 
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4. The amount of time required by an algorithm to 

perform Arithmetic operations, logical operations, return value 

and assignment operations etc., 

5. Input data 

 Note - When we calculate time complexity of an algorithm, we consider only input data and 

ignore the remaining things, as they are machine dependent. We check only, how our program is 

behaving for the different input values to perform all the operations like Arithmetic, Logical, 

Return value and Assignment etc., 

Calculating Time Complexity of an algorithm based on the system configuration is a very 

difficult task because the configuration changes from one system to another system. To solve this 

problem, we must assume a model machine with a specific configuration. So that, we can able to 

calculate generalized time complexity according to that model machine. 

 

To calculate the time complexity of an algorithm, we need to define a model machine. Let us 

assume a machine with following configuration... 

1. It is a Single processor machine 

2. It is a 32 bit Operating System machine 

3. It performs sequential execution 

4. It requires 1 unit of time for Arithmetic and Logical operations 

5. It requires 1 unit of time for Assignment and Return value 

6. It requires 1 unit of time for Read and Write operations 

Now, we calculate the time complexity of following example code by using the above-defined 

model machine... 

Consider the following piece of code... 

Example 1 

int sum(int a, int b) 

{ 

   return a+b; 

} 

In the above sample code, it requires 1 unit of time to calculate a+b and 1 unit of time to return 

the value. That means, totally it takes 2 units of time to complete its execution. And it does not 

change based on the input values of a and b. That means for all input values, it requires the same 

amount of time i.e. 2 units. 

If any program requires a fixed amount of time for all input values then its time complexity 

is said to be Constant Time Complexity. 

Consider the following piece of code... 

Example 2 
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int sum(int A[], int n) 

{ 

   int sum = 0, i; 

for(i = 0; i< n; i++) 

      sum = sum + A[i]; 

   return sum; 

} 

For the above code, time complexity can be calculated as follows... 

 
In above calculation 

Cost is the amount of computer time required for a single operation in each line. 

Repeatation is the amount of computer time required by each operation for all its repeatations. 

Total is the amount of computer time required by each operation to execute. 

So above code requires '4n+4' Units of computer time to complete the task. Here the exact time 

is not fixed. And it changes based on the n value. If we increase the n value then the time 

required also increases linearly. 

 

Totally it takes '4n+4' units of time to complete its execution and it is Linear Time 

Complexity. 

If the amount of time required by an algorithm is increased with the increase of input value 

then that time complexity is said to be Linear Time Complexity. 

 

Asymptotic Notations: 

What is Asymptotic Notation? 

Whenever we want to perform analysis of an algorithm, we need to calculate the complexity of 

that algorithm. But when we calculate the complexity of an algorithm it does not provide the 
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exact amount of resource required. So instead of taking the exact amount of resource, we 

represent that complexity in a general form (Notation) which produces the basic nature of that 

algorithm. We use that general form (Notation) for analysis process. 

Asymptotic notation of an algorithm is a mathematical representation of its complexity. 

 Note - In asymptotic notation, when we want to represent the complexity of an algorithm, we 

use only the most significant terms in the complexity of that algorithm and ignore least 

significant terms in the complexity of that algorithm (Here complexity can be Space Complexity 

or Time Complexity). 

For example, consider the following time complexities of two algorithms... 

 Algorithm 1 : 5n2 + 2n + 1 

 Algorithm 2 : 10n2 + 8n + 3 

Generally, when we analyze an algorithm, we consider the time complexity for larger values of 

input data (i.e. 'n' value). In above two time complexities, for larger value of 'n' the term '2n + 

1' in algorithm 1 has least significance than the term '5n2', and the term '8n + 3' in algorithm 2 

has least significance than the term '10n2'. 

Here, for larger value of 'n' the value of most significant terms ( 5n2 and 10n2 ) is very larger 

than the value of least significant terms ( 2n + 1 and 8n + 3 ). So for larger value of 'n' we ignore 

the least significant terms to represent overall time required by an algorithm. In asymptotic 

notation, we use only the most significant terms to represent the time complexity of an 

algorithm. 

 

Majorly, we use THREE types of Asymptotic Notations and those are as follows... 

1. Big - Oh (O) 

2. Big - Omega (Ω) 
3. Big - Theta (Θ) 

Big - Oh Notation (O) 

Big - Oh notation is used to define the upper bound of an algorithm in terms of Time 

Complexity. 

That means Big - Oh notation always indicates the maximum time required by an algorithm for 

all input values. That means Big - Oh notation describes the worst case of an algorithm time 

complexity. 

Big - Oh Notation can be defined as follows... 

Consider function f(n) as time complexity of an algorithm and g(n) is the most significant 

term. If f(n) <= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we can represent f(n) as 

O(g(n)). 

f(n) = O(g(n)) 

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis 
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In above graph after a particular input value n0, always C g(n) is greater than f(n) which indicates 

the algorithm's upper bound. 

Example 

Consider the following f(n) and g(n)... 

f(n) = 3n + 2 

g(n) = n 

If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C g(n) for all values of C > 

0 and n0>= 1 

f(n) <= C g(n) ⇒3n + 2 <= C n 

Above condition is always TRUE for all values of C = 4 and n >= 2. 

By using Big - Oh notation we can represent the time complexity as follows... 

3n + 2 = O(n) 

Big - Omege Notation (Ω) 

Big - Omega notation is used to define the lower bound of an algorithm in terms of Time 

Complexity. 

That means Big-Omega notation always indicates the minimum time required by an algorithm 

for all input values. That means Big-Omega notation describes the best case of an algorithm time 

complexity. 

Big - Omega Notation can be defined as follows... 
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Consider function f(n) as time complexity of an algorithm and g(n) is the most significant 

term. If f(n) >= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we can represent f(n) as 

Ω(g(n)). 

f(n) = Ω(g(n)) 

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis 

 
In above graph after a particular input value n0, always C g(n) is less than f(n) which indicates 

the algorithm's lower bound. 

Example 

Consider the following f(n) and g(n)... 

f(n) = 3n + 2 

g(n) = n 
If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) >= C g(n) for all values of C > 

0 and n0>= 1 

f(n) >= C g(n) ⇒3n + 2 >= C n 

Above condition is always TRUE for all values of C = 1 and n >= 1. 

By using Big - Omega notation we can represent the time complexity as follows... 

3n + 2 = Ω(n) 
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Big - Theta Notation (Θ) 

Big - Theta notation is used to define the average bound of an algorithm in terms of Time 

Complexity. 

That means Big - Theta notation always indicates the average time required by an algorithm for 

all input values. That means Big - Theta notation describes the average case of an algorithm time 

complexity. 

Big - Theta Notation can be defined as follows... 

Consider function f(n) as time complexity of an algorithm and g(n) is the most significant 

term. If C1 g(n) <= f(n) <= C2 g(n) for all n >= n0, C1 > 0, C2 > 0 and n0 >= 1. Then we can 

represent f(n) as Θ(g(n)). 

f(n) = Θ(g(n)) 

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis 

 
In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is 

greater than f(n) which indicates the algorithm's average bound. 

Example 

Consider the following f(n) and g(n)... 

f(n) = 3n + 2 
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g(n) = n 
If we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n) <= f(n) <= C2 g(n) for all 

values of C1 > 0, C2 > 0 and n0>= 1 

C1 g(n) <= f(n) <= C2 g(n) ⇒C1 n <= 3n + 2 <= C2 n 

Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n >= 2. 

By using Big - Theta notation we can represent the time compexity as follows... 

3n + 2 = Θ(n) 
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Applications of AVL Tree: 

 

1. AVL Tree is used as a first example self balancing BST in teaching DSA as it is easier to 

understand and implement compared to Red Black 

2. Applications, where insertions and deletions are less common but frequent data lookups 

along with other operations of BST like sorted traversal, floor, ceil, min and max. 

3. Red Black tree is more commonly implemented in language libraries like map in C++, set 

in C++, TreeMap in Java and TreeSet in Java. 

4. AVL Trees can be used in a real time environment where predictable and consistent 

performance is required. 

 

Advantages of AVL Tree: 

 
1. AVL trees can self-balance themselves and therefore provides time complexity as O(log 

n) for search, insert and delete. 

2. As it is a balanced BST, so items can be traversed in sorted order. 

3. Since the balancing rules are strict compared to Red Black Tree, AVL trees in general have 

relatively less height and hence the search is faster. 

4. AVL tree is relatively less complex to understand and implement compared to Red Black 

Trees. 

 

Disadvantages of AVL Tree: 

 
1. It is difficult to implement compared to normal BST. 

2. Less used compared to Red-Black trees. Due to its rather strict balance. 

3. AVL trees provide complicated insertion and removal operations as more rotations are 

performed. 

 

B Trees: 

A B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, 

sequential access, insertions, and deletions in logarithmic time. It is commonly used in databases 

and file systems. 

B-trees are always balanced, meaning that all leaf nodes are at the same depth. This ensures that 

the time complexity for search, insert, delete, and traverse operations remains efficient. 

Properties of B Tree: 

The following are some important properties of a B Tree: 

1. Every node has at most m children, where m is the order of the B Tree. 

2. A node having K children consists of K-1 keys. 

3. Every non-leaf node, excluding the root node, must have at least [m/2] child nodes. 

4. The root node must have at least two children if it is not the leaf node. 
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5. Unlike the other trees, the height of a B Tree increases upwards toward the root node, and 

the insertion happens at the leaf node. 

6. The Time Complexity of all the operations of a B Tree is O(log n), where 'n' is the 

number of data elements present in the B Tree. 

 

Insertion in B-Trees: 

1. Find the Leaf Node: 

o Traverse the tree to find the appropriate leaf node for the new key. 

2. Insert the Key: 

o Add the key in sorted order within the leaf node. 

3. Handle Overflow by Splitting: 

o If the leaf node is full, split it into two nodes, and promote the middle key to the 

parent. 

4. Propagate Splits Upward: 

o If necessary, continue splitting up the tree, which may result in creating a new 

root. 

 

Let us understand the steps mentioned above with the illustrations shown below. 

Suppose that the following are some data elements that need to be inserted in a B Tree: 7, 8, 9, 

10, 11, 16, 21, and 18. 

1. Since the maximum degree of a node in the tree is 3; therefore, the maximum number of keys 

per node will be 3 - 1 = 2. 

2. We will start by inserting data element 7 in the empty tree. 

 

Figure 2.1: Inserting 7 

3. We will insert the next data element, i.e., 8, into the tree. Since 8 is greater than 7, it will be 

inserted to the right of 7 in the same node. 
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Figure 2.2: Inserting 8 

4. Similarly, we will insert another data element, 9, into the tree on the same to the right of 8. 

However, since the maximum number of keys per node can only be 2, the node will split, 

pushing the median key 8 upward, making 7 the key of the left child node and 9 the key of the 

right child node. 

 

Figure 2.3: Inserting 9 

5. We will insert the next data element, i.e., 10, into the tree. Since 10 is greater than 9, it will be 

inserted as a key on the right of the node containing 9 as a key. 

 

Figure 2.4: Inserting 10 

6. We will now insert another data element, 11, into the tree. Since 11 is greater than 10, it should 

be inserted to the right of 10. However, as we know, the maximum number of keys per node 

cannot be more than 2; therefore, 10 being the median, will be pushed to the root node right to 8, 

splitting 9 and 11 into two separate nodes. 
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Figure 2.5: Inserting 11 

7. We will now insert data element 16 into the tree. Since 16 is greater than 11, it will be inserted 

as a key on the right of the node consisting of 11 as a key. 

 

Figure 2.6: Inserting 16 

8. The next data element that we will insert into the tree is 21. Element 21 should be inserted to 

the right of 16; however, it will exceed the maximum number of keys per node limit. Therefore, a 

split will occur, pushing the median key 16 upward and splitting the left and right keys into 

separate nodes. But this will again violate the maximum number of keys per node limit; 

therefore, a split will once again push the median key 10 upward a root node and 

make 8 and 11 its children. 
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Figure 2.7: Inserting 21 

9. At last, we will insert data element 18 into the tree. Since 18 is greater than 16 but less 

than 21, it will be inserted as the left key in the node consisting of 21. 

 

Figure 2.8: Inserting 18 
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10. Hence the resulted B Tree will be as shown below: 

 

Figure 2.9: The Resulted B Tree 

 

 

 

 

 

 

Deletion from a B-tree 

Deleting an element on a B-tree consists of three main events: searching the node where the key to be 

deleted exists, deleting the key and balancing the tree if required. 

While deleting a tree, a condition called underflow may occur. Underflow occurs when a node contains 

less than the minimum number of keys it should hold. 

The terms to be understood before studying deletion operation are: 

1. Inorder Predecessor 

The largest key on the left child of a node is called its inorder predecessor. 

2. Inorder Successor 

The smallest key on the right child of a node is called its inorder successor. 

 

Deletion Operation 
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Before going through the steps below, one must know these facts about a B tree of degree m. 

1. A node can have a maximum of m children. (i.e. 3) 

2. A node can contain a maximum of m - 1 keys. (i.e. 2) 

3. A node should have a minimum of ⌈m/2⌉ children. (i.e. 2) 

4. A node (except root node) should contain a minimum of ⌈m/2⌉ - 1 keys. (i.e. 1) 

There are three main cases for deletion operation in a B tree. 

Case I 

The key to be deleted lies in the leaf. There are two cases for it. 

1. The deletion of the key does not violate the property of the minimum number of keys a node 

should hold. 

 

In the tree below, deleting 32 does not violate the above properties.

Deleting a leaf key (32) from B-tree 

2. The deletion of the key violates the property of the minimum number of keys a node should hold. 

In this case, we borrow a key from its immediate neighboring sibling node in the order of left to 

right. 
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First, visit the immediate left sibling. If the left sibling node has more than a minimum number of 

keys, then borrow a key from this node. 

 

Else, check to borrow from the immediate right sibling node. 

 

In the tree below, deleting 31 results in the above condition. Let us borrow a key from the left 

sibling node.
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Deleting a leaf key (31)If both the immediate sibling nodes already have a minimum number of 

keys, then merge the node with either the left sibling node or the right sibling node. This 

merging is done through the parent node. 

 

Deleting 30 results in the above case. 

 

Delete a leaf key (30) 
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Case II 

If the key to be deleted lies in the internal node, the following cases occur. 

1. The internal node, which is deleted, is replaced by an inorder predecessor if the left child has 

more than the minimum number of keys.

Deleting an internal node (33) 
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2. The internal node, which is deleted, is replaced by an inorder successor if the right child has more 

than the minimum number of keys. 

3. If either child has exactly a minimum number of keys then, merge the left and the right children. 

 

Deleting an internal node (30)After merging if the parent node has less than the minimum number 

of keys then, look for the siblings as in Case I. 

Case III 
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In this case, the height of the tree shrinks. If the target key lies in an internal node, and the deletion of the 

key leads to a fewer number of keys in the node (i.e. less than the minimum required), then look for the 

inorder predecessor and the inorder successor. If both the children contain a minimum number of keys 

then, borrowing cannot take place. This leads to Case II(3) i.e. merging the children. 

Again, look for the sibling to borrow a key. But, if the sibling also has only a minimum number of keys 

then, merge the node with the sibling along with the parent. Arrange the children accordingly (increasing 

order). 

Deleting an internal node (10) 

 

Advantages: 

1. Balanced Tree: All leaves are at the same level, ensuring consistent performance. 

2. Efficient Searching: Fast search operations with O(log n) time complexity. 

3. Disk-Friendly: Minimizes disk I/O by storing multiple keys per node. 

4. Efficient Insertions/Deletions: Maintains balance and performance with O(log n) complexity. 

5. Handles Large Data: Good for large datasets and storage systems. 

Disadvantages: 
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1. Complex Implementation: More complex to implement than simpler trees. 

2. Memory Overhead: Uses more memory per node due to multiple keys and pointers. 

3. Not Ideal for In-Memory: Less efficient for in-memory data compared to other trees. 

4. Node Operations: Splitting and merging nodes can be complex and costly. 

5. Small Node Size Issues: Small nodes can lead to decreased performance. 

 

Applications 

 Databases: For indexing and speeding up queries. 

 File Systems: To organize and access files and directories. 

 Key-Value Stores: To manage and retrieve data efficiently. 

 Operating Systems: For managing virtual memory and page tables. 

 Search Engines: For indexing and fast retrieval of search results. 

 Network Routers: To manage routing tables for packet delivery. 

 Data Warehousing: To efficiently organize and query large datasets. 

 Geospatial Systems: For indexing and querying spatial data. 
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UNIT – II 

 

Heap Trees (Priority Queues) – Min and Max Heaps, Operations and 
Applications.   
 
Graphs – Terminology, Representations, Basic Search and Traversals, 
Connected Components and Biconnected Components, applications. 
 

  Divide and Conquer: The General Method, Quick Sort, Merge Sort, 
Strassen’s           
   matrix multiplication, Convex Hull. 
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Graphs: 

Definitions 

1. Graph: A graph G is defined as a pair G=(V,E) where: 

o V is a set of vertices (or nodes). 

o E is a set of edges, which are pairs of vertices representing connections 

between them. 

Example: 

o V = {A,B,C,D} 

o E = {(A,B),(A,C),(A,D),(B,D),(C,D)} 

 

 

 

2. Vertex (Node): A fundamental unit of a graph, represented as a point. Vertices are 

usually denoted by letters or numbers (e.g., V1,V2). 

3. Edge: A connection between two vertices in a graph. Edges can be directed (having a 

direction) or undirected. 

4. Directed Graph (Digraph): A graph in which the edges have a direction, indicating a 

one-way relationship between vertices. 

                                                                

5. Undirected Graph: A graph in which edges do not have a direction, indicating a mutual 

relationship between vertices. 
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6. Weighted Graph: A graph where each edge is assigned a weight (or cost), representing 

the strength, distance, or capacity of the connection. 

                                      

7. Simple Graph: A graph with no loops (edges connecting a vertex to itself) and no 

multiple edges between the same pair of vertices. 

 

8. Multigraph: A graph that can have multiple edges (parallel edges) between the same 

pair of vertices. 
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9. Path: A sequence of edges that connect a sequence of vertices without revisiting any 

vertex. 

10. Cycle: A path that starts and ends at the same vertex, with no other repetitions of vertices 

and edges. 

11. Connected Graph: A graph in which there is a path between every pair of vertices. 

12. Disconnected Graph: A graph in which at least one pair of vertices does not have a path 

between them. 

13. Complete Graph: A graph in which every pair of vertices is connected by a unique 

edge. 

     

14. Subgraph: A graph formed from a subset of the vertices and edges of a larger graph.                             

                                  

15. Degree of a Vertex: The number of edges connected to a vertex. In directed graphs, this 

includes: 

o In-degree: The number of incoming edges. 

o Out-degree: The number of outgoing edges. 
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Directed Graph  

 

Output: 

Vertex    In    Out 

0         1    2 

1          2    1 

2          2    3 

3          2    2 

4          2    2 

5          2    2 

6          2    1 

 

16. Bipartite Graph: A graph whose vertices can be divided into two disjoint sets such that 

every edge connects a vertex in one set to a vertex in the other set. 

V1(G) and V2(G) in such a way that each edge e of E(G) has one end in V1(G) and 

another end in V2(G). The partition V1 U V2 = V is called Bipartite of G. Here in the 

figure: V1(G)={V5, V4, V3} and V2(G)={V1, V2}  
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17. Adjacency: A relation where two vertices are connected by an edge. 

18. Adjacency Matrix: A square matrix used to represent a graph, where the element at row 

i and column j indicates whether there is an edge between vertices i and j. 

 

19. Adjacency List: A collection of lists or arrays used to represent a graph, where each list 

corresponds to a vertex and contains a list of adjacent vertices. 

B. Venkatesu Goud, Assistant Professor



 

Graph Traversals: 

Depth-First Search (DFS) 

DFS explores as far as possible along each branch before backtracking. It delves deeper into the 

graph along one path until it hits a dead-end (i.e., a vertex with no unvisited neighbors), then it 

backtracks and explores other paths. 

Algorithm Steps: 

1. Start at a given source vertex. 

2. Visit the first unvisited neighboring vertex. 

3. Repeat the process by going as deep as possible. 

4. Backtrack when no unvisited vertices remain, and continue with other unvisited vertices. 

5. Use a stack (either an explicit stack or recursive function call stack) to keep track of the 

vertices being explored. 

Key Characteristics: 

 Explores deep into a graph before visiting other vertices. 

 Can be implemented recursively or iteratively using a stack. 

 Used for applications like finding connected components, topological sorting, 

or detecting cycles in graphs. 

Time Complexity: 

 O(V + E), where V is the number of vertices and E is the number of edges. 

Example Use Cases: 

 Solving mazes (exploring all possible paths). 

 Detecting cycles in a graph. 

 Topological sorting in a directed acyclic graph (DAG). 
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Breadth-First Search (BFS) 

BFS explores the graph layer by layer, visiting all vertices at the current depth level before moving 

to the next level. 

Algorithm Steps: 

1. Start at a given source vertex. 

2. Visit all its neighboring vertices (those directly connected by an edge). 

3. For each visited neighbor, explore its unvisited neighbors in the same way. 

4. Repeat the process level by level until all vertices are visited or no more neighbors 

remain. 

5. Use a queue data structure to keep track of the vertices to be explored. 

Key Characteristics: 

 Explores vertices in order of distance from the start vertex (measured by the number of 

edges). 

 Typically used to find the shortest path in unweighted graphs. 

 Traversal guarantees visiting each vertex once. 

Time Complexity: 

 O(V + E), where V is the number of vertices and E is the number of edges. 

Example Use Cases: 

 Finding the shortest path in an unweighted graph. 

 Level-order traversal in a tree. 

Example: 

Let us understand the working of the algorithm with the help of the following example where 

the source vertex is 0. 

Step1: Initially queue and visited arrays are empty. 

 
Queue and visited arrays are empty initially. 
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Step2: Push 0 into queue and mark it visited. 

 
Push node 0 into queue and mark it visited. 

Step 3: Remove 0 from the front of queue and visit the unvisited neighbours and push them 

into queue. 

 
Remove node 0 from the front of queue and visited the unvisited neighbours and push into 

queue. 

Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push 

them into queue. 

 
Remove node 1 from the front of queue and visited the unvisited neighbours and push 

Step 5: Remove node 2 from the front of queue and visit the unvisited neighbours and push 

them into queue. 
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Remove node 2 from the front of queue and visit the unvisited neighbours and push them into 

queue. 

Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push 

them into queue. 

As we can see that every neighbours of node 3 is visited, so move to the next node that are in 

the front of the queue. 

 
Remove node 3 from the front of queue and visit the unvisited neighbours and push them into 

queue. 

Steps 7: Remove node 4 from the front of queue and visit the unvisited neighbours and push 

them into queue. 

As we can see that every neighbours of node 4 are visited, so move to the next node that is in 

the front of the queue. 
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Remove node 4 from the front of queue and visit the unvisited neighbours and push them into 

queue. 

Now, Queue becomes empty, So, terminate these process of iteration. 

 

 

Comparison of BFS and DFS: 

Feature BFS DFS 

Data Structure Queue Stack (or recursion) 

Traversal Order Layer by layer (level-order) Deep into one path, then backtrack 

Shortest Path Yes, in unweighted graphs No (does not guarantee shortest path) 

Space Complexity O(V) (stores all vertices at a level) O(V) (depth of recursion or stack) 

Typical Applications Shortest path, level-order traversal Cycle detection, topological sorting 

Both algorithms are widely used in various graph-related problems, each with its own strengths 

depending on the application. 

Minimum Cost Spanning Tree  

A Minimum Cost Spanning Tree (MCST) is a subset of the edges of a connected, weighted graph 

that connects all the vertices without any cycles and with the minimum possible total edge weight. 

It's essential in optimization problems, particularly in network design, where the goal is to connect 

all points (vertices) using the least amount of resources (minimum edge weights). 

There are two main algorithms to find a minimum cost spanning tree: Kruskal's 

Algorithm and Prim's Algorithm. 

Algorithms: 
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Kruskal’s Algorithm: 

 Sort edges by weight. 

 Add the smallest edge if it doesn’t form a cycle. 
 Continue until all vertices are connected. 

 Best for sparse graphs. 

Prim’s Algorithm: 

 Start from any vertex. 

 Add the smallest edge that connects a new vertex. 

 Repeat until all vertices are connected. 

 Best for dense graphs. 

Comparison: 

 Kruskal's: Works edge by edge. 

 Prim's: Expands from a single vertex. 

 Both have time complexity around O(E log E) or O(E log V). 

Applications: 

 Network design (e.g., laying cables or pipelines). 

 Cluster analysis. 

 Approximation in optimization problems. 

 

Graphs Applications: 

 

 Social Networks: Represent people and their connections. 

 Navigation/Maps: Find shortest paths between locations. 

 Web Search: Rank web pages through links. 

 Transportation Networks: Optimize routes for flights, trains, etc. 

 Computer Networks: Route data between devices. 

 Recommendation Systems: Suggest movies, products, etc. 

 Circuit Design: Connect electrical components efficiently. 

 Biology: Study protein or gene interactions. 

 Project Scheduling: Manage task dependencies in projects. 

 Game Theory: Analyze strategies in games like chess. 
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Divide and Conquer 

 
Divide and Conquer Introduction 

Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a 
dispute on a huge input, break the input into minor pieces, decide the problem on each of the small 
pieces, and then merge the piecewise solutions into a global solution. This mechanism of solving 
the problem is called the Divide & Conquer Strategy. 
Divide and Conquer algorithm consists of a dispute using the following three steps. 

1. Divide the original problem into a set of subproblems. 
2. Conquer: Solve every subproblem individually, recursively. 
3. Combine: Put together the solutions of the subproblems to get the solution to the whole 

problem. 
 

 
 
Generally, we can follow the divide-and-conquer approach in a three-step process. 
Examples: The specific computer algorithms are based on the Divide & Conquer approach: 
Advertisement 
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1. Maximum and Minimum Problem 
2. Binary Search 
3. Sorting (merge sort, quick sort) 
4. Tower of Hanoi. 

Fundamental of Divide & Conquer Strategy: 
There are two fundamental of Divide & Conquer Strategy: 

1. Relational Formula 
2. Stopping Condition 

1. Relational Formula: It is the formula that we generate from the given technique. After 
generation of Formula we apply D&C Strategy, i.e. we break the problem recursively & solve the 
broken subproblems. 
2. Stopping Condition: When we break the problem using Divide & Conquer Strategy, then we 
need to know that for how much time, we need to apply divide & Conquer. So the condition where 
the need to stop our recursion steps of D&C is called as Stopping Condition. 
Applications of Divide and Conquer Approach: 
Following algorithms are based on the concept of the Divide and Conquer Technique: 

1. Binary Search: The binary search algorithm is a searching algorithm, which is also called 
a half-interval search or logarithmic search. It works by comparing the target value with 
the middle element existing in a sorted array. After making the comparison, if the value 
differs, then the half that cannot contain the target will eventually eliminate, followed by 
continuing the search on the other half. We will again consider the middle element and 
compare it with the target value. The process keeps on repeating until the target value is 
met. If we found the other half to be empty after ending the search, then it can be concluded 
that the target is not present in the array. 

2. Quicksort: It is the most efficient sorting algorithm, which is also known as partition-
exchange sort. It starts by selecting a pivot value from an array followed by dividing the 
rest of the array elements into two sub-arrays. The partition is made by comparing each of 
the elements with the pivot value. It compares whether the element holds a greater value 
or lesser value than the pivot and then sort the arrays recursively. 

3. Merge Sort: It is a sorting algorithm that sorts an array by making comparisons. It starts 
by dividing an array into sub-array and then recursively sorts each of them. After the sorting 
is done, it merges them back. 

4. Closest Pair of Points: It is a problem of computational geometry. This algorithm 
emphasizes finding out the closest pair of points in a metric space, given n points, such that 
the distance between the pair of points should be minimal. 

5. Strassen's Algorithm: It is an algorithm for matrix multiplication, which is named after 
Volker Strassen. It has proven to be much faster than the traditional algorithm when works 
on large matrices. 

6. Cooley-Tukey Fast Fourier Transform (FFT) algorithm: The Fast Fourier Transform 
algorithm is named after J. W. Cooley and John Turkey. It follows the Divide and Conquer 
Approach and imposes a complexity of O(nlogn). 

7. Karatsuba algorithm for fast multiplication: It is one of the fastest multiplication 
algorithms of the traditional time, invented by Anatoly Karatsuba in late 1960 and got 
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published in 1962. It multiplies two n-digit numbers in such a way by reducing it to at most 
single-digit. 

Advantages of Divide and Conquer 
o Divide and Conquer tend to successfully solve one of the biggest problems, such as the 

Tower of Hanoi, a mathematical puzzle. It is challenging to solve complicated problems 
for which you have no basic idea, but with the help of the divide and conquer approach, it 
has lessened the effort as it works on dividing the main problem into two halves and then 
solve them recursively. This algorithm is much faster than other algorithms. 

o It efficiently uses cache memory without occupying much space because it solves simple 
subproblems within the cache memory instead of accessing the slower main memory. 

o It is more proficient than that of its counterpart Brute Force technique. 
o Since these algorithms inhibit parallelism, it does not involve any modification and is 

handled by systems incorporating parallel processing. 
Disadvantages of Divide and Conquer 

o Since most of its algorithms are designed by incorporating recursion, so it necessitates high 
memory management. 

o An explicit stack may overuse the space. 
o It may even crash the system if the recursion is performed rigorously greater than the stack 

present in the CPU. 
 

Quick Sort 
 
It is an algorithm of Divide & Conquer type. 
Divide: Rearrange the elements and split arrays into two sub-arrays and an element in between 
search that each element in left sub array is less than or equal to the average element and each 
element in the right sub- array is larger than the middle element. 
Conquer: Recursively, sort two sub arrays. 
Combine: Combine the already sorted array. 
  
Algorithm: 
QUICKSORT (array A, int m, int n)    

 1 if (n > m)    
 2 then    
 3 i ← a random index from [m,n]    
 4 swap A [i] with A[m]    
 5 o ← PARTITION (A, m, n)    
 6 QUICKSORT (A, m, o - 1)   

7 QUICKSORT (A, o + 1, n)   
Partition Algorithm: 
Partition algorithm rearranges the sub arrays in a place. 

PARTITION (array A, int m, int n)    
 1 x ← A[m]    
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 2 o ← m    
 3 for p ← m + 1 to n   
 4 do if (A[p] < x)    
 5 then o ← o + 1    
 6 swap A[o] with A[p]   
 7 swap A[m] with A[o]    
 8 return o   

Figure: shows the execution trace partition algorithm 

 
Example of Quick Sort: 
  44  33  11  55  77  90  40  60  99  22  88     
Let 44 be the Pivot element and scanning done from right to left 
Comparing 44 to the right-side elements, and if right-side elements are smaller than 44, then swap 
it. As 22 is smaller than 44 so swap them. 
 
22 33 11 55 77 90 40 60 99 44 88 

 
Now comparing 44 to the left side element and the element must be greater than 44 then swap 
them. As 55 are greater than 44 so swap them. 
 
22 33 11 44 77 90 40 60 99 55 88 
 

B. Venkatesu Goud, Assistant Professor



Recursively, repeating steps 1 & steps 2 until we get two lists one left from pivot element  44 & 
one right from pivot element. 
 
22 33 11 40 77 90 44 60 99 55 88 
 

Swap with 77: 
22 33 11 40 44 90 77 60 99 55 88 
 
Now, the element on the right side and left side are greater than and smaller than 44 respectively. 
Now we get two sorted lists: 

 
And these sublists are sorted under the same process as above done. 
These two sorted sublists side by side. 

 

 
Merging Sublists: 

 
                          SORTED LISTS 
Worst Case Analysis: It is the case when items are already in sorted form and we try to sort them 
again. This will takes lots of time and space. 
Equation: 

1. T (n) =T(1)+T(n-1)+n   
T (1) is time taken by pivot element. 
T (n-1) is time taken by remaining element except for pivot element. 
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N: the number of comparisons required to identify the exact position of itself (every element) 
If we compare first element pivot with other, then there will be 5 comparisons. 
It means there will be n comparisons if there are n items. 

 
Relational Formula for Worst Case: 

 
Note: for making T (n-4) as T (1) we will put (n-1) in place of '4' and if 
We put (n-1) in place of 4 then we have to put (n-2) in place of 3 and (n-3) 
In place of 2 and so on. 
T(n)=(n-1) T(1) + T(n-(n-1))+(n-(n-2))+(n-(n-3))+(n-(n-4))+n 
T (n) = (n-1) T (1) + T (1) + 2 + 3 + 4+............n 
T (n) = (n-1) T (1) +T (1) +2+3+4+...........+n+1-1 
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[Adding 1 and subtracting 1 for making AP series] 
T (n) = (n-1) T (1) +T (1) +1+2+3+4+........ + n-1 

T (n) = (n-1) T (1) +T (1) + -1 

Stopping Condition: T (1) =0 
Because at last there is only one element left and no comparison is required. 

T (n) = (n-1) (0) +0+ -1 

 
Worst Case Complexity of Quick Sort is T (n) =O (n2) 
Randomized Quick Sort [Average Case]: 
Generally, we assume the first element of the list as the pivot element. In an average Case, the 
number of chances to get a pivot element is equal to the number of items. 

1. Let total time taken =T (n)   
2. For eg: In a given list   
3.    p 1,   p 2,    p 3,    p 4............pn   
4.   If p 1 is the pivot list then we have 2 lists.   
5.      I.e. T (0) and T (n-1)   
6.   If p2 is the pivot list then we have 2 lists.   
7.         I.e. T (1) and T (n-2)   
8.    p 1,   p 2,    p 3,    p 4............pn   
9.  If p3 is the pivot list then we have 2 lists.   
10.   I.e. T (2) and T (n-3)   
11.     p 1,   p 2,    p 3,    p 4............p n   

So in general if we take the Kth element to be the pivot element. 
Then, 

 
Pivot element will do n comparison and we are doing average case so, 

 
So Relational Formula for Randomized Quick Sort is: 

 

= n+1 + (T(0)+T(1)+T(2)+...T(n-1)+T(n-2)+T(n-3)+...T(0)) 
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= n+1 + x2 (T(0)+T(1)+T(2)+...T(n-2)+T(n-1)) 
 

1. n T (n) = n (n+1) +2  (T(0)+T(1)+T(2)+...T(n-1)........eq 1   
Put n=n-1 in eq 1 

1. (n -1) T (n-1) = (n-1) n+2 (T(0)+T(1)+T(2)+...T(n-2)......eq2   
From eq1 and eq 2 
n T (n) - (n-1) T (n-1)= n(n+1)-n(n-1)+2 (T(0)+T(1)+T(2)+?T(n-2)+T(n-1))-
2(T(0)+T(1)+T(2)+...T(n-2)) 
n T(n)- (n-1) T(n-1)= n[n+1-n+1]+2T(n-1) 
n T(n)=[2+(n-1)]T(n-1)+2n 
n T(n)= n+1 T(n-1)+2n 

 
Put n=n-1 in eq 3 

 
Put 4 eq in 3 eq 

 
Put n=n-2 in eq 3 

 
Put 6 eq in 5 eq 

 
Put n=n-3 in eq 3 

 
Put 8 eq in 7 eq 
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From 3eq, 5eq, 7eq, 9 eq we get 

 

 
From 10 eq 

 
Multiply and divide the last term by 2 
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Is the average case complexity of quick sort for sorting n elements. 
3. Quick Sort [Best Case]: In any sorting, best case is the only case in which we don't make any 
comparison between elements that is only done when we have only one element to sort. 
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Merge Sort 
 
Merge sort is yet another sorting algorithm that falls under the category of Divide and 
Conquer technique. It is one of the best sorting techniques that successfully build a recursive 
algorithm. 
Divide and Conquer Strategy 
In this technique, we segment a problem into two halves and solve them individually. After finding 
the solution of each half, we merge them back to represent the solution of the main problem.  
Suppose we have an array A, such that our main concern will be to sort the subsection, which starts 
at index p and ends at index r, represented by A[p..r]. 
Divide 
If assumed q to be the central point somewhere in between p and r, then we will fragment the 
subarray A[p..r] into two arrays A[p..q] and A[q+1, r]. 
Conquer 
After splitting the arrays into two halves, the next step is to conquer. In this step, we individually 
sort both of the subarrays A[p..q] and A[q+1, r]. In case if we did not reach the base situation, 
then we again follow the same procedure, i.e., we further segment these subarrays followed by 
sorting them separately. 
Combine 
As when the base step is acquired by the conquer step, we successfully get our sorted 
subarrays A[p..q] and A[q+1, r], after which we merge them back to form a new sorted 
array [p..r]. 
Merge Sort algorithm 
The MergeSort function keeps on splitting an array into two halves until a condition is met where 
we try to perform MergeSort on a subarray of size 1, i.e., p == r. 
And then, it combines the individually sorted subarrays into larger arrays until the whole array is 
merged. 

ALGORITHM-MERGE SORT   
1. If p<r   
2. Then q → ( p+ r)/2   
3. MERGE-SORT (A, p, q)   
4. MERGE-SORT ( A, q+1,r)   
5. MERGE ( A, p, q, r)   

Here we called MergeSort(A, 0, length(A)-1) to sort the complete array. 
As you can see in the image given below, the merge sort algorithm recursively divides the array 
into halves until the base condition is met, where we are left with only 1 element in the array. And 
then, the merge function picks up the sorted sub-arrays and merge them back to sort the entire 
array. 
 
The following figure illustrates the dividing (splitting) procedure. 
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FUNCTIONS: MERGE (A, p, q, r)   
   
1. n 1 = q-p+1   
2. n 2= r-q   
3. create arrays [1.....n 1 + 1] and R [ 1.....n 2 +1 ]   
4. for i ← 1 to n 1   
5. do [i] ← A [ p+ i-1]   
6. for j ← 1 to n2   
7. do R[j] ← A[ q + j]   
8. L [n 1+ 1] ← ∞   
9. R[n 2+ 1] ← ∞    
10. I ← 1   
11. J ← 1   
12. For k ← p to r   
13. Do if L [i] ≤ R[j]   
14. then A[k] ← L[ i]   
15. i ← i +1   
16. else A[k] ← R[j]   
17. j ← j+1   
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Mainly the recursive algorithm depends on a base case as well as its ability to merge back the 
results derived from the base cases. Merge sort is no different algorithm, just the fact here 
the merge step possesses more importance. 
To any given problem, the merge step is one such solution that combines the two individually 
sorted lists(arrays) to build one large sorted list(array). 
The merge sort algorithm upholds three pointers, i.e., one for both of the two arrays and the other 
one to preserve the final sorted array's current index. 

1. Did you reach the end of the array?   
2.     No:   
3.         Firstly, start with comparing the current elements of both the arrays.    
4.         Next, copy the smaller element into the sorted array.   
5.         Lastly, move the pointer of the element containing a smaller element.   
6.     Yes:   
7.         Simply copy the rest of the elements of the non-empty array   

Merge( ) Function Explained Step-By-Step 
Consider the following example of an unsorted array, which we are going to sort with the help of 
the Merge Sort algorithm. 
A= (36,25,40,2,7,80,15) 
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Step1: The merge sort algorithm iteratively divides an array into equal halves until we achieve an 
atomic value. In case if there are an odd number of elements in an array, then one of the halves 
will have more elements than the other half. 
Step2: After dividing an array into two subarrays, we will notice that it did not hamper the order 
of elements as they were in the original array. After now, we will further divide these two arrays 
into other halves. 
Step3: Again, we will divide these arrays until we achieve an atomic value, i.e., a value that cannot 
be further divided. 
Step4: Next, we will merge them back in the same way as they were broken down. 
Step5: For each list, we will first compare the element and then combine them to form a new 
sorted list. 
Step6: In the next iteration, we will compare the lists of two data values and merge them back into 
a list of found data values, all placed in a sorted manner. 
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Hence the array is sorted. 
Analysis of Merge Sort: 
Let T (n) be the total time taken by the Merge Sort algorithm. 

o Sorting two halves will take at the most 2T time. 
o When we merge the sorted lists, we come up with a total n-1 comparison because the last 

element which is left will need to be copied down in the combined list, and there will be 
no comparison. 

Thus, the relational formula will be 

 
But we ignore '-1' because the element will take some time to be copied in merge lists. 

So T (n) = 2T + n...equation 1 
Note: Stopping Condition T (1) =0 because at last, there will be only 1 element left that need to be 
copied, and there will be no comparison. 

 
Put 2 equation in 1 equation 

 
Putting 4 equation in 3 equation 
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From Stopping Condition: 

 
Apply log both sides: 
log n=log2i 
logn= i log2 

=i 
 
log2n=i 
From 6 equation 

 
Best Case Complexity: The merge sort algorithm has a best-case time complexity of O(n*log 
n) for the already sorted array. 
Average Case Complexity: The average-case time complexity for the merge sort algorithm 
is O(n*log n), which happens when 2 or more elements are jumbled, i.e., neither in the ascending 
order nor in the descending order. 
Worst Case Complexity: The worst-case time complexity is also O(n*log n), which occurs when 
we sort the descending order of an array into the ascending order. 
Space Complexity: The space complexity of merge sort is O(n). 
Merge Sort Applications 
The concept of merge sort is applicable in the following areas: 

o Inversion count problem 
o External sorting 
o E-commerce applications 
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Strassen’s Matrix Multiplication 
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Using this recurrence relation, we get T(n)=O(nlog7).  
Hence, the complexity of Strassen’s matrix multiplication algorithm is O(nlog7). 
 

Convex Hull 
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UNIT – III 

 

Greedy Method: General Method, Job Sequencing with deadlines, 
Knapsack Problem, Minimum cost spanning trees, Single Source 
Shortest Paths. 
 

  Dynamic Programming: General Method, All pairs shortest paths, 
Single Source Shortest Paths – General Weights (Bellman Ford 
Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String  Editing, 
Travelling Salesperson problem.          
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1. GENERAL METHOD 

Greedy method: It is most straight forward method. It is popular for obtaining the 
optimized solutions. 

Optimization Problem: An optimization problem is the problem of finding the best 
solution (optimal solution) from all the feasible solutions (practicable of possible solutions). 
In an optimization problem we are given a set of constraints and an optimization functions. 
Solutions that satisfy the constraints are called feasible solutions. A feasible solution for 
which the optimization function has the best possible value is called optimal solution. 

Ex: Problem: Finding a minimum spanning tree from a weighted connected directed 
graph G. 

Constraints: Every time a minimum edge is added to the tree and adding of an edge 
does not  form a simple circuit. 
Feasible solutions: The feasible solutions are the spanning trees of the given graph G. 
Optimal solution: An optimal solution is a spanning tree with minimum cost i.e. 
minimum spanning tree. 

Q: Find the minimum spanning tree for the following graph. 
2 

A B 

 

3 1 

 

C 
2 

D 

Graph G 

The feasible solutions are the spanning tree of the graph G. Those are 
 

2 
A B A 

2 2 
B A B A B 

 

3 1 3 1 3 1 

 

C D C 
2 

D C 
2

 D C 
2 

D 

.Total Weights=6   2 .Total Weights=6  3 .Total Weights=7  4 .Total Weights=5 

From the above spanning tree the figure 4 gives the optimal solution, because it is the 
spanning tree with the minimum cost i.e. it is a minimum spanning tree of the graph G. 

The greedy technique suggests constructing a solution to an optimization problem 
hrough a sequence of steps, each expanding a partially constructed solution obtained so far 
until a complete solution to the problem is reached to each step, the choice made must be 
feasible, locally optimal and irrecoverable. 

Feasible: The choice which is made has to be satisfying the problems constraints. 
Locally optimal: The choice has to be the best local choice among all feasible choices 

available on that step. 
Irrecoverable: The choice once made cannot be changed on sub-sequent steps of the 

algorithm (Greedy method). 
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Control Abstraction for Greedy Method: 

Algorithm GreedyMethod (a, n) 
{ 

// a is an array of n inputs 
Solution: =Ø; 
for i: =0 to n do 
{ 

s: = select (a); 
if (feasible (Solution, s)) then 
{ 

 
} 
else 

 
} 

Solution: = union (Solution, s); 
 
 

reject (); // if solution is not feasible reject it. 

return solution; 
} 

 
In greedy method there are three important activities. 

1. A selection of solution from the given input domain is performed, i.e. s:= select(a). 
2. The feasibility of the solution is performed, by using feasible ‘(solution, s)’ and then 

all feasible solutions are obtained. 
3. From the set of feasible solutions, the particular solution that minimizes or maximizes 

the given objection function is obtained. Such a solution is called optimal solution. 

Q: A child buys a candy 42 rupees and gives a 100 note to the cashier. Then the cashier 
wishes to return change using the fewest number of coins. Assume that the cashier has Rs.1, 
Rs. 5 and Rs. 10 coins. 

This problem can be solved using the greedy method. 
 
 

2. APPLICATION - JOB SEQUENCING WITH DEADLINES 

This problem consists of n jobs each associated with a deadline and profit and our 
objective is to earn maximum profit. We will earn profit only when job is completed on or 
before deadline. We assume that each job will take unit time to complete. 

 
Points to remember: 

 
 In this problem we have n jobs j1, j2, … jn, each has an associated deadlines are d1, 

d2, … dn and profits are p1, p2, ... pn. 
 Profit will only be awarded or earned if the job is completed on or before the 

deadline. 
 We assume that each job takes unit time to complete. 
 The objective is to earn maximum profit when only one job can be scheduled or 

processed at any given time. 
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Example: Consider the following 5 jobs and their associated deadline and profit. 

 index  1  2  3  4  5  

JOB j1 j2 j3 j4 j5 

 DEADLINE  2  1  3  2  1  

PROFIT 60 100 20 40 20 

Sort the jobs according to their profit in descending order. 
Note! If two or more jobs are having the same profit then sorts them as per their entry 

in the job list. 

 index  1  2  3  4  5  

JOB j2 j1 j4 j3 j5 

 DEADLINE  1  2  2  3  1  

PROFIT 100 60 40 20 20 

Find the maximum deadline value 
Looking at the jobs we can say the max deadline value is 3. So, dmax = 3 
As dmax = 3 so we will have THREE slots to keep track of free time slots. Set the 

time slot status to EMPTY 

 time slot  1  2  3  

status EMPTY EMPTY EMPTY 

Total number of jobs is 5. So we can write n = 5. 
Note! 

If we look at job j2, it has a deadline 1. This means we have to complete job j2 in time 
slot 1 if we want to earn its profit. 

Similarly, if we look at job j1 it has a deadline 2. This means we have to complete job 
j1 on or before time slot 2 in order to earn its profit. 

Similarly, if we look at job j3 it has a deadline 3. This means we have to complete job 
j3 on or before time slot 3 in order to earn its profit. 

Our objective is to select jobs that will give us higher profit. 

 

 time slot  1  2  3  

Job J1 J2 J4 

Profit 100 60 20 

Total Profit is 180 
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Pseudo Code: 

for i = 1 to n do 
Set k = min(dmax, DEADLINE(i)) //where DEADLINE(i) denotes deadline of ith job 
while k >= 1 do 
if timeslot[k] is EMPTY then 
timeslot[k] = job(i) 
break 

endif 
Set k = k - 1 

endwhile 
endfor 
Algorithm: 

 

Time Complexity = O (n2) 
 

3. APPLICATION - KNAPSACK PROBLEM 
In this problem the objective is to fill the knapsack with items to get maximum benefit 

(value or profit) without crossing the weight capacity of the knapsack. And we are also 
allowed to take an item in fractional part. 
Points to remember: 

In this problem we have a Knapsack that has a weight limit W 
There are items i1, i2, ..., in each having weight w1, w2, … wn and some benefit 

(value or profit) associated with it v1, v2, ..., vn 
Our objective is to maximise the benefit such that the total weight inside the knapsack 

is at most W. And we are also allowed to take an item in fractional part. 
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Example: Assume that we have a knapsack with max weight capacity, W = 16. 
Our objective is to fill the knapsack with items such that the benefit (value or profit) is 
maximum. 

Consider the following items and their associated weight and value 

ITEM WEIGHT VALUE 

i1 6 6 

i2 10 2 

i3 3 1 

i4 5 8 

i5 1 3 

i6 3 5 

Steps 
1. Calculate value per weight for each item (we can call this value density) 
2. Sort the items as per the value density in descending order 
3. Take as much item as possible not already taken in the knapsack 
Compute density = (value/weight) 

ITEM WEIGHT VALUE DENSITY 

i1 6 6 1.000 

i2 10 2 0.200 

i3 3 1 0.333 

i4 5 8 1.600 

i5 1 3 3.000 

i6 3 5 1.667 

Sort the items as per density in descending order 

ITEM WEIGHT VALUE DENSITY 

i5 1 3 3.000 
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 i6   3   5   1.667  

i4 5 8 1.600 

 i1   6   6   1.000  

i3 3 1 0.333 

 i2   10   2   0.200  

Now we will pick items such that our benefit is maximum and total weight of the 
selected items is at most W. 

Our objective is to fill the knapsack with items to get maximum benefit without 
crossing the weight limit W = 16. 

How to fill Knapsack Table? 

is WEIGHT(i) + TOTAL WEIGHT <= W 
if its YES 
then we take the whole item 

 
How to find the Benefit? 

If an item value is 10 and weight is 5 

And if you are taking it completely 

Then, 

benefit = (weight taken) x (total value of the item / total weight of the item) 

 
weight taken = 5 (as we are taking the complete (full) item, no fraction) 

total value of the item = 10 

total weight of the item = 5 

 
So, benefit = 5 x (10/5) = 10 

On the other hand if you are taking say, 1/2 of the item 

Then, 

weight taken = 5 x (1/2) = 5/2 (as we are taking 1/2 item) 

So, benefit = (weight taken) x (total value of the item / total weight of the item) 

= (5/2) x (10/5) 

= 5 
Values after calculation 

ITEM WEIGHT VALUE TOTAL WEIGHT TOTAL BENEFIT 

i5 1 3 1.000 3.000 

i6 3 5 4.000 8.000 
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i4 5 8 9.000 16.000 

i1 6 6 15.000 22.000 

i3 1 0.333 16.000 22.333 

So, total weight in the knapsack = 16 and total value inside it = 22.333336 
 

 
Algorithm: 

 

 
Time Complexity = O (n2) 

 
4. APPLICATION - MINIMUM SPANNING TREE 

A spanning tree is a subset of Graph G, which has all the vertices covered with 
minimum possible number of edges. Hence, a spanning tree does not have cycles and it 
cannot be disconnected. 

Note: Every connected and undirected Graph G has at least one spanning tree. A 
disconnected graph does not have any spanning tree. 
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We found three spanning trees off one complete graph. A complete undirected graph 

can have maximum nn-2 number of spanning trees, where n is the number of nodes. In the 
above addressed example, 33−2 = 3 spanning trees are possible. 
General Properties of Spanning Tree 

 A connected graph G can have more than one spanning tree.
 All possible spanning trees of graph G, have the same number of edges and 

vertices.
 The spanning tree does not have any cycle (loops).
 Removing one edge from the spanning tree will make the graph disconnected,

i.e. the spanning tree is minimally connected. 
 Adding one edge to the spanning tree will create a circuit or loop, i.e. the 

spanning tree is maximally acyclic.
Mathematical Properties of Spanning Tree 

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).
 From a complete graph, by removing maximum e - n + 1 edges, we can 

construct a spanning tree.
 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and 
disconnected graphs do not have spanning tree. 
Application of Spanning Tree 

Spanning tree is basically used to find a minimum path to connect all nodes in a 
graph. Common applications of spanning trees are 

 Civil Network Planning
 Computer Network Routing Protocol
 Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge 
graph and now plans to deploy telephone lines in such a way that in minimum lines we can 
connect to all city nodes. This is where the spanning tree comes into picture. 
Minimum Spanning Tree (MST) 

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum 
weight than all other spanning trees of the same graph. In real-world situations, this weight 
can be measured as distance, congestion, traffic load or any arbitrary value denoted to the 
edges. 

Minimum Spanning-Tree Algorithm 
We shall learn about two most important spanning tree algorithms(greedy 

algorithms): 
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1. Kruskal's Algorithm 
2. Prim's Algorithm 

 
i. Kruskal's Algorithm 

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy 
approach. This algorithm treats the graph as a forest and every node it has as an individual 
tree. A tree connects to another only and only if, it has the least cost among all available 
options and does not violate MST properties. 

 
 
 
 

To understand Kruskal's algorithm let us consider the following example: 

Step 1 - Remove all loops and Parallel Edges 
Remove all loops and parallel edges from the given graph. 

 

In case of parallel edges, keep the one which has the least cost associated and remove all 
others. 
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Step 2 - Arrange all edges in their increasing order of weight 
The next step is to create a set of edges and weight, and arrange them in an ascending order 
of weightage (cost). 

Step 3 - Add the edge which has the least weightage 
Now we start adding edges to the graph beginning from the one which has the least weight. 
Throughout, we shall keep checking that the spanning properties remain intact. In case, by 
adding one edge, the spanning tree property does not hold then we shall consider not to 
include the edge in the graph. 

 

 
The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them 

does not violate spanning tree properties, so we continue to our next edge selection. 
Next cost is 3, and associated edges are A,C and C,D. We add them again − 

 

 
Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. − 
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We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 
 

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on. 
 

Now we are left with only one node to be added. Between the two least cost edges available 
7 and 8, we shall add the edge with cost 7. 

 

By adding edge S,A we have included all the nodes of the graph and we now have minimum 
cost spanning tree. 
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Time Complexity = O (|E| log |E|) 
ii. Prim’s Algorithm 

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses 
the greedy approach. Prim's algorithm shares a similarity with the shortest path 
first algorithms. 

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree 
and keeps on adding new nodes to the spanning tree from the given graph. To contrast with 
Kruskal's algorithm and to understand Prim's algorithm better, we shall use the same 
example. 

 

Step 1 - Remove all loops and parallel edges 
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Remove all loops and parallel edges from the given graph. In case of parallel edges, 

keep the one which has the least cost associated and remove all others. 
 

Step 2 - Choose any arbitrary node as root node 
In this case, we choose S node as the root node of Prim's spanning tree. This node is 

arbitrarily chosen, so any node can be the root node. One may wonder why any video can be 
a root node. So the answer is, in the spanning tree all the nodes of a graph are included and 
because it is connected then there must be at least one edge, which will join it to the rest of 
the tree. 
Step 3 - Check outgoing edges and select the one with less cost 

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 
and 8, respectively. We choose the edge S,A as it is lesser than the other. 

 

Now, the tree S-7-A is treated as one node and we check for all edges going out from 
it. We select the one which has the lowest cost and include it in the tree. 
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After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will 

check all the edges again. However, we will choose only the least cost edge. In this case, C- 
3-D is the new edge, which is less than other edges' cost 8, 6, 4, etc. 

 

After adding node D to the spanning tree, we now have two edges going out of it 
having the same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step 
will again yield edge 2 as the least cost. Hence, we are showing a spanning tree with both 
edges included. 

 

We may find that the output spanning tree of the same graph using two different 
algorithms is same. 
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Time Complexity = O (n2) 
 
5. APPLICATION - SINGLE SOURCE SHORTEST PATH PROBLEM 

For a given source node in the graph, the algorithm finds the shortest path between 
that node and every other. It also used for finding the shortest paths from a single node to a 
single destination node by stopping the algorithm once the shortest path to the destination node 
has been determined. 
 

Algorithm Steps: 
 

 Set all vertices distances = infinity except for the source vertex, set the source 
distance = 0.

 Push the source vertex in a min-priority queue in the form (distance , vertex), as the 
comparison in the min-priority queue will be according to vertices distances.

 Pop the vertex with the minimum distance from the priority queue (at first the popped 
vertex = source).

 Update the distances of the connected vertices to the popped vertex in case of "current 
vertex distance + edge weight < next vertex distance", then push the vertex
with the new distance to the priority queue. 

 If the popped vertex is visited before, just continue without using it.
 Apply the same algorithm again until the priority queue is empty.
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Example: 

 

Algorithm: 

 
Time Complexity = O (n2) 

GREEDY APPROACH DIVIDE AND CONQUER 

1.Many decisions and sequences areguaranteed 
and all the overlapping subinstancesare consid 

ered. 

1.Divide the given problem into many subprobl 
ems.Find the individual solutions andcombine t 
hem to get the solution for themain problem 

2. Follows Bottom-up technique 2. Follows top down technique 

3.Split the input at every possible pointsrather 
than at a particular point 

3.Split the input only at specific points (midpoi 
nt), each problem is independent. 

4. Sub problems are dependent on the main 
Problem 

4. Sub problems are independent on the main 
Problem 

5. Time taken by this approach is not that 
much efficient when compared with DAC. 

5. Time taken by this approach efficient when 
compared with GA. 

6.Space requirement is less when compared 
DAC approach. 

6.Space requirement is very much high when 
compared GA approach. 
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UNIT III 

Dynamic Programming 

The general method, multistage graphs, All pairs-shortest paths, optimal Binary search trees, 0/1 knapsack, 

The traveling salesperson problem. 

……………………………………………………………………………………………………………………………. 

1Q) The general method 

Dynamic programming approach is similar to divide and conquer in breaking down the problem into smaller 

and yet smaller possible sub-problems. But unlike, divide and conquer, these sub-problems are not solved 

independently. Rather, results of these smaller sub-problems are remembered and used for similar or 

overlapping sub-problems. 

Dynamic programming is used where we have problems, which can be divided into similar sub-problems, so 

that their results can be re-used. Mostly, these algorithms are used for optimization. Before solving the in-

hand sub-problem, dynamic algorithm will try to examine the results of the previously solved sub-problems. 

The solutions of sub-problems are combined in order to achieve the best solution. 

So we can say that − 

• The problem should be able to be divided into smaller overlapping sub-problem. 

• An optimum solution can be achieved by using an optimum solution of smaller sub-problems. 

• Dynamic algorithms use Memoization. 

Comparison 

In contrast to greedy algorithms, where local optimization is addressed, dynamic algorithms are motivated 

for an overall optimization of the problem. 

In contrast to divide and conquer algorithms, where solutions are combined to achieve an overall solution, 

dynamic algorithms use the output of a smaller sub-problem and then try to optimize a bigger sub-problem. 

Dynamic algorithms use Memoization to remember the output of already solved sub-problems. 

Example 

The following computer problems can be solved using dynamic programming approach − 

• Fibonacci number series 

• Knapsack problem 

• Tower of Hanoi 

• All pair shortest path by Floyd-Warshall 

• Shortest path by Dijkstra 

• Project scheduling 

Dynamic programming can be used in both top-down and bottom-up manner. And of course, most of the 

times, referring to the previous solution output is cheaper than recomputing in terms of CPU cycles. 
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2Q) The traveling salesperson problem (TSP) 

The travelling salesman problem asks the following question: "Given a list of cities and the distances between 

each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the 

origin city? 

Example: A newspaper agent daily drops the newspaper to the area assigned in such a manner that he has to 

cover all the houses in the respective area with minimum travel cost. Compute the minimum travel cost. 

The area assigned to the agent where he has to drop the newspaper is shown in fig: 

 

 

Solution: The cost- adjacency matrix of graph G is as follows: 

costij = 

 

The tour starts from area H1 and then select the minimum cost area reachable from H1. 
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Mark area H6 because it is the minimum cost area reachable from H1 and then select minimum cost area 

reachable from H6. 

 

Mark area H7 because it is the minimum cost area reachable from H6 and then select minimum cost area 

reachable from H7. 

 

Mark area H8 because it is the minimum cost area reachable from H8. 
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Mark area H5 because it is the minimum cost area reachable from H5. 

 

Mark area H2 because it is the minimum cost area reachable from H2. 

 

Mark area H3 because it is the minimum cost area reachable from H3. 
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Mark area H4 and then select the minimum cost area reachable from H4 it is H1.So, using the greedy strategy, 

we get the following. 

4    3    2    4    3    2   1    6 

H1 → H6 → H7 → H8 → H5 → H2 → H3 → H4 → H1. 

Thus the minimum travel cost = 4 + 3 + 2 + 4 + 3 + 2 + 1 + 6 = 25 

 

Time Complexity 

The recursive equation is  

 

Using the above recurrence relation, we can write a dynamic programming-based solution. There are at most 

O(n*2n) subproblems, and each one takes linear time to solve. The total running time is therefore O(n2*2n). 

The time complexity is much less than O(n!) but still exponential. The space required is also exponential. So 

this approach is also infeasible even for a slightly higher number of vertices. We will soon be discussing 

approximate algorithms for the traveling salesman problem. 

The dynamic programming approach breaks the problem into 2nn subproblems. Each subproblem takes n 

time resulting in a time complexity of O(2nn2).  Here n refers to the number of cities needed to be travelled 

too. 
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3Q) 0/1 knapsack Problem 

The 0/1 knapsack problem means that the items are either completely or no items are filled in a knapsack.  

For example, we have two items having weights 2kg and 3kg, respectively. If we pick the 2kg item then we 

cannot pick 1kg item from the 2kg item (item is not divisible); we have to pick the 2kg item completely. This 

is a 0/1 knapsack problem in which either we pick the item completely or we will pick that item. The 0/1 

knapsack problem is solved by the dynamic programming. 

Example of 0/1 knapsack problem. 

Consider the problem having weights and profits are: 

Weights: {2,3,4,5} 

Profits: {1,2,5,6} 

The weight of the knapsack is 8 kg 

The number of items is 4 

The above problem can be solved by using the following method: 

xi = {1, 0, 0, 1} 

= {0, 0, 0, 1} 

= {0, 1, 0, 1} 

The above are the possible combinations. 1 denotes that the item is completely picked and 0 means that no 

item is picked. Since there are 4 items so possible combinations will be: 

24 = 16; So. There are 16 possible combinations that can be made by using the above problem. Once all the 

combinations are made, we have to select the combination that provides the maximum profit. 

Another approach to solve the problem is dynamic programming approach. In dynamic programming 

approach, the complicated problem is divided into sub-problems, then we find the solution of a sub-problem 

and the solution of the sub-problem will be used to find the solution of a complex problem. 

How this problem can be solved by using the Dynamic programming approach? 

First, 

we create a matrix shown as below: 

 0 1 2 3 4 5 6 7 8 

P W 0         

1 2 1         

2 3 2         

5 4 3         

6 5 4         

 

In the above matrix, columns represent the weight, i.e., 8. The rows represent the profits and weights of 

items. Here we have not taken the weight 8 directly, problem is divided into sub-problems, i.e., 0, 1, 2, 3, 4, 

5, 6, 7, 8. The solution of the sub-problems would be saved in the cells and answer to the problem would 

be stored in the final cell. First, we write the weights in the ascending order and profits according to their 

weights 
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The first row and the first column would be 0 as there is no item for w=0 

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0        

2 3 2 0        

5 4 3 0        

6 5 4 0        

 

Now, the weight of the first object is ‘2’ and it can be filled only when the weight is 2. Fill the respective cell 

with corresponding profit. 

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0        

5 4 3 0        

6 5 4 0        

 

While, we are selecting second object we will also consider first object also . The weight of the second object 

is 3 and it will be filled only bag weight is 3. Fill the corresponding cell with respective profit. Now the total 

weight including first and 2nd objects are 2+3=5 ( profit is 1+2=3). It will be filled when the weight of the 

bag is 5. 

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0 1 2 2 3 3 3 3 

5 4 3 0        

6 5 4 0        

While selecting third object we also consider first two objects also. The weight of 3rd object is 4 and it profit 

is 5.  

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0 1 2 2 3 3 3 3 

5 4 3 0 1 2 5     

6 5 4 0        

 

Now the combinations for filling remaining positions are  

Object1+object3 = 2+4=6(W) = 1+5=6(P) 

Object3+Object2 = 4+3=7(W)=2+5=7(P) 

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0 1 2 2 3 3 3 3 

5 4 3 0 1 2 5 5 6 7 7 

6 5 4 0 1 2 5 6 6 7 8 
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Similarly, we will fill the last row also like previous step. 

 

As we can observe in the above table that 8 is the maximum profit among all the entries.  

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0 1 2 2 3 3 3 3 

5 4 3 0 1 2 5 5 6 7 7 

6 5 4 0 1 2 5 6 6 6 8 

 

➔ We will select the fourth object (x4) ( with profit 6), the reaming profit is 8-6 =2 

Now check weather 2 is there in the 3rd object, as we can see there is no two(x3), look at 2nd row, yes two is 

there(x3) check weather two is there in 2nd row or not, if it is there don’t select it(x3). Move to the 2nd object 

and check for two, if there also check above row for two, if not present include it in the solution. 

 0 1 2 3 4 5 6 7 8 

P W 0 0 0 0 0 0 0 0 0 

1 2 1 0 1 1 1 1 1 1 1 

2 3 2 0 1 2 2 3 3 3 3 

5 4 3 0 1 2 5 5 6 7 7 

6 5 4 0 1 2 5 6 6 6 8 

 

The reaming profit is zero. The object included in the bag are X2 and X4 

X1 X2 X3 X4 

0 1 0 1 

 

Time Complexity of the above approach is O(N*W). 

Space Complexity of the above approach is O(W). 
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4) optimal Binary search trees 

4.1 Explain about Optimal Binary Search Tree with Successful and Unsuccessful search probabilities with 

suitable example 

Answer: 

OBST is a binary search tree which provides the smallest possible search time (or expected search) for a given 

sequence of accesses (or access probabilities). 

The search time can be improved in Optimal Cost Binary Search Tree, placing the most frequently used data 

in the root and closer to the root element, while placing the least frequently used data near leaves and in 

leaves. 
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Example: 

 

For our tiny example, we could find the optimal tree by generating all 14 binary search trees with 4 keys. As 

a general algorithm, this exhaustive-search approach is unrealistic: the total number of binary search trees with 

n keys is equal to the nth Catalan number, 

 

 

Given a set of identifiers {a1,a2,..,an}. Suppose we need to construct a binary search tree and p(i) be 

the probability with which we search for ai then:  

If a binary search tree represents n identifiers, then there will be exactly n internal nodes and n+1 

external nodes. Every node internal node represents a point where a successful search may 

terminate. Every external node represents a point where an unsuccessful search may terminate.  

If a successful search terminates at an internal node at level l, then l comparison is needed. Hence 

the expected cost contribution from the internal node for ai is p(i)*level(ai).  

The identifiers not in the binary search tree can be partitioned into n+1 equivalence classes Ei, 0 ≤ i 
≤ n. If the failure node for Ei is at level l, then only l-1 comparison are needed. 
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Time complexity: The computing time for above algorithm is O(n2). To construct obst from r[i,j] is O(n). So 

total time to construct obst is O(n3).  

Space complexity = O(n2) 
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Successful Search cost of the tree = 1(2) + 4(1) + 2(2) + 1(3) = 13.  

Unsuccessful search cost of the tree = 4(3-1) + 2(3-1) + 4(3-1) + 1(4-1) + 1(4-1) = 26  

So, total cost of the tree = 13+26 =39. 

 

4.2 Explain about Optimal Binary Search Tree with Successful search probabilities with suitable example. 

 

OBST is a binary search tree which provides the smallest possible search time (or expected search) for a given 

sequence of accesses (or access probabilities).  

 

The search time can be improved in Optimal Cost Binary Search Tree, placing the most frequently used data 

in the root and closer to the root element, while placing the least frequently used data near leaves and in 

leaves.  

• Given a set of identifiers {a1,a2,..,an}. Suppose we need to construct a binary search tree and p(i) be the 

probability with which we search for ai then:  

If a successful search terminates at an internal node at level l, then l comparison is needed. Hence the 

expected cost contribution from the internal node for ai is p(i)*level(ai).  

• Therefore, the cost of the optimal binary search tree is:  
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Time Complexity: The computing time for above algorithm is O(n2). To construct obst from r[i,j] is O(n). So 

total time to construct obst is O(n3).  

Space complexity: O(n2) 
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5. All pairs-shortest paths 

All Pairs Shortest Path Algorithm – Introduction 

All Pairs Shortest Path Algorithm is also known as the Floyd-Warshall algorithm. And this is an optimization 

problem that can be solved using dynamic programming. 

Let G = <V, E> be a directed graph, where V is a set of vertices and E is a set of edges with nonnegative 

length. Find the shortest path between each pair of nodes. 

L = Matrix, which gives the length of each edge 

L[i, j] =   0, if i == j // Distance of node from itself is zero 

L[i, j] =  ∞ , if i ≠ j and (i, j) ∉ E 

L[i, j] = w (i, j), if i ≠ j and (i, j) ∈ E  // w(i, j) is the weight of the edge (i, j) 

Principle of optimality: 

If k is the node on the shortest path from i to j, then the path from i to k and k to j, must also be shortest. 

In the following figure, the optimal path from i to j is either p or summation of p1 and p2. 

 

While considering kth vertex as intermediate vertex, there are two possibilities: 

• If k is not part of shortest path from i to j, we keep the distance D[i, j] as it is. 

• If k is part of shortest path from i to j, update distance D[i, j] as 

D[i, k] + D[k, j]. 

Optimal sub structure of the problem is given as : 

Dk [i, j] = min{ Dk – 1 [i, j], Dk – 1 [i, k] + Dk – 1 [k, j] } 

Dk = Distance matrix after kth iteration 

Algorithm for All Pairs Shortest Path 

This approach is also known as the Floyd-warshall shortest path algorithm. The algorithm for all pair shortest 

path (APSP) problem is described below 

Algorithm FLOYD_APSP ( L) 

// L is the matrix of size n  n representing original graph 

// D is the distance matrix 

D ← L 

for k ← 1 to n do 

    for i ← 1 to n do 

        for j ← 1 to n do B. Venkatesu Goud, Assistant Professor



            D[i, j]k ← min ( D[i, j]k-1, D[i, k]k-1 + D[k, j]k-1 ) 

        end 

    end 

end 

return D 

Complexity analysis of All Pairs Shortest Path Algorithm 

It is very simple to derive the complexity of all pairs’ shortest path problem from the above algorithm. It 

uses three nested loops. The innermost loop has only one statement. The complexity of that statement is 

Q(1). 

The running time of the algorithm is computed as: 
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6. multistage graphs 
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1. Explain the methodology of Dynamic programming. Mention the applications of Dynamic programming. 

2. Find the all pairs shortest path solution for the graph represented by below adjacency matrix: 

 

3. Write and explain an algorithm to compute the all pairs shortest path using dynamic programming and 

prove that it is optimal. 

4. What is All – Pair Shortest Path problem (APSP)? Discuss the Floyd’s APSP algorithm and discuss the 

analysis of this algorithm. 

5. Find the shortest path between all pairs of nodes in the following graph. 

 

6. Write a function to compute lengths of shortest paths between all pairs of nodes for the given adjacency 

matrix. 

 

7. Solve the following instance of 0/1 KNAPSACK problem using Dynamic programming n = 3, (W1, W2, 

W3) = (2, 3, 4), (P1, P2, P3) = (1, 2, 5), and m = 6. 

8. Define merging and purging rules in 0/1 knapsack problem and explain with an example. 

9. Describe the Dynamic 0/1 Knapsack problem. Find an optimal solution for the dynamic programming 0/1 

knapsack instance for n=3, m=6, profits are (p1, p2, p3) = (1, 2, 5), weights are (w1, w2, w3)=(2, 3, 4). 

10. What is principles of optimality? Explain how travelling sales person problem uses the dynamic 

programming technique with example? 

11. Construct an optimal travelling sales person tour using Dynamic Programming For the given data 

 

12.Discuss the time and space complexity of Dynamic Programming traveling sales person algorithm 
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BACKTRACKING 

 

General Method: 

 
Backtracking is used to solve problem in which a sequence of objects is chosen from a 
specified set so that the sequence satisfies some criterion. The desired solution is 
expressed as an n-tuple (x1, , xn) where each xi Є S, S being a finite set. 

 

The solution is based on finding one or more vectors that maximize, minimize, or satisfy 

a criterion function P (x1, , xn). Form a solution and check at every step 
if this has any chance of success. If the solution at any point seems not promising, 
ignore it. All solutions requires a set of constraints divided into two categories: explicit 
and implicit constraints. 

 
Definition 1: Explicit constraints are rules that restrict each xi to take on values only 

from a given set. Explicit constraints depend on the particular instance I of 
problem being solved. All tuples that satisfy the explicit constraints define 
a possible solution space for I. 

 

Definition 2: Implicit constraints are rules that determine which of the tuples in the 

solution space of I satisfy the criterion function. Thus, implicit constraints 

describe the way in which the xi’s must relate to each other. 
 

 For 8-queens problem: 
 

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 4, 
5, 6, 7, 8}. 

 
The implicit constraints for this problem are that no two queens can be the same 

(i.e., all queens must be on different columns) and no two queens can be on the 

same diagonal. 

 
Backtracking is a modified depth first search of a tree. Backtracking algorithms 

determine problem solutions by systematically searching the solution space for the 

given problem instance. This search is facilitated by using a tree organization for the 
solution space. 

 

Backtracking is the procedure whereby, after determining that a node can lead to 

nothing but dead end, we go back (backtrack) to the nodes parent and proceed with the 

search on the next child. 
 

A backtracking algorithm need not actually create a tree. Rather, it only needs to 

keep track of the values in the current branch being investigated. This is the way we 
implement backtracking algorithm. We say that the state space tree exists implicitly in 

the algorithm because it is not actually constructed. 
 

State space is the set of paths from root node to other nodes. State space tree is the 

tree organization of the solution space. The state space trees are called static trees. This 
terminology follows from the observation that the tree organizations are independent of 

the problem instance being solved. For some problems it is advantageous to use 

different tree organizations for different problem instance. In this case the tree 
organization is determined dynamically as the solution space is being searched. Tree 

organizations that are problem instance dependent are called dynamic trees. 
 

 

  

 

UNIT IV 
Backtracking: General method, Applications- n-queue problem, Sum of subsets problem, 

Graph coloring, Hamiltonian cycles. 
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Terminology: 
 

Problem state is each node in the depth first search tree. 
 

Solution states are the problem states ‘S’ for which the path from the root node to 
‘S’ defines a tuple in the solution space. 

 

Answer states are those solution states for which the path from root node to s 

defines a tuple that is a member of the set of solutions. 

 
Live node is a node that has been generated but whose children have not yet been 
generated. 

 

E-node is a live node whose children are currently being explored. In other words, an 

E-node is a node currently being expanded. 

 
Dead node is a generated node that is not to be expanded or explored any further. 

All children of a dead node have already been expanded. 
 

Branch and Bound refers to all state space search methods in which all children of 

an E-node are generated before any other live node can become the E-node. 
 

Depth first node generation with bounding functions is called backtracking. State 

generation methods in which the E-node remains the E-node until it is dead, lead to 

branch and bound methods. 

 
N-Queens Problem: 

 
Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 

chessboard so that no two “attack”, that is, no two of them are on the same row, 
column, or diagonal. 

All solutions to the 8-queens problem can be represented as 8-tuples (x1, . . . . , x8), 

where xi is the column of the ith row where the ith queen is placed. 

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i < 
8. Therefore the solution space consists of 88 8-tuples. 

 

The implicit constraints for this problem are that no two xi’s can be the same (i.e., all 
queens must be on different columns) and no two queens can be on the same 

diagonal. 
This realization reduces the size of the solution space from 88 tuples to 8! Tuples. 

 

The promising function must check whether two queens are in the same column or 

diagonal: 
Suppose two queens are placed at positions (i, j) and (k, l) Then: 

 

 Column Conflicts: Two queens conflict if their xi values are identical. 
 

 Diag 45 conflict: Two queens i and j are on the same 450 diagonal if: 
 

i – j = k – l. 
 

This implies, j – l = i – k 

 Diag 135 conflict: 

i + j = k + l. This implies, j – l = k – i 
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* 

* 

* 

* 

Therefore, two queens lie on the same diagonal if and only if: 

 

j - l = i – k 


Where, j be the column of object in row i for the ith queen and l be the column of 
object in row ‘k’ for the kth queen. 

 
To check the diagonal clashes, let us take the following tile configuration: 

 

In this example, we have: 
 

i 1 2 3 4 5 6 7 8 

xi 2 5 1 8 4 7 3 6 

 

Let us consider for the 

case whether the queens on 3rd row and 8th row 

are conflicting or not. In this 
case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore: 

 
j - l = i – k   1 - 6 = 3 – 8 

 5 = 5 

 

In the above example we have, j - l = i – k , so the two queens are attacking. 

This is not a solution. 

 

Example: 
 

Suppose we start with the feasible sequence 7, 5, 3, 1. 
 

 
Step 1: 

Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet 

used. 
 

Step 2: 

If this new sequence is feasible and has length 8 then STOP with a solution. If 
the new sequence is feasible and has length less then 8, repeat Step 1. 

 

Step 3: 

If the sequence is not feasible, then backtrack through the sequence until we 

find the most recent place at which we can exchange a value. Go back to Step 

1. 

* 

* 

* 

* 

* 

* 

* 

* 
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* 

* 

* 

* 

* 

* 

* 

* 

1 2 3 4 5 6 7 8 
Remarks 

7 5 3 1      

7 5 3 1* 2* 
   j - l = 1 – 2 = 1 

i – k  = 4 – 5 = 1 

7 5 3 1 4     

7* 5 3 1 4 2* 
  j - l = 7 – 2 = 5 

i – k  = 1 – 6 = 5 

7 5 3* 1 4 6* 
  j - l = 3 – 6 = 3 

i – k  = 3 – 6 = 3 

7 5 3 1 4 8    

7 5 3 1 4* 8 2* 
 j - l = 4 – 2 = 2 

i – k  = 5 – 7 = 2 

7 5 3 1 4* 8 6* 
 j - l = 4 – 6 = 2 

i – k  = 5 – 7 = 2 

7 5 3 1 4 8   Backtrack 

7 5 3 1 4    Backtrack 

7 5 3 1 6     

7* 5 3 1 6 2* 
  j - l = 1 – 2 = 1 

i – k  = 7 – 6 = 1 

7 5 3 1 6 4    

7 5 3 1 6 4 2   

7 5 3* 1 6 4 2 8* 
j - l = 3 – 8 = 5 

i – k =3 – 8 = 5 

7 5 3 1 6 4 2  Backtrack 

7 5 3 1 6 4   Backtrack 

7 5 3 1 6 8    

7 5 3 1 6 8 2   

7 5 3 1 6 8 2 4 SOLUTION 
 

* indicates conflicting queens. 

 
On a chessboard, the solution will look like: 
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4 – Queens Problem: 

 

Let us see how backtracking works on the 4-queens problem. We start with the root 
node as the only live node. This becomes the E-node. We generate one child. Let us 

assume that the children are generated in ascending order. Let us assume that the 

children are generated in ascending order. Thus node number 2 of figure is generated 
and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2 

becomes the E-node. Node 3 is generated and immediately killed. The next node 
generated is node 8 and the path becomes (1, 3). Node 8 becomes the E-node. 

However, it gets killed as all its children represent board configurations that cannot 

lead to an answer node. We backtrack to node 2 and generate another child, node 13. 
The path is now (1, 4). The board configurations as backtracking proceeds is as 

follows: 

 

(a) (b) (c) (d) 

 
 
 

(e) (f) (g) (h) 

The above figure shows graphically the steps that the backtracking algorithm goes 

through as it tries to find a solution. The dots indicate placements of a queen, which 
were tried and rejected because another queen was attacking. 

 

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on 

column 3. In figure (c) the algorithm tries all four columns and is unable to place the 
next queen on a square. Backtracking now takes place. In figure (d) the   second 

queen is moved to the next possible column, column 4 and the third queen is placed 

on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that 
the algorithm goes through until a solution is found. 
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Complexity Analysis: 

 
1  n  n2  n3  ..............................  nn

 

 
 n

n 1  1 
 

n  1 
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For the instance in which n = 8, the state space tree contains: 

88 1  1 = 19, 173, 961 nodes 
8  1 

 

Sum of Subsets: 
 

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets 
of wi whose sums are ‘m’. 

 

All solutions are k-tuples, 1 ≤ k ≤ n. 

Explicit constraints: 

 xi Є {j | j is an integer and 1 ≤ j ≤n}. 
 

Implicit constraints: 

 

 No two xi can be the same. 
 

 The sum of the corresponding wi’s be m. 
 

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple 
instances of the same subset (for example, (1, 2, 4) and (1, 4, 2) 
represent the same subset). 

 
A better formulation of the problem is where the solution subset is represented by an 
n-tuple (x1,.......... , xn) such that xi Є {0, 1}. 

 

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1). 

For both the above formulations, the solution space is 2n distincttuples. 

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are(11, 
13, 7) and (24, 7). 

The following figure shows a possible tree organization for two possible formulations 

of the solution space for the case n = 4. 

 
A p o s s ib le s o lut io n s p ac e org a n is at io n f or t h e 

s u m of t h e s u b s et s pro ble m. 

 
The tree corresponds to the variable tuple size formulation. The edges are labeled 
such that an edge from a level i node to a level i+1 node represents a value for xi. At 

each node, the solution space is partitioned into sub - solution spaces. All paths from 
the root node to any node in the tree define the solution space, since any such path 

x 1 =1 1 

x 1 =3 

x 1 =4 
x 1 =2 

2 3 4 5 

x 2 =2 
x 2 =3 

7 

x 2 =4 
x 2 =3

 
x 2 =4 

x 2 =4 

6 8 9 10 

x 3 =3 

12 

x 4 =4 

16 

x 3 =4 

13 14 

S 

x 3 =4 x 3 =4 

15 

11 

S 
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corresponds to a subset satisfying the explicit constraints. 
 

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2, 

3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next 

sub-tree defines all subsets containing w2 but not w1, and so on. 
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Graph Coloring (for planar graphs): 

 

Let G be a graph and m be a given positive integer. We want to discover whether the 

nodes of G can be colored in such a way that no two adjacent nodes have the same 
color, yet only m colors are used. This is termed the m-colorabiltiy decision problem. 

The m-colorability optimization problem asks for the smallest integer m for which the 

graph G can be colored. 
 

Given any map, if the regions are to be colored in such a way that no two adjacent 

regions have the same color, only four colors are needed. 
 

For many years it was known that five colors were sufficient to color any map, but no 

map that required more than four colors had ever been found. After several hundred 
years, this problem was solved by a group of mathematicians with the help of a 

computer. They showed that in fact four colors are sufficient for planar graphs. 

 
The function m-coloring will begin by first assigning the graph to its adjacency matrix, 
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m 
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of 
node i. 

 

A recursive backtracking algorithm for graph coloring is carried out by invoking the 
statement mcoloring(1); 

 
Algorithm mcoloring (k) 
// This algorithm was formed using the recursive backtracking schema. The graph is 
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of 
// 1, 2, ......... , m to the vertices of the graph such that adjacent vertices areassigned 
// distinct integers are printed. k is the index of the next vertex to color. 
{ 

repeat 
{ // Generate all legal assignments for x[k]. 

NextValue (k); // Assign to x [k] a legal color. 

If (x [k] = 0) then return; // No new color possible 
If (k = n) then // at most m colors have been 

// used to color the n vertices. 
write (x [1: n]); 

else mcoloring (k+1); 

} until (false); 
} 

 

Algorithm NextValue (k) 
// x [1] , ........ x [k-1] have been assigned integer values in the range [1, m] such that 
// adjacent vertices have distinct integers. A value for x [k] is determined in the range 
// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness 

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0. 
{ 

repeat 

{ 
 

x [k]: = (x [k] +1) mod (m+1) // Next highest color. 

If (x [k] = 0) then return; // All colors have been used 
for j := 1 to n do 
{ // check if this color is distinct from adjacent colors 

if ((G [k, j]  0) and (x [k] = x [j])) 
// If (k, j) is and edge and if adj. vertices have the same color. 
then break; 
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1 2 3 4 1 2 3 

8 7 6 5 5 4 

Graph G1 Graph G2 

} 
if (j = n+1) then return; // New color found 

} until (false); // Otherwise try to find another color. 
} 

 

Example: 

 
Color the graph given below with minimum number of colors by 
backtracking using state space tree 

 
 

 

 
Hamiltonian Cycles: 

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle 
(suggested by William Hamilton) is a round-trip path along n edges of G 
that visits every vertex once and returns to its starting position. In other 

vertices of G are visited in the order v1, v2, . . . . . , vn+1, then the edges 

(vi, vi+1) are in E, 1 < i < n, and the vi are distinct expect for v1 and vn+1, 
which are equal. The graph G1 contains the Hamiltonian cycle 1, 2, 8, 7, 6, 
5, 4, 3, 1. The graph G2 contains no Hamiltonian cycle. 

 

Two graphs to illustrate Hamiltonian cycle 

 
 

The backtracking solution vector (x1, . . . . . xn) is defined so that xi 

represents the ith visited vertex of the proposed cycle. If k = 1, then x1 can 
be any of the n vertices. To avoid printing the same cycle n times, we 
require that x1 = 1. If 1 < k < n, then xk   can be any vertex v that is 
distinct from x1, x2, . . . , xk–1 and v is connected by an edge to kx-1. The 
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3 
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Branch and Bound 
 
 

General method: 

Branch and Bound is another method to systematically search a solution space. Just 

like backtracking, we will use bounding functions to avoid generating subtrees that 
do not contain an answer node. However branch and Bound differs from backtracking 

in two important manners: 

 
1. It has a branching function, which can be a depth first search, breadth first 

UNIT V: 

Branch and Bound: General method, applications - Travelling sales person 
problem,0/1 knapsack problem- LC Branch and Bound solution, FIFO Branch 
and Bound solution. 

NP-Hard and NP-Complete problems: Basic concepts, non deterministic 
algorithms, NP - Hard and NP Complete classes, Cook’s theorem. 
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search or based on bounding function. 

 

2. It has a bounding function, which goes far beyond the feasibility test as a 
mean to prune efficiently the search tree. 

 
Branch and Bound refers to all state space search methods in which all children of 
the E-node are generated before any other live node becomes the E-node 

 

Branch and Bound is the generalization of both graph search strategies, BFS and D- 
search. 

 
 A BFS like state space search is called as FIFO (First in first out) search 

as the list of live nodes in a first in first out list (or queue). 
 

 A D search like state space search is called as LIFO (Last in first out) 
search as the list of live nodes in a last in first out (or stack). 

 

Definition 1: Live node is a node that has been generated but whose children have 

not yet been generated. 

Definition 2: E-node is a live node whose children are currently being explored. In 
other words, an E-node is a node currently being expanded. 

Definition 3: Dead node is a generated node that is not to be expanded or explored 

any further. All children of a dead node have already been expanded. 
Definition 4: Branch-an-bound refers to all state space search methods in which all 

children of an E-node are generated before any other live node can 

become the E-node. 
Definition 5: The adjective "heuristic", means" related to improving problem solving 

performance". As a noun it is also used in regard to "any method or trick 

used to improve the efficiency of a problem solving problem". But 
imperfect methods are not necessarily heuristic or vice versa. "A heuristic 

(heuristic rule, heuristic method) is a rule of thumb, strategy, trick 
simplification or any other kind of device which drastically limits search 

for solutions in large problem spaces. Heuristics do not guarantee optimal 

solutions, they do not guarantee any solution at all. A useful heuristic 
offers solutions which are good enough most of thetime. 
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Least Cost (LC) search: 

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in 

rigid and blind. The selection rule for the next E-node does not give any   preference 
to a node that has a very good chance of getting the search to an answer node 

quickly. 

The search for an answer node can be speeded by using an “intelligent” ranking 

function c( ) for live nodes. The next E-node is selected on the basis of this ranking 

function. The node x is assigned a rank using: 

c( x ) = f(h(x)) + g( x ) 

where, c( x ) is the cost of x. 

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing 
function. 

 

g ( x ) is an estimate of the additional effort needed to reach an answer node 

from x. 

A search strategy that uses a cost function c( x ) = f(h(x) + g( x ) to select the next 

E-node would always choose for its next E-node a live node with least 

LC–search (Least Cost search) 

c(.) is called a 

 

BFS and D-search are special cases of LC-search. If g( x ) = 0 and f(h(x)) = level of 
node x, then an LC search generates nodes by levels. This is eventually the same as 

a BFS. If f(h(x)) = 0 and 

essentially a D-search. 

g( x ) > g( y ) whenever y is a child of x, then the search is 

 

An LC-search coupled with bounding functions is called an LC-branch and bound 

search 

We associate a cost c(x) with each node x in the state space tree. It is not possible to 

easily compute the function c(x). So we compute a estimate c( x ) of c(x). 

 

Control Abstraction for LC-Search: 
 

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in 

t, then c(x) is the minimum cost of any answer node in the subtree with root x. Thus, 

c(t) is the cost of a minimum-cost answer node in t. 

 
A heuristic c(.) is used to estimate c(). This heuristic should be easy to compute and 
generally has the property that if x is either an answer node or a leaf node, then 

c(x) = c( x ) . 

 
LC-search uses c to find an answer node. The algorithm uses two functions Least() and 

Add() to delete and add a live node from or to the list of live nodes, respectively. 
 

Least() finds a live node with least c(). This node is deleted from the list of live nodes 
and returned. 
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Add(x) adds the new live node x to the list of live nodes. The list of live nodes be 
implemented as a min-heap. 

 

Algorithm LCSearch outputs the path from the answer node it finds to the root   node 

t. This is easy to do if with each node x that becomes live, we associate a field parent 

which gives the parent of node x. When the answer node g is found, the path from g 

to t can be determined by following a sequence of parent values starting from the 
current E-node (which is the parent of g) and ending at node t. 

 
Listnode = record 
{ 

Listnode * next, *parent; float cost; 

} 
 

Algorithm LCSearch(t) 

{ //Search t for an answer node 
if *t is an answer node then output *t and return; 
E := t; //E-node. 
initialize the list of live nodes to be empty; 
repeat 
{ 

for each child x of E do 
{ 

if x is an answer node then output the path from x to t and return; 
Add (x); //x is a new live node. 
(x  parent) := E; // pointer for path to root 

} 

if there are no more live nodes then 
{ 

write (“No answer node”); 
return; 

} 
E := Least(); 

} until (false); 

} 
 

The root node is the first, E-node. During the execution of LC search, this list 

contains all live nodes except the E-node. Initially this list should be empty. 

Examine all the children of the E-node, if one of the children is an answer node, then 
the algorithm outputs the path from x to t and terminates. If the child of E is not an 

answer node, then it becomes a live node. It is added to the list of live nodes and its 

parent field set to E. When all the children of E have been generated, E becomes a 
dead node. This happens only if none of E’s children is an answer node. Continue the 

search further until no live nodes found. Otherwise, Least(), by definition, correctly 

chooses the next E-node and the search continues from here. 

 

LC search terminates only when either an answer node is found or the entire state 

space tree has been generated and searched. 

 

Bounding: 
 

A branch and bound method searches a state space tree using any search 

mechanism in which all the children of the E-node are generated before another node 
becomes the E-node. We assume that each answer node x has a cost c(x) associated 

with it and that a minimum-cost answer node is to be found. Three common search 

strategies are FIFO, LIFO, and LC. The three search methods differ only in the 
selection rule used to obtain the next E-node. 
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A good bounding helps to prune efficiently the tree, leading to a faster exploration of 

the solution space. 

 
A cost function c(.) such that c( x ) < c(x) is used to provide lower bounds on 

solutions obtainable from any node x. If upper is an upper bound on the cost of a 

minimum-cost solution, then all live nodes x with c(x) > c( x ) > upper. The starting 

value for upper can be obtained by some heuristic or can be set to  . 

As long as the initial value for upper is not less than the cost of a minimum-cost 
answer node, the above rules to kill live nodes will not result in the killing of a live 

node that can reach a minimum-cost answer node. Each time a new answer node is 

found, the value of upper can be updated. 

 
Branch-and-bound algorithms are used for optimization problems where, we deal 

directly only with minimization problems. A maximization problem is easily converted 

to a minimization problem by changing the sign of the objective function. 

 
To formulate the search for an optimal solution for a least-cost answer node in a 
state space tree, it is necessary to define the cost function c(.), such that c(x) is 
minimum for all nodes representing an optimal solution. The easiest way to do this is 
to use the objective function itself for c(.). 

 
 For nodes representing feasible solutions, c(x) is the value of the objective 

function for that feasible solution. 

 

 For nodes representing infeasible solutions, c(x) = . 

 

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost 
node in the subtree with root x. 

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will use an 

estimate c( x ) such that c( x ) < c(x) for all x. 

 

 

 

FIFO Branch and Bound: 

 
A FIFO branch-and-bound algorithm for the job sequencing problem can begin with 
upper =  as an upper bound on the cost of a minimum-cost answer node. 

 

Starting with node 1 as the E-node and using the variable tuple size formulation of 

Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) = 19, u(3) = 14, u(4) = 
18, and u(5) = 21. 

The variable upper is updated to 14 when node 3 is generated. Since c (4) and 

c(5) are greater than upper, nodes 4 and 5 get killed. Only nodes 2 and 3 remain 

alive. 

Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are generated. 

Then u(6) = 9 and so upper is updated to 9. The cost 

gets killed. Node 8 is infeasible and so it is killed. 

c(7) = 10 > upper and node 7 

Next, node 3 becomes the E-node. Nodes 9 and 10 are now generated. Then u(9) = 

8 and so upper becomes 8. The cost c(10) = 11 > upper, and this nodeis killed. 
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The next E-node is node 6. Both its children are infeasible. Node 9’s only child is also 
infeasible. The minimum-cost answer node is node 9. It has a cost of 8. 

When implementing a FIFO branch-and-bound algorithm, it is not economical to kill 

live nodes with c(x) > upper each time upper is updated. This is so because live 

nodes are in the queue in the order in which they were generated. Hence, nodes with 

c(x) > upper are distributed in some random way in the queue. Instead, live nodes 

with c(x) > upper can be killed when they are about to become E-nodes. 
 

The FIFO-based branch-and-bound algorithm with an appropriate 

called FIFOBB. 

c(.) and u(.) is 

 

 

LC Branch and Bound: 
 

An LC Branch-and-Bound search of the tree of Figure 8.4 will begin with upper = 
and node 1 as the first E-node. 

 

When node 1 is expanded, nodes 2, 3, 4 and 5 are generated in that order. 

As in the case of FIFOBB, upper is updated to 14 when node 3 is generated and 

nodes 4 and 5 are killed as c(4) > upper and c(5) > upper. 

Node 2 is the next E-node as c(2) = 0 and c(3) = 5. Nodes 6, 7 and 8 are generated 

and upper is updated to 9 when node 6 is generated. So, node 7 is killed as c(7) = 10 

> upper. Node 8 is infeasible and so killed. The only live nodes now are nodes 3 and 
6. 

 
Node 6 is the next E-node as c(6) = 0 < c(3) . Both its children are infeasible. 

 

Node 3 becomes the next E-node. When node 9 is generated, upper is updated to 8 

as u(9) = 8. So, node 10 with c(10) = 11 is killed on generation. 

Node 9 becomes the next E-node. Its only child is infeasible. No live nodes remain. 
The search terminates with node 9 representing the minimum-cost answernode. 

 

2 3 

The path = 1  3  9 = 5 + 3 = 8 

 

Traveling Sale Person Problem: 

By using dynamic programming algorithm we can solve the problem with time 

complexity of O(n22n) for worst case. This can be solved by branch and bound 

technique using efficient bounding function. The time complexity of traveling sale 
person problem using LC branch and bound is O(n22n) which shows that there is no 

change or reduction of complexity than previous method. 

 
We start at a particular node and visit all nodes exactly once and come back to initial 
node with minimum cost. 

 

Let G = (V, E) is a connected graph. Let C(i, J) be the cost of edge <i, j>. cij =  if 
<i, j> E and let |V| = n, the number of vertices. Every tour starts at vertex 1 and 

ends at the same vertex. So, the solution space is given by S = {1, , 1 |  is a 
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permutation of (2, 3, . . . , n)} and |S| = (n – 1)!. The size of S can be reduced by 
restricting S so that (1, i1, i2, . . . . in-1, 1)  S iff <ij, ij+1>  E, 0 < j < n - 1 and 
i0 = in =1. 

 

Procedure for solving traveling sale person problem: 

 
1. Reduce the given cost matrix. A matrix is reduced if every row and column is 

reduced. A row (column) is said to be reduced if it contain at least one zero 

and all-remaining entries are non-negative. This can be done as follows: 
 

a) Row reduction: Take the minimum element from first row, subtract it 

from all elements of first row, next take minimum element from the 

second row and subtract it from second row. Similarly apply the same 
procedure for all rows. 

b) Find the sum of elements, which were subtracted from rows. 

 
c) Apply column reductions for the matrix obtained after row reduction. 

 

Column reduction: Take the minimum element from first column, 

subtract it from all elements of first column, next take minimum 

element from the second column and subtract it from second column. 
Similarly apply the same procedure for all columns. 

 

d) Find the sum of elements, which were subtracted from columns. 

 

e) Obtain the cumulative sum of row wise reduction and column wise 
reduction. 

 

Cumulative reduced sum = Row wise reduction sum + column wise 
reduction sum. 

 

Associate the cumulative reduced sum to the starting state as lower 
bound and  as upper bound. 

 

2. Calculate the reduced cost matrix for every node R. Let A is the reduced cost 

matrix for node R. Let S be a child of R such that the tree edge (R, S) 

corresponds to including edge <i, j> in the tour. If S is not a leaf node, then 
the reduced cost matrix for S may be obtained as follows: 

 

a) Change all entries in row i and column j of A to . 

 
b) Set A (j, 1) to . 

 
c) Reduce all rows and columns in the resulting matrix except for rows 

and column containing only . Let r is the total amount subtracted to 

reduce the matrix. 

c) Find cS  cR  A i, j  r, where ‘r’ is the total   amount 

subtracted to reduce the matrix, cR indicates the lower bound of the 

ith node in (i, j) path and c S  is called the cost function. 

3. Repeat step 2 until all nodes are visited. 

B. Venkatesu Goud, Assistant Professor



93  







0 

Example: 
 

Find the LC branch and bound solution for the traveling sale person problem whose 
cost matrix is as follows: 

 

 
 

The cost matrix is 

    20 

15 
 3 5 

19 6 

16 4 

 

30 10 11

16 4 2 
 2 4 

18  3 



7 16  




Step 1: Find the reduced cost matrix. 

Apply row reduction method: 

Deduct 10 (which is the minimum) from all values in the 1st row. 
Deduct 2 (which is the minimum) from all values in the 2nd row. 

Deduct 2 (which is the minimum) from all values in the 3rd row. 

Deduct 3 (which is the minimum) from all values in the 4th row. 
Deduct 4 (which is the minimum) from all values in the 5th row. 

 

1 



The resulting row wise reduced cost matrix 

 

 
 

Row wise reduction sum = 10 + 2 + 2 + 3 + 4 = 21 

0 


0 






Now apply column reduction for the above matrix: 
 

Deduct 1 (which is the minimum) from all values in the 1st column. 

Deduct 3 (which is the minimum) from all values in the 3rd column. 

 10 17 0 1 

12 
  11 2 

The resulting column wise reduced cost matrix (A) =  0 3  0 

15 3 12 

11 0 0 12 

2 


0 




Column wise reduction sum = 1 + 0 + 3 + 0 + 0 = 4 
 

Cumulative reduced sum = row wise reduction + column wise reduction sum. 

= 21 + 4 = 25. 

 
This is the cost of a root i.e., node 1, because this is the initially reduced costmatrix. 

The lower bound for node is 25 and upper bound is . 



0 

 10 20 0 

13 
  14 2 

 1 3  0 

16 3 15 
12 0 3 12 
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Starting from node 1, we can next visit 2, 3, 4 and 5 vertices. So, consider to explore 
the paths (1, 2), (1, 3), (1, 4) and (1, 5). 

 

The tree organization up to this point is as follows: 

Variable ‘i’ indicates the next node to visit. 
 

Step 2: 

 

Consider the path (1, 2): 

 
Change all entries of row 1 and column 2 of A to  and also set A(2, 1) to . 

 

 


 0 


15 

11 

  
 11 2 

  0 

 12 
 0 12 

 



2 



 

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 

 

 

 
Then the resultant matrix is 

 


 0 


15 

11 

  
 11 2 

  0 

 12 
 0 12 

 



2 


0 

 


Row reduction sum = 0 + 0 + 0 + 0 = 0 

Column reduction sum = 0 + 0 + 0 + 0 = 0 

Cumulative reduction (r) = 0 + 0 = 0 

Therefore, as cS   cR  A 1, 2  r 

c S  = 25 + 10 + 0 = 35 

 
Consider the path (1, 3): 

 

Change all entries of row 1 and column 3 of A to  and also set A(3, 1) to . 

 0 

0 

 0 

1 

U = 
L = 25 

i = 2 i = 4 i = 5 
i = 3 

2 3 4 5 
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      

12  


2 0 




 3 


15 3 

11 0 

 0 

 
 12 

2 



 

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 



Then the resultant matrix is 

4 

0 

 
0 


2 


0 

 

Row reduction sum = 0 

Column reduction sum = 11 
Cumulative reduction (r) = 0 + 11 = 11 

Therefore, as cS   cR  A 1, 3  r 

c S  = 25 + 17 + 11 = 53 

 
Consider the path (1, 4): 

 
Change all entries of row 1 and column 4 of A to  and also set A(4, 1) to . 



12 

 0 

 

11 

 

  
 11 
3  
3 12 
0 0 

 



2 


0 

 

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 

 
 

Then the resultant matrix is 

 
 

 

Row reduction sum = 0 
Column reduction sum = 0 



12 

 0 

 
11 

 

  
 11 
3  
3 12 
0 0 

 



2 


0 

 

Cumulative reduction (r) = 0 + 0 = 0 

0 

0 

0 

  
1  2 

3  0 

3  
0  12 
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Therefore, as cS   cR  A 1, 4  r 

c S  = 25 + 0 + 0 = 25 

 
Consider the path (1, 5): 

 

Change all entries of row 1 and column 5 of A to  and also set A(5, 1) to . 

 

12 

 0 3 


15 3 

  0 

 

 
11 2 

 0 

12 
0 12 

 



 



 

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 

 

 
Then the resultant matrix is 

 

 

 

Row reduction sum = 5 
Column reduction sum = 0 

 

10 

 0 3 


12 0 

 0 

 

 
9 0 

 0 

9 
0 12 

 



 



 

Cumulative reduction (r) = 5 + 0 = 0 

 

Therefore, as cS   cR  A 1, 5  r 

c S  = 25 + 1 + 5 = 31 

The tree organization up to this point is as follows: 

 

 
 

 
35 

 
 

 

 
 

The cost of the paths between (1, 2) = 35, (1, 3) = 53, (1, 4) = 25 and (1, 5) = 31. 

The cost of the path between (1, 4) is minimum. Hence the matrix obtained for path 

(1, 4) is considered as reduced cost matrix. 

1 

U = 
L = 25 

i = 2 i = 4 i = 5 
i = 3 

2 53   3 25   4 31   5 

i = 2 i = 5 
i = 3 

6 7 8 








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

12 


A = 0 

 
11 

  
 11 
3  
3 12 
0 0 

 



2 



 

The new possible paths are (4, 2), (4, 3) and (4, 5). 

 

Consider the path (4, 2): 

 
Change all entries of row 4 and column 2 of A to  and also set A(2, 1) to . 

     
  11  0 


 
 0 

    
11 

  2 


   

0   

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

     
  11  0 


 

Then the resultant matrix is 

 
 

 

Row reduction sum = 0 

Column reduction sum = 0 

  0 

    
11 

  2 


   

0   

Cumulative reduction (r) = 0 + 0 = 0 

 

Therefore, as cS   cR  A 4, 2  r 

c S  = 25 + 3 + 0 = 28 

 
Consider the path (4, 3): 

 
Change all entries of row 4 and column 3 of A to  and also set A(3, 1) to . 

   

12   

  3  

   
11 0  

 



2 



 

0 

0 

0 


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

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

     
 

1   0 


 
Then the resultant matrix is 

 

 

 

Row reduction sum = 2 
Column reduction sum = 11 

   1   0 

     

 0 0    

Cumulative reduction (r) = 2 + 11 = 13 

 

Therefore, as cS  cR  A 4, 3  r 

c S  = 25 + 12 + 13 = 50 

 
Consider the path (4, 5): 

 

Change all entries of row 4 and column 5 of A to  and also set A(5, 1) to . 

 

12 

 0 3 

  
  0 

 

 
11 

 
 
0 

 



 



 

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 

 

 
Then the resultant matrix is 

  
 

1  0 
 
 0 3 



  
  




  


    






Row reduction sum = 11 
Column reduction sum = 0 

 0 0   

Cumulative reduction (r) = 11+0 = 11 

 

Therefore, as cS  cR  A 4, 5  r 

c S  = 25 + 0 + 11 = 36 




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The tree organization up to this point is as follows: 

 

 

 

 
35 

 
 

 

 
 

 
 

 
 

The cost of the paths between (4, 2) = 28, (4, 3) = 50 and (4, 5) = 36. The cost of 

the path between (4, 2) is minimum. Hence the matrix obtained for path (4, 2) is 
considered as reduced cost matrix. 

     
  11  0 


 

A =  0 

    

11 

  2 


   

0   

The new possible paths are (2, 3) and (2, 5). 

 

Consider the path (2, 3): 

 
Change all entries of row 2 and column 3 of A to  and also set A(3, 1) to . 

 
 

 


   
   




  2 


  
11  

  

 


Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

1 

U = 
L = 25 

i = 2 i = 4 i = 5 
i = 3 

2 53   3 25   4 31   5 

i = 2 i = 5 
i = 3 

28 6 7 8   
36

 

50 
i = 3 

9 

i = 5 
 

10 
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

 
 

 
Then the resultant matrix is 

  
  

  


  
  




 0 




    



Row reduction sum = 2 

Column reduction sum = 11 

0    

Cumulative reduction (r) = 2 + 11 = 13 

 

Therefore, as cS  cR  A 2, 3  r 

c S  = 28 + 11 + 13 = 52 

 
Consider the path (2, 5): 

 
Change all entries of row 2 and column 5 of A to  and also set A(5, 1) to . 

 
  

 0 

   
   




   
 

        


  0   

Apply row and column reduction for the rows and columns whose rows and 
columns are not completely . 

 

 
Then the resultant matrix is 

 
  

 0 

   
   




   
   

     




Row reduction sum = 0 

Column reduction sum = 0 

  0   

Cumulative reduction (r) = 0 + 0 = 0 

 

Therefore, as cS  cR  A 2, 5  r 

c S  = 28 + 0 + 0 = 28 

The tree organization up to this point is as follows: 

B. Venkatesu Goud, Assistant Professor
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UNIT-5 

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem. 
NP Hand Graph Problems: Clique Decision Problem (CDP), Chromatic 
Number Decision Problem (CNDP), Traveling Salesperson Decision Problem 
(TSP) 
NP Hand Scheduling Problems. Scheduling Identical Processors, Job Shop 
Scheduling 

 

NP-Hard and NP-Complete Problems: Basic Concepts 

 1. P vs NP: The Starting Point 

- Class P: Problems that can be solved by a deterministic algorithm in polynomial time. In 

simpler terms, these are problems where the solution can be found efficiently. 

  - Example: Sorting numbers using bubble sort, finding the shortest path in a graph (Dijkstra’s 

algorithm). 

- Class NP: Stands for nondeterministic polynomial time. These are problems where the 

solution might be hard to find, but easy to verify in polynomial time.  

  - Example: Sudoku—given a solution, it’s easy to verify its correctness, but finding that 

solution might take a lot of time. 

 2. NP-Hard Problems 

- Definition: A problem is NP-Hard if every problem in NP can be reduced to it in polynomial 

time. 

- Key Point: NP-Hard problems don’t have to be in NP, meaning their solution might not be 

verifiable in polynomial time. They are at least as hard as the hardest NP problems. 

  - Solving an NP-Hard problem would mean you could solve all NP problems. 

- Examples of NP-Hard Problems: 

  - Travelling Salesman Problem (TSP): Given a list of cities and the distances between each 

pair, find the shortest possible route that visits each city once and returns to the origin city. 

  - Knapsack Problem (decision version): Given a set of items, each with a weight and value, 

determine if there is a subset of the items whose total weight does not exceed a given limit and 

whose total value is at least a specified amount. 
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 3. NP-Complete Problems 

- Definition: A problem is NP-Complete if: 

  1. It is in NP (the solution can be verified in polynomial time). 

  2. It is NP-Hard, meaning any NP problem can be reduced to it in polynomial time. 

   

- Key Point: If an NP-Complete problem can be solved in polynomial time, then all NP 

problems can be solved in polynomial time, i.e., P = NP. 

   

- Examples of NP-Complete Problems: 

  - Subset Sum Problem: Given a set of integers, is there a non-empty subset whose sum is 

zero? 

  - 3-SAT Problem: A logical formula in conjunctive normal form with three literals per clause. 

Determine if there exists an assignment of variables such that the formula evaluates to true. 

 

 4. Cook’s Theorem 

- Cook’s Theorem (1971) is a foundational result in computational complexity theory. It was 

the first to show that a problem, specifically Boolean Satisfiability Problem (SAT), is NP-

Complete. 

   

- Key Points of the Theorem: 

  - It shows that SAT (the problem of determining whether a given Boolean formula can be 

satisfied by some assignment of true/false values to its variables) is NP-Complete. 

  - This was the first proof that there are problems for which solving one would mean you could 

solve all NP problems. 

   

- Implication: Cook's Theorem established the concept of NP-Complete problems and laid the 

foundation for showing that other problems (like 3-SAT, Knapsack, etc.) are NP-Complete. 

Essentially, it provided a universal method for reducing any NP problem to another NP-

Complete problem in polynomial time. 

 

 5. Reductions and Problem Transformation 

- To prove a problem is NP-Complete, we use the concept of polynomial-time reduction. This 

means we transform one NP problem into another in polynomial time. If we can reduce a known 
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NP-Complete problem (like 3-SAT) to another problem in NP, then the new problem is NP-

Complete. 

 

 6. Summary of Relationships 

- NP-Hard: Problems as hard as NP problems but not necessarily in NP (no efficient solution 

or even verification). 

- NP-Complete: Problems in NP (verifiable in polynomial time) and as hard as the hardest NP 

problems (any NP problem can be transformed into an NP-Complete problem). 

   

- If you solve an NP-Complete problem in polynomial time, then you solve all NP problems in 

polynomial time, and it would imply that P = NP—a major unsolved question in computer 

science. 

 

 

 Visual Summary 

 

- P ⊆ NP   

- NP-Complete ⊆ NP ⊆ NP-Hard   

- NP-Hard: Not necessarily in NP but as hard as NP problems.   

- NP-Complete: Problems that are both in NP and NP-Hard. 

 

Cook’s Theorem:  

 

Cook's Theorem is one of the most important results in computer science, and it establishes the 

concept of NP-Completeness. In simple terms, it tells us that Boolean Satisfiability Problem 

(SAT) is the first known NP-Complete problem. 

 

Let’s break it down step by step. 

 

 1. What is SAT? 

The Boolean Satisfiability Problem (SAT) asks whether a logical expression (a collection of 

AND, OR, and NOT operations) can be made true by assigning values (true/false) to its 

variables. 
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For example: 

- (x1 OR NOT x2) AND (x2 OR x3) 

 

The question is: can you assign true/false to the variables (x1), (x2), and (x3) so that the whole 

expression evaluates to true? 

 

In this case: 

- If we set ( x1 = {true} ), ( x2 = {false} ), and ( x3 = {true} ), the expression becomes true. 

 

 2. What does NP mean? 

A problem is in NP if, given a solution, you can verify whether it is correct in polynomial time 

(efficient time). 

 

For SAT: 

- If someone gives you a set of variable assignments (like  x1 = {true} , x2 = {false} ), and ( 

x3 = {true} )), you can easily check whether the expression becomes true or not in polynomial 

time. So, SAT is in NP. 

 3. What is NP-Complete? 

- A problem is NP-Complete if: 

  1. It is in NP. 

  2. Every other NP problem can be transformed (or reduced) into it in polynomial time. 

 This means that solving one NP-Complete problem efficiently (in polynomial time) would 

allow you to solve all NP problems efficiently. 

 4. What Does Cook’s Theorem Say? 

Cook’s Theorem says that SAT is NP-Complete. It means: 

1. SAT is in NP (as we discussed). 

2. Every other NP problem can be reduced to SAT in polynomial time. 

 5. Why Is This Important? 

This was the first time someone (Stephen Cook) showed that there exists a problem (SAT) that 

is as hard as any problem in NP. If we can solve SAT efficiently, we can solve every NP problem 

efficiently, which means P = NP (a huge question in computer science). 
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 6. Example to Understand Cook’s Theorem 

Let’s simplify it with an analogy: 

Imagine you have a magic box that can solve SAT problems instantly. Now, Cook's Theorem 

tells us that for any other NP problem (like Sudoku, Knapsack, etc.), we can transform that 

problem into a SAT problem and use this magic box to solve it. 

For example: 

- Knapsack Problem: You need to find the best combination of items to put in a knapsack 

without exceeding the weight limit. 

- Using Cook’s Theorem, you can take the Knapsack Problem, convert it into a SAT problem 

(a Boolean expression), and then use the SAT solver (magic box) to find a solution. 

This means if we had an efficient algorithm to solve SAT, we could solve any NP problem 

using it. 

NP Hard Graph Problems:  
Clique Decision Problem (CDP) 

The Clique Decision Problem (CDP) is one of the well-known NP-Hard graph problems 

 1. What is a Clique? 

In a graph, a clique is a subset of vertices where every pair of vertices is connected by an edge. 

In simpler terms, it’s a group of nodes where each node is directly connected to every other 

node in the group. 

 2. What is the Clique Decision Problem (CDP)? 

The Clique Decision Problem asks: 

- Given a graph and a number ( k ), is there a clique of size ( k ) or larger in the graph? 

This means you need to find whether there’s a group of ( k ) nodes that are all connected to 

each other. If such a group exists, the answer is "yes," otherwise, it's "no." 

 3. Why is CDP NP-Hard? 

- Verification: If someone gives you a subset of vertices and says it's a clique, you can easily 

check if every pair of vertices in the subset is connected (this takes polynomial time). So, it is 

in NP. 

- Hardness: Finding this clique is difficult because, in the worst case, you might have to check 

many combinations of nodes to see if they form a clique. 
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Since finding a clique of size ( k ) can’t be done efficiently for large graphs (we don't have a 

known polynomial-time solution), it is classified as an NP-Hard problem. If we could solve 

CDP efficiently, we could solve all NP problems efficiently. 

 4. Example of the Clique Decision Problem (CDP) 

Let’s walk through a simple example to understand the problem. 

 Example Graph: 

Consider the following graph with 6 vertices (labeled (A, B, C, D, E, F )): 

   A ---- B ---- C 

    |    / |    / 

    |   /  |   / 

    |  /   |  / 

    D ---- E 

         / 

        / 

       F 

Problem Statement: 

We are asked: Is there a clique of size 3 or larger in this graph? 

 

1. Step 1: Check Possible Subsets of Vertices 

   We need to check if there are any groups of 3 or more vertices where every vertex is 

connected to every other vertex in the group.  

2. Step 2: Examine Different Groups 

   - Let’s check the subset ( {A, B, D} ): 

     - Are all nodes connected?  

       - A is connected to B. 

       - A is connected to D. 

       - B is connected to D. 

     - Yes, all pairs are connected! So, ( {A, B, D} ) is a clique of size 3. 

      - You can also check other groups like ( {B, C, E} ) and find out if they form cliques (in 

this case, they do not). 

3. Step 3: Answer 

   Since we found a clique of size 3 (the set ( {A, B, D} )), the answer to the Clique Decision 

Problem for ( k = 3 ) is yes. 
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 5. Key Points About the Clique Decision Problem (CDP) 

- Input: A graph ( G ) and a number ( k ). 

- Output: “Yes” if there exists a clique of size ( k ) or more in the graph, otherwise “No.” 

- NP-Hardness: Even though it’s easy to verify a solution if someone gives us the subset, 

finding that clique of size ( k ) is computationally hard, especially as the size of the graph 

grows. That’s why CDP is NP-Hard. 

 6. Why Is This Problem Important? 

The Clique Decision Problem is important in areas like: 

• Social Networks: Finding tightly connected groups of people (cliques). 

• Bioinformatics: Identifying closely related genes or proteins. 

• Network Analysis: Identifying dense sub-networks. 

Since it’s NP-Hard, no efficient algorithm is known to solve CDP for large graphs, which means 

finding cliques is challenging for large datasets. 

Chromatic Number Decision Problem (CNDP) 

The Chromatic Number Decision Problem (CNDP) is a classic NP-Hard problem in graph 

theory. Let’s break it down in very simple terms and use a clear example to understand it. 

 1. What is Graph Coloring? 

Graph coloring is the process of assigning colors to the vertices of a graph such that: 

- No two adjacent vertices (vertices connected by an edge) have the same color. 

 2. What is the Chromatic Number? 

The chromatic number of a graph is the minimum number of colors needed to color the graph 

properly (with no two adjacent vertices sharing the same color). 

 3. What is the Chromatic Number Decision Problem (CNDP)? 

The Chromatic Number Decision Problem asks a simple question: 

- Given a graph and a number ( k ), can you color the graph with ( k ) or fewer colors? 

In other words, is it possible to color the graph using ( k ) colors so that no two connected 

vertices have the same color? 

 4. Example of CNDP 

Consider the following graph with 5 vertices: 

     A ----- B 

           /  

          /    
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         C ----- D 

                

                

             E 

 Problem Statement: 

Let’s say we are asked: Can you color this graph using 3 colors or fewer? 

1. Step 1: Try to Color the Graph with 3 Colors 

   We need to assign colors to the vertices such that: 

   - No two connected vertices (like A and B) get the same color. 

2. Step 2: Color the Graph 

   - Let’s assign Color 1 to vertex A. 

   - Vertex B is adjacent to A, so it can’t have Color 1. We give it Color 2. 

   - Vertex C is adjacent to both A and B, so it needs a different color. We give it Color 3. 

   - Vertex D is adjacent to B and C, so we can give it Color 1 (since it’s not adjacent to A, 

which already has Color 1). 

   - Vertex E is adjacent to C, so it can’t have Color 3. We can assign it Color 2 (since it’s not 

adjacent to B, which has Color 2). 

3. Step 3: Check if the Graph is Properly Colored 

   After coloring the graph, here’s what we have: 

   - A = Color 1 

   - B = Color 2 

   - C = Color 3 

   - D = Color 1 

   - E = Color 2 

   No two connected vertices have the same color, so this is a valid coloring with 3 colors. 

4. Step 4: Answer 

   Since we successfully colored the graph with 3 colors, the answer to the CNDP for ( k = 3 ) 

is yes. 

 5. Why is CNDP NP-Hard? 

The Chromatic Number Decision Problem is NP-Hard because: 

- Verification: If someone gives you a colored graph, it’s easy to check if the coloring is correct 

(just check if adjacent vertices have different colors). This can be done in polynomial time. 
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- Hardness: However, finding the chromatic number (the minimum number of colors) is 

difficult because you have to try different combinations of color assignments, especially for 

large graphs. 

Since we don’t know of any efficient way to solve CNDP for large graphs, it is classified as 

NP-Hard. 

 6. Key Points About the Chromatic Number Decision Problem (CNDP) 

- Input: A graph and a number ( k ). 

- Output: "Yes" if the graph can be colored with ( k ) colors or fewer, and "No" if it cannot be. 

- NP-Hardness: While verifying a coloring is easy, finding the chromatic number is 

computationally hard, which is why CNDP is NP-Hard. 

 7. Why Is This Problem Important? 

Graph coloring problems like CNDP are important in areas like: 

- Scheduling: Assigning time slots to tasks or exams without conflicts (e.g., no two tasks 

sharing the same resource at the same time). 

- Map Coloring: Ensuring that no two neighboring regions on a map share the same color. 

- Resource Allocation: Assigning resources such that no two conflicting tasks use the same 

resource. 

Since it’s NP-Hard, CNDP is difficult to solve efficiently for large graphs, which means finding 

the chromatic number is a computational challenge in many practical applications. 

Traveling Salesperson Decision Problem (TSP) – 

The Traveling Salesperson Problem (TSP) is a famous NP-Hard problem in computer science. 

It asks a very straightforward question about finding the shortest possible route for a 

salesperson who needs to visit several cities and return to the starting point. 

 1. What is the TSP Problem? 

In the Traveling Salesperson Problem (TSP), you're given a list of cities and the distances 

between every pair of cities. The goal is to find the shortest route that: 

- Starts at one city, 

- Visits each city exactly once, 

- And returns to the starting city. 

 2. What is the Traveling Salesperson Decision Problem (TSP Decision Problem)? 

The TSP Decision Problem asks a yes-or-no question: 

- Given a set of cities, a set of distances between them, and a number ( k ), is there a route that 

visits all the cities exactly once and has a total distance of ( k ) or less? 
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In simple terms, it asks whether you can find a tour of the cities where the total distance does 

not exceed a specified number ( k ). 

 3. Why is the TSP Decision Problem NP-Hard? 

The TSP Decision Problem is NP-Hard because: 

- Verification: If someone gives you a solution (a route), it’s easy to check whether the total 

distance of that route is less than or equal to ( k ). You just add up the distances. This can be 

done in polynomial time. 

- Hardness: Finding the actual shortest route (or even determining if a route exists within 

distance ( k )) is very difficult. For large sets of cities, the number of possible routes grows 

exponentially, and there’s no known efficient algorithm to solve the problem in polynomial 

time. 

Because finding the solution is computationally hard, TSP is classified as NP-Hard. 

 4. Example of TSP Decision Problem 

Let’s go through a simple example to understand how the TSP Decision Problem works. 

 Example:  

Imagine a salesperson needs to visit 4 cities: A, B, C, and D, and the distances between them 

are as follows: 

- Distance from A to B: 10 km 

- Distance from A to C: 15 km 

- Distance from A to D: 20 km 

- Distance from B to C: 35 km 

- Distance from B to D: 25 km 

- Distance from C to D: 30 km 

 Problem Statement: 

The question is: Is there a route that visits all the cities (A, B, C, and D) exactly once and 

returns to the starting point, with a total distance of 80 km or less? 

1. Step 1: Consider Different Routes 

   To solve this problem, you would have to check different possible routes and see if any of 

them have a total distance of 80 km or less.  

   Some possible routes are: 

   - Route 1: A → B → C → D → A 

   - Route 2: A → B → D → C → A 

   - Route 3: A → C → B → D → A 
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2. Step 2: Calculate the Total Distance 

   - For Route 1 (A → B → C → D → A): 

     - A → B = 10 km 

     - B → C = 35 km 

     - C → D = 30 km 

     - D → A = 20 km 

     - Total = 10 + 35 + 30 + 20 = 95 km 

   - For Route 2 (A → B → D → C → A): 

     - A → B = 10 km 

     - B → D = 25 km 

     - D → C = 30 km 

     - C → A = 15 km 

     - Total = 10 + 25 + 30 + 15 = 80 km 

   In this case, Route 2 has a total distance of exactly 80 km. 

3. Step 3: Answer 

   Since we found a route (Route 2) that visits all the cities and returns to the starting point with 

a total distance of 80 km, the answer to the TSP Decision Problem for ( k = 80 ) is yes. 

 

 5. Key Points About the Traveling Salesperson Decision Problem (TSP Decision Problem) 

- Input: A set of cities, the distances between them, and a number ( k ). 

- Output: "Yes" if there’s a route that visits all cities exactly once and returns to the starting 

point with a total distance of ( k ) or less, otherwise "No." 

- NP-Hardness: While it’s easy to verify a solution (checking if a route’s total distance is within 

the limit), finding the route itself is hard because the number of possible routes grows 

exponentially with the number of cities. 

 6. Why Is TSP Important? 

The Traveling Salesperson Problem is important in many real-world applications, including: 

- Logistics and Delivery: Finding the most efficient routes for delivering goods. 

- Manufacturing: Optimizing the order of operations for machines in a factory. 

- Computer Networks: Efficiently routing data between nodes in a network. 

 

Since it’s NP-Hard, finding efficient solutions for large-scale TSP instances is challenging, and 

this is why it’s studied extensively in optimization and computer science. 
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NP Hard Scheduling Problems:  

Scheduling Identical Processors 

The Scheduling Problem for Identical Processors is a classic example of an NP-Hard problem 

in the area of task scheduling. Let's break it down step by step in a simple and understandable 

way with an example. 

1. What is the Scheduling Problem for Identical Processors? 

In this problem, we have: 

A set of tasks (or jobs), each with a specific processing time. 

A set of identical processors (machines) that can run the tasks. 

The goal is to assign the tasks to the processors such that: 

The total processing time (or load) is balanced as evenly as possible across all processors. 

We want to minimize the makespan, which is the time it takes for the longest-running processor 

to finish all its assigned tasks. 

2. Why is This Scheduling Problem NP-Hard? 

Verification: If someone gives you a schedule, it’s easy to check how long each processor takes 

to finish and verify the total processing time. 

Hardness: Finding the best (optimal) schedule where the makespan is minimized is hard 

because there are many possible ways to assign the tasks, especially when there are many tasks 

and processors. 

There’s no known efficient (polynomial-time) algorithm to find the optimal solution, which 

makes this problem NP-Hard. 

 

3. Example: Scheduling Tasks on Identical Processors 

Let’s go through a simple example with 4 tasks and 2 processors to make this clear. 

 

Tasks and Their Processing Times: 

Task 1: 5 units of time 

Task 2: 2 units of time 

Task 3: 3 units of time 

Task 4: 7 units of time 

Problem Statement: 
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You have 2 identical processors and need to schedule these tasks on them. How should you 

assign the tasks to the processors to minimize the makespan? 

 

Step 1: List the Tasks and Processors 

 

You have 2 processors: Processor 1 and Processor 2. 

You have 4 tasks: Task 1 (5 units), Task 2 (2 units), Task 3 (3 units), and Task 4 (7 units). 

Step 2: Assign Tasks to Processors Let’s try assigning tasks to processors in different ways and 

calculate the makespan for each: 

 

Option 1: Assign Task 1 and Task 4 to Processor 1, and Task 2 and Task 3 to Processor 2. 

 

Processor 1: Task 1 (5 units) + Task 4 (7 units) = 12 units of time 

Processor 2: Task 2 (2 units) + Task 3 (3 units) = 5 units of time 

Makespan: The longest processing time is 12 units (Processor 1). 

Option 2: Assign Task 1 and Task 2 to Processor 1, and Task 3 and Task 4 to Processor 2. 

 

Processor 1: Task 1 (5 units) + Task 2 (2 units) = 7 units of time 

Processor 2: Task 3 (3 units) + Task 4 (7 units) = 10 units of time 

Makespan: The longest processing time is 10 units (Processor 2). 

Option 3: Assign Task 2 and Task 4 to Processor 1, and Task 1 and Task 3 to Processor 2. 

 

Processor 1: Task 2 (2 units) + Task 4 (7 units) = 9 units of time 

Processor 2: Task 1 (5 units) + Task 3 (3 units) = 8 units of time 

Makespan: The longest processing time is 9 units (Processor 1). 

Step 3: Find the Optimal Schedule Among the three options we tried: 

 

Option 3 has the smallest makespan (9 units of time). 

So, the best way to assign tasks to the processors in this case is: 

 

Processor 1: Task 2 (2 units) and Task 4 (7 units) 

Processor 2: Task 1 (5 units) and Task 3 (3 units) 

Step 4: Answer The minimum makespan for this task set on two processors is 9 units of time. 
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4. Why Is This Problem NP-Hard? 

The reason this scheduling problem is NP-Hard is that there are many ways to assign the tasks 

to the processors. As the number of tasks increases, the number of possible assignments grows 

exponentially, making it very difficult to find the optimal solution in a reasonable amount of 

time for large instances. 

 

Even for small examples, we had to try different assignments and check the makespan for each 

one. In larger problems with more tasks and processors, this process becomes infeasible 

without a good heuristic or approximation algorithm. 

 

5. Key Points About Scheduling Identical Processors 

Goal: Assign tasks to identical processors so that the processing time is balanced, and the 

makespan (longest processing time) is minimized. 

NP-Hardness: Finding the optimal schedule is computationally difficult, even though verifying 

a given schedule is easy. 

Makespan: The time it takes for the slowest processor to finish all its tasks. 

6. Why Is This Problem Important? 

The Scheduling Problem for Identical Processors is important in many real-world scenarios, 

such as: 

Manufacturing: Scheduling jobs on machines to minimize production time. 

Computer Systems: Allocating tasks to processors in a multi-core system to optimize 

performance. 

Logistics: Distributing workloads to workers or vehicles in a balanced way to minimize total 

operation time. 

Because it’s NP-Hard, there are no easy solutions for large instances, and this is why 

approximation algorithms and heuristics are often used in practice to solve it. 

Job Shop Scheduling 

Job Shop Scheduling (JSS) is a classic NP-Hard problem in operations research and computer 

science. It involves scheduling jobs with multiple tasks on different machines in such a way 

that the total time to complete all jobs (called the makespan) is minimized. 

 1. What is Job Shop Scheduling? 

In the Job Shop Scheduling Problem, you are given: 
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- Jobs: Each job is made up of a sequence of tasks. 

- Machines: Each task must be processed on a specific machine, and different jobs may need 

the same machine. 

- Goal: The aim is to schedule the tasks so that the jobs are completed as quickly as possible 

while minimizing the makespan (the total time to finish all jobs). 

The challenge is to decide the order in which to process the tasks on each machine, ensuring 

no machine works on more than one task at a time, and each job follows its required sequence 

of tasks. 

 2. Why is Job Shop Scheduling NP-Hard? 

Job Shop Scheduling is NP-Hard because: 

- Verification: Given a schedule, it’s easy to check the total makespan (how long all jobs take 

to finish) and verify if the schedule is valid. 

- Hardness: Finding the optimal schedule is very difficult. As the number of jobs and machines 

increases, the number of possible schedules grows exponentially, making it computationally 

expensive to find the best solution. 

Because of this complexity, Job Shop Scheduling is classified as an NP-Hard problem. 

 3. Example of Job Shop Scheduling 

Let’s go through a simple example to better understand how Job Shop Scheduling works. 

 Problem Setup: 

• 2 Jobs: Job 1 and Job 2. 

• 3 Machines: Machine A, Machine B, and Machine C. 

• Each job has tasks that must be done in a specific order on certain machines. 

 Task Details: 

Job 1:  

• Task 1.1: Process on Machine A for 2 units of time. 

• Task 1.2: Process on Machine B for 3 units of time. 

• Task 1.3: Process on Machine C for 2 units of time. 

   Job 2:  

• Task 2.1: Process on Machine B for 4 units of time. 

• Task 2.2: Process on Machine A for 1 unit of time. 

• Task 2.3: Process on Machine C for 3 units of time. 

 Problem Statement: 
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We need to schedule the tasks on the machines in such a way that all tasks are completed as 

soon as possible, minimizing the makespan. 

 4. Steps to Solve the Example 

Step 1: Visualize the Tasks 

We can visualize the task dependencies as follows: 

 Job 1: 

   Task 1.1 must be completed before Task 1.2, and Task 1.2 must be completed before Task 

1.3. 

   Job 2: 

   Task 2.1 must be completed before Task 2.2, and Task 2.2 must be completed before Task 

2.3. 

Step 2: Assign Tasks to Machines 

Let’s start assigning tasks to the machines, keeping in mind that no two tasks can be processed 

on the same machine at the same time. 

Machine A: 

   First, we can process Task 1.1 (Job 1) for 2 units of time. 

   After that, we can process Task 2.2 (Job 2) for 1 unit of time. 

   Machine B: 

We can process Task 2.1 (Job 2) for 4 units of time first. 

   Then, process Task 1.2 (Job 1) for 3 units of time. 

Machine C: 

 Once Task 1.2 is finished, we can process Task 1.3 (Job 1) for 2 units of time. 

After Task 2.2 is completed, we can process Task 2.3 (Job 2) for 3 units of time. 

Step 3: Calculate the Makespan 

Let’s look at the schedule on each machine: 

Machine A: 

 Task 1.1 from time 0 to 2. 

 Task 2.2 from time 2 to 3. 

Machine B: 

Task 2.1 from time 0 to 4. 

 Task 1.2 from time 4 to 7. 

Machine C: 

 Task 1.3 from time 7 to 9. 
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Task 2.3 from time 3 to 6. 

The makespan is determined by the longest time any machine is active. In this case, Machine 

C finishes last at time 9 units, so the total makespan is 9 units of time. 

 5. Challenges and NP-Hardness 

In this example, we manually assigned the tasks to machines and calculated the makespan, but 

for larger problems with more jobs and machines, the number of possible schedules becomes 

huge. Finding the best (optimal) schedule is computationally expensive, which is why Job Shop 

Scheduling is NP-Hard. 

There’s no known efficient (polynomial-time) algorithm to solve the problem optimally for 

large instances, which is why it’s classified as NP-Hard. 

 6. Key Points about Job Shop Scheduling 

• Multiple Jobs and Tasks: Each job consists of several tasks that must be processed on 

specific machines in a specific order. 

• Machines: The same machine can’t process more than one task at a time. 

• Goal: Minimize the makespan, or the total time to complete all jobs. 

• NP-Hardness: It’s easy to verify a solution, but finding the optimal schedule is very 

difficult due to the exponential number of possibilities as the number of jobs and 

machines grows. 

 7. Why Is Job Shop Scheduling Important? 

The Job Shop Scheduling Problem is important in real-world applications such as: 

• Manufacturing: Where multiple jobs need to be processed on different machines, and 

scheduling them efficiently reduces production time and costs. 

• Project Management: Where tasks need to be allocated to workers or resources in an 

efficient manner. 

• Computer Systems: Scheduling processes or tasks in distributed computing 

environments. 

 

 


