
M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

UNIT I-PART-II

Syllabus: Basic Structure Of Computers: Functional unit, Basic Operational concepts, Bus
structures, System Software, Performance, The history of computer development.

Computer: Computer is a fast electronic calculating machine that accepts digitized input information,

processing it according to a list of internally stored instructions and produces the resulting output information.
The list of instructions is called as a Computer program and the internal storage is called as Computer memory.

Types of Languages: Just as humans use language to communicate, and different regions have different
languages, computers also have their own languages that are specific to them. Different kinds of languages
have been developed to perform different types of work on the computer. Basically, languages can be divided
into two categories according to how the computer understands them.

1. Low-Level Languages: A language that corresponds directly to a specific machine. Low-level computer

languages are either machine codes or are very close them. A computer cannot understand instructions

given to it in high-level languages or in English. It can only understand and execute instructions given in

the form of machine language i.e. binary. There are two types of low-level languages:

1.Machine Language: a language that is directly interpreted into the hardware. Machine language is the
lowest and most elementary level of programming language and was the first type of
programming language to be developed. Machine language is basically the only language that a
computer can understand and it is usually written in hex. It is represented inside the computer by
a string of binary digits (bits) 0 and 1. The symbol 0 stands for the absence of an electric pulse
and the 1 stands for the presence of an electric pulse. Since a computer is capable of recognizing
electric signals, it understands machine language.

Advantages:

 Machine language makes fast and efficient use of the computer.

 It requires no translator to translate the code. It is directly understood by the computer.

Disadvantages:

 All operation codes have to be remembered
 All memory addresses have to be remembered.
 It is hard to amend or find errors in a program written in the machine language.

2.Assembly Language: A slightly more user-friendly language that directly corresponds to machine
language. Assembly language was developed to overcome some of the many inconveniences of
machine language. This is another low-level but very important language in which operation
codes and operands are given in the form of alphanumeric symbols instead of 0’s and l’s.

These alphanumeric symbols are known as mnemonic codes and can combine in a maximum
of five-letter combinations e.g. ADD for addition, SUB for subtraction, START, LABEL etc. Because
of this feature, assembly language is also known as ‘Symbolic Programming Language.'

Advantages:

 Assembly language is easier to understand and use as compared to machine language.

 It is easy to locate and correct errors.

 It is easily modified.

M.JOSHNA

Disadvantages:

 Like machine language, it is also machine dependent/specific.

 Since it is machine dependent, the programmer also needs to understand the hardware.

2. High-Level Languages: Any language that is independent of the machine. High-level computer languages
use formats that are similar to English. The purpose of developing high-level languages was to enable
people to write programs easily, in their own native language environment (English).

High-level languages are basically symbolic languages that use English words and/or mathematical
symbols rather than mnemonic codes. Each instruction in the high-level language is translated into many
machine language instructions that the computer can understand.

Advantages:

1.High-level languages are user-friendly
2.They are easier to learn.
3.They are easier to maintain

4. A program written in a high-level language can be translated into many machine languages and can run
on any computer

5.programs developed in a high-level language can be run on any computer text

Disadvantages:

6. A high-level language has to be translated into the machine language by a translator, which takes up
time

Computer Types: Basing capacity, technology used and performance of computer, they are classified

into two types
→ According to computational ability
→ According to generation

According to computational ability (Based on Size, cost and performance):

There are mainly 4 types of computers. These include:
1.Micro computers

2.Mainframe computers

3.Mini computers

4.Super computer
1. Micro computers: -

Micro computers are the most common type of computers in existence today, whether at work in
school or on the desk at home. These computers include:

1. Desktop computer

2. Personal digital assistants (more commonly known as PDA's)

3. Palmtop computers

4. Laptop and notebook computers

Micro computers were the smallest, least powerful and least expensive of the computers of the time.
The first Micro computers could only perform one task at a time, while bigger computers ran multi-tasking
operating systems, and served multiple users. Referred to as a personal computer or "desktop computer", Micro
computers are generally meant to service one user (person) at a time. By the late 1990s, all personal computers
run a multi-tasking operating system, but are still intended for a single user.
2. Mainframe Computers :-

The term Mainframe computer was created to distinguish the traditional, large, institutional computer
intended to service multiple users from the smaller, single user machines. These computers are capable of
handling and processing very large amounts of data easily and quickly. A mainframe speed is so fast that it

M.JOSHNA

is measured in millions of tasks per milliseconds (MTM). While other computers became smaller,
Mainframe computers stayed large to maintain the ever growing memory capacity and speed.

Mainframe computers are used in large institutions such as government, banks and large corporations.
These institutions were early adopters of computer use, long before personal computers were available to
individuals. "Mainframe" often refers to computers compatible with the computer architectures established in
the 1960's. Thus, the origin of the architecture also affects the classification, not just processing power.
3. Mini Computers / Workstation :-

Mini computers, or Workstations, were computers that are one step above the micro or personal
computers and a step below mainframe computers. They are intended to serve one user, but contain special
hardware enhancements not found on a personal computer. They run operating systems that are normally
associated with mainframe computers, usually one of the variants of the UNIX operating system.

4. Super Computer:-

A Super computer is a specialized variation of the mainframe. Where a mainframe is intended to
perform many tasks, a Super computer tends to focus on performing a single program of intense numerical
calculations. Weather forecasting systems, Automobile design systems, extreme graphic generator for
example, are usually based on super computers.

According to Generations of Computers:

The history of computer development is often referred to in reference to the different generations of
computing devices. Each generation of computer is characterized by a major technological development that
fundamentally changed the way computers operate, resulting in increasingly smaller, cheaper, more powerful
and more efficient and reliable devices.
1. First Generation (1940-1956): Vacuum Tubes:

The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were

often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a
great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.

First generation computers relied on machine language, the lowest-level programming language
understood by computers, to perform operations, and they could only solve one problem at a time. Input was
based on punched cards and paper tape, and output was displayed on printouts.

Example: The UNIVAC and ENIAC computers are examples of first-generation computing devices.
The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in
1951.
 b) Second Generation (1956-1963): Transistors:-

Transistors replaced vacuum tubes and ushered in the second generation of computers. The
transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The

M.JOSHNA

transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more
energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated
a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube.
Second-generation computers still relied on punched cards for input and printouts for output.

Second-generation computers moved from cryptic binary machine language to symbolic, or assembly,
languages, which allowed programmers to specify instructions in words. High-level programming languages
were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the
first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic
core technology.
The first computers of this generation were developed for the atomic energy industry.
1. Third Generation (1964-1971): Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers.
Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased
the speed and efficiency of computers.

Instead of punched cards and printouts, users interacted with third generation computers through
keyboards and monitors and interfaced with an operating system, which allowed the device to run many
different applications at one time with a central program that monitored the memory. Computers for the first
time became accessible to a mass audience because they were smaller and cheaper than their predecessors.
2. Fourth Generation (1971-Present): Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits

were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the
palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer— from
the central processing unit and memory to input/output controls—on a single chip.

In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the

Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as
more and more everyday products began to use microprocessors.

As these small computers became more powerful, they could be linked together to form networks,
which eventually led to the development of the Internet. Fourth generation computers also saw the development
of GUIs, the mouse and handheld devices.
3. Fifth Generation (Present and Beyond): Artificial Intelligence)

Fifth generation computing devices, based on artificial intelligence, are still in development, though there
are some applications, such as voice recognition, that are being used today. The use of parallel processing and
superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and
nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation
computing is to develop devices that respond to natural language input and are capable of learning and self-
organization.

M.JOSHNA

Functional Unit (Or) Structure of a Computer System :

Every Digital computer systems consist of five distinct functional units. These units are as follows:

1. Input unit

2. Memory unit

3. Arithmetic logic unit

4. Output unit

5. Control Unit

These units are interconnected by electrical cables to permit communication between them. A
computer must receive both data and program statements to function properly and be able to solve problems.
The method of feeding data and programs to a computer is accomplished by an input device. Computer input

devices read data from a source, such as magnetic disks, and translate that data into electronic impulses

for transfer into the CPU. Example for input devices are a keyboard, a mouse, or a scanner. Central

Processing Unit The brain of a computer system is the central processing unit (CPU). The CPU processes

data transferred to it from one of the various input devices. It then transfers either an intermediate or

final result of the CPU to one or more output devices. A central control section and work areas are

required to perform calculations or manipulate data. The CPU is the computing center of the system. It

consists of a control section, an arithmetic-logic section, and an internal storage section (main memory).

Each section within the CPU serves a specific function and has a particular relationship with the other sections
within the CPU.

Input Unit: An input device is usually a keyboard or mouse, the input device is the conduit through which

data and instructions enter a computer.
1. The most common input device is the keyboard, which accepts letters, numbers, and commands

from the user.
2. Another important type of input device is the mouse, which lets you select options from on- screen

menus. You use a mouse by moving it across a flat surface and pressing its buttons. A variety of other
input devices work with personal computers, too:

3. The trackball and touchpad are variations of the mouse and enable you to draw or point on the

screen.

The joystick is a swiveling lever mounted on a stationary base that is well suited for playing video

games

Memory unit: memory is used to store programs and data. There are two classes of storage, called

primary and secondary.

Primary storage: It is a fast memory that operates at electronic speeds. Programs must stay in memory
while they are being executed.The memory contains a large number of semiconductor storage cells, each

capable of storing one bit of information. To provide easy access to any word in the memory, a distinct
address is associated with each word location. Addresses are numbers that identify successive locations. A
given word is accessed by specifying its address and issuing a control command.

M.JOSHNA

The number of bits in each word is referred as the word length of the computer. Typical word

lengths range from 16 to 64 bits.

Programs must reside in the memory during execution. Instructions and data can be written into the
memory or read out under the control of the processor.

1. Memory in which any location can be reached in a short and fixed amount of time after

specifying its address is called random access memory (RAM).
2. The time required to access one word is called the memory access time.

3. The small, fast, Ram units are called caches. They are tightly coupled with the processor and are

often contained on the same integrated circuit chip to achieve high performance.
4. The largest and slowest units are referred to as the main memory.

 Secondary storage: Secondary storage is used when large amounts of data and many programs have to

be stored, particularly for information that is accessed infrequently.
Examples for secondary storage devices are Magnetic Disks, Tape and Optical disks.

Arithmetic-Logic Unit:- The arithmetic-logic section performs arithmetic operations, such as addition,

subtraction, multiplication, and division.

Arithmetic-Logic Unit usually called the ALU is a digital circuit that performs two types of

operations— arithmetic and logical.

Arithmetic operations are the fundamental mathematical operations consisting of addition,
subtraction, multiplication and division.

Logical operations consist of comparisons. That is, two pieces of data are compared to see whether
one is equal to, less than, or greater than the other. The ALU is a fundamental building block of the central
processing unit of a computer.

Out put Unit:- An output device is any piece of computer hardware equipment used to communicate the

results of data processing carried out by an information processing system (such as a computer) to the outside
world.

In computing, input/output, or I/O, refers to the communication between an information processing
system (such as a computer), and the outside world. Inputs are the signals or data sent to the system, and outputs
are the signals or data sent by the system to the outside.
Examples of output devices:

1. Speaker
2. Headphones
3. Screen
4. Printer

Control Unit: All activities inside the machine are directed and controlled by the control unit. Control Unit

is the part of the computer's central processing unit (CPU), which directs the operation of the processor.

A control unit works by receiving input information to which it converts into control signals, which are then

sent to the central processor

The Basic Operational Concepts of a Computer:-

1. The program contains of a list of instructions is stored in the memory.
2. Individual instructions are brought from the memory into the processor, which

execute the specified operations.

3. Data to be used as operands are also stored in the memory.

Add R1,R2,R3

In This instruction add is the operation perform on operands R1,R2 and place the result stored in R3.

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer

M.JOSHNA

The top level view of the computer is as follows:

1. Instruction register (IR):

1.The instruction register holds the instruction that is currently being executed.
2.Its output is available to the control circuits, which generate the timing signals that control the various

processing elements involved in executing the instruction.
2. Program counter (PC):

1.The program counter is another specialized register.
2.It keeps track of the execution of a program.
3.It contains the memory address of the next instruction to be fetched and executed.

4.During the execution of an instruction, the contents of the PC are updated to correspond to the
address of the next instruction to be executed

3. Memory address register (MAR) & Memory data register(MDR):-

1.These two registers facilitate communication with the memory.
2.The MAR holds the address of the location to be accessed.
3.The MDR contains the data to be written into or read out of the addressed location.

4. Operating steps for Program execution (or) Instruction Cycle :

1.Execution of the program (stored in memory) starts when the PC is set to point to the first
instruction of the program.

2.The contents of the PC are transferred to the MAR and a Read control signal is sent to the memory.

3.The addressed word is read out of the memory and loaded into the MDR. Next, the contents of

the MDR are transferred to the IR. At this point, the instruction is ready to be decoded and

executed.

4.If the instruction involves an operation to be performed by the ALU, it is necessary to obtain the

required operands.

M.JOSHNA

5.If an operand resides in memory (it could also be in a general purpose register in the processor), it has
to be fetched by sending its address to the MAR and initiating a Read cycle.

6.When the operand has been read from the memory into the MDR, it is transferred from the MDR to
ALU.

7.After one or more operands are fetched in this way, the ALU can perform the desired operation.
8.If the result of the operation is to be stored in the memory, then the result is ent to the MDR.
9.The address of the location where the result is to be stored is sent to the MAR, and a write cycle is

initiated.
10. At some point during the execution of the current instruction, the contents of the PC are

incremented so that the PC pints to the next instruction to be executed.
11. Thus, as soon as the execution of the current instruction is completed, a new instruction fetch may

be started.
12. In addition to transferring data between the memory and the processor, the computer accepts data

from input devices and sends data to output devices. Thus, some machine instructions with the
ability to handle I/O transfers are provided.

Bus Structures:-
1. BUS:A group of lines(wires) that serves as a connecting path for several devices of a computer is

called a bus.

The following are different types of busses:
1. Address Bus 2. Data Bus 3. Control Bus

The Data bus Carries(transfer) data from one component (source) to other component

(destination) connected to it. The data bus consists of 8, 16, 32 or more parallel signal lines. The data bus
lines are bi-directional. This means that CPU can read data on these lines from memory or from a port, as well
as send data out on these lines to a memory location.

The Address bus is the set of lines that carry(transfer) address information about where in memory the
data is to be transferred to or from. It is an unidirectional bus. The address bus consists of 16, 20, 24 or more

parallel signal lines. On these lines CPU sends out the address of the memory location.
The Control Bus carries the Control and timing information. Including these three the following are

various types of busses. They are
System Bus: A System Bus is usually a combination of address bus, data bus, and control bus

respectively.
Internal Bus: The bus that operates only with the internal circuitary of the CPU.
External Bus: Buses which connects computer to external devices is nothing but external bus.

Back Plane: A Back Plane bus includes a row pf connectors into which system modules can be plugged in.
I/O Bus: The bus used by I/O devices to communicate with the CPU is usually reffered as I/O bus.
Synchronous Bus: While using Synchronous bus, data transmission between source and destination units
takes place in a given timeslot which is already known to these units.
Asynchronous Bus: In this case the data transmission is governed by a special concept. That is handshaking
control signals.

The Bus interconnection Scheme:-

M.JOSHNA

Single bus structure :-

1. A group of lines(wires) that serves as a connecting path for several devices of a computer is called a

bus.

2. In addition to the lines that carry the data, the bus must have lines for address and control

purposes.
3. The simplest way to interconnect functional units is to use a single bus, as shown below.

4. All units are connected to this bus. Because the bus can be used for only one transfer at a time, only

two units can actively use the bus at any given time.
5. Bus control lines are used to arbitrate multiple requests for use of the bus.

ADVANTAGE:

Its is low cost and its flexibility for attaching peripheral devices

DISADVANTAGE:

low performance because at time only one transfer

Traditional / Multiple bus Structure: There is a local bus that connects the processor to cache memory and
that may support one or more local devices. There is also a cache memory controller that connects this cache
not only to this local bus but also to the system bus.

On the system, the bus is attached to the main memory modules. In this way, I/O transfers to and
from the main memory across the system bus do not interfere with the processor’s activity. An expansion bus
interface buffers data transfers between the system bus and the I/O controllers on the expansion bus.
Some typical I/O devices that might be attached to the expansion bus include: Network cards (LAN), SCSI
(Small Computer System Interface), Modem, Serial Com etc..

Advantages: better performance

Disadvantage: increased cost.

INPUT OUTPUT MEMORY PROCESSOR

M.JOSHNA

Software:-

A total computer system includes both software and Hardware .
1.Hardware consists of physical components and all associated equipment.

2. Software refers to the collection programs that are written for the computer and writing a program
for a computer consists of specifying, directly or indirectly a sequence of machine instructions.

3. The computer software consists of the instructions and data that the computer manipulates to perform
various data processing tasks.

Types:
1. Application software,
2. System software

System software: System software is used to run application software.

System software is a collection of programs that are executed as needed to perform functions such as

1. Receiving and interpreting user commands.

2. Entering and editing application programs and sorting them as files in secondary

storage devices.(Editor)

3. Managing the storage and retrieval of files in secondary storage devices.

4. Running standard application programs such as word processors, spread sheets, or

games, with data supplied by the user.

5. Controlling I/O units to receive input information and produce output results.

6. Translating programs from high level language to low level language.(Assemblers)

7. Linking and running user-written application program with existing standard

library routines, such as numerical computation packages.(Linker)

Application software: Application software allows end users to accomplish one or more specific (not directly
computer development related) tasks. Its usually written in high level languages, such as c ,c++, java. Typical
applications include:

1. Word processing

2. spreadsheet

3. computer games

4. databases

5. industrial automation

6. business software

7. quantum chemistry and solid state physics software
8. telecommunications (i.e., the internet and everything that flows on it)
9. educational software
10. medical software
11. military software
12. molecular modeling software
13. image editing
14. simulation software
15. Decision making software

Compiler:- A compiler is a computer program (or set of programs) that transforms source code written in

a computer language (the source language) into another computer language (the target language, often

having a binary form known as object code). The most common reason for wanting to transform source code
is to create an executable program. The name "compiler" is primarily used for programs that translate

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/Executable

M.JOSHNA

source code from a high-level programming language to a lower level language (e.g., assembly language or
machine code). A program that translates from a low level language to a higher level one is a decompiler. A
program that translates between high-level languages is usually called a language translator, source to source

translator

Linker: - Linker is a program in a system which helps to link a object modules of program into a single

object file. It performs the process of linking. Linker are also called link editors. Linking is process of
collecting and maintaining piece of code and data into a single file. Linker also link a particular module into
system library. It takes object modules from assembler as input and forms an executable file as output for
loader. Linking is performed at both compile time, when the source code is translated into machine code and
load time, when the program is loaded into memory by the loader. Linking is performed at the last step in
compiling a program.

Assembler: - An assembler is a program that converts assembly language into machine code. It takes the

basic commands and operations from assembly code and converts them into binary code that can be

recognized by a specific type of processor. Assemblers are similar to compilers in that they produce
executable code. However, assemblers are more simplistic since they only convert low-level code (assembly
language) to machine code. Since each assembly language is designed for a specific processor, assembling a

program is performed using a simple one-to-one mapping from assembly code to machine code.

Loader:- A loader is a major component of an operating system that ensures all necessary programs and
libraries are loaded, which is essential during the startup phase of running a program. It places the libraries and
programs into the main memory in order to prepare them for execution.

Performance

Performance: - The most important measure of the performance of a computer is how quickly it can

compute programs. The speed with which a computer executes programs is affected by the design of its
hardware and its machine language instructions. To represent the performance of a processor, we should
consider only the periods during which the processor is active.

At the start of execution, all program instructions and the required data are stored in the memory as

shown below. As execution proceeds, instructions are fetched one by one over the bus into the processor,

and a copy is placed in the cache. When the execution of instruction calls for data located in the main

memory, the data are fetched and a copy is placed in the cache. Later, if the same instruction or data item
is needed a second time, it is read directly from the cache.

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Translator_(computing)

M.JOSHNA

Computer performance is often described in terms of clock speed (usually in MHz or GHz). This refers
to the cycles per second of the main clock of the CPU. Performance of a computer depends on the following
factors.
1. Processor clock:-

1.Processor circuits are controlled by a timing signal called a clock. A clock is a microchip that regulates
speed and timing of all computer functions.

2.Clock Cycle is the speed of a computer processor, or CPU, which is the amount of time between two
pulses of an oscillator. Generally speaking, the higher number of pulses per second, the faster the
computer processor will be able to process information

3.CPU clock speed, or clock rate, is measured in Hertz — generally in gigahertz, or GHz. A CPU's
clock speed rate is a measure of how many clock cycles a CPU can perform per second

4.To execute a machine instruction, the processor divides the action to be performed into a sequence of
basic steps, such that each step can be completed in one clock cycle.

5.The length P of one clock cycle is an important parameter that affects processor performance.
6.Its inverse is the clock rate, R = 1/P, which is measured in cycles per second.
7.If the clock rate is 500(MHz) million cycles per second, then the corresponding clock period is 2

nanoseconds.
2. Basic performance equation:- The Performance Equation is a term used in computer science. It refers
to the calculation of the performance or speed of a central processing unit (CPU).

Basically the Basic Performance Equation [BPE] is an equation with 3 parameters which are required
for the calculation of "Basic Performance" of a given system. It is given by

T = (N*S)/R

Where 'T' is the processor time [Program Execution Time] required to execute a given program written
in some high level language .The compiler generates a machine language object program corresponding to the
source program.

'N' is the total number of steps required to complete program execution. 'N' is the actual number
of instruction executions, not necessarily equal to the total number of machine language instructions in the
object program. Some instructions are executed more than others (loops) and some are not executed at all
(conditions).

'S' is the average number of basic steps each instruction execution requires, where each basic step
is completed in one clock cycle. We say average as each instruction contains a variable number of steps
depending on the instruction.

'R' is the clock rate [In cycles per second]

3. Pipelining and Super scalar operation:-

1.A substantial improvement in performance can be achieved by overlapping the execution of
successive instructions, using a technique called pipelining.

2.Consider the instruction
3.Add R1, R2, R3
4.Which adds the contents of registers R1 and R2, and places the sum into R3
5.The contents of R1 and R2 are first transferred to the inputs of the ALU.
6.After the add operation is performed, the sum is transferred to R3.
7.Processor can read the next instruction from the memory while the addition operation is being

performed.
8.Then, if that instruction also uses the ALU, its operands can be transferred to the ALU inputs at the

same time that the result of add instruction is being transferred to R3.
9.Thus, pipelining increases the rate of executing instructions significantly.

M.JOSHNA

4. Super scalar operation:-

1.A higher degree of concurrency can be achieved if multiple instruction pipelines are implemented in
the processor.

2.This means that multiple function units are used, creating parallel paths through which different
instructions can be executed in parallel.

3.With such an arrangement, it becomes possible to start the execution of several instructions in every
clock cycle.

4. This mode of execution is called super scalar operation.
5. Clock rate:-

1.There are two possibilities for increasing the clock rate, R.
2.First, improving the Integrated Circuit technology makes logic circuit faster, which reduces the needed

to complete a basic step. This allows the clock period, P, to be reduced and the clock rate, R, to
be increased.

3.Second, reducing the amount of processing done in one basic step also makes it possible to reduce the
clock period, P.

6. Instruction set: CISC and RISC:-

1.The terms CISC and RISC refer to design principles and techniques.
2.RISC: Reduced instruction set computers.
3.Simple instructions require a small number of basic steps to execute.
4.For a processor that has only simple instructions, a large number of instructions may by need to

perform a given programming task. This could lead to a large value of N and a small value for
S.

5.It is much easier to implement efficient pipelining in processors with simple instruction sets.
6.CISC: Complex instruction set computers.
7.Complex instructions involve a large number of steps.
8.If individual instructions perform more complex operations, fewer instructions will be needed,

leading to a lower value of N and a larger value of S.
9.Complex instructions combined with pipelining would achieve good performance.

7. Optimizing Compiler:-

1.A compiler translates a high-level language program into a sequence of machine instructions.
2.To reduce N, we need to have a suitable machine instruction set and a compiler that makes good use

of it.
3.An optimizing compiler takes advantage of various features of the target processor to reduce the

product N * S.
4. The compiler may rearrange program instructions to achieve better performance.

8. Performance measurement:-

1.SPEC rating.
2.A nonprofit organization called” System Performance Evaluation Corporation” (SPEC) selects and

publishes representative application programs for different application domains.
3.The SPEC rating is computed as follows.
4.SPEC rating = Running time on the reference computer

Running time on the computer under test.
5.Thus SPEC rating of 50 means that the computer under test is 50 times faster than the reference

computer for these particular benchmarks.
6.The test is repeated for all the programs in the SPEC suite, and the geometric mean of the results is

computed.
7.Let SPEC, be the rating for program ‘i’ in the suite.

The overall SPEC rating for the computer is
given by

Where n is the number of programs in the suite.

M.JOSHNA

UNIT-2

Syllabus: Machine Instruction and Programs: Instruction and Instruction sequencing:

Register Transfer notation, Assembly Language Notation, Basic Instruction types, Addressing Modes,

Basic Input / Output operations, the role of Stacks and queues in computer programming

equation. Component of instructions: logic instructions shift and rotate instructions.

Instructions and Instruction Sequencing: computer programming consists of a sequence

of small steps, such as adding two numbers, testing for particular condition ,reading the

character from keyboard and sending a character to be displayed on screen.

A computer must have instructions capable of performing four types of operations:

1. Data transfers between the memory and the processor registers

2. Arithmetic and logic operations on data

3. Program sequencing and control

4. I/O transfers

Register Transfer Notation: It is used to transfer information from one location to other location inside

the computer. In RTN, source is always a value specified on right hand side of “ “. Destination is always a
processor register, specified on left hand side.

Syntax :

Register  Source

The right hand side of RTN is always denotes a value and the left hand side is the name of a

location where the value is to be placed. Source can be processor register, I/O register, memory location,

but destination register is always a processor register. RTN uses square brackets to indicate content of

location. These braces are always placed only around the Source. For example,

1. R3  [R1] + [23]

This operation that adds the contents of registers R1 and R2, and places their sum into register R3

2. R2  [LOC], means that the contents of memory location LOC are transferred into processor

register R2.

Assembly Language Notation: Assembly Language Notation is a type of notation which is used to

represent machine instructions and programs.

For example:

LOAD LOC, R2

a generic instruction that causes the transfer, from memory location LOC to processor

register R2, is specified by the statement

M.JOSHNA

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register
R2 are overwritten. The name Load is appropriate for this instruction, because the contents read from a memory
location are loaded into a processor register.

The second example :

ADD R4, R2, R3

Adding two numbers contained in processor registers R2 and R3 and placing their sum in R4

can be specified by the assembly-language statement

In this case, registers R2 and R3 hold the source operands, while R4 is the destination.

An instruction specifies an operation to be performed and the operands involved. In the above
examples, we used the English words Load and Add to denote the required operations. In the assembly-

language instructions of actual (commercial) processors, such operations are defined by using

mnemonics, which are typically abbreviations of the words describing the operations. For example, the
operation Load may be written as LD, while the operation Store, which transfers a word from a processor
register to the memory, may be written as STR or ST. Assembly languages for different processors often use
different mnemonics for a given operation.

Basic Instruction types:An instruction is of various lengths depending upon the number of addresses it

contains. Generally CPU organization is of three types on the basis of number of address fields:

1. Single Accumulator organization

2. General register organization

3. Stack organization

1.In first organization operation is done involving a special register called accumulator.

2.In second on multiple registers are used for the computation purpose.

3.In third organization the work on stack basis operation due to which it does not contain any

address field. On the basis of number of addresses instructions are classified as:

Three address Instructions: This instruction has three operands(address fields) to

specify a register or a memory location.

1. Syntax

: operation source1, source2,

EX: Add A, B, C [C<-[A]+[B])

Where A, B are called source operands, C is called destination operand.

2.Two address Instructions: This instruction has two operands(address fields) to specify a

register or a memory location.

3. Syntax : operation source , destination.

For example,

Add A, C (C  [A] + [C])

M.JOSHNA

4.One address Instructions: This instruction has one operand (address field) to specify a

register or a memory location. This use a implied Accumulator(AC) Register for data

manipulation. One operand is in AC and other is in register or memory location. Implied means
that the CPU already know that one operand is in AC so there is no need to specify it. For example,

LOAD A (AC  [A])

ADD B (AC  [AC] + [B])

STORE C (C  [AC])

5.Zero address Instructions: This instruction has zero address fields. A stack based computer do
not use address field in instruction. It uses stack operations PUSH and POP to perform

operations. To evaluate a expression first it is converted to revere Polish Notation i.e. Post fix
Notation. For example,

Push A (TOS  [A])

Push B (TOS  [B])

Add (TOS  [A] + [B])

Pop C (C  [TOS])

Example: evaluate X = (A + B) * (C + D)

Three Address:

Add A, B, R1 (R1  [A] + [B])

Add C, D, R2 (R2  [C] + [D])

Mul R1, R2, X (X  [R1] * [R2])

Two Address:

Move A, R1 (R1  [A])

Add B, R1 (R1  [R1] + [B])

Move C, R2 (R2 [C])

Add D, R2 (R2  [R2] + [D])

Mul R1, R2 (R2  [R1] * [R2])

Move R2, X X  [R2]

One Address:

Load A (AC  [A])

Add B (AC  [AC] + [B])

Store T1 (T1  [AC])

Load C (AC  [C])

Add D (AC  [AC] + [D])

Mul T1 (AC  [AC] * [T1])

Store X (X  [AC])

M.JOSHNA

Zero address:

Push A (TOS  [A])

Push B (TOS  [B])

Add (TOS  [A] + [B])

Push C (TOS  [C])

Push D (TOS  [D])

Add (TOS  [C] + [D])

Mul (TOS  ([A] + [B]) * ([C] + [D])

Pop X (X  [A] + [B]) * ([C] + [D])

Instruction Execution and Straight-Line Sequencing: To begin executing a program, the address

of its first instruction (I in our example) must be placed into the PC. Then, the processor control circuits use
the information in the PC to fetch and execute instructions, one at a time, in the order of increasing addresses.
This is called straight-line sequencing. For example, consider the following assembly instruction which add
contents of two memory locations. i.e. C  [A] + [B]. The following diagram shows a possible program
segment for this task as it appears in the memory of a computer.

The four instructions of the program are in successive word locations, starting at location i. Since, each
instruction is 4 bytes long, the second, third, and fourth instructions are at addresses i + 4, i + 8, and i +
12. The processor contains a register called the program counter (PC), which holds the address of the next
instruction to be executed. To begin executing a program, the address of its first instruction (i in our example)
must be placed into the PC. Then, the processor control circuits use the information in the PC to fetch and
execute instructions, one at a time, in the order of increasing addresses. This is called straight-line sequencing.
During the execution of each instruction, the PC is incremented by 4 to point to the next instruction. Thus, after
the Store instruction at location i + 12 is executed, the PC contains the value i + 16, which is the address of the
first instruction of the next program segment.

M.JOSHNA

Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch, the
instruction is fetched from the memory location whose address is in the PC. This instruction is placed in the
instruction register (IR) in the processor. At the start of the second phase, called instruction execute, the
instruction in IR is examined to determine which operation is to be performed. The specified operation is then
performed by the processor. This involves a small number of steps such as fetching operands from the memory
or from processor registers, performing an arithmetic or logic operation, and storing the result in the destination
location. At some point during this two-phase procedure, the contents of the PC are advanced to point to the
next instruction. When the execute phase of an instruction is completed, the PC contains the address of the
next instruction, and a new instruction fetch phase can begin.

Branching: Normally, the instructions executed in linear fashion through the program, and the address of

the instructions is obtained from PC in the control unit. This sequence is interrupted when a branch instruction
is executed, at such a time the address field of the Branch instruction is inserted into the PC and the process
continues. Consider the task of adding a list of n numbers. The following diagram shows straight line
sequencing program to add list of n numbers.

The addresses of the memory locations containing the n numbers are symbolically given as NUM1,
NUM2, . . . , NUMn, and separate Add instructions is used to add each number to the contents of register R0.
After all the numbers have been added, the result is placed in memory location SUM.

Instead of using a long list of Add instructions, it is possible to implement a program loop in which the
instructions read the next number in the list and add it to the current sum. To add all numbers, the loop has to
be executed as many times as there are numbers in the list. The following shows the structure of the desired
program. The body of the loop is a straight-line sequence of instructions executed repeatedly. It starts at
location LOOP and ends at the instruction Branch > 0. During each pass through this loop, the address of the
next list entry is determined, and that entry is fetched and added to R0.

Assume that the number of entries in the list, n, is stored in memory location N, as shown. Register R1
is used as a counter to determine the number of times the loop is executed. Hence, the contents of location N
are loaded into register R1 at the beginning of the program. Then, within the body of the loop, the instruction

Decrement R1

M.JOSHNA

reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the
contents of R1 are greater than zero.

Next use branch instruction. This type of instruction loads a new address into the program counter. As
a result, the processor fetches and executes the instruction at this new address, called the branch target, instead
of the instruction at the location that follows the branch instruction in sequential address order. A conditional

branch instruction causes a branch only if a specified condition is satisfied. If the condition is not satisfied, the
PC is incremented in the normal way, and the next instruction in sequential address order is fetched and
executed.

The instruction
Branch > 0 LOOP

is a conditional branch instruction that causes a branch to location LOOP if the contents of register R1 are
greater than zero. This means that the loop is repeated as long as there are entries in the list that are yet to be
added to R0. At the end of the nth pass through the loop, the Subtract instruction produces a value of zero in
R2, and, hence, branching does not occur. Instead, the Store instruction is fetched and executed. It moves the
final result from R0 into memory location SUM.

Condition Codes: The processor keeps track of information about the results of various operations for use
by subsequent conditional branch instructions. This is done by recording the required information in
individual bits, often called condition code flags. These flags are grouped together in a special processor
register called condition code register or status register. Individual condition code flags are set to 1 or cleared
to 0, depending on outcome of operation performed. Four commonly used flags are

1. N (negative): Set to 1 if the result is negative; otherwise, cleared to 0.

2. Z (zero): Set to 1 if the result is zero; otherwise, cleared to 0.

3. V (overflow): Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0.

4. C (carry): Set to 1 if a carry-out results from the operation; otherwise, cleared to 0.

M.JOSHNA

Addressing Modes: The different ways for specifying the locations of instruction operands are known as

addressing modes.

1. Implementation of Variables and constants: In assembly language, a variable is represented by

allocating a register or memory location to hold its value. Thus, the value can be changed as needed
using appropriate instructions. Variables can be represented by register and absolute addressing modes.

1. Immediate mode: Immediate mode: The operand is given explicitly in the instruction. For

example, the instruction
MOV #200, R0

Moves the value 200 to register R0. Constants are frequently used in high level
languages. For example, the statement A = B + 6. This statement can be represented as

MOV B, R1

ADD #6, R1

MOV R1, A

2. Register mode: The operand is the contents of a processor register; the name of the register is given
in the instruction.

1. For example, instruction

Add R1, R2, R3
Uses the Register mode for all three operands. Registers R1 and R2 hold

the two source operands, while R3 is the destination.

M.JOSHNA

2. Absolute mode(direct): The operand is in a memory location; the address of this
location is given explicitly in the instruction. The Absolute mode is used in the instruction

Add A,B,C

Uses the Register mode for all three operands. Registers A and B hold the

two source operands, while C is the destination.

1. Indirection and Pointers: Here, the instruction does not give the operand or its address explicitly.

Instead, it provides information from which memory address of the operand can be determined.
This information is called as Effective address.

Indirect mode: In this mode, the effective address of an operand is the contents of a register or
memory location whose address appears in the instruction. Indirection can be represented by
placing name of the register or the memory address given in the instruction in parenthesis. For
example, to execute the Add instruction shown below the processor uses the value B which

is in register R1, as the effective address of operand. It requests a read operation from
memory to read the contents of location B. the value read is the required operand, which adds
to the contents of register R0.

Add (R1),R0

Indirect addressing through memory location is also possible as shown above. In this
case, the processor first reads the contents of memory location A, and then requests a second
read operation using the value B as an address to obtain the operand. The register or memory
location that contains the address of an operand is called a pointer.

Consider a program for adding a list of numbers using indirect addressing as shown
below.

M.JOSHNA

Here, register R2 is used as a pointer to the numbers in the list, and the operands are
accessed indirectly through R2. The initialization section of the program loads the counter value
n from memory location N to R1 and uses the immediate addressing mode to place the address
value NUM1, which is the address of first number in the list, into R2. Then it clears R0 to 0.
The instruction ADD (R2), R0 fetches the operand at location NUM1 and adds it ro R0. The
second ADD instruction adds 4 to the contents of the pointer R2, so that it will contain the
address value NUM2, when the above instruction is executed in the second pass through the
loop and son on.

Consider the C-language statement A = * B; where B is a pointer variable. This
statement may be compiled into

MOVE B, R1
MOVE (R1), A

Using indirect addressing through memory, the same action can be achieved with
MOVE (B), A

2. Indexing and Arrays: It is useful in dealing with lists and arrays.
1. Index Mode, the effective address of the operand is generated by adding a constant value to the

contents of a register. The register used may be either a general purpose register or index register.
Symbolically index mode can be represented as

X (Ri)

Where X denotes the constant value contained in the instruction and Ri is the name of the
register involved. The effective address of the operand is given by

EA = X + [Ri]

The following shows the way of using Index mode.

M.JOSHNA

In first case, the index register R1 contains the address of a memory location and the
value x defines an offset from this address to the location where the operand is found.

In second case, the constant X corresponds to a memory address and the contents of
the index register define the offset to the operand. In either case, the effective address is the
sum of two values: one is given explicitly in the instruction and the other is stored in a
register.

Consider a simple example involving a list of test scores for students taking a given
course. Assume that the list of scores beginning at location LIST as shown below.

A four word memory block comprises a record that stores the relevant information for
each student. Each record consists of the students ID, followed by the scores the student earned
on three tests. There are n students in the class, and the value n is stored in location N
immediately in front of the list. Suppose our aim is to find the sum of all scores obtained on
each of the tests and store these sums in memory locations SUM1, SUM2, and SUM3. A
possible program for this task is given below.

On the first pass through the loop, test scores of the first student are added to the running
sums held in registers R1, r2, and R3, which are initially cleared to zero. These scores are
accessed using index addressing modes 4(R0), 8(R0), and 12(R0). The index registers then
incremented by 16 to point to the ID location of the second student. Register R4, which is
initialized to the value n is decremented by 1 at the end of each pass through the loop. When
the contents of R4 reached to 0, all the student records have been accessed, and the loop
terminates. Until then, the conditional branch instruction transfer control back to the start of the
loop to process the next record. The last three instructions transfer the accumulated sums from
R1, R2, and R3 into memory locations SUM1, SUM2, and SUM3.

2. Base with Index Mode: In this mode, effective address is generated by adding the contents of
base register with the contents of index register. It is represented as shown below.

Add (Ri, Rj)

The effective address is the sum of the contents of registers Ri, and Rj. The second
register is usually called the base register.

EA = [Ri] + [Rj]
3. Base with Index and Offset: In this mode, effective address is the sum of the constant X and the

contents of registers Ri and Rj. It is represented as sown below.

X (Ri, Rj)

EA = X + [Ri] + [Rj]

M.JOSHNA

3. Relative Addressing: In Relative Addressing, the Program counter is used instead of a general purpose
register.’
1. Relative Mode: In this mode, the effective address is determined by adding the contents of

program counter to offset value. It is represented symbolically as

X (PC)
The effective address of the operand is given by

EA = X + [PC]
This mode can be used to access data operands. It’s most common use is to specify the target
address in branch instructions. An instruction such as

Branch > 0 LOOP
Causes program to go to branch location identified by the name LOOP if the branch condition
is satisfied. This location can be computed by specifying it as n offset from the current value of
the program counter. For example, suppose that the relative mode is used to generate the branch
target address LOOP in the branch instruction of the program using indirect addressing. Assume
that the four instructions of the loop body, starting at LOOP, are located at memory locations
1000, 1004, 1008, and 1012. Hence, the updated contents of the PC at the time the branch target
address is generated will be 1016. To branch to location LOOP (1000), the offset value needed
is X = -16.

4. Additional Modes: The additional modes like auto increment and auto decrement are useful for
accessing data items in successive locations in memory.
1. Auto increment Mode: The effective address of the operand is the contents of a register specified

in the instruction. After accessing the operand, the contents of this register are automatically
incremented to point to the next item in a list. It is represented as

(Ri) +
It normally increments 1, but in byte sized operands or byte addressable memory. Thus, the
increment is 1 for 8 bit operands, 2 for 16 bit and 4 for 32 bit operands. The effective address
of the operand is

EA = [Ri]; Increment Ri

2. Auto decrement Mode: The contents of a register specified in the instruction are first
automatically decremented and are then used as effective address of the operand. It is
represented as

- (Ri)
The effective address of the operand is

Decrenebt Ri;

EA = [Ri]

M.JOSHNA

The following program describes how to use auto increment mode

Basic Input / Output Operations: Input / Output operations are essential which has a significant effect

on performance of a computer. An I/O device is connected to the interconnection network by using a

circuit, called the device interface, which provides the means for data transfer and for the exchange of status
and control information needed to facilitate the data transfers and govern the operation of the device. The
interface includes some registers that can be accessed by the processor.

Consider a task that reads in character input from a keyboard and produces character output on

a display screen. A simple way of performing such I/O tasks is to use a method known as Program

controlled I/O. A solution to this problem is as follows: On output, the processor sends the first character and
then waits for a signal from the display that the character has been received. It then sends the second character,
and so on. Input is sent from the keyboard in a similar way; the processor waits for a signal indicating that a
character key has been struck and that its code is available in some buffer register associated with the keyboard.
Then the processor proceeds to read that code.

The keyboard and the display are separate devices as shown below.

Consider the problem of moving a character from the keyboard to the processor. Striking a key stores
the corresponding character code in an 8-bit buffer register DATAIN which is associated with the keyboard.
To inform the processor that a valid character is in DATAIN, a status control flag, SIN, is set to 1 (initially
SIN=0).

A program monitors SIN, and when SIN is set to 1, the processor reads the contents of

DATAIN.
When the character is transferred to the processor, SIN is again set to 0 and the process

repeats.

M.JOSHNA

To transfer the characters from processor to display, a buffer register, DATAOUT, and a status

control flag, SOUT, are used.
When SOUT equals 1, the display is ready to receive a character. Under program control, the

processor monitors SOUT, and when SOUT is set to 1, the processor transfers a character code to DATAOUT
clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again set to 1.

The processor can monitor the keyboard status flag SIN and transfer a character from DATAIN to
register R1 by the following sequence of operations.

READWAIT Branch to READWAIT if SIN = 0

MOVE DATAIN, R1

The contents of the keyboard character buffer DATAIN can be transferred to processor register

instruction is

MoveByte DATAIN ,R1

An analogous sequence of operations is used for transferring output to display as shown below.

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

MOVE R1, DATAOUT

The contents of the processor register R1 transferred to display buffer DATAOUT instruction

is

MoveByte R1,OUTDATA

The following program explains how to read sequence of characters and display it.

Here assume that 3rd bit in registers INSTATUS and OUTSTATUS corresponds to SIN and SOUT
respectively.

M.JOSHNA

The role of STACKS and QUEUES in computer programming equation: In order to organize

the control and information linkage between the main program and the subroutine, a data structure called a
stack is used. A stack is the list of data elements, usually words or bytes, with the accessing restriction that
elements can be added or removed at one end of the list only. This end is called as top of the stack, and another
end is called as bottom. The structure is sometimes referred as pushdown stack. Stack follows Last-In-First-
Out (LIFO) strategy, where elements inserted last will be the element removed first. Two basic operations that
can be performed on stack are PUSH and POP, which add and remove elements from top of the stack
respectively.

Data stored in the memory of a computer can be organized as a stack, with successive elements
occupying successive memory locations. Assume that first element is placed in location BOTTOM, and when
new elements are pushed onto the stack, they are placed in successive lower address locations. The following
diagram shows a stack of word data items in the memory of a computer.

It contains numerical values, with 43 at bottom and -28 at the top. A processor register is used to keep
track of the address of the element of the stack that is at the top at any given time. This register is called the
Stack Pointer (SP). It could be one of the general purpose registers or a register dedicated to this function.
Assume a byte addressable memory with 32-bit word length, the PUSH operation can be implemented as

Where the Subtract instruction subtracts the source operand 4 from the destination operand contained

in SP and places the result in SP. These two instructions move the word from location NEWITEM onto the
top of the stack, decrementing the stack pointer by 4 before the move.

if the processor has the auto increment and auto decrement address modes the PUSH operation can be

performed by the instruction:

The POP operation can be implemented as:

M.JOSHNA

These two instructions move the top value from the stack into location ITEM and then increment the
stack pointer by 4, so that it points to the new top element as shown below.

Suppose that a stack runs from location 2000 (BOTTOM) down no further than 1500. The stack
pointer is loaded initially with the address value 2004. SP is decremented by 4 before new data are stored on
the stack. Hence, an initial value of 2004 means that the first item pushed on to the stack will be at location
2000. To prevent either pushing an item on a full stack or popping an item off an empty stack, the single
instruction PUSH and POP operations can be replaced by the following instruction sequences.

Another useful data structure that is similar to the stack is called a Queue. Data are stored in and
retrieved from a queue on a First-In-First-Out (FIFO) basis. Thus, if queue grows in the direction of increasing
addresses in memory, new data are added at the back (high address end) and retrieved from the front (low
address end) of the queue.

There are two important differences between stack and queue. One end of the stack is fixed (the
bottom), while the other end raises and falls as data are pushed and popped. A single pointer is needed to point
to the top of the stack at any given time. On the other hand, both ends of a queue move to higher addresses as
data are added at the back and removed from the front. So, two pointers are needed to keep track of two ends
of the queue.

Another difference between stack and queue is that, a queue would continuously move through memory
of a computer in the direction of higher addresses. This can be avoided by using Circular Queue.

M.JOSHNA

Additional Instructions (Or) Component of Instructions:
Additional Instructions (Or) Component of Instructions are two types

1.Logic Instructions

2.Shift and Rotate Instructions

Logic Instructions: Logic operations such as AND, OR, and NOT applied to individual bits, are the

basic building blocks of digital circuits. It is also useful to be able to perform logic operations in software.
For example,

1’s complement:

NOT dst

NOT dst complements all bits contained in the destination operand, changing 0’s to 1 and 1’s to 0.

2’s complement:

The following two instructions calculates 2’s complement of a number
NOT R0
ADD #1, R0

Many computers have a single instruction for 2’s complement..i.e. NEGATE R0
Logic Instructions AND, OR, and NOT represented as bits in a table as follows:

OR table

AND table :
Operand 1 Operand 2 AND

0 0 0

0 1 0

1 0 0

1 1 1

NOT table

Operand NOT

0 1

1 0

Shift and Rotate Instructions: There are many applications that require the bits of an operand to be

shifted right or left some specified number of bit positions. There are two types of shift instructions.
1. Logical Shift Instructions((LShiftL, LShiftR)
2. Arithmetic Shift Instructions

1. Logical Shift Instructions: These instructions shift an operand over a number of bit positions specified
in a count operand in the instruction.There are two types of Logical Shift Instructions: Logical left shift
(LShiftL) and Logical right shift ((LShiftR)
Logical left shift (LShiftL): The general form of Logical Shift Left Instruction is

LShiftL count, DST

The count operand may be an immediate operand or it may be contained in a processor
register. For example,
LShiftL #2, R0, this is represented as

Operand 1 Operand 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

M.JOSHNA

It shifts the contents of register R0 left by two positions. Vacated positions are filled
with 0’s.

1.Logical right shift (LShiftR): The general form of Logical Shift Right Instruction is
LShiftR count, DST

The count operand may be an immediate operand or it may be contained in a processor
register. For example,
LShiftR #2, R0, this is represented as

It shifts the contents of register R0 right by two positions. Vacated positions are filled
with 0’s.

2. Arithmetic Shift Instructions: There are two types of Arithmetic Shift Instructions:

1. Arithmetic Shift Left (AShiftL): A Left Arithmetic shifts a binary number by specified number
of positions towards left. The vacated positions are filled with 0’s. It can be represented as

AShiftL count, DST

For example, AShiftL #2, R0 shifts contents of R0 by 2 positions and vacated
positions are filled with zeros as shown below.

2. Arithmetic Shift Right (AShiftR): A Right Arithmetic shifts a binary number by specified
number of positions towards right. The vacated positions are filled with copies of the original
MSB bit. It can be represented as

AShiftR count, DST

For example, AShiftR #2, R0 shifts contents of R0 by 2 positions and vacated
positions are filled with copies of the original MSB bit as shown below.

M.JOSHNA

Rotate Instructions: In shift operations, the bits shifted out of the operand are lost, except for the last bit
shifted out which is in the carry flag C. To preserve all bits, a set of rotate instructions can be used. They move
the bits that are shifted out of one end of the operand back into the other end. Different rotate instructions are

1. Rotate Left without Carry

2. Rotate Left with Carry

3. Rotate Right without Carry

4. Rotate Right with Carry

They are represented as follows.

M.JOSHNA

Digit-Packing Example:

Consider a task which uses both shift and logic operations. Suppose two decimal digits represented in
ASCII code are located in memory at byte locations LOC and LOC + 1. Our goal is to represent each of these
digits in the 4-bit BCD code and store both of them in a single byte location PACKED. The result is said to be
in packed-BCD format.

To do this, extract the lower order 4 bits in LOC and LOC + 1 and concatenate them into the single
byte at PACKED as shown below.

Here, R0 is a pointer to the ASCII characters in memory, and use the registers R1 and R2 to develop
the BCD codes. MoveByte instruction transfers a byte between memory and a 32-bit processor register. The
And instruction is used to mask out all except the four rightmost bits in R2. Immediate operand $F, interpreted
as a 32-bit pattern, has 28 zero’s in most significant bit positions.

Vector Dot Product Program: Let A and B be two vectors of length n. Their dot product can be defined as

The following program computes dot product and storing it in memory location DOTPROD. The first
elements of each vector, A(0), and B(0), are stored at memory locations AVEC and BVEC.

M.JOSHNA

Byte Sorting Program: Consider a program for sorting a list of bytes stored in memory into ascending
alphabetic order. Assume that the list consists of n bytes. Let the list stored in memory locations LIST through
LIST + n – 1, and let n be a 32-bit value stored at address N. To do this, use straight selection sort algorithm.
First, the largest number is found and placed at the end of the list in location LIST + n – 1. Then the largest
number in the remaining sub list of n – 1 numbers is placed at the end of the sub list in location LIST + n – 2.
The procedure is repeated until the list is sorted.

Linked Lists: Suppose to maintain list of student records in consecutive memory locations in increasing order
of student ID numbers, use a data structure called Linked List as shown below. To insert a record between i
and i+1, the link address in record i is coped into the link field in the new record and then the address of the
new record is written into the link field of record i. To delete record i, the address in its link field is copied into
the link field of record i-1.

M.JOSHNA

A subroutine for performing insertion and deletion are shown below.

M.JOSHNA

FREQUENTLY ASKED QUESTIONS

1. What is a register transfer language?

2. Differentiate the instruction execution for adding ‘n’ numbers using Straight line sequencing and
branching.

3. Write short notes on shift and rotate instructions.

4. Write about various means by which data are transferred between memory of a computer and outside
world.

5. What is register transfer notation? Write and explain these notations to three-address, two-address, single
address and zero-address instruction types.

6. In how many ways the location of an operand is specified in an instruction? Explain each mode with
suitable examples.

7. What are different addressing modes? Explain.
8. Give example for left and right shift operations.
9. List basic input and output operations.
10. Write short notes on additional addressing modes
11. With an example write about relative addressing.
12. Illustrate the concept of assembly directives with an assembly language program
13. Illustrate with examples rotate instruction?
14. Differentiate between shift and rotate instructions.

M.JOSHNA

UNIT – 3

Types of Instructions: Arithmetic and Logic Instructions, Branch Instructions,

Addressing modes, Input / Output Instructions.

Arithmetic and Logic Instructions: The ARM instruction set has a number of instructions for

arithmetic operations on operands that are either contained in the general-purpose registers or given as
immediate operands in the instruction itself. The basic assembly-language format for arithmetic and logic
instructions is shown below.

opcode Rd, Rn, Rm

where the operation specified by the opcode is performed on the source operands in general-purpose registers
Rn and Rm. The result is placed in destination register Rd.

Arithmetic Instructions: Different types of Arithmetic instructions are ADD, SUB, MUL and MLA.

For example, the instruction
ADD R0, R2, R4

performs the operation
R0←[R2] + [R4]

The instruction
SUB R0, R6, R5

performs the operation
R0←[R6] − [R5]

The second source operand can be specified in the immediate mode. Thus,
ADD R0, R3, #17

performs the operation
R0←[R3] + 17

The immediate operand is an 8-bit value contained in bits b7−0 of the encoded machine instruction. It is an
unsigned number in the range 0 to 255. The assembly language allows negative values to be used as immediate
operands. If the instruction

ADD R0, R3, #−17

is used in a program, the assembler replaces it with the instruction
SUB R0, R3, #17

When the second source operand is specified as the contents of a register, they can be shifted or rotated before
being used in the operation. Logical shift left (LSL), logical shift right (LSR), arithmetic shift right (ASR), and
rotate right (ROR). For example, the instruction

ADD R0, R1, R5, LSL #4

is executed as follows. The second source operand, which is contained in register R5, is shifted left 4 bit

positions (equivalent to [R5] × 16), then added to the contents of register R1. The sum is placed in register
R0. The carry bit, C, is not involved in these operations. The shift or rotation amount can also be specified as
the contents of a fourth register.

Two basic versions of a multiply instruction are provided. The first version multiplies the contents of
two registers and places the low-order 32-bits of the product in a third register. The high-order bits of the
product are discarded. If the operands are 2’s-complement numbers, and if their product can be represented in
32 bits, then the retained low-order 32 bits of the product represent the correct result. For example, the
instruction

MUL R0, R1, R2

Performs the operation
R0←[R1] × [R2]

The second version of the basic Multiply instruction specifies a fourth register whose contents are
added to the product before the result is stored in the destination register. Hence, the instruction

M.JOSHNA

MLA R0, R1, R2, R3

Performs the operation
R0←([R1] × [R2]) + [R3]

This is called a Multiply-Accumulate operation. It is often used in signal-processing applications.

Logic Instructions: Different types of Logic Instructions are AND, OR, XOR, BIC and MVC. For

example, The AND instruction

AND Rd, Rn, Rm

performs a bitwise logical AND of the operands in registers Rn and Rm and places the result in register Rd.
For example, if register R0 contains the hexadecimal pattern 02FA62CA and R1 contains the pattern

0000FFFF, then the instruction
AND R0, R0, R1 (R0  [R0] ^ [R1])

will result in the pattern 000062CA being placed in register R0.
The Bit Clear instruction, BIC, is closely related to the AND instruction. It complements each bit in

operand Rm before ANDing them with the bits in register Rn. Using the same R0 and R1 bit patterns as in the
above example, the instruction

BIC R0, R0, R1 (R0  [R0] ^ [NOT R1])

results in the pattern 02FA0000 being placed in R0.
The OR instruction

OR R0,R0,R1 (R0  [R0] V [R1])

Performs OR operation between contents of R0, R1 registers.
The XOR instruction

XOR R0,R0,R1 (R0  [R0] [R1])

Performs XOR operation between contents of R0, R1 registers.
The Move Negation instruction, with the opcode Mnemonic MVN, complements the bits of the source
operand and places the result in Rd. for example,

MVN R0, R3.

If the contents of R3 are the hexadecimal pattern 0F0F0F0F, then it places the result F0F0F0F0 in the register
R0.
The following ARM program merges two BCD digits into a byte.

The first instruction in the program loads the address LOC into register R0. The two ASCII characters
containing the BCD digits in their low-order four bits are loaded into the low-order byte positions of registers
R1 and R2 by the next two Load instructions. The AND instruction clears the high-order 2 bits of R2 to zero,
leaving the second BCD digit in the four low-order bit positions. The ‘&’ character in this instruction signifies
hexadecimal notation for the immediate value. The ORR instruction then shifts the first BCD digit in R1 to
the left four positions and places it to the left of the second BCD digit in R2. The two digits packed into the
low-order byte of R2 are then stored into location PACKED.

M.JOSHNA

Branch Instructions: Conditional branch instructions contain a signed, 2’s complement, 24-bit offset that

is added to the updated contents of the program counter to generate the branch target address. The format for
the branch instruction is shown below.

The BEQ instruction (Branch if Equal to 0) causes a branch if the Z flag is set to 1. The higher order 4

bits b31-28, of the instruction word determines whether or not branching should takes place. At the time the
branch target address is computed, the contents of the PC will have been updated to contain the address of the
instruction that is two words beyond the Branch instruction itself. This is due to pipelined instruction execution.
If the Branch instruction is at address location 1000 and the branch target address is 1100, as shown in Figure
D.6, then the offset is 92, because the contents of the updated PC will be 1000 + 8 = 1008 when the branch
target address 1100 is computed.

Setting condition codes: The Compare and Test instructions always update the condition code flags. Some
instructions, such as compare, given by CMP Rn, Rm performs the operation [Rn] − [Rm]. The arithmetic,
logic, and Move instructions affect the condition code flags only if explicitly specified to do so by a bit in the
OP-code field. This is indicated by appending the suffix S to the assembly language OP-code mnemonic. For
example, the instruction ADDS R0, R1, R2 sets the condition code flags, but ADD R0, R1, R2 does not.

The following is an ARM program for adding n numbers. Here, Location N contains the number of

entries in the list, and location SUM is used to store the sum. The Load and Store operations performed by

M.JOSHNA

the first and last instructions use the Relative addressing mode. This assumes that the memory locations N and
SUM are within the range reachable by offsets relative to the PC. The address NUM1 of the first of the numbers
to be added is loaded into register R2 by the second instruction. The Post-indexed addressing mode, which
includes writeback, is used in the first instruction of the loop.

Input / Output Instructions:
Input / Output Instructions: The ARM architecture uses memory mapped I/O. Input / Output operations

are essential which has a significant effect on performance of a computer. An I/O device is connected to the
interconnection network by using a circuit, called the device interface, which provides the means for data
transfer and for the exchange of status and control information needed to facilitate the data transfers and govern
the operation of the device. The interface includes some registers that can be accessed by the processor. One
register may serve as a buffer for data transfers, another may hold information about the current status of the
device, and yet another may store the information that controls the operational behavior of the device. These
data, status, and control registers are accessed by program instructions as if they were memory locations.

Consider a task that reads in character input from a keyboard and produces character output on a display
screen. A simple way of performing such I/O tasks is to use a method known as Program controlled I/O. A
solution to this problem is as follows: On output, the processor sends the first character and then waits for a
signal from the display that the character has been received. It then sends the second character, and so on. Input
is sent from the keyboard in a similar way; the processor waits for a signal indicating that a character key has
been struck and that its code is available in some buffer register associated with the keyboard. Then the
processor proceeds to read that code.
The keyboard and the display are separate devices as shown below.

M.JOSHNA

Consider the problem of moving a character from the keyboard to the processor. Striking a key stores
the corresponding character code in an 8-bit buffer register DATAIN which is associated with the keyboard.
To inform the processor that a valid character is in DATAIN, a status control flag, SIN, is set to 1 (initially
SIN=0). A program monitors SIN, and when SIN is set to 1, the processor reads the contents of DATAIN.
When the character is transferred to the processor, SIN is again set to 1 and the process repeats.

To transfer the characters from processor to display, a buffer register, DATAOUT, and a status control
flag, SOUT, are used. When SOUT equals 1, the display is ready to receive a character. Under program control,
the processor monitors SOUT, and when SOUT is set to 1, the processor transfers a character code to
DATAOUT clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again
set to 1.

Suppose that bit 3 in each of the device status registers INSTTUS and OUTSTATUS contains the
respective control flags SIN and SOUT. Also assume that the keyboard DATAIN and display DATAOUT
registers are located at addresses INSTATUS + 4 and OUTSTATUS + 4. The READ and WRITE wait loops
can be implemented as follows.

Assume that the address INSTATUS has been loaded into register R1. The instruction sequence reads

a character into register R3 when a key has been pressed on the keyboard. The test (TST) instruction performs
the bitwise logical AND operation on its two operands and sets the condition code flags based on the result.
The immediate operand 8 (0000 1000) has a single 1 in the bit 3 position. Therefore, the result of the TST
operation will be zero if bit 3 of INSTATUS is zero and will be non zero if bit 3 is one, signifying that a
character is available in DATAIN. The BEQ instruction branches back to READWAIT if the result is zero.

Assuming that the address OUTSTATUS has been loaded into register R2, the instruction sequence
sends the character in register R3 to the DATAOUT register when display is ready to receive it.

The following ARM program reads line of characters.

M.JOSHNA

ARM Addressing Modes:

The basic method for addressing memory operands is an indexed addressing mode, defined as

 Pre-indexed mode: The effective address of the operand is the sum of the contents of a base register,

Rn, and a signed offset. For example, the Load instruction
LDR Rd, [Rn, #offset]

specifies the offset (expressed as a signed number) in the immediate mode and performs
the operation

Rd  [Rn] + offset

The following shows an example of the Pre-indexed mode with the offset contained in register
R6 and the base value contained in R5. The Store instruction (STR) stores the contents of R3 into the
word at memory location 1200.

M.JOSHNA

 Pre-indexed with write back mode: The effective address of the operand is generated in the same way as
in the Pre-indexed mode, then the effective address is written back into Rn. The exclamation mark
signifies write-back in pre-indexed addressing mode.

Above shows an example of pushing the contents of register R0, which are 27, onto a
programmer-defined stack. Register R5 is used as the stack pointer. Initially, it contains the address
2012 of the current TOS (top-of-stack) element. The Pre-indexed addressing mode with write back can
be used to perform the Push operation with the instruction

STR R0, [R5, #−4]!
The immediate offset −4 is added to the contents of R5 and the new value is written back into R5. Then,
this address value of the new top of the stack, 2008, is used as the effective address for the Store
operation. The contents of register R0 are then stored at this location.

 Post-indexed mode—The effective address of the operand is the contents of Rn. The offset is

then added to this address and the result is written back into Rn. The post-indexed mode always

involves write back, so the exclamation is not needed.
pre- and post-indexing are distinguished by the way the square brackets are used. When only

the base register is enclosed in square brackets, its contents are used as the effective address. The offset
is added to the register contents after the operand is accessed. In other words, post-indexing is specified.
When both the base register and the offset are placed inside the square brackets, their sum

M.JOSHNA

is used as the effective address of the operand, that is, pre-indexing is used. If writeback is to be
performed, it must be indicated by the exclamation character.

The first time that the Load instruction is executed, the effective address is [R2] = 1000.
Therefore, the number 6 at this address is loaded into R1. Then, the write back operation changes the
contents of R2 from 1000 to 1100 so that it points to the second number, −17. It does this by shifting
the contents, 25, of the offset register R10 left by two bit positions and then adding the shifted value to
the contents of R2. The contents of R10 are not changed in this process. The left shift is equivalent to
multiplying 25 by 4, generating the required offset of 100. When the Load instruction is executed on
the second pass through the loop, the second number, −17, is loaded into R1. The third number, 321, is
loaded into R1 on the third pass, and so on.

In all three indexed addressing modes, the offset may be given as an immediate value in the

Range ±4095. Alternatively, the magnitude of the offset may be specified as the contents of the Rm

register, with the sign (direction) of the offset specified by a ± prefix on the register name. For
example, the instruction

LDR R0, [R1, −R2]!
performs the operation

R0←[[R1] − [R2]]

The effective address of the operand, [R1]−[R2], is then loaded into R1 because write back is
specified.

When the offset is given in a register, it may be scaled by a power of 2 before it is used by
shifting it to the right or to the left. This is indicated in assembly language by placing the shift direction
(LSL for left shift or LSR for right shift) and the shift amount after the register name, Rm. For example,
the contents of R2 in the example above may be multiplied by 16 before being used as an offset by
modifying the instruction as follows:

LDR R0, [R1, −R2, LSL #4]!
This instruction performs the operation

R0  [[R1] −16 × [R2]]
and then loads the effective address into R1 because write back is specified.

Relative Addressing: The program counter PC, may be used as the base register Rn. In this case, the
relative addressing mode is used. The assembler determines the immediate offset as the signed distance

M.JOSHNA

between the address of the operand and the contents of the updated PC. When the effective address is
calculated at instruction execution time, the contents of PC will have been updated to the address two words
(8 bytes) forward from the instruction containing the relative addressing mode.

The address of the operand, given symbolically in the instruction as ITEM, is 1060. There is no Absolute
addressing mode available in the ARM architecture. Therefore, when the address of a memory location is
specified by placing an address label in the operand field, the assembler uses the Relative addressing mode.
This is implemented by the Pre-indexed mode with an immediate offset, using PC as the base register. As
shown in the figure, the offset calculated by the assembler is 52, because the updated PC will contain 1008
when the offset is added to it during program execution. The effective address generated by this instruction is
1060 = 1008 + 52. The operand must be within a distance of 4095 bytes forward or backward from the updated
PC. If the operand address is outside this range, an error is indicated by the assembler and a different addressing
mode must be used to access the operand.

68000 Addressing Modes: The 68000 has several addressing modes which are defined as follows.

M.JOSHNA

1. Immediate mode: The operand is a constant value that is contained within the instruction. Four sizes of
immediate operands can be specified. Small 3-bit numbers can be included in the OP-code word of certain
instructions. Byte, word, and long word operands are found in one or two extension words that follow
the OP-code word.

2. Absolute mode: The memory address of an operand is given in the instruction immediately after the OP-
code word. There are two versions of this mode—long and short. In the long mode, a full 24-bit address
is specified in two extension words. In the short mode, a 16-bit value is given in one extension word.

3.Register mode: The operand is in a processor register, An or Dn, that is specified in the instruction.
4. Register indirect mode: The effective address of the operand is in an address register, An, that is specified

in the instruction.
5. Auto increment mode: The effective address of the operand is in an address register, An, that is specified

in the instruction. After the operand is accessed, the contents of An are incremented by 1, 2, or 4,
depending on whether the operand is a byte, a word, or a long word.

6. Auto decrement mode: The contents of an address register, An, that is specified in the instruction are first
decremented by 1, 2, or 4, depending on whether the operand is a byte, a word, or a long word. The
effective address of the operand is then given by the decremented contents of An.

7. Basic index mode: A 16-bit signed offset and an address register, An, are specified in the instruction. The
offset is sign-extended to 32 bits, and the sum of the sign-extended offset and the 32-bit contents of An

is the effective address of the operand.
8. Full index mode: An 8-bit signed offset, an address register An, and an index register Rk (either an address

or a data register) are given in the instruction. The effective address of the operand is the sum of the sign-
extended offset, the contents of register An, and the signed contents of register Rk.

9. Basic relative mode: This mode is the same as the Basic index mode, except that the program counter (PC)
is used instead of an address register, An.

10. Full relative mode: This mode is the same as the Full index mode, except that the program counter (PC) is
used instead of an address register, An.

IA-32 Addressing Modes: The IA-32 architecture has a large and flexible set of addressing modes which are defined

as follows.

M.JOSHNA

1.Immediate mode: The operand is contained in the instruction. It is a signed 8-bit or 32-bit number, with the length
being specified by a bit in the opcode of the instruction. This bit is 0 for the short version and 1 for the long
version.

2. Direct mode: The memory address of the operand is given by a 32-bit value in the instruction.

3.Register mode: The operand is contained in one of the eight general-purpose registers specified in the instruction.
4.Register indirect mode: The memory address of the operand is contained in one of the eight general- purpose

registers specified in the instruction.
5.Base with displacement mode: An 8-bit or 32-bit signed displacement and one of the eight general- purpose

registers to be used as a base register are specified in the instruction. The effective address of the operand is
the sum of the contents of the base register and the displacement.

6.Index with displacement mode: A 32-bit signed displacement, one of the eight general purpose registers to be used
as an index register, and a scale factor of 1, 2, 4, or 8, are specified in the instruction. To obtain the effective
address of the operand, the contents of the index register are multiplied by the scale factor and then added to
the displacement.

7.Base with index mode: Two of the eight general-purpose registers and a scale factor of 1, 2, 4, or 8, are specified
in the instruction. The registers are used as base and index registers. The effective address of the operand is
determined by first multiplying the contents of the index register by the scale factor and then adding the
result to the contents of the base register.

8.Base with index and displacement mode: An 8-bit or 32-bit signed displacement, two of the eight general-purpose
registers, and a scale factor of 1, 2, 4, or 8, are specified in the instruction. The registers are used as base and
index registers. The effective address of the operand is determined by first multiplying the contents of the
index register by the scale factor and then adding the result to the contents of the base register and the
displacement.

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

M.JOSHNA

Combinational circuit is a circuit in which we combine the different gates in the circuit,
for example encoder, decoder, multiplexer and demultiplexer. Some of the
characteristics of combinational circuits are following −

1. The output of combinational circuit at any instant of time, depends only on the
levels present at input terminals.

2. The combinational circuit do not use any memory. The previous state of input
does not have any effect on the present state of the circuit.

3. A combinational circuit can have an n number of inputs and m number of
outputs.

Block diagram

Half Adder
Half adder is a combinational logic circuit with two inputs and two outputs. The half
adder circuit is designed to add two single bit binary number A and B. It is the basic
building block for addition of two single bit numbers. This circuit has two outputs
carry and sum. Block diagram Truth Table Circuit
Diagram

M.JOSHNA

Half adder using NAND gates

Half Adder using NOR gates

Full Adder
Full adder is developed to overcome the drawback of Half Adder circuit. It can add
two one-bit numbers A and B, and carry c. The full adder is a three input and two
output combinational circuit.

Block diagram Truth Table Circuit Diagram

M.JOSHNA

s

Full Adder using NAND gate

A NAND gate is one kind of universal gate, used to execute any kind of
logic design. The FA circuit with the NAND gates diagram is shown below.

Full Adder using NOR gate

M.JOSHNA

N-Bit Parallel Adder
The Full Adder is capable of adding only two single digit binary number along with a
carry input. But in practical we need to add binary numbers which are much longer
than just one bit. To add two n-bit binary numbers we need to use the n-bit parallel
adder. It uses a number of full adders in cascade. The carry output of the previous
full adder is connected to carry input of the next full adder. 4 Bit Parallel Adder
In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence
Full Adder-0 is the lowest stage. Hence its Cin has been permanently made 0. The
rest of the connections are exactly same as those of n-bit parallel adder is shown in
fig. The four bit parallel adder is a very common logic circuit.

Block diagram

Combinational circuits consist of Logic gates. These circuits operate with binary
values.

Binary Adder
The most basic arithmetic operation is addition. The circuit, which performs the
addition of two binary numbers is known as Binary adder. First, let us implement an
adder, which performs the addition of two bits.

M.JOSHNA

Half Adder
Half adder is a combinational circuit, which performs the addition of two binary
numbers A and B are of single bit. It produces two outputs sum, S & carry, C.

The Truth table of Half adder is shown below.
Inputs Outputs

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

When we do the addition of two bits, the resultant sum can have the values ranging
from 0 to 2 in decimal. We can represent the decimal digits 0 and 1 with single bit in
binary. But, we can’t represent decimal digit 2 with single bit in binary. So, we require
two bits for representing it in binary.

Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the
resultant sum. For first three combinations of inputs, carry, C is zero and the value of
S will be either zero or one based on the number of ones present at the inputs. But,
for last combination of inputs, carry, C is one and sum, S is zero, since the resultant
sum is two.

From Truth table, we can directly write the Boolean functions for each output as
 S=A BS=A B

C=ABC=AB
We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate.
The circuit diagram of Half adder is shown in the following figure.

M.JOSHNA

In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S
& carry, C respectively. Therefore, Half-adder performs the addition of two bits. Full
Adder
Full adder is a combinational circuit, which performs the addition of three bits A, B
and Cin. Where, A & B are the two parallel significant bits and Cin is the carry bit, which
is generated from previous stage. This Full adder also produces two outputs sum, S
& carry, Cout, which are similar to Half adder.

The Truth table of Full adder is shown below.

Inputs Outpu ts

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

When we do the addition of three bits, the resultant sum can have the values ranging
from 0 to 3 in decimal. We can represent the decimal digits 0 and 1 with single bit in
binary. But, we can’t represent the decimal digits 2 and 3 with single bit in binary. So,
we require two bits for representing those two decimal digits in binary.

Let, sum, S is the Least significant bit and carry, Cout is the Most significant bit of
resultant sum. It is easy to fill the values of outputs for all combinations of inputs in
the truth table. Just count the number of ones present at the inputs and write the
equivalent binary number at outputs. If Cin is equal to zero, then Full adder truth table
is same as that of Half adder truth table.

We will get the following Boolean functions for each output after simplification.
 S=A B CinS=A B Cin

cout=AB+(A B)cincout=AB+(A B)cin
The sum, S is equal to one, when odd number of ones present at the inputs. We know
that Ex-OR gate produces an output, which is an odd function. So, we can use either

M.JOSHNA

two 2input Ex-OR gates or one 3-input Ex-OR gate in order to produce sum, S. We
can implement carry, Cout using two 2-input AND gates & one OR gate. The circuit
diagram of Full adder is shown in the following figure.

This adder is called as Full adder because for implementing one Full adder, we
require two Half adders and one OR gate. If Cin is zero, then Full adder becomes Half
adder. We can verify it easily from the above circuit diagram or from the Boolean
functions of outputs of Full adder.

4-bit Binary Adder
The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit
binary numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. We
 can implement 4-bit binary adder in one of the two following ways.

1. Use one Half adder for doing the addition of two Least significant bits and three
Full adders for doing the addition of three higher significant bits.

2. Use four Full adders for uniformity. Since, initial carry Cin is zero, the Full adder
which is used for adding the least significant bits becomes Half adder.

For the time being, we considered second approach. The block diagram of 4-bit
binary adder is shown in the following figure.

M.JOSHNA

Here, the 4 Full adders are cascaded. Each Full adder is getting the respective bits
of two parallel inputs A & B. The carry output of one Full adder will be the carry input
of subsequent higher order Full adder. This 4-bit binary adder produces the resultant
sum having at most 5 bits. So, carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by cascading the
required number of Full adders. This binary adder is also called as ripple carry
binarybinary adder because the carry propagates ripplesripples from one stage to
the next stage.

Binary Subtractor
The circuit, which performs the subtraction of two binary numbers is known as Binary
subtractor. We can implement Binary subtractor in following two methods.

1. Cascade Full subtractors
2. 2’s complement method

In first method, we will get an n-bit binary subtractor by cascading ‘n’ Full subtractors.
So, first you can implement Half subtractor and Full subtractor, similar to Half adder
& Full adder. Then, you can implement an n-bit binary subtractor, by cascading ‘n’
Full subtractors. So, we will be having two separate circuits for binary addition and
subtraction of two binary numbers.

In second method, we can use same binary adder for subtracting two binary numbers
just by doing some modifications in the second input. So, internally binary addition
operation takes place but, the output is resultant subtraction.

We know that the subtraction of two binary numbers A & B can be written as,

A−B=A+(2′scomplimentofB)A−B=A+(2′scomplimentofB) ⇒A−B=A+(1′scomplimentofB)+1⇒A−B=A+(1′scomplimentofB)+1
4-bit Binary Subtractor
The 4-bit binary subtractor produces the subtraction of two 4-bit numbers. Let the
4bit binary numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0.
Internally, the operation of 4-bit Binary subtractor is similar to that of 4-bit Binary
adder. If the normal bits of binary number A, complemented bits of binary number B
and initial carry borrowborrow, Cin as one are applied to 4-bit Binary adder, then it
becomes 4-bit Binary subtractor. The block diagram of 4-bit binary subtractor is
shown in the following figure.

M.JOSHNA

This 4-bit binary subtractor produces an output, which is having at most 5 bits. If
Binary number A is greater than Binary number B, then MSB of the output is zero and
the remaining bits hold the magnitude of A-B. If Binary number A is less than Binary
number B, then MSB of the output is one. So, take the 2’s complement of output in
order to get the magnitude of A-B.

In this way, we can implement any higher order binary subtractor just by cascading
the required number of Full adders with necessary modifications.

Binary Adder / Subtractor
The circuit, which can be used to perform either addition or subtraction of two binary
numbers at any time is known as Binary Adder / subtractor. Both, Binary adder and
Binary subtractor contain a set of Full adders, which are cascaded. The input bits of
binary number A are directly applied in both Binary adder and Binary subtractor.

There are two differences in the inputs of Full adders that are present in Binary adder
and Binary subtractor.

1. The input bits of binary number B are directly applied to Full adders in Binary
adder, whereas the complemented bits of binary number B are applied to Full
adders in Binary subtractor.

2. The initial carry, C0 = 0 is applied in 4-bit Binary adder, whereas the initial carry
borrowborrow, C0 = 1 is applied in 4-bit Binary subtractor.

We know that a 2-input Ex-OR gate produces an output, which is same as that of
first input when other input is zero. Similarly, it produces an output, which is
complement of first input when other input is one.

Therefore, we can apply the input bits of binary number B, to 2-input Ex-OR gates.
The other input to all these Ex-OR gates is C0. So, based on the value of C0, the Ex-
OR gates produce either the normal or complemented bits of binary number B.

4-bit Binary Adder / Subtractor
The 4-bit binary adder / subtractor produces either the addition or the subtraction of
two 4-bit numbers based on the value of initial carry or borrow, 0ܥ. Let the 4-bit binary

M.JOSHNA

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. The
operation of 4-bit Binary adder / subtractor is similar to that of 4-bit Binary adder and
4-bit Binary subtractor.

Apply the normal bits of binary numbers A and B & initial carry or borrow, C0 from
externally to a 4-bit binary adder. The block diagram of 4-bit binary adder / subtractor
is shown in the following figure.

If initial carry, 0ܥ is zero, then each full adder gets the normal bits of binary numbers
A & B. So, the 4-bit binary adder / subtractor produces an output, which is the
addition of two binary numbers A & B.

If initial borrow, 0ܥ is one, then each full adder gets the normal bits of binary number
A & complemented bits of binary number B. So, the 4-bit binary adder / subtractor
produces an output, which is the subtraction of two binary numbers A & B.

Therefore, with the help of additional Ex-OR gates, the same circuit can be used for
both addition and subtraction of two binary numbers.

N-Bit Parallel Subtractor
The subtraction can be carried out by taking the 1's or 2's complement of the number
to be subtracted. For example we can perform the subtraction (A-B) by adding either
1's or 2's complement of B to A. That means we can use a binary adder to perform
the binary subtraction.

4 Bit Parallel Subtractor
The number to be subtracted (B) is first passed through inverters to obtain its 1's
complement. The 4-bit adder then adds A and 2's complement of B to produce the
subtraction. S3 S2 S1 S0 represents the result of binary subtraction (A-B) and carry
output Cout represents the polarity of the result. If A > B then Cout = 0 and the result
of binary form (A-B) then Cout = 1 and the result is in the 2's complement form.

M.JOSHNA

Block diagram

Half Subtractors
Half subtractor is a combination circuit with two inputs and two outputs (difference
and borrow). It produces the difference between the two binary bits at the input and
also produces an output (Borrow) to indicate if a 1 has been borrowed. In the
subtraction (AB), A is called as Minuend bit and B is called as Subtrahend bit.

Truth Table Circuit Diagram

Full Subtractors
The disadvantage of a half subtractor is overcome by full subtractor. The full
subtractor is a combinational circuit with three inputs A,B,C and two output D and C'.
A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage,
D is the difference output and C' is the borrow output.

M.JOSHNA

Truth Table Circuit Diagram

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output
lines. One of these outputs will be active High based on the combination of inputs
present, when the decoder is enabled. That means decoder detects a particular code.
The outputs of the decoder are nothing but the min terms of ‘n’ input variables
lineslines, when it is enabled.

Decoder
A decoder is a combinational circuit. It has n input and to a maximum m = 2n outputs.
Decoder is identical to a demultiplexer without any data input. It performs operations
which are exactly opposite to those of an encoder.

Block diagram

Examples of Decoders are following.

1. Code converters
2. BCD to seven segment decoders

M.JOSHNA

3. Nixie tube decoders
4. Relay actuator

2 to 4 Line Decoder
The 2-to-4 line binary decoder consists of an array of four AND gates. The 2 binary inputs
labelled A and B are decoded into one of 4 outputs, hence the description of 2-to-4 binary
decoder. Each output represents one of the minterms of the 2 input variables,

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two inputs
where D through D are the four outputs. Truth table explains the operations of a
decoder. It shows that each output is 1 for only a specific combination of inputs.

Block diagram Truth Table Logic Circuit

3to8 line Decoder

M.JOSHNA

How do you implement a half adder using a 2to4 line decoder?

By connecting an OR gate with output line 1 & 2 of 2X4 Decoder. Half Adder
can be implemented with 2X4 decoder. Similarly by connecting two Half Adders, we
can form a Full Adder by using 2, 2X4 Decoder
Full Adder implementation using 2to8 decoder

Full adder using decoder and NAND gates

M.JOSHNA

2 to 4 Decoder
Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block
diagram of 2 to 4 decoder is shown in the following figure.

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is
‘1’. The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3=E.A1.A0Y3=E.A1.A0

Y2=E.A1.A0′Y2=E.A1.A0′

Y1=E.A1′.A0Y1=E.A1′.A0

Y0=E.A1′.A0′Y0=E.A1′.A0′
Each output is having one product term. So, there are four product terms in total. We
can implement these four product terms by using four AND gates having three inputs

M.JOSHNA

each & two inverters. The circuit diagram of 2 to 4 decoder is shown in the following
figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input
variables A1 & A0, when enable, E is equal to one. If enable, E is zero, then all the
outputs of decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0
and 4 to 16 decoder produces sixteen min terms of four input variables A3, A2, A1 & A0.

Implementation of Higher-order Decoders
Now, let us implement the following two higher-order decoders using lower-order
decoders.

1. 3 to 8 decoder
2. 4 to 16 decoder

3 to 8 Decoder
In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know
that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to
8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0.

We can find the number of lower order decoders required for implementing higher
order decoder using the following formula.

M.JOSHNA

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoder
s=m

2m1

Where,

m1m1 is the number of outputs of lower order decoder. m2m2 is the number
of outputs of higher order decoder. Here, m1m1 = 4 and m2m2 = 8.
Substitute, these two values in the above formula.

Requirednumberof2to4decoders=84=2Requirednumberof2to4decoders=84=2

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The
block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following
figure.

The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of
input A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs,
Y3 to Y0. These are the lower four min terms. The input, A2 is directly connected to
Enable, E of upper 2 to 4 decoder in order to get the outputs, Y7 to Y4. These are the
higher four min terms.

4 to 16 Decoder
In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know
that 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. Whereas,
4 to 16 Decoder has four inputs A3, A2, A1 & A0 and sixteen outputs, Y15 to Y0

We know the following formula for finding the number of lower order decoders
required.

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoder
s=m

2m1

Substitute, m1m1 = 8 and m2m2 = 16 in the above formula.
Requirednumberof3to8decoders=168=2Requirednumberof3to8decoders=168=2

M.JOSHNA

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The
block diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following
figure.

The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of
input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs,
Y7 to Y0. These are the lower eight min terms. The input, A3 is directly connected to
Enable, E of upper 3 to 8 decoder in order to get the outputs, Y15 to Y8. These are the
higher eight min terms.

Encoder
Encoder is a combinational circuit which is designed to perform the inverse operation
of the decoder. An encoder has n number of input lines and m number of output lines.
An encoder produces an m bit binary code corresponding to the digital input number.
The encoder accepts an n input digital word and converts it into an m bit another
digital word.

Block diagram

Examples of Encoders are following.

1. Priority encoders

M.JOSHNA

2. Decimal to BCD encoder
3. Octal to binary encoder
4. Hexadecimal to binary encoder

Priority Encoder
This is a special type of encoder. Priority is given to the input lines. If two or more
input line are 1 at the same time, then the input line with highest priority will be
considered. There are four input D0, D1, D2, D3 and two output Y0, Y1. Out of the four
input D3 has the highest priority and D0 has the lowest priority. That means if D3 = 1
then Y1 Y1 = 11 irrespective of the other inputs. Similarly if D3 = 0 and D2 = 1 then Y1
Y0 = 10 irrespective of the other inputs.

Block diagram Truth Table Logic Circuit

M.JOSHNA

An Encoder is a combinational circuit that performs the reverse operation of Decoder.
It has maximum of 2n input lines and ‘n’ output lines. It will produce a binary code
equivalent to the input, which is active High. Therefore, the encoder encodes 2n input
lines with ‘n’ bits. It is optional to represent the enable signal in encoders.

4 to 2 Encoder
Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block
diagram of 4 to 2 Encoder is shown in the following figure.

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary
code at the output. The Truth table of 4 to 2 encoder is shown below.
 Inputs Out puts

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

M.JOSHNA

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as

A1=Y3+Y2A1=Y3+Y2

A0=Y3+Y1A0=Y3+Y1

We can implement the above two Boolean functions by using two input OR gates.
The circuit diagram of 4 to 2 encoder is shown in the following figure.

The above circuit diagram contains two OR gates. These OR gates encode the four
inputs with two bits

Octal to Binary Encoder
Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0. Octal
to binary encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary
Encoder is shown in the following figure.

M.JOSHNA

At any time, only one of these eight inputs can be ‘1’ in order to get the respective
binary code. The Truth table of octal to binary encoder is shown below.
 Inputs Outputs

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

From Truth table, we can write the Boolean functions for each output as

A2=Y7+Y6+Y5+Y4A2=Y7+Y6+Y5+Y4

A1=Y7+Y6+Y3+Y2A1=Y7+Y6+Y3+Y2

A0=Y7+Y5+Y3+Y1A0=Y7+Y5+Y3+Y1

We can implement the above Boolean functions by using four input OR gates. The
circuit diagram of octal to binary encoder is shown in the following figure.

M.JOSHNA

The above circuit diagram contains three 4-input OR gates. These OR gates encode
the eight inputs with three bits.

Drawbacks of Encoder
Following are the drawbacks of normal encoder.

1. There is an ambiguity, when all outputs of encoder are equal to zero. Because,
it could be the code corresponding to the inputs, when only least significant
input is one or when all inputs are zero.

2. If more than one input is active High, then the encoder produces an output,
which may not be the correct code. For example, if both Y3 and Y6 are ‘1’, then
the encoder produces 111 at the output. This is neither equivalent code
corresponding to Y3, when it is ‘1’ nor the equivalent code corresponding to Y6,
when it is ‘1’.

So, to overcome these difficulties, we should assign priorities to each input of
encoder. Then, the output of encoder will be the binarybinary code corresponding to
the active High inputss, which has higher priority. This encoder is called as priority
encoder.

Priority Encoder
A 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. Here,
the input, Y3 has the highest priority, whereas the input, Y0 has the lowest priority. In
this case, even if more than one input is ‘1’ at the same time, the output will be the
binarybinary code corresponding to the input, which is having higher priority.
We considered one more output, V in order to know, whether the code available at
outputs is valid or not.

1. If at least one input of the encoder is ‘1’, then the code available at outputs is
a valid one. In this case, the output, V will be equal to 1.

2. If all the inputs of encoder are ‘0’, then the code available at outputs is not a
valid one. In this case, the output, V will be equal to 0.

The Truth table of 4 to 2 priority encoder is shown below.

 Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

M.JOSHNA

1 x x x 1 1 1

Use 4 variable K-maps for getting simplified expressions for each output.

The simplified Boolean functions are

A1=Y3+Y2A1=Y3+Y2

A0=Y3+Y2′Y1A0=Y3+Y2′Y1

Similarly, we will get the Boolean function of output, V as

V=Y3+Y2+Y1+Y0V=Y3+Y2+Y1+Y0

We can implement the above Boolean functions using logic gates. The circuit
diagram of 4 to 2 priority encoder is shown in the following figure.

The above circuit diagram contains two 2-input OR gates, one 4-input OR gate, one
2input AND gate & an inverter. Here AND gate & inverter combination are used for

M.JOSHNA

producing a valid code at the outputs, even when multiple inputs are equal to ‘1’ at
the same time. Hence, this circuit encodes the four inputs with two bits based on the
priority assigned to each input.

Multiplexers
Multiplexer is a special type of combinational circuit. There are n-data inputs, one
output and m select inputs with 2m = n. It is a digital circuit which selects one of the
n data inputs and routes it to the output. The selection of one of the n inputs is done
by the selected inputs. Depending on the digital code applied at the selected inputs,
one out of n data sources is selected and transmitted to the single output Y. E is called
the strobe or enable input which is useful for the cascading. It is generally an active
low terminal that means it will perform the required operation when it is low.

Block diagram

Multiplexers come in multiple variations

1. 2 : 1 multiplexer
2. 4 : 1 multiplexer
3. 16 : 1 multiplexer
4. 32 : 1 multiplexer

Block Diagram Truth Table

M.JOSHNA

Demultiplexers
A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one
input and distributes it over several outputs. It has only one input, n outputs, m select
input. At a time only one output line is selected by the select lines and the input is
transmitted to the selected output line. A de-multiplexer is equivalent to a single pole
multiple way switch as shown in fig.

Demultiplexers comes in multiple variations.

1. 1 : 2 demultiplexer
2. 1 : 4 demultiplexer
3. 1 : 16 demultiplexer
4. 1 : 32 demultiplexer

Block diagram Truth Table

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’ selection
lines and single output line. One of these data inputs will be connected to the output
based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and
ones. So, each combination will select only one data input. Multiplexer is also called
as Mux.

4x1 Multiplexer
4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one
output Y. The block diagram of 4x1 Multiplexer is shown in the following figure.

M.JOSHNA

One of these 4 inputs will be connected to the output based on the combination of
inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown
below.

Selecti on Lines Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean function for output, Y as

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3

We can implement this Boolean function using Inverters, AND gates & OR gate. The
circuit diagram of 4x1 multiplexer is shown in the following figure.

M.JOSHNA

We can easily understand the operation of the above circuit. Similarly, you can
implement 8x1 Multiplexer and 16x1 multiplexer by following the same procedure.

Implementation of Higher-order Multiplexers.
Now, let us implement the following two higher-order Multiplexers using lower-order
Multiplexers.

• 8x1
Multiplexer •
 16x1
Multiplexer

8x1 Multiplexer
In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1
Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one
output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs.
Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output.

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0
and one output Y. The Truth table of 8x1 Multiplexer is shown below.

 Selection Inputs Output

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

We can implement 8x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 8x1 Multiplexer is shown in
the following figure.

M.JOSHNA

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data
inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer
are I3 to I0. Therefore, each 4x1 Multiplexer produces an output based on the values
of selection lines, s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer
that is present in second stage. The other selection line, s2 is applied to 2x1
Multiplexer.

1. If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to
I0 based on the values of selection lines s1 & s0.

2. If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4
based on the values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer
performs as one 8x1 Multiplexer. 16x1 Multiplexer
In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1
Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one
output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one
output.

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs.
Since, each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output.

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0
and one output Y. The Truth table of 16x1 Multiplexer is shown below.

 Selection Inputs Output

M.JOSHNA

S3 S2 S1 S0 Y

0 0 0 0 I0

0 0 0 1 I1

0 0 1 0 I2

0 0 1 1 I3

0 1 0 0 I4

0 1 0 1 I5

0 1 1 0 I6

0 1 1 1 I7

1 0 0 0 I8

1 0 0 1 I9

1 0 1 0 I10

1 0 1 1 I11

1 1 0 0 I12

1 1 0 1 I13

1 1 1 0 I14

1 1 1 1 I15

We can implement 16x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 16x1 Multiplexer is shown
in the following figure.

M.JOSHNA

The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data
inputs of upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer
are I7 to I0. Therefore, each 8x1 Multiplexer produces an output based on the values
of selection lines, s2, s1 & s0.

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer
that is present in second stage. The other selection line, s3 is applied to 2x1
Multiplexer.

1. If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to
I0 based on the values of selection lines s2, s1 & s0.

2. If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to
I8 based on the values of selection lines s2, s1 & s0.

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer
performs as one 16x1 Multiplexer.

De-Multiplexer is a combinational circuit that performs the reverse operation of

M.JOSHNA

Multiplexer. It has single input, ‘n’ selection lines and maximum of 2n outputs. The
input will be connected to one of these outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and
ones. So, each combination can select only one output. De-Multiplexer is also called
as De-Mux.

1x4 De-Multiplexer
1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2,
Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the
values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown
below.

Selection Inputs O utputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each
output as

Y3=s1s0IY3=s1s0I

Y2=s1s0′IY2=s1s0′I

M.JOSHNA

Y1=s1′s0IY1=s1′s0I

Y0=s1′s0′IY0=s1′s0′I

We can implement these Boolean functions using Inverters & 3-input AND gates. The
circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

We can easily understand the operation of the above circuit. Similarly, you can
implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same
procedure.

Implementation of Higher-order De-Multiplexers
Now, let us implement the following two higher-order De-Multiplexers using lower-
order De-Multiplexers.

1. 1x8 De-Multiplexer
2. 1x16 De-Multiplexer

1x8 De-Multiplexer
In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and
1x2 De-Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection
lines and four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection
lines and eight outputs.

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight
outputs. Since, the number of inputs in second stage is two, we require 1x2
DeMultiplexer in first stage so that the outputs of first stage will be the inputs of
second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x8 De-
Multiplexer.

M.JOSHNA

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs
Y7 to Y0. The Truth table of 1x8 De-Multiplexer is shown below.

Selection Inputs Outputs

s2 s1 s0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 I

0 0 1 0 0 0 0 0 0 I 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

1 0 0 0 0 0 I 0 0 0 0

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 I 0 0 0 0 0 0 0

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 1x8 De-Multiplexer is shown
in the following figure.

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The
outputs of upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4
DeMultiplexer are Y3 to Y0.

M.JOSHNA

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of
the four outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the
values of selection lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of
upper 1x4 DeMultiplexer will be equal to input, I based on the values of selection lines
s1 & s0.

1x16 De-Multiplexer
In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and
1x2 De-Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection
lines and eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection
lines and sixteen outputs.

So, we require two 1x8 De-Multiplexers in second stage in order to get the final
sixteen outputs. Since, the number of inputs in second stage is two, we require 1x2
DeMultiplexer in first stage so that the outputs of first stage will be the inputs of
second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x16 De-
Multiplexer.

Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and
outputs Y15 to Y0. The block diagram of 1x16 De-Multiplexer using lower order
Multiplexers is shown in the following figure.

M.JOSHNA

The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The
outputs of upper 1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8
DeMultiplexer are Y7 to Y0.

The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero, then one of
the eight outputs of lower 1x8 De-Multiplexer will be equal to input, I based on the
values of selection lines s2, s1 & s0. Similarly, if s3 is one, then one of the 8 outputs of
upper 1x8 De-Multiplexer will be equal to input, I based on the values of selection
lines s2, s1 & s0.

M.JOSHNA

M.JOSHNA

UNIT-3: Computer Arithmetic and Process Organization

Computer Arithmetic: Algorithms for fixed point and floating point addition, subtraction,

multiplication and division operations.

Processor Organization: Introduction to CPU, Execution of a Complete Instruction, Multiple-

Bus Organization, Hardwired Control and Multi programmed Control.

Computer Arithmetic:

Data is manipulated by using the arithmetic instructions in digital computers. Data is

manipulated to produce results necessary to give solution for the computation problems. The

Addition, subtraction, multiplication and division are the four basic arithmetic operations. If

we want then we can derive other operations by using these four operations. To execute

arithmetic operations there is a separate section called arithmetic processing unit in central

processing unit. The arithmetic instructions are performed generally on binary or decimal data.

Fixed-point numbers are used to represent integers or fractions. We can have signed or

unsigned negative numbers. Fixed-point addition is the simplest arithmetic operation. If we

want to solve a problem then we use a sequence of well-defined steps. These steps are

collectively called algorithm. To solve various problems we give algorithms. In order to solve

the computational problems, arithmetic instructions are used in digital computers that

manipulate data. These instructions perform arithmetic calculations. And these instructions

perform a great activity in processing data in a digital computer. As we already stated that with

the four basic arithmetic operations addition, subtraction, multiplication and division, it is

possible to derive other arithmetic operations and solve scientific problems by means of

numerical analysis methods. A processor has an arithmetic processor(as a sub part of it) that

executes arithmetic operations. The data type, assumed to reside in processor, registers during

the execution of an arithmetic instruction. Negative numbers may be in a signed magnitude or

signed complement representation. There are three ways of representing negative fixed point -

binary numbers signed magnitude, signed 1’s complement or signed 2’s complement. Most
computers use the signed magnitude representation for the mantissa.

M.JOSHNA

Algorithms for fixed point and floating point addition,

subtraction, multiplication and division operations:

In a computer, the basic arithmetic operations are Addition and Subtraction. Multiplication

and Division can always be managed with successive addition or subtraction respectively.

However, hardware algorithms are implemented for Multiplication and Division.

It is to be recollected that computers deal with binary numbers unless special hardware is

implemented for dealing with other number systems. Although instructions may be available

for treating signed and unsigned operations, the programmer must deal with the numbers and

handling of the result. The hardware assists the programmer by way of appropriate instructions

and flags.

Addition

Adding two numbers is an addition. We may add signed or unsigned numbers. When we add

two numbers, say 8 and 5, the result is 13 i.e. while adding two single-digit numbers, we may

get a two-digit number in the result. A similar possibility exists in the binary system too. Thumb

rule of binary addition is:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

Examples (a –e) of unsigned binary addition are given in figure 8.1.

Figure 8.1 Examples of binary Addition

Adder

The hardware circuit which executes this addition is called Adder. There are two types of

adders namely Half adder and Full adder. Basic adder circuit does 1-bit addition and is

extended for n-bit addition. The adder circuit characteristics are detailed by a circuit, a truth

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction
https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction

M.JOSHNA

table, Formula and a block symbol. The adder circuits are constructed from logic gates which

satisfy the formula as per truth table. These are also called combinational logic. A

Combinational logic output reflects the input without clocking.

Figure 8.2 Half adder

The Half Adder (HA) has two inputs (A, B) and two outputs (Sum and Carry). The Sum is

XOR of input while the Carry is AND of the input. The Half Adder is detailed in figure 8.2.

A Full Adder (FA) also performs 1-bit addition but taking 3 inputs (A, B and Ci) and produces

two outputs (Sum and Carry). Like HA, FA generates result consisting of Sum (S) and Carry

out (Cout). Cout is used as Ci+1 while cascading for multiple bits of a word. Full Adder is detailed

in figure 8.3. A full adder can also be constructed using half adder blocks as in figure 8.4.

Figure 8.3 Full adder

Figure 8.4 Full Adder using Half Adder blocks

M.JOSHNA

Subtraction

Subtraction is finding the difference of B from A i.e A-B. Basis of binary subtraction is:

 0 - 0 = 0

 0 - 1 = -1

 1 - 0 = 1

 1 - 1 = 0

Of course, the usual borrow logic from the adjacent digit is applied as in the case of decimal

numbers. Examples of signed binary Subtraction is as below:

Examples of signed binary subtraction

You may note that the above examples are in sign-magnitude representation. In sign-magnitude

form, MSB is reserved for sign representation. This is only for basic understanding. Computers

internally use 2’s complement representation.

Recall: In 2’s complement representation MSB is sign bit, (n-1) bits of the represent magnitude

of the number. Conversion sample for 8-bit word is shown in figure 8.5.

M.JOSHNA

Figure 8.5 1's and 2's Complement Representation

2's Complement for Subtraction

"1's complement + 1 = 2's complement"

Generating this 2's complement is very simple using an XOR circuit. The XOR circuit will

generate 1's complement. A control signal called SUBTRACT is used as add value of 1. This

way, an adder executes subtraction. See the example below, where case (b), case (c) and case

(e) are worked out as 2's complement representation; and A-B becomes A + (2's

complement(B)). The result is obtained in 2's complement form discarding the carry. Observe

that this method works for all kind of data.

M.JOSHNA

Interpreting 2's complement numbers

• Observe the sign bit (MSB)

• If '0', the number is positive; the (n-1) bits mean the absolute value of the number in

binary

• If '1', the number is negative; (n-1) bits mean the 2’s complement value of the number
in binary; Invert the (n-1) bits and add 1 to get the absolute value of this negative

number.

Error Detection and Status Flags

No one does maths perfectly, but computers can do, provided your data is right! There is a

probability that your data may not be rightly defined or may be out of range. For this reason,

the CPU detects certain errors like OVERFLOW(O), UNDERFLOW(U) and CARRY(C). It

also detects SIGN(S) and ZERO(Z) status. The acronym is ZSOC (Zero, sign, Overflow and

Carry) as many processors may treat overflow and underflow together as out of range. The

detection is done by the Arithmetic and Logic Unit (ALU) of the CPU. Upon detection

corresponding flag is set to ON status. These flags have bit positions allotted in the Processor

Status Register and most famously known as Processor Status Word (PSW). ZSOC flags are

collectively known as Condition Codes. The purpose of these Condition Codes status flags is

to facilitate the programmer to catch data dependant errors and act accordingly.

Overflow: To put in simple English, when a result obtained exceeds the maximum number

possible to be represented, Overflow is said to occur. In other words, the addition of two

numbers with sign bit ‘0’ resulting in value with sign bit '1' is said to be an OVERFLOW.

For example : An 8 bit word can maximum represent +127 decimal, 01111111 in binary. If we

add, 120 + 10 -> 130;

 120 -> 0111 1000

 10 -> 0000 1010

 1000 0010 -> in sign magnitude form, MSB (Mos significant bit) '1'

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction

M.JOSHNA

 means negative number while we expect +130

Max is +127, hence this is an overflow scenario

In Overflow scenario, the result is wrong and this needs to be communicated to the

programmer/user that there is an error encountered. This situation is detected by the CPU

hardware and sets a status bit called "OVERFLOW". The user, if interested, can catch this error

by reading this OVERFLOW status bit and take necessary action over the data handling.

Underflow: While Overflow is related to positive magnitude, Underflow is related to negative

magnitude for the same reasons. As an example, when you add two negative numbers like -

120 and -10, the result expected is -130 which is beyond the representable range in an 8-bit

signed word definition. This is a scenario of UNDERFLOW. In other words, the addition of

two numbers with sign bits '1' resulting in a number with sign bit '0' is said to be

UNDERFLOW. The CPU hardware detects and sets a status bit called UNDERFLOW to this

effect. Again, this status bit is accessible to the programmer/user to take necessary action over

the data handling.

Carry: CARRY is another status detected and set by CPU while executing arithmetic

instructions. CARRY flag is relevant to Unsigned arithmetic operations while OVERFLOW

and UNDERFLOW are relevant to signed operations.

The CARRY Flag is set by the CPU at the end of arithmetic operations if there is a Carry (Cout)

out of the most significant bit of the word. The Carry is set at the end of an execution cycle of

the addition or subtraction instructions. Many CPUs do not differentiate between signed and

unsigned operations, in which case the CARRY and OVERFLOW may both be set by the CPU.

However, there are CPUs which have different instruction codes and instructions for signed

and unsigned integer operations and in this case, the CPU appropriately sets the CARRY or

OVERFLOW flag.

Never forget that it is the programmer who decides whether he is operating with signed or

unsigned numbers. So the programmer has to decide whether he should catch OVERFLOW,

UNDERFLOW or CARRY flag for error detection and corrective action.

ZERO: At the end of an instruction execution cycle, if the accumulator value is zero, this status

bit is set by CPU. This could be a possibility at the end of arithmetic or logical instructions or

load instructions.

SIGN: Sign bit reflects the MSB of the accumulator. This is also set at the end of Instruction

execution cycle.

n-Bit Adder Formation

A 4-bitFull Adder is integrated by cascading four numbers of 1-bit adders as in figure 8.6.

When cascaded the Cout of ith goes as Cin of i+1th position and hence the carry is said to be

propagated. S is the Sum bits, Cout is the final Carry out of the adder. A and B are the input

M.JOSHNA

numbers. Ci is carry-in if available. Such cascading can be extended to any number of bits using

1-bit FA or n-bit FA blocks.

Figure 8.6 4-bit Ripple Carry Full Adder

This method of Adder expansion is known as Spatial Expansion as the output of all the n-bits

are available at the same time as 1-bit operation, probably in one clock cycle. Spatial expansion

is also known as Parallel Adder. The other name for this method is Ripple Carry adder as the

carry is propagated internally. However, for large n-value, the carry propagation delay for clean

and settled output proportionately increases. This is a disadvantage of Ripple Carry Adder

which is solved by Carry-Look-Ahead Adder Technique.

Carry Look Ahead Adder

This is also a spatial expansion and ripple carry type. The Carry Look Ahead Adder (CLA)

uses specialized logic called Carry Look ahead Logic to compute carries in parallel and hence

is faster than Ripple Carry Adder.

Figure 8.7 4-bit

Carry Look Ahead Full Adder

M.JOSHNA

CLA Adder generates two other signals namely Propagate Carry and Generate Carry which

can be used by the next stage for Carry Calculation.

Propagate Carry Pi = Ai + Bi

i.e when either of the number has '1' in the bit position, the carry is likely depending on the Ci

Generate Carry Gi = AiBi

i.e. when both the numbers have '1' in their bit position in which case carry is sure to be

generated.

We already have defined the formula for Sum and Carry as

S = A ⊕ B ⊕ Ci

Cout = AB + Ci(A+B)

The carry formula can be rewritten in terms of Propagate and Generate carry as Cout = Pi + CiGi.

In a Carry look-ahead adder, the carries are computed in parallel using carry look-ahead logic,

in one gate delay as compared to 2-gate delays per bit in the case of Ripple carry adder.

 Implementation of Multiplication and Division.

Multiplication

Just recall with micro details as to how do we do multiplication using pen and paper. Then it is

easier to visualize that it is possible to implement a hardware algorithm.

 Multiplicand M = 12 1100

 Multiplier Q = 11 x1011

 1100

 1100

 0000

 1100

M.JOSHNA

 Product P = 132 10000100

As you see, we start with LSB of the Multiplier Q, multiply the Multiplicand, the partial product

is jotted down. Then we used the next higher digit of Q to multiply the multiplicand. This time

while jotting the partial product, we shift the jotting to the left corresponding to the Q–digit

position. This is repeated until all the digits of Q are used up and then we sum the partial

products. By multiplying 12x11, we got 132. You may realize that we used binary values and

the product also in binary. Binary multiplication was much simpler than decimal multiplication.

Essentially this is done by a sequence of shifting and addition of multiplicand when the

multiplier consists only of 1's and 0's. This is true and the same, in the case of Binary

multiplication. Binary multiplication is simple because the multiplier would be either a 0 or 1

and hence the step would be equivalent to adding the multiplicand in proper shifted position or

adding 0's.

It is to be observed that when we multiplied two 4-bit binary numbers, the product obtained is

8-bits. Hence the product register (P) is double the size of the M and Q register. The sign of

the product is determined from the signs of multiplicand and multiplier. If they are alike, the

sign of the product is positive. If they are unlike, the sign of the product is negative.

Unsigned Multiplication

When multiplication is implemented in a digital computer, it is convenient to change the

process slightly. It is required to provide an adder for the summation of only two binary

numbers and successively accumulate the partial products in a register. The registers, Shift

Counter and the ALU width is decided by the word size of the CPU. For simplicity of

understanding, we will take 4-bit word length i.e the Multiplier (Q) and Multiplicand (M) are

both 4-bits sized. The logic is extrapolated to the word size requirement.

We need registers to store the Multiplicand (M) and Multiplier (Q) and each 4-bits. However,

we use 8-bit register which is standard and minimum and hence the register to collect Product

(P) is 16-bits. Refer to figure 9.1. The Shift counter keeps track of the number of times the

addition is to be done, which is equal to the number of bits in Q. The shifting of the contents

of the registers is taken care of by shift register logic. The ALU takes care of addition and

hence partial product and product are obtained here and stored in P register. The control unit

controls the cycles for micro-steps. The product register holds the partial results. The final

result is also available in P when the shift counter reaches the threshold value.

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-multiplication

M.JOSHNA

Figure 9.1 Data path for typical Multiplication

The flowchart for the unsigned multiplication is shown in figure 9.2 and table 9.1 explains the

work out with an example of 12 x 11 values. The flowchart is self-explanatory of the unsigned

multiplication algorithm. In an unsigned multiplication, the carry bit is used as an extension of

the P register. Since the Q value is a 4-bit number, the algorithm stops when the shift counter

reaches the value of 4. At this point, P holds the result of the multiplication.

M.JOSHNA

Figure 9.2 Flowchart for

Unsigned Multiplication algorithm

Table 9.1 Workout for unsigned multiplication (12 x 11 = 132)

Operation Step

Shift Counter

Value

Multiplicand

M

Multiplier

Q Product P

Initial Values for multiplication of 12x11 0 1100 1011 0000 0000

Q0 = 1, So, Left half of P <- Left half of P +

M

0 1100 1011 1100 0000

Shift Right P, Shift Right Q 0 1100 0101 0110 0000

SC <- SC + 1 1 1100 0101 0110 0000

Q0 = 1, So, Left half of P <- Left half of P +

M

1 1100 0101 10010

0000

M.JOSHNA

Table 9.1 Workout for unsigned multiplication (12 x 11 = 132)

Operation Step

Shift Counter

Value

Multiplicand

M

Multiplier

Q Product P

Shift Right P, Shift Right Q 1 1100 0010 1001 0000

SC <- SC + 1 2 1100 0010 1001 0000

Q0 = 0, do nothing 2 1100 0010 1001 0000

Shift Right P, Shift Right Q 2 1100 0001 0100 1000

SC <- SC + 1 3 1100 0001 0100 1000

Q0 = 1, So, Left half of P <- Left half of P +

M

3 1100 0001 10000

1000

Shift Right P, Shift Right Q 3 1100 0000 1000 0100

SC <- SC + 1 4 1100 0000 1000 0100

Signed Multiplication

Signed numbers are always better handled in 2's complement format. Further, the earlier signed

algorithm takes n steps for n digit number. The multiplication process although implemented

in hardware 1-step per digit is costly in terms of execution time. Booths algorithm addresses

both signed multiplication and efficiency of operation.

Booth's Algorithm

Booth observed that multiplication can also be done with mixed additions and subtractions,

instead of only additions. And it deals with signed multiplication as well.

The motivation for Booth's Algorithm is that ALU with add or subtract can get the same

result in more than one way .i.e. the multiplier 6 can be dealt as:

6 = – 2 + 8

Booth's Algorithm categorises the multiplier as the run of 1's and further as begin, middle and

end of runs. The run is identified as below for a number 01110.

M.JOSHNA

Run of 1's

Based on the run status, the operation to be performed in the multiplication process is defined

as in table 9.2. The values of the current bit (Q0) and the outgoing bit (Qe) of the multiplier

decide the operation to be performed. By this, the multiplication is achieved in less number of

cycles based on the multiplier. A multiplier may have many combinations of runs based on its

value. This algorithm is sensitive to bit patterns of Multiplier. A pattern like 01010101 may be

the worse as it has many begin and end runs necessitating as many additions and subtractions

and may not save cycle time. But by and large Booth’s algorithm saves cycles.

Table 9.2 Booth Encoding for Multiplication – Operation regarding the run

Current Bit

(Q0)

Bit to the right

(Qe) Explaination Example Operation

1 0 Begins run of 1s 0001111000 Subtract multiplicand from partial

product

1 1 Middle of run of

1s

0001111000 No arithmetic operation

0 1 End of run of 1s 0001111000 Add multiplicand to partial product

0 0 Middle of run of

0s

0001111000 No arithmetic operation

Booth's algorithm uses Arithmetic Shift Right for collecting partial product. Arithmetic Shift

right is a sign-extended shift; i.e if the sign bit is 0, then 0 is extended while shifting; if the sign

bit is 1, then 1 is extended while shifting. For this reason, n+1 is the register size. You may

observe this in our work out in table 9.3. The work out is for (-12x -11). This example is taken

to demonstrate the outcome of signed multiplication with Booth's algorithm. Both multiplicand

(M) and Multiplier (Q) use 5-bits as against 4-digit binary number.

The partial product and Product is collected in P and Q register. The Q register initially holds

the Multiplier; as it gets shifted out with every digit multiplication, the space in Q register is

occupied by partial product. Qe is a 1-bit register holding the outgoing bit. Together PQQe is

treated as one entity during the arithmetic shift, whereas only P is considered for addition or

subtraction of multiplicand. The multiplicand is loaded in M. Both Multiplicand and Multiplier

M.JOSHNA

are loaded in the simple binary form if these are positive numbers and in 2's complement form

if these are negative numbers. The shift counter stops the operation once it reaches the digit

count of Q, in this case, 4. Q0Qe are evaluated at every step to decide the operation to be carried

out on M and P.

Table 9.3 Booth's Signed Multiplication

It is seen that the resulting Product of multiplying two negative numbers is a positive number

which is correct. One need not handle the signs separately. It is handled as part of the algorithm.

The flow chart and the datapath may be drawn by an interested reader as an exercise or the

reader may contact the author.

There is a category of Multipliers called Array multiplier which avoids this sequential operation

and produces the result at once. These require a large number of gates for implementation.

However, with the advancement in VLSI, it is a reality. Different CPUs have different

implementations.

M.JOSHNA

DIVISION:

Performing division is a difficult task as we have seen in case of fixed point

arithmetic also. Divider architectures are complex to implement. Floating point

division is nothing but a fixed point division with some extra hardwares to take

care for the exponents. This extra hardwares make the divider circuit more

complex. A floating point division where a number divides another

number can be expressed as

Thus it can be said that in a floating point division, mantissas are divided and

exponents are subtracted.

The major steps for a floating point division are

• Extract the sign of the result from the two sign bits.

• Find the magnitude of the difference between two exponents ().

Add to the bias if or subtract from the bias if .

• Divide mantissa of () by mantissa of () considering the hidden

bits.

• If there is a leading zero then normalize the result by shifting it left.

• Due to the normalization, the exponent is to be decremented according to

the number of left shifts.

Floating point division can be more clearer with an example. Lets discuss a

division operation between two numbers and . The result of the

division operation is .

Example : Floating Point Division

• Representation: The input operands are represented

as and

• Sign extraction: As one of the number is negative then sign of the output

will be negative. Thus .

M.JOSHNA

• Exponent subtraction: and . Thus magnitude of their

difference is . As thus the resulted exponent

is .

• Mantissa division: Divide the mantissas by any division algorithm used in

the fixed point arithmetic. Considering the hidden bits, the division

operation is restricted to 12-bits. The result of the division is .

• There is a leading zero in the result thus a left shift can be applied to

normalize the result. Thus the new result is . The final value

of the mantissa () is excluding the hidden bit.

• The action of normalization step must reflect on exponent correction. The

value of the exponent is corrected by a decrement corresponding to a left

shift. The new value of the exponent () is .

• The final result is . The decimal value of this

is .

A simple architecture for floating point division is shown below in Figure 1 .

There are three 4-bit subtractors used in the divider architecture, two for exponent

subtraction and one for correction of exponents. The major hardware block is the

divider block. The divider used here is a 12-bit unsigned divider and that can be

any divider circuit as discussed in the blog for division. If the result of the divider

contains any leading zero then normalizing step is executed. But here in this case,

as the hidden bit is also considered thus the result can not go below . Thus

there will be maximum of one leading zero present in the result. This why only

the MSB of the result () is considered and left shift block shifts only by one bit.

Pipeline registers are also must be inserted according to the pipe lining stages of

the divider.

https://digitalsystemdesign.in/division-algorithms/

M.JOSHNA

Figure 1: A Basic Scheme for Floating Point Division

Introduction to CPU

Introduction to CPU (Central Processing Unit)

The CPU (Central Processing Unit) is the brain of the computer

responsible for executing instructions of a program. It interprets,

controls, and processes the data stored in memory using arithmetic

and logical operations.

M.JOSHNA

In Digital Logic Design & Computer Organization (DLD&CO), the

CPU is studied as the control and execution unit of the computer

system.

1. Functional Role of CPU

• Fetches instructions from memory.

• Decodes the instructions to understand what operation to

perform.

• Executes the instructions using ALU and registers.

• Stores results back into registers or memory.

This cycle is called the Instruction Cycle (Fetch → Decode →
Execute → Store).

2. Major Components of CPU

1. Arithmetic Logic Unit (ALU):

o Performs arithmetic operations (addition, subtraction,

multiplication, division).

o Performs logical operations (AND, OR, NOT, XOR,

comparison).

2. Control Unit (CU):

o Directs the flow of data between memory, ALU, and I/O

devices.

o Generates control signals for execution of instructions.

o Ensures proper sequencing of instruction cycle.

3. Registers:

M.JOSHNA

o Small, high-speed storage units inside CPU.

o Examples:

▪ Program Counter (PC): Holds address of next

instruction.

▪ Instruction Register (IR): Holds current instruction.

▪ Accumulator (ACC): Stores intermediate results.

▪ General Purpose Registers (R0, R1, …): Temporary
storage.

▪ Memory Address Register (MAR) & Memory Data

Register (MDR): For memory communication.

3. CPU Organization

• Single Bus Organization: All units share a single

communication path.

• Multiple Bus Organization: Separate buses for instructions, data,

and control (faster).

4. Types of CPU Operations

• Data transfer (move, load, store).

• Arithmetic operations (+, –, ×, ÷).

• Logical operations (AND, OR, NOT, shift).

• Control operations (branch, jump, halt).

5. CPU Performance Factors

M.JOSHNA

• Clock Speed: Number of instructions executed per second.

• Word Length: Number of bits processed at a time.

• Instruction Set Architecture (ISA): Defines operations CPU can

perform (RISC, CISC).

• Number of Cores: Multiple processing units improve

performance.

Execution of a Complete Instruction

n the blog post on the von Neumann Architecture, we established that

the CPU consists of a control unit for processing the instructions sent

to the CPU, the arithmetic logic unit for performing the operations

specified in the instructions, and registers for storing instructions and

data that are immediately required by the CPU.

The fetch-decode-execute cycle makes use of these components in

addition to the memory unit.

In the fetch step of the cycle, the instructions are retrieved from the

memory unit (RAM) and stored in the registers on the CPU. Next, the

control unit decodes the instructions, which are then executed by the

arithmetic and logic unit. The results of the instruction execution are

sent back to RAM for storage, and the next instruction cycle begins.

What is CPU Clock Speed?

The number of instruction cycles a CPU can execute is stated as clock

speed and measured in Hertz. If a CPU has a clock speed of 2 700 000

000 Hertz or 2.7 GHz, it executes 2.7 billion instruction cycles per

second.

The Fetch Decode Execute Cycle Step By Step

https://programmathically.com/what-is-the-von-neumann-architecture/

M.JOSHNA

In the following section, we will walk through the operations

performed during the instruction cycle. Recall that a CPU has several

different registers

o Program counter

o Memory address register

o Memory data register

o Current instruction register

o Accumulator

For an explanation of what these registers do, check out my post

on von Neumann architecture.

What is a Fetch Cycle?

The instruction cycle begins with the fetch operation. The program

counter keeps track of the next instruction to be processed. A fetch

operation starts by loading the memory address of the next instruction

into the program counter. In the next step, the processor transfers the

address from the program counter to the memory address register and

subsequently loads the data stored at that memory location into the

memory data register. The program counter is automatically

incremented to the next memory location unless the current

instruction explicitly points to a different memory location for the

next instruction.

Let’s see how that works in practice using a concrete example:

1. The program counter initially points to the memory address 001

2. The memory address 001 is loaded into the memory address

register by the processor

3. The processor next retrieves the instruction stored at memory

address 001 and loads it into the memory data register.

https://programmathically.com/an-introduction-to-memory-registers/
https://programmathically.com/what-is-the-von-neumann-architecture/

M.JOSHNA

4. Since the data contains the instruction “Get 203”, it is forwarded
to the instruction register.

5. The program counter is incremented by 1, pointing to 002

6. The instruction in the instruction register is forwarded to the

control unit.

What is an Execute Cycle?

After the fetch operation, the instruction cycle continues with the

decode and execute portions. During the fetch stage, the control unit

has been supplied with the instruction. It now needs to decode the

instruction so that the processor can understand what to do next. In

our example, I’ve supplied the instruction in plain English, such as
“Get 203” which tells the processor to get the piece of data stored at
memory location 203. In memory, the instruction is supplied in

binary. For example, in a 16-bit memory, the first 4 bits may encode

the operation to be performed, while the remaining bits specify the

address from which to load the data.

Lastly, the processor will execute the instruction supplied. So if the

instruction is to get some other piece of data, the “execute” action will
consist of retrieving the data from the supplied memory address and

storing it in the appropriate register. If the instruction specifies a

calculation such as adding two numbers, the execution of the

calculation will be handed off to the arithmetic and logic unit (ALU)

Let’s continue with our concrete example:

1. The Control Unit decodes the instruction and tells the processor

to go to memory address 203 and fetch the piece of information

stored there.

2. The address 203, is stored in the memory address register.

M.JOSHNA

3. The data, the number 4, is stored in the memory data register.

4. The

5. Since the data is a number that will be necessary for a future

operation and not another instruction, the number is stored in the

accumulator.

This concludes the first fetch-decode-execute cycle. The processor

starts the next cycle by fetching the next instruction stored in the

program counter.

The fetching process is the same as in the previous cycle. This time,

the instructions tell the processor to add the number stored at memory

location 204 to the number currently stored in the accumulator.

After fetching the instruction, the processor retrieves the number

stored at memory address 204 and places it in the accumulator while

the previously stored number is forwarded to the arithmetic and logic

unit (ALU).

Then, the number 3 is also forwarded to the arithmetic and logic unit,

where the addition specified in the instruction is performed. Finally,

the result is returned to the accumulator, where it will sit until the next

instruction is executed.

In this example, we’ve used two instruction cycles to perform the
addition. But modern processors may also load several pieces of data

and perform calculations in one cycle.

M.JOSHNA

What is an Interrupt in Computer Organization and

Architecture?

As the term implies, an interrupt is a mechanism by which the normal

course of actions of the processor is interrupted. This may be

necessary for a variety of reasons, such as hardware failure or waiting

for an I/O operation to complete.

Interrupts are part of a broader class of events known as exceptions.

Exceptions essentially handle cases when the CPU encounters

conditions that interfere with normal processing.

The main utility of interrupts lies in their ability to improve

efficiency. Performing I/O operations is usually orders of magnitude

slower than normal processing. If the computer had to communicate

with an external device attached via USB, such as a flash drive,

without the use of interrupts, the processor would have to wait until

the i/O operation completes. The processor would spend thousands of

instruction cycles just polling the peripheral device, asking if it was

done processing without doing any useful work.

To make processing more efficient, the processor can receive an

interrupt signal from the I/O device enabling it to work on something

that is unrelated to the I/O operation while that operation is in

progress.

Once the I/O device is done with its operations and requires

communication with the processor, it sends an interrupt request signal

to the processor. The processor then interrupts the execution of its

current program and services the I/O device. This is achieved via a

special device known as the interrupt handler. When the processor is

finished with the I/O processing, it returns to the original process.

What happens during an Interrupt?

M.JOSHNA

Once an Interrupt signal arrives, the processor has to perform a series

of steps to handle the interrupt and continue processing:

o The CPU needs to save the current context as it exists in the

registers to memory. Some processor architectures push the

context onto a stack and then pop it off the stack. That way, they

can restore the previous context in reverse order.

o Secondly, the CPU needs to retrieve the instructions of the

interrupt handler from memory. The interrupt handler is

basically a set of instructions stored in memory. Each type of

interrupt has its own associated set of instructions.

o The CPU executes the instructions specified by the interrupt

handler

o After concluding the operations specified by the interrupt

handler, the CPU needs to restore the context of its previous

operations by loading the associated instructions and data into

the registers

o The CPU continues the previous flow of operations.

To include the handling of interrupts into the instruction cycle, an

additional interrupt cycle is included.

Source: “Computer Organization and Architecture” 10th Edition by
William Stallings

Multiple Interrupts

If multiple interrupts occur, there are essentially two options.

If an interrupt is currently being handled and a second interrupt

occurs, the processor can push the second and all subsequent

interrupts onto a stack and execute them in reverse sequential order.

This has the disadvantage that we cannot prioritize interrupts. If an

M.JOSHNA

I/O device that causes a notoriously long interrupt, like a printer, is

currently executing, all other interrupts would have to wait.

Alternatively, interrupts can be associated with priorities. If an

interrupt with a higher priority were to occur while a lower priority

interrupt is being handled, the lower priority interrupt would itself be

interrupted. The processor then would handle the higher-priority

interrupt first before turning back to the lower-priority one. Naturally,

the second approach engenders more complexity but is usually more

efficient.

Types of Interrupts

So far, we have focused on interrupts as caused by I/O devices. In

fact, there are several reasons for a processor to interrupt its course of

action leading to different types of interrupt handlers.

Failure of Hardware

A computer relies on electricity. If there is a power outage or

something overheats, the processor needs to be able to handle that

case when the underlying hardware fails. The hardware failure

handler also kicks in when there is an inconsistency in memory

access. For example, if a piece of data is different in memory when it

is accessed from when it was stored, it may cause system crashes.

Scheduled Interrupt

Interrupts may be generated by the processor on a regular basis to

perform updates or other functions that may be necessary.

Program Condition

If an error occurs during the execution of a program, the program

itself can trigger an interrupt. If you are a programmer, you probably

have run into buffer overflow errors or other errors generated when

executing your program. These errors are triggered when your

https://programmathically.com/memory-access-time-and-memory-cycle-time/
https://programmathically.com/memory-access-time-and-memory-cycle-time/

M.JOSHNA

program attempts to do something that the processor cannot or will

not handle. In that case, the processor will generate an interrupt or an

exception. In fact, good programmers anticipate potential modes of

failure and handle these through exceptions in their code.

I/O Devices

The controller of an I/O device can trigger interrupts as described

previously. They either start a new interrupt by requesting service

from the processor, signal normal completion of an I/O process, or

indicate an error condition.

MULTIPLE BUS ORGANIZATION:

Rout, R=B, IRin

R4outA, R5outB, SelectA, Add, R6in, End

• Instruction execution proceeds as follows:

Step 1--> Contents of PC are passed through ALU using R=B control-

signal and loaded into

MAR to start a memory Read operation. At the same time, PC is

incremented by 4.

Step2--> Processor waits for MFC signal from memory.

Step3--> Processor loads requested-data into MDR, and then transfers

them to IR.

Step4--> The instruction is decoded and add operation take place in a

single step.

M.JOSHNA

Note:

To execute instructions, the processor must have some means of

generating the control signals needed in the

proper sequence. There are two approaches for this purpose:

1) Hardwired control and 2) Microprogrammed control.

Hardwired Control and Multi programmed Control:-

Introduction :

In computer architecture, the control unit is responsible for directing

the flow of data and instructions within the CPU. There are two main

approaches to implementing a control unit: hardwired and micro-

programmed.

A hardwired control unit is a control unit that uses a fixed set of logic

gates and circuits to execute instructions. The control signals for each

instruction are hardwired into the control unit, so the control unit has

a dedicated circuit for each possible instruction. Hardwired control

units are simple and fast, but they can be inflexible and difficult to

modify.

On the other hand, a micro-programmed control unit is a control unit

that uses a microcode to execute instructions. The microcode is a set

of instructions that can be modified or updated, allowing for greater

flexibility and ease of modification. The control signals for each

instruction are generated by a microprogram that is stored in memory,

rather than being hardwired into the control unit.

M.JOSHNA

The control unit is the brain of the CPU, and it can be implemented in

two ways: hardwired or micro-programmed. Understanding the

differences between these implementations is essential for those

studying computer organization.

If we talk about Micro-programmed control units they are generally

slower than hardwired control units because they require an extra step

of decoding the microcode to generate control signals, but they are

more flexible and easier to modify. They are commonly used in

modern CPUs because they allow for easier implementation of

complex instruction sets and better support for instruction set

extensions.

To execute an instruction, the control unit of the CPU must generate

the required control signal in the proper sequence. There are two

approaches used for generating the control signals in proper sequence

as Hardwired Control unit and the Micro-programmed control unit.

Hardwired Control Unit: The control hardware can be viewed as a

state machine that changes from one state to another in every clock

cycle, depending on the contents of the instruction register, the

condition codes, and the external inputs. The outputs of the state

machine are the control signals. The sequence of the operation carried

out by this machine is determined by the wiring of the logic elements

and hence named “hardwired”.

• Fixed logic circuits that correspond directly to the Boolean

expressions are used to generate the control signals.

• Hardwired control is faster than micro-programmed control.

• A controller that uses this approach can operate at high speed.

• RISC architecture is based on the hardwired control unit

M.JOSHNA

Micro-programmed Control Unit -

• The control signals associated with operations are stored in

special memory units inaccessible by the programmer as Control

Words.

• Control signals are generated by a program that is similar to

machine language programs.

• The micro-programmed control unit is slower in speed because

of the time it takes to fetch microinstructions from the control

memory.

Some Important Terms

1. Control Word: A control word is a word whose individual bits

represent various control signals.

2. Micro-routine: A sequence of control words corresponding to

the control sequence of a machine instruction constitutes the

micro-routine for that instruction.

3. Micro-instruction: Individual control words in this micro-routine

are referred to as microinstructions.

M.JOSHNA

4. Micro-program: A sequence of micro-instructions is called a

micro-program, which is stored in a ROM or RAM called a

Control Memory (CM).

5. Control Store: the micro-routines for all instructions in the

instruction set of a computer are stored in a special memory

called the Control Store.

The differences between hardwired and micro-programmed control

units:

Hardwired Control

Unit

Micro-programmed

Control Unit

Implementation
Fixed set of logic

gates and circuits

Microcode stored in

memory

M.JOSHNA

Hardwired Control

Unit

Micro-programmed

Control Unit

Flexibility

Less flexible,

difficult to

modify

More flexible, easier

to modify

Instruction Set
Supports limited

instruction sets

Supports complex

instruction sets

Complexity of

Design

Simple design,

easy to implement

Complex design, more

difficult to implement

Speed Fast operation

Slower operation due

to microcode decoding

Debugging and

Testing

Difficult to debug

and test

Easier to debug and

test

Size and Cost
Smaller size,

lower cost

Larger size, higher

cost

M.JOSHNA

Hardwired Control

Unit

Micro-programmed

Control Unit

Maintenance and

Upgradability

Difficult to

upgrade and

maintain

Easier to upgrade and

maintain

Types of Micro-programmed Control Unit - Based on the type of

Control Word stored in the Control Memory (CM), it is classified into

two types :

1. Horizontal Micro-programmed Control Unit :

The control signals are represented in the decoded binary format that

is 1 bit/CS. Example: If 53 Control signals are present in the

processor then 53 bits are required. More than 1 control signal can be

enabled at a time.

• It supports longer control words.

• It is used in parallel processing applications.

• It allows a higher degree of parallelism. If degree is n, n CS is

enabled at a time.

• It requires no additional hardware(decoders). It means it is faster

than Vertical Microprogrammed.

• It is more flexible than vertical microprogrammed

2. Vertical Micro-programmed Control Unit :

The control signals are represented in the encoded binary format. For

N control signals- Log2(N) bits are required.

• It supports shorter control words.

M.JOSHNA

• It supports easy implementation of new control signals therefore

it is more flexible.

• It allows a low degree of parallelism i.e., the degree of

parallelism is either 0 or 1.

• Requires additional hardware (decoders) to generate control

signals, it implies it is slower than horizontal microprogrammed.

• It is less flexible than horizontal but more flexible than that of a

hardwired control unit.

Note: Types of Control Unit in descending order of speed :

Hardwired control unit > Horizontal microprogrammed CU > Vertical

microprogrammed CU

M.JOSHNA

 UNIT-IV: THE MEMORY MANAGEMENT SYSTEM

Basic Concepts, Semiconductor RAM, Types of Read-only Memory (ROM), Cache Memory,
Performance ConsideraƟons, Virtual Memory, Secondary Storage.

4.1 Basic Concepts:

The maximum size of the memory that can be used in any computer is determined by the
addressing scheme.

 If MAR is k bits long and MDR is n bits long, then the memory may contain upto 2K
addressable locaƟons and the n-bits of data are transferred between the memory and
processor.

This transfer takes place over the processor bus.

The processor bus has,

 Address Line

 Data Line

 Control Line (R/W, MFC – Memory FuncƟon Completed)

The control line is used for co-ordinaƟng data transfer.

M.JOSHNA

The processor reads the data from the memory by loading the address of the required
memory locaƟon into MAR and seƫng the R/W line to 1.

The memory responds by placing the data from the addressed locaƟon onto the data lines
and conĮrms this acƟon by asserƟng MFC signal.

Upon receipt of MFC signal, the processor loads the data onto the data lines into MDR
register.

The processor writes the data into the memory locaƟon by loading the address of this
locaƟon into MAR and loading the data into MDR sets the R/W line to 0.

 Measures for the speed of a memory:

 memory access Ɵme.

 It is the Ɵme that elapses between the iniƟaƟon of an OperaƟon and the compleƟon of
that operaƟon.

 memory cycle Ɵme.

 It is the minimum Ɵme delay that required between the iniƟaƟon of the two successive
memory operaƟons.

RAM (Random Access Memory):

In RAM, if any locaƟon that can be accessed for a Read/Write operaƟon in Įxed amount of
Ɵme, it is independent of the locaƟon’s address.

Cache Memory:

It is a small, fast memory that is inserted between the larger slower main memory and the
processor.

It holds the currently acƟve segments of a program and their data.

Virtual memory:

The address generated by the processor does not directly specify the physical locaƟons in
the memory.

The address generated by the processor is referred to as a virtual / logical address.

The virtual address space is mapped onto the physical memory where data are actually
stored.

M.JOSHNA

The mapping funcƟon is implemented by a special memory control circuit is oŌen called the
memory management unit.

Only the acƟve porƟon of the address space is mapped into locaƟons in the physical
memory.

The remaining virtual addresses are mapped onto the bulk storage devices used, which are
usually magneƟc disk.

As the acƟve porƟon of the virtual address space changes during program execuƟon, the
memory management unit changes the mapping funcƟon and transfers the data between
disk and memory.

Thus, during every memory cycle, an address processing mechanism determines whether
the addressed in funcƟon is in the physical memory unit.

If it is, then the proper word is accessed and execuƟon proceeds. If it is not, a page of words
containing the desired word is transferred from disk to memory.

This page displaces some page in the memory that is currently inacƟve.

Semiconductor RAM

Semi-Conductor memories are available is a wide range of speeds. Their cycle Ɵme ranges
from 100ns to 10ns.

INTERNAL ORGANIZATION OF MEMORY CHIPS:

Memory cells are usually organized in the form of array, in which each cell is capable of
storing one bit of informaƟon.

Each row of cells consƟtute a memory word and all cells of a row are connected to a
common line called as word line.

The cells in each column are connected to Sense / Write circuit by two bit lines.

The Sense / Write circuits are connected to data input or output lines of the chip. During a
write operaƟon, the sense / write circuit receive input informaƟon and store it in the cells of
the selected word.

M.JOSHNA

The data input and data output of each senses / write ckt are connected to a single
bidirecƟonal data line that can be connected to a data bus of the cptr.

R / W  SpeciĮes the required operaƟon.

CS  Chip Select input selects a given chip in the mulƟ-chip memory system

StaƟc Memories:

Memories that consist of circuits capable of retaining their state as long as power is applied
are known as staƟc memory.

Fig: StaƟc RAM cell



M.JOSHNA

 Two inverters are cross connected to form a batch.

 The batch is connected to two bit lines by transistors T1 and T2.

 These transistors act as switches that can be opened / closed under the control of the
word line.

 When the word line is at ground level, the transistors are turned oī and the latch retain its
state.

Read OperaƟon:

 In order to read the state of the SRAM cell, the word line is acƟvated to close switches T1
and T2.

 If the cell is in state 1, the signal on bit line b is high and the signal on the bit line b is low.
Thus b and b are complements of each other.

 Sense / write circuit at the end of the bit line monitors the state of b and b’ and set the
output accordingly.

Write OperaƟon:

M.JOSHNA

 The state of the cell is set by placing the appropriate value on bit line b and its
complement on b and then acƟvaƟng the word line. This forces the cell into the
corresponding state.

 The required signal on the bit lines are generated by Sense / Write circuit.

Fig:CMOS cell (Complementary Metal oxide Semi Conductor):

 Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch.

 In state 1, the voltage at point X is high by having T5, T6 on and T4, T5 are OFF.

 Thus T1 and T2 returned ON (Closed), bit line b and b will have high and low signals
respecƟvely.

 The CMOS requires 5V (in older version) or 3.3.V (in new version) of power supply voltage.

M.JOSHNA

 The conƟnuous power is needed for the cell to retain its state

Merit :

 It has low power consumpƟon because the current Ňows in the cell only when the cell is
being acƟvated accessed.

 StaƟc RAM’s can be accessed quickly. It access Ɵme is few Nano seconds.

Demerit:

 SRAM’s are said to be volaƟle memories because their contents are lost when the power is
interrupted.

Asynchronous DRAMS:-

 Less ex pensive RAMs can be implemented if simplex call s are used such c ell s cannot
retain their state indeĮnitely. Hence they are called Dynamic RAM’s (DRAM).

 The informaƟon stored in a dynamic memory cell in the form of a charge on a capacitor
and this charge can be maintained only for tens of Milliseconds.

 The contents must be periodically refreshed by restoring by restoring this capacitor charge
to its full value.

 In order to store informaƟon in the cell, the transistor T is turned on & the appropriate
voltage is applied to the bit line, which charges the capacitor.

 AŌer the transistor is turned oī, the capacitor begins to discharge which is caused by the
capacitor’s own leakage resistance.

 Hence the informaƟon stored in the cell can be retrieved correctly before the threshold
value of the capacitor drops down.

Fig:A single transistor dynamic Memory cell

M.JOSHNA

During are ad operaƟon, the transistor is turned „o n‟ & a sense ampliĮer connected to the
bit line detects whether the charge on the capacitor is above the threshold value.

If charge on capacitor > threshold value -> Bit line will have logic value 1.

If charge on capacitor < threshold value -> Bit line will set to logic value 0.

Fig:Internal organizaƟon of a 2M X 8 dynamic Memory chip

M.JOSHNA

Fast Page Mode:

Transferring the bytes in sequenƟal order is achieved by applying the consecuƟve sequence
of column address under the control of successive CAS signals.

This scheme allows transferring a block of data at a faster rate. The block of transfer
capability is called as Fast Page Mode.

Synchronous DRAM:

 Here the operaƟons are directly synchronized with clock signal.

 The address and data connecƟons are buīered by means of registers.

 The output of each sense ampliĮer is connected to a latch.

M.JOSHNA

 A Read operaƟon causes the contents of all cells in the selected row to be loaded in these
latches.

Fig: Synchronous DRAM

 Data held in the latches that correspond to the selected columns are transferred into the
data output register, thus becoming available on the data output pins.

Fig: Timing Diagram  Burst Read of Length 4 in an SDRAM

M.JOSHNA

 First, the row address is latched under control of RAS signal.

 The memory typically takes 2 or 3 clock cycles to acƟvate the selected row.

 Then the column address is latched under the control of CAS signal.

 AŌer a delay of one clock cycle, the Įrst set of data bits is placed on the data lines.

 The SDRAM automaƟcally increments the column address to access the next 3 sets of bits
in the selected row, which are placed on the data lines in the next 3 clock cycles.

Latency & Bandwidth:

A good indicaƟon of performance is given by two parameters. They are,

 Latency

 Bandwidth

Latency:

 It refers to the amount of Ɵme it takes to transfer a word of data to or from the memory.

 For a transfer of single word, the latency provides the complete indicaƟon of memory
performance.

 For a block transfer, the latency denotes the Ɵme it takes to transfer the Įrst word of data.

M.JOSHNA

Bandwidth:

 It is deĮned as the number of bits or bytes that can be transferred in one second.

 Bandwidth mainly depends upon the speed of access to the stored data & on the number
of bits that can be accessed in parallel.

Double Data Rate SDRAM (DDR-SDRAM):

 The standard SDRAM performs all acƟons on the rising edge of the clock signal.

 The double data rate SDRAM transfer data on both the edges (loading edge, trailing edge).

 The Bandwidth of DDR-SDRAM is doubled for long burst transfer.

 To make it possible to access the data at high rate, the cell array is organized into two
banks.

 Each bank can be accessed separately.

 ConsecuƟve words of a given block are stored in diīerent banks.

 Such interleaving of words allows simultaneous access to two words that are transferred
on successive edge of the clock.

Larger Memories:

Dynamic Memory System:

 The physical implementaƟon is done in the form of Memory Modules.

 If a large memory is built by placing DRAM chips directly on the main system printed circuit
board that contains the processor, oŌen referred to as Motherboard; it will occupy large
amount of space on the board.

 These packaging consideraƟons have led to the development of larger memory unit s
known as SIMMs & DIMMs.

o SIMM-Single Inline memory Module

o DIMM-Dual Inline memory Module

 SIMM & DIMM consists of several memory chips on a separate small board that plugs
verƟcally into single socket on the motherboard.

MEMORY SYSTEM CONSIDERATION:

M.JOSHNA

To reduce the number of pins, the dynamic memory chips use mulƟplexed

Address inputs. The address is divided into two parts. They are,

 High Order Address Bit (Select a row in cell array & it is provided Įrst and latched into
memory chips under the control of RAS signal).

 Low Order Address Bit(Selects a column and they are provided on same Address pins and
latched using CAS signals).

The MulƟplexing of address bit is usually done by Memory Controller Circuit.

Fig:Use of Memory Controller

 The Controller accepts a complete address & R/W signal from the processor, under the
control of a Request signal which indicates that a memory access operaƟon is needed.

 The Controller then forwards the row & column porƟons of the address to the memory
and generates RAS &CAS signals.

 It also sends R/W &CS signals to the memory. The CS signal is usually acƟve low, hence it is
shown as CS.



Refresh Overhead:

All dynamic memories have to be refreshed. In DRAM ,the period for refreshing all rows is
16ms whereas 64ms in SDRAM.

Eg:Given a cell array of 8K(8192).

Clock cycle=4

M.JOSHNA

Clock Rate=133MHZ

No of cycles to refresh all rows =8192*4 =32,768

Time needed to refresh all rows=32768/133*10=246*10-6 sec=0.246sec

Refresh Overhead=0.246/64

Refresh Overhead =0.0038

Rambus Memory:

 The usage of wide bus is expensive.

 Rambus developed the implementaƟon of narrow bus

Rambus technology is a fast signaling method used to transfer informaƟon between chips.

 Instead of using signals that have voltage levels of either 0 or Vsupply to represent the
logical values, the signals consists of much smaller voltage swings around a reference voltage
Vref.

 The reference Voltage is about 2V and the two logical values are represented by 0.3V
swings above and below Vref

 This type of signaling is generally is known as DiīerenƟal Signalling.

 Rambus provides a complete speciĮcaƟon for the design of communicaƟon links (Special
Interface circuits) called as Rambus Channel.

 Rambus memory has a clock frequency of 400MHZ. The data are transmiƩed on both the
edges of the clock so that the eīecƟve data transfer rate is 800MHZ.

 The circuitry needed to interface to the Rambus channel is included on the chip. Such
chips are known as Rambus DRAMs (RD RAM).

Rambus channel has,

 9 Data lines(1-8 Transfer the data,9th lineparity checking).

 Control line

 Power line

A two channel rambus has 18 data lines which has no separate address lines. It is

M.JOSHNA

also called as Direct RD RAM’s. CommunicaƟon between processor or some other device
that can serves as a master and RDRAM modules are serves as slaves, is carried out by
means of packets transmiƩed on the data lines.

There are 3 types of packets. They are,

 Request

 Acknowledge

 Data

Types of Read-only Memory (ROM)

 Both SRAM and DRAM chips are volaƟle, which means that they lose the stored
informaƟon if power is turned oī.

 Many applicaƟon requires Non-volaƟle memory (which retain the stored

informaƟon if power is turned oī).

 Eg: OperaƟng System soŌware has to be loaded from disk to memory which

 requires the program that boots the OperaƟng System ie. It requires non-volaƟle memory.

 Non-volaƟle memory is used in embedded system.

 Since the normal operaƟon involves only reading of stored data ,a memory of this type is
called ROM.

At Logic value ‘0’  Transistor (T) is connected to the ground point(P). Transistor switch is
closed & voltage on bitline nearly drops to zero.

At Logic value ‘1’  Transistor switch is open.

M.JOSHNA

The bitline remains at high voltage.

To read the state of the cell, the word line is acƟvated.

A Sense circuit at the end of the bitline generates the proper output value.

Types of ROM:

Diīerent types of non-volaƟle memory are,

 PROM

 EPROM

 EEPROM

 Flash Memory

PROM:-Programmable ROM:

 PROM allows the data to be loaded by the user.

 Programm ability is achieved b y inserƟng a fuse at point P in a ROM cell .

 Before it is programmed, the memory contains all 0‟s

 The user can insert 1s at the required locaƟon by burning out t he fuse at these locaƟons
using high-current pulse.

 This process is irreversible.

Merit:

 It provides Ňexibility.

 It is faster.

 It is less expensive because they can be programmed directly by the user.

EPROM:-Erasable reprogrammable ROM:

 EPROM allows the stored data to be erased and new data to be loaded.

 In an EPROM cell , a connecƟon to ground is always made at P and a special transistor is
used, which has the ability to funcƟon either as a normal transistor or as a disabled
transistor that is always turned oī.

M.JOSHNA

 This transistor can be programmed to behave as a permanently open switch, by injecƟng
charge into it that becomes trapped inside.

 Erasure requires dissipaƟng the charges trapped in the transistor of memory cells. This can
be done by exposing the chip to ultra-violet light, so that EPROM chips are mounted in
packages that have transparent windows.

Merits:

 It provides Ňexibility during the development phase of digital system.

 It is capable of retaining the stored informaƟon for a long Ɵme.

Demerits:

 The chip must be physically removed from the circuit for reprogramming and its enƟre
contents are erased by UV light.

Electrically erasable programmable read-only memory (EEPROM)

Electrically erasable programmable read-only memory (EEPROM) chips that can be
electrically programmed and erased. EEPROMs are typically changed 1 byte at Ɵme. Erasing
EEPROM takes typically quite long. The drawback of EEPROM is their speed. EEPROM chips
are too slow to use in many products that make quick changes to the data stored on the
chip. Typically EEPROMs are found in electronics devices for storing the small amounts of
nonvolaƟle data in applicaƟons where speed is not the most important. Small EEPROMs with
serial interfaces are commonly found in many electronics devices.

Flash Memory:

 In EEPROM, it is possible to read & write the contents of a single cell.

 In Flash device, it is possible to read the contents of a single cell but it is only possible to
write the enƟre contents of a block.

 Prior to wriƟng, the previous contents of the block are erased. Eg. In MP3 player, the Ňash
memory stores the data that represents sound.

 Single Ňash chips cannot provide suĸcient storage capacity for embedded system
applicaƟon.

 There are 2 methods for implemenƟng larger memory modules consisƟng of number of
chips. They are,

o Flash Cards

M.JOSHNA

o Flash Drives.

Merits:

 Flash drives have greater density which leads to higher capacity & low cost per bit.

 It requires single power supply voltage & consumes less power in their operaƟon.

Flash Cards:

 One way of construcƟng larger module is to mount Ňash chips on a small card.

 Such Ňash card have standard interface.

 The card is simply plugged into a conveniently accessible slot.

 Its memory size are of 8,32,64MB.

 Eg:A minute of music can be stored in 1MB of memory. Hence 64MB Ňash cards

can store an hour of music.

Flash Drives:

 Larger Ňash memory module can be developed by replacing the hard disk drive.

 The Ňash drives are designed to fully emulate the hard disk.

 The Ňash drives are solid state electronic devices that have no movable parts.

Merits:

 They have shorter seek and access Ɵme which results in faster response.

 They have low power consumpƟon which makes them aƩracƟve for baƩery driven
applicaƟon.

 They are insensiƟve to vibraƟon.

Demerits:

 The capacity of Ňash drive (<1GB) is less than hard disk(>1GB).

 It leads to higher cost per bit.

 Flash memory will deteriorate aŌer it has been wriƩen a number of Ɵmes(typically at least
1 million Ɵmes.)

M.JOSHNA

4.4 Cache Memory

Ideally, computer memory should be fast, large and inexpensive. Unfortunately, it is
impossible to meet all the three requirements simultaneously. Increased speed and size are
achieved at increased cost. Very fast memory systems can be achieved if SRAM chips are
used. These chips are expensive and for the cost reason it is impracƟcable to build a large
main memory using SRAM chips. The alternaƟve used to use DRAM chips for large main
memories. The processor fetches the code and data from the main memory to execute the
program. The DRAMs which form the main memory are slower devices. So it is necessary to
insert wait states in memory read/write cycles. This reduces the speed of execuƟon. The
soluƟon for this problem is in the memory system small secƟon of SRAM is added along with
the main memory, referred to as cache memory. The program which is to be executed is
loaded in the main memory, but the part of the program and data accessed from the cache
memory. The cache controller looks aŌer this swapping between main memory and cache
memory with the help of DMA controller, Such cache memory is called secondary cache.
Recent processors have the built in cache memory called primary cache. The size of the
memory is sƟll small compared to the demands of the large programs with the voluminous
data. A soluƟon is provided by using secondary storage, mainly magneƟc disks and magneƟc
tapes to implement large memory spaces, which is available at reasonable prices. To make
eĸcient computer system it is not possible to rely on a single memory component, but to
employ a memory hierarchy which uses all diīerent types of memory units that gives
eĸcient computer system. A typical memory hierarchy is illustrated below in the Įgure:

M.JOSHNA

• Fastest access is to the data held in processor registers. Registers are at the top of the
memory hierarchy.

• RelaƟvely small amount of memory that can be implemented on the processor chip. This is
processor cache.

• Two levels of cache. Level 1 (L1) cache is on the processor chip. Level 2 (L2) cache is in
between main memory and processor.

• Next level is main memory, implemented as SIMMs. Much larger, but much slower than
cache memory.

• Next level is magneƟc disks. Huge amount of inexpensive storage.

• Speed of memory access is criƟcal, the idea is to bring instrucƟons and data that will be
used in the near future as close to the processor as possible.

The eīecƟveness of cache mechanism is based on the property of “ Locality of reference’.

Locality of Reference:

M.JOSHNA

Many instrucƟons in the localized areas of the program are executed repeatedly during
some Ɵme period and remainder of the program is accessed relaƟvely infrequently.

It manifests itself in 2 ways. They are,

 Temporal(The recently executed instrucƟon are likely to be executed again very soon.)

 SpaƟal(The instrucƟons in close proximity to recently executed instrucƟon are also likely to
be executed soon.) If the acƟve segment of the program is placed in cache memory, then the
total execuƟon Ɵme can be reduced signiĮcantly.

The term Block refers to the set of conƟguous address locaƟons of some size.

The cache line is used to refer to the cache block.

 The Cache memory stores a reasonable number of blocks at a given Ɵme but this number
is small compared to the total number of blocks available in Main Memory.

 The correspondence between main memory block and the block in cache memory is
speciĮed by a mapping funcƟon.

 The Cache control hardware decide that which block should be removed to create space
for the new block that contains the referenced word.

 The collecƟon of rule for making this decision is called the replacement algorithm.

 The cache control circuit determines whether the requested word currently exists in the
cache.

 If it exists, then Read/Write operaƟon will take place on appropriate cache locaƟon. In this
case Read/Write hit will occur.

M.JOSHNA

 In a Read operaƟon, the memory will not involve.

 The write operaƟon is proceeding in 2 ways. They are,

o Write-through protocol

o Write-back protocol

Write-through protocol:

Here the cache locaƟon and the main memory locaƟons are updated simultaneously.

Write-back protocol:

 This technique is to update only the cache locaƟon and to mark it as with associated Ňag
bit called dirty/modiĮed bit

 The word in the main memory will be updated later, when the block containing this
marked word is to be removed from the cache to make room for a new block.

 If the requested word currently not exists in the cache during read operaƟon, then read
miss will occur.

 To overcome the read miss Load – through / Early restart protocol is used.

Read Miss:

The block of words that contains the requested word is copied from the main memory into
cache.

Load – through:

 AŌer the enƟre block is loaded into cache, the parƟcular word requested is forwarded to
the processor.

 If the requested word not exists in the cache during write operaƟon, then Write Miss will
occur.

 If Write through protocol is used, the informaƟon is wriƩen directly into main memory.

 If Write back protocol is used then block containing the addressed word is Įrst brought
into the cache and then the desired word in the cache is over-wriƩen with the new
informaƟon.

Cache Memories – Mapping FuncƟons

First generaƟon processors, those designed with vacuum tubes in 1950 or those designed
with integrated circuits in 1965 or those designed as microprocessors in 1980 were generally
about the same speed as main memory. On such processors, this naive model was perfectly

M.JOSHNA

reasonable. By 1970, however, transistorized supercomputers were being built where the
central processor was signiĮcantly faster than the main memory, and by 1980, the diīerence
had increased, although it took several decades for the performance diīerence to reach
today's extreme.

SoluƟon to this problem is to use what is called a cache memory between the central
processor and the main memory. Cache memory takes advantage of the fact that, with any
of the memory technologies available for the past half century, we have had a choice
between building large but slow memories or small but fast memories. This was known as
far back as 1946, when Berks, Goldstone and Von Neumann proposed the use of a memory
hierarchy, with a few fast registers in the central processor at the top of the hierarchy, a large
main memory in the middle, and a library of archival data, stored oī-line, at the very
boƩom.

A cache memory sits between the central processor and the main memory. During any
parƟcular memory cycle, the cache checks the memory address being issued by the
processor. If this address matches the address of one of the few memory locaƟons held in
the cache, the cache handles the memory cycle very quickly; this is called a cache hit. If the
address does not, then the memory cycle must be saƟsĮed far more slowly by the main
memory; this is called a cache miss.

The correspondence between the main memory and cache is speciĮed by a Mapping
funcƟon. When the cache is full and a memory word that is not in the cache is referenced,
the cache control hardware must decide which block should be removed to create space for
the new block that consƟtutes the Replacement algorithm.

Mapping FuncƟons

There are three main mapping techniques which decides the cache organizaƟon:

1. Direct-mapping technique

2. AssociaƟve mapping Technique

3. Set associaƟve mapping technique

To discuss possible methods for specifying where memory blocks are placed in the cache, we
use a speciĮc small example, a cache consisƟng of 128 blocks of 16 word each, for a total of

M.JOSHNA

2048(2k) word, and assuming that the main memory is addressable by a 16-bit address. The
main memory has 64k word, which will be viewed as 4K blocks of 16 word each, the
consecuƟve addresses refer to consecuƟve word.

Direct Mapping Technique

The cache systems are divided into three categories, to implement cache system. As shown
in Įgure, the lower order 4-bits from 16 words in a block consƟtute a word Įeld. The second
Įeld is known as block Įeld used to disƟnguish a block from other blocks. Its length is 7-bits,
when a new block enters the cache; the 7-bit cache block Įeld determines the cache
posiƟon in which this block must be stored. The third Įeld is a Tag Įeld, used to store higher
order 5-bits of the memory address of the block, and to idenƟfy which of the 32blocks are
mapped into the cache.

It is the simplest mapping technique, in which each block from the main memory has only
one possible locaƟon in the cache organizaƟon. For example, the block I of the main
memory maps on to block i module128 of the cache. Therefore, whenever one of the main
memory blocks 0, 128, 256, ……. Is loaded in the cache, it is stored in the block 0. Block 1,
129, 257,….. are stored in block 1 of the cache and so on.

block is present. This is called associaƟve-mapping technique. It gives the complete freedom
in choosing the cache locaƟon in which to place the memory block.

M.JOSHNA

Set-AssociaƟve Mapping

It is a combinaƟon of the direct and associaƟve-mapping techniques can be used. Blocks of
the cache are grouped into sets and the mapping allows a block of main memory to reside in
any block of the speciĮc set. In this case memory blocks 0, 64,128……4032 mapped into
cache set 0, and they can occupy either of the two block posiƟons within this set. The cache
might contain the desired block. The tag Įeld of the address must then be associaƟvely
compared to the tags of the two blocks of the set to check if the desired block is present this
two associaƟve search is simple to implement.

M.JOSHNA

Replacement Algorithms

In a direct-mapped cache, the posiƟon of each block is Įxed, hence no replacement strategy
exists. In associaƟve and set-associaƟve caches, when a new block is to be brought into the
cache and all the PosiƟons that it may occupy are full, the cache controller must decide
which of the old blocks to overwrite. This is important issue because the decision can be
factor in system performance.

The objecƟve is to keep blocks in the cache that are likely to be referenced in the near
future. Its not easy to determine which blocks are about to be referenced. The property of
locality of reference gives a clue to a reasonable strategy. When a block is to be over wriƩen,
it is sensible to overwrite the one that has gone the longest Ɵme without being referenced.
This block is called the least recently used(LRU) block, and technique is called the LRU
Replacement algorithm.

The LRU algorithm has been used extensively for many access paƩerns, but it can lead to
poor performance in some cases. For example, it produces disappoinƟng results when
accesses are made to sequenƟal elements of an array that is slightly too large to Įt into the
cache. Performance of LRU algorithm can be improved by introducing a small amount of
randomness in deciding which block to replace.

Example of mapping techniques

M.JOSHNA

M.JOSHNA

Direct mapped Cache:

M.JOSHNA

Associate mapped cache:

M.JOSHNA

Set AssociaƟve mapped cache:

4.5 Performance ConsideraƟons:

 Two Key factors in the commercial success are the performance & cost ie the best possible
performance at low cost.

M.JOSHNA

 A common measure of success is called the Price/ Performance raƟo. Performance
depends on how fast the machine instrucƟon are brought to the processor and how fast
they are executed.

 To achieve parallelism(ie. Both the slow and fast units are accessed in the same
manner),interleaving is used.

Interleaving:

 If the main memory system is divided into a number of memory modules. Each module
has its own address buīer register (ABR) and data buīer register (DBR).

 Memory access operaƟons may proceed in more than one module at the same Ɵme. Thus
the aggregate rate of transmission of words to and from the main memory system can be
increased.

 Two methods of address layout are indicated they are

 ConsecuƟve words in a module

 ConsecuƟve words in a consecuƟve module

ConsecuƟve words in a module

ConsecuƟve words are placed in a module.

 High-order k bits of a memory address determine the module.

 Low-order m bits of a memory address determine the word within a module.

M.JOSHNA

 When a block of words is transferred from main memory to cache, only one module is
busy at a Ɵme.

ConsecuƟve words in a consecuƟve module



ConsecuƟve words are located in consecuƟve modules.

 ConsecuƟve addresses can be located in consecuƟve modules.

 While transferring a block of data, several memory modules can be kept busy at the same
Ɵme.

 This is called interleaving

 When requests for memory access involve consecuƟve addresses, the access will be to
diīerent modules.

 Since parallel access to these modules is possible, the average rate of fetching words from
the Main Memory can be increased.

Example:

M.JOSHNA

Hit Rate and Miss Penalty

An excellent indicator of the eīecƟveness of a parƟcular implementaƟon of the memory
hierarchy is the success rate in accessing informaƟon at various level of the hierarchy. A
successful access to data in a cache is called a hit.

The number of hits stated as fracƟon of all aƩempted access is called the hit rate, and the
miss rate is the number of misses stated as a fracƟon of aƩempted accesses.

 Hit rate can be improved by increasing block size, while keeping cache size constant.

 Block sizes that are neither very small nor very large give best results.

 Miss penalty can be reduced if load-through approach is used when loading new blocks
into cache.

Example:

M.JOSHNA

Example 2:

M.JOSHNA

Caches on processor chip:

M.JOSHNA

Other enhancements:

Write buīer

 Write-through:

• Each write operaƟon involves wriƟng to the main memory.

• If the processor has to wait for the write operaƟon to be complete, it slows down the
processor.

• Processor does not depend on the results of the write operaƟon.

• Write buīer can be included for temporary storage of write requests.

M.JOSHNA

• Processor places each write request into the buīer and conƟnues execuƟon.

• If a subsequent Read request references data which is sƟll in the write buīer, then this
data is referenced in the write buīer.

 Write-back:

• Block is wriƩen back to the main memory when it is replaced.

• If the processor waits for this write to complete, before reading the new block, it is slowed
down.

• Fast write buīer can hold the block to be wriƩen, and the new block can be read Įrst.

Prefetching

• New data are brought into the processor when they are Įrst needed.

• Processor has to wait before the data transfer is complete.

• Prefetch the data into the cache before they are actually needed, or a before a Read miss
occurs.

• Prefetching can be accomplished through soŌware by including a special instrucƟon in the
machine language of the processor.

 Inclusion of prefetch instrucƟons increases the length of the programs.

• Prefetching can also be accomplished using hardware:

 Circuitry that aƩempts to discover paƩerns in memory references and then prefetches
according to this paƩern.

Lockup-Free Cache

• Prefetching scheme does not work if it stops other accesses to the cache unƟl the prefetch
is completed.

• A cache of this type is said to be “locked” while it services a miss.

• Cache structure which supports mulƟple outstanding misses is called a lockup free cache.

• Since only one miss can be serviced at a Ɵme, a lockup free cache must include circuits
that keep track of all the outstanding misses.

• Special registers may hold the necessary informaƟon about these misses.

4.6 VIRTUAL MEMORY:

M.JOSHNA

 Techniques that automaƟcally move program and data blocks into the physical main
memory when they are required for execuƟon is called the Virtual Memory.

 The binary address that the processor issues either for instrucƟon or data are called the
virtual / Logical address.

 The virtual address is translated into physical address by a combinaƟon of hardware and
soŌware components. This kind of address translaƟon is done by MMU (Memory
Management Unit).

When the desired data are in the main memory, these data are fetched /accessed
immediately.

 If the data are not in the main memory, the MMU causes the OperaƟng system to bring
the data into memory from the disk.

 Transfer of data between disk and main memory is performed using DMA scheme.

Fig: Virtual Memory OrganizaƟon

Memory management unit (MMU) translates virtual addresses into physical addresses.

M.JOSHNA

• If the desired data or instrucƟons are in the main memory they are fetched as described
previously.

• If the desired data or instrucƟons are not in the main memory, they must be transferred
from secondary storage to the main memory.

• MMU causes the operaƟng system to bring the data from the secondary storage into the
main memory.

Address TranslaƟon:

In address translaƟon, all programs and data are composed of Įxed length units called
Pages.

The Page consists of a block of words that occupy conƟguous locaƟons in the main memory.

The pages are commonly range from 2K to 16K bytes in length. The cache bridge speed up
the gap between main memory and secondary storage and it is implemented in soŌware
techniques.

Each virtual address generated by the processor contains virtual Page number (Low order
bit) and oīset(High order bit) Virtual Page number+ Oīset SpeciĮes the locaƟon of a
parƟcular byte (or word) within a page.

Page Table:

It contains the informaƟon about the main memory address where the page is stored & the
current status of the page.

Page Frame:

An area in the main memory that holds one page is called the page frame.

Page Table Base Register:

 It contains the starƟng address of the page table.

 Virtual Page Number+Page Table Base register Gives the address of the corresponding
entry in the page table.ie)it gives the starƟng address of the page if that page currently
resides in memory.

Control Bits in Page Table:

 The Control bit speciĮes the status of the page while it is in main memory. FuncƟon:

 The control bit indicates the validity of the page ie) it checks whether the page is actually
loaded in the main memory.

M.JOSHNA

 It also indicates that whether the page has been modiĮed during its residency in the
memory; this informaƟon is needed to determine whether the page should be wriƩen back
to the disk before it is removed from the main memory to make room for another page.

Fig: Virtual Memory Address TranslaƟon

The Page table informaƟon is used by MMU for every read & write access.

 The Page table is placed in the main memory but a copy of the small porƟon of the page
table is located within MMU.

 This small porƟon or small cache is called TranslaƟon Look Aside Buīer (TLB).

 This porƟon consists of the page table entries that corresponds to the most recently
accessed pages and also contains the virtual address of the entry.



M.JOSHNA

When the operaƟng system changes the contents of page table , the control bit in TLB will
invalidate the corresponding entry in the TLB. Given a virtual address, the MMU looks in TLB
for the referenced page.

 If the page table entry for this page is found in TLB, the physical address is obtained
immediately. If there is a miss in TLB, then the required entry is obtained from the page
table in the main memory & TLB is updated.

 When a program generates an access request to a page that is not in the main memory,
then Page Fault will occur.

The whole page must be brought from disk into memory before an access can proceed.
When it detects a page fault, the MMU asks the operaƟng system to generate an interrupt.

 The operaƟng System suspend the execuƟon of the task that caused the page fault and
begin execuƟon of another task whose pages are in main memory because the long delay
occurs while page transfer takes place.

M.JOSHNA

 When the task resumes,either the interrupted instrucƟon must conƟnue from the point of
interrupƟon or the instrucƟon must be restarted.

 If a new page is brought from the disk when the main memory is full,it must replace one of
the resident pages.In that case,it uses LRU algorithm which removes the least referenced
Page.

 A modiĮed page has to be wriƩen back to the disk before it is removed from the main
memory. In that case,write – through protocol is used.

MEMORY MANAGEMENT REQUIREMENTS:

Management rouƟnes are part of the OperaƟng system. Assembling the OS rouƟne into
virtual address sp ace is called “System Space”. The virtual space in which the user
applicaƟon programs reside is called the “User Space”. Each user space has a separate page
table. The MMU uses the page table to determine the address of the table to be used in the
translaƟon process. Hence by changing the contents of this register, the OS can switch from
one space to another. The process has two stages. They are,

 User State

 Supervisor state.

User State: In this state, the processor executes the user program.

Supervisor State: When the processor executes the operaƟng system rouƟnes, the
processor will be in supervisor state. Privileged InstrucƟon:

In user state, the machine instrucƟons cannot be executed. Hence a user program is
prevented from accessing the page table of other user spaces or system spaces.

The control bits in each entry can be set to control the access privileges granted to each
program. ie) One program may be allowed to read/write a given page, while the other
programs may be given only red access.

4.7 SECONDARY STORAGE:

The Semi-conductor memories do not provide all the storage capability.

The Secondary storage devices provide larger storage requirements. Some of the Secondary
Storage devices are,

 MagneƟc Disk

 OpƟcal Disk

 MagneƟc Tapes.

M.JOSHNA

MagneƟc Disk:

 MagneƟc Disk system consists o one or more disk mounted on a common spindle.

 A thin magneƟc Įlm is deposited on each disk, usually on both sides.

 The disks are placed in a rotary drive so that the magneƟzed surfaces move in close
proximity to read /write heads.

 Each head consists of magneƟc yoke & magneƟzing coil.

Digital informaƟon can be stored on the magneƟc Įlm by applying the current pulse of
suitable polarity to the magneƟzing coil.

 Only changes in the magneƟc Įeld under the head can be sensed during the Read
operaƟon.

 Therefore if the binary states 0 & 1 are represented by two opposite states of
magneƟzaƟon, a voltage is induced in the head only at 0-1 and at 1-0 transiƟon in the bit
stream.

 A consecuƟve (long string) of 0‟s & 1‟s are determined by using the clock which is mainly
used for synchronizaƟon.

 Phase Encoding or Manchester Encoding is the technique to combine the clocking
informaƟon with data.

 The Manchester Encoding describes that how the self-clocking scheme is implemented.



M.JOSHNA

The Read/Write heads must be maintained at a very small distance from the moving disk
surfaces in order to achieve high bit densiƟes.

 When the disks are moving at their steady state, the air pressure develops between the
disk surfaces & the head & it forces the head away from the surface.

 The Ňexible spring connecƟon between head and its arm mounƟng permits the head to Ňy
at the desired distance away from the surface.

Wanchester Technology:

 Read/Write heads are placed in a sealed, air – Įltered enclosure called the Wanchester
Technology.

 In such units, the read/write heads can operate closure to magneƟc track surfaces because
the dust parƟcles which are a problem in unsealed assemblies are absent.

Merits

It have a larger capacity for a given physical size. The data intensity is high because the
storage medium is not exposed to contaminaƟng elements.

M.JOSHNA

 The read/write heads of a disk system are movable. The disk system has 3 parts.They are,

o Disk PlaƩer(Usually called Disk)

o Disk Drive(spins the disk & moves Read/write heads)

o Disk Controller(controls the operaƟon of the system.)

Fig:Organizing & Accessing the data on disk

Each surface is divided into concentric tracks.

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the

sector number.

The Read/Write operaƟon start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains idenƟĮcaƟon informaƟon.

It helps to Įnd the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.

An unformaƩed disk has no informaƟon on its tracks.

The formaƫng process divides the disk physically into tracks and sectors and this process
may discover some defecƟve sectors on all tracks.

The disk controller keeps a record of such defects.

M.JOSHNA

The disk is divided into logical parƟƟons. They are,

 Primary parƟƟon

 Secondary parƟƟon

In the diag, Each track has same number of sectors.

So all tracks have same storage capacity.

Each surface is divided into concentric tracks.

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the

sector number.

The Read/Write operaƟon start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains idenƟĮcaƟon informaƟon.

It helps to Įnd the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.

An unformaƩed disk has no informaƟon on its tracks.

The formaƫng process divides the disk physically into tracks and sectors and this process
may discover some defecƟve sectors on all tracks.

The disk controller keeps a record of such defects.

The disk is divided into logical parƟƟons. They are,

 Primary parƟƟon

 Secondary parƟƟon

In the diag, Each track has same number of sectors.

So all tracks have same storage capacity.

Each surface is divided into concentric tracks.

M.JOSHNA

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the

sector number.

The Read/Write operaƟon start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains idenƟĮcaƟon informaƟon.

It helps to Įnd the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.

An unformaƩed disk has no informaƟon on its tracks.

The formaƫng process divides the disk physically into tracks and sectors and this process
may discover some defecƟve sectors on all tracks.

The disk controller keeps a record of such defects.

The disk is divided into logical parƟƟons. They are,

 Primary parƟƟon

 Secondary parƟƟon

In the diag, Each track has same number of sectors.

So all tracks have same storage capacity.

Thus the stored informaƟon is packed more densely on inner track than on outer track.

Access Ɵme

There are 2 components involved in the Ɵme delay between receiving an address and the
beginning of the actual data transfer. They are,

 Seek Ɵme

 RotaƟonal delay / Latency

Seek Ɵme – Time required to move the read/write head to the proper track. Latency – The
amount of Ɵme that elapses aŌer the head is posiƟoned over the correct track unƟl the
starƟng posiƟon of the addressed sector passes under the read/write head.

M.JOSHNA

Seek Ɵme + Latency = Disk access Ɵme

Typical disk

One inch disk- weight=1 ounce,

size -> comparable to match book

Capacity -> 1GB

Inch disk has the following parameter

Recording surface=20

Tracks=15000 tracks/surface

Sectors=400.

Each sector stores 512 bytes of data

Capacity of formaƩed disk=20x15000x400x512=60x109 =60GB

Seek Ɵme=3ms

PlaƩer rotaƟon=10000 rev/min

Latency=3ms

Internet transfer rate=34MB/s

Data Buīer / cache

A disk drive that incorporates the required SCSI circuit is referred as SCSI drive. The SCSI can
transfer data at higher rate than the disk tracks.

 An eĸcient method to deal with the possible diīerence in transfer rate between disk and
SCSI bus is accomplished by including a data buīer.

 This buīer is a semiconductor memory.

 The data buīer can also provide cache mechanism for the disk (ie) when a read request
arrives at the disk, then controller Įrst check if the data is available in the cache (buīer).

 If the data is available in the cache, it can be accessed and placed on SCSI bus.

 If it is not available then the data will be retrieved from the disk.

Disk Controller:

 The disk controller acts as interface between disk drive and system bus.

 The disk controller uses DMA scheme to transfer data between disk and main memory.

M.JOSHNA

 When the OS iniƟates the transfer by issuing Read/Write request, the controllers register
will load the following informaƟon. They are,

Main memory address(address of Įrst main memory locaƟon of the block of words involved
in the transfer)

 Disk address(The locaƟon of the sector containing the beginning of the desired block of
words) (number of words in the block to be transferred).

DiskeƩe or Floppy Disk

• spinning plaƩer of special material

• InformaƟon stored by magneƟcally

• read/write head posiƟoned by mechanical arm

• Storage capacity is at a few MBs

• Random access

• seek Ɵme from 10 to 40 milliseconds

• Easily portable

OpƟcal Disks

• CD-ROM - read only (books, soŌware releases)

• WORM - write once, read many (archival storage)

• Laser encoding, not magneƟc

• 30-50 ms seek Ɵmes

• 640MB - 17GB storage capacity

• Cheaper than hard disks per MB of storage capacity, but slower

• portable

• Jukeboxes of opƟcal disks are becoming popular for storing really, really large collecƟons of
data. The Mercury-20 jukebox (no I'm not selling these, just using it as a typical example)
provides access to up to 150 CD-ROMs, or in other words 94GBs of storage capacity. The
Mercury jukebox takes a maximum of four seconds to exchange and load a disc into a drive,
2.5 seconds to spin up and access the data and 10 seconds to transfer a 6.0 MB Įle to the
computer or server.

M.JOSHNA

Input/Output Interface:

INPUT–OUTPUT INTERFACES: An interface is a data path between two separate devices in

a computer system. Interface to buses can be classified based on the number of bits that are

transmitted at a given time to serial versus parallel ports. In a serial port, only 1 bit of data is

transferred at a time. Mice and modems are usually connected to serial ports. A parallel port allows

more than 1 bit of data to be processed at once. Printers are the most common peripheral devices

connected to parallel ports. Table 8.4 shows a summary of the variety of buses and interfaces used

in personal computers.

M.JOSHNA

Accessing I/O Devices:

Accessing I/O Devices.: In computing, input/output, or I/O, refers to the communication between

an information processing system (computer), and the outside world. Inputs are the signals or data

received by the system, and outputs are the signals or data sent from it. I/O devices are used by a

person (or other system) to communicate with a computer.

Some of the input devices are keyboard, mouse, track ball, joy stick, touch screen, digital camera,

webcam, image scanner, fingerprint scanner, barcode reader, microphone and so on. Some of the

output devices are speakers, headphones, monitors and printers. Devices for communication

between computers, such as modems and network cards, typically serve for both input and output.

I/O devices can be connected to a computer through a single bus which enables the exchange of

information. The bus consists of three sets of lines used to carry address, data, and control signals.

Each I/O device is assigned a unique set of addresses. When the processor places a particular

address on the address lines, the device that recognizes this address responds to the commands

issued on the control lines. The processor requests either a read or a write operation, and the

M.JOSHNA

requested data are transferred over the data lines. Figure 5.1 shows the simple arrangement of I/O

devices to processor and memory with single bus.

Figure 5.1 A Single bus structure

Memory-mapped I/O: The arrangement of I/O devices and the memory share the same address

space is called memory-mapped I/O. With memory-mapped I/O, any machine instruction that

can access memory can be used to transfer data to or from an I/O device. For example, if

DATAIN is the address of the input buffer associated with the keyboard, the instruction

Move DATAIN,R0

reads the data from DATAIN and stores them into processor register RO. Similarly, the

instruction

Move R0,DATAOUT

sends the contents of register R0 to location DATAOUT, which may be the output data buffer of

a display unit or a printer. Most computer systems use memory-mapped I/O. Some processors

have special In and Out instructions to perform I/O transfers.

Figure 5.2 illustrates the hardware required to connect an I/O device to the bus. The address

decoder enables the device to recognize its address when this address appears on the address lines.

The data register holds the data being transferred to or from the processor. The status register

contains information relevant to the operation of the I/O device. Both the data and status registers

are connected to the data bus and assigned unique addresses. The address decoder, the data and

status registers, and the control circuitry required to coordinate I/O transfers constitute the device's

interface circuit.

M.JOSHNA

I/O devices operate at speeds that are vastly different from that of the processor. When a human

operator is entering characters at a keyboard, the processor is capable of executing millions of

instructions between successive character entries. An instruction that reads a character from the

keyboard should be executed only when a character is available in the input buffer of the keyboard

interface. An input character is read only once.

For an input device such as a keyboard, a status flag, SIN, is included in the interface circuit as

part of the status register. This flag is set to 1 when a character is entered at the keyboard and

cleared to 0 once this character is read by the processor. Hence, by checking the SIN flag, the

software can ensure that it is always reading valid data. This is often accomplished in a program

loop that repeatedly reads the status register and checks the state of SIN. When SIN becomes equal

to 1, the program reads the input data register. A similar procedure can be used to control output

operations using an output status flag, SOUT.

Example:

Program-controlled I/O: Consider a simple example of I/O operations involving a keyboard and

a display device in a computer system. The four registers shown in Figure 5.3 are used in the data

transfer operations. Register STATUS contains two control flags, SIN and SOUT, which provide

status information for the keyboard and the display unit, respectively. The two flags KIRQ and

DIRQ in this register are used in conjunction with interrupts. They, and the KEN and DEN bits in

register CONTROL, Data from the keyboard are made available in the DATAIN register, and data

sent to the display are stored in the DATAOUT register.

M.JOSHNA

The program in Figure 5.4 reads a line of characters from the keyboard and stores it in a memory

buffer starting at location LINE. Then, it calls a subroutine PROCESS to process the input line.

As each character is read, it is echoed back to the display. Register R0 is used as a pointer to the

memory buffer area. The contents of R0 are updated using the Autoincrement addressing mode so

that successive characters are stored in successive memory locations. Each character is checked to

see if it is the Carriage Return (CR) character, which has the ASCII code 0D (hex). If it is, a Line

Feed character (ASCII code 0A) is sent to move the cursor one line down on the display and

subroutine PROCESS is called. Otherwise, the program loops back to wait for another character

from the keyboard.

In program-controlled I/O the processor repeatedly checks a status flag to achieve the required

synchronization between the processor and an input or output device. The processor polls the

device. There are two other commonly used mechanisms for implementing I/O operations:

interrupts and direct memory access. In the case of interrupts, synchronization is achieved by

having the I/O device send a special signal over the bus whenever it is ready for a data transfer

operation. Direct memory access is a technique used for high-speed I/O devices. It involves having

the device interface transfer data directly to or from the memory, without continuous involvement

by the processor.

Figure 5.4 A program that reads one line from the keyboard, stores it in memory buffer,

and echoes it back to the display.

M.JOSHNA

Interrupts:

Interrupts: Interrupt is a hardware signal to the processor from I/O devices through one of the

control line called interrupt-request line. The routine executed in response to an interrupt request

is called the interrupt-service routine, Interrupts bear considerable resemblance to subroutine calls.

Assume that an interrupt request arrives during execution of instruction i in Figure 4.5. The

processor first completes execution of instruction i. Then, it loads the program counter with the

address of the first instruction of the interrupt-service routine. For the time being, let us assume

that this address is hardwired in the processor. After execution of the interrupt-service routine, the

processor has to come back to instruction i 1. Therefore, when an interrupt occurs, the current

contents of the PC, which point to instruction i 1, must be put in temporary storage in a known

location. A Return from-interrupt instruction at the end of the interrupt-service routine reloads the

PC from that temporary storage location, causing execution to resume at instruction i 1. In many

processors, the return address is saved on the processor stack. Alternatively, it may be saved in a

special location, such as a register provided for this purpose.

Figure 5.5 Transfer of control through the use of interrupts

The processor must inform the device that its request h been recognized so that it may remove its

interrupt-request signal. This may be accomplished by means of a special control signal on the

bus called an interrupt-acknowledge signal. The execution of an instruction in the interrupt -

service routine that accesses a status or data register in the device interface implicitly informs the

device that its interrupt request has been recognized.

M.JOSHNA

Interrupt Hardware:

Interrupt Hardware: In the above discussion, we have assumed that the processor has recognized

the occurrence of an interrupt before proceeding to serve it. Computers are provided with interrupt

hardware capability in the form of specialized interrupt lines to the processor. These lines are used

to send interrupt signals to the processor. In the case of I/O, there exists more than one I/O device.

The processor should be provided with a mechanism that enables it to handle simultaneous

interrupt requests and to recognize the interrupting device. Two basic schemes can be implemented

to achieve this task. The first scheme is called daisy chain bus arbitration (DCBA) and the second

is called independent source bus arbitration (ISBA).

According to the DCBA (see Fig. 8.6a), I/O devices present their interrupt requests to the interrupt

request line INR (similar to the polling arrangement). Upon recognizing the arrival of an interrupt

request, the processor, through a daisy chained grant line (GL), sends its grant to the requesting

device to start communication with the processor. The GL goes through all devices starting from

the first device nearer to the processor and going to the next device and so on until it reaches the

last device (Device #N). If Device #1 has put a request, then it will hold the grant signal and start

communication with the processor. If, on the other hand, Device #1 has no interrupt request, it will

pass the grant signal to device #2, which will repeat the same procedure, and so on. In the case of

multiple requests, the DCBA arrangement gives highest priority to the device physically nearer to

the processor. The furthest device from the processor has the lowest priority.

M.JOSHNA

According to the ISBA (see Fig. 8.6b), each I/O device has its own interrupt request line, through

which it can send its interrupt request, independent of the other devices. Similarly, each I/O device

has its own grant line, through which it receives the grant signal for its request such that it can start

communicating with the processor. I/O device priority in the ISBA does not depend on the device

location. A priority arbitration circuitry is needed in order to deal with simultaneous interrupt

requests. 8.3.2.

Interrupt in Operating Systems When an interrupt occurs, the operating system gains control.

The operating system saves the state of the interrupted process, analyzes the interrupt, and passes

control to the appropriate routine to handle the interrupt. There are several

types of interrupts, including I/O interrupts. An I/O interrupt notifies the operating system that an

I/O device has completed or suspended its operation and needs some service from the CPU. To

M.JOSHNA

process an interrupt, the context of the current process must be saved and the interrupt handling

routine must be invoked. This process is called context switching. A process context has two parts:

processor context and memory context. The processor context is the state of the CPU’s registers
including program counter (PC), program status words (PSWs), and other registers. The memory

context is the state of the program’s memory including the program and data. The interrupt handler

is a routine that processes each different type of interrupt.

The operating system must provide programs with save area for their contexts. It also must provide

an organized way for allocating and deallocating memory for the interrupted process.When the

interrupt handling routine finishes processing the interrupt, the CPU is dispatched to either the

interrupted process, or to the highest priority ready process. This will depend on whether the

interrupted process is preemptive or nonpreemptive. If the process is nonpreemptive, it gets the

CPU again. First the context must be restored, then control is returned to the interrupts process.

Figure 8.7 shows the layers of software involved in I/O operations. First, the program issues an

I/O request via an I/O call. The request is passed through to the I/O device.When the device

completes the I/O, an interrupt is sent and the interrupt handler is invoked. Eventually, control is

relinquished back to the process that initiated the I/O.

Examples of interrupt I/O

table.

Example 1: 80386 Interrupt Architecture The 8086 processors have just two hardware interrupt

pins. These are labeled INTR andNMI.NMI is a nonmaskable

interrupt, which means it cannot be blocked and the processor must respond to it. The NMI input

is usually reserved for critical system functions. The INTR input is a maskable interrupt request

line between the CPU and the programmable interrupt controller (8259A PIC). Interrupts on INTR

can be enabled and disabled using the instructions STI (set interrupt flag) and CLI (clear interrupt

flag), respectively. Interrupt handlers are called interrupt service routines (ISR). The address of

each interrupt service routine is stored in four consecutive memory locations in the interrupt vector

table (IVT). The IVT stores pointers to ISR for each type of interrupt. When an interrupt occurs,

an 8-bit type number is supplied to the processor, which identifies the appropriate entry in this

M.JOSHNA

When an interrupt is generated by a device, it goes to the PIC. Multiple interrupts may be generated

simultaneously. However, they are all buffered by the PIC. The PIC decides which one of these

interrupts should be forwarded to the CPU. To inform the CPU that an outstanding interrupt is

waiting to be processed, the PIC sends an interrupt request (INTR) to the CPU, which then, at the

appropriate time, responds with an interrupt acknowledgment (INTA). At this time, PIC will put

an 8-bit interrupt type number associated with the device on the bus so that the CPU can identify

which interrupt handler to invoke. In the case when several interrupts are pending, PIC will send

next interrupt request to the CPU only after it receives an end of interrupt command from the

current ISR. Figure 8.8 shows the simple protocol that is used to determine which ISR is to be

invoked. In the computer designs that used a single PIC (PC and XT), eight different interrupt

requests are allowed (IRQ0–IRQ7). Table 8.1 shows a list of standard interrupt type numbers for

typical devices. When AT was designed, a second PIC was added,

increasing the number of interrupt inputs to 15. Figure 8.9 shows two PICS wired in cascade. One

PIC is designated as master and the other becomes the slave. As shown in the figure, all slave

interrupts are input via IRQ1 of the master. In general, eight different slaves can be accommodated

by a single PIC.

Example 2: ARM Interrupt Architecture ARM stands for Advanced RISC Machines. ARM is

a 16/32-bit architecture that is used for portable devices because of its low power consumption and

reasonable performance. Interrupt requests to the ARM core are collected and controlled by the

interrupt controller, which is called ATIC. The interrupt controller provides an interface to the core

and can collect up to 64 interrupt requests.

The usual sequence of events for interrupts is as follows. Interrupts would be enabled at the source

(such as a peripheral), then enabled in the interrupt controller, and finally, enabled to the core.

When an interrupt occurs at the source, its signal is routed to the interrupt controller then to the

ARM core. In the interrupt controller, the interrupt can be enabled or disabled to the core and can

be assigned a priority

M.JOSHNA

M.JOSHNA

level. Once the interrupt request reaches the core, it will halt the core from its normal processing

routines to allow the interrupt request to be serviced. Among the different interrupt requests that

the ARM core can handle are IRQ and FIQ requests. The IRQ (normal interrupt request) is used

for general-purpose interrupt handling. It has a lower priority than an FIQ (fast interrupt request)

and is masked out when an FIQ sequence is entered. The FIQ is used to support highspeed data

transfer or channel processes.

Similar to the 8086, the addresses of the interrupt handlers are stored in a vector table, which is

shown in Table 8.2. For example, when an IRQ is detected by the core, it accesses address 018 of

the vector table and executes the instruction loaded in that address. Normally, the instruction found

at 018 of the vector table is of the form: LDR PC, IRQ_Handler (load the address of the IRQ

interrupt handler in the PC). When an FIQ is detected by the core, it accesses address 01C of the

vector table and executes the instruction loaded in that address. Normally, the instruction found at

01C of the vector table is of the form: LDR PC, FIQ_Handler.

Enabling and Disabling Interrupts:

ENABLING AND DISABLING INTERRUPTS: There are many situations in which the

processor should ignore interrupt requests. For example, in the case of the Compute-Print program

of Figure 5.5, an interrupt request from the printer should be accepted only if there are output lines

to be printed. After printing the last line of a set of n lines, interrupts should be disabled until

another set becomes available for printing.

A simple way is to provide machine instructions, such as Interrupt-enable and Interruptdisable.

The processor hardware ignores the interrupt-request line until the execution of the first instruction

of the interrupt-service routine has been completed. Then, by using an Interrupt-disable instruction

as the first instruction in the interrupt-service routine, the programmer can ensure that no further

interruptions will occur until an Interrupt-enable instruction is executed. Typically, the Interrupt-

enable instruction will be the last instruction in the interrupt-service routine before the Return-

from-interrupt instruction. The processor must guarantee that execution of the Returnfrom-

interrupt instruction is completed before ¬further interruption can occur.

The second option, which is suitable for a simple processor with only one interrupt- request line,

is to have the processor automatically disable interrupts before starting the execution of the

interrupt-service routine. After saving the contents of the PC and the processor status register (PS)

on the stack, the processor performs the equivalent of executing an Interrupt -disable instruction.

It is often the case that one bit in the PS register, called Interrupt-enable, indicates whether

M.JOSHNA

interrupts are enabled. An interrupt request received while this bit is equal to 1 will be accepted.

After saving the contents of the PS on the stack, with the Interrupt-enable bit equal to 1, the

processor clears the Interrupt-enable bit in its PS register, thus disabling further interrupts. When

a Return-frominterrupt instruction is executed, the contents of the PS are restored from the stack,

setting the Interrupt-enable bit back to 1. Hence, interrupts are again enabled.

In the third option, the processor has a special interrupt-request line for which the interrupthandling

circuit responds only to the leading edge of the signal. Such a line is said to be edgetriggered. In

this case, the processor will receive only one request, regardless of how long the line is activated.

Hence, there is no danger of multiple interruptions and no need to explicitly disable interrupt

requests from this line. Before proceeding to study more complex aspects of interrupts, let us

summarize the sequence of events involved in handling an interrupt request from a single device.

Assuming that interrupts are enabled, the following is a typical scenario:

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of edge

triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it deactivates the

interrupt-request signal.
5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

Handling Multiple Devices:

HANDLING MULTIPLE DEVICES: Let us now consider the situation where a number of

devices capable of initiating interrupts are connected to the processor. Because these devices are

operationally independent, there is no definite order in which they will generate interrupts. For

example, device X may request an interrupt while an interrupt caused by device Y is being

serviced, or several devices may request interrupts at exactly the same time. This gives rise to a

number of questions:

1. How can the processor recognize the device requesting an interrupt?

2. Given that different devices are likely to require different interrupt -service routines, how can

the processor obtain the starting address of the appropriate routine in each case?

3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?

4. How should two or more simultaneous interrupt requests be handled? If

two devices have activated the line at the same time, it must be possible to break the tie and elect

one of the two requests for service. When the interrupt-service routine for the selected device has

been completed, the second request can be serviced.

Vectored interrupts: To reduce the time involved in the polling process, a device requesting an

interrupt may identify itself directly to the processor. Then, the processor can immediately start

executing the corresponding interrupt-service routine. The term vectored interrupts refers to all

interrupt - handling schemes based on this approach.

M.JOSHNA

A device requesting an interrupt can identify itself by sending a special code to the processor over

the bus. This enables the processor to identify individual devices even if they share a single

interrupt-request line. The code supplied by the device may represent the starting address of the

interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits.

The remainder of the address is supplied by the processor based on the area in its memory where

the addresses for interrupt-service routines are located.

This arrangement implies that the interrupt-service routine for a given device must always start at

the same location. The programmer can gain some flexibility by storing in this location an

instruction that causes a branch to the appropriate routine. In many computers, this is done

automatically by the interrupt-handling mechanism. The location pointed to by the interrupting

device is used to store the starting address of the interrupt-service routine. The processor reads this

address, called the interrupt vector, and loads it into the PC. The interrupt vector may also include

a new value for the processor status register.

In most computers, I/O devices send the interrupt-vector code over the data bus, using the bus

control signals to ensure that devices do not interfere with each other. When a device sends an

interrupt request, the processor may not be ready to receive the interrupt-vector code immediately.

For example, it must first complete the execution of the current instruction, which may require the

use of the bus. There may be further delays if interrupts happen to be disabled at the time the

request is raised. The interrupting device must wait to put data on the bus only when the processor

is ready to receive it. When the processor is ready to receive the interrupt-vector code, it activates

the interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt- vector

code and turning off the INTR signal.

Interrupt nesting: I/O devices should be organized in a priority structure. An interrupt request

from a highpriority device should be accepted while the processor is servicing another request

from a lowerpriority device. A multiple-level priority organization means that during execution of

an interruptservice routine, interrupt requests will be accepted from some devices but not from

others, depending upon the device's priority. To implement this scheme, priority level can be

assigned to the processor that can be changed by the program.

The processor's priority is usually encoded in a few bits of the processor status word. It can be

changed by program instructions that write into the PS. These are privileged instructions, which

can be executed only while the processor is running in the supervisor mode. The processor is in

the supervisor mode only when executing operating system routines. It switches to the user mode

before beginning to execute application programs. Thus, a user program cannot accidentally, or

intentionally, change the priority of the processor and disrupt the system's operation. An attempt

to execute a privileged instruction while in the user mode leads to a special type of interrupt called

a privilege exception.

A multiple-priority scheme can be implemented easily by using separate interrupt- request and

interrupt-acknowledge lines for each device, as shown in Figure 5.7. Each of the interruptrequest

lines is assigned a different priority level. Interrupt requests received over these lines are sent to a

M.JOSHNA

priority arbitration circuit in the processor. A request is accepted only if it has a higher priority

level than that currently assigned to the processor.

Figure 5.7 Implementation of interrupt priority using individual interrupt-request and

acknowledge lines.

Simultaneous request: When simultaneous interrupt requests are arrived from two or more I/O

devices to the processor, the processor must have some means of deciding which request to service

first.

Using a priority scheme such as that of Figure 5.7, the solution is straightforward. The processor

simply accepts the request having the highest priority. If several devices share one interrupt-

request line, as in Figure 5.6, some other mechanism is needed. Polling the status registers of the

I/O devices is the simplest such mechanism. In this case, priority is determined by the order in

which the devices are polled. When vectored interrupts are used, we must ensure that only one

device is selected to send its interrupt vector code. A widely used scheme is to connect the devices

to form a daisy chain, as shown in Figure 5.8. The interruptrequest line INTR is common to all

devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that

the INTA signal propagates serially through the devices. When several devices raise an interrupt

request and the INTR line is activated, the processor responds by setting the INTA line to 1. This

signal is received by device 1. Device 1 passes the signal on to device 2 only if it does not require

any service. If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds

to put its identifying code on the data lines. Therefore, in the daisy-chain arrangement, the device

that is electrically closest to the processor has the highest priority. The second device along the

chain has second highest priority, and so on.

Controlling Device Requests:

CONTROLLING DEVICE REQUESTS: The control needed is usually provided in the form of

an interrupt-enable bit in the device's interface circuit. The keyboard interrupt-enable, KEN, and

display interrupt- enable, DEN, flags in register CONTROL in Figure 5.3 perform this function. If

either of these flags is set, the interface circuit generates an interrupt request whenever the

corresponding status flag in register STATUS is set. At the same time, the interface circuit sets bit

KIRQ or DIRQ to indicate that the keyboard or display unit, respectively, is requesting an interrupt.

If an interrupt-enable bit is equal to 0, the interface circuit will not generate an interrupt request,

regardless of the state of the status flag.

There are two independent mechanisms for controlling interrupt requests. At the device end, an

interrupt-enable bit in a control register determines whether the device is allowed to generate an

M.JOSHNA

interrupt request. At the processor end, either an interrupt enable bit in the PS register or a priority

structure determines whether a given interrupt request will be accepted.

EXCEPTIONS: The term exception is often used to refer to any event that causes an interruption.

Hence, I/O interrupts are one example of an exception.

Recovery from errors: Computers use a variety of techniques to ensure that all hardware

components are operating properly. For example, many computers include an error-checking code

in the main memory, which allows detection of errors in the stored data. If an error occurs, the

control hardware detects it and informs the processor by raising an interrupt. The processor may

also interrupt a program if it detects an error or an unusual condition while executing the

instructions of this program. For example, the OP-code field of an instruction may not correspond

to any legal instruction, or an arithmetic instruction may attempt a division by zero.

When exception processing is initiated as a result of such errors, the processor proceeds in exactly

the same manner as in the case of an I/O interrupt request. It suspends the program being executed

and starts an exception-service routine. This routine takes appropriate action to recover from the

error, if possible, or to inform the user about it. Recall that in the case of an I/O interrupt, the

processor completes execution of the instruction in progress before accepting the interrupt.

However, when an interrupt is caused by an error, execution of the interrupted instruction cannot

usually be completed, and the processor begins exception processing immediately.

Debugging: Another important type of exception is used as an aid in debugging programs. System

software usually includes a program called a debugger, which helps the programmer find errors in

a program. The debugger uses exceptions to provide two important facilities called trace and

breakpoints.

When a processor is operating in the trace mode, an exception occurs after execution of every

instruction, using the debugging program as the exception-service routine. The debugging program

enables the user to examine the contents of registers, memory locations, and so on. On return from

the debugging program, the next instruction in the program being debugged is executed, then the

debugging program is activated again. The trace exception is disabled during the execution of the

debugging program. Breakpoints provide a similar facility, except that the program being

debugged is interrupted only at specific points selected by the user. An instruction called Trap or

Software interrupt is usually provided for this purpose. Execution of this instruction results in

exactly the same actions as when a hardware interrupt request is received. While debugging a

program, the user may wish to interrupt program execution after instruction i. The debugging

routine saves instruction i 1 and replaces it with a software interrupt instruction. When the program

is executed and reaches that point, it is interrupted and the debugging routine is activated. This

gives the user a chance to examine memory and register contents. When the user is ready to

continue executing the program being debugged, the debugging routine restores the saved

instruction that was at location i 1 and executes a Return-from-interrupt instruction.

Privilege exception: To protect the operating system of a computer from being corrupted by user

programs, certain instructions can be executed only while the processor is in the supervisor mode.

These are called privileged instructions. For example, when the processor is running in the user

mode, it will not execute an instruction that changes the priority level of the processor or that

enables a user program to access areas in the computer memory that have been allocated to other

M.JOSHNA

users. An attempt to execute such an instruction will produce a privilege exception, causing the

processor to switch to the supervisor mode and begin executing an appropriate routine in the

operating system.

Use of Interrupts in Operating Systems:

USE OF INTERRUPTS IN OPERATING SYSTEMS: The operating system (OS) is

responsible for coordinating all activities within a computer. It makes extensive use of interrupts

to perform I/O operations and communicate with and control the execution of user programs. The

operating system incorporates the interrupt-service routines (ISR) for all devices connected to a

computer. Application programs do not perform I/O operations themselves. An operating system

provides a variety of services to application programs. To facilitate the implementation of these

services, most processors have several different software interrupt instructions, each with its own

interrupt vector. They can be used to call different parts of the OS.

• In a computer that has both a supervisor and a user mode, the processor switches its operation

to supervisor mode at the time it accepts an interrupt request. It does so by setting a bit in the

processor status register after saving the old contents of that register on the stack. Thus, when

an application program calls the as by a software interrupt instruction, the processor

automatically switches to supervisor mode, giving the as complete access to the computer's

resources. When the as executes a Return-from-interrupt instruction, the processor status word

belonging to the application program is restored from the stack. As a result, the processor

switches back to the user mode.

• Multitasking is a mode of operation in which a processor executes several user programs at the

same time. A common as technique that makes this possible is called time slicing. when

operating system is started, an initialization routine OSINIT called for initialization. OSINIT

loads the starting address of a routine called SCHEDULER in the interrupt vector

corresponding to the timer interrupt. Hence, at the end of each time slice, the timer interrupt

causes this routine to be executed.

• A program, together with any information that describes its current state of execution, is

regarded by the as an entity called a process. A process can be in one of three states: Running,

Runnable, or Blocked. The Running state means that the program is currently being executed.

Assume that program A is in the Running state during a given time slice. At the end of that

time slice, the timer interrupts the execution of this program and starts the execution of

SCHEDULER. This is an operating system routine whose function is to determine which user

program should run in the next time slice. It starts by saving all the information that will be

needed later when execution of program A is resumed. The information saved, which is called

M.JOSHNA

the program state, includes register contents, the program counter, and the processor status

word.

• SCHEDULER selects for execution some other program, B, that was suspended earlier and is

in the Runnable state. It restores all information saved at the time program R was suspended,

including the contents of PS and PC, and executes a Retum-from-interrupt instruction. As a

result, program B resumes execution for T seconds, at the end of which the timer clock raises

an interrupt again, and a context switch to another runnable process takes place. Suppose that

program A needs to read an input line from the keyboard. Instead of performing the operation

itself, it requests I/O service from the operating system. It uses the stack or the processor

registers to pass information to the OS describing the required operation, the I/O device, and

the address of a buffer in the program data area where the line should be placed. Then it

executes a software interrupt instruction. The interrupt vector for s instruction points to the OS

SERVICES. This routine examines the information on the stack and initiates the requested

operation by calling an appropriate OS routine. In our example, it calls, which is a routine

responsible for starting I/O operations.

• While an I/O operation is in progress, the program that requested it cannot continue execution.

Hence, the 10INIT routine sets the process associated with program A into the Blocked state,

indicating to the scheduler that the program cannot resume execution at this time. The 10INIT

routine carries out any preparations needed for the I/O operation, such as initializing address

pointers and byte count, then calls a routine that performs the I/O transfers. It is common

practice in operating system design to encapsulate all software pertaining to a particular device

into a elf-contained module called the device driver. Such a module can be easily added to or

deleted from the OS. We have assumed that the device driver for the keyboard consists of two

routines, KBDINIT and KBDDATA, as shown n Figure 4.1 Oc. The 10INIT routine calls

KBDINIT, which performs any initialization operations needed by the device or its interface

circuit. KBDINIT also enables interrupts in the interface circuit by setting the appropriate bit

in its control register, d then it returns to IOINIT, which returns to OSSERVICES. The

keyboard is now ready to participate in a data transfer operation. It will generate an interrupt

request whenever a key is pressed.

• Following the return to OSSERVICES, the SCHEDULER routine selects another user program

to run. Of course, the scheduler will not select program A, because that program is now in the

Blocked state. The Return-from-interrupt instruction that causes the selected user program to

begin execution will also enable interrupts in the processor by loading new contents into the

M.JOSHNA

processor status register. Thus, an interrupt request generated by the keyboard's interface will

be accepted. The interrupt vector for this interrupt points to an OS routine called 10DATA.

Because there could be several devices connected to the same interrupt request line, 10DATA

begins by polling these devices to determine the one requesting service. Then, it calls the

appropriate device driver to service the request. In our example, the driver called will be

KBDDATA, which will transfer one character of data. If the character is a Carriage Return, it

will also set to 1 a flag called END, to inform 10DATA that the requested I/O operation has

been completed. At this point, the 10DATA routine changes the state of process A from

Blocked to Runnable, so that the scheduler may select it for execution in some future time

slice.

Handling Multiple Devices:

HANDLING MULTIPLE DEVICES: Let us now consider the situation where a number of

devices capable of initiating interrupts are connected to the processor. Because these devices are

operationally independent, there is no definite order in which they will generate interrupts. For

example, device X may request an interrupt while an interrupt caused by device Y is being

serviced, or several devices may request interrupts at exactly the same time. This gives rise to a

number of questions:
1. How can the processor recognize the device requesting an interrupt?

2. Given that different devices are likely to require different interrupt -service routines, how can

the processor obtain the starting address of the appropriate routine in each case?
3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?

4. How should two or more simultaneous interrupt requests be handled? If

two devices have activated the line at the same time, it must be possible to break the tie and elect

one of the two requests for service. When the interrupt-service routine for the selected device has

been completed, the second request can be serviced.

Vectored interrupts: To reduce the time involved in the polling process, a device requesting an

interrupt may identify itself directly to the processor. Then, the processor can immediately start

executing the corresponding interrupt-service routine. The term vectored interrupts refers to all

interrupt - handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special code to the processor over

the bus. This enables the processor to identify individual devices even if they share a single

interrupt-request line. The code supplied by the device may represent the starting address of the

interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits.

The remainder of the address is supplied by the processor based on the area in its memory where

the addresses for interrupt-service routines are located.

M.JOSHNA

This arrangement implies that the interrupt-service routine for a given device must always start at

the same location. The programmer can gain some flexibility by storing in this location an

instruction that causes a branch to the appropriate routine. In many computers, this is done

automatically by the interrupt-handling mechanism. The location pointed to by the interrupting

device is used to store the starting address of the interrupt-service routine. The processor reads this

address, called the interrupt vector, and loads it into the PC. The interrupt vector may also include

a new value for the processor status register.

In most computers, I/O devices send the interrupt-vector code over the data bus, using the bus

control signals to ensure that devices do not interfere with each other. When a device sends an

interrupt request, the processor may not be ready to receive the interrupt-vector code immediately.

For example, it must first complete the execution of the current instruction, which may require the

use of the bus. There may be further delays if interrupts happen to be disabled at the time the

request is raised. The interrupting device must wait to put data on the bus only when the processor

is ready to receive it. When the processor is ready to receive the interrupt-vector code, it activates

the interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt- vector

code and turning off the INTR signal.

Interrupt nesting: I/O devices should be organized in a priority structure. An interrupt request

from a high priority device should be accepted while the processor is servicing another request

from a lower priority device. A multiple-level priority organization means that during execution

of an interrupt service routine, interrupt requests will be accepted from some devices but not from

others, depending upon the device's priority. To implement this scheme, priority level can be

assigned to the processor that can be changed by the program.

The processor's priority is usually encoded in a few bits of the processor status word. It can be

changed by program instructions that write into the PS. These are privileged instructions, which

can be executed only while the processor is running in the supervisor mode. The processor is in

the supervisor mode only when executing operating system routines. It switches to the user mode

before beginning to execute application programs. Thus, a user program cannot accidentally, or

intentionally, change the priority of the processor and disrupt the system's operation. An attempt

to execute a privileged instruction while in the user mode leads to a special type of interrupt called

a privilege exception.

A multiple-priority scheme can be implemented easily by using separate interrupt- request and

interrupt-acknowledge lines for each device, as shown in Figure 5.7. Each of the interrupt request

lines is assigned a different priority level. Interrupt requests received over these lines are sent to a

priority arbitration circuit in the processor. A request is accepted only if it has a higher priority

level than that currently assigned to the processor.

M.JOSHNA

Figure 5.7 Implementation of interrupt priority using individual interrupt-request and

acknowledge lines.

Simultaneous request: When simultaneous interrupt requests are arrived from two or more I/O

devices to the processor, the processor must have some means of deciding which request to service

first.

Using a priority scheme such as that of Figure 5.7, the solution is straightforward. The processor

simply accepts the request having the highest priority. If several devices share one interrupt-

request line, as in Figure 5.6, some other mechanism is needed. Polling the status registers of the

I/O devices is the simplest such mechanism. In this case, priority is determined by the order in

which the devices are polled. When vectored interrupts are used, we must ensure that only one

device is selected to send its interrupt vector code. A widely used scheme is to connect the devices

to form a daisy chain, as shown in Figure 5.8. The interruptrequest line INTR is common to all

devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that

the INTA signal propagates serially through the devices. When several devices raise an interrupt

request and the INTR line is activated, the processor responds by setting the INTA line to 1. This

signal is received by device 1. Device 1 passes the signal on to device 2 only if it does not require

any service. If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds

to put its identifying code on the data lines. Therefore, in the daisy-chain arrangement, the device

that is electrically closest to the processor has the highest priority. The second device along the

chain has second highest priority, and so on.

Controlling Device Requests:

CONTROLLING DEVICE REQUESTS: The control needed is usually provided in the form of

an interrupt-enable bit in the device's interface circuit. The keyboard interrupt-enable, KEN, and

display interrupt- enable, DEN, flags in register CONTROL in Figure 5.3 perform this function. If

either of these flags is set, the interface circuit generates an interrupt request whenever the

corresponding status flag in register STATUS is set. At the same time, the interface circuit sets bit

KIRQ or DIRQ to indicate that the keyboard or display unit, respectively, is requesting an interrupt.

If an interrupt-enable bit is equal to 0, the interface circuit will not generate an interrupt request,

regardless of the state of the status flag.

There are two independent mechanisms for controlling interrupt requests. At the device end, an

interrupt-enable bit in a control register determines whether the device is allowed to generate an

interrupt request. At the processor end, either an interrupt enable bit in the PS register or a priority

structure determines whether a given interrupt request will be accepted.

EXCEPTIONS: The term exception is often used to refer to any event that causes an interruption.

Hence, I/O interrupts are one example of an exception.

Recovery from errors: Computers use a variety of techniques to ensure that all hardware

components are operating properly. For example, many computers include an error-checking code

in the main memory, which allows detection of errors in the stored data. If an error occurs, the

control hardware detects it and informs the processor by raising an interrupt. The processor may

M.JOSHNA

also interrupt a program if it detects an error or an unusual condition while executing the

instructions of this program. For example, the OP-code field of an instruction may not correspond

to any legal instruction, or an arithmetic instruction may attempt a division by zero.

When exception processing is initiated as a result of such errors, the processor proceeds in exactly

the same manner as in the case of an I/O interrupt request. It suspends the program being executed

and starts an exception-service routine. This routine takes appropriate action to recover from the

error, if possible, or to inform the user about it. Recall that in the case of an I/O interrupt, the

processor completes execution of the instruction in progress before accepting the interrupt.

However, when an interrupt is caused by an error, execution of the interrupted instruction cannot

usually be completed, and the processor begins exception processing immediately.

Debugging: Another important type of exception is used as an aid in debugging programs. System

software usually includes a program called a debugger, which helps the programmer find errors in

a program. The debugger uses exceptions to provide two important facilities called trace and

breakpoints.

When a processor is operating in the trace mode, an exception occurs after execution of every

instruction, using the debugging program as the exception-service routine. The debugging program

enables the user to examine the contents of registers, memory locations, and so on. On return from

the debugging program, the next instruction in the program being debugged is executed, then the

debugging program is activated again. The trace exception is disabled during the execution of the

debugging program. Breakpoints provide a similar facility, except that the program being

debugged is interrupted only at specific points selected by the user. An instruction called Trap or

Software interrupt is usually provided for this purpose. Execution of this instruction results in

exactly the same actions as when a hardware interrupt request is received. While debugging a

program, the user may wish to interrupt program execution after instruction i. The debugging

routine saves instruction i 1 and replaces it with a software interrupt instruction. When the program

is executed and reaches that point, it is interrupted and the debugging routine is activated. This

gives the user a chance to examine memory and register contents. When the user is ready to

continue executing the program being debugged, the debugging routine restores the saved

instruction that was at location i 1 and executes a Return-from-interrupt instruction.

Privilege exception: To protect the operating system of a computer from being corrupted by user

programs, certain instructions can be executed only while the processor is in the supervisor mode.

These are called privileged instructions. For example, when the processor is running in the user

mode, it will not execute an instruction that changes the priority level of the processor or that

enables a user program to access areas in the computer memory that have been allocated to other

users. An attempt to execute such an instruction will produce a privilege exception, causing the

processor to switch to the supervisor mode and begin executing an appropriate routine in the

operating system.

Use of Interrupts in Operating System:

USE OF INTERRUPTS IN OPERATING SYSTEMS: The operating system (OS) is

responsible for coordinating all activities within a computer. It makes extensive use of interrupts

to perform I/O operations and communicate with and control the execution of user programs. The

operating system incorporates the interrupt-service routines (ISR) for all devices connected to a

M.JOSHNA

computer. Application programs do not perform I/O operations themselves. An operating system

provides a variety of services to application programs. To facilitate the implementation of these

services, most processors have several different software interrupt instructions, each with its own

interrupt vector. They can be used to call different parts of the OS.

• In a computer that has both a supervisor and a user mode, the processor switches its

operation to supervisor mode at the time it accepts an interrupt request. It does so by setting a bit

in the processor status register after saving the old contents of that register on the stack. Thus,

when an application program calls the as by a software interrupt instruction, the processor

automatically switches to supervisor mode, giving the as complete access to the computer's

resources. When the as executes a Return-from-interrupt instruction, the processor status word

belonging to the application program is restored from the stack. As a result, the processor

switches back to the user mode.

• Multitasking is a mode of operation in which a processor executes several user programs

at the same time. A common as technique that makes this possible is called time slicing. when

operating system is started, an initialization routine OSINIT called for initialization. OSINIT

loads the starting address of a routine called SCHEDULER in the interrupt vector corresponding

to the timer interrupt. Hence, at the end of each time slice, the timer interrupt causes this routine

to be executed.

• A program, together with any information that describes its current state of execution, is

regarded by the as an entity called a process. A process can be in one of three states: Running,

Runnable, or Blocked. The Running state means that the program is currently being executed.

Assume that program A is in the Running state during a given time slice. At the end of that time

slice, the timer interrupts the execution of this program and starts the execution of SCHEDULER.

This is an operating system routine whose function is to determine which user program should

run in the next time slice. It starts by saving all the information that will be needed later when

execution of program A is resumed. The information saved, which is called the program state,

includes register contents, the program counter, and the processor status word.

• SCHEDULER selects for execution some other program, B, that was suspended earlier

and is in the Runnable state. It restores all information saved at the time program R was

suspended, including the contents of PS and PC, and executes a Retum-from-interrupt

instruction. As a result, program B resumes execution for T seconds, at the end of which the

timer clock raises an interrupt again, and a context switch to another runnable process takes place.

Suppose that program A needs to read an input line from the keyboard. Instead of performing the

M.JOSHNA

operation itself, it requests I/O service from the operating system. It uses the stack or the

processor registers to pass information to the OS describing the required operation, the I/O

device, and the address of a buffer in the program data area where the line should be placed. Then

it executes a software interrupt instruction. The interrupt vector for s instruction points to the OS

SERVICES. This routine examines the information on the stack and initiates the requested

operation by calling an appropriate OS routine. In our example, it calls, which is a routine

responsible for starting I/O operations.

• While an I/O operation is in progress, the program that requested it cannot continue

execution. Hence, the 10INIT routine sets the process associated with program A into the

Blocked state, indicating to the scheduler that the program cannot resume execution at this time.

The 10INIT routine carries out any preparations needed for the I/O operation, such as initializing

address pointers and byte count, then calls a routine that performs the I/O transfers. It is common

practice in operating system design to encapsulate all software pertaining to a particular device

into a elf-contained module called the device driver. Such a module can be easily added to or

deleted from the OS. We have assumed that the device driver for the keyboard consists of two

routines, KBDINIT and KBDDATA, as shown n Figure 4.1 Oc. The 10INIT routine calls

KBDINIT, which performs any initialization operations needed by the device or its interface

circuit. KBDINIT also enables interrupts in the interface circuit by setting the appropriate bit in

its control register, d then it returns to IOINIT, which returns to OSSERVICES. The keyboard is

now ready to participate in a data transfer operation. It will generate an interrupt request

whenever a key is pressed.

• Following the return to OSSERVICES, the SCHEDULER routine selects another user

program to run. Of course, the scheduler will not select program A, because that program is now

in the Blocked state. The Return-from-interrupt instruction that causes the selected user program

to begin execution will also enable interrupts in the processor by loading new contents into the

processor status register. Thus, an interrupt request generated by the keyboard's interface will be

accepted. The interrupt vector for this interrupt points to an OS routine called 10DATA. Because

there could be several devices connected to the same interrupt request line, 10DATA begins by

polling these devices to determine the one requesting service. Then, it calls the appropriate device

driver to service the request. In our example, the driver called will be KBDDATA, which will

transfer one character of data. If the character is a Carriage Return, it will also set to 1 a flag

called END, to inform 10DATA that the requested I/O operation has been completed. At this

M.JOSHNA

point, the 10DATA routine changes the state of process A from Blocked to Runnable, so that the

scheduler may select it for execution in some future time slice.

Direct Memory Access:

DIRECT MEMORY ACCESS (DMA): The main idea of direct memory access (DMA) is to

enable peripheral devices to cut out the “middle man” role of the CPU in data transfer. It allows
peripheral devices to transfer data directly from and to memory without the intervention of the

CPU. Having peripheral devices access memory directly would allow the CPU to do other work,

which would lead to improved performance, especially in the cases of large transfers. The DMA

controller is a piece of hardware that controls one or more peripheral devices. It allows devices to

transfer data to or from the system’s memory without the help of the processor. In a typical DMA

transfer, some event notifies the DMA controller that data needs to be transferred to or from

memory. Both the DMA and CPU use memory bus and only one or the other can use the memory

at the same time. The DMA controller then sends a request to the CPU asking its permission to use

the bus. The CPU returns an acknowledgment to the DMA controller granting it bus access. The

DMA can now take control of the bus to independently conduct memory transfer. When the

transfer is complete the DMA relinquishes its control of the bus to the CPU. Processors that support

DMA provide one or more input signals that the bus requester can assert to gain control of the bus

and one or more output signals that the CPU asserts to indicate it has relinquished the bus. Figure

8.10 shows how the DMA controller shares the CPU’s memory bus.

Direct memory access controllers require initialization by the CPU. Typical setup parameters

include the address of the source area, the address of the destination area, the length of the block,

and whether the DMA controller should generate a processor interrupt once the block transfer is

complete. A DMA controller has an address register, a word count register, and a control register.

The address register contains an address that specifies the memory location of the data to be

transferred. It is typically possible to have the DMA controller automatically increment the address

register after each word transfer, so that the next transfer will be from the next memory location.

M.JOSHNA

The word count register holds the number of words to be transferred. The word count is

decremented by one after each word transfer. The control register specifies the transfer mode.

Direct memory access data transfer can be performed in burst mode or singlecycle mode. In burst

mode, the DMA controller keeps control of the bus until all the data has been transferred to (from)

memory from (to) the peripheral device. This mode of transfer is needed for fast devices where

data transfer cannot be stopped until the entire transfer is done. In single-cycle mode (cycle

stealing), the DMA controller relinquishes the bus after each transfer of one data word. This

minimizes the amount of time that the DMA controller keeps the CPU from controlling the bus,

but it requires that the bus request/acknowledge sequence be performed for every single transfer.

This overhead can result in a degradation of the performance. The single-cycle mode is preferred

if the system cannot tolerate more than a few cycles of added interrupt latency or if the peripheral

devices can buffer very large amounts of data, causing the DMA controller to tie up the bus for an

excessive amount of time.

The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in memory, and reducing the count of words to be

moved).

3. When word count reaches zero, the DMA informs the CPU of the termination by means

of an interrupt.

4. The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Each channel has associated with it an address

register and a count register. To initiate a data transfer the device driver sets up the DMA channel’s
address and count registers together with the direction of the data transfer, read or write. While the

transfer is taking place, the CPU is free to do other things. When the transfer is complete, the CPU

is interrupted. Direct memory access channels cannot be shared between device drivers. A device

driver must be able to determine which DMA channel to use. Some devices have a fixed DMA

channel, while others are more flexible, where the device driver can simply pick a free DMA

channel to use.

Linux tracks the usage of the DMA channels using a vector of dma_chan data structures (one per

DMA channel). The dma_chan data structure contains just two fields, a pointer to a string

describing the owner of the DMA channel and a flag indicating if the DMA channel is allocated

or not.

M.JOSHNA

Buses:

BUSES: A bus in computer terminology represents a physical connection used to carry a signal

from one point to another. The signal carried by a bus may represent address, data, control signal,

or power. Typically, a bus consists of a number of connections running together. Each connection

is called a bus line. A bus line is normally identified by a number. Related groups of bus lines are

usually identified by a name. For example, the group of bus lines 1 to 16 in a given computer

system may be used to carry the address of memory locations, and therefore are identified as

address lines.

Depending on the signal carried, there exist at least four types of buses: address, data, control, and

power buses. Data buses carry data, control buses carry control signals, and power buses carry the

power-supply/ground voltage. The size (number of lines) of the address, data, and control bus

varies from one system to another. Consider, for example, the bus connecting a CPU and memory

in a given system, called the CPU bus. The size of the memory in that system is 512Mword and

each word is 32 bits. In such system, the size of the address bus should be log2(512220) = 29 lines,

the size of the data bus should be 32 lines, and at least one control line (RR=W) should exist in

that system. In addition to carrying control signals, a control bus can carry timing signals. These

are signals used to determine the exact timing for data transfer to and from a bus; that is, they

determine when a given computer system component, such as the processor, memory, or I/O

devices, can place data on the bus and when they can receive data from the bus. A bus can be

synchronous if data transfer over the bus is controlled by a bus clock. The clock acts as the timing

reference for all bus signals. A bus is asynchronous if data transfer over the bus is based on the

availability of the data and not on a clock signal. Data is transferred over an asynchronous bus

using a technique called handshaking. The operations of synchronous and asynchronous buses are

explained below.

To understand the difference between synchronous and asynchronous, let us consider the case

when a master such as a CPU or DMA is the source of data to be transferred to a slave such as an

I/O device. The following is a sequence of events involving the master and slave:

1. Master: send request to use the bus

2. Master: request is granted and bus is allocated to master

3. Master: place address/data on bus

4. Slave: slave is selected

5. Master: signal data transfer

6. Slave: take data

7. Master: free the bus

Synchronous and Asynchronous Buses:

M.JOSHNA

Bus Protocols: A bus is a communication channel shared by many devices and hence rules need

to be established in order for the communication to happen correctly. These rules are called bus

protocols. Design of a bus architecture involves several tradeoffs related to the width of the data

bus, data transfer size, bus protocols, clocking, etc. Depending on whether the bus transactions are

controlled by a clock or not, buses are classified into synchronous and asynchronous buses.

Depending on whether the data bits are sent on parallel wires or multiplexed onto one single wire,

there are parallel and serial buses. Control of the bus communication in the presence of multiple

devices necessitates defined procedures called arbitration schemes. In this section, different kinds

of buses and arbitration schemes are described.

Synchronous Buses: In synchronous buses, the steps of data transfer take place at fixed clock

cycles. Everything is synchronized to bus clock and clock signals are made available to both master

and slave. The bus clock is a square wave signal. A cycle starts at one rising edge of the clock and

ends at the next rising edge, which is the beginning of the next cycle. A transfer may take multiple

bus cycles depending on the speed parameters of the bus and the two ends of the transfer.One

scenario would be that on the first clock cycle, the master puts an address on the address bus, puts

data on the data bus, and asserts the appropriate control lines. Slave recognizes its address on the

address bus on the first cycle and reads the new value from the bus in the second cycle.

Synchronous buses are simple and easily implemented. However, when connecting devices with

varying speeds to a synchronous bus, the slowest device will determine the speed of the bus. Also,

the synchronous bus length could be limited to avoid clock-skewing problems.

A memory read transaction on the synchronous bus typically proceeds as illustrated in Fig. 5.

During the first clock cycle the CPU places the address of the location it wants to read, on the

address lines of the bus. Later during the same clock cycle, once the address lines have stabilized,

M.JOSHNA

the READ request is asserted by the CPU. Many times, some of these control signals are active

low and asserting the signal means that they are pulled low. A few clock cycles are needed for the

memory to perform accessing of the requested location. In a simple non-pipelined bus, these

appear as wait states and the data is placed on the bus by the memory after the tow or three wait

cycles. The CPU then releases the bus by deasserting the READ control signal. The write

transaction is similar except that the processor is the data source and the WRITE signal is the one

that is asserted. Different bus architectures synchronize bus operations with respect to the rising

edge or falling edge or level of the clock signal.

Asynchronous Buses: There are no fixed clock cycles in asynchronous buses. Handshaking is

used instead. Figure 8.11 shows the handshaking protocol. The master asserts the data-ready line

(point 1 in the figure) until it sees a data-accept signal. When the slave sees a dataready signal, it

will assert the data-accept line (point 2 in the figure). The rising of the data-accept line will trigger

the falling of the data-ready line and the removal of data from the bus. The falling of the data-

ready line (point 3 in the figure) will trigger the falling of the data-accept line (point 4 in the figure).

This handshaking, which is called fully interlocked, is repeated until the data is completely

transferred. Asynchronous bus is appropriate for different speed devices.

An asynchronous bus has no system clock. Handshaking is done to properly conduct the

transmission of data between the sender and the receiver. The process is illustrated in Fig. 6. For

example, in an asynchronous read operation, the bus master puts the address and control signals

on the bus and then asserts a synchronization signal. The synchronization signal from the master

prompts the slave to get synchronized and once it has accessed the data, it asserts its own

synchronization signal. The slave's synchronization signal indicates to the processor that there is

valid data on the bus, and it reads the data. The master then deasserts its synchronization signal,

which indicates to the slave that the master has read the data. The slave then deasserts its

synchronization signal. This method of synchronization is referred to as a full handshake. Note

M.JOSHNA

that there is no clock and that starting and ending of the data transfer are indicated by special

synchronization signals. An asynchronous communication protocol can be considered as a pair of

Finite State machines (FSMs) that operate in such a way that one FSM does not proceed until the

other FSM has reached a certain state.

Synchronous buses are typically faster than asynchronous buses because there is no overhead to

establish a time reference for each transaction. Another reason that helps the synchronous bus to

operate fast is that the bus protocol is predetermined and very little logic is involved in

implementing the Finite State machine. However, synchronous buses are affected by clock skew

and they cannot be very long. But asynchronous buses work well even when they are long because

clock skew problems do not affect them. Thus asynchronous buses can handle longer physical

distances and higher number of devices. Processor-memory buses are typically synchronous

because the devices connected to the bus are fast, are small in number and are located in close

proximity. I/O buses are typically asynchronous because many peripherals need only slow data

rates and are physically situated far away.

Bus Arbitration:

Bus Arbitration: Bus arbitration is needed to resolve conflicts when two or more devices want to

become the bus master at the same time. In short, arbitration is the process of selecting the next

bus master from among multiple candidates. Conflicts can be resolved based on fairness or priority

in a centralized or distributed mechanisms. Centralized Arbitration In centralized arbitration

schemes, a single arbiter is used to select the next master. A simple form of centralized arbitration

uses a bus request line, a bus grant line, and a bus busy line. Each of these lines is shared by

potential masters, which are daisy-chained in a cascade. Figure 8.12 shows this simple centralized

arbitration scheme. In the figure, each of the potential masters can submit a bus request at any time.

A fixed priority is set among the masters from left to right. When a bus request is received at the

central bus arbiter, it issues a bus grant by asserting the bus grant line. When the potential master

that is closest to the arbiter (potential master 1) sees the bus grant signal, it checks to see if it had

made a bus request. If yes, it takes over the bus and stops propagation of the bus grant signal any

further. If it has not made a request, it will simple turn the bus grant signal to the next master to

the right (potential master 2), and so on. When the transaction is complete, the busy line is

deasserted.

Instead of using shared request and grant lines, multiple bus request and bus grant lines can be

used. In one scheme, each master will have its own independent request and grant line as shown

in Figure 8.13. The central arbiter can employ any prioritybased or fairness-based tiebreaker.

Another scheme allows the masters to have multiple priority levels. For each priority level, there

is a bus request and a bus grant line. Within each priority level, daisy chain is used. In this scheme,

each device is attached to the daisy chain of one priority level. If the arbiter receives multiple

M.JOSHNA

bus requests from different levels, it grants the bus to the level with the highest priority. Daisy

chaining is used among the devices of that level. Figure 8.14 shows an example of four devices

included in two priority levels. Potential master 1 and potential master 3 are daisy-chained in level

1 and potential master 2 and potential master 4 are daisy-chained in level 2.

Decentralized Arbitration In decentralized arbitration schemes, priority-based arbitration is

usually used in a distributed fashion. Each potential master has a

unique arbitration number, which is used in resolving conflicts when multiple requests are

submitted. For example, a conflict can always be resolved in favor of the device with the highest

arbitration number. The question now is how to determine which device has the highest arbitration

number? One method is that a requesting device would make its unique arbitration number

available to all other devices. Each device compares that number with its own arbitration number.

The device with the smaller number is always dismissed. Eventually, the requester with the highest

arbitration number will survive and be granted bus access.

M.JOSHNA

Interface Circuits:

Interface circuits: An Input/output (I/O) interface consists of the circuitry required to connect an

I/O device to a computer bus. On one side of the interface we have the bus signals for address,

data, and control. On the other side we have a data path with its associated controls to transfer data

between the interface and the I/O device. This side is called a port, and it can be classified as either

a parallel or a serial port. A parallel port transfers data in the form of a number of bits, typically 8

or 16, simultaneously to or from the device. A serial port transmits and receives data one bit at a

time. Communication with the bus is the same for both formats; the conversion from the parallel

to the serial format, and vice versa, takes place inside the interface circuit. I/O interface does the

following:

1. Provides a storage buffer for at least one word of data (or one byte, in the case of byte-oriented
devices)

2. Contains status flags that can be accessed by the processor to determine whether the buffer is
full (for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by the processor

4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the bus and

the I/O device, such as parallel-serial conversion in the case of a serial port

Parallel port: Figure 5.20 shows the hardware components needed for connecting a keyboard

to a processor. A typical keyboard consists of mechanical switches that are normally open. When

a key is pressed, its switch closes and establishes a path for an electrical signal. This signal is

M.JOSHNA

detected by an encoder circuit that generates the ASCII code for the corresponding character. A

difficulty with such push-button switches is that the contacts bounce when a key is pressed.

Although bouncing may last only one or two milliseconds, this is long enough for the computer to

observe a single pressing of a key as several distinct electrical events; this single pressing could

be erroneously interpreted as the key being pressed and released rapidly several times. The effect

of bouncing must be eliminated. We can do this in two ways: A simple de-bouncing circuit can be

included, or a software approach can be used. When debouncing is implemented in software, the

I/O routine that reads a character from the keyboard waits long enough to ensure that bouncing has

subsided. Figure 5.20 illustrates the hardware approach; debouncing circuits are included as a part

of the encoder block.

The output of the encoder consists of the bits that represent the encoded character and one control

signal called Valid, which indicates that a key is being pressed. This information is sent to the

interface circuit, which contains a data register, DATAIN, and a status flag, SIN. When a key is

pressed, the valid signal changes from 0 to 1,, causing the ASCII code to be loaded into DATAIN

and SIN to be set to 1. The status flag SIN is cleared to 0 when the processor reads the contents of

the DATAIN register. The interface circuit is connected to an asynchronous bus on which transfers

are controlled using the handshake signals Master-ready and Slave-ready. The third control line,

R/W distinguishes read and write transfers.

M.JOSHNA

Figure 5.21 shows a suitable circuit for an

input interface.

The output lines of the DATAIN register are connected to the data lines of the bus by means of

three-state drivers, which are turned on when the processor issues a read instruction with the ad-

dress that selects this register. The SIN signal is generated by a status flag circuit. This signal is

also sent to the bus through a three-state driver. It is connected to bit DO, which means it will

appear as bit 0 of the status register. Other bits of this register do not contain valid information. An

address decoder is used to select the input interface when the high-order 31 bits of an address

correspond to any of the addresses assigned to this interface. Address bit AO determines whether

the status or the data registers is to be read when the Master-ready signal is active. The control

handshake is accomplished by activating the Slaveready signal when either Read-status or Read-

data is equal to 1.

M.JOSHNA

Figure 5.22 Circuit for the status Rag block in Figure 5.21.

A possible implementation of the status flag circuit is shown in Figure 5.21. An edgetriggered D

flip-flop is set to 1 by a rising edge on the Valid signal line. this event changes the state of the

NOR latch such that SIN is set to 1. The state of this latch must not change while SIN is being read

by the processor. Hence, the circuit ensures that SIN can be set only while Masterready is equal to

0. Both the flip- flop and the latch are reset to 0 when Read-data is set to 1 to read the DATAIN

register.

Let us now consider an output interface that can be used to connect an output device, such as a

printer, to a processor, as shown in Figure 5.23. The printer operates under control of the handshake

signals Valid and Idle in a manner similar to the handshake used on the bus with the Master-ready

and Slave-ready signals. When it is ready to accept a character, the printer asserts its Idle signal.

The interface circuit can then place a new character on the data lines and activate the Valid signal.

In response, the printer starts printing the new character and negates the Idle signal, which in turn

causes the interface to deactivate the Valid signal.

Serial port: A serial port is used to connect the processor to I/O devices that require transmission

of data one bit at a time. The key feature of an interface circuit for a serial port is that it is capable

of communicating in a bit-serial fashion on the device side and in a bit-parallel fashion on the bus

side. The transformation between the parallel and serial formats is achieved with shift registers

that have parallel access capability. A block diagram of a typical serial interface is shown in Figure

5.27. It includes the familiar DATAIN and DATAOUT registers. The input shift register accepts

bit-serial input from the I/O device. When all 8 bits of data have been received, the contents of this

shift register are loaded in parallel into the DATAIN register. Similarly, output data in the

DATAOUT register are loaded into the output shift register, from which e bits are shifted out and

sent to the I/O device.

M.JOSHNA

Figure 5.27 A serial interface.

The part of the interface that deals with the bus is the same as in the parallel interface described

earlier. The status flags SIN and SOUT serve similar functions. The SIN flag is set to 1

•when new data are loaded in DATAIN; it is cleared to 0 when the processor reads the contents

of DATAIN. As soon as the data are transferred from the input shift register into the DATAIN

register, the shift register can start accepting the next 8-bit character from the I/O device. The

SOUT flag indicates whether the output buffer is available. It is cleared to 0 when the processor

writes new data into the DATAOUT register and set to 1 when data are transferred from

DATAOUT into the output shift register.

•The double buffering used in the input and output paths are important. A simpler interface could

be implemented by turning DATAIN and DATA OUT into shift registers and eliminating

M.JOSHNA

the shift registers in Figure 5.27. However, this would impose awkward restrictions on the

operation of the I/O device; after receiving one character from the serial line, the device cannot

start receiving the next character until the processor reads the contents of DATAIN. Thus, a pause

would be needed between two characters to allow the processor to read the input data. With the

double buffer, the transfer of the second character can begin as soon as the first character is

loaded from the shift register into the DATAIN register. Thus, provided the processor reads the

contents of DATAIN before the serial transfer of the second character is completed, the interface

can receive a continuous stream of serial data. An analogous situation occurs in the output path

of the interface.

Because it requires fewer wires, serial transmission is convenient for connecting devices that are

physically far away from the computer. The speed of transmission, often given as a bit rate,

depends on the nature of the devices connected. To accommodate a range of devices, a serial

interface must be able to use a range of clock speeds. The circuit in Figure 5.27 allows separate

clock signals to be used for input and output operations for increased flexibility. Because serial

interfaces play a vital role in connecting I/O devices, several widely used standards have been

developed. A standard circuit that includes the features of our example in Figure 5.27 is known as

a Universal Asynchronous Receiver Transmitter (UART). It is intended for use with low-speed

serial devices. Data transmission is performed using the asynchronous start-stop format. To

facilitate connection to communication links, a popular standard known as RS-232-C was

developed.

Standard I/O Interfaces:

Introduction: A number of standards have been developed for I/O Interface. IBM developed a

they called ISA (Industry Standard Architecture) for their personal computer known at the time as

PC AT. The popularity of that computer led to other manufacturers producing ISA -compatible

interfaces for their 110 devices, thus making ISA into a de facto standard. Some standards have

been developed through industrial cooperative efforts, even among competing companies driven

by their common self-interest in having compatible products. In some cases, organizations such as

the IEEE (Institute of Electrical and Electronics Engineers), ANSI (American Nationa1 Standards

Institute), or international bodies such as ISO (International Standards Organization) have blessed

these standards and given them an official status.

There are three widely used bus standards, PCI (Peripheral Component Interconnect), SCSI (Small

Computer System Interface), and USB (Universal Serial Bus). The way these standards are used

in a typical computer system is illustrated in Figure 5.28. The PCI standard defines an expansion

bus on the motherboard. SCSI and USB are used for connecting additional devices, both inside

and outside the computer box. The SCSI bus is a high-speed parallel bus intended for devices such

as disks and video displays. The USB bus uses serial transmission to suit the needs of equipment

ranging from keyboards to game controls to internet connections. The figure shows an interface

circuit that enables devices compatible with the earlier ISA standard, such as the popular IDE

(Integrated Device Electronics) disk, to be connected. It also shows a connection to an Ethernet.

M.JOSHNA

The Ethernet is a widely used local area network, providing a high-speed connection among

computers in a building or a university campus. A given computer may use more than one bus

standard. A typical Pentium computer has both a PCI bus and an ISA bus, thus providing the user

with a wide range of devices to choose from.

The PCI bus is a good example of a system bus. It supports the functions found on a processor bus

but in a standardized format that is independent of any particular processor. Devices connected to

the PCI bus appear to the processor as if they were connected directly to the processor bus. They

are assigned addresses in the memory address space of the processor. Early PCs used the 8-bit XT

bus, whose signals closely mimicked those of Intel's 80x86 processors. Later, the 16-bit bus used

on the PC AT computers became known as the ISA bus. Its extended 32- bit version is known as

the EISA bus. Other buses developed in the eighties with similar capabilities are the Microchannel

used in IBM PCs and the NuBus used in Macintosh computers.

M.JOSHNA

The PCI was developed as a low-cost bus that is truly processor independent. Its design anticipated

a rapidly growing demand for bus bandwidth to support high-speed disks and graphic and video

devices, as well as the specialized needs of multiprocessor systems. As a result, the PCI is still

popular as an industry standard almost a decade after it was first introduced in 1992. An important

feature that the PCI pioneered is a plug-and-play capability for connecting I/O devices. To connect

a new device, the user simply connects the device interface board to the bus. The software takes

care of the rest.

Data Transfer: Most memory transfers involve a burst of data rather than just one word. The

reason is that modem processors include a cache memory. The PCI is designed primarily to support

this mode of operation. A read or a write operation involving a single word is simply treated as a

burst of length one. The bus supports three independent address spaces: memory, I/O, and

configuration. The first two are self-explanatory. The I/O address space is intended for use with

processors, such as Pentium, that have a separate I/O address space. Figure 5.28 shows the main

memory of the computer connected directly to the processor bus. An alternative arrangement that

is used often with the PCI bus is shown in Figure 5.29. The PCI Bridge provides a separate physical

connection for the main memory. For electrical reasons, the bus may be further divided into

segments connected via bridges. However, regardless of which bus segment a device is connected

to, it may still be mapped into the processor's memory address space.

Figure 5.29 Use of a PCI bus in a computer system.: At any given time, one device is the bus

master. It has the right to initiate data transfers by issuing read and write commands. A master is

called an initiator in PCI terminology. This is either a processor or a DMA controller. The

addressed device that responds to read and write commands is called a target. The main bus signals

used for transferring data are listed in Table 5.1. Signals whose name ends with the symbol # are

asserted when in the low- voltage state. The main difference between the PCI protocol with others

is that in addition to a Target-ready signal, PCI also uses an Initiatorready signal, IRDY #. The

latter is needed to support burst transfers.

SCSI Bus:

SCSI (Small Computer System Interface): The acronym SCSI stands for Small Computer

System Interface. It refers to a standard bus defined by the American National Standards Institute

(ANSI) under the designation X3.131. In the original specifications of the standard, devices such

as disks are connected to a computer via a 50- wire cable, which can be up to 25 meters in length

M.JOSHNA

and can transfer data at rates up to 5 megabytes/s. The SCSI bus standard has undergone many

revisions, and its data transfer capability has increased very rapidly, almost doubling every two

years. SCSI-2 and SCSI-3 have been defined, and each has several options.

A SCSI bus may have eight data lines, in which case it is called a narrow bus and transfers data

one byte at a time. Because of these various options, the SCSI connector may have 50, 68, or 80

pins. The maximum transfer rate in commercial devices that are currently available varies from 5

megabytes/s to 160 megabytes/so The most recent version of the standard is intended to support

transfer rates up to 320 megabytes/s, and 640 megabytes/s is anticipated a little later. Devices

connected to the SCSI bus are not part of the address space of the processor in the same way as

devices connected to the processor bus. The SCSI bus is connected to the processor bus through a

SCSI controller, as shown in Figure 5.28. This controller uses DMA to transfer data packets from

the main memory to the device, or vice versa. A packet may contain a block of data, commands

from the processor to the device, or status information about the device. A controller

connected to a SCSI bus is one of two types - an initiator or a target. An initiator has the ability to

select a particular target and to send commands specifying the operations to be performed. The

disk controller operates as a target. It carries out the commands it receives from the initiator. The

initiator establishes a logical connection with the intended target. Once this connection has been

established, it can be suspended and restored as needed to transfer commands and bursts of data.

While a particular connection is suspended, other devices can use the bus to transfer information.

This ability to overlap data transfer requests is one of the key features of the SCSI bus that leads to

its high performance.

Data transfers on the SCSI bus are always controlled by the target controller. To send a command

to a target, an initiator requests control of the bus and, after winning arbitration, selects the

controller it wants to communicate with and hands control of the bus over to it. Then the controller

starts a data transfer operation to receive a command from the initiator. Assume that the processor

wishes to read a block of data from a disk drive and that these data are stored in two disk sectors

that are not contiguous. The processor sends a command to the SCSI controller, which causes the

following sequence of events to take place:

1. The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the 'initiator wins the arbitration process, it selects the target controller and hands

over control of the bus to it.

3. The target starts an output operation (from initiator to target); in response to this, the

initiator sends a command specifying the required read operation.

4. The target, realizing that it first needs to perform a disk seek operation, sends a message to

the initiator indicating that it will temporarily suspend the connection between them. Then

it releases the bus.

5. The target controller sends a command to the disk drive to move the read head to the first

sector involved in the requested read operation. Then, it reads the data stored in that sector

and stores them in a data buffer. When it is ready to begin transferring data to the initiator,

M.JOSHNA

the target requests control of the bus. After it wins arbitration, it res elects the initiator

controller, thus restoring the suspended connection.

6. The target transfers the contents of the data buffer to the initiator and then suspends the

connection again. Data are transferred either 8 or 16 bits in parallel, depending on the width

of the bus.

7. The target controller sends a command to the disk drive to perform another seek operation.

Then, it transfers the contents of the second disk sector to the initiator, as before. At the

end of this transfer, the logical connection between the two controllers is terminated.

8. As the initiator controller receives the data, it stores them into the main memory using the

DMA approach.

9. The SCSI controller sends an interrupt to the processor to inform it that the requested

operation has been completed.

This scenario shows that the messages exchanged over the SCSI bus are at a higher level than

those exchanged over the processor bus. The SCSI bus standard defines a wide range of control

messages that can be ex- changed between the controllers to handle different types of I/O devices.

Messages are also defined to deal with various error or failure conditions that might arise during

device operation or data transfer.

Consider a bus transaction in which the processor reads four 32-bit words from the memory. In

this case, the initiator is the processor and the target is the memory. A complete transfer operation

on the bus, involving an address and a burst of data, is called a transaction. Individual word

transfers within a transaction are called phases. The sequence of events on the bus is shown in

Figure 5.30. A clock signal provides the timing reference used to coordinate different phases of a

transaction. All signal transitions are triggered by the rising edge of the clock. The signals changing

later in the clock cycle to indicate the delays they encounter.

Bus Signal: The bus signals are summarized in Table 5.2. For simplicity we show the signals

for a narrow bus (8 data lines). Note that all signal names are preceded by a minus sign. This

indicates that the signals are active, or that a data line is equal to 1, when they are in the low-

voltage state. The bus has no address lines. Instead, the data lines are used to identify the bus

controllers involved during the selection or reselection process and during bus arbitration. For a

M.JOSHNA

narrow bus, there are eight possible controllers, numbered o through 7, and each i, associated with

the data line that has the same number. A wide bus accommodates up to 16 controllers. A controller

places its own address or the address of another controller on the bus by activating the

corresponding data line. Thus, it is possible to have more than one address on the bus at the same

time, as in the arbitration process we describe next. Once a connection is established between two

controllers, there is no further need for addressing, and the data lines are used to carry data.

The main phases involved in the operation of the SCSI bus are arbitration, selection, information

transfer, and reselection.

Arbitration: The bus is free when the -BSY signal is in the inactive (high-voltage) state. Any

controller can request the use of the bus while it is in this state. Since two or more controllers may

generate such a request at the same time, an arbitration scheme must be implemented. A controller

requests the bus by asserting the - BSY signal and by asserting its associated data line to identify

itself. The SCSI bus uses a simple distributed arbitration scheme. It is illustrated by the example

in Figure 5.32, in which controllers 2 and 6 request the use of the bus simultaneously. Each

controller on the bus is assigned a fixed priority, with controller 7 having the highest priority.

When -BSY becomes active, all controllers that are requesting the bus examine the data lines and

determine whether a higher-priority device is requesting the bus at the same time. The controller

using the highest-numbered line realizes that it has won the arbitration process. All other

controllers disconnect from the bus and wait for -BSY to become inactive again.

M.JOSHNA

In Figure 5.32, we have assumed that controller 6 is an initiator that wishes to establish a

connection to controller 5. After winning arbitration, controller 6 proceeds to the selection phase,

in which it identifies the target.

Selection: Having won arbitration, controller 6 continues to assert -BSY and -DB6 (its address).

It indicates that it wishes to select controller 5 by asserting the -SEL and then the - DB5 lines. Any

other controller that may have been involved in the arbitration phase, such as controller 2 in the

figure, must stop driving the data lines once the -SEL line becomes active, if it has not already

done so. After placing the address of the target controller on the bus, the initiator releases the -

BSY line. The selected target controller responds by asserting - BSY. This informs the initiator

that the connection it is requesting has been established, so that it may remove the address

information from the data lines. The selection process is now complete, and the target controller

(controller 5) is asserting - BSY. From this point on, controller 5 has control of the bus, as required

for the information transfer phase.

Information Transfer: The information transferred between two controllers may consist of

commands from the initiator to the target, status responses from the target to the initiator, or data

being transferred to or from the I/O device. Handshake signaling is used to control information

transfers. The - REQ and - ACK signals replace the Master-ready and Slave-ready signals. The

target asserts - I/O during an input operation (target to initiator), and it asserts -CID to indicate that

the information being transferred is a command or a status response rather than data.

High-speed versions of the SCSI bus use a technique known as double-edge clocking or Double

Transitions (DT). Each data transfer requires a high-to-low transition followed by a lowto- high

transition on the two handshake signals. Double-edge clocking means that data are transferred on

both the rising and falling edges of these signals, thus doubling the transfer rate. At the end of the

transfer, the target controller releases the - BSY signal, thus freeing the bus for use by other devices.

Reselection: When a logical connection is suspended and the target is ready to restore it, the target

must first gain control of the bus. It starts an arbitration cycle, and after winning arbitration, it

selects the initiator controller in exactly the same manner as described above. But with the roles

of the target and initiator reversed, the initiator is now asserting - BSY. Before data transfer can

begin, the initiator must hand control over to the target. This is achieved by having the target

M.JOSHNA

controller assert - BSY r selecting the initiator. Meanwhile, the initiator waits for a short period

after being selected to make sure that the target has asserted -BS and then it releases the -BSY line.

The connection between the two controllers has now been reestablished, with the target in control

of the bus as required for data transfer to proceed.

The bus signaling scheme described above provides the mechanisms needed for two controllers to

establish a logical connection and exchange messages. The connection may be suspended and

reestablished at any time. The SCSI standard defines the structure and contents of various types of

packets that the controllers exchange to handle different situations. The initiator uses these packets

to send the commands it receives from the processor to the target. The target responds with status

information and data transfer operations. The latter are controlled by the target, because it is the

target that knows when data are available, when to suspend and reestablish connections, etc.

Universal Serial Bus (USB):

USB (Universal Serial Bus).: Universal Serial Bus (USB) is an industry standard developed

through a collaborative effort of several computer and communications companies, including

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips. USB is a

simple and low cost mechanism to connect the devices such as keyboards, mouse, cameras,

speakers, printer and display devices to the computer.

The USB supports two speeds of operation, called low-speed (1.5 megabits/s) and fullspeed (12

megabits/s). The most recent revision of the bus specification (USB 2.0) introduced a third speed

of operation, called high-speed (480 megabits/s). The USB is quickly gaining acceptance in the

market place, and with the addition of the high-speed capability it may well become the

interconnection method of choice for most computer devices. The USB has been designed to meet

several key objectives:

• Provide a simple, low-cost, and easy to use interconnection system that overcomes the

difficulties due to the limited number of I/O ports available on a computer

• Accommodate a wide range of data transfer characteristics for I/O devices, including

telephone and Internet connections

• Enhance user convenience through a "plug-and-play" mode of operation

Port limitation: Only a few ports are provided in a typical computer. To add new ports, a user

must open the computer box to gain access to the internal expansion bus and install a new interface

card. The user may also need to know how to configure the device and the software. An objective

of the USB is to make it possible to add many devices to a computer system at any time, without

opening the computer box.

Device Characteristics: The different kinds of devices may be connected to a computer cover a

wide range of functionality. The speed, volume, and timing constraints associated with data

transfers to and from such devices vary significantly. In the case of a keyboard, one byte of data

M.JOSHNA

is generated every time a key is pressed, which may happen at any time. These data should be

transferred to the computer promptly. Since the event of pressing a key is not synchronized to any

other event in -8 computer system, the data generated by the keyboard are called asynchronous.

Furthermore, the rate at which the data are generated is quite low. It is limited by the speed of the

human operator to about 100 bytes per second, which is less than 1000 bits per second.

Let us consider a different source of data. Many computers have a microphone either externally

attached or built in. The sound picked up by the microphone produces an analog electrical signal,

which must be converted into a digital form before it can be handled by the computer. This is

accomplished by sampling the analog signal periodically. For each sample, an analog-to-digital

(A/D) converter generates an n-bit number representing the magnitude of the sample. The number

of bits, n, is selected based on, the desired precision with which to represent each sample. Later,

when these data are sent to a speaker, a digital-to-analog (D/A) converter is used to restore the

original analog signal from the digital format. The sampling process yields a continuous stream of

digitized samples that arrive at regular intervals, synchronized with the sampling clock. Such a

data stream is called isochronous, meaning that successive events are separated by equal periods

of time.

Plug-and-play: The plug-and-play feature means that a new device, such as an additional speaker,

can be connected at any time while the system is operating. The system should detect the existence

of this new device automatically, identify the appropriate device-driver soft- ware and any other

facilities needed to service that device, and establish the appropriate addresses and logical

connections to enable them to communicate. The plug-and-play requirement has many

implications at all levels in the system, from the hardware to the operating system and the

applications software. One of the primary objectives of the design of the USB has been to provide

a plug-and-play capability.

USB Architecture: A serial transmission format has been chosen for the USB because a serial bus

satisfies the low-cost and flexibility requirements. Clock and data information are encoded

together and transmitted as a single signal. Hence, there are no limitations on clock frequency or

distance arising from data skew. Therefore, it is possible to provide a high data transfer bandwidth

by using a high clock frequency. As pointed out earlier, the USB offers three bit rates, ranging

from 1.5 to 480 megabits/s, to suit the needs of different I/O devices.

To accommodate a large number of devices that can be added or removed at any time, the USB

has the tree structure shown in Figure 5.33. Each node of the tree has a device called a hub, which

acts as an intermediate control point between the host and the I/O devices. At the root of the tree,

a root hub connects the entire tree to the host computer. The leaves of the tree are the I/O devices

being served (for example, keyboard, speaker, or digital TV), which are called functions in USB

terminology.

M.JOSHNA

Figure 5.33 Universal Serial Bus tree structure.

The tree structure enables many devices to be connected while using only simple point -topoint

serial links. Each hub has a number of ports where devices may be connected, including other

hubs. In normal operation, a hub copies a message that it receives from its upstream connection to

all its downstream ports. As a result, a message sent by the host computer is broadcast to ill VO

devices, but only the addressed device will respond to that message. A message from an I/O device

is sent only upstream towards the root of the tree and is not seen by other devices. Hence, the USB

enables the host to communicate with the I/O devices, but it does not enable these devices to

communicate with each other.

The USB operates strictly on the basis of polling. A device may send a message only in response

to a poll message from the host. Hence, upstream messages do not encounter conflicts or interfere

with each other, as no two devices can send messages at the same time. This restriction allows

hubs to be simple, Low-cost devices.

M.JOSHNA

Figure 5.34 USB Split bus operations.

The mode of operation described above is observed for all devices operating at either low speed

or full speed. However, one exception has been necessitated by the introduction of highpeed

operation in USB version 2.0. Consider the situation in Figure 5.34. Hub A is connected to the root

hub by a high-speed link. This hub serves one high-speed device, C, and one low-speed device, D.

Normally, a message to device D would be sent at low speed from the root hub. At 1.5 megabits/s,

even a short message takes several tens of microseconds. For the duration of this message, no other

data transfers can take place, thus reducing the effectiveness of the high-speed links and

introducing unacceptable delays for high-speed devices. To mitigate this problem, the USB

protocol requires that a message transmitted on a high-speed link is always transmitted at high

speed, even when the ultimate receiver is a low-speed device. Hence, a message intended for

device D is sent at high speed from the root hub to hub A, then forwarded at low speed to device

D. The latter transfer will take a long time, during which high-speed traffic to other nodes is

allowed to continue. For example, the root hub may exchange several messages with device C

while the low-speed message is being sent from hub A to device D. During this period, the bus is

said to be split between high-speed and low-speed traffic. The message to device D is preceded

and followed by special commands to hub A to start and end the split-traffic mode of operation,

respectively.

The USB standard specifies the hardware details of USB interconnections as well as the

organization and requirements of the host software. The purpose of the USB software is to provide

bidirectional communication links between application software and I/O devices. These links are

called pipes. Any data entering at one end of a pipe is delivered at the other end. Issues such as

addressing, timing, or error detection and recovery are handled by the USB protocols. The software

that transfers data to or from a given IJO device is called the device driver for that device. The

device drivers depend on the characteristics of the devices they support. Hence, a more precise

description of the USB pipe is that it connects an VO device to its device driver. It is

M.JOSHNA

established when a device is connected and assigned a unique address by the USB software. Once

established, data may flow through the pipe at any time.

Addressing: I/O devices are normally identified by assigning them a unique memory address. In

fact, a device usually has several addressable locations to enable the software to send and receive

control and status information and to transfer data. When a USB is connected to a host computer,

its root hub is attached to the processor bus, where it appears as a single device. The host software

communicates with individual devices attached to the USB by sending packets of information,

which the root hub forwards to the appropriate device in the USB tree.

Each device on the USB, whether it is a hub or an IJO device, is assigned a 7 -bit address. This

address is local to the USB tree and is not related in any way to the addresses used on the processor

bus. A hub may have any number of devices or other hubs connected to it, and addresses are

assigned arbitrarily. When a device is first connected to a hub, or when it is powered on, it has the

address 0. The hardware of the hub to which this device is connected is capable of detecting that

the device has been connected, and it records this fact as part of its own status information.

Periodically, the host polls each hub to collect status information and learn about new devices that

may have been added or disconnected.

USB Protocol: All information transferred over the USB is organized in packets, where a packet

consists of one or more bytes of information. There are many types of packets that perform a

variety of control functions. The information transferred on the USB can be divided into two broad

categories: control and data. Control packets perform such tasks as addressing a device to initiate

data transfer, acknowledging that data have been received correctly, or indicating an error. Data

packets carry information that is delivered to a device. For example, put and output data are

transferred inside data packets.

A packet consists of one or more fields containing different kinds of information. The first field of

any packet is called the packet identifier, PID, which identifies the type of that packet. There are

four bits of information in this field, but they are transmitted twice. The first time they are sent

with their true values, and the second time with each bit complemented, as shown in Figure 5.35(a).

This enables the receiving device to verify that the PID byte has been received correctly.

M.JOSHNA

Figure 5.35. USB packet format.

The four PID bits identify one of 16 different packet types. Some control packets, such as ACK

(Acknowledge), consist only of the PID byte. Control packets used for controlling data transfer

operations are called token packets. They have the format shown in Figure 5.35(b). A token packet

starts with the PID field, using one of two PID values to distinguish between an IN packet and an

OUT packet, which control input and output transfers, respectively. The PID field is followed by

the 7 -bit address of a device and the 4-bit endpoint number within that device. The packet ends

with 5 bits for error checking, using a method called cyclic redundancy check (CRC). The CRC

bits are computed based on the contents of the address and endpoint fields. By performing an

inverse computation, the receiving device can determine whether the packet has been received

correctly.

Data packets, which carry input and output data, have the format shown in Figure 4.45c. The packet

identifier field is followed by up to 8192 bits of data, then 16 error-checking bits. Three different

PID patterns are used to identify data packets, so that data packets may be numbered 0, 1, or 2.

Note that data packets do not carry a device address or an endpoint number. This information is

included in the IN or OUT token packet that initiates the transfer. Consider an output device

connected to a USB hub, which in turn is connected to a host computer. An example of an output

operation is shown in Figure 5.36. The host computer sends a token packet of type OUT to the

hub, followed by a data packet containing the output data. The PID field of the data packet

identifies it as data packet number o. The hub verifies that the transmission has been error free by

M.JOSHNA

checking the error control bits, and then sends an acknowledgment packet (ACK) back to the host.

The hub forwards the token and data packets downstream. All I/O devices receive this sequence

of packets, but only the device that recognizes its address in the token packet accepts the data in

the packet that follows. After verifying that transmission has been error free, it sends an ACK

packet to the hub.

Successive data packets on a full-speed or low-speed pipe carry the numbers 0 and 1, alternately.

This simplifies recovery from transmission errors. If a token, data, or acknowledgment packet is

lost as a result of a transmission error, the sender resends the entire sequence. By checking the data

packet number in the PID field, the receiver can detect and discard duplicate packets. High-speed

data packets are sequentially numbered 0, 1, 2, 0, and so on. Input operations follow a similar

procedure. The host sends a token packet of type IN containing the device address. In effect, this

packet is a poll asking the device to send any input data it may have. The device responds by

sending a data packet followed by an ACK. If it has no data ready, it responds by sending a negative

acknowledgment (NAK) instead.

Electrical characteristics: The cables used for USB connections consist of four wires. Two are

used to carry power, 5 V and Ground. Thus, a hub or an I/O device may be powered directly from

the bus, or it may have its own external power connection. The other two wires are used to carry

data. Different signaling schemes are used for different speeds of transmission. At low speed, 1s

and 0s are transmitted by sending a high voltage state (5 V) on one or the other of the two signal

wires. For high-speed links, differential transmission is used.

