M.JOSHNA

UN
Dbvedieclion ' & @".E-’ﬁ
Of;t‘éc& ‘%ELC
i O’}’\é“& 97'4"”1 tan he gefer b e prew& éecb"’&?j pericd
ot dighol oge.
-l 0?(@.& W ane. WOQ on mmmc&\m/ Lu_um‘,s é_mnfacfébﬂ]/
L’m’“‘: Cbr&v‘&— ’ e‘nLeJmek andh on, .
T e hwe diglod Lelephosr, dite) b, digitod vensalile &t
cqijikaﬁ camenad ,g,'aho CQ_.:j,.éal wuﬂ@s ‘
- et devicer v’ W«& wen inlofacet (Guly) , wheh cratl

v _Codey 1

i

o be
ten ko ovecule cumnom%%%opfeoh bo the ww !
- Gk wvdver e precke execulion & S’eiuc-y\ceélr Cbrrffl/l 7’&9""9"
‘ nibuckory

T e mdk king prcfaaj & eﬂij;w empuler 4 ks genowbty.
- 6t an tlow o ceuence & Wskvackory , Ml o prepan
ot poabes on o given dotar:
— one demnctenidic & &71—01 e e oh'kg Lo
| Aepresenk and ﬂhn?fu’a.’te dycrele demorkt S b oakion.
, — Ay sk ety setbricked b0 o dnite number & lements

wnkoin désomeke informatton.
€ 1o decmal gk,
26 Jelloy & olphabet
5o Mnj aodX -
6y quoel &y @ hegbrmards
e, the dyovele demenls wee e cQ-.j,i(’S,

on Hy
s Conodly 3o Yo Dbl Bde s

-

M.JOSHNA
h |
- A OL‘\}(‘LO}(Wan u C('mf'jj one . M neceivel /nfu,(‘/ PVC(‘-’%&_\ o)
Cm}"—@ .achu;éj , anoQ avj:fug'i ',nbwma}im n 01;563!6&6 (er)

mﬂo"&i Uy mannei -

oded (o)
= The Wtormabion ma bem;ef)resmﬂeo’ o oa \,tuu.ats' & 0175

it n ke n the damillorv ka0 number W or
forne 8lhor, pumber ‘K“"" weh oy ka9 Coinovy)

F 9?&611 Jw?” i fhe "fpa“v'('m & S‘c(& el and é&‘m@wg

bor o(eueﬂafmj ‘9‘3‘& c.ycw(-; ano(Q.L%rng te ke a
odekon dpr ome /""%”

M.JOSHNA
-

B _
- Dsemebe dermends & nbormakion ame %epre(@""”l n JL(}"EO& W') !:fl

Ph‘a“‘z’"q quandibler aalled Q‘J}bﬂ-s.
= £lectvicad C&}na.a(ueh og vfllage and cwoert e mol Gy,
- Elechvontc (civeaik) Jevice; mUled brantisken W‘?Jom«‘na’:e n the
oweetbry Wok empbmont thep ugaht
~ he aynh n & elechonic Atjzlal %«m& we juk ko digexele
Vet and ang Hheobore . taid bo be bimzy
T A binoy digit alled o bit, by two uwlet: o ad
-~ Owocle olomenks & imformakon aw sepresented with gvp &
bk edled binpy adas
£ Qeamd gkt o ke q ou sgprelented with fon b
~ e qoronb-poep dyilad empuler i bhe etk -keaor enorle
& digital Syakem.
— The mopr pak & o epla ave o memdy anit, a contral
preceing enit , and énput - aubput wnits
- A cd?f@aﬁ ompalr 4 o pewerkd. indyumenk thak an pertorm
& oly arihmelic - empdotns | bt alio lepeal epeontiny,
~ G oddiben, 1t on be propamnd b make cleisery bged o
wntend ond szJ:eJmL - commands,
- A o“l}l:aﬁ %em 4 on inkewnnaton & cﬂi;zéa} rrodudes,
-~ G wdofard He qpookm & each digilal bt 1
recetany o hme o buic ooledy o digital civeuity anck
Hvew 1«3)@9. dnchon,

= [— B "a L,.Q ,.lao.'an mol’%hﬁl:‘ﬂ‘h—l ¥ u,.o ALtz r(l'\' HQL

M.JOSHNA
r

- An HOL ()xekem’)-lej o (’Y(?mmm;"j jong,:.LO»}(L M& oy .Cu.i{oj)ja "O(
Aaxcv‘\h‘wﬂ cﬁ?&‘l cireails n Eeutual bor .

Tke Len
Doy wd e mmuble o dgild guen fe socky 1 opon
boke hooduma built.

Binaxy Numbey -

- A o\ecth aumber cuaou ay Y,29¢ meprefcnh a gu.a"i‘j cgua-“l Lo

- ikr.
7§:‘°O++ T thatands +3 Aunc"fé’o(+ q tey + 20

9o+
L+

- (‘{B W‘ow\ondﬂ, Lunooﬂed.g Lele. axs pown & 10 ‘nmpﬁieoq 6—7 fb{(l"bf) &'
e 'qu“"der&(‘ C‘?«.b:ﬁ} vn e numbexv.
GH' can be erpresed - of. -

Q Q | o
Ilo + 30 Y’O\-—FCTXIO + 2 x 6

- [f’ jene)?aﬁ ~.' nambex woth o 'Jechnn& fv\"k.‘j ‘meprt’fenﬁma bj

o ceniet &b @eﬁéww&s

oraqaga (N a,.'a o O"'Z

— 'TAQ COEM‘;C'@'\LT OJ\ e OI\:Y db’ Me&&?zé.\' CO» ’/.Z/ 3/_..19} /anﬁ
| the seddocer'pt ‘&o‘*"% / gooet e ’,Jare vake ord, hence | the
| fower & (o b] wach He webbiciont muuk b muﬁﬁpd:em(.

~ st , O Aezimal nat;rloa'- wn be exprested o

4

«] |4 / : ~Z
10 Orf‘“ (o"fav t 10 0+ 0o + 10g,4100,+ 10 0, +!10 a,+6 O?

\.\9'4’0\ Q?F7’ Qg»?o q Q cQ

= # decimal aeumber va&em 4 eud to be & baw o vady 10, beaone
L TOT e oh;xf's ond meMttienks one muﬁ,b/)éeve %7 powex & 0.

M.JOSHNA

|

|

- e bu'no}j neemben y‘tcm 4 a ditbenent number Wem
i 1‘78 Q\e&HCl‘el\h & e b,’mv numben Wm have mAJ "wo
fOWBQ:L valuay! O‘. ono‘)

— Eac,a’\ C&%:C’&} OJ. :‘j mu.M‘PL'eA E:_! o fOuDe). dy Me VOCQ:LV-/:;J 5!
and e seudl ane added to obtain Ve decimal eguivedent &

the Numbey -

£ Gina_)ﬂ number 116 1011 y aualed to docimal. number 2.,

<3 |2 | o ~ ~2
(%214 1xe+oxg+1xg +OXEHE X1 AL X = 26.7C

EAD+ 2 f o400

~ oo an dbfoot aumber Pems Gy goreral - o mumber
orpreded n bay - ¥ Sykem bot - coetbiciontt mulkiplicd &

fowert 4b v,

N~ ~

S T i W L q'y".-k- 4 o
e nm Y, b G g A QT P e 8 o

/

-mM
(@8 e

. -
~ dhe Co@ﬂ-ic',gnh x c,J.' 'rjaf7c_ ‘n Uc..fu.m “700’) o to w~1.

£ bo~ & numbeu

g1~
:

¢ L | | - "
Goe) .g_); S g g F Zes| 4 XS+ 2xC

|

i

o[
I~
'a

L 59004 10+ | o o b4
o S ity

— ’?e)e ‘Coe%c)e'\k mﬁuq 60»/ boue S' an be 0"{7 0,1,2,9,4

= '1472_ @céa,l numben %e") 4 & éa.u..g W Mn} L’O'S
9 digk t oo, e, b, 067,

M.JOSHNA
YE‘?!‘ ‘CW.‘?-%')% S Bk oag 4 TXE A b XE

~ b4t let Tt 6 5
= CS‘(-!')‘O‘

nc,wﬂ'o% .

'id.é The d—*?u'! % and ﬂ-mn'l‘ oppear- N @ oc‘a)“

b&:rvw Mo wneated ¥ OL?;H dor .

e c,w,éanaa,j ko . » .
’ Coetbicients -lyrom Yhe o\eamal Cg«v&"’ when =
,' |
%6 n lj M 1’2‘0’) o gufflw& 1-"6

Lo
.. "e)e
10 Oleoma,(L ohcyk o - e o &

r}nm}@— Hon 10-

numw— e

i Fov§,
/ - @n the | hexadecivl Cleast- 6) numben Spban

the dout 0 &7H oo |soroed bom e Aec-rmi %a,tem,

e lethes Aa,cs,amcmm-&a%eo&m
lo, 1, 12, 13, 4 A W&

e A° Henoleohmak” Hamber
(Be & £), = X164 6x16"F5x16 +15x16"
= (e, 687),
=1 e hexadeci mal %Lem a8 wnd o mepmenk Lwy s irs &
bh n e oddvenss | instrackiont | and daka in A;;LCJ opramy,
g3 (_2,65‘F y uwd to Srepresent
) lalr Q((-O olol til

b

M TOSHNA -
. — [

" The onvertion dyom bmmﬂ o o\ec:ma)(tan loe obtatnad é’j
acul”ﬁ O”Q:{ he numbey .,,.u, fmﬂ'& 6& two C"”“M’ﬂ

fo te Lik Hat v egual koo .

for €9
(11 0’0’)?/ "4 164yt = (”)m
- On Compu'd‘w wik

e

£ .=k Ckigo).—(og ng & (‘mego ek 2= & (}iff“)-*)oo'

lo — 2 , &)
2 = ! Clw)zlo 95'0 . P CPe,ga):lor Q2 ~ X =16

% @"f“'@'& mpc;h % ugaa.uj qiven N La/@e/!.

ke s el o ot bt o et e

& B kej/baﬂ choracter

- A cwp_‘ﬁe)x WAJ& ‘uo"‘u) Lﬁélﬁ & 06314? "05 a Ca(uc“/j &
he= 2 g . g* = C"ff’roﬂ””“"l?’ 4 billian L‘J}q)

- AY‘?“}m&QC Ofvn/kw’q w;”\ : L,‘nay:r numbey in
Came &m,oq o4 dor Adectral number.
€9: addibion | subibyackon and malkippliation & buo i

ele

numbery of fflouy. ' Lo
A.v?mo‘ lollo!. .mmuef\al:_ 16 1-\4!:; | V)ULHFA'Cb-’tJ . N BT
A»dueﬂol + leo (1, M?M:—l 00 l l ! Mu.ﬂ.b‘plie);_: 1o |
- ‘0'6|00 v 1 ¥

ooo g to o 11

M.JOSHNA

— iy Ty p—

sdben

—The tm g Lwo binaxy numbey 3 calecdabed by the cne ey
ay in decimal @;,Cq,(. TR RN J-?ih & sum in ary (-.7/1:"6{00’4‘
pidon ""‘"bem\%«oa b3

- Any @y cblaingd n @ quven c?:&my\l potikicn wied by
the gan & cﬂi}\’& one &7»'.6\@& poribion 5744)»

cbilvaction)

:Yt&bskmch‘on Y more QynPLmM

— the muly ane B Pe same o4 n decimal s except Hot the
bdngo 1 o guen fignidicant porikion addi 2 ko o minuand Rt

— A bSowo i e demol sufem adds 1o ko a miouerh GV
Mudbid:aabion ;
= Mulliphtabon y gl
= The wmulbiplier &?;kmw v
~ Theebre , He pediak probuckl ax equod ether o oddﬁtfie)

4y & wulbiplcand o b o

*Rq?rew&aklm & numbou n o ditbenent sodiy ae said to ke
uivaler ¥ %ej have ame decrmal . gpretentakion

%'Q?/-' (oou% ad L001), m_lezu;va)ej&,bo’éh have tame

~ dhe @wewlen & o pumber wm bhaie —v ko decimal 4 done

bj WAVE(“’)E humber - In o power Cevey andl chMj all
the cawnber,

’_.pAA o e B A.a A‘AA,M 0)nLA-

M.JOSHNA

and aCcumLJJa&ifH dhe sem ainded.

Eg"‘ Gk Aec)m& "N to . BFW

g 4L
o ~\
2’|c>—~D'
o /S ~ 0
012 |

| =0
_-. (.‘f")"o — ('O fOOI)Q—

9 " CGoverk dec?rr)aj. (15 _?-)m Lo ockad ()

.8
% (158
o [19 -

B ~5

Ny (lS‘:c),o = (23 \)%.

g 14
& -
do ()i (51)6

£ Guot (0:4870), ko biney

N~

0 681CX2~ 3750 &, ¥
o,-'Z“rSom,:w,js’o : 0

o018 X 2 = 50

12

l

M.JOSHNA

r
- r 3
€g: (o3 ‘3),0 ko ockal o 16?{

(e $12) X% = 4y 04
o lolh XQ 2o B3¢
° ¥R XP = 6.65%
o- 656X = 5243
o-eugxyd = 1994

C0\519)|o ~(o. Lo])&

- revs) = Goresri o),

-

C‘m'su);o = (22). 406517)y

ockal 9_{1& Heradeeat mald f’uﬂ'ﬂow

——

— he mnuauarg' St ‘ch to lo}mxj,,o'céal and hexadecimal p'?azfs
an mplant vée In Ag?ztaﬂ cvm,»}m,- becaut shiber palley &b ‘
her clomctey e emzex,.(:o vecgnize Han 4@(3 ﬂbwgb ord 15
- e PP & pfaig eadh okl A cvaprds o dbree by
C il and b beradeiml digt cmognls Lo do oy s
= The <6wwé 16 oumbey in e Jecimel Bioan) ochsh #%zodecm;"d

Decimal By ockal Hexzaoleeiwv;(
(boie ©0) (911Eoarg) ne Cboge) - b“::’ le
coo 08 |
0’ goon Z;— o
9 o0 \O 51 L
3 oo || g ;1"
1y o100 ‘ .05
M o110 s | C
L | ol!lo k|
7 \ o8 ' o\ 9
Q | 00O We o

M.JOSHNA ‘

5 Vo 1) 13
e 100 'y ¢
'2 (o)) 0
!
A "o | 6 e
Ky

L I [s

T s binoy ko okal 3 acompbibed by
fbibloning the boawy number iko qreop & e dlyh
cach, daring drom Mo by fnk ond peceslog to fhe i
od b He vight -

T e cmepnding okl digt 5 oupdd Lo eoch g

=
C'o e ool 161 o1l , 111 t1e6 000 HO)2

)

. lee)ﬂm “TM lo}no.’j to 'nmaﬂ‘ec'imai - &’miﬁal, GXCEFl’ #,OJ» He
b‘"ﬂ{#j numben. 4 divided into Groups & bour J“y'h'

({0 lio o otle ol (it eo oo ouo)
g

=) CZCQB-FOG)’C
- @nuenion %rom m‘aQ (or) ‘)smdec«*nal lo E,my) dene g‘j

Wa!enkﬂ? te each octal J@»ZA Lok Mree—(li?i{’ Bfmj
@iu)va,le,\t.

M.JOSHNA

- Qem?ia-’b'j, arch heradecmal A?é Y omverked to 8 '6'001-—0&'7} bmaoj
%UJ‘JJOM
£y 66‘13‘!2‘4)8 slle w1 o1l. 0ol ©10 ’Oo)q_

Cgoé.{))’é = COOlI 6ooo oOIL10O: HOl)z_

ﬁ@,& & Nubor

of”“"'%n and dor L‘?A aperkion.
— Qmplidging operbions leads bo dimpler, lous expencive civeails to
dmplement the a}oemoPOQg '
There ove . &no(yﬁ‘ao’(yompbﬂenh or each BMYW
I+ Raddiv. Goplment (7o amplment)
2. Otmimiched | Rodey Grgement C((»/); Crnfoment)

‘ —%eho%m&w@éoag%e gy amgbmert and- 18
'WGM boinaowy numb@d 4 IOx mW and AQc

W dey deaimal numben.
Owninished Raglix Gmplement
Gien o numbor N i by v having 0 dugiks
‘the w-0s ompomant & N 4 (" -) - N
Far Jec)mal numbeL - Y=10 Jrizq

go (Q.m,mM Mw— 6""{["”9"} CDM'F/Q’JMM* & N ,j
Qo)N ~

"
(ro i N = et

A Comdbment & o decimal number i 0‘9&“”(“1 Lﬂ Wao(ﬁg

M.JOSHNA

|

The s Gagbmed S 47600

A9 G949 —su1600 I 4 52399

e q's Complmed & o0 12399

A99qa9 — 01239% = 98760

QW b'lml»:{ numbent Y= r-\z \

I's Cmfjomeni' & N A [ﬁn"\)—N

l‘{’ n:l-' Qn_-_ ZH - C '0000)2 4’ q"y" e C,’| ,)7—
s omplment b Ny () =N
= (im)— N

1{”“3, the 1's (bryﬂamey& &b fo%ru}j numben. doém‘n&iL‘j
.\‘ubcéncl-}j each 00,:34& 6rom Ls

we @n have eilher [—0 = |
(er)
= 20

8 omplemenk ol o060 %' o100 1]

'S ompbrod & 416 1161 4y o 100 10
e s omphrot & o biavy number y formed by chorger
"'" o o'c amd ok Lo' t'e . | '
- (r-1) ¢ meﬁw’w@ & octad o hexodecmal aumben i obanel

by abibacting ech digt Gom T @) F(decimol i5) vepeckiely

M.JOSHNA

o
ot Gt

dhe #s omplmet & on n-dgit number N oin ka7 4
M”@Q 3 "N for Nto 4 a1 O Gor N=o.
for decimal va 0

YN = ol N "
B Dok &N b domal b desoing o fecct
sgrbleart 0's unchanpd | qubibacting | the’ $iauk 'vn%e:?
s gpihonk digb. o | 10, and bty o 7
gk s
‘i o' ‘oomplemork & o1ezag 4 qBT60
@'sl (m\fﬂmg\ﬂ: & ‘ewgoe 4 153300

'S\"‘O:Q"—“Oj 9y amphmenk &b N can be j‘{rbrmeal..‘ﬂj ‘0&‘”"73 all
rﬁur?ul ond Wﬂmmj

| an

Jarik u?nzhaw& o's and He ﬁme"’
o alk dthen {m'glx,uv S(\?A'-%:'mnf

-

s with 0'c and o's with 'S I A N

-t ©O0c0 0 000

dﬂ?ié&) 1o | YecC
o' Cbmp@mmf & llo 1toco 4 o010)o0
Loo | 0ol

2y mﬂpénp,& A ollohl 4
— 9F He oy il number N antatng the vadir. mnk, the fbm.i’
ddd be semoved Lgn?d\an.l& wm odon to torm He v 4lr-t)s

anflunert &
~ he ‘?aoh* Pm‘r\k 5 then ‘Jlezlv'eol to the Camp‘im@\}fot nwmben.

= 'T{qe cgﬂfﬂmeﬂt &y the (‘m\(%meﬂk ':nalvrq He number 4o ik

oy adfil

-m}nSmQ IIALIL.'

M.JOSHNA

| % with ampemonts

| an
he Wbtyackon &b twa n_d;«};f umbert H-N 0 boge

| Con he core ot MQN.K

|

A e el M Lo the v amplrot & tbe w‘»*ro‘efbt,
|

| Mathenabhiadly w4+ (") = M —N4Y

2 GF M2N | the oum mtﬂl.(nt_Jche on. end Qof 'fo/wf‘ﬁﬂ) tor
be dyanded, what Mt M the Pewlt M-N:

ll 38k NN, He sum doa gt prolice ane ond @V and y

| il to A" (N-m), which Y v emplmet & Q=)
T obtain te ancwer I o familion fom , take He vy

| ampbment &y wn ¢ phee o regative B Fronk-

" |

| A i »
) =2 v tos emplement | &l-wmck 72 $R2— 8280
| : ‘ - : '

M= 72539,

|
1 wW&N Y6150
l

Sum =Ié°1281

/ Olted ord @y /of=lééoc§0
| LT\ g

" & C‘V'ﬂ to'c 'cmﬂ:mez\f , tubtback 9o — 12532
Ms 022506

0 omplomart 5 N = £THE D

——

301')

M'kjnod')@"j

W s T - 1 L A . N

M.JOSHNA

r’
£9 Guen the teo B‘.naxj numbey = a16100 & 4= 10000t
ko abncion @ voy g g yon by wig 20 At
Oj W = 'o'o’.QO
“’"FU:ATJ”" 1.0 |
roouoOO' F
cs‘,/
1‘ 5 .—/
T e L Q/
ocoloool Yo = ’ u(_o
b y= tooaa !l \
9 W@igf#: oo tl..o.o“'
d
pre - el
T%OLH rbga w Py
2T onfuwer 'y j..t::._'lc'p,'s Cbrrpl”"’e‘! 56’ 110)
— — - ._ooioQM ,
Ewmpld __’:9_ 9_&:

) Gwot the Idlwim b o\echml arvl Hoon birarss
& ('376) UCABzz) CJCrz,w,) &) (i55¢)

9 Gwolk the ‘{16aaumj hexa Aecm& numbvg inks an egualent

L’"wj numbeM
Lu) S"b | ('7 22& CGv) ARe T vy FR1g

99(1%106“ ’{%e ‘&6@@0? o\ecm’?al numbei‘:(uurg 9 (bmf)bl'

W 2yy-04¢ (i ng—9y Gi)2ng-u26 W9y

M.JOSHNA
P b

) Gverk e JUA)o\u‘m_? ko eckah ond Heb"&""‘(&

8 100101160) 10116100000 10!

2

¢) 7‘%!'0 a) oo & @1,

B wg i ewpbment

o -
T = e B BB | cooo !
y B |O|vo!010
WM&' J* o1 1v100
S =10 01000 O
Ed‘a’owd@“”j‘—‘f "
oo | o000 |
B) - %= | cooomi— 10 16100
s | o o0 | |
werplmenk 8y . x = 00 © 1 Ot
\ b LTty s
’0

Q—!—"’\:"O"

“hore :t-j‘no erﬂ-(ax;j._“ 7'—1'='~C"SW4~£ & 1o tho)
| - 00 p'ooo»l |
- fn @ (5- \)3 (anéﬂ?a\t Femoving "."‘e. end avound cwvy arel
O’M“'ﬂ | te He WM ¥ &eﬁweoe o a an ‘*’Ul Pound @3y
- The procadwe wn'_“v eno(—ommd covvy iy ale OWL‘”‘M” te

M.JOSHNA

——

935.} Biraxy Numbey :

- Po&ckve \nkejl’g C‘mc.lw\inj i'eﬁo) can be me(;rqe,d-ebl x| unc-:{)neo\ _'1_9'1.

- Gn OY'(JVXI"j oyut,l"smeﬁc ;O Oeﬂok\\)e no 3 '.,w&'@,(v@('Bj minul C.'?n
ond o petifive numbern by o plus 29N

~ Beawt & horduwone »brr);L'a/Hanj’ C”"’T‘J““ meard ﬁemey& eue»f@«\?,
with binany dagiky. o &

Ny U A . A ; 9(1
‘\/P ity Q""\'&""b’:‘[to Nepreent Cw&nﬂ) He Cogn biE p cad
nthe '{eékn'bpl: Poukm st the number. “OV
- e @wenbon 4 to moke the tign bit o o hve
\ ‘VC// negaﬂ(ve.

~ Béth S‘??neoq 0"70\ “’7“3"736& \OWD-’j Qumb% aoniye & o &ﬂn?
(ﬂf bik when ?\qrregg/\lch W QA Cbmfugelb '
- The wwu dekenmines whether the numben Ngnec& or

- 0% the bnoy oumbor 4 daned | dhon dhe lebt mdt bit Jepresenty
He wgn and the et sb the biky oepretent number:
T Gt the biny number iy unu;nd, bhon the lobt mdt bit
i the ot C"an:'k‘mank,bil‘. & the number,
€ he thing & bl 0T00 1y onudaed o
S 9 unq?neot number_
49 .mjpgo\ number -
L e skring & kile 11001 & st w
iy umt(?m} P ber

£ Skcango‘ numbexr .

M.JOSHNA

- in ““1 né&talion e pumben Congste & o ""aﬂ”;}‘& arrl

¢ ynbél (4 & =) & o bit (o a) ondiabing he o
= whep

aithmebic Gfm""‘"m& ane r’m(?"zmenﬁeA n ‘0”7"1‘1' i
Mre ook ment ko i o ditteent Spkem, eferred to

“’)e S?g,ng([ngnon} W, {TOr 9‘90“46’"“"3 nejakiue ﬂUm\r)q

: K comgl,
i Hy Hdon o ﬂegakue namben M4 wndicaled by ol
" whovar e cigned magnitude Sphem neqales o oumber by
C‘“’?A‘"j ik tign Hoe c:gnoo((vmpjomer\f %"’7 n@“"'é . X
b:[Lal(‘wﬂ "k mppem}. |

£ Gnuden He numbor 9 mepfqenlxo(in binany wi th &jﬂ bt

Binowy eguwalent & 49 4 coooloo]
Hhew a3 way bo Sepreterd —
: svmed thude - Zepreientalion | oooloo]
fe.ﬂmot (mmflw@r\i %qnaenka&bn 1101 \0
%m::l o'c amplament Nepretentakion | H\Ou(

Ropresenkatin 66 Qigned numbery uing g's @0 Vs @mpbmod ol

4 e pumber 4 poibue, the maf}n‘w’\e 3 eprecented r

Nt tvue binary dorm Gbe o tgn bt o “ PJ“‘J ': m},ﬁ

M.JOSHNA

T e -
S‘j& Ql\ '\’um
Rsie=:~ by s
SWubfs = —t's Saned
Oecirmi cprnfhme wpbmenf m%?n'- h,)e
o . —
A Ol o | oceee Il v
oy o l\o o \10 griy @
\ O
xS o 10| olol - !
1'+q ol00 gl ee & e
Ly 42 00 () ool 0Ot
X2 oo | © ool o colo
4+ 000 | occc | o oo |
+0 oo l=le) O 000 O 0O0
V) \ ®0 0
J —0 - \
b 5 2 1RGO { (ol lo\o
b s | \ 100 jo V1,
R :(Y r:.,*_;_L‘ | 'Oo - ‘ 0\ | 1\ 0o
=S [o 1| o0 \ 1ol
() vo0)o “‘z 1o
-1 o) }.éO. f 3
‘ 3 T) oo O & — =
. ‘gPecB‘r_‘ st in o't awplment’ whenever a tigned number heas a | ‘;\n the
Cign bik and oy Ao magoitude bl , the dQoctmal cgutwlent iy ~p”,
oo N B e umben & bl 0 magnibude . FTEr: Leco xa-% |eoo0s -4
Avtomelic Additien % :

The addibon &b two Q@%A by numbey with negakve
nuanboy ;qu&é§"7 Nrmilfr—wm ok term Yy obtaned
4 $rom He M\A:tbn &lr‘\%é two numbey, ‘mc.ﬁmtuf:? Hhein r?n b s,

A out G e cign-bE powthon ‘Aggﬂa@x.

— s = et B — e

-
~ - S —

§ <3

AL Go0000!11D

=< 0O
=6 QgE)A471::0
4ig ©ooco\lO| _ rR Epopo00t L O
+tq 0001 4+ 1 7Voocoo® {1 | &y
Kl Ajanded
+6 o©0000 110 =5 \F—ria11 o I o
=S 1) 00® ! s Lt 1. Lige-e v i

___,_...A-——q—/’/
O 57 <ok . = ') ‘

ey ot fo ke

M.JOSHNA

W A"" “\ me@'c .Cu_b;‘ro("\'o_n

= QLR(.fao‘im 6b {'u)o C}a{pgﬂ b?naxj 0Wﬂb(7lj when ne \‘p";\!e
'¢ Cw‘yﬂonl 6‘0rm | S‘?ije and ran L’e

N beM o ils} 9

bated o Fdlowt.

“Yke the ' o:mpﬁernet\f & He cubd“m"mo(Cindu.a'-"j B
Q:Zn bit) and add it b e minuend C‘mdw“’ﬂ the Sign bit)

il Ta‘j fYOCQOLM-L Ay a&f‘(t?& becay © w.lo‘};rackm OMa}k"’? Qn L
charged Lo an addibim epenbion i the s & e syl hend
s chonged , 0t 4 demmubroled by Hhe: PR welofion g

’ (*A)'—G}g) (+A)_+C__)
(EA) = (-8) = (xp) +(+R)

EF: (=6)~ (-12) = an
' VS phicht, 059 © joc. 1} EL&-O. 0

' I M e té
)

Jo o000 0111 amoy hy fobe drendd

t6 — (+19) d cooo |l0O
Kdly) P& 1)

41—4-—/“

T T S ¢

——

o™ ’

M.JOSHNA

oy Goley

= o n-bit bim\ﬂ ade » a ?W“F & n-bilt ot can have

upl‘t‘ gn c{.‘shncl’ Cam‘olno.lw‘mg & o'f (\nr* i'e

" Each awmbinabn me{”’ele;mh one element 6t he seb that
betng el
T A sk & 4 lementt an be -(“09& with kwo bit, with axch

dgﬁéﬂﬁ‘;aw\?nea e & the Lik cambx'mhdq: oo ,o01 ,|0f”'
— A seb &b b demenk ey, winel o%eeb',[-adeanéo'fe%&

Lo:_,b;‘: Cavqe '

16 demenls Meguinet o o
n-bit cole

_che kb " combinabion f . on

bwnany drom o to 2 =1y

o uNigue ol hit amb
Bt value s Sbenwoi 1o

4 delenmined yrom toe

Cpu.nt \n

- Each lement muik be M?ﬂeal

and 0o Lwo clemenks an have the
ol be mbi?“a""

rabion,

.__-wve, ;b&e ow:j,nmo’\l
.numh% & bk mequined ko . cade
dy bk bt

2" dybinck
) —_"1£:e MmN muwm

guonkibies u 0, thene 3 no " Maximwn number

W%m&eéﬂrﬂbew‘&wob‘vm}je&e-

G inany - Coded Qecimal Code -

- A BED e one,' wn which {the c’hgz["l & o r:AQc'iw'):«l
me. ot & Rme nko 3710«:?5 & towr

nunber ane enaeded -

b oh‘?ik,
. ’!‘wew C&Oqé’/! Cbm\b?ne %e . {Tea}"‘-’“’d 66' a\ectmal and b.ncoj

munlow,
-~ On ornden ko &ep{egmé A@ctma} AL?(H olr,Q,--./‘)/ i3

1

M

h_
1\{ — Such a S&p uence &b b'\m’j le?;H UDM 919{”9!911}5 a flé‘rmnﬁ

l &?t y called o code wid -
mmUm$my

‘ A brwy pde will hawe come una.w?n@l. bit

; b We number &b olemonds 0 Hhe bz s o mulbid

.:s s S %8

© the o decimal digti dom weh o <

A b:m_»j ode Hnab dybinguithey amonq 10 doments muil corfy,
ot Jak doun biky buk ¢ ab & 16 publ wmbinby
emain MFW.MQ;«A-

| Tty ohame i wlled Birnary Goled Qecimad ard i wmmonly

debonad to ot Reo.

Tre bdlaoing kable que the Toun-bik ade bor e derimal i
T A number with K B decwal digiks wil Fegue Lk bih&";

E0ary Coded Decimal (D)

D 9}
(ec}vml %;m_b_& () z"t
®oo0
000 |

oo |0
ool

o160
olo|
o\ 0

ol
)00 0

. A TR —

(0o 1

M.JOSHNA

)

h

- '1‘16 B‘mj Q:mb)na,honj 1016 *W 1"t o ndt U‘U'A G‘,A bave

"o maning M RCO.

?)—3’: WQ@. declrna.l Cl%g‘)'o é ;H o 97 Vd!u-l- v @'CD ‘5‘
. vy

(85). = C 6001 tooe olol) = (s HIOO‘)L
: R¢cD

Grodor Mo oddilin & two decmal digibs v BCO, oaothen with

o powhl @ drom @ previost Jent ::jnréicnr& pain 8 Aigik.

- e ach At doot og orceed A, um cancée be 3/.@1@.4%0
Q4+ +1=19 ol 1 being o previed @y

b\ numb
- Qppte we add e Beo digh e o Moy W P umbery.

$rom
~ Then e binoxy carn . wiid predice o ootk in the vorgs

orto 14. |
(& ‘lr Y 47rarn ocoo” te
pork bour biky betng He GcD fum.

w‘.u be brom ©ooo b 10011, Rt 'n
| leol, with e fimg | being

o C‘Wﬂ o.ni the
~ when He b‘uf‘cﬂj wm 3y egud to o You Wan 1001 Cuithnd

Co‘mff) Ye czm%oﬂﬂbﬁ RCO A.?‘ 4 wrrect.
e Lo
i Uoheﬂ me (onoJ'j kun X 7@&& than &
i ‘Hne‘ qu,U: 3 on walid €eo oha«.l

— he acU;.l'bnéb’é COI(o)Eow)e binary Cem
Onvedt E o the coirect &3& and dlo preducy o ccany

= fT'_'. e« L\aa-..n ‘aA A %9‘ ML C;Orn'kmr& L)"L MHM O.ﬂol

M.JOSHNA

I .
Crviden . M’N"j ReD oddbos.

L'.
% o a0 Ly ©o\| 00 © \ po O
3 olo|
o ¢ +9 to oo q9 (00
i 100 | G~ —_—
. - | 3 00"
W.' iy 1 'l 100 01
otlor
9. oD D —_—
) L N,
I T

The g
addition & teoo n-dbgils u-hcc;neol geo numbey bllous 1,
Same frocalun.

rudlen
184476 = 740 n &D
)
rco ‘ ‘
0o | 1| 00 ©lo0 ' R
oLo| ol!l otlo 4 ©1¢
Y011 Vo000 1o lo —
ot 1o
RN
.QI!_O 0,0-00 760
BeD Qubiackion

— The ReO abstraction iy pedbormed by wibsbacking e o();]}(&
coch - it Jovp & o whibohend $rom the wrreponding
H-'b‘.k qroup & e mmead n. binny tarbing fron the LSO

- fF Hhew 4 ro bdww brorn He nerk L:j}”‘ goup then
no oorrechon 4y g uined -

14 TR A S, U | / (onc'

M.JOSHNA

r Chy 3y e o %y 6 /ijal thokes)
L] ’ P "
£9:) 28-15-07 o0 1) 1560 1w wn €D
o000) o\o I N fCo
001\ o7 in BCO
C_Di_’_b/ —_— - ’ .. By ;414,.2 corryeck
2 3 Ve bdww. Co bilance
L) gog—141= 9 *
\ CE S, \‘ : e !/
®0g)6 oococo ‘o410 - - 4
\ - -)
00 0 | o 100 o‘.—»‘/j e > 7
~—7'T"‘"/ ’
- BN %
o yo\) { 2 e qu}\t
ov10 _ 61V10 d 0
surprack O
. =
Ol 0¢ | © o)
— /
s 9

ﬁqv Decimal axdes

= Qiny é‘a&u tor decimal Juyﬁ Sequire o mivimum &b boun bt
v ng;t '

— Hany down dtherent cdes can ke formulaked by NG
four b'&; ke 1o dabinet mbsinakions,

- goch e v only 10 cuk & o powible 16 bit

M wn -be oeanr?wlw"“\ ﬁo@‘o-k'&
- vhe b wx unu-%a\ '-Cbmb‘maﬁm‘:s lphve no meon'vq ond o4

avoided - o
- Rep oand the e wle e evomple) Ly Mly\!ea(aoder.
~Cn o welau"dt ade , cach bit postbon ow:ane) o welgt\ihj

fookor "V "ioch o oy ek goh digt aa ue cuntushed by

a&bﬁ e we,lau'i & ol the ‘¢ n e coed corn irakion,

~ PR i B re N A’J: l_ ”. A

Com bwntony

M.JOSHNA

- The bt Qw?nmt elte dov €1t i ‘m}e‘tf)rele(l Lj weig«:’l ‘

Nepraent decimal 4. becone BHXO A UX 142XV OX1(

" Nete Hob <me Jl?k on be tded o bwo prwible oy

2421 ade |

- fo "‘“aﬂre, decimal Yy can be cadel ko bk (omb?ra}'(m 0100,

{010 , wnce bith donribs e Mo add u‘ol:o A éé&vﬂ weﬂkl Ay ly

Table t four diferend Binary Codey 4o decimal dieht

0’3& BLY 2| 2he) ExcenA- 3 6,Lf,-2,-!

© UIoToRe) 0600 oo | | oo 00

' © o0 | 000 |\ O |00 o U1

= 6o 10 Qolo© otlol! o) ! 0
2 co (| ool | ~olLlo ol o)
1 olo0 ol-oo ol o lOO
s o0 ot] | b0 0 ot |
6 &1l o | loo oo | loto

(

1 o 111 L1o] 1010 \os
(@)

3 | 000 HRK ol |@°
q oo | |‘(' | 100 (1)
(o} ®@o o0 oo |

o1 wiidh (AR ol10]
IR ollo o6o | ®o1{0o
| 1100

1o t o8

| (1o | loo o
. | 0O | Itro \10)
'rlf,lv o010 by 1Mo

M.JOSHNA

-~ euzl and e excep-z emn\F&j &b celb- @mdomenting codey,
~Such codoy have #he We"kj Hat e 9'c a_,,nfﬂ,”pn]: A o decimal
oumben H obtained A;,«uj oy QW?@ e b o's and O fo '3

€2 Decimal
=< 298 S 2ug |
Ol4Di100 1ero colt (L] 16 U]
°{'S (thf’l:érg‘?rg éoq 1007 00 oll reo o®00 ‘ o (o0
B~ On: Y , &, © Y /

- The exep-z ade hot heen wud 0 Come ddor c:m,w-ﬂaq becane & s
Selfy - W,Qe,ng,‘b,,j MQ"'!U

T Bxcen-3 4 an deaj\w
Y oblained biom e cowerprding binauy
—)ﬁ)e 8 4y, -2,~] cde Y an wm{,&g, 04297
veplie waghlt b o decimal code

code ('r)-u)lu‘CL. @aoa cngogof Carf\lo;na‘"m
value PL-H 2

ing béth p:ﬁ'-iue and

@waﬁ_‘ (ode =
- the oddput dota ob 'fgafj P“gﬂ*“ bubery ane guankbies {hat ane

ankbinuous.

— qhe dato mut be anvedol nbo oﬁg&aﬁ borm before they one oﬂﬂd

\6 B Ag?it:ol b e
— Gobinuas con om-‘ﬁ ?nh_w(anfon 4y @werked into dla?ztaJ form 5

meary &b ,ana%jio—&}zbl Convertex .
~ the advardege 65 Guoy Gler over the thaight binany number Seguerce
ittt only one bib i the code goup chorages In going brorrs
ore numoer, ko' dbe 'nexk number.
Ext n Fing “brom 7 koo ,. the gray cede c)'wanng dromn ©l00 bo 1100
0"{7 Dot Lit obqu $or 0 lo) St Hee bilt Memni, tamo.
0y enbad, with binary pumbey He dange trom 7 bo 8 will

M.JOSHNA

- 1"9 Gmﬂ ede Y o ron- meig“«. ode, and y & wilabl fe.

CUU“\WHC W@akon&

- A N.obit bray cde @ be dhoired by seblecking an V-

bt cde about an ovr of Ve end A We cm‘é,wﬂm’j

| | beho #e o
He Mg dr o obove the ary and o MS& & iy

Rebleckion - Gy - Cadey 34 Shoom 7 hdboing Lol

) Groy Gade Quimd bt by
- bit 2.t 3-bit -bik
B — & o000
; i § cee ° 000 v coo
‘ 0 oo /9’
' e i AR 3 00¢ O
oo | |
!
[| o ! 00\0 ; A6
N, o110 ol 10 deo)
- | 1o o1 6 i
bobiod 010 i s L)
I @4 01e° S 1 000
100 . -
e
| 100 q
| 1ol to 1ot]
,"‘ ” 00
L (R 10 |
) 01 6 n
'y (1o
o1 I |
Polty 43
o 39
I 6ol il

)OO0 b

M.JOSHNA

Cocle_]
T N S 1
NJ" ' " ' Alylonumlc
|
r J - £ ‘ie@‘lﬂc}?\fe
.w?AM Non-we?wd sl Seguenbial delechgy CJJ o
| . J l:‘blm cArecking Y cjf}
Facey -1 eha) Py . v s
beovey s2 paity "7 A%c T EBCOTC Hdled,
a F Je -~ b.n t Ex ceny-S
2co Ccv'g
S
6oy ReO
: o : n7 J 7 T J
r_/’_g b ~ {J:| . ;"qu 621 -1 el TH-e+ Y-z
eg 3321 4qee) ST
bhe

AQC C))onacéa ade

"’“‘”ﬁ‘ appliatton; & digikal MFM Nquineg | Ao handlig # netonly &
rumboy bk oko b SHhou choackey o bl cuh o lebley g
Afmge

’A"O%nmeC oﬂo’m@a/s‘e} M o sl & clomenks M mCLlAQs\we
.l ok digile , ce lelloy & the alphabel’, and’ o number &

18, chanoolen, |
__j::: wﬁ by C.:\:le tor the alp})anumeﬁlc ahoackey 4 Hhe

Ameniaan Standexd e bor ._nﬁvrrm.l'?m dnkﬂc‘war?ﬂ CASCJ) which
Uty Seven bikk to code 108 ckaacqu

— The eﬂenb.a atr*beméemo\euypko\ajb Urangh b, with
oy the . matk wanhcanﬂr bik. ;

— the osci cede anbaing QY ?qafl\.,c, dmwtg; Mok~ con ke prindedd 4
e wwﬂj dboractey wud o vasions kel firchiond,

'] | /L ¥y = - o T . S A IAMM /’J\.U {1/ 4]

M.JOSHNA

and te special ornbrble chanackey , qob ac A, # ,”’v'f
TASCIT Y o bt mle, but med rpulen mamplate an eighd L,
Quankity oy o gl unit alled o L?le-_

AScﬂl choranclen otk Srten ana tded one fer E;/e

~the etbn bt i orulie wid b dhe popa , depending o

-

- ‘st ,
S fme priney SNeagy! C7A~ bit AScIT chonct :
e - bt 9 Ko S . e tey anu,c
motf Nf;‘:ﬂmr\f Ltk ot to @4,

T A adbloel s bk ey i the ot Sigoibieant bt

m’t' éo / o u.s«l &,, L
!] & Sther. e Gyeek, o phalot
E o kabe lak ﬁ, 3 ?’“%’ such a3 He Gre :

"% delet ooty in dolo Compuniolion ond prcaing an eghth L)
4 ' sanclng aided o Me AscTT characker o wdicobe ik Pﬁx?
o mily bk 4y an obe bt induded il & menage o
| make the (ol munber & (s eilher even @ add
Qruder the fellasng bo. characke, dndk theie even and ald paily.
| e wen paily Glhadd ity
ASedL = leoooo | 6 loooee |

AScTT = 810100

') cocro [
'tolotoo slololeo
— The F"'-b bit &y helfful n delecl-?rg @@ duning the bansmicuon
& ntrmolion fom ane docation to nno’ll,%
T Ty fundben 4 handled hy gerenbng an even pamily bit of
He sm&mj erd dor each dedacker.
= he p)ﬁ’v’« bt chaadey Hat ‘nelude Fm.’:j bih eve brangmted

)

M.JOSHNA

[7"1"50’4’!4] & ead ohoader i cheded ot be mmecadry erd.
-2t He Pohb & Be owceel characr iy n& &N . Yor at Jork
one it hal etm?w\ value cl.p.:j Ue romimivien.
omlradon &> o n el
'-T‘.j "ERYA debekt C‘r‘e,‘.uw@,ar arsy ctkl
- An even ombroion & SDAL bowever, goes unJel»::H,amlo:)izr
PR L0 e ooy Lo meld brboke ape & Sk Y
'A"*‘“Mﬂ"’ﬁ an eor e puabilily to seguck ?'Afa”?”'“*";
&%ma?m%w 24 Be cod w2 T
wil n& oxur agin : & | A
s b B erevou ek o paidy oo e o
o fAK. Gnbrdl chooacten angybing & an &=

Ack anbél

teo 10101,

drracker wmeoj , 00000110,
' bartmispon x il 0 e,
poage o

ge,&ieuecpmbréod}ei
a-meuasyw@”be

Ll e Secser serds badk - an

M.JOSHNA
| _ ol

Reprereration
e s
" Due b Gty & hodonns |, @mpuboy muk Feprofest
everflary wolth o's 4 /s, maluhirg He 0P fian GRS i
@nSeguence :)l' oy cu%omo:n.j o 9@P,a4al- Ke C«?” bik):.L(e?(m'a;—}
bkl & e numbey. he onenin 3 b Mok o adhe
" " umben,
Wlbo%fvﬂ%numw&/&éﬁl‘lﬂ”@aﬂ o
B oddihn ko the Vs o number oy heve @ e
enk
(or decc'rmi) brink. The poti hon &y binayy int A neede {'O, el
frackiny | wnhes, &) e inkepr - fvackon marnb:
Pew oxe A0 "O‘g'f & Sfed%%nj Ye Poa“{m &k %e,'lo?n:oj
pink in o Sﬁeywa- :
A f‘- Fu.ecﬁ. fint Pﬁpre;er\fof\m
2. Cf@ﬁnj.%i,& Represerkolion
Cied- Rink Repaedalion anumet ok the - bindy p’"‘,ﬁ e b
fied in ome @RHO. ' M :
The two Pt otk woidelly m
| in Be extreom lett & He 7’%‘%

-~

(1) o- b\@j prink
HIS \&3’80[m,ruf)lﬂejL o ‘670\0‘51\00- ‘ ,
(1) o binaxy ponk n He e/&fejme. r?ﬁ 8 the Sr@}\(cl

o nnﬁew,gu&go(numean‘mﬁe?q.

o make

= T%e Hpajinj, Rind ﬁeﬁep\kaﬂ"m vy o
number thak de&f?nolﬁ the

” nt

M.JOSHNA

Heabimg fink Repreontation

elled Me montitca. The Second pork olew)miq He PU

& Vo (or decimal) ok ond el _erproent” |
The diad pit mankisie may be & rockion @) @ nkega

£ Govder Hye deciml number

4 6132 .789
Floang pirk Oepretentation 3 - |
Frackion £ Q
+ 0. 6122789 ki

odiotey e ockudl pARRT &

the vale & the erprert N et

' \ ot 8t
He decmd @i 3 o ko to He rigd
Accimad m,& n e Frackon.)
Neoln &y o + 0:6132T3X lo

Fjoo&\ﬁrpoink A M ‘pr\fﬁg‘/eﬂe& to 9@7959'& a numbox
in &\e W"H ‘&Wm’ &

mx-(

m - mank 188>
&« m‘xmenk ¢ tncﬁsdiﬁ then ugn)
Y- Yadir

M.JOSA

g Onder o bimoy number o 001113 Seprofonted with
i ®- bk dvacten & é-bit exponent 4 by ar

fwachor) ¢ ;

O 100|110 qool00

| ' & 10
2 Flookng pik numba 3 mX2o= 4 (1o0ll1o

alon
A Floaking Rink number %
ot ogoibiant gt s Hhe manﬁf&b i nen B0
83“09“ numbe)._ '3‘:)0 H M“-M b

bi—& to be n&rmﬂibv(,'k%"'

Lt 0005 X nk.

fer s
jbo“?«“ numbe proo'Ae, He maxtmtn FUW\“‘" Mﬂ"e}mkn
he “‘Mlg Ib’nl' sumboL v
numbeJ'A

Kandaor - g l ‘ JwW) =
ANSJ— CA"’M cai & Eledben'? 6'7‘"“)‘4) |

. Geeg C dnkikte S Flect {wm}
d
24 ANSE 32 -bit fhaling pink nambed W0 bughe

1‘(]/1/\“ |

- -vlq 3
e ks *"‘M
\a MM MMM MM L S B
EEE [P0 1 v -
SRR =
i - Mardi (S
Kmoﬂj fank T -
Q—S&anﬂrrw“o" " L o
£ - Gaponent bik 08 W”e“k
”‘a"\f‘ A-,,ﬂ,wo b‘

—

S04

M.JOSHNA
|

£

= t
3= 1101 = a.1101 X2
| = 00000006 110)/0000 ©O0000000 OOCOSY
s
|
<17 = —locot = — 6. 16001 X2
o
= | 6000l0] | 6001000 0000000 eecC000
| -
| ".fi) - '—O~OO\ - _"XQ_
OO DO
=)J1)11\10e | cocoeoed © 0000000
i
4 GEEE formb
,—_—_/
I (*"'7(» Heciton
32-bitd .
‘ K- gz-\nc‘ﬁ 7,
| L &W Mankteca ’
1 P =R o 22-biky
gl 85.195

(85),0 = (1010101)

C'lf 1o = Cool)L..

(‘bf.ms)w; torotelool .
= Ivolol@lea] Ke
(=)
Biowd Evponent : 127+6 =132 & {ceooco o]

TEEE T5i CGomb freciuon Reprotentadion <

oOOOOOO 00O OO0 O

® 1000010l °‘°lf’/‘—9°‘ :

Hexo Aecimi 4
Bs A AROOCO

M.JOSHNA
-_—

,“’—‘

| 9 Double Rrecition
, 64 -bilh

6y i

I 0tgn | Expment Mankigso-
-G P

‘ 6
aCﬁS‘\W—S‘)-‘- [Lolololool X2
Rlowk Expoment 1 1023+ 6 =1029
QL%?’\ b o)
Gece T1SH Opuble recivon 4

=9 | ooooaoo 1o |

o looooo<>0l0i plolelool

Hoxo decimoll valut

-3 o
Lf‘bbs‘tfﬁooooooooo

I

s ‘_'_

M.JOSHNA

M.JOSHNA
UNIT I-PART-II

Svllabus: Basic Structure Of Computers: Functional unit, Basic Operational concepts, Bus
structures, System Software, Performance, The history of computer development.

Computer: Computer is a fast electronic calculating machine that accepts digitized input information,
processing it according to a list of internally stored instructions and produces the resulting output information.
The list of instructions is called as a Computer program and the internal storage is called as Computer memory.

Types of Languages: Just as humans use language to communicate, and different regions have different
languages, computers also have their own languages that are specific to them. Different kinds of languages
have been developed to perform different types of work on the computer. Basically, languages can be divided
into two categories according to how the computer understands them.

Low-Level Languages: A language that corresponds directly to a specific machine. Low-level computer
languages are either machine codes or are very close them. A computer cannot understand instructions
given to it in high-level languages or in English. It can only understand and execute instructions given in
the form of machine language i.e. binary. There are two types of low-level languages:

1.Machine Language: a language that is directly interpreted into the hardware. Machine language is the
lowest and most elementary level of programming language and was the first type of
programming language to be developed. Machine language is basically the only language that a
computer can understand and it is usually written in hex. It is represented inside the computer by
a string of binary digits (bits) 0 and 1. The symbol 0 stands for the absence of an electric pulse
and the 1 stands for the presence of an electric pulse. Since a computer is capable of recognizing
electric signals, it understands machine language.

Advantages:

b Machine language makes fast and efficient use of the computer.

Bh It requires no translator to translate the code. It is directly understood by the computer.
Disadvantages:

B«D All operation codes have to be remembered
gd All memory addresses have to be remembered.
B It is hard to amend or find errors in a program written in the machine language.
2.Assembly Language: A slightly more user-friendly language that directly corresponds to machine
language. Assembly language was developed to overcome some of the many inconveniences of
machine language. This is another low-level but very important language in which operation
codes and operands are given in the form of alphanumeric symbols instead of 0’s and I’s.

These alphanumeric symbols are known as mnemonic codes and can combine in a maximum
of five-letter combinations e.g. ADD for addition, SUB for subtraction, START, LABEL etc. Because
of this feature, assembly language is also known as ‘Symbolic Programming Language.'

Advantages:
= <&h Assembly language is easier to understand and use as compared to machine language.
BaD It is easy to locate and correct errors.

BD It is easily modified.

M.JOSHNA
Disadvantages:

Like machine language, it is also machine dependent/specific.
HaD Since it is machine dependent, the programmer also needs to understand the hardware.

High-Level Languages: Any language that is independent of the machine. High-level computer languages
use formats that are similar to English. The purpose of developing high-level languages was to enable
people to write programs easily, in their own native language environment (English).

High-level languages are basically symbolic languages that use English words and/or mathematical
symbols rather than mnemonic codes. Each instruction in the high-level language is translated into many
machine language instructions that the computer can understand.

Advantages:

1.High-level languages are user-friendly

2.They are easier to learn.

3.They are easier to maintain
A program written in a high-level language can be translated into many machine languages and can run
on any computer

5.programs developed in a high-level language can be run on any computer text

Disadvantages:

A high-level language has to be translated into the machine language by a translator, which takes up
time

Computer Types: Basing capacity, technology used and performance of computer, they are classified
into two types
—> According to computational ability
—> According to generation
According to computational ability (Based on Size, cost and performance):
There are mainly 4 types of computers. These include:
1.Micro computers
2.Mainframe computers
3.Mini computers
4.Super computer
1. Micro computers: -
Micro computers are the most common type of computers in existence today, whether at work in
school or on the desk at home. These computers include:
1. Desktop computer
2. Personal digital assistants (more commonly known as PDA's)
3. Palmtop computers
4. Laptop and notebook computers
Micro computers were the smallest, least powerful and least expensive of the computers of the time.
The first Micro computers could only perform one task at a time, while bigger computers ran multi-tasking
operating systems, and served multiple users. Referred to as a personal computer or "desktop computer", Micro
computers are generally meant to service one user (person) at a time. By the late 1990s, all personal computers
run a multi-tasking operating system, but are still intended for a single user.
2. Mainframe Computers :-
The term Mainframe computer was created to distinguish the traditional, large, institutional computer
intended to service multiple users from the smaller, single user machines. These computers are capable of
handling and processing very large amounts of data easily and quickly. A mainframe speed is so fast that it

M.JOSHNA

is measured in millions of tasks per milliseconds (MTM). While other computers became smaller,
Mainframe computers stayed large to maintain the ever growing memory capacity and speed.

Mainframe computers are used in large institutions such as government, banks and large corporations.
These institutions were early adopters of computer use, long before personal computers were available to
individuals. "Mainframe" often refers to computers compatible with the computer architectures established in
the 1960's. Thus, the origin of the architecture also affects the classification, not just processing power.

3. Mini Computers / Workstation :-

Mini computers, or Workstations, were computers that are one step above the micro or personal
computers and a step below mainframe computers. They are intended to serve one user, but contain special
hardware enhancements not found on a personal computer. They run operating systems that are normally
associated with mainframe computers, usually one of the variants of the UNIX operating system.

4. Super Computer:-

A Super computer is a specialized variation of the mainframe. Where a mainframe is intended to
perform many tasks, a Super computer tends to focus on performing a single program of intense numerical
calculations. Weather forecasting systems, Automobile design systems, extreme graphic generator for
example, are usually based on super computers.

Type Word | Memory | Processing | Application
length speed
Super 64-96 | 256MB | 400- Sophisticated Scientific problems,
computer | bits 10000mips | Weather forecasting, Aerodynamics,
Atomic Research etc

Main 48-64 128mb | 30-100mips | Large industries, banks, airlines,
Frame bits NGO’s.

Mini 32bits | 96mb 10-30mips | Interactive and multi user environment.
Micro 8-32 64MB 1:SMIPS General purpose calculations,

bits Industrial Control, Office Automation,
ete

According to Generations of Computers:

The history of computer development is often referred to in reference to the different generations of
computing devices. Each generation of computer is characterized by a major technological development that
fundamentally changed the way computers operate, resulting in increasingly smaller, cheaper, more powerful
and more efficient and reliable devices.

1. First Generation (1940-1956): Vacuum Tubes:

The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were
often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a
great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.

First generation computers relied on machine language, the lowest-level programming language
understood by computers, to perform operations, and they could only solve one problem at a time. Input was
based on punched cards and paper tape, and output was displayed on printouts.

Example: The UNIVAC and ENIAC computers are examples of first-generation computing devices.
The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in
1951.

b) Second Generation (1956-1963): Transistors:-

Transistors replaced vacuum tubes and ushered in the second generation of computers. The

transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The

M.JOSHNA

transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more
energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated
a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube.
Second-generation computers still relied on punched cards for input and printouts for output.

Second-generation computers moved from cryptic binary machine language to symbolic, or assembly,
languages, which allowed programmers to specify instructions in words. High-level programming languages
were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the
first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic
core technology.

The first computers of this generation were developed for the atomic energy industry.
1._Third Generation (1964-1971): Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers.
Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased
the speed and efficiency of computers.

Instead of punched cards and printouts, users interacted with third generation computers through
keyboards and monitors and interfaced with an operating system, which allowed the device to run many
different applications at one time with a central program that monitored the memory. Computers for the first
time became accessible to a mass audience because they were smaller and cheaper than their predecessors.

2. Fourth Generation (1971-Present): Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits
were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the
palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer— from
the central processing unit and memory to input/output controls—on a single chip.

In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the
Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as
more and more everyday products began to use microprocessors.

As these small computers became more powerful, they could be linked together to form networks,
which eventually led to the development of the Internet. Fourth generation computers also saw the development
of GUISs, the mouse and handheld devices.

3. Fifth Generation (Present and Beyond): Artificial Intelligence)

Fifth generation computing devices, based on artificial intelligence, are still in development, though there
are some applications, such as voice recognition, that are being used today. The use of parallel processing and
superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and
nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation
computing is to develop devices that respond to natural language input and are capable of learning and self-
organization.

M.JOSHNA
Functional Unit (Or) Structure of a Computer System :

Every Digital computer systems consist of five distinct functional units. These units are as follows:

Input unit

Memory unit
Arithmetic logic unit
Output unit

Control Unit

Memory

Arithmetic
Input and

logic

[nterconnection
network

Output Control

Vo Processor

Figure 1.1 Basic functional units of @ computer,

These units are interconnected by electrical cables to permit communication between them. A
computer must receive both data and program statements to function properly and be able to solve problems.
The method of feeding data and programs to a computer is accomplished by an input device. Computer input
devices read data from a source, such as magnetic disks, and translate that data into electronic impulses
for transfer into the CPU. Example for input devices are a keyboard, a mouse, or a scanner. Central
Processing Unit The brain of a computer system is the central processing unit (CPU). The CPU processes
data transferred to it from one of the various input devices. It then transfers either an intermediate or
final result of the CPU to one or more output devices. A central control section and work areas are
required to perform calculations or manipulate data. The CPU is the computing center of the system. It
consists of a control section, an arithmetic-logic section, and an internal storage section (main memory).
Each section within the CPU serves a specific function and has a particular relationship with the other sections
within the CPU.

Input Unit: An input device is usually a keyboard or mouse, the input device is the conduit through which
data and instructions enter a computer.
The most common input device is the keyboard, which accepts letters, numbers, and commands
from the user.
Another important type of input device is the mouse, which lets you select options from on- screen
menus. You use a mouse by moving it across a flat surface and pressing its buttons. A variety of other
input devices work with personal computers, too:
The trackball and touchpad are variations of the mouse and enable you to draw or point on the
screen.
The joystick is a swiveling lever mounted on a stationary base that is well suited for playing video
games
Memory unit: memory is used to store programs and data. There are two classes of storage, called
primary and secondary.
Primary storage: It is a fast memory that operates at electronic speeds. Programs must stay in memory
while they are being executed.The memory contains a large number of semiconductor storage cells, each
capable of storing one bit of information. To provide easy access to any word in the memory, a distinct
address is associated with each word location. Addresses are numbers that identify successive locations. A
given word is accessed by specifying its address and issuing a control command.

M.JOSHNA

The number of bits in each word is referred as the word length of the computer. Typical word
lengths range from 16 to 64 bits.
Programs must reside in the memory during execution. Instructions and data can be written into the
memory or read out under the control of the processor.
Memory in which any location can be reached in a short and fixed amount of time after
specifying its address is called random access memory (RAM).
The time required to access one word is called the memory access time.
The small, fast, Ram units are called caches. They are tightly coupled with the processor and are
often contained on the same integrated circuit chip to achieve high performance.
The largest and slowest units are referred to as the main memory.

Secondary storage: Secondary storage is used when large amounts of data and many programs have to
be stored, particularly for information that is accessed infrequently.
Examples for secondary storage devices are Magnetic Disks, Tape and Optical disks.

Arithmetic-Logic Unit:- The arithmetic-logic section performs arithmetic operations, such as addition,
subtraction, multiplication, and division.

Arithmetic-Logic Unit usually called the ALU is a digital circuit that performs two types of
operations— arithmetic and logical.

Arithmetic operations are the fundamental mathematical operations consisting of addition,
subtraction, multiplication and division.

Logical operations consist of comparisons. That is, two pieces of data are compared to see whether
one is equal to, less than, or greater than the other. The ALU is a fundamental building block of the central
processing unit of a computer.

Out put Unit:- An output device is any piece of computer hardware equipment used to communicate the
results of data processing carried out by an information processing system (such as a computer) to the outside
world.

In computing, input/output, or I/O, refers to the communication between an information processing
system (such as a computer), and the outside world. Inputs are the signals or data sent to the system, and outputs
are the signals or data sent by the system to the outside.

Examples of output devices:

Speaker

Headphones

Screen

Printer
Control Unit: All activities inside the machine are directed and controlled by the control unit. Control Unit
is the part of the computer's central processing unit (CPU), which directs the operation of the processor.
A control unit works by receiving input information to which it converts into control signals, which are then

sent to the central processor
The Basic Operational Concepts of a Computer:-

The program contains of a list of instructions is stored in the memory.

Individual instructions are brought from the memory into the processor, which
execute the specified operations.

Data to be used as operands are also stored in the memory.

Add R1,R2,R3

In This instruction add is the operation perform on operands R1,R2 and place the result stored in R3.

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Data_processing
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer

M.JOSHNA
The top level view of the computer is as follows:

1.Instruction register (IR):
1.The instruction register holds the instruction that is currently being executed.
2.Its output is available to the control circuits, which generate the timing signals that control the various
processing elements involved in executing the instruction.
2.Program counter (PC):
1.The program counter is another specialized register.
2.1t keeps track of the execution of a program.
3.1t contains the memory address of the next instruction to be fetched and executed.
4.During the execution of an instruction, the contents of the PC are updated to correspond to the
address of the next instruction to be executed

Memory

Processor

MDR

Control

R

n general purpose
registers

n-1

3.Memory address register (MAR) & Memory data register(MDR):-
1.These two registers facilitate communication with the memory.
2.The MAR holds the address of the location to be accessed.
3.The MDR contains the data to be written into or read out of the addressed location.

4.Operating steps for Program execution (or) Instruction Cycle :

1.Execution of the program (stored in memory) starts when the PC is set to point to the first
instruction of the program.

2.The contents of the PC are transferred to the MAR and a Read control signal is sent to the memory.

3.The addressed word is read out of the memory and loaded into the MDR. Next, the contents of
the MDR are transferred to the IR. At this point, the instruction is ready to be decoded and
executed.

4.1f the instruction involves an operation to be performed by the ALU, it is necessary to obtain the
required operands.

M.JOSHNA

5.If an operand resides in memory (it could also be in a general purpose register in the processor), it has
to be fetched by sending its address to the MAR and initiating a Read cycle.

6.When the operand has been read from the memory into the MDR, it is transferred from the MDR to
ALU.

7.After one or more operands are fetched in this way, the ALU can perform the desired operation.

8.If the result of the operation is to be stored in the memory, then the result is ent to the MDR.

9.The address of the location where the result is to be stored is sent to the MAR, and a write cycle is
initiated.

10. At some point during the execution of the current instruction, the contents of the PC are
incremented so that the PC pints to the next instruction to be executed.

11. Thus, as soon as the execution of the current instruction is completed, a new instruction fetch may
be started.

12. In addition to transferring data between the memory and the processor, the computer accepts data
from input devices and sends data to output devices. Thus, some machine instructions with the
ability to handle I/O transfers are provided.

Bus Structures:-
BUS:A group of lines(wires) that serves as a connecting path for several devices of a computer is
called a bus.

The following are different types of busses:

1. Address Bus 2. Data Bus 3. Control Bus

The Data bus Carries(transfer) data from one component (source) to other component
(destination) connected to it. The data bus consists of 8, 16, 32 or more parallel signal lines. The data bus
lines are bi-directional. This means that CPU can read data on these lines from memory or from a port, as well
as send data out on these lines to a memory location.

The Address bus is the set of lines that carry(transfer) address information about where in memory the
data is to be transferred to or from. It is an unidirectional bus. The address bus consists of 16, 20, 24 or more
parallel signal lines. On these lines CPU sends out the address of the memory location.

The Control Bus carries the Control and timing information. Including these three the following are
various types of busses. They are
System Bus: A System Bus is usually a combination of address bus, data bus, and control bus
respectively.

Internal Bus: The bus that operates only with the internal circuitary of the CPU.

External Bus: Buses which connects computer to external devices is nothing but external bus.

Back Plane: A Back Plane bus includes a row pf connectors into which system modules can be plugged in.
I/0 Bus: The bus used by I/O devices to communicate with the CPU is usually reffered as I/O bus.
Synchronous Bus: While using Synchronous bus, data transmission between source and destination units
takes place in a given timeslot which is already known to these units.

Asynchronous Bus: In this case the data transmission is governed by a special concept. That is handshaking
control signals.

The Bus interconnection Scheme:-

Control Lines

Address Lines

Data Lines

M.JOSHNA

Single bus structure :-

A group of lines(wires) that serves as a connecting path for several devices of a computer is called a
bus.

In addition to the lines that carry the data, the bus must have lines for address and control
purposes.

The simplest way to interconnect functional units is to use a single bus, as shown below.

INPUT OUTPUT MEMORY PROCESSOR

L T T T

All units are connected to this bus. Because the bus can be used for only one transfer at a time, only
two units can actively use the bus at any given time.
Bus control lines are used to arbitrate multiple requests for use of the bus.

ADVANTAGE:
Its is low cost and its flexibility for attaching peripheral devices

DISADVANTAGE:
low performance because at time only one transfer

Traditional / Multiple bus Structure: There is a local bus that connects the processor to cache memory and
that may support one or more local devices. There is also a cache memory controller that connects this cache
not only to this local bus but also to the system bus.

On the system, the bus is attached to the main memory modules. In this way, I/O transfers to and
from the main memory across the system bus do not interfere with the processor’s activity. An expansion bus
interface buffers data transfers between the system bus and the I/O controllers on the expansion bus.

Some typical I/O devices that might be attached to the expansion bus include: Network cards (LAN), SCSI
(Small Computer System Interface), Modem, Serial Com etc..

Lawial B Cuchi

Proecessr

Lawcal 1A
| enmtralles

Yimin
wlenes

I

Syl i

Sepfwmierk Foapanahin
[T TSI TR

Serial

Muodem

l

| “xpamshon Bus

Advantages: better performance

Disadvantage: increased cost.

M.JOSHNA

Ne)

XNANER RN -

Software:-

A total computer system includes both software and Hardware .
1.Hardware consists of physical components and all associated equipment.
Software refers to the collection programs that are written for the computer and writing a program
for a computer consists of specifying, directly or indirectly a sequence of machine instructions.
The computer software consists of the instructions and data that the computer manipulates to perform
various data processing tasks.
Types:
1. Application software,
2. System software
System software: System software is used to run application software.
System software is a collection of programs that are executed as needed to perform functions such as
1. Receiving and interpreting user commands.
2. Entering and editing application programs and sorting them as files in secondary
storage devices.(Editor)
3. Managing the storage and retrieval of files in secondary storage devices.
Running standard application programs such as word processors, spread sheets, or
games, with data supplied by the user.
Controlling I/O units to receive input information and produce output results.
Translating programs from high level language to low level language.(Assemblers)
Linking and running user-written application program with existing standard
library routines, such as numerical computation packages.(Linker)

Application software: Application software allows end users to accomplish one or more specific (not directly
computer development related) tasks. Its usually written in high level languages, such as ¢ ,c++, java. Typical
applications include:

Word processing

spreadsheet

computer games

databases

industrial automation

business software

quantum chemistry and solid state physics software
telecommunications (i.e., the internet and everything that flows on it)
. educational software

10. medical software

1

1. military software

12. molecular modeling software
13. image editing

14. simulation software

15. Decision making software

Compiler:- A compiler is a computer program (or set of programs) that transforms source code written in
a computer language (the source language) into another computer language (the target language, often
having a binary form known as object code). The most common reason for wanting to transform source code
is to create an executable program. The name "compiler" is primarily used for programs that translate

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/Executable

M.JOSHNA

source code from a high-level programming language to a lower level language (e.g., assembly language or
machine code). A program that translates from a low level language to a higher level one is a decompiler. A
program that translates between high-level languages is usually called a language translator, source to source
translator

Linker: - Linker is a program in a system which helps to link a object modules of program into a single
object file. It performs the process of linking. Linker are also called link editors. Linking is process of
collecting and maintaining piece of code and data into a single file. Linker also link a particular module into
system library. It takes object modules from assembler as input and forms an executable file as output for
loader. Linking is performed at both compile time, when the source code is translated into machine code and
load time, when the program is loaded into memory by the loader. Linking is performed at the last step in
compiling a program.

Assembler: - An assembler is a program that converts assembly language into machine code. It takes the
basic commands and operations from assembly code and converts them into binary code that can be
recognized by a specific type of processor. Assemblers are similar to compilers in that they produce
executable code. However, assemblers are more simplistic since they only convert low-level code (assembly
language) to machine code. Since each assembly language is designed for a specific processor, assembling a

program is performed using a simple one-to-one mapping from assembly code to machine code.

Loader:- A loader is a major component of an operating system that ensures all necessary programs and
libraries are loaded, which is essential during the startup phase of running a program. It places the libraries and
programs into the main memory in order to prepare them for execution.

Performance

Performance: - The most important measure of the performance of a computer is how quickly it can
compute programs. The speed with which a computer executes programs is affected by the design of its
hardware and its machine language instructions. To represent the performance of a processor, we should
consider only the periods during which the processor is active.

At the start of execution, all program instructions and the required data are stored in the memory as
shown below. As execution proceeds, instructions are fetched one by one over the bus into the processor,
and a copy is placed in the cache. When the execution of instruction calls for data located in the main
memory, the data are fetched and a copy is placed in the cache. Later, if the same instruction or data item
is needed a second time, it is read directly from the cache.

Processor

Figure 1.5. The processor cache.

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Translator_(computing)

M.JOSHNA

Computer performance is often described in terms of clock speed (usually in MHz or GHz). This refers
to the cycles per second of the main clock of the CPU. Performance of a computer depends on the following
factors.

1. Processor clock:-
1.Processor circuits are controlled by a timing signal called a clock. A clock is a microchip that regulates
speed and timing of all computer functions.
2.Clock Cyecle is the speed of a computer processor, or CPU, which is the amount of time between two
pulses of an oscillator. Generally speaking, the higher number of pulses per second, the faster the
computer processor will be able to process information
3.CPU clock speed, or clock rate, is measured in Hertz — generally in gigahertz, or GHz. A CPU's
clock speed rate is a measure of how many clock cycles a CPU can perform per second
4.To execute a machine instruction, the processor divides the action to be performed into a sequence of
basic steps, such that each step can be completed in one clock cycle.
5.The length P of one clock cycle is an important parameter that affects processor performance.
6.Its inverse is the clock rate, R = 1/P, which is measured in cycles per second.
7.If the clock rate is 500(MHz) million cycles per second, then the corresponding clock period is 2
nanoseconds.
2. Basic performance equation:- The Performance Equation is a term used in computer science. It refers
to the calculation of the performance or speed of a central processing unit (CPU).

Basically the Basic Performance Equation [BPE] is an equation with 3 parameters which are required

for the calculation of "Basic Performance" of a given system. It is given by

T = (N*S)/R

Where 'T" is the processor time [Program Execution Time] required to execute a given program written
in some high level language .The compiler generates a machine language object program corresponding to the
source program.

'N' is the total number of steps required to complete program execution. 'N' is the actual number
of instruction executions, not necessarily equal to the total number of machine language instructions in the
object program. Some instructions are executed more than others (loops) and some are not executed at all
(conditions).

'S' is the average number of basic steps each instruction execution requires, where each basic step
is completed in one clock cycle. We say average as each instruction contains a variable number of steps
depending on the instruction.

'R’ is the clock rate [In cycles per second]

3. Pipelining and Super scalar operation:-

1.A substantial improvement in performance can be achieved by overlapping the execution of
successive instructions, using a technique called pipelining.

2.Consider the instruction

3.Add R1, R2,R3

4.Which adds the contents of registers R1 and R2, and places the sum into R3

5.The contents of R1 and R2 are first transferred to the inputs of the ALU.

6.After the add operation is performed, the sum is transferred to R3.

7.Processor can read the next instruction from the memory while the addition operation is being
performed.

8.Then, if that instruction also uses the ALU, its operands can be transferred to the ALU inputs at the
same time that the result of add instruction is being transferred to R3.

9.Thus, pipelining increases the rate of executing instructions significantly.

M.JOSHNA

4. Super scalar operation:-
1.A higher degree of concurrency can be achieved if multiple instruction pipelines are implemented in
the processor.
2.This means that multiple function units are used, creating parallel paths through which different
instructions can be executed in parallel.
3.With such an arrangement, it becomes possible to start the execution of several instructions in every
clock cycle.
4. This mode of execution is called super scalar operation.
5.Clock rate:-
1.There are two possibilities for increasing the clock rate, R.
2.First, improving the Integrated Circuit technology makes logic circuit faster, which reduces the needed
to complete a basic step. This allows the clock period, P, to be reduced and the clock rate, R, to
be increased.
3.Second, reducing the amount of processing done in one basic step also makes it possible to reduce the
clock period, P.
Instruction set: CISC and RISC:-
1.The terms CISC and RISC refer to design principles and techniques.
2.RISC: Reduced instruction set computers.
3.Simple instructions require a small number of basic steps to execute.
4.For a processor that has only simple instructions, a large number of instructions may by need to
perform a given programming task. This could lead to a large value of N and a small value for
S.
5.1t is much easier to implement efficient pipelining in processors with simple instruction sets.
6.CISC: Complex instruction set computers.
7.Complex instructions involve a large number of steps.
8.If individual instructions perform more complex operations, fewer instructions will be needed,
leading to a lower value of N and a larger value of S.
9.Complex instructions combined with pipelining would achieve good performance.
7.Optimizing Compiler:-
1.A compiler translates a high-level language program into a sequence of machine instructions.
2.To reduce N, we need to have a suitable machine instruction set and a compiler that makes good use
of it.
3.An optimizing compiler takes advantage of various features of the target processor to reduce the
product N * S.
4. The compiler may rearrange program instructions to achieve better performance.
8. Performance measurement:-
1.SPEC rating.
2.A nonprofit organization called” System Performance Evaluation Corporation” (SPEC) selects and
publishes representative application programs for different application domains.
3.The SPEC rating is computed as follows.
4.SPEC rating = Running time on the reference computer
Running time on the computer under test.
5.Thus SPEC rating of 50 means that the computer under test is 50 times faster than the reference
computer for these particular benchmarks.
6.The test is repeated for all the programs in the SPEC suite, and the geometric mean of the results is
computed.
7.Let SPEC, be the rating for program ‘i’ in the suite.
The overall SPEC rating for the computer is
given by

n

SPEC rating =] (SPEC))
[|

Where n 1s the number of programs in the suite.

M.JOSHNA
UNIT-2

Syllabus: Machine Instruction and Programs: Instruction and Instruction sequencing:

Register Transfer notation, Assembly Language Notation, Basic Instruction types, Addressing Modes,

Basic Input / Output operations, the role of Stacks and queues in computer programming
equation. Component of instructions: logic instructions shift and rotate instructions.

Instructions and Instruction Sequencing: computer programming consists of a sequence
of small steps, such as adding two numbers, testing for particular condition ,reading the
character from keyboard and sending a character to be displayed on screen.

A computer must have instructions capable of performing four types of operations:
1. Data transfers between the memory and the processor registers
2. Arithmetic and logic operations on data
3. Program sequencing and control
4. 1/0 transfers

Register Transfer Notation: It is used to transfer information from one location to other location inside
the computer. In RTN, source is always a value specified on right hand side of “< “. Destination is always a
processor register, specified on left hand side.

Syntax :
Register < Source

The right hand side of RTN is always denotes a value and the left hand side is the name of a
location where the value is to be placed. Source can be processor register, I/O register, memory location,
but destination register is always a processor register. RTN uses square brackets to indicate content of
location. These braces are always placed only around the Source. For example,

R3I< [R1]+[23]
This operation that adds the contents of registers R1 and R2, and places their sum into register R3

R2 < [LOC], means that the contents of memory location LOC are transferred into processor
register R2.

Assembly Language Notation: Assembly Language Notation is a type of notation which is used to
represent machine instructions and programs.

For example:
LOAD LOC, R2

a generic instruction that causes the transfer, from memory location LOC to processor
register R2, is specified by the statement

M.JOSHNA

The contents of LOC are unchanged by the execution of this instruction, but the old contents of register
R2 are overwritten. The name Load is appropriate for this instruction, because the contents read from a memory
location are /oaded into a processor register.

The second example :

ADD R4, R2, R3

Adding two numbers contained in processor registers R2 and R3 and placing their sum in R4
can be specified by the assembly-language statement

In this case, registers R2 and R3 hold the source operands, while R4 is the destination.

An instruction specifies an operation to be performed and the operands involved. In the above
examples, we used the English words Load and Add to denote the required operations. In the assembly-
language instructions of actual (commercial) processors, such operations are defined by using
mnemonics, which are typically abbreviations of the words describing the operations. For example, the
operation Load may be written as LD, while the operation Store, which transfers a word from a processor
register to the memory, may be written as STR or ST. Assembly languages for different processors often use
different mnemonics for a given operation.

Basic Instruction types:An instruction is of various lengths depending upon the number of addresses it
contains. Generally CPU organization is of three types on the basis of number of address fields:

Single Accumulator organization
General register organization
Stack organization
1.In first organization operation is done involving a special register called accumulator.

2.In second on multiple registers are used for the computation purpose.

3.In third organization the work on stack basis operation due to which it does not contain any
address field. On the basis of number of addresses instructions are classified as:

Three address Instructions: This instruction has three operands(address fields) to
specify a register or a memory location.

Syntax
: operation sourcel, source2,
EX: Add A, B, C [C<-[A]+][B])
Where A, B are called source operands, C is called destination operand.

2. Two address Instructions: This instruction has two operands(address fields) to specify a
register or a memory location.

Syntax : operation source , destination.
For example,

Add A,C (C€[A]+][C]))

M.JOSHNA

4.0ne address Instructions: This instruction has one operand (address field) to specify a
register or a memory location. This use a implied Accumulator(AC) Register for data
manipulation. One operand is in AC and other is in register or memory location. Implied means
that the CPU already know that one operand is in AC so there is no need to specify it. For example,

LOADA (AC<[A])
ADD B (AC<[AC]+[B])
STOREC (C<[AC])

5.Zero address Instructions: This instruction has zero address fields. A stack based computer do
not use address field in instruction. It uses stack operations PUSH and POP to perform
operations. To evaluate a expression first it is converted to revere Polish Notation i.e. Post fix
Notation. For example,

Push A (TOS<[A)
Push B (TOS<[B))
Add (TOS<[A]+[B))
Pop C (C€E[TOS])

Example: evaluate X=(A+B)*(C+D)

Three Address:

Add A, B, R1 (RI<[A]+[B])

Add C,D, R2 (RR&E[CI+H[D])
Mul R1,R2,X (X< [R1]*[R2])
Two Address:

Move A, R1
Add B, R1

Move C,
Add D,
Mul R1,

(RL<C[A])

(RI<[R1]+[B])
R2 (R2 €[C])
R2 (RR&[R2]+[D])
R2 (RZ&[R1]*[R2])

Move R2, X X< [R2]
One Address:

Load A
Add B
Store T1
Load C
Add D
Mul T1
Store X

(AC<E[A])
(AC€< [AC]+[B])
(T1 € [AC))
(AC<E[C)
(AC €< [AC]+[D])
(AC € [AC]*[T1])
(X € [AC))

M.JOSHNA
Zero address:

Push A (TOS € [A))

Push B (TOS € [B])

Add (TOS € [A]+[B))

Push C (TOS & [C))

Push D (TOS € [D))

Add (TOS&C[C]+[D]))

Mul (TOS € ([A]+[B])*(C]+[D])
Pop X (X<[A]I+[B])*(C]+I[D])

Instruction Execution and Straight-Line Sequencing: To begin executing a program, the address
of its first instruction (I in our example) must be placed into the PC. Then, the processor control circuits use
the information in the PC to fetch and execute instructions, one at a time, in the order of increasing addresses.
This is called straight-line sequencing. For example, consider the following assembly instruction which add
contents of two memory locations. i.e. C € [A]+ [B]. The following diagram shows a possible program
segment for this task as it appears in the memory of a computer.

Address Contents

Begin execotion here —e= § Mave ARD
i+4 Add BRO
i+8 Move ROC

Figure 2.8 A program for C « [A] + [B].

The four instructions of the program are in successive word locations, starting at location i. Since, each
instruction is 4 bytes long, the second, third, and fourth instructions are at addresses i + 4, i + 8, and i +
12. The processor contains a register called the program counter (PC), which holds the address of the next
instruction to be executed. To begin executing a program, the address of its first instruction (i in our example)
must be placed into the PC. Then, the processor control circuits use the information in the PC to fetch and
execute instructions, one at a time, in the order of increasing addresses. This is called straight-line sequencing.
During the execution of each instruction, the PC is incremented by 4 to point to the next instruction. Thus, after
the Store instruction at location i + 12 is executed, the PC contains the value i + 16, which is the address of the
first instruction of the next program segment.

M.JOSHNA

Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch, the
instruction is fetched from the memory location whose address is in the PC. This instruction is placed in the
instruction register (IR) in the processor. At the start of the second phase, called instruction execute, the
instruction in IR is examined to determine which operation is to be performed. The specified operation is then
performed by the processor. This involves a small number of steps such as fetching operands from the memory
or from processor registers, performing an arithmetic or logic operation, and storing the result in the destination
location. At some point during this two-phase procedure, the contents of the PC are advanced to point to the
next instruction. When the execute phase of an instruction is completed, the PC contains the address of the
next instruction, and a new instruction fetch phase can begin.

Branching: Normally, the instructions executed in linear fashion through the program, and the address of
the instructions is obtained from PC in the control unit. This sequence is interrupted when a branch instruction
is executed, at such a time the address field of the Branch instruction is inserted into the PC and the process
continues. Consider the task of adding a list of » numbers. The following diagram shows straight line
sequencing program to add list of n numbers.

Figure 2.9 A siroighidine progrom for
axdding m numbsars.

The addresses of the memory locations containing the » numbers are symbolically given as NUMI,
NUM2, . .., NUMpn, and separate Add instructions is used to add each number to the contents of register RO.
After all the numbers have been added, the result is placed in memory location SUM.

Instead of using a long list of Add instructions, it is possible to implement a program loop in which the
instructions read the next number in the list and add it to the current sum. To add all numbers, the loop has to
be executed as many times as there are numbers in the list. The following shows the structure of the desired
program. The body of the loop is a straight-line sequence of instructions executed repeatedly. It starts at
location LOOP and ends at the instruction Branch > 0. During each pass through this loop, the address of the
next list entry is determined, and that entry is fetched and added to RO.

Assume that the number of entries in the list, 7, is stored in memory location N, as shown. Register R1
is used as a counter to determine the number of times the loop is executed. Hence, the contents of location N
are loaded into register R1 at the beginning of the program. Then, within the body of the loop, the instruction

Decrement R1

M.JOSHNA

reduces the contents of R1 by 1 each time through the loop. Execution of the loop is repeated as long as the
contents of R1 are greater than zero.

Next use branch instruction. This type of instruction loads a new address into the program counter. As
a result, the processor fetches and executes the instruction at this new address, called the branch target, instead
of the instruction at the location that follows the branch instruction in sequential address order. A conditional
branch instruction causes a branch only if a specified condition is satisfied. If the condition is not satisfied, the
PC is incremented in the normal way, and the next instruction in sequential address order is fetched and
executed.

Move N.R1
Clear RO

Determing address of
"Next” number and add - _
“Next™ number to RO

Decrement RI

Branch=0 LOOP

Muove ROSUM

NUMn

Figure 2.10 Using o loop to add n numbers.
The instruction
Branch > 0 LOOP
is a conditional branch instruction that causes a branch to location LOOP if the contents of register R1 are
greater than zero. This means that the loop is repeated as long as there are entries in the list that are yet to be
added to RO. At the end of the nth pass through the loop, the Subtract instruction produces a value of zero in
R2, and, hence, branching does not occur. Instead, the Store instruction is fetched and executed. It moves the
final result from RO into memory location SUM.

Condition Codes: The processor keeps track of information about the results of various operations for use
by subsequent conditional branch instructions. This is done by recording the required information in
individual bits, often called condition code flags. These flags are grouped together in a special processor
register called condition code register or status register. Individual condition code flags are set to 1 or cleared
to 0, depending on outcome of operation performed. Four commonly used flags are

N (negative): Set to 1 if the result is negative; otherwise, cleared to 0.

Z (zero): Set to 1 if the result is zero; otherwise, cleared to 0.

V (overflow): Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0.

C (carry): Set to 1 if a carry-out results from the operation; otherwise, cleared to 0.

M.JOSHNA

Addressing Modes: The different ways for specifying the locations of instruction operands are known as
addressing modes.

Table 2.1 Generic addressing modes
Name Assembler syntax Addressing function
Immediate #Value Operand = Value
Register Ri EA=RIJ
Absolute (Direct) LOC EA=LOC
Indirect (R) EA =[R/]
(LOC) EA =[LOC]
Index X(Ri) EA=[Ri]+ X
Base with index (Ri,R)) EA=[Ri]+[R/]
Base with index X(Ri,R)) EA=[RiI]+[Rj]+ X
and offset

Relative X(PC) EA=[PC]+X
Autoincrement (Ri)+ EA=[R/];

Increment R/
Autodecrement -(Ri) DecrementR/;

EA =[R/]

EA = effective address Value = a signed number

Implementation of Variables and constants: In assembly language, a variable is represented by
allocating a register or memory location to hold its value. Thus, the value can be changed as needed
using appropriate instructions. Variables can be represented by register and absolute addressing modes.

1. Immediate mode: Immediate mode: The operand is given explicitly in the instruction. For
example, the instruction
MOV #200, RO

Moves the value 200 to register RO. Constants are frequently used in high level
languages. For example, the statement A = B + 6. This statement can be represented as

MOV B, R1

ADD #6, R1

MOV R1, A

Register mode: The operand is the contents of a processor register; the name of the register is given
in the instruction.
1. For example, instruction
Add RI1,R2,R3
Uses the Register mode for all three operands. Registers R1 and R2 hold
the two source operands, while R3 is the destination.

M.JOSHNA

2. Absolute mode(direct): The operand is in a memory location; the address of this
location is given explicitly in the instruction. The Absolute mode is used in the instruction

Add A,B,C
Uses the Register mode for all three operands. Registers A and B hold the
two source operands, while C is the destination.

Indirection and Pointers: Here, the instruction does not give the operand or its address explicitly.
Instead, it provides information from which memory address of the operand can be determined.
This information is called as Effective address.

Indirect mode: In this mode, the effective address of an operand is the contents of a register or
memory location whose address appears in the instruction. Indirection can be represented by
placing name of the register or the memory address given in the instruction in parenthesis. For
example, to execute the Add instruction shown below the processor uses the value B which
is in register R1, as the effective address of operand. It requests a read operation from
memory to read the contents of location B. the value read is the required operand, which adds
to the contents of register RO.

Add (R1),R0

Add (R1).RD Add {A)RD

R f Register B

&
!
(a) Through a general-purpose register {b) Through a mamary location

Figure 2.11 Indirect oddressing.

Indirect addressing through memory location is also possible as shown above. In this
case, the processor first reads the contents of memory location A, and then requests a second
read operation using the value B as an address to obtain the operand. The register or memory
location that contains the address of an operand is called a pointer.

Consider a program for adding a list of numbers using indirect addressing as shown
below.

Address Contents

Move M.RI
Move #NUMI R2 Initialization

Clear RO

Add {E2), R0
#4 B2
Rl
LOOP
RO, SUM

M.JOSHNA

Here, register R2 is used as a pointer to the numbers in the list, and the operands are
accessed indirectly through R2. The initialization section of the program loads the counter value
n from memory location N to R1 and uses the immediate addressing mode to place the address
value NUMI1, which is the address of first number in the list, into R2. Then it clears RO to 0.
The instruction ADD (R2), RO fetches the operand at location NUM1 and adds it ro R0O. The
second ADD instruction adds 4 to the contents of the pointer R2, so that it will contain the
address value NUM2, when the above instruction is executed in the second pass through the
loop and son on.
Consider the C-language statement A = * B; where B is a pointer variable. This
statement may be compiled into
MOVE B, R1
MOVE (R1), A
Using indirect addressing through memory, the same action can be achieved with
MOVE (B), A
2. Indexing and Arrays: It is useful in dealing with lists and arrays.
Index Mode, the effective address of the operand is generated by adding a constant value to the
contents of a register. The register used may be either a general purpose register or index register.
Symbolically index mode can be represented as
X (Ri)
Where X denotes the constant value contained in the instruction and R; is the name of the
register involved. The effective address of the operand is given by
EA=X+[Ri]
The following shows the way of using Index mode.

Add 2RI)R2

Operand

(&) Offset is given as a constant

Add 1000KRI)R2

Operand

(b) Offset is in the index regisier
Figure 2.13 Indexed addressing.

M.JOSHNA

In first case, the index register R1 contains the address of a memory location and the
value x defines an offset from this address to the location where the operand is found.

In second case, the constant X corresponds to a memory address and the contents of
the index register define the offset to the operand. In either case, the effective address is the
sum of two values: one is given explicitly in the instruction and the other is stored in a
register.

Consider a simple example involving a list of test scores for students taking a given

course. Assume that the list of scores beginning at location LIST as shown below.

¥
r

™~ I
Soedent 1T

Test 1
Test 2

= Stodemt 1

Test 3
Stodent T

Test 1

Tiest 2

[Stadent 2

Test 3

-

-

Figurms 2. 14 A liss of students” marks.

A four word memory block comprises a record that stores the relevant information for
each student. Each record consists of the students ID, followed by the scores the student earned
on three tests. There are n students in the class, and the value n is stored in location N
immediately in front of the list. Suppose our aim is to find the sum of all scores obtained on
each of the tests and store these sums in memory locations SUM1, SUM2, and SUM3. A
possible program for this task is given below.

On the first pass through the loop, test scores of the first student are added to the running
sums held in registers R1, 12, and R3, which are initially cleared to zero. These scores are
accessed using index addressing modes 4(R0), 8(R0), and 12(R0). The index registers then
incremented by 16 to point to the ID location of the second student. Register R4, which is
initialized to the value n is decremented by 1 at the end of each pass through the loop. When
the contents of R4 reached to 0, all the student records have been accessed, and the loop
terminates. Until then, the conditional branch instruction transfer control back to the start of the
loop to process the next record. The last three instructions transfer the accumulated sums from
R1, R2, and R3 into memory locations SUM1, SUM2, and SUM3.

Base with Index Mode: In this mode, effective address is generated by adding the contents of
base register with the contents of index register. It is represented as shown below.

Add (R, R;)

The effective address is the sum of the contents of registers R;, and R;. The second
register is usually called the base register.
EA=[Ri]+[Rj]
Base with Index and Offset: In this mode, effective address is the sum of the constant X and the
contents of registers Ri and R;. It is represented as sown below.

X (R, Rj)

EA= X+[Ri]+[Rj]

M.JOSHNA

Relative Addressing: In Relative Addressing, the Program counter is used instead of a general purpose
register.’
1. Relative Mode: In this mode, the effective address is determined by adding the contents of
program counter to offset value. It is represented symbolically as
X(PC)
The effective address of the operand is given by
EA=X+][PC|
This mode can be used to access data operands. It’s most common use is to specify the target
address in branch instructions. An instruction such as
Branch >0 LOOP
Causes program to go to branch location identified by the name LOOP if the branch condition
is satisfied. This location can be computed by specifying it as n offset from the current value of

the program counter. For example, suppose that the relative mode is used to generate the branch
target address LOOP in the branch instruction of the program using indirect addressing. Assume
that the four instructions of the loop body, starting at LOOP, are located at memory locations
1000, 1004, 1008, and 1012. Hence, the updated contents of the PC at the time the branch target
address is generated will be 1016. To branch to location LOOP (1000), the offset value needed
1s X =-16.

Additional Modes: The additional modes like auto increment and auto decrement are useful for

accessing data items in successive locations in memory.

1. Auto increment Mode: The effective address of the operand is the contents of a register specified
in the instruction. After accessing the operand, the contents of this register are automatically
incremented to point to the next item in a list. It is represented as

(Ri)+
It normally increments 1, but in byte sized operands or byte addressable memory. Thus, the
increment is 1 for 8 bit operands, 2 for 16 bit and 4 for 32 bit operands. The effective address
of the operand is
EA =[Ri]; Increment R;
Auto decrement Mode: The contents of a register specified in the instruction are first
automatically decremented and are then used as effective address of the operand. It is
represented as
- (Ri)
The effective address of the operand is
Decrenebt R;;

EA=[Ri]

M.JOSHNA
The following program describes how to use auto increment mode

N.R1 }

Move #NUMILR2 Initizlization
RO

Add (R2)+R0
Ri

Branche{) LOOFP

Move ROSUM

Basic Input / Qutput Operations: Input / Output operations are essential which has a significant effect
on performance of a computer. An I/O device is connected to the interconnection network by using a
circuit, called the device interface, which provides the means for data transfer and for the exchange of status
and control information needed to facilitate the data transfers and govern the operation of the device. The
interface includes some registers that can be accessed by the processor.

Consider a task that reads in character input from a keyboard and produces character output on
a display screen. A simple way of performing such I/O tasks is to use a method known as Program
controlled I/0. A solution to this problem is as follows: On output, the processor sends the first character and
then waits for a signal from the display that the character has been received. It then sends the second character,
and so on. Input is sent from the keyboard in a similar way; the processor waits for a signal indicating that a
character key has been struck and that its code is available in some buffer register associated with the keyboard.
Then the processor proceeds to read that code.

The keyboard and the display are separate devices as shown below.

[m

Figure 2.19 Bus connection for processor, keyboard, ond display.

Consider the problem of moving a character from the keyboard to the processor. Striking a key stores
the corresponding character code in an 8-bit buffer register DATAIN which is associated with the keyboard.
To inform the processor that a valid character is in DATAIN, a status control flag, SIN, is set to 1 (initially
SIN=0).

A program monitors SIN, and when SIN is set to 1, the processor reads the contents of
DATAIN.

When the character is transferred to the processor, SIN is again set to 0 and the process

RED

Keyboard

repeats.

M.JOSHNA

To transfer the characters from processor to display, a buffer register, DATAOUT, and a status
control flag, SOUT, are used.

When SOUT equals 1, the display is ready to receive a character. Under program control, the
processor monitors SOUT, and when SOUT is set to 1, the processor transfers a character code to DATAOUT
clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again set to 1.

The processor can monitor the keyboard status flag SIN and transfer a character from DATAIN to
register R1 by the following sequence of operations.

READWAIT Branch to READWAIT if SIN=10
MOVE DATAIN, R1

The contents of the keyboard character buffer DATAIN can be transferred to processor register
instruction is

MoveByte DATAIN ,R1

An analogous sequence of operations is used for transferring output to display as shown below.

WRITEWAIT Branch to WRITEWAIT if SOUT =0
MOVE R1, DATAOUT

The contents of the processor register R1 transferred to display buffer DATAOUT instruction

MoveByte R1,O0UTDATA

The following program explains how to read sequence of characters and display it.

Move #LOC RO Initialize pointer register B0 to point to the
address of the first location in memory
where the characters are to be stored.

READ TestBit #3,INSTATUS Whait for a character to be entered

Branch=0 READ in the keyboard buffer DATATN.

MoveByte DATAIN,(RO) Transfer the character from DATAIN into
the memory (this clears SIN to 0).

TestBit #3,0UTSTATUS Wait for the display to become ready.

Branch=0 ECHO

MoveByte (R0}, DATAOUT Mowve the character just read to the display
buffer register (this clears SOUT to 0).

Compare #CR{RD)+ Check if the character just read is CR
{carriage return). If it is not CR, then

Branchz0 READ branch back and read another character.
Also, mcrement the pointer to store the
next character.

Here assume that 3 bit in registers INSTATUS and OUTSTATUS corresponds to SIN and SOUT
respectively.

M.JOSHNA

The role of STACKS and QUEUES in computer programming equation: In order to organize
the control and information linkage between the main program and the subroutine, a data structure called a
stack is used. A stack is the list of data elements, usually words or bytes, with the accessing restriction that
elements can be added or removed at one end of the list only. This end is called as top of the stack, and another
end is called as bottom. The structure is sometimes referred as pushdown stack. Stack follows Last-In-First-
Out (LIFO) strategy, where elements inserted last will be the element removed first. Two basic operations that
can be performed on stack are PUSH and POP, which add and remove elements from top of the stack
respectively.

Data stored in the memory of a computer can be organized as a stack, with successive elements
occupying successive memory locations. Assume that first element is placed in location BOTTOM, and when
new elements are pushed onto the stack, they are placed in successive lower address locations. The following
diagram shows a stack of word data items in the memory of a computer.

La]

Figure 2. 21 A siock of woerds in the memory.

It contains numerical values, with 43 at bottom and -28 at the top. A processor register is used to keep
track of the address of the element of the stack that is at the top at any given time. This register is called the
Stack Pointer (SP). It could be one of the general purpose registers or a register dedicated to this function.
Assume a byte addressable memory with 32-bit word length, the PUSH operation can be implemented as

Sobtract #3.5P
Move NEWITEM.(SP)

Where the Subtract instruction subtracts the source operand 4 from the destination operand contained
in SP and places the result in SP. These two instructions move the word from location NEWITEM onto the
top of the stack, decrementing the stack pointer by 4 before the move.

Move (SP)ITEM
Add #.5P

if the processor has the auto increment and auto decrement address modes the PUSH operation can be
performed by the instruction:

Move NEWITEM,—(5P)

The POP operation can be implemented as:

Move (SP)+.ITEM

M.JOSHNA

These two instructions move the top value from the stack into location ITEM and then increment the
stack pointer by 4, so that it points to the new top element as shown below.

SP —= S
—28

17
739

43) L 43

NEWITEM | 19 ! mEM | 28 i

{a) After push from MNMEWITTEM (b)) After pop into ITEM
Suppose that a stack runs from location 2000 (BOTTOM) down no further than 1500. The stack
pointer is loaded initially with the address value 2004. SP is decremented by 4 before new data are stored on
the stack. Hence, an initial value of 2004 means that the first item pushed on to the stack will be at location
2000. To prevent either pushing an item on a full stack or popping an item off an empty stack, the single
instruction PUSH and POP operations can be replaced by the following instruction sequences.

SAFEPOF Compare #2000SP Check to see if the stack pointer contains
Branch>0 EMPTYERROR an-address value greater than 2000. If it
does, the stack is empty. Branch to the
rontine EMPTYERROR for appropriate
action.
(SP)+ ITEM Otherwise, pop the top of the stack into
memory location ITEM.

a safe pop operation

SAFEPUSH Compare #1500,5P Check to see if the stack pointer
Branch<0 FULLERROR contains an address value equal
to or less than 1500. K it does, the
stack is full. Branch to the rontine
FULLERROR for appropriate action.
NEWITEM,—(SP) Otherwise, push the element in memory
location NEWITEM onto the stack.

a safe push operation

Another useful data structure that is similar to the stack is called a Queue. Data are stored in and
retrieved from a queue on a First-In-First-Out (FIFO) basis. Thus, if queue grows in the direction of increasing
addresses in memory, new data are added at the back (high address end) and retrieved from the front (low
address end) of the queue.

There are two important differences between stack and queue. One end of the stack is fixed (the
bottom), while the other end raises and falls as data are pushed and popped. A single pointer is needed to point
to the top of the stack at any given time. On the other hand, both ends of a queue move to higher addresses as
data are added at the back and removed from the front. So, two pointers are needed to keep track of two ends
of the queue.

Another difference between stack and queue is that, a queue would continuously move through memory
of a computer in the direction of higher addresses. This can be avoided by using Circular Queue.

M.JOSHNA

Additional Instructions (Or) Component of Instructions:
Additional Instructions (Or) Component of Instructions are two types
1.Logic Instructions
2.Shift and Rotate Instructions

Logic Instructions: Logic operations such as AND, OR, and NOT applied to individual bits, are the
basic building blocks of digital circuits. It is also useful to be able to perform logic operations in software.
For example,

1’s complement:
NOT dst

NOT dst complements all bits contained in the destination operand, changing 0’s to 1 and 1’s to 0.
2’s complement:

The following two instructions calculates 2’s complement of a number

NOT RO

ADD #1,R0
Many computers have a single instruction for 2’s complement..i.e. NEGATE RO
Logic Instructions AND, OR, and NOT represented as bits in a table as follows:

OR table

AND table : Operand 1 | Operand 2
Operand 1 | Operand 2 0 0

0 0

0 1
1 0
1 1

0 1
1 0
1 1

NOT table
Operand
0
1

Shift and Rotate Instructions: There are many applications that require the bits of an operand to be
shifted right or left some specified number of bit positions. There are two types of shift instructions.
I. Logical Shift Instructions((LShiftL, LShiftR)
Arithmetic Shift Instructions

Logical Shift Instructions: These instructions shift an operand over a number of bit positions specified
in a count operand in the instruction.There are two types of Logical Shift Instructions: Logical left shift
(LShiftL) and Logical right shift ((LShiftR)
Logical left shift (LShiftL): The general form of Logical Shift Left Instruction is
LShiftL count, DST

The count operand may be an immediate operand or it may be contained in a processor

register. For example,

LShiftL #2, RO, this is represented as

M.JOSHNA

(a) Logical shift left LShifiL 42 R0

It shifts the contents of register RO left by two positions. Vacated positions are filled
with 0’s.

1.Logical right shift (LShiftR): The general form of Logical Shift Right Instruction is
LShiftR count, DST
The count operand may be an immediate operand or it may be contained in a processor
register. For example,
LShiftR #2, RO, this is represented as

e

0 001

{b) Logical shift right LShiftR &2,R0

It shifts the contents of register RO right by two positions. Vacated positions are filled
with 0’s.

Arithmetic Shift Instructions: There are two types of Arithmetic Shift Instructions:
1. Arithmetic Shift Left (AShiftL): A Left Arithmetic shifts a binary number by specified number
of positions towards left. The vacated positions are filled with 0’s. It can be represented as
AShiftL count, DST
For example, AShiftL #2, RO shifts contents of RO by 2 positions and vacated
positions are filled with zeros as shown below.

O ™ -

wiore: [0] [0 1 1 10 01 1]

a.flur.m I F O » « « 0 1 L O Q

Arithmetic Shift Right (AShiftR): A Right Arithmetic shifts a binary number by specified
number of positions towards right. The vacated positions are filled with copies of the original
MSB bit. It can be represented as

AShiftR count, DST
For example, AShiftR #2, RO shifts contents of RO by 2 positions and vacated
positions are filled with copies of the original MSB bit as shown below.

M.JOSHNA

0o

{c) Avithmetic shift right ASftR #2,R0

Rotate Instructions: In shift operations, the bits shifted out of the operand are lost, except for the last bit
shifted out which is in the carry flag C. To preserve all bits, a set of rotate instructions can be used. They move
the bits that are shifted out of one end of the operand back into the other end. Different rotate instructions are
1. Rotate Left without Carry
2. Rotate Left with Carry
3. Rotate Right without Carry
4. Rotate Right with Carry
They are represented as follows.

M.JOSHNA

%

affier;

{c) Rotate right without camy RotateR #2 R0

before:

afier: 1 00 1

(d) Rotate right with carry RotateRC #2,R0

Digit-Packing Example:

Consider a task which uses both shift and logic operations. Suppose two decimal digits represented in
ASCII code are located in memory at byte locations LOC and LOC + 1. Our goal is to represent each of these
digits in the 4-bit BCD code and store both of them in a single byte location PACKED. The result is said to be
in packed-BCD format.

To do this, extract the lower order 4 bits in LOC and LOC + 1 and concatenate them into the single
byte at PACKED as shown below.

Moave #£LOCRO Ri points to data.
MoveByte (RD)+,R1 Load first byte into R1.
LShftl. #4RI Shift lefi by 4 bit positions.
MoveByte (R0}, R2 Load second byie into B2
And #35F R2 Eliminate high-order bits.
Or R1,R2 Concatenate the BCD digits.
MoveByte H2PACKED Store the result.

Here, RO is a pointer to the ASCII characters in memory, and use the registers R1 and R2 to develop
the BCD codes. MoveByte instruction transfers a byte between memory and a 32-bit processor register. The
And instruction is used to mask out all except the four rightmost bits in R2. Immediate operand $F, interpreted
as a 32-bit pattern, has 28 zero’s in most significant bit positions.

Vector Dot Product Program: Let A and B be two vectors of length n. Their dot product can be defined as
P |
Dot Product =Y A(i) x B(i)

i=0
The following program computes dot product and storing it in memory location DOTPROD. The first
elements of each vector, A(0), and B(0), are stored at memory locations AVEC and BVEC.

M.JOSHNA
Move

Mowva
Mowe

Clear
Move
Multiply
Add
Decrement
Branch>0
Maove

#AVEC Rl
#BVEC,R2
N,R3

RO
(R1}+,R4
(R2)+,R4
R4,R0

R3

LOOP

R1 points to vector A.
R2 points to vector B.
R3 serves as a counter.
RO accumulates the dot product.
Compute the product of
next components.
Add to previous sum.
Decrement the counter.

Loop again if not done.

RO,DOTPROD Store dot product in memory.

Figure 233 A program for computing the dot product of fwo veciors.

Byte Sorting Program: Consider a program for sorting a list of bytes stored in memory into ascending
alphabetic order. Assume that the list consists of n bytes. Let the list stored in memory locations LIST through
LIST +n— 1, and let n be a 32-bit value stored at address N. To do this, use straight selection sort algorithm.
First, the largest number is found and placed at the end of the list in location LIST + n — 1. Then the largest
number in the remaining sub list of n — 1 numbers is placed at the end of the sub list in location LIST +n — 2.
The procedure is repeated until the list is sorted.

Move
Move
Subtract
Move
Subtract

MoveByte

CompareByte
Branch</{)
MoveByte
MoveByte
MoveByte
MoveByie
Diecrement
Branch>0)
Decrement
Branch>{

(b) Assembly language program for sorting

HLIST,RD
N,R1
#1,K1
RIR2
#1R1
(RO,R1),R3

R3,(R0,R2)
NEXT
(R0,R2),R4
R3,(R0,R2)
R4,(RO.R1)
R4R3

R2

INNER

R
OUTER

Load LIST into base register RO.
Initialize outer loop index
register Rl1to j=n—1.
Initialize inner loop index
register R2 to k=5 1.
Load LIST{j) into R3, which holds
current maximum in sublist.
If LIST(k) < [R3],
do not exchange.
Otherwise, exchange LIST (k)
with LIST{j) and load
new maximnm into R3.
Register R4 serves as TEMP.
Decrement index registers B2 and
R1, which also serve as
as loop counters, and branch

Linked Lists: Suppose to maintain list of student records in consecutive memory locations in increasing order
of student ID numbers, use a data structure called Linked List as shown below. To insert a record between 1
and i+1, the link address in record i is coped into the link field in the new record and then the address of the
new record is written into the link field of record i. To delete record i, the address in its link field is copied into

the link field of record i-1.

M.JOSHNA

i

1

(&) Linking structure

i
|
1
e

N

{b) Inserting a naw record betwean Record 1 and Record 2

Figure 235 Linked-list data structure.
A subroutine for performing insertion and deletion are shown below.

Compare #), RHEAD

INSERTION

f

not empty

L+ e

insert new record
somewhere after
current head

Lo SEARCH
LOOP

[
1ew record becomes new Lail

[
insert new record in
an interior position
|—- INSERT

e TAIL

Bmmh:-ﬂ HEAD new record

Move

RNEWREC, RHEAD becomes a
one-entry lis

(RHEAD), (RNEWREC)

SEARCH

RHEAD, 4RNEWREC) | W record

becomes
Rm RHEAD new head

RHEAD, RCURRENT
4{RCURRENT), RNEXT

#), RNEXT
TAIL

INSERT

LOOP

agure 2.37 A subroutine for inserting o new record info a linked list.

M.JOSHNA

|

nof the head recond

|+ SEARCH
LOOP

Figure 2.38 A subroutine for deleling a record from a linked list.

FREQUENTLY ASKED QUESTIONS

What is a register transfer language?
Differentiate the instruction execution for adding ‘n’ numbers using Straight line sequencing and
branching.
Write short notes on shift and rotate instructions.
Write about various means by which data are transferred between memory of a computer and outside
world.
What is register transfer notation? Write and explain these notations to three-address, two-address, single
address and zero-address instruction types.
In how many ways the location of an operand is specified in an instruction? Explain each mode with
suitable examples.

7.What are different addressing modes? Explain.

8.Give example for left and right shift operations.

9.List basic input and output operations.

10. Write short notes on additional addressing modes

11. With an example write about relative addressing.

12. Tllustrate the concept of assembly directives with an assembly language program

13. Tllustrate with examples rotate instruction?

14. Differentiate between shift and rotate instructions.

M.JOSHNA
UNIT -3

Types of Instructions: Arithmetic and Logic Instructions, Branch Instructions,
Addressing modes, Input / Qutput Instructions.

Arithmetic and Logic Instructions: The ARM instruction set has a number of instructions for
arithmetic operations on operands that are either contained in the general-purpose registers or given as
immediate operands in the instruction itself. The basic assembly-language format for arithmetic and logic
instructions is shown below.

opcode Rd, Rn, Rm

where the operation specified by the opcode is performed on the source operands in general-purpose registers
Rn and Rm. The result is placed in destination register Rd.

Arithmetic Instructions: Different types of Arithmetic instructions are ADD, SUB, MUL and MLA.
For example, the instruction

ADD R0, R2, R4
performs the operation

RO—[R2] + [R4]

The instruction

SUB RO, R6, RS
performs the operation

R0O—[R6] — [R5]

The second source operand can be specified in the immediate mode. Thus,

ADD RO, R3, #17
performs the operation

RO—[R3] +17
The immediate operand is an 8-bit value contained in bits »7—0 of the encoded machine instruction. It is an
unsigned number in the range 0 to 255. The assembly language allows negative values to be used as immediate
operands. If the instruction

ADD RO, R3, #-17
is used in a program, the assembler replaces it with the instruction

SUB RO, R3, #17
When the second source operand is specified as the contents of a register, they can be shifted or rotated before
being used in the operation. Logical shift left (LSL), logical shift right (LSR), arithmetic shift right (ASR), and
rotate right (ROR). For example, the instruction

ADD RO, R1, RS, LSL #4
is executed as follows. The second source operand, which is contained in register RS, is shifted left 4 bit
positions (equivalent to [R5] x 16), then added to the contents of register R1. The sum is placed in register
RO. The carry bit, C, is not involved in these operations. The shift or rotation amount can also be specified as
the contents of a fourth register.

Two basic versions of a multiply instruction are provided. The first version multiplies the contents of
two registers and places the low-order 32-bits of the product in a third register. The high-order bits of the
product are discarded. If the operands are 2’s-complement numbers, and if their product can be represented in
32 bits, then the retained low-order 32 bits of the product represent the correct result. For example, the
instruction

MUL RO, R1, R2
Performs the operation

RO—[R1] x [R2]

The second version of the basic Multiply instruction specifies a fourth register whose contents are
added to the product before the result is stored in the destination register. Hence, the instruction

M.JOSHNA

MLA RO, R1, R2, R3
Performs the operation
RO—([R1] x [R2]) + [R3]
This is called a Multiply-Accumulate operation. It is often used in signal-processing applications.

Logic Instructions: Different types of Logic Instructions are AND, OR, XOR, BIC and MVC. For
example, The AND instruction

AND Rd, Rn, Rm
performs a bitwise logical AND of the operands in registers Rz and Rm and places the result in register Rd.
For example, if register RO contains the hexadecimal pattern 02FA62CA and R1 contains the pattern
0000FFFF, then the instruction

AND RO, RO, R1 ROC[RO]A[RL))
will result in the pattern 000062CA being placed in register RO.

The Bit Clear instruction, BIC, is closely related to the AND instruction. It complements each bit in
operand Rm before ANDing them with the bits in register Rn. Using the same RO and R1 bit patterns as in the
above example, the instruction

BIC RO, RO, R1 (RO [RO]A[NOTR1))
results in the pattern 02FA0000 being placed in RO.

The OR instruction
OR RO,R0O,R1 (RO [ROJVIRL))
Performs OR operation between contents of RO, R1 registers.
The XOR instruction
XOR RO,R0,R1 RO [ROJOIR1))
Performs XOR operation between contents of RO, R1 registers.
The Move Negation instruction, with the opcode Mnemonic MVN, complements the bits of the source
operand and places the result in Rd. for example,

MVN RO, R3.

If the contents of R3 are the hexadecimal pattern OFOFOFOF, then it places the result FOFOFOFO in the register
RO.
The following ARM program merges two BCD digits into a byte.

LDR ROPOINTER Loed address LOC into RO.
LDRB R1,[RO| Load ASCII characters
LDRB R2[R041] into R1 and R2,
AND R2IR2#&F Clear high-order 28 bits of R2.
ORR R2R2RLLSL #4 Or [R1] shifted left into [R2],
STRE R2PACKED Store packed BCD digits

into PACKED.

Figure 3.5 An ARM program for packing two 4-bit decimal digits into a byte.

The first instruction in the program loads the address LOC into register RO. The two ASCII characters
containing the BCD digits in their low-order four bits are loaded into the low-order byte positions of registers
R1 and R2 by the next two Load instructions. The AND instruction clears the high-order 2 bits of R2 to zero,
leaving the second BCD digit in the four low-order bit positions. The ‘&’ character in this instruction signifies
hexadecimal notation for the immediate value. The ORR instruction then shifts the first BCD digit in R1 to
the left four positions and places it to the left of the second BCD digit in R2. The two digits packed into the
low-order byte of R2 are then stored into location PACKED.

M.JOSHNA

Branch Instructions: Conditional branch instructions contain a signed, 2’s complement, 24-bit offset that
is added to the updated contents of the program counter to generate the branch target address. The format for
the branch instruction is shown below.

3l B’ MUNB

Condition | OF code

1000

1004

_l_mm[r::]:;ma

Offset =92

.L LOCATION = 1100

(b) Determination of a branch target address

i By o916 15 12 n

Comditiom OF mode Fn | Rd

Figure 3.2 ARM instruciion formal.

The BEQ instruction (Branch if Equal to 0) causes a branch if the Z flag is set to 1. The higher order 4
bits bsi-2g, of the instruction word determines whether or not branching should takes place. At the time the
branch target address is computed, the contents of the PC will have been updated to contain the address of the
instruction that is two words beyond the Branch instruction itself. This is due to pipelined instruction execution.
If the Branch instruction is at address location 1000 and the branch target address is 1100, as shown in Figure
D.6, then the offset is 92, because the contents of the updated PC will be 1000 + 8 = 1008 when the branch
target address 1100 is computed.

Setting condition codes: The Compare and Test instructions always update the condition code flags. Some
instructions, such as compare, given by CMP Rn, Rm performs the operation [Rn] — [Rm]. The arithmetic,
logic, and Move instructions affect the condition code flags only if explicitly specified to do so by a bit in the
OP-code field. This is indicated by appending the suffix S to the assembly language OP-code mnemonic. For
example, the instruction ADDS RO, R1, R2 sets the condition code flags, but ADD RO, R1, R2 does not.

The following is an ARM program for adding n numbers. Here, Location N contains the number of
entries in the list, and location SUM is used to store the sum. The Load and Store operations performed by

M.JOSHNA

the first and last instructions use the Relative addressing mode. This assumes that the memory locations N and
SUM are within the range reachable by offsets relative to the PC. The address NUM1 of the first of the numbers
to be added is loaded into register R2 by the second instruction. The Post-indexed addressing mode, which
includes writeback, is used in the first instruction of the loop.

ILDR RN Load eount into R1.

LDR R2,POINTER Load address NUMI into K2,
MOV RO,#0 Clear accumulator RO.

LDR R3,[R2|#4 Load next number into R3.
ADD RORO,R3 Add number imto RO.

SUBS RI1,R1,#1 Decrement loop counter R1.
BGT LOOFP Branch back if not done.
STR R0SUM Store sum.

Figure 3.7 An ARM program for adding numbers.

Input/ Qutput Instructions:

Input/ Qutput Instructions: The ARM architecture uses memory mapped I/O. Input / Output operations
are essential which has a significant effect on performance of a computer. An I/O device is connected to the
interconnection network by using a circuit, called the device interface, which provides the means for data
transfer and for the exchange of status and control information needed to facilitate the data transfers and govern
the operation of the device. The interface includes some registers that can be accessed by the processor. One
register may serve as a buffer for data transfers, another may hold information about the current status of the
device, and yet another may store the information that controls the operational behavior of the device. These
data, status, and control registers are accessed by program instructions as if they were memory locations.
Consider a task that reads in character input from a keyboard and produces character output on a display
screen. A simple way of performing such I/O tasks is to use a method known as Program controlled 1/0. A
solution to this problem is as follows: On output, the processor sends the first character and then waits for a
signal from the display that the character has been received. It then sends the second character, and so on. Input
is sent from the keyboard in a similar way; the processor waits for a signal indicating that a character key has
been struck and that its code is available in some buffer register associated with the keyboard. Then the
processor proceeds to read that code.
The keyboard and the display are separate devices as shown below.

RED

Eeyboard

Figure 2.19 Bus connection for processor, keyboard, and display.

M.JOSHNA

Consider the problem of moving a character from the keyboard to the processor. Striking a key stores
the corresponding character code in an 8-bit buffer register DATAIN which is associated with the keyboard.
To inform the processor that a valid character is in DATAIN, a status control flag, SIN, is set to 1 (initially
SIN=0). A program monitors SIN, and when SIN is set to 1, the processor reads the contents of DATAIN.
When the character is transferred to the processor, SIN is again set to 1 and the process repeats.

To transfer the characters from processor to display, a buffer register, DATAOUT, and a status control
flag, SOUT, are used. When SOUT equals 1, the display is ready to receive a character. Under program control,
the processor monitors SOUT, and when SOUT is set to 1, the processor transfers a character code to
DATAOUT clears SOUT to 0; when the display device is ready to receive a second character, SOUT is again
setto 1.

Suppose that bit 3 in each of the device status registers INSTTUS and OUTSTATUS contains the
respective control flags SIN and SOUT. Also assume that the keyboard DATAIN and display DATAOUT
registers are located at addresses INSTATUS + 4 and OUTSTATUS + 4. The READ and WRITE wait loops
can be implemented as follows.

READWAIT LDR R3,[RI]
TST R3#8
BEQ READWAIT
LDRB R3,[R1#4]
R4,[R2]
TST R448
BEQ WRITEWAIT
STRB R3[R2:#4]

Assume that the address INSTATUS has been loaded into register R1. The instruction sequence reads
a character into register R3 when a key has been pressed on the keyboard. The test (TST) instruction performs
the bitwise logical AND operation on its two operands and sets the condition code flags based on the result.
The immediate operand 8 (0000 1000) has a single 1 in the bit 3 position. Therefore, the result of the TST
operation will be zero if bit 3 of INSTATUS is zero and will be non zero if bit 3 is one, signifying that a
character is available in DATAIN. The BEQ instruction branches back to READWAIT if the result is zero.
Assuming that the address OUTSTATUS has been loaded into register R2, the instruction sequence
sends the character in register R3 to the DATAOUT register when display is ready to receive it.
The following ARM program reads line of characters.
READ LDR R3[Rl) Load [INSTATUS| and
TST R3#8 wait for character.
BEQ READ
LDRB R3,[R1,#4] Read the character and
STRE R3,[R0],#1 store it in memory.
LDR R4,[R2] Load [OUTSTATUS| and
TST R4,#8 wait for display
BEQ ECHO to be ready.
STRB R3,R2,#4]) Send character to display.
TEQ R3#CR If not carriage return,
BNE READ read more characters.

Figure 3.9 An ARM program that reads a line of charoclers and displays it.

M.JOSHNA
ARM Addressing Modes:

Table D.1 ARM indexed addressing modes.

Name Assembler syntax Addressing function

With immediate offset:
Pre-indexed [Ra, #offset] EA = [Rn] + offset
Pre-indexed
with writeback [R, #offset]! EA = [Rn] + offset;
Rn «— [Rn] + offset
Post-indexed [Ra], #offset EA = [Ra];
Rn «— [Rn] + offset
With offset magnitude in Rm:
Pre-indexed [Ra. + R, shaft] EA = [Rn] & [Fm] shifted
Pre-indexed
with writeback [Ra, + Bm, shift]! EA = [Rn] & [Rm] shifted;
Rn «— [Rn] £ [Rm] shifted
Post-indexed [Ra], £+ Rim, shaft EA = [Rn];
Rn «— [Rn] + [Rm] shifted
Relative Location EA = Location
(Pre-indexed with = [PC] + offset
immediate offset)

EA = effective address
offset = a signed number contained in the instruction
shift = direction #integer
where direction is LSL for left shift or LSR for right shift: and
integer is a 3-bit unsigned number specifying the shift amount
Z+Rm = the offset magnitude in register Rm can be added to or subtracted from the
contents of base register Ra

The basic method for addressing memory operands is an indexed addressing mode, defined as
1. Pre-indexed mode: The effective address of the operand is the sum of the contents of a base register,
Rn, and a signed offset. For example, the Load instruction
LDR Rd, [Rn, #offset]
specifies the offset (expressed as a signed number) in the immediate mode and performs
the operation
Rd < [Rn] + offset
The following shows an example of the Pre-indexed mode with the offset contained in register
R6 and the base value contained in RS. The Store instruction (STR) stores the contents of R3 into the
word at memory location 1200.

M.JOSHNA

STR R3, [R5, Rel 1000

Base regisler

200

T Offset register

200 = offset

1

(b) Pre-indexad addressing mode

Pre-indexed with write back mode: The effective address of the operand is generated in the same way as
in the Pre-indexed mode, then the effective address is written back into Rn. The exclamation mark
signifies write-back in pre-indexed addressing mode.

2012 IRﬁ

Base register (Stack pointer)

I i I RO

Push instruction:

after execution of
Push instruction STR RO, [R5,#4]!

(b) Pre-indexed addressing with writeback

Above shows an example of pushing the contents of register RO, which are 27, onto a
programmer-defined stack. Register RS is used as the stack pointer. Initially, it contains the address
2012 of the current TOS (top-of-stack) element. The Pre-indexed addressing mode with write back can
be used to perform the Push operation with the instruction

STR RO, [RS, #-4]!

The immediate offset —4 is added to the contents of RS and the new value is written back into R5. Then,
this address value of the new top of the stack, 2008, is used as the effective address for the Store
operation. The contents of register RO are then stored at this location.
Post-indexed mode—The effective address of the operand is the contents of Rn. The offset is
then added to this address and the result is written back into Rn. The post-indexed mode always
involves write back, so the exclamation is not needed.

pre- and post-indexing are distinguished by the way the square brackets are used. When only
the base register is enclosed in square brackets, its contents are used as the effective address. The offset
is added to the register contents after the operand is accessed. In other words, post-indexing is specified.
When both the base register and the offset are placed inside the square brackets, their sum

M.JOSHNA
is used as the effective address of the operand, that is, pre-indexing is used. If writeback is to be
performed, it must be indicated by the exclamation character.

Memory

address = —word (4 byles) ——

— 1000 B 1000

Base register

25

Offset register

100=25x4

i Load instruction:
1200 2 LDR RI1,[R2], R10, LSL #2

(a) Post-indexed addressing

The first time that the Load instruction is executed, the effective address is [R2] = 1000.
Therefore, the number 6 at this address is loaded into R1. Then, the write back operation changes the
contents of R2 from 1000 to 1100 so that it points to the second number, —17. It does this by shifting
the contents, 25, of the offset register R10 left by two bit positions and then adding the shifted value to
the contents of R2. The contents of R10 are not changed in this process. The left shift is equivalent to
multiplying 25 by 4, generating the required offset of 100. When the Load instruction is executed on
the second pass through the loop, the second number, —17, is loaded into R1. The third number, 321, is
loaded into R1 on the third pass, and so on.

In all three indexed addressing modes, the offset may be given as an immediate value in the
Range +4095. Alternatively, the magnitude of the offset may be specified as the contents of the Rm
register, with the sign (direction) of the offset specified by a + prefix on the register name. For
example, the instruction

LDR RO, [R1, —R2]!
performs the operation

RO—[[R1] — [R2]]

The effective address of the operand, [R1]—-[R2], is then loaded into R1 because write back is
specified.

When the offset is given in a register, it may be scaled by a power of 2 before it is used by
shifting it to the right or to the left. This is indicated in assembly language by placing the shift direction
(LSL for left shift or LSR for right shift) and the shift amount after the register name, Rm. For example,
the contents of R2 in the example above may be multiplied by 16 before being used as an offset by
modifying the instruction as follows:

LDR RO, [R1, —R2, LSL #4]!

This instruction performs the operation

RO < [[R1]—16 x [R2]]

and then loads the effective address into R1 because write back is specified.

4.Relative Addressing: The program counter PC, may be used as the base register Ry. In this case, the
relative addressing mode is used. The assembler determines the immediate offset as the signed distance

M.JOSHNA

between the address of the operand and the contents of the updated PC. When the effective address is
calculated at instruction execution time, the contents of PC will have been updated to the address two words
(8 bytes) forward from the instruction containing the relative addressing mode.

Memory
address

[00
1004

[W8

ITEM = 160

- word (4 byles)——=

LDR RI1.ITEM

T updated [PC] = 1008

52 = offset

Operand

1

(a) Relative addressing mode

The address of the operand, given symbolically in the instruction as ITEM, is 1060. There is no Absolute
addressing mode available in the ARM architecture. Therefore, when the address of a memory location is
specified by placing an address label in the operand field, the assembler uses the Relative addressing mode.
This is implemented by the Pre-indexed mode with an immediate offset, using PC as the base register. As
shown in the figure, the offset calculated by the assembler is 52, because the updated PC will contain 1008
when the offset is added to it during program execution. The effective address generated by this instruction is
1060 = 1008 + 52. The operand must be within a distance of 4095 bytes forward or backward from the updated
PC. If the operand address is outside this range, an error is indicated by the assembler and a different addressing
mode must be used to access the operand.

68000 Addressing Modes: The 68000 has several addressing modes which are defined as follows.

MName

Assembler syntax

Addressing function

Immediate
Absolute Short
Absolute Long

Register

Register Indirect

Auteincrement
Autodecrement

Basic index
Full index
Basic relative

Full relative

#Value
Yalue
Value
Rn

(An)
(An)+

—(An)

WValue(An)
BValue(An, Rk)
WValue(PC)
BValue(PC, Rk)

Operand = Value
EA = Sign Extended WValue
EA = Value

EA=R;
that is, Operand = [R,]

EA =[A,]

EA =[Aql;
Increment A,

Decrement Ag:
EA = [Aq]
EA =WValue + [A,]
EA =BValue + [A,] +[R¢]
EA = WValue + [PC]
EA =BValue + [PC] + [Ri]

M.JOSHNA

1. Immediate mode: The operand is a constant value that is contained within the instruction. Four sizes of
immediate operands can be specified. Small 3-bit numbers can be included in the OP-code word of certain
instructions. Byte, word, and long word operands are found in one or two extension words that follow
the OP-code word.

Absolute mode: The memory address of an operand is given in the instruction immediately after the OP-
code word. There are two versions of this mode—long and short. In the long mode, a full 24-bit address
is specified in two extension words. In the short mode, a 16-bit value is given in one extension word.

3.Register mode: The operand is in a processor register, An or Dn, that is specified in the instruction.

Register indirect mode: The effective address of the operand is in an address register, An, that is specified
in the instruction.

Auto increment mode: The effective address of the operand is in an address register, An, that is specified
in the instruction. After the operand is accessed, the contents of An are incremented by 1, 2, or 4,
depending on whether the operand is a byte, a word, or a long word.

Auto decrement mode: The contents of an address register, An, that is specified in the instruction are first
decremented by 1, 2, or 4, depending on whether the operand is a byte, a word, or a long word. The
effective address of the operand is then given by the decremented contents of An.

Basic index mode: A 16-bit signed offset and an address register, An, are specified in the instruction. The
offset is sign-extended to 32 bits, and the sum of the sign-extended offset and the 32-bit contents of An
is the effective address of the operand.

Full index mode: An 8-bit signed offset, an address register An, and an index register Rk (either an address
or a data register) are given in the instruction. The effective address of the operand is the sum of the sign-
extended offset, the contents of register An, and the signed contents of register Rx.

Basic relative mode: This mode is the same as the Basic index mode, except that the program counter (PC)
is used instead of an address register, An.

Full relative mode: This mode is the same as the Full index mode, except that the program counter (PC) is
used instead of an address register, An.

T1A-32 Addressing Modes: The IA-32 architecture has a large and flexible set of addressing modes which are defined
as follows.

Name Assembler syntax Addressing function

Immediate Value Operand = Value

Direct Location EA = Location

Register Reg EA = Reg

that is, Operand = [Reg]

Register indirect [Reg] EA = [Reg]

Base with [Reg + Disp] EA = [Reg] + Disp
displacement

Index with [Reg & S + Disp] EA = [Reg] = 5 + Disp
displacement

Base with index [Regl + Reg? = 5] EA = [Regl] + [Reg?] = §

Base with index [Rezl + Reg2 = § 4+ Disp] EA = [Regl] + [Reg2] x § + Disp
and displacement

Walue = an 8- or 32-bit signed number
Location = a 32-bit address
Reg, Regl, Reg? = one of the general purpose registers EAX, EBX, ECX, EDX, ESP, EBP, ES1. EDI,
with the exceplion that ESP cannot be used as an index register.
Disp = an 8- or 32-bit signed number, except that in the Index with displacement mode it can only
be 32 bits.
S —ascale factorof 1. 2.4, or 8

M.JOSHNA

1.Immediate mode: The operand is contained in the instruction. It is a signed 8-bit or 32-bit number, with the length
being specified by a bit in the opcode of the instruction. This bit is 0 for the short version and 1 for the long
version.

2. Direct mode: The memory address of the operand is given by a 32-bit value in the instruction.

3.Register mode: The operand is contained in one of the eight general-purpose registers specified in the instruction.

4.Register indirect mode: The memory address of the operand is contained in one of the eight general- purpose
registers specified in the instruction.

5.Base with displacement mode: An 8-bit or 32-bit signed displacement and one of the eight general- purpose
registers to be used as a base register are specified in the instruction. The effective address of the operand is
the sum of the contents of the base register and the displacement.

6.Index with displacement mode: A 32-bit signed displacement, one of the eight general purpose registers to be used
as an index register, and a scale factor of 1, 2, 4, or 8, are specified in the instruction. To obtain the effective
address of the operand, the contents of the index register are multiplied by the scale factor and then added to
the displacement.

7.Base with index mode: Two of the eight general-purpose registers and a scale factor of 1, 2, 4, or 8, are specified
in the instruction. The registers are used as base and index registers. The effective address of the operand is
determined by first multiplying the contents of the index register by the scale factor and then adding the
result to the contents of the base register.

8.Base with index and displacement mode: An 8-bit or 32-bit signed displacement, two of the eight general-purpose
registers, and a scale factor of 1, 2, 4, or 8, are specified in the instruction. The registers are used as base and
index registers. The effective address of the operand is determined by first multiplying the contents of the
index register by the scale factor and then adding the result to the contents of the base register and the
displacement.

M.JOSHNA

. ()_l_/__:[T;éz
%Fi OJF %@OQCOTJ -AQdev&Jg
Db
Fuystamatic Lvenl?

. -2 n 85k Glcou(rﬁc Boeran q”'LTOA“CeCJ a f
C& 9‘8?6 and deve oFec] for +his Prrro,y af an delnqc &Zg‘em
Neow called Boolean —A—%Te[ﬁa,

> In 1938 C-€ Bhanen Qn-l'rorlucec[a %O'Vaﬁ“J Boclkan

—A—()ae kra. Called o _&o‘Hcha —A-anbm

_.F_m(lamez{gg) ’POA‘LKLDO.‘IZ(’C)&ACJ)-E 'BmOean A%ﬂ[@

| §~N0\l__ '1_7015-@0&%6& N -] Co:w:nenl—is

g | o bt o ted S
| Qy Cither o o7 4 ;I
|

|

s ’ a) o400 =0 5 o+l=130=]|
B) 10 =1 0.1= 1’0 =0

|
|

3 ey CA4B) = CBHAD f Comﬂwomh‘ve ,Oau)
| B CAB) T (BA)

4 | oy A (BYO = CA--BOA A-¢) | "D?A—Lw‘\\ou-“W 0011) !

b) A+ (B = & +B) -(A+C)

He 0:) -——A——\’.K =\ 5 o+0 =)) =) Com\)gemfn‘\:

L]

p) AR 0,44 T 0=01"0
[T & Ka=0 |

A

|

e e
E—— i

|

E——

. - =
Z=0] |

M.JOSHNA

r -——%ﬁs —'fp\eowemb _9{3}} -mﬁgldé
Dualtly e
. '\ 78] o
l > The PTqﬂtqpﬂe af Puadt +heoen)sa.ag ot -‘q
bodlean Velakien, W50 can destv |
4 C‘nnﬁlra_ Qac‘w ‘OT?" &ian 4o an ‘-AND JSFan
9 f."’a-a“na each “AND’ 4398
> —Ana o o 4 OFera-HnJ

——‘?Unc-hOﬂ-

n o an “oRr" Jlt‘ao
9n the &anonvdﬁl boolean

Ers Dud of alion AR =4 A'Aii%,w\ gop '™
N A= o\ ‘
AR =1 AA=D aid
A-A =0
. |

AN

Oean
Jaws of BTN,

g+

' : OuDVVCc;;)'Rqu
Balean ?1"»(&6\00 \l 'B A Ua .
A=\ | —A’nm& ment
=y pAri=\
A. O =0 i
=5 AV+OF A | | \jac\cn":e‘{’a
Atz A
> Aﬂc;ﬁ | ié \ :EACm[:o-kn{ﬂ
A-Kk =A el (82
> ’”A Double ch‘f«b‘on
NoE A=A ol ;\

M.JOSHNA

B .
(s Boolean Sx[)n&s\‘on a4 BA Daw cor) Ryl ¢
"7 bl = ComFOemcn{-
AN =0
= AR =BAA CO‘“”‘"J"&'VCOGUJ
VS 3 . ' , : |
= AtB=A-B 'Df'mc""a“”) o
B A8 = R+B ,
sefel 1
’5000,,0“ AQ ebyo -—?unc-homSL
i AN AN
:' —TFunehs on \ | Dek CYQPhOO ‘QP"‘M"OO'
As NOLL . i
i) :Ederrl“‘la !
ll 3 :EMPUL% A~ A
.1 s Trput B B
! O
| 5. NoT A T
6 VO B B
;/ = N ANDB C:AND) e E |
@, A -AND NOT B A-B
NOTA ANDB A B
| o NOT AND AB
(NAND) 'Y -
\ \ \
W | s A g B (OB “?"F?
| A OR NOTB | ' AHE,
i 12
1

M.JOSHNA

Enr@for\ 'Degcv‘t‘P{-lon /flP"M'On “
R A NOTA OR B A B
\3’" 'NC)T OorR (NOR) A+ B
\ \ : . A x) ——P
|5« Syusive OR (' x-0R) Al A AD
\6- & xcJusive NOR (X~NORD Ae AN B
L—
’—TE\Q—Q_ISTT)})," . _
o) A+A =A o) M-8 =i
MA T
d7 —}\4’\ = 4 @ &) AANDB= AtD
By <het =0 L) A (A +BD= NB
@ D K =+
02 Pl
?T;O—\-T AR «E5J A =07 0\D=D
Loy S A+RA = ¢ _ | =N Y TR
= s C-A—\A)(A—\-A) ‘ .
= AAEAT FAATMA !
S AA AR
ACAHAD
= AN J
M@ ?1(})4/-:/ v A,.{\‘: A
N Ak o= A A A0 A=0 =0'0=0
LM S e A-K A=l stz
] o ‘ . AR=01
= N C-A-}'J;) ‘ [

\
+

il

il

L

M.JOSHNA

r
OO A=

Preofs 1 Aai = oA

= (A+R) A+
\ = AA+AIR-ALA

= A4+A3FOHA

= A+ALA
- AR
- 1.
@ Ho=D
poofs A0 = A(AAD
| L2 A LoD
= O
® s
: . . o .-: "_--—‘:z> [6':—‘
Preofs p A=0y O g/
Aty T =0 =1
B Athp-a _
Pl A+AB = ALITB) - [1+e=1]
B = A0
= &

@ ACAHEY = A
Jsofs ACAHB) = AR CAVED

AR+ ABHABAVADB

\

A+ AB+ A-AB+AB
AL+ AB J«-AB-\—AE

i\

e T s SN BN iy £ -

if- A =0y 0h=)
A=1y 141=1

A-0=0
: A-—'_‘-Oj ,O'O';O
A~17 1°0°0

M.JOSHNA

~ ACUABIHAD
=) AAAD
AC1ABD
A)y

D A+he = Ate .

Woaf{_ A+AD

-—

-—

A+B
® ACR+R) = AR
W% ACRABR) = AA 'FF\Q.

—

frﬂ‘
D' \\'\Of O{ﬂlé ﬁmﬂ—:—)

M\.M

M AB =AY

CQIO\) AVB =7§'_B—'
@@=+
s ilg |E B |7
o (6 |V '] ‘
o I 0 |
\ 0 o |1 1 |
\ Y) Q }O
@ ‘m =RB 4
Alv |[B B | RO
o 16 | V|) \
) \ \ 0 0
' |0 o |1 D
\ -|| | O R o)

CA+ KD (A+B)

Ladh = 1]
[47

A vB |
BEIEEE]
Ly ‘

O.
' AB

— |

M.JOSHNA

r
* CM teomm-2

= I quFQLﬁ‘“"L‘O" of Beolean é!’)’r‘(’.&tdﬂ, an fo-msron ol “the ‘Q’Vn
Apy FetBe . “The dom B % vedered and Can be e..()mﬂ,,

abed o —form the €quslent éxrnaion ABLAC. |

> “The teovarn B Gsed for Hhis z?mfl) ﬁ:ccr@'on % l%nown as A
Condensus theoram. Qnd H 96 steded ad ‘ U A

|
AB+Ac+ Be = ABHAC |
Peob+ Lona ArAcep, - ARrRCHBCC)
) P E','A—“'K:H
= AB+A CHBCCAHA) |
= At ACH Be A+BCA
[‘.- \+c=)

8= | = ABCI+HC)+ Ac (1+B)

= ABAAC
;:r ¥ Xolve tHhe &?ven prvveal‘on (M?ﬁ& Condendui ~Hesveris

G)AB + Ac+ Be +EC‘ +AB

=7 5+Ac+5c‘—l—€c'€'3"’/\5 [A—Q\:ﬂ
=H K&+ ﬁi—l-l?;°(_.+ BcA+BCA +AR

_ LT - ‘:HC:|
= A8 1+ O+ hc C E.’)'Jch +AR A8 =]

=> AB A+ Acd BT 4AB

= AB 4+ Act BT + I\BCI‘)

=) A B+ ACHBT+AB (T)
=) JE+ ACHBTHABCHART

e
i > AB4 A1+ B Y4+RT(L+HA) A =17

h';: ‘

M.JOSHNA

p—
= ABF+ACABT |

COﬂ&eﬂ&wS _{‘Le ern -t
DAS:Q ;?54 ASALIIAIS '_AM'

‘a"ﬂ:}c 'DuaD —?ormcx-? Co'msen‘/su

EAB YA CBY O = (A LBCA+TO

& —meovcm Q4);erﬂ'lCC] aA

(AR+ ACHABABCO(BHO = QAK+A<+"KB+B<)

ABC+ AB B+BLBYACCHABCHBCC = ACHABYBC
e =9BC
BelA+2) 4 ABERLC L Bed J‘
ABC+ ABA B+ ACYABCYBC S ActRBABC
BB (1 £6) 4, BLAFAIFAET = AERRBTR
BB+ e +ACS AC+ABYBC
EOOQ‘CQ“ "?Llﬂ("m‘o{\ '(OT") 8w°r;tc\,‘qn _.&r\n(_{.;oﬂ -
WM M ‘ A,Ltp;u(\(jb gpzk-;:n’ecjc;n —\:916 loocn rarn
—7 Eﬂogaan Z—q.ucc\dof_\é oxe Conktruc d m{ a
Constonts and Variales worth the beolean, O ol \
-QOTMM&% w2 hLe

> —\'(A %w“(aﬂ g,x\yre&ljoﬂ& Loxe krown as booﬁoan
\
descd ke teclean —ch-'n‘onb-

beallean @1‘7:056300 ‘o .
or ‘c’x&m‘ﬂé.g— o) Bodean «?x[mé?on Q—A+E)C % ed
| E —%«:@m o -f —en Boolean \wnekion 1% OrHen ad ,—p(l\ /B,

o | cleza'\Le_
D) :C-A’rBl‘

Vorable bocleas Lnelion.
LI A

.= & coouct
| Produch- o yolid

l —QCA B 24D & M :
|)J—LNOD$

|
L 3
{|

_ -

M.JOSHNA
r Sum - Termg = J!{c"umﬁvms ™

NALAA AL, \ ' l |
A 10) = (B+B Y CAIB A ICAFCD

1t hedede L

I’—l(mlg,

'% Q?'RUQDS and teyms a'O'€ omng
‘- ')Sum 0{‘» P‘FOCL-.“"’ CAOP)
%5 P‘-O({“"! o) Aum Cposd

 Augum o} produches ~ B
| —?'Tfﬂ Aur oﬁ pod»c{ s oo atled 'nguntl«owQ nosnd) Porm cory
: W ¥ | | e ‘

D?&junc{iom@ sl -Qmmuga

el G Ahe foornate Totewp o

L > the w@rc\& sum G Product-ae. dueibed Arom ~the f&([m ¢

weprientation "OrR and "AND” -guﬂc-hof\ C +and %D \
" Aum Herms
- Exs\ B
Fad & ’QU\cb[c): AP + ABC
i l'v L \L ' Wo&ue—lb
g'I-:—$ P l l_&lm‘krmé '. :
- "pf (Q)RD = P& n G)LP\+ Yo)
Produdts

N
ryn(f

& PYO(L[CLO@ -3 3
R *ﬁ\e produH o] Aum % oho CalleA Conjmaﬂomo '\’706ma0

ol s ‘
5 Con anctionad noarmal few -
[form (o) ﬂmp Df Zum teyms -ANDeJ

o
aryl

5 product ol dee I 50 t;.
“+o artﬁer- s {PYOCLLL'&‘) s [0
g_};:L _e(—A By = C”A""%‘_O ' C ,A_’;E-}Z s "?"”',/é‘)r‘]'!4

I A,
S

N

M.JOSHNA
prsr AP T (P3D (rapys @
Sum L.s prodidied
%COQQM ﬁOYm-— Cé{onc\ora XO? omé FOA —%owr%)
Aovrs awe w0 48{9&

e " Canodicad Lor0
+exm (bn@rﬂmfl for

> Basicall d Canonical

I Standard Sop Cord it

9. standard Po& Cov) TMal

A b—LOnAmC\ Aop o Cm%h
NN AN

oo Canodical —’\ ovr0).

| o |) - oy 8
c¢d = (AL B giprie |
’%(Pﬂ‘%’\ \\ " Q‘ 05 an the (.‘o‘-npﬁle+(’d
1 o alt e

Qoven
;;melma bop () o \.}31.:0

£ predlond \ﬂ D

n Q‘JS g,g,wu‘ ‘ go _Eon :‘
%Co N r& ‘o 2>-lfm<~}arc] : F

u\.\/u'\/k

00‘/njr 0P & . .
duct Jtem i

(ilerads uohich team

.QHQYOD R0 @ac% Pm

9. .A—ND Eo.t\‘\ V@A“C‘L

FQWM:

oM '
ad% and rk ° OA zmouqea

Qm“{‘\ﬂ @T) ﬂmov

| A ?“\ucc the QF“&'OQ \
; Acrnt D ADU. becase C‘A+ A)= A) A

M.JOSHNA

r LY convert —the a;ve” é;([;a*%?oo 90 xandard . Sop for m

l LcaB, = AC+-AB+ BC
| Mepra pearBre-= ind The mm&n‘na fiteral 0 €ach. produect

Leam,cd = ACHAB - BC

\ l A Ditewald B mwys.irg
L_;\ c_Qi—lev(LO m:‘&&n:? s “
B QdezmQ mvé&ln\(] '

Fkep-2 AND product teyms with me&ma ,Ql%emﬁ . COWPQWW)

Ynmie) = Acom)+Aec'7+BCCA14‘) D;T.ﬁi.'
= ACCB+E)+ ABCCHTD+HBCCA+AR) ere=11]

BepdL pard the Lo and gecozdedithe devms
expand | |
LB = ACB +ACBY ABct ABZ-- BCA+BCA

’_Recorr:\cd —_

AN IAA- _
LA B,O= ABCEABCH ABCEABT +ABC 4 ABC

5J°_fE_4—+ Oﬂﬂ{’wﬂdl“rﬂe repeted product —term
P CAB,c)s ABCHABCHABLHABT + ABc + A Bc
-ngAaB,()- A'E>C HABCH ABT + AR, .
é__e_ Con\/‘er~‘ -tRe gawn St[ﬂrc&m 90 ,&{cmc]ard /SOF _[\Onﬂ

—eCA(BM‘): A+ABC e, i~]
é*SE__’L— —F‘n v , - “T il "\:
= A A ABC S ot 4. T
&CA(B/C) 1 &g—kemg AN L S &

j ¢ \&emQ WisbIN

%&e'() 9: 'AND Prochchc —texrn wﬁﬁ(mf&&lra S)Herq& & comﬂlemml—)

| PeABL) - ACDLDHABS
l B ACB+§)fC+E DEABC) -

|
|

M.JOSHNA

—Fanclion :
e \o{\ Description /gxr)'rel,&uon \
\3- !
AT A NOTA OR B A B
\3- NOT OR (N OR) A B
156 ey Dusive OR C x-0R) ABAAD
- |6~ € clusive I\)OR(XJNOR) AnAAD
’—\—E\C—Q_I_E/Iﬂbf' '
O ~a) p+A =A g e = B
) A A A By A CAAB) = A
o5 R+ = B) oy A+RB= At
iy =he-@ =0 LY A (A FBD = NB
@) O F =4
OO Pt P
L~\—\‘$ 'A"*‘A: C-/\-‘—/—\’)'Cl‘) . WA =05 01020
= - NIRRT
— o mAdCAR)
_ _ AR
— AALAR EARTAA L= A
2 AA AAR
ACAAD
= NN
g ?Ig_}——:’ v A..'[\‘:: A
Low O A-h= A O . d A=0 =000
e AR A A prsk §irlim)
= A (A'+ 4 \ L AA= o]

= A .//

M.JOSHNA

r('—cho__vc\ec|+ , | 1
’ Leawse) - [€ MBI CMB c");}- [("A;L@‘-_C_?. A+ Bt0] gﬁg

; E+0] B
bkepd ¢ owﬂi‘hna the epaled ?w{m erm IF

LA 0= (Baeic) (A BATICA ABAO (A B
€1+ (onvert the C’diwn g pression 90 slandard pos ”)LOf‘mdl \
LA,)= (B) (A+BHC) |

<§4_£; pa-+- find “the miwoa Osterall 90 &ach Pzro&u(*}

Peap)= A (ABHC)
| | B, JHexalls vissin

%’E‘E & OR P‘(CA.L\C'L devrn corth (m'&"a Q?Jcﬁaﬂ+compﬂerrﬂrl]_

beam,) = [MCBENTE)- CatBre)

Jegm and secorded the daoms -

 Shepat Expuod the
. Saponds [(Ax (BHO¥(BTM (B4 (40| (B e)

& @454,9. M 54_'(_); (‘-{\4*@4-(} ' (-/\-\E-\T).f (\l\“iﬂ)

Y |
&ICf 4+ om‘\{{ina the TePea*G-A. Pxoduc-l ern

LA)= CA'+B+C) . (A-\E%-'C—‘) o (AT (M BT)
(B 4= | By

G)

1)(}

M.JOSHNA

;\ngl;ﬁflb-,— Cm%[crfﬂ/& and M)atl_f’ﬂf%}'

— ”iﬁ‘-ﬁcrm O ED
o
| Bnary Numbers Mirkerm 6n)
'Duqrmo NO \ d(/}ﬂ\ e i
I, - AgC (mo) A+BHC (me)
V) 000 [B \
o | mEe | T
A] . e
010 ABL (mD) A+BHC (W)
9 ‘ | o
o1 ABc (md| MBS (H
3 —
& 100 ABC () ﬁ*Bﬂ‘i (M)
5 | 10 s ABCT (mg)| AF+BHC (Ms)
¢ ey rio RBT (m) | A+B +c (¥
| al 11 ABe ()] A+B4+7 (4

. —

= im(é,'|3;5)
et DeABC) = (ABIT) ¢ (AYBAT) R4B+C)
= M Mg M

' = T M(1136)
2370 fnd Bum of product —forr fo
I~ S

NB C 7 E_A,@Q % a
G 00 0 , AnPut Yaﬁablﬂ

0 < X [50}3, k137

-H} a\\/cq ‘1{\};0?

M.JOSHNA

g) 6

’
| to I L
B i BB

\

—

ma 4+ ™3 + %

= é mCQI%IC,) —‘ﬂu
| gl wen Hable
; .-—‘—0 ’_p‘na —+P\C ,FYOCLJQ'[' 0-? Jam _,P‘.om"\fxﬁ a,\l n

‘ Juct-of
EF;;M k¢ ‘C,e'nD'é:)

[.I'D I
oo
i A
Peass)z (ArBH) (A8 AL !
| “ sz M2 Ms .

s (55D

M.JOSHNA

| ,Aoa Lm‘ic '3m0 Y(’otldonéﬁ

4 A-AC =
5 _ABCD-%-'ABD—’-' ABD

3 A(AYD) =

4o ABAABCTABCDYE) = AB

g Y¥HIyT XyTa Xye
6. ABC +ABC +AK
1, ABCH ABCH ABC

-y &F
e
= N * T R
__-—'—-:‘*"_"
) @‘*A)Jrg
i————
5 | + B
=D i
=) .O
@ _A'AC =0
(A-R)C=0

(i- B |
| Ba00 - BAIEE)

L, =B (B1E)]

Fes+e=d]

M.JOSHNA

K -ABCD»I ABD - ABD

= ABD(1+CDe
=> ABD
=) ARCDIARD = ABD
| @ A(ABD = A
= A-A+AB
= A+ AB
= A(1+B)
=) A
@ABi-ABC'-LJ.\g(D.‘ = AR _—
" ABrAB-ABD +aBE) I W;l_
5 AB(IHO + ABDA-ABE mm*\“k)
: SR = \}\S
! > AB+ AB(DHE) i ak ﬁ)\/\\g
&‘L
> AR (1+D+E) o D @\4-“\ N
N\ Y T \\xk
= AE(C 1+D) EJ ‘,\\r \\\\\}ﬂ
S S T i
=3 g19+€ "
ABC J . AN) ﬁ\\’\l
= ABCJ) \ o .r&\\\

5 X_a—!' iaz+1d’z-. —];d'z_ :a(‘,x:\,c)

> uamf aidvr md? *»Yd'c

> 'xa(ui)+1a-c+ AT (o)
l —] ik ’Zkial ')La-\'al v A f
‘ > o -cnaz ~1d ’8

A . — N\ -1l ('I\.i)".i_;‘z i

M.JOSHNA

< (D+(XT)
=) ')’La“\‘}a'\'laz ‘ £ 'G*i)"-cmj'

y XY
5 ™ d Y= Y (- OFD
aaT2) D Yo/~ '
7 4t =5 a(.‘x{-'a//\
S wT 4+ RBC
R -
®as<-
5 REC+D BT +ABC
ABCH Re (T+e)
=) \
=T + AB .. .
- R® [(Tre
= 75(-@6)”53 5'@1«6)'&@
L A C@:m)'cwb))
' - _ ek
2 —A—CU) CcT®)) /@i\f‘% \“/%C
inww)\\“
2 A (_—L’-\’B) < Q:/ L& ok
& =2 4
~T+RB P T ppaRit s
) A ¢ + _ 9\(3 (((.\'()
g p T
e 7 b&uf\(.\/\xo’
4 ABC w B
@ ek BB TGl
By
B -FP(B? »e Q%’L
A?;c-\’AB \%“%\\
S ®(_ e
Ac(BY B el RS
; Q,' =
. @()
hctABC ale, T L)
— &)’
A cABT) o]
Ay CHT) o -\\CC’*@
AC (. ‘B) ' o QL\(QXB

| A"{(’ c—m}- S

i R | '—’(C"'AB//
|

M.JOSHNA
(B A+RBAHAB =P

=) A+—A_ B'Ff\ B =D

= A(l%?‘)ﬂ\‘e:@ ' | , Q\x%
_ ‘ >«96> ’
5 AWA+AB S8 A g
2 P \XQ
> A+AB W&*%‘
_ " RIS |
> (AR (A4 TIPS |
AR
S (D LMHB) "L
" W\ Q)‘% ‘ =
= A4B |
/) :
ez Bimpl: l i \ | |
o ngmC'I?JIS/:I-) !
= Mg rME T M3 R
| o) /%/%L 3(\\%(:
! - ABC+ Arc + ABC+ ABC >’ - \ e
, get
- = — — / 5 A & ((\}‘i
Ac(B+B) + AC CB+B) @U%‘Q’“‘\
- AcCOHAL) F Sgek 0
= ppARR el
: — ‘ Ve
ew B | o
= &‘”)JQV"& _ﬁl -&)IlOuDQna '1%7«1 VO“?OM(’_ gi}’“&bﬂ L& o
EOOQCGQ o _e_l) a y & [(, '8‘
- MC4y3,57) \ . W\a
Given o T
wen Ahad Y =TT (13,53 ‘) M\\’w@
; :CW*Q)*LD
- @4_ B) (A+B £T D (BT (Bt
P, [6,A)+(B-E>+(B-(’>+ (TAPCERW(T c3) -
i ~\.‘A}\‘AD'T\—‘J‘I§—K)+ g

M.JOSHNA

= p6L +A’€c4 ATHABC
BT+ ABTHABTHATHRB T+ RECH A B CH ABCIABC

C+BC+C

4 ABTHABTAATHABA-ABTHART - A BT R4

— e

'BL—(—AE(-.
4 B4 AC+K€F+K(4_AB+B.E+ Y

BT (AL BECHA D TCAHR D+ ABCHO rrcum)tABT

. gr+Bl+ T+AB+THABT

AB-I—ABC +T Y rr&m

chabl
g‘l"\m?ﬁr?d «gdlouﬂfa “I‘?wee Vax 1 c.
Qoto Aoler® mm\{) er(e cmd
Yy = TH Ct,5,5,+)
veblon 43 MT&!TM

&OQ— The a' ven @xr
16 ConVert a'\lm écquence& 1o 'mqnlu'm £ omro

n-[—(rm = Coﬂv#]cmnlmd of Max—lerm]
“The vofnleem 93 given ' 1B CQ‘Q‘L{\(O)
a l?) 574 N8C

~TRRlx Ay W A

p\E) NE (ByB)

@ifﬂ&io()' Convert +he €1

Y = T i 51%)

ernm-lara» —Fﬂrm

?/= Zm (013’)”16‘)
_ gt et Mutmg =k |

e o ABT =RC A pc
=K BC +ABC A ABC+ B
_ T (D)
- AC(BYBY AT (B+B) =
~ AT +AC
_ T (AR 2 C
i €xpresion Into
ﬂé&\) M @atL ol ~the -POllow‘x‘n Canorﬂmg F
q{-é O'MT Conon\(ao —pOrm er'g (“(CQMQQ Y\O‘lﬂ‘hbﬂ&-
@ f o d L3 - S (1:315)
8> (w24 72 = T (0,2:19,6)7)8,9,1 1R) 3% \\\fei\\
(T \
A SN
@ T SV 20 Sm(1r,52 \u«%\“
RO = T (0,8)1613) [
R S s T C-‘t_"i'@
- H HQ HL(H(, 3 (')(.\—J-\' "3

A S s, T B K olPB s U Y £ W By <

pe = { e

Y

M.JOSHNA

_(x+xd+1u’xdﬁduuuJzn)C.I md d'Hx"HZ(Ti‘(’) ﬁ
A \ \ : | | (i’%Jiz)

juz-l)L‘J'CP).‘H th-l 1(\12418'(1 1T+ Idz-{x(J'Z-? 16?¥1Jz+102*

1

' | 5“1{!“({“ 1(«,24 udu Bt ¥ 1le SCJH atgjuxau '
jﬂ Y2474+ UZ"' E e & ldud‘d Xt Zd*l 2)
= ldz“ 181'\' xz'{id?*’J'&'l)TEJ‘(U074 T2t
= iz(a*—'g)x— az(iﬂ)’r 3':(1+X) + z(x-liﬂ- 4
= AT YT T = + Tty)
= ")L"L-\—l‘j-\—'l /)

@ f ooy o= WTH(o.,a,s,s,f{!,s,q,n,lgzj }

(w1 = Tn(08,5,6%,2,9,1,R)

.__——_//
=S ()Y, 10, 14,15)

— m\+m3¥ mq+mmﬁ-m|3.‘rm)q +Mig-

'Jgia_zxa@i‘a +W X 5 thfz YAy

\!

oy T A4 WAy
- TGP WL (PP EE AT

w*

\ 1

T 1T YWY T+ WX T

M.JOSHNA

/’P‘ﬂg—-@—j————— Bloary num))er: | ,i'gp‘%n{’-frm | Maslerm.
BRI WP | (MReru
a8 1001 ABC DN AtBIcD
q . e &y o 1 .., §
A “—_ ¢t i -_'i‘-\ —
0\ 101 ABCD At BACTD
B R BN e
» ' — | A+BHCH+D
| " nhot | ABCD e
) ' | | 54 C
~ _ — s A4+B+C+D
])_\ i 1_”@ ABCD | -
| ae e iR e KD
D {
\ RRR A8 oo

M.JOSHNA

Gile— Levd el

R C*)‘N B D R ik v
._;‘% mr"PH &\ves w a &J&-ﬁmuﬁ OFFTO(}) for g'mfﬂan%
rothed it]Dmfoteig veitch

a. todlean Expresion: e - onap L "
own ak e \e

Oma modifed b Ka'rrnud“h, tlence 9%
| A\‘a ro oY-*H"aﬂ kamoua_h. mP Ck ma};)

One - Vodable ;oo Variable ,‘Ww«’ varible and V_%«:r varable
KA A AAAS AANA AAN AN \AANA WA AAAA -

g+

A \odoble =@ =2 cells

AN
g . (2 R
2 VQ’SCLL)]C, =& = L} (4 \(&(,‘:% - \x@%\!
i, €
5 \artable = &> =3 cells i
N
L \/aﬁqué . gt = 16 cells <
A\/m%l:le_ k—’MOlP - A
RIS AANN . \ \
: 0,
’ 1

Volet (;)3 >
slA | . \,\ Q
A~ Variable MP (acells) \ \
ot I \[&r\\";ble k’\jﬂap

B 0 |
A

0

M.JOSHNA

 porisBle omp

ABCoo oo (1 10 , v o
L

3-\budable K-mDP Coells)

L{f\forl‘ome H'm?—:——— y S ‘
AN AAANN CDA,LLLJ | [\[Oln(L O‘Q CD
60 D7 WP w6 o nastr00dC
wE Qn%wﬁé ¢
do _ PR
AR .
[

o] |

M.JOSHNA

4—~Va'ﬂablc
(0
we fo o ¢D
AB JABTD|Rprp [KBCD ¢

0 ! 3
ABCHXBip|A BCD
AB XBTO|A®CD [ABCD | ABCD]
R| 1| 5
A [ABCD| ABED ?@m[\)
) al n | n . ~ » .

WMW

Rt of Frish dotle 0 bovep

"le—Vawqaktc mf} !
“teth table” on k—maF

— " The H[Jmsmlaﬁam of -two VasSable
%W %Wen belowo :

A ® |Y

019 |p
o ! \
[o [
1 ']0

!

|

4

M.JOSHNA

- Lour —Alaxiable, K-rmapt

B~
= T ® o0 ol . \\. $D
] | |
'A B C L_ "\?) N 9000 000! ‘-90\\ 0090
o |0 Jololel---To0| % |0y | 4s] Bl
0 T of 10O [er00 | 010! :“‘ 0l
-0 -,flq---{ﬁ’ G 0%
0 e __l___g. 0 5 - - /;‘00 o\ “’,‘L(g0
ol o | 1] 1]|V]" i \,"4;,\1/0}'2>_ﬂ\sﬂ 1y
—1 bt | . 4 00 |\po\ | 1o |04
._O.-—~ 3| 0990w Lo
0 { T
0
0 | |
o 1 D
4]0 [
L .
4 | 4 |9
8 5 L
o P4 |4
£] Iy k)
0 \o 4
| d) | Q)

! v '

ABC4 A B c o0 the k-map

y

1 O

M.JOSHNA

. &t plet poflean Sapriony & Np Tl +AbieDrt A Be® + ABCDHABT
on the k- .
e Ik-map

V=BT 5+ ABCD+ ABcD+ABCD+ABID
P : 'y '

~

“ PR | N 1
o ! '

3 &

= 010D 1010+ 0110+& (01 +110]
b5 .)

i > x -
&k ,__.l. -~ -_-;{ Ts“

l": ™My + M+ M¢+ My + Mg

N ‘
A% 00 o) |
0000 | 0001 00! %
00 | 0| 14
. 000l [0101 [g1y L
&@\“/ 5 g
ABcD < T [ho0] ol i |
1000 {00! 0N
10 7 q ”@
ABCD lAE(D AD C
Repreenlakon of slanzerd pop o Fep
T~ | WA
" Thuee th?af:'lt mfb | TATEE £
¥ A NB l‘c Matteren (M) I B
O 0 , O A—(—B“\'C (Mo) 1
oo |4 T BT oY |
- 2o A B (M)
' | 24T b
o \ A+BAHC (M3)
at (78 Ateice (ML)
| ¥) A+ BRAC CMs) ' ;
| ,‘ c,) KiB 4 (Mg) ‘
| A 4T (N3 '
e | | W

M.JOSHNA

Matkerm (M)

el & ;

=

0
\
0

b 2
¢

‘1
(@)
) |
0 0
0 |

0

| 1 |

ArB+ D (Mo)
AYPA D (M)
AARAT D (He)
M i "C‘\',E (M3)
AEBY CHP (M)
PA;‘TJ*HB. (N5)

AvBTHD (M)
AAB+THD)

At B+c+6 (M"D

ArBAC 4D Gt
R 4G+ 4D (1)
A4 +ctD (Ne)
A+ B+THD (")
(Mis)

il

o i, T

A+B8+c+D

on —the K-nap

y: | [Ma ¢ M3.M6.

M

l

v & ABYC

M.JOSHNA

935‘@ \9&0% Rodlean s’_xrr&&m Y = @+5H+5)(AF"E-FF{D)CA—%B’F@%Q

Y= (MBtcaD). (A+BH+T+D) (A+BATHD)

(R +B e+ b CA+B4THPD)

—

= M Mg Ms e Hig - My

-—

L 4D
4B pete

i (piot
AB oo-on/‘,,ﬂ. |
- 0000 3,00‘ ool OO/D/ . g
; @ > 2 2 GHTHD
0100 olol ol -/Q)(-!'B i 3)
0 I
I ,;OO 1no!)
& _| 136 -
1000 [1001 (A+B+C+D)D
[O g q
i
R4B4c4D

Graugiy
G\mu ?n&

ANA

AN AN

@xr = FBCAHAPRC
_ K¢ (B¥B)

B

= X6

B

\gc BC
koo

o}

BC
0_~

0

g

=

~two o:_c/‘jfﬁ 8'8(\5 (PCﬂr)

__

0

jy —

I
A
0

7 |

@GR Y= ABCHABC= B

=B

cCA+E)

Cel@ -for &'m Q?Mchon%

P A
(B D) (At

'
3

N

I
. fprE=tl o
A B L
(o) g of 1.,
L | VA
”__#__—/)'
"I C

M.JOSHNA

gﬁ@ 4= ABC +ABT
| = AC (B+8®) |
| % SR
C

—
-_—

B Be. BC BT |
00 oL % -2

Zolo | oo o]
A

5 Tb (Db, ¢D|
o T) (D %O ol n 10 ;
o) o = A BE Do RETD I‘\Nw—/v, |
= _ : '
. BED(AtA) agoo | O |y O IO
= oNJ o
=%CD =a O 0 0
' o | 00 LT
3‘8, ld) O 0 0 18C
S . T & o
0B 10| 0 L%

ABRCAHABC
r@ Y=ABCH
ABC*’A RC+ A%C+H6C

_ FC(ByeWBC(AHR)

M.JOSHNA

Ext9 o> Kb TD ¢td b

—_—
-—

M.JOSHNA

‘.>
St
S
S
0
B
A)

5 ool 0| o

8 o | 0] o
T

nB ;DL) *_i_('\j;(

400?& 3 A0

T - a4 ADTRC

MG \/%}t w one& (‘odc{)

<o ¢D D
it 10

n2

M.JOSHNA

{_V.

EDEE o
| IS s\ o SP P & oo
SR . ‘QJ[\U“,% A
PR OO(_ o R),\‘L DEOO
B ol o [0 o| 5 Ty O\
s Ul 0o OO0 QBH
g e T oo
o Yl o bE)
~
6} ,
A ? C D L |
’——"—'——-—-P _—-___—___—_’__’_——.
o, 0 0O
o) 0 a |\
g 0
0 D
0 0
D J
| o |
5) 01D
5}

Sinplifictiont of sop g

%%om +He CL‘)OVC c‘ltSC,UX&on uwZ Can OLl'lTQlQG %-(’neml\zeo)

Pyoceo_ub'@ +0 &mflw Boogean girﬂ-&élonbax 1_0“000,&

\

 plor he Ko and phee 24 1B ol ryeforli

4o the 1% n the ‘bru*-") ‘toble. or Aum of Fmdl.l(‘[- @xfmzs:oo
f ff&lote ozs G other cells .

it 9. d\eck'H’\e l5= rnaF Por ac)Jaceﬁ d& and €oc?~rcbe those
J ‘4 which! are “nol ac{jboeﬂ 1o G“d ‘ol-her s - ﬂf&e aw ald

M.JOSHNA
%\ Leck Jor 'H»o& 1'% Cx)}ﬂch are Q{j’a@rr[- -l:oonﬂa one O‘W(’v _‘Land
:" Qnurcoe &UCF\ Pmra
A eck #or Quads and ocheJcé af aclj
domé 013 ﬁ\a{- have @o"re bee enmcDe
Awt ‘H\a'[’ 4'H1€Y'€ are " TiniM 00 0‘? 8“”{7%

X COM\aa\\"ﬁ an Famg necexsora o Gnclude a

\/d- been uped . .
6'-0 T LJ &umnﬂna . FYOJMCL 4:&#)5%

acent -’l& ewen A G+ condaing
d. while ’JJ?/{J W& rrigke

ﬂat 13 that }wave not

é‘w?rorﬂ’hbf Ssﬁmfm.ecl vavez_‘on .
a[t 31‘0(. A,

@xi idleice the g‘f‘“"’" | = ABc+ RBCHR et ABE 4 R

w}’— V0 } DD 40114100+ 000

5°Q*‘\4°"€ = Mg + M4y MUt
=Sm($3,4,0)

ékpi —‘f\e k- va -QOr *H)\rcc Varqa‘:b:g and M 98 Fho&d aCCOrJi'i‘[—'Uﬂ(

wen @Irreéélo.\ 5T BC ¢ po
8 . ﬂ}&?__ﬂo;‘ ol 1 0
0 % ol o Tow
é-l:(P 5 '_TF)eTe are MO ?AOQL‘-[&J 9 5 0 @ v (4 ﬁj
{00 Ol nl N W

‘ ,
Skep 5+ _L 3o the ll QA“W+ onad deh @;_‘li gl e

4 %o the eell 4 - - This, f‘ﬁf is Corﬂhameg Y\Z%>~

and releved o a3 afouf A 5 e N]
&L<£4- There 18 00 OC{—eJc but "I‘P\(rc qga g BE Rr Bakme
8\ 00 ol 1l p
Quad €ld 0,114 and 5 Proma Quard: \ -
1 1nl It
—this quad 18 cormbained and Tfered £0 - Ly Iy o
ﬂ, < \
ad o a'rw? «', :O,' 01D
al Y INA~—=
25__?5‘ fMl’@ havf Jd been K = oy
7o I | — \/{;

M.JOSHNA

BC B¢ BL BT

r |
w i é—_L(_?J,\ gath 5'rou‘> 8mm-l-€é 143 "[‘(rrf) ﬂ%c 00 Ol F '.d-.
% @rpresion %r y -Tn qroup 1B \Variable _ W r‘_/]
RS q&:ﬁm&d and 9 group 2 Varfables B0t | L L
A ad Care éQt‘m\‘na{'(’d and we 8’“‘* A"//ﬁ (~V,,‘ 0

Y=Rc+B b

g’l}% Miftmize the gxr'rc&\,n‘oq

y = ABTD +A BZ‘D+AB?5+ABED+A€C B WEBCD ,

\h

0100+ 0101 & 1100+ 1101+ 1001+ 00(D

t

= My + Mg+ Mg 1 M]B + Mg + Mg

= Zm(%,5,18,13,93)

M.JOSHNA

o Jdily th 9 ic -Pﬂﬂl:\(‘m A d-hc:l Ly ~the '-_hu{—% table by uking ~the
—*gmfwd e e Y 94 the]:trl-(:u{_ VA sable and A:,Bane] c qrg e !

kond“ah -maP
% \'u*_ \laY‘flb le3
- A B [¢ | Y
0 0 o | @D
0 0 1| 0
0 1 0 0 '
0 1 1 @
4 1o o | @
/R S
AREG
0] LS /
J
V= KGBC+ABCHABOLARC
st 6 1 G\Tou?-i
YoV L —
:ffm(oﬁil%‘;q') . ; e B
®C 0/0 O o7\ |
ﬂ\oo 01 n 10 /I/OO TR
ol] 2|2 Lot |
O :4'(((rj:" »BC ‘ BC
: Yy &l 3 6 '4
l '7-3:" 11 |
G\rmi CmquQ "
C BC
oy e BCOHEBC kovrap Rechigue: i i

M.JOSHNA

INLR e, o sty ,
) 00 S il G\ﬂl@i 6[19}&9— }
A c ol

0!
1] T LB €D =
oo/&- U 3| 2 e e Ao
/‘\ /Q”‘—l \O 0 o O OO
ay{q\ 5| +| ¢ 1 o/fo 0 Sy
1.“ ‘ . e 1t 000
G\“;‘?l/‘la‘ Bl 15 1Y pBD . 1 0.0
T =
gl-ajl .0 0 = . &C BC
10\\« ‘q@l“‘—JQ . NBDABC Y
Z,\ANF_B@ {ebBe (o3
e AR D
G\voupﬁ_ INC R ol 00
ABED

?&Cﬁgm{ UQ&\ é/&@ éifnfb‘:pt\CCCl'?or)T.'
'(‘onbf ce[lg CornbrOﬂJn‘ng 1o ‘tf,e

- \)Qo‘\: _ﬁ\(k—mQP onA fQ(lCe Os 9
ob 0 the -{mH) Yable or mattesms 9o “the Fxodu(.} o‘, um GXFT%'\OO
vl +hote 04 u?ln'cﬁ ove

' 2 (‘}\eck the k—maf .gor (,\Ajacen{ 0s and End
" a0k afliacenl- ‘o Oﬂa other 04 - These ave CalleJ Qaollcted 08 -

ther
3 C\ncck Jor Yhote 04 (AM\ axe odjoa'frt 1o Onﬂ% one O 0 and

! Ené\rcge Ruch v
0 C_\"\mk —-PO(q.\mAé and oclets o} acl wcenl 08 €Ven I ¢F conlaing
: f e 06 ~bat have gurea ken eoctreled - witle Ad?na i3 rake Auore
ot “Hee axe #fintmum - NO- ol a,rou']og ;
W & COrﬂ\adqne On‘a FJ(\‘QS 'ﬂecezﬂoaa —M‘qncﬂu& ana 0 thak have o

‘ae{r been %TOU-Fe 1. |
% :From the ,L?mFQ\lYu‘ec‘ FOS @I’M&&oﬂ _?07 [}U qrokqa PTOAuc{-
@«?— Sy ferms ol alt the zroula.% | |

- a£+ —padﬂlt‘or with
Er B mice Ahe Sy prcksion
. (i BAT) (FABHT 4B AI (Y

e @+’PJ+Z)

e&bWzMMHMW&mng$’

— M.JOSHNA e
Jepas (2 shows the k-map for three Varlable AT 00 ol 11 1D

T 1 3T

-—;n] 94 98 F(oHecl accoﬂh«a i a\‘ven mtlerms Q) 5] Q‘ 0
’ ol 5] +| 6
glepar three ove no Srolated 05 r] Of 0 | [

Skpd 0 o the cll 4 9 eodpen onﬁq ot NV 00 o 1 10
/% the cell oand 0 n cell + 33 acljaccn Onlj

to 090 the cell 3- Thede +u patrdare (o~

batned and 'mk"“l to a2 Brwf’i and 370(110
| a qech%Ve%' |
fets 1 BC
Lepd-s “Theve ave M0 dand O AN\ 00.0' 1 1D
st i ‘ N et T
Skpsy The o the all 4 @n b€ O \"07?] ‘E?j(@g'\

. b | N
Combetined fih ¥ e] .3+O<l e—kocl& youral» %\Q"\ r\\o
. ellevre {
erm Q Q)"-—‘%l& Pl‘?r 33 T—Pf 2] Ggrﬂ_ Cﬂiqgm

—

o (\ q rOUp 2, A P =
éJ(’efeg in a'TOUF 4 Oan n‘& F A R C ABC :A—B(

yaviabe B 0 00 01\l 00!

4% Q\fmfnq%ec] and W ZV{‘ ; e o8

BC o B

AC

J.y= BEHBCTAS [,Accmaato’Demraoné]
s (BC) . (AC D

= [E—\—C

t
3

y - (B 4T) CA+T)

=2,
‘!
C >

‘B\LOC?{E)CA“) .

M.JOSHNA

r

Ex
?

&-ﬁ-'mmﬁm:zc the -F?O‘!'Ioﬂzj Expreasion fo the pos form ; ‘«?

Y = @+§+c-¢ D) CH +8+54+0) (F+B+E4H)(7 +B+c+DI(A +§+Z+'Dj-

(A+B+T+0)(A+ BHC+D) C§+8-+C+3)

&0-« Ch FB4ctD) = Mg ,

=

(F45+T+D)= My, (A +B+CHD)aye
CR4+BCHD) = Mg |, (A+B+T+D)= Mé) (MBHTED) =My

(A+etc4p)= Mo and (A+B+c+D)=Mu

c¥D CAD THp

Shepts Shous the Koamp for foar WS I a7
\laviob le qu.‘]'k PQO'H—(A accg{(].‘na +o p+B OO O :
%Nen mart —texma ﬁ{gol b s

Q! e
' &(Pi;"ﬁ\e.re are Mo %&kc‘ 8 e 1 0 a
oy | ¥ % TL\«
Hep3s 010 the cell 015 adJacen{ =510 | 0

Oﬁhld 0 9n the ce I] —this \Dcﬁr 98 “Combained and reflerd toas a_mp) J

gjce?b\;'ﬂere are o qumlx@ug, 19,13, 14and 15 form a quad
| 4 and cells €,F 11415 Parmé a quad e “These w0 quads qx

'feﬂ,zrcé i ad fd"m{’& and Zwuf;g, ;¥R Fec-h‘ve o

o

+ elepst Allos have olready been 3aou{>e<§ AB N\ . 3n ;20
| A Voo
stepgr TIn qroup 1) Vm(Lb\c A it leinated) 10
Gngrosg? | Voomble 2 e el @il | © (% o
N ﬂvaﬁpa Variahle A and D ave Dminated - "g ‘OQS ‘_g ‘}:;;
< ¢ O
ool ; T 1 O
. o ek Stopbied pos BT GW%‘O/’ AREE
Grvoupl : b
&_,.LL A N
& g : 3
O 0 00 > (D Gy
I 0 00 T L g
s - \ 1 p
g CD o
‘ R

7 & BEE yHBYRE |
- 7 = BCD+ RBIBC
Yy = CB+Q+D) (A+B).(B+T)
%OTQQ& %NM Mﬂg C DOQ'-G Core—l;frm% (07'7.60{30\'4?0%

P
—
.3 .
.
—
«

P M.JOSHNA
o M”J Tacomplle Befton furco”
exPcaieied - S m(o,r,4)+ 4C115)
@FcaiBio = TIM (R 53+ (13D
@) penigred- S o (o, @4)+dC18) 4

— BL f
&5(c pC BC BC
A _00 Ol (1 12 5 BC oo 5. b
8 | 7y [27 —— = A

| @ ¥ 6 ; ‘ (2
I
> l V/ |‘/ —J
Gh Gix Group L
o 0 o) : _ -
L\ 00 o Crpl A s ¢ Y= Bl
B ¢ 7 @ °© o0 o |
e e o 0 | !
. l o o0 ‘
@Qcm&,n:mmls,m A - A -}:
B o0 ot o &
' 0 1 3
o) X X
ul s | F
b o| o
&, \

M.JOSHNA

p—
Dg?ﬁﬁf W&%?Cﬁ\n
W. A 57 C o P]
: o @ 0 0 0
1 C 0 5 7
" o g |4 o |1
il o |4 1 | o
y | O a " o @
cl o4 o |2 D
s\lo |a |2 o2
+ 0 1 1 fl @
\ B4 © 0 5
T lga)o |o |2 %@
10 410 4 0 £
t 110 |2 |% =
1”2 4|11) 0 s
3 |14 |0 1 =,
PP T I T S _
15 L{L 4 }i 1 ‘,—z |

C':%’,'H,jr;g)—’t—&()o,n,)a,B,)qlls)

p= @m "
; ed S0 3 +He followin nckton .
gr fiod e seduied S0p Foim f he oloy

B 4010 1 _fm('ﬂ»};n,;s){—ga60,3,4_) |

-e CH|B,C|D) = SYDC'/3
(.0 . 0 G\M
N\ oo o W 0 o o0 o U 4@

00| % all] | ool (2 1@\
o X 5‘(5 ol|{ 0 | 4

1

oxxp

{.-q'lnl]s‘) ’Lé_a (_olé)4') J

Ao
. N
0\
Nl
\ O

0 1R \3@51 “, i /6
o Fl Mg]" 10 J'/\ =

M JOSHNA

V. ELE Reducet

-

he. \‘ollowma Punction u«sm3 k-mnap “echnr e

LCn B, D)= Sm(5,6,312,18)+ S£d (4 9,146 D

a}‘ﬁ'

00

c¢D
oo DU {0 1)
-“%Fo\ TRERER
00 |
| &
i 2 -]
W | \ X X'
o * ;‘*‘N“ﬂi
& &,
P B cd p p ¢
O V02 o, 10D
O \ 0
0)
\ & 00 h 1D
v § o) b)
e
_,___E__C_— B C

.‘rl
[} - |

J - ABCD +BLHBC),

:f G Qeurce Hhe '('\Olb(oq“a
E’CI\/%/C D)= fﬁHCo,

Lp:}.gm

Q&D o\.. 10 1)
0 | C) Q
p0
Wl S | A1 ¢
o) | 7§ N7
/ \ % \ %) 13
y/ Ve
GM]D < @ n
| |
N Grap 3
A B CD
| O o)
_,—-—-—'—"-—"——'
ABCD

~Qm¢£«‘on- A C'&q”i] k-map ff(t\n‘)(}ﬂg
12, 14)'{'M CQ ré)

M.JOSHNA
r

_peh® b | AN - G, Wit
o b :Ccma)c)DJ,oquanL Qoa.c O30 1

b CAYe) (¢ m

: g

C | ‘ 3 1

D /
erﬂcﬂ&rLon

NANDJco IVAND my

Y= pBCH DE+F
(™ AND - OR

B
B

C/@—_—L y= PEc+ DE FF
PE
b
€ 7
|2
bl

ol §BC
g — :
C |

y -

O

a1 ht“—t

?I~ }/ Ac+ Aect ABc+ hp+D @mFQemeni 4%«

M.JOSHNA

y - (ABcO- (DED-F
= (e)HPE)+F et { A A

- pec +DEYF

o(fowq?7 6&90@0 &
\
Lyackion orth NANA O NAND ﬁoa.c
y - pethbe+ ABCHABHD
2 QC+ 8cc94n)+91’>+9

-—

i p(+5c+ ARID

(%) AND-OR

y £ Aot BCHIBYD

_ M.JOSHNA
fp wewp - e OF

f
C

T_ ‘ A& +ABED
olloot wsion with NAND-NAND
g}:.;_ gﬁ,fwd;oo +he -@olloco\na poolean §1f

o £ CABC) = Tm(0013:5)
% G
- 00 01/ \)/ 10

0 \)

M.JOSHNA
V NANB_“__NA ND

)
B

Qé%@{}mA the ceduted pos -fovm

:FCAl?J,tnD): SenC U Fm19) +d(0:/215)

NAND loca“t‘l
Gi &
et
HB(D o &H 10 é\BCD 60 ol N 1D a’é_TD pB €O
AEREREN | — o0 o000 1 'iH
i 00| o] 1] " 3]°2 OO”O; ‘0 o\00 | 000
X | i [100 | 10!
ol %] "5 gl ol [\ 0|* 0 Lo00 | po!
= = (,
”.Om % 415 O k2 0 0‘? :O ~Tal
v 1 +— 0110 RC
lo[O°li aﬁ O_mi 10 \,_,; _0: D _ aRE
3 : \Y, [OL D
Gyra[r?__ Gn'aq)'l)
J = D+ ne
\/, ? = (‘5‘)(0@)
o p- (p+0)
!\' . i i ' ! \ anA
5] i ne-the_ninad 3ep—Exprssion ¢
| q
g%@ 1[91%4@‘3—9\‘“““ NAND ﬂozrc .
" i e
|| T l012313-%5, 10
ik | ,,-1:;—:"‘] 1
"'x I!% ’QW ja 1 &)

1
{
{
|

of e ol Epudar

Tmroemen{: ar\Cq qu’(?

2

M.JOSHNA
s, ¥ D (AH0) v

V

= {g 1D

y =(A+)D)
?_;b‘:— Yo erﬁwmenl Y-0R ara{—c })a, u&‘nd ‘ MILH\}Df‘ Nli\t\-)D .Qﬂa‘?c ZQ{:C 1
Y= AB+A{ e oabput - The T[pvariobls areAap |

e 13 anl 4
"“'\e X-0R ao&t -Pun('(ﬂon \)_s')fwo Tnpu‘ _n‘c " o 1 s

_aB1 AP e
ot P = i
A B ”ﬂ"’g.ﬂ%

e T
gz =% + PP
- A% ﬁB//
(1) AWD-0R

M.JOSHNA

(T N/\ND - Pabled oR

¥ n L hpw

}ﬂ")
T — \
e o
*“"} nB] Y= DB 2 0B
)

Ve NB A NB

VACALALAL A INAAA_AA

Q'&; CAB A (PN |

¢ ABAC
D/ ’J'>\

r
25 Qunrgomml the {ollowtn

Pen B,) = Sml0 ' 3,5) s

DA

»-ru'f\t\ ton ! r) NAND o NAND goa\‘c

Y= ned Bcd pRAO

—

M JOSHNA

I\/OF NOR qmFQerﬂealaham~

NOR- eubbh d AND

f AB(C

(P +RiC) OF €)F

M.JOSHNA
8L glemen the 'Poﬂdiﬂnd{?)mﬁan Tomciion coith NoR-NOR ﬂofc

' Y's fi¢ +BcA ABMD
the d\‘wr\ &DQ(GQ lﬁuF'o‘t&n‘On
Y = AcBcABED

A B8umption ?a uzsv.-a Wa&"*(‘] +heorom

Y o= paB ABD
= (aa' (ﬁ)' (FBJ D
IV (R+T- (6%2)'(61&3)'5

® NOR - Bub&c\—AND

o] @ ©) 2l

|

©)
15 -

7100\ o D
|

&

o) T) Nl o) nlh D)

! ‘1
et
“
t
.

M.JOSHNA
o fare== ~ _ .

7 = (RO (B0 -(FAEID (o A 5 =A'B-= 95]

A

ﬁC+%C'\'H%+D b b A

| ¥ ¥ -C Lion woith NOR- NOR ﬁoaic
' H.(z lowin Boolean
; ; fXWéhﬂﬂﬂﬂi i a -

LA B, 0= T (o121 81€)

Troplomnonk “the X-NOR LX& ba U‘”“B O’Jj

i
;
i

R 393 (ﬂg&-a g)
er |

i 4 G (n3
'L‘@ '@CQIBIC) T (0,9, 4,6,6) G“ o 2;5 c n-® C
g B %e ‘4 © |+ O
®C 0
A 00 0l 1 |p : oOO_ \‘<O>" L1 0
0 yo'd i i
2 (\ /Sé e . Y BC
=22 8L ¢ BB
el Ko -
v IS N _)/’: BC +AB +BC
G'll 6"' b ——— e N L 3
A I B¢
_ (B4 B BT
~+_C)
(AND y =@ C”*B’ il
3) OR— AN .
&3
o 3: (Bred .
. y (Blrc) (19

(® Nor mmea AND
(BY BrO

(.E—Fb-) I [\ "‘\,

T\

(59

N ; A\
r

J = (BrC) - (a+ B (B0

M.JOSHNA
G NOR NOR -

H‘ Ve (B (N8 CBH)

Yy - @ - CRAR)- (&+C)

e ement ‘\‘P\c Y—HOR L uﬁ"‘a ono‘\'] \\) : n
@?ﬂ"‘ iQ'OR e—pmckona;; ":‘)éa q”r’k and one 0“_!'?“4' The Q’ul—

A cmc] B anc‘ —the OU'LFU‘[\Jarlable 13 /

\[0"“&145 ore

M.JOSHNA

—

Iy “bge]
?14’%%1%6% [FT T]

A cnA®

\ l"-

i Q '

| .\ \(\\- ' KR

! &\‘)b' | ;

O
4 Q ‘ \
b ;
\o (1 g

M.JOSHNA

M.JOSHNA

Combinational circuit is a circuit in which we combine the different gates in the circuit,
for example encoder, decoder, multiplexer and demultiplexer. Some of the
characteristics of combinational circuits are following -

1. The output of combinational circuit at any instant of time, depends only on the
levels present at input terminals.

2. The combinational circuit do not use any memory. The previous state of input
does not have any effect on the present state of the circuit.

3. A combinational circuit can have an n number of inputs and m number of

outputs.
Block diagram
Az o ‘ A
B — ¢ 5B
— » Combinational ——» C
circuit
n —— 5 —_—— m
Half Adder

Half adder is a combinational logic circuit with two inputs and two outputs. The half
adder circuit is designed to add two single bit binary number A and B. It is the basic
building block for addition of two single bit numbers. This circuit has two outputs

carry and sum. Block diagram Truth Table Circuit
Diagram
A—— —— Sm’s Inputs | Output -
s b | A— “SEm
alBlsc| |y)— S
Half Adder 0|0 (00 il
o110 _ -
B — s Camy ¢ 10|10 i | C
1)1 (01 "

M.JOSHNA

Half adder using NAND gates

AB’ = A+B
A A ——

B*—

—"]

I—D@) (A+B%) = (A’ +B) + (A+B’)

=AB'+A'B =S

>
e —1_ >

B—-

A’B = AtB°

) -

D
T

Sum = AQB

Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit. It can add
two one-bit numbers A and B, and carry c. The full adder is a three input and two
output combinational circuit.

Block diagram Truth Table Circuit Diagram

M.JOSHNA

Inputs Output
A sum's A B | Gin S Co
o o o o o
o o 1 1 o
Full Adder o | 2 o i 0
o 1 % o 1
B— L, Camy®’ 1| o o 1 0
1 o % o 1
1 1 o o 1
CIH
1 3 1 i 1
S
A ——— S0
B) r—5$
Cin y
¢ AB
——
—
ACe — Co =AB +ACin+BCin
—)
d =

Full Adder using NAND gate

A NAND gate is one kind of universal gate, used to execute any kind of
logic design. The FA circuit with the NAND gates diagram is shown below.

. @ [B,
o B ™ [9 e
c [a} T —_}

D}-@CARRY

Full Adder using NOR gate

M.JOSHNA

CARRY

A B
B @

OV e

C [@

N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit binary number along with a
carry input. But in practical we need to add binary numbers which are much longer
than just one bit. To add two n-bit binary numbers we need to use the n-bit parallel
adder. It uses a number of full adders in cascade. The carry output of the previous

full adder is connected to carry input of the next full adder. 4 Bit Parallel Adder

In the block diagram, A, and B, represent the LSB of the four bit words Aand B. Hence
Full Adder-0 is the lowest stage. Hence its Ci. has been permanently made 0. The
rest of the connections are exactly same as those of n-bit parallel adder is shown in
fig. The four bit parallel adder is a very common logic circuit.

Block diagram

Az Bs As Ao Bo
‘C'_C? Full Adder | Cr C°1 Full Adder | © Co Full Adder :C’ Full Adder Co
3 l 2 ' 1 '\ 0
S3 Sz St Se

Combinational circuits consist of Logic gates. These circuits operate with binary
values.

Binary Adder

The most basic arithmetic operation is addition. The circuit, which performs the
addition of two binary numbers is known as Binary adder. First, let us implement an
adder, which performs the addition of two bits.

M.JOSHNA

Half Adder

Half adder is a combinational circuit, which performs the addition of two binary
numbers A and B are of single bit. It produces two outputs sum, S & carry, C.

The Truth table of Half adder is shown below.

Inputs Outputs
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

When we do the addition of two bits, the resultant sum can have the values ranging
from 0 to 2 in decimal. We can represent the decimal digits 0 and 1 with single bit in
binary. But, we can’t represent decimal digit 2 with single bit in binary. So, we require
two bits for representing it in binary.

Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the
resultant sum. For first three combinations of inputs, carry, C is zero and the value of
S will be either zero or one based on the number of ones present at the inputs. But,
for last combination of inputs, carry, C is one and sum, S is zero, since the resultant
sum is two.

From Truth table, we can directly write the Boolean functions for each output as
S=ADBs=A®B
C=ABC=AB

We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate.
The circuit diagram of Half adder is shown in the following figure.

1) s

M.JOSHNA

In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S
& carry, C respectively. Therefore, Half-adder performs the addition of two bits. Full
Adder

Full adder is a combinational circuit, which performs the addition of three bits A, B
and Ci.. Where, A & B are the two parallel significant bits and Ci, is the carry bit, which
is generated from previous stage. This Full adder also produces two outputs sum, S
& carry, Cou, Which are similar to Half adder.

The Truth table of Full adder is shown below.

Inputs Outpus
A B Ci Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0

1 1 1 1 1

When we do the addition of three bits, the resultant sum can have the values ranging
from 0 to 3 in decimal. We can represent the decimal digits 0 and 1 with single bit in
binary. But, we can’t represent the decimal digits 2 and 3 with single bit in binary. So,
we require two bits for representing those two decimal digits in binary.

Let, sum, S is the Least significant bit and carry, C.. is the Most significant bit of
resultant sum. It is easy to fill the values of outputs for all combinations of inputs in
the truth table. Just count the number of ones present at the inputs and write the
equivalent binary number at outputs. If Ci, is equal to zero, then Full adder truth table
is same as that of Half adder truth table.

We will get the following Boolean functions for each output after simplification.
S=ADBD Cins=ABBDCin
Cou=AB+(ADB)cincout=AB+(A@B)cin

The sum, S is equal to one, when odd number of ones present at the inputs. We know
that Ex-OR gate produces an output, which is an odd function. So, we can use either

M.JOSHNA

two 2input Ex-OR gates or one 3-input Ex-OR gate in order to produce sum, S. We
can implement carry, Co using two 2-input AND gates & one OR gate. The circuit
diagram of Full adder is shown in the following figure.

Half Adder
Half Adder e e .
L i iy W ':Cmﬁl_ :
. \ | : 3
A \ St & .
: ok ' / :
P 7 ¢ :
: : : v C2
\ Cy ! '
'L ________________ -: e g it i . COth

This adder is called as Full adder because for implementing one Full adder, we
require two Half adders and one OR gate. If Ci, is zero, then Full adder becomes Half
adder. We can verify it easily from the above circuit diagram or from the Boolean
functions of outputs of Full adder.

4-bit Binary Adder
The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit
binary numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1BoB=B3B2B1B0. We
can implement 4-bit binary adder in one of the two following ways.
1. Use one Half adder for doing the addition of two Least significant bits and three
Full adders for doing the addition of three higher significant bits.
2. Use four Full adders for uniformity. Since, initial carry C. is zero, the Full adder
which is used for adding the least significant bits becomes Half adder.

For the time being, we considered second approach. The block diagram of 4-bit
binary adder is shown in the following figure.

As B3 Ay B Ar By Ap Bg

S I S B e

Full Adder j[¢—

A

| Full Adder Full Adder |« Full Adder

l l l l

M.JOSHNA

Here, the 4 Full adders are cascaded. Each Full adder is getting the respective bits
of two parallel inputs A & B. The carry output of one Full adder will be the carry input
of subsequent higher order Full adder. This 4-bit binary adder produces the resultant
sum having at most 5 bits. So, carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by cascading the
required number of Full adders. This binary adder is also called as ripple carry

binarybinary adder because the carry propagates ripplesripples from one stage to
the next stage.

Binary Subtractor

The circuit, which performs the subtraction of two binary numbers is known as Binary
subtractor. We can implement Binary subtractor in following two methods.

1. Cascade Full subtractors
2. 2’s complement method

In first method, we will get an n-bit binary subtractor by cascading ‘n’ Full subtractors.
So, first you can implement Half subtractor and Full subtractor, similar to Half adder
& Full adder. Then, you can implement an n-bit binary subtractor, by cascading ‘n’
Full subtractors. So, we will be having two separate circuits for binary addition and
subtraction of two binary numbers.

In second method, we can use same binary adder for subtracting two binary numbers
just by doing some modifications in the second input. So, internally binary addition
operation takes place but, the output is resultant subtraction.

We know that the subtraction of two binary numbers A & B can be written as,
A—B=A+(2:scomplimentofB)A-B=A+(2'scomplimentofB)

= A—B=A+(1'scomplimentofB)+1=A-B=A+(1'scomplimentofB)+1

4-bit Binary Subtractor

The 4-bit binary subtractor produces the subtraction of two 4-bit numbers. Let the
4bit binary numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1BoB=B3B2B1B0.
Internally, the operation of 4-bit Binary subtractor is similar to that of 4-bit Binary
adder. If the normal bits of binary number A, complemented bits of binary number B
and initial carry borrowborrow, Ci, as one are applied to 4-bit Binary adder, then it
becomes 4-bit Binary subtractor. The block diagram of 4-bit binary subtractor is
shown in the following figure.

M.JOSHNA

A; Bs Az B> Ay By Aoy Bp
Full Adder Full Adder |« Full Adder [€ Full Adder [¢—
Cs Cs Cq Co=1
Ca S3 S2 St So

This 4-bit binary subtractor produces an output, which is having at most 5 bits. If
Binary number A is greater than Binary number B, then MSB of the output is zero and
the remaining bits hold the magnitude of A-B. If Binary number A is less than Binary
number B, then MSB of the output is one. So, take the 2’s complement of output in
order to get the magnitude of A-B.

In this way, we can implement any higher order binary subtractor just by cascading
the required number of Full adders with necessary modifications.

Binary Adder / Subtractor

The circuit, which can be used to perform either addition or subtraction of two binary
numbers at any time is known as Binary Adder / subtractor. Both, Binary adder and
Binary subtractor contain a set of Full adders, which are cascaded. The input bits of
binary number A are directly applied in both Binary adder and Binary subtractor.

There are two differences in the inputs of Full adders that are present in Binary adder
and Binary subtractor.

1. The input bits of binary number B are directly applied to Full adders in Binary
adder, whereas the complemented bits of binary number B are applied to Full
adders in Binary subtractor.

2. The initial carry, Co = 0 is applied in 4-bit Binary adder, whereas the initial carry

borrowborrow, C, = 1 is applied in 4-bit Binary subtractor.
We know that a 2-input Ex-OR gate produces an output, which is same as that of

first input when other input is zero. Similarly, it produces an output, which is
complement of first input when other input is one.

Therefore, we can apply the input bits of binary number B, to 2-input Ex-OR gates.
The other input to all these Ex-OR gates is Co. So, based on the value of C,, the Ex-
OR gates produce either the normal or complemented bits of binary number B.

4-bit Binary Adder / Subtractor

The 4-bit binary adder / subtractor produces either the addition or the subtraction of
two 4-bit numbers based on the value of initial carry or borrow, C.. Let the 4-bit binary

M.JOSHNA

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1BoB=B3B2B1B0. The
operation of 4-bit Binary adder / subtractor is similar to that of 4-bit Binary adder and
4-bit Binary subtractor.

Apply the normal bits of binary numbers A and B & initial carry or borrow, C, from
externally to a 4-bit binary adder. The block diagram of 4-bit binary adder / subtractor
is shown in the following figure.

A3z B3 Az B A1 By Ao Bg £
4 y L 4
Full Adder Full Adder |« Full Adder[€ Full Adder <
C3 C2 Cl
C4 S3 Sz Sy So

If initial carry, Co is zero, then each full adder gets the normal bits of binary numbers
A & B. So, the 4-bit binary adder / subtractor produces an output, which is the
addition of two binary numbers A & B.

If initial borrow, Co is one, then each full adder gets the normal bits of binary number
A & complemented bits of binary number B. So, the 4-bit binary adder / subtractor
produces an output, which is the subtraction of two binary numbers A & B.

Therefore, with the help of additional Ex-OR gates, the same circuit can be used for
both addition and subtraction of two binary numbers.

N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1's or 2's complement of the number
to be subtracted. For example we can perform the subtraction (A-B) by adding either
1's or 2's complement of B to A. That means we can use a binary adder to perform
the binary subtraction.

4 Bit Parallel Subtractor

The number to be subtracted (B) is first passed through inverters to obtain its 1's
complement. The 4-bit adder then adds A and 2's complement of B to produce the
subtraction. S; S: Si So represents the result of binary subtraction (A-B) and carry
output Co. represents the polarity of the result. If A > B then Cout = 0 and the result
of binary form (A-B) then C.. = 1 and the result is in the 2's complement form.

M.JOSHNA

Block diagram

Number A

=~y

L L1

Number B
2.
'd ™

> b e - 1's complememt
of B
B- B B

As

P

S-

=V

4 bit parallel binary adder ,—I c.

Half Subtractors

|

T

T

T

Result of subtraction

Half subtractor is a combination circuit with two inputs and two outputs (difference
and borrow). It produces the difference between the two binary bits at the input and
also produces an output (Borrow) to indicate if a 1 has been borrowed. In the
subtraction (AB), Ais called as Minuend bit and B is called as Subtrahend bit.

Truth Table
Inputs Output
A | B |(A-B) Borrow
0| O 0 0
0|1 1 1
1,0 1 0
_1 1 0 0

Full Subtractors

Circuit Diagram

A_

The disadvantage of a half subtractor is overcome by full subtractor. The full
subtractor is a combinational circuit with three inputs A,B,C and two output D and C'.
Ais the 'minuend’, B is 'subtrahend', C is the 'borrow' produced by the previous stage,
D is the difference output and C' is the borrow output.

M.JOSHNA

Truth Table Circuit Diagram
Inpuisi Output i A B C
A B| cC (A-B-C) C
o| o | o o o —*If | ~= N
o|lo | 1 1 1 —F =
o | 1 o) 1 1 =
o| 1 1 o 1 i —
1|0 | o 1 o ‘ b N O C'=AC+AB+BC
1| o [2 o 0 — =
1 (a2 o 0 0 _‘ —,—
1 | a 1 1 1 .

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2~ output
lines. One of these outputs will be active High based on the combination of inputs
present, when the decoder is enabled. That means decoder detects a particular code.
The outputs of the decoder are nothing but the min terms of ‘n’ input variables

lineslines, when it is enabled.

Decoder

A decoder is a combinational circuit. It has n input and to a maximum m = 2n outputs.
Decoder is identical to a demultiplexer without any data input. It performs operations
which are exactly opposite to those of an encoder.

un" : | : umn

input Decoder output

lines lines
g | - 9

Examples of Decoders are following.

Block diagram

1. Code converters
2. BCD to seven segment decoders

M.JOSHNA

3. Nixie tube decoders
4. Relay actuator

2 to 4 Line Decode

r

The 2-to-4 line binary decoder consists of an array of four AND gates. The 2 binary inputs
labelled A and B are decoded into one of 4 outputs, hence the description of 2-to-4 binary
decoder. Each output represents one of the minterms of the 2 input variables,

The block diagram of 2 to 4 line decoder is shown in the fig. Aand B are the two inputs
where D through D are the four outputs. Truth table explains the operations of a
decoder. It shows that each output is 1 for only a specific combination of inputs.

Block diagram

Highest priority
input

A—

2to4line
decoder

Lowest priority
input

3to8 line Decoder

Outputs

Truth Table Logic Circuit

A B
Inputs Qutput 4
Al B |D. D D D — oAl]
0|0 |1 00 O B
ol1 /0 10 0 \ Outputs
ol1 /0 01 o0 %
1|1 |0 oo0 1 oy

Do

D+

Da4

Ds

A A
[>o—

B B
B

CI >CC
>Cc

De

PPy &

M.JOSHNA

How do you implement a half adder using a 2to4 line decoder?

By connecting an OR gate with output line 1 & 2 of 2X4 Decoder. Half Adder
can be implemented with 2X4 decoder. Similarly by connecting two Half Adders, we
can form a Full Adder by using 2, 2X4 Decoder

Full Adder implementation using 2to8 decoder

3-to-8 h

2 Sl o ine mD
m1
B D m2
E m3
Cin C ma
8 ms
E rrB
R m7

EN

S Cout

Figl: Full Adder Implementation using 3:8 decoder

Full adder using decoder and NAND gates

X0
i _

Y1
A Y2 S=Y¥Ym(1,247)
B 3:8 X3 p—
C, Y4 DECODER

+ P -

Y6 Co=Yn(3.5,6,7)

X7 .

M.JOSHNA

2 to 4 Decoder

Let 2 to 4 Decoder has two inputs A: & A, and four outputs Ys, Yz, Y1 & Yo. The block
diagram of 2 to 4 decoder is shown in the following figure.

——> VY3
A ——>
2to4 Y,
Ag > Decoder
—> Y4
E —> > Ap

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is
‘1’. The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs
E A, A, Ys Y Y. Yo
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as
Y3=E.A1.A0Y3=E.A1.A0
Y2=E.A1.A0Y2=E.A1.A0'
Y1=E.A1.AoY1=E.A1".A0

Yo=E.A1.A¢Y0=E.A1".A0'

Each output is having one product term. So, there are four product terms in total. We
can implement these four product terms by using four AND gates having three inputs

M.JOSHNA

each & two inverters. The circuit diagram of 2 to 4 decoder is shown in the following
figure.

Ay

VY

Yy

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input
variables A: & A;, when enable, E is equal to one. If enable, E is zero, then all the
outputs of decoder will be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables Az, A« & Ao
and 4 to 16 decoder produces sixteen min terms of four input variables As, Az, A1 & A..

Implementation of Higher-order Decoders

Now, let us implement the following two higher-order decoders using lower-order
decoders.

1. 3 to 8 decoder
2. 4 to 16 decoder

3 to 8 Decoder

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know
that 2 to 4 Decoder has two inputs, A1 & A. and four outputs, Ys to Y.. Whereas, 3 to
8 Decoder has three inputs A., A & A, and eight outputs, Y- to Y.

We can find the number of lower order decoders required for implementing higher
order decoder using the following formula.

M.JOSHNA

Requirednumberoflowerorderdecoders=m2miRequirednumberoflowerorderdecoder
S=m
2ml

Where,

mim1 is the number of outputs of lower order decoder. m2am2 is the number

of outputs of higher order decoder. Here, mim1 = 4 and ma2m2 = 8.
Substitute, these two values in the above formula.

Requirednumberof2to4decoders=84=2Requirednumberof2to4decoders=84=2
Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The

block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following
figure.

> Y
] 2 to 4 Yo
= Decoder
——>» Y5
———-+>» Y
A2 > E %
—————> Y3
A1 >
2 to 4 Yo
Ao 5 Decoder
——> Y1
> E —> Yo

The parallel inputs A: & A, are applied to each 2 to 4 decoder. The complement of
input A is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs,
Ys to Yo. These are the lower four min terms. The input, A: is directly connected to
Enable, E of upper 2 to 4 decoder in order to get the outputs, Y+ to Y. These are the
higher four min terms.

4 to 16 Decoder

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. \We know
that 3 to 8 Decoder has three inputs A., A1 & A, and eight outputs, Y7 to Y.. Whereas,
4 to 16 Decoder has four inputs As, Az, A: & Ac and sixteen outputs, Yis to Yo

We know the following formula for finding the number of lower order decoders
required.

Requirednumberoflowerorderdecoders=m2miRequirednumberoflowerorderdecoder
S=m
2ml

Substitute, mim1 = 8 and m2m2 = 16 in the above formula.
Requirednumberof3to8decoders=168=2Requirednumberof3to8decoders=168=2

M.JOSHNA

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The
block diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following
figure.

——————>» Y15
> Yiga
—>» Y13

3 to8

YVYY

—> Y1i>
Decoder | 5 Vs
——> Y10
Yo
— > Ys

>
W

A
m

L > Y
> Y¢

Az

> Ys

3 to 8 Ya

Decoder | 5 v,
————> Y2
Y1
——> Yo

>
(MY
Yvyy

Y
m

The parallel inputs Az, A1 & Ao are applied to each 3 to 8 decoder. The complement of
input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs,
Y- to Yo. These are the lower eight min terms. The input, As is directly connected to
Enable, E of upper 3 to 8 decoder in order to get the outputs, Y to Ye. These are the
higher eight min terms.

Encoder

Encoder is a combinational circuit which is designed to perform the inverse operation
of the decoder. An encoder has n number of input lines and m number of output lines.
An encoder produces an m bit binary code corresponding to the digital input number.
The encoder accepts an n input digital word and converts it into an m bit another
digital word.

Block diagram

“©_n " ”
n !

input Encoder output
lines lines

Examples of Encoders are following.

1. Priority encoders

M.JOSHNA
2. Decimal to BCD encoder

3. Octal to binary encoder
4. Hexadecimal to binary encoder

Dy

D
D; v

34
Dy X
1)+

8 to 3 Line Encoder Using OR Gate

Priority Encoder

This is a special type of encoder. Priority is given to the input lines. If two or more
input line are 1 at the same time, then the input line with highest priority will be
considered. There are four input Do, D+, D2, Ds and two output Yo, Yi. Out of the four
input Ds has the highest priority and D, has the lowest priority. That means if Ds = 1
then Y. Y: = 11 irrespective of the other inputs. Similarly if Ds = 0 and D. = 1 then Y,
Y, = 10 irrespective of the other inputs.

Block diagram Truth Table Logic Circuit

M.JOSHNA

Highest priority
input

'

D: — Y.
D: — Priority
D: —» Encoder

Ds ——f —a Yo

Lowest priority
input

D: D: D. D
iiHighesl Inputs LoweleOulputs —]
L D |0 D] 0 ¥ ¥
3 0 0 0 0 X x \ ¥,=D:+D
\'7 o |o o 1 (0 o ‘ _
o o 1] «x {o 1))— Y.=D.+DD.
0 |1 «x x \ 100 T = '
1 X X x ‘ 1 1

An Encoder is a combinational circuit that performs the reverse operation of Decoder.
It has maximum of 2 input lines and ‘n’ output lines. It will produce a binary code
equivalent to the input, which is active High. Therefore, the encoder encodes 2" input
lines with ‘n’ bits. It is optional to represent the enable signal in encoders.

4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Yz, Y1 & Yo and two outputs A: & Ae. The block
diagram of 4 to 2 Encoder is shown in the following figure.

Y3 —>»
Y J| 4to2 > At
vs Encoder L——5 A,
Yo —>

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary
code at the output. The Truth table of 4 to 2 encoder is shown below.

Inputs Outputs

Ys Y \ £ Yo A A,

M.JOSHNA

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as
A1=Y3+Y2A1=Y3+Y2

Ao=Y3+Y1A0=Y3+Y1

We can implement the above two Boolean functions by using two input OR gates.
The circuit diagram of 4 to 2 encoder is shown in the following figure.

Y3

2

Ag
Y1

The above circuit diagram contains two OR gates. These OR gates encode the four
inputs with two bits

Octal to Binary Encoder

Octal to binary Encoder has eight inputs, Y- to Y, and three outputs Az, A: & A.. Octal
to binary encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary
Encoder is shown in the following figure.

& S—
Yo =P
. Octal —> A5
Ys to
Yo —> 2!
Binary
b R —>» Ap

Y, —>{ Encoder

M.JOSHNA

At any time, only one of these eight inputs can be ‘1’ in order to get the respective
binary code. The Truth table of octal to binary encoder is shown below.

\C

0

0

1

\C

0

1

0

Ys

0

0

0

Inputs

Y, Ys
0 0
0 0
0 0
0 1

1 0
0 0
0 0
0 0

Y.

0

0

0

Y

0

0

0

Yo

1

0

0

A;

0

1

1

Outputs

A

0

1

1

From Truth table, we can write the Boolean functions for each output as

A2=Y7+Ye6+Y5+Y4A2=Y7+Y6+Y5+Y4
A1=Y7+Ye6+Y3+Y2A1=Y7+Y6+Y3+Y2

Ao=Y7+Y5+Y3+Y1A0=Y7+Y5+Y3+Y1

A

0

We can implement the above Boolean functions by using four input OR gates. The

circuit diagram of octal to binary encoder is shown in the following figure.

M.JOSHNA

The above circuit diagram contains three 4-input OR gates. These OR gates encode
the eight inputs with three bits.

Drawbacks of Encoder
Following are the drawbacks of normal encoder.

1. There is an ambiguity, when all outputs of encoder are equal to zero. Because,
it could be the code corresponding to the inputs, when only least significant
input is one or when all inputs are zero.

2. If more than one input is active High, then the encoder produces an output,
which may not be the correct code. For example, if both Y; and Ys are ‘1’, then
the encoder produces 111 at the output. This is neither equivalent code
corresponding to Ys, when it is ‘1’ nor the equivalent code corresponding to Yo,
when it is ‘1’

So, to overcome these difficulties, we should assign priorities to each input of
encoder. Then, the output of encoder will be the binarybinary code corresponding to
the active High inputss, which has higher priority. This encoder is called as priority
encoder.

Priority Encoder

A 4 to 2 priority encoder has four inputs Ys, Y2, Y1 & Yo and two outputs A+ & A.. Here,
the input, Ys has the highest priority, whereas the input, Y, has the lowest priority. In
this case, even if more than one input is ‘1’ at the same time, the output will be the
binarybinary code corresponding to the input, which is having higher priority.

We considered one more output, V in order to know, whether the code available at
outputs is valid or not.

1. If at least one input of the encoder is ‘1°, then the code available at outputs is
a valid one. In this case, the output, V will be equal to 1.

2. If all the inputs of encoder are ‘0’, then the code available at outputs is not a
valid one. In this case, the output, V will be equal to 0.

The Truth table of 4 to 2 priority encoder is shown below.

Inputs Outputs
Y Y \ £ Yo A, A, \"
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1

M.JOSHNA

1 X X X 1 1 1

Use 4 variable K-maps for getting simplified expressions for each output.

K-Map for Ay K-Map for Ag
YlYO Y1Yo
Y3Y> 00 01 11 10 Y3Y> 00 01 |11 10 |
00 00 1|1 f-Y2 Y1
oiff1 |1 |2 |L -+ 01
1ifllr |1 1)1 11]1 |1 |1 | 1b}-- Y3
10f2 |1 |11l Y3 10ff1 |1 JI1]1

The simplified Boolean functions are
A1=Y3+Y2A1=Y3+Y2

Ao=Y3+Y2Y1A0=Y3+Y2'Y1

Similarly, we will get the Boolean function of output, V as

V=Y3+Y2+Y1+YoV=Y3+Y2+Y1+Y0

We can implement the above Boolean functions using logic gates. The circuit
diagram of 4 to 2 priority encoder is shown in the following figure.

Y3 T\ N
Y2 L
Bl S D e

The above circuit diagram contains two 2-input OR gates, one 4-input OR gate, one
2input AND gate & an inverter. Here AND gate & inverter combination are used for

M.JOSHNA

producing a valid code at the outputs, even when multiple inputs are equal to ‘1’ at
the same time. Hence, this circuit encodes the four inputs with two bits based on the

priority assigned to each input.

Multiplexers

Multiplexer is a special type of combinational circuit. There are n-data inputs, one
output and m select inputs with 2m = n. It is a digital circuit which selects one of the
n data inputs and routes it to the output. The selection of one of the n inputs is done
by the selected inputs. Depending on the digital code applied at the selected inputs,
one out of n data sources is selected and transmitted to the single output Y. E is called
the strobe or enable input which is useful for the cascading. It is generally an active
low terminal that means it will perform the required operation when it is low.

Block diagram

— D —

9o0p

!

Data N1
Input Multiplexer

Enable

- Ll

S—=

~ — A
———

Select Input

Multiplexers come in multiple variations

1. 2:1 multiplexer
2. 4 :1 multiplexer
3. 16 : 1 multiplexer
4. 32 :1 multiplexer

L = Y (output)

Block Diagram Truth Table
3 Enable Select Qutput
D:. — E S
2ind:
Mux : f
1 0 Do
E —
1 1 D:

x = Don't care

M.JOSHNA

Demultiplexers

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one
input and distributes it over several outputs. It has only one input, n outputs, m select
input. At a time only one output line is selected by the select lines and the input is
transmitted to the selected output line. A de-multiplexer is equivalent to a single pole
multiple way switch as shown in fig.

Demultiplexers comes in multiple variations.

1. 1:2 demultiplexer
2. 1:4 demultiplexer
3. 1:16 demultiplexer
4. 1:32 demultiplexer

Block diagram Truth Table
Do —
‘ Y Enable Select Qutput
Yos2 E S YO Y1
DEMUX v 0 x 0 0
E =3 . 1 0 0O D
1 1 Da O

x = Don't care

Multiplexer is a combinational circuit that has maximum of 2~ data inputs, ‘n’ selection
lines and single output line. One of these data inputs will be connected to the output
based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2" possible combinations of zeros and
ones. So, each combination will select only one data input. Multiplexer is also called
as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs Is, Iz, |1 & lo, two selection lines s & so and one
output Y. The block diagram of 4x1 Multiplexer is shown in the following figure.

M.JOSHNA

I —> 4x1

I; ——»| Multiplexer

I

51 SO

One of these 4 inputs will be connected to the output based on the combination of
inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown
below.

Selecti n Lines Output
S S, Y
0 0 lo
0 1 I
1 0 I,

1 1 l5

From Truth table, we can directly write the Boolean function for output, Y as

Y=S1'SoTo+S1'Sol1+S1S012+S1S0l3Y=S1'S0'T0+S1'S0I1+S1S0'12+S1S0I3

We can implement this Boolean function using Inverters, AND gates & OR gate. The
circuit diagram of 4x1 multiplexer is shown in the following figure.

Si1

=TIV

O
—

M.JOSHNA

We can easily understand the operation of the above circuit. Similarly, you can
implement 8x1 Multiplexer and 16x1 multiplexer by following the same procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using lower-order
Multiplexers.

8x1
Multiplexer .

16x1
Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1
Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one
output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs.
Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output.

Let the 8x1 Multiplexer has eight data inputs |- to |, three selection lines s, s+ & sO
and one output Y. The Truth table of 8x1 Multiplexer is shown below.

Selection Inputs Output
S; S S, Y
0 0 0 lo
0 0 1 I
0 1 0 I
0 1 1 l5
1 0 0 L
1 0 1 Is
1 1 0 ls

1 1 1 7

We can implement 8x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 8x1 Multiplexer is shown in
the following figure.

M.JOSHNA

Ie ——> 4x1
Is —> Multiplexer
I, —>»
Y S > 2x1
s1 Multiplexer | P
e
So
' |
I3 —_—> So>
I > 4x1

I; ——>»| Multiplexer

Ip —>

The same selection lines, s: & s, are applied to both 4x1 Multiplexers. The data
inputs of upper 4x1 Multiplexer are |, to l. and the data inputs of lower 4x1 Multiplexer
are Is to lo. Therefore, each 4x1 Multiplexer produces an output based on the values
of selection lines, s1 & so.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer
that is present in second stage. The other selection line, s. is applied to 2x1
Multiplexer.

1. If sz is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs |5 to
lo based on the values of selection lines s1 & so.

2. If s;is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I- to .
based on the values of selection lines s+ & so.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer
performs as one 8x1 Multiplexer. 16x1 Multiplexer

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1
Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one
output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one
output.

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs.
Since, each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output.

Let the 16x1 Multiplexer has sixteen data inputs |:s to lo, four selection lines ss to so
and one output Y. The Truth table of 16x1 Multiplexer is shown below.

Selection Inputs Output

M.JOSHNA

S, S S, S Y
0 0 0 0 I
0 0 0 1 l
0 0 1 0 ,
0 0 1 1 I,
0 1 0 0 l,
0 1 0 1 I
0 1 1 0 I
0 1 1 1 I,
1 0 0 0 I
1 0 0 1 I
1 0 1 0 Lo
1 0 1 1 Ly
1 1 0 0 ls
1 1 0 1 lia
1 1 1 0 lia
1 1 1 1 lis

We can implement 16x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 16x1 Multiplexer is shown
in the following figure.

M.JOSHNA

I13 —>]
11> > 8x1
1,; —>»| Multiplexer

A A A
So> —4 > 2x1
i —
s1 .| Multiplexer Y
So
v A4 A4 T
I7 ——> 2

-

I4 > 8x1
I3 ——3 Multiplexer

The same selection lines, s, s1 & s, are applied to both 8x1 Multiplexers. The data
inputs of upper 8x1 Multiplexer are |15 to ls and the data inputs of lower 8x1 Multiplexer
are | to l.. Therefore, each 8x1 Multiplexer produces an output based on the values
of selection lines, s, s1 & So.

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer
that is present in second stage. The other selection line, s: is applied to 2x1
Multiplexer.

1. If ssis zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is; to
lo based on the values of selection lines s, s1 & so.

2. If ss is one, then the output of 2x1 Multiplexer will be one of the 8 inputs |5 to
ls based on the values of selection lines s, s1 & so.

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer
performs as one 16x1 Multiplexer.

De-Multiplexer is a combinational circuit that performs the reverse operation of

M.JOSHNA

Multiplexer. It has single input, ‘n’ selection lines and maximum of 2~ outputs. The
input will be connected to one of these outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2~ possible combinations of zeros and
ones. So, each combination can select only one output. De-Multiplexer is also called
as De-Mux.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, s: & so and four outputs Ys, Y-,
Y: &Yo. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

—> Y3
1x4
- » De-Multiplexer

(I

S1 SO

E— ()
—> Y4

—> Yq

The single input ‘I’ will be connected to one of the four outputs, Ys to Yo based on the
values of selection lines s: & s0. The Truth table of 1x4 De-Multiplexer is shown
below.

Selection Inputs O itputs
S, So Y Y Y Yo
0 0 0 0 0 I
0 1 0 0 I 0
1 0 0 I 0 0
1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each
output as

Y3=s150l'Y3=s1s0I

Y2=s1501Y2=s1s0'1

M.JOSHNA

Y 1=s1s0lY1=s1's01

Yo=s1's0'IY0=s1's0']

We can implement these Boolean functions using Inverters & 3-input AND gates. The
circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

I

S1

I

Yo

YT

We can easily understand the operation of the above circuit. Similarly, you can
implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same
procedure.

Implementation of Higher-order De-Multiplexers

Now, let us implement the following two higher-order De-Multiplexers using lower-
order De-Multiplexers.

1. 1x8 De-Multiplexer
2. 1x16 De-Multiplexer
1x8 De-Multiplexer

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and
1x2 De-Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection
lines and four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection
lines and eight outputs.

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight
outputs. Since, the number of inputs in second stage is two, we require 1x2
DeMultiplexer in first stage so that the outputs of first stage will be the inputs of
second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x8 De-
Multiplexer.

M.JOSHNA

Let the 1x8 De-Multiplexer has one input |, three selection lines s., s1 & so and outputs
Y7 to Yo. The Truth table of 1x8 De-Multiplexer is shown below.
Selection Inputs

S2 S
0 0
0 0
0 1
0 1
1 0
1 0

1 1

1 1

So

0

0

1

Y-

0

0

\C

0

0

Ys

0

0

0

Outputs
Y, Ys
0 0
0 0
0 0
0 I
I 0
0 0
0 0
0 0

Y.

0

0

0

Y

0

0

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 1x8 De-Multiplexer is shown
in the following figure.

L2
De-Multiplexer

I

S2

>
J 1 x4
~| De-Multiplexer
>
e
y A
S1 —T
So
v _ v
—>
1 x4
———— i
De-Multiplexer
—>
—>

The common selection lines, s: & s, are applied to both 1x4 De-Multiplexers.
outputs of upper 1x4 De-Multiplexer are Y; to Y. and the outputs of lower 1x4

DeMultiplexer are Y to Yo.

The

Yo

M.JOSHNA

The other selection line, s: is applied to 1x2 De-Multiplexer. If s. is zero, then one of
the four outputs of lower 1x4 De-Multiplexer will be equal to input, | based on the
values of selection lines s & so. Similarly, if sz is one, then one of the four outputs of
upper 1x4 DeMultiplexer will be equal to input, | based on the values of selection lines
s1 & So.

1x16 De-Multiplexer

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and
1x2 De-Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection
lines and eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection
lines and sixteen outputs.

So, we require two 1x8 De-Multiplexers in second stage in order to get the final
sixteen outputs. Since, the number of inputs in second stage is two, we require 1x2
DeMultiplexer in first stage so that the outputs of first stage will be the inputs of
second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x16 De-
Multiplexer.

Let the 1x16 De-Multiplexer has one input I, four selection lines s, sz, s1 & so and
outputs Y to Yo. The block diagram of 1x16 De-Multiplexer using lower order
Multiplexers is shown in the following figure.

M.JOSHNA

T

1-5G8

Y
<
[
N

De-Multiplexer

A A A
Sy —e
12
I —> S1
De-Multiplexer So
v VvV ¥
T ———> Y-
— > Ye
S3

i1 x8 > Y,
De-Multiplexer —m > Y3

Y

The common selection lines s, s: & s, are applied to both 1x8 De-Multiplexers. The
outputs of upper 1x8 De-Multiplexer are Y to Ys and the outputs of lower 1x8
DeMultiplexer are Y7 to Yo.

The other selection line, s; is applied to 1x2 De-Multiplexer. If s; is zero, then one of
the eight outputs of lower 1x8 De-Multiplexer will be equal to input, | based on the
values of selection lines s:, s+ & so. Similarly, if s3 is one, then one of the 8 outputs of

upper 1x8 De-Multiplexer will be equal to input, | based on the values of selection
lines sz, s1 & So.

M.JOSHNA

M.JOSHNA

UNIT-3: Computer Arithmetic and Process Organization

Computer Arithmetic: Algorithms for fixed point and floating point addition, subtraction,
multiplication and division operations.

Processor Organization: Introduction to CPU, Execution of a Complete Instruction, Multiple-
Bus Organization, Hardwired Control and Multi programmed Control.

Computer Arithmetic:

Data is manipulated by using the arithmetic instructions in digital computers. Data is
manipulated to produce results necessary to give solution for the computation problems. The
Addition, subtraction, multiplication and division are the four basic arithmetic operations. If
we want then we can derive other operations by using these four operations. To execute
arithmetic operations there is a separate section called arithmetic processing unit in central
processing unit. The arithmetic instructions are performed generally on binary or decimal data.
Fixed-point numbers are used to represent integers or fractions. We can have signed or
unsigned negative numbers. Fixed-point addition is the simplest arithmetic operation. If we
want to solve a problem then we use a sequence of well-defined steps. These steps are
collectively called algorithm. To solve various problems we give algorithms. In order to solve
the computational problems, arithmetic instructions are used in digital computers that
manipulate data. These instructions perform arithmetic calculations. And these instructions
perform a great activity in processing data in a digital computer. As we already stated that with
the four basic arithmetic operations addition, subtraction, multiplication and division, it is
possible to derive other arithmetic operations and solve scientific problems by means of
numerical analysis methods. A processor has an arithmetic processor(as a sub part of it) that
executes arithmetic operations. The data type, assumed to reside in processor, registers during
the execution of an arithmetic instruction. Negative numbers may be in a signed magnitude or
signed complement representation. There are three ways of representing negative fixed point -
binary numbers signed magnitude, signed 1’s complement or signed 2’s complement. Most
computers use the signed magnitude representation for the mantissa.

M.JOSHNA

Algorithms for fixed point and floating point addition,
subtraction, multiplication and division operations:

In a_computer, the basic arithmetic operations are Addition and Subtraction. Multiplication
and Division can always be managed with successive addition or subtraction respectively.
However, hardware algorithms are implemented for Multiplication and Division.

It is to be recollected that computers deal with binary numbers unless special hardware is
implemented for dealing with other number systems. Although instructions may be available
for treating signed and unsigned operations, the programmer must deal with the numbers and
handling of the result. The hardware assists the programmer by way of appropriate instructions
and flags.

Addition

Adding two numbers is an addition. We may add signed or unsigned numbers. When we add
two numbers, say 8 and 5, the result is 13 i.e. while adding two single-digit numbers, we may
get a two-digit number in the result. A similar possibility exists in the binary system too. Thumb
rule of binary addition is:

0+0=0
0+1=1
1+0=1
1+1=10

Examples (a —e) of unsigned binary addition are given in figure 8.1.

(a) (b) (c) (d) (e)
Figure 8.1 Examples of binary Addition

Adder

The hardware circuit which executes this addition is called Adder. There are two types of
adders namely Half adder and Full adder. Basic adder circuit does 1-bit addition and is
extended for n-bit addition. The adder circuit characteristics are detailed by a circuit, a truth

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction
https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction

M.JOSHNA

table, Formula and a block symbol. The adder circuits are constructed from logic gates which
satisfy the formula as per truth table. These are also called combinational logic. A
Combinational logic output reflects the input without clocking.

A um Outpens A \
= B ol SumS=Ac B
. — 1 [o Carry C= AB
1 0 c
HA block symbol R o [1
HA Truth Tabl HA F |
ruth fable HA Logic Circuit ormuia
Figure 8.2 Half adder

The Half Adder (HA) has two inputs (A, B) and two outputs (Sum and Carry). The Sum is
XOR of input while the Carry is AND of the input. The Half Adder is detailed in figure 8.2.

A Full Adder (FA) also performs 1-bit addition but taking 3 inputs (A, B and C;) and produces
two outputs (Sum and Carry). Like HA, FA generates result consisting of Sum (S) and Carry
out (Cout). Cout 1s used as Ci+1 while cascading for multiple bits of a word. Full Adder is detailed
in figure 8.3. A full adder can also be constructed using half adder blocks as in figure 8.4.

Outputs A
» s
o o>
5 out = i
A Sum
B 0 0 Cu] -
Ci Cout 1 1]
1 0
FA block symbol 0 1
1 0 FA Logic Circuit
0 1
0 1
1 1 S=A ('B B ('E Cf'
Cout= AB + CI[A +B]
FA Truth Table FA Formula
Figure 8.3 Full adder
Sum
Cin S
A
Carry Out
B

Figure 8.4 Full Adder using Half Adder blocks

M.JOSHNA

Subtraction

Subtraction is finding the difference of B from A i.e A-B. Basis of binary subtraction is:

0-0=0
0-1=-1
1-0=1
1-1=0

Of course, the usual borrow logic from the adjacent digit is applied as in the case of decimal
numbers. Examples of signed binary Subtraction is as below:

0101
(-) 0000

0111
(-) 0101

0101 01011000

(-) 01010110

01010110
(-) 11011000

10000010

86-88=-2
(d) (e)

(b)
Examples of signed binary subtraction
You may note that the above examples are in sign-magnitude representation. In sign-magnitude

form, MSB is reserved for sign representation. This is only for basic understanding. Computers
internally use 2’s complement representation.

Recall: In 2’s complement representation MSB is sign bit, (n-1) bits of the represent magnitude
of the number. Conversion sample for 8-bit word is shown in figure 8.5.

M.JOSHNA

-
-

- - - -
P -
..----"- < g
-

-
e Values represented Values represented %

\ increase by 1 increase by 1 ,

T+
LCT -
£-
I-

0160 6660 | T+

TOTT TTITO - STT+
TOTT TTITT

oTTT TIIT | ¢T-

OTTT TI10 —— 9CT+
LTTIT TIT1® | LCT+
00006 00T | 8TL-
1066 6601
o186 eeal | 97L-
LITIT TITIT

Bova 60E0 | 0
L6006 0000

Binary values increase by 1

Values represented increase by 1 (from -128 to +127)

I + + +
(R . (AR
il I o L + < I o B
00~ O - s W N R ® R, N Vi o~
I | iy _iE_| | |

I I R | |

[TE S Y el i I 2 ® ®
mmm-----‘_‘ppmmm-----pp‘_‘
EEEIIIIIHHHEEEIIIIIHHH
EEEIIIIIHHHEEEIIIIIHHH
mmm-----‘_‘ppmmm-----pp‘_‘
EEEIIIIIHHHEEEIIIIIHHH
EEHIIIIIQHHEEHIIIIIEHH
@ = ® i B v I] =D e

Binary values increase by 1 (dropping the carry bit)

2's Complement Representation

Figure 8.5 1's and 2's Complement Representation
2's Complement for Subtraction
"1's complement + 1 =2's complement"

Generating this 2's complement is very simple using an XOR circuit. The XOR circuit will
generate 1's complement. A control signal called SUBTRACT is used as add value of 1. This
way, an adder executes subtraction. See the example below, where case (b), case (¢) and case
(e) are worked out as 2's complement representation; and A-B becomes A + (2's
complement(B)). The result is obtained in 2's complement form discarding the carry. Observe
that this method works for all kind of data.

M.JOSHNA

PR "L 01010110
Nu_@ber Bin 2's complement for@ 10110000

_ Result A-B, discard carry ., 100000116

A-B in decimal representation

< N 86-80=6

Interpreting 2's complement numbers
e Observe the sign bit (MSB)

o If'0', the number is positive; the (n-1) bits mean the absolute value of the number in
binary

e If'l", the number is negative; (n-1) bits mean the 2’s complement value of the number
in binary; Invert the (n-1) bits and add 1 to get the absolute value of this negative
number.

Error Detection and Status Flags

No one does maths perfectly, but computers can do, provided your data is right! There is a
probability that your data may not be rightly defined or may be out of range. For this reason,
the CPU detects certain errors like OVERFLOW(O), UNDERFLOW(U) and CARRY(C). It
also detects SIGN(S) and ZERO(Z) status. The acronym is ZSOC (Zero, sign, Overflow and
Carry) as many processors may treat overflow and underflow together as out of range. The
detection is done by the Arithmetic and Logic Unit (ALU) of the CPU. Upon detection
corresponding flag is set to ON status. These flags have bit positions allotted in the Processor
Status Register and most famously known as Processor Status Word (PSW). ZSOC flags are
collectively known as Condition Codes. The purpose of these Condition Codes status flags is
to facilitate the programmer to catch data dependant errors and act accordingly.

Overflow: To put in simple English, when a result obtained exceeds the maximum number
possible to be represented, Overflow is said to occur. In other words, the addition of two
numbers with sign bit ‘0’ resulting in value with sign bit '1' is said to be an OVERFLOW.

For example : An 8 bit word can maximum represent +127 decimal, 01111111 in binary. If we
add, 120 + 10 -> 130;

120 -> 0111 1000
10 -> 0000 1010

1000 0010 -> in sign magnitude form, MSB (Mos significant bit) 'l'

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-addition-subtraction

M.JOSHNA

means negative number while we expect +130

Max is +127, hence this is an overflow scenario

In Overflow scenario, the result is wrong and this needs to be communicated to the
programmer/user that there is an error encountered. This situation is detected by the CPU
hardware and sets a status bit called "OVERFLOW". The user, if interested, can catch this error
by reading this OVERFLOW status bit and take necessary action over the data handling.

Underflow: While Overflow is related to positive magnitude, Underflow is related to negative
magnitude for the same reasons. As an example, when you add two negative numbers like -
120 and -10, the result expected is -130 which is beyond the representable range in an 8-bit
signed word definition. This is a scenario of UNDERFLOW. In other words, the addition of
two numbers with sign bits 'l' resulting in a number with sign bit '0' is said to be
UNDERFLOW. The CPU hardware detects and sets a status bit called UNDERFLOW to this
effect. Again, this status bit is accessible to the programmer/user to take necessary action over
the data handling.

Carry: CARRY is another status detected and set by CPU while executing arithmetic
instructions. CARRY flag is relevant to Unsigned arithmetic operations while OVERFLOW
and UNDERFLOW are relevant to signed operations.

The CARRY Flag is set by the CPU at the end of arithmetic operations if there is a Carry (Cout)
out of the most significant bit of the word. The Carry is set at the end of an execution cycle of
the addition or subtraction instructions. Many CPUs do not differentiate between signed and
unsigned operations, in which case the CARRY and OVERFLOW may both be set by the CPU.
However, there are CPUs which have different instruction codes and instructions for signed
and unsigned integer operations and in this case, the CPU appropriately sets the CARRY or
OVERFLOW flag.

Never forget that it is the programmer who decides whether he is operating with signed or
unsigned numbers. So the programmer has to decide whether he should catch OVERFLOW,
UNDERFLOW or CARRY flag for error detection and corrective action.

ZERO: At the end of an instruction execution cycle, if the accumulator value is zero, this status
bit is set by CPU. This could be a possibility at the end of arithmetic or logical instructions or
load instructions.

SIGN: Sign bit reflects the MSB of the accumulator. This is also set at the end of Instruction
execution cycle.

n-Bit Adder Formation

A 4-bitFull Adder is integrated by cascading four numbers of 1-bit adders as in figure 8.6.
When cascaded the Cou of ith goes as Cin of i+1th position and hence the carry is said to be
propagated. S is the Sum bits, Coyu is the final Carry out of the adder. A and B are the input

M.JOSHNA

numbers. C; is carry-in if available. Such cascading can be extended to any number of bits using
1-bit FA or n-bit FA blocks.

Bi+3

Bi+2 Bi+1 Bi
Al

Si+3 Si+2 Si+1 Si

Figure 8.6 4-bit Ripple Carry Full Adder

This method of Adder expansion is known as Spatial Expansion as the output of all the n-bits
are available at the same time as 1-bit operation, probably in one clock cycle. Spatial expansion
is also known as Parallel Adder. The other name for this method is Ripple Carry adder as the
carry is propagated internally. However, for large n-value, the carry propagation delay for clean
and settled output proportionately increases. This is a disadvantage of Ripple Carry Adder
which is solved by Carry-Look-Ahead Adder Technique.

Carry Look Ahead Adder

This is also a spatial expansion and ripple carry type. The Carry Look Ahead Adder (CLA)
uses specialized logic called Carry Look ahead Logic to compute carries in parallel and hence
is faster than Ripple Carry Adder.

>Cout

4-bit Propagate
Carry Look Ahead enerate

Full Adder G

Figure 8.7 4-bit
Carry Look Ahead Full Adder

M.JOSHNA

CLA Adder generates two other signals namely Propagate Carry and Generate Carry which
can be used by the next stage for Carry Calculation.

Propagate Carry Pi = Ai + Bi

i.e when either of the number has '1"' in the bit position, the carry is likely depending on the Ci

Generate Carry Gi = AiBi

'

i.e. when both the numbers have 'l1' in their bit position in which case carry is sure to be

generated.

We already have defined the formula for Sum and Carry as

S=A®B®C

Cout = AB + Ci(A+B)

The carry formula can be rewritten in terms of Propagate and Generate carry as Cout = Pi + CiGi.

In a Carry look-ahead adder, the carries are computed in parallel using carry look-ahead logic,
in one gate delay as compared to 2-gate delays per bit in the case of Ripple carry adder.

Implementation of Multiplication and Division.

Multiplication

Just recall with micro details as to how do we do multiplication using pen and paper. Then it is
easier to visualize that it is possible to implement a hardware algorithm.

Multiplicand M =12 1100
Multiplier Q =11 x1011
1100
1100
0000

1100

M.JOSHNA

Product P =132 10000100

As you see, we start with LSB of the Multiplier Q, multiply the Multiplicand, the partial product
is jotted down. Then we used the next higher digit of Q to multiply the multiplicand. This time
while jotting the partial product, we shift the jotting to the left corresponding to the Q—digit
position. This is repeated until all the digits of Q are used up and then we sum the partial
products. By multiplying 12x11, we got 132. You may realize that we used binary values and
the product also in binary. Binary multiplication was much simpler than decimal multiplication.
Essentially this is done by a sequence of shifting and addition of multiplicand when the
multiplier consists only of 1's and 0's. This is true and the same, in the case of Binary
multiplication. Binary multiplication is simple because the multiplier would be either a 0 or 1
and hence the step would be equivalent to adding the multiplicand in proper shifted position or
adding 0's.

It is to be observed that when we multiplied two 4-bit binary numbers, the product obtained is
8-bits. Hence the product register (P) is double the size of the M and Q register. The sign of
the product is determined from the signs of multiplicand and multiplier. If they are alike, the
sign of the product is positive. If they are unlike, the sign of the product is negative.

Unsigned Multiplication

When multiplication is implemented in a digital computer, it is convenient to change the
process slightly. It is required to provide an adder for the summation of only two binary
numbers and successively accumulate the partial products in a register. The registers, Shift
Counter and the ALU width is decided by the word size of the CPU. For simplicity of
understanding, we will take 4-bit word length i.e the Multiplier (Q) and Multiplicand (M) are
both 4-bits sized. The logic is extrapolated to the word size requirement.

We need registers to store the Multiplicand (M) and Multiplier (Q) and each 4-bits. However,
we use 8-bit register which is standard and minimum and hence the register to collect Product
(P) is 16-bits. Refer to figure 9.1. The Shift counter keeps track of the number of times the
addition is to be done, which is equal to the number of bits in Q. The shifting of the contents
of the registers is taken care of by shift register logic. The ALU takes care of addition and
hence partial product and product are obtained here and stored in P register. The control unit
controls the cycles for micro-steps. The product register holds the partial results. The final
result is also available in P when the shift counter reaches the threshold value.

https://witscad.com/course/computer-architecture/chapter/fixed-point-arithmetic-multiplication

M.JOSHNA

Multiplicand M
(8 bit register)

Multiplier Q

BN (8 bit register)
;‘Shifmigm

Control

16 bijt ALU 1% =nals

K

Shift Counter

[SShift right, Store

Figure 9.1 Data path for typical Multiplication

The flowchart for the unsigned multiplication is shown in figure 9.2 and table 9.1 explains the
work out with an example of 12 x 11 values. The flowchart is self-explanatory of the unsigned
multiplication algorithm. In an unsigned multiplication, the carry bit is used as an extension of
the P register. Since the Q value is a 4-bit number, the algorithm stops when the shift counter
reaches the value of 4. At this point, P holds the result of the multiplication.

M.JOSHNA

Multiplicand in M (8 bit)
Multiplier in Q (8 bit)
Product in P (16 bit)
SC<0

Left Half P < (Left Half P) + M

shift Right P, Q

Figure 9.2 Flowchart for
Unsigned Multiplication algorithm

Table 9.1 Workout for unsigned multiplication (12 x 11 = 132)

Shift Counter Multiplicand Multiplier

Operation Step Value M Q Product P
Initial Values for multiplication of 12x11 0 1100 1011 0000 0000
Qo =1, So, Left half of P <- Left half of P +0 1100 1011 1100 0000
M

Shift Right P, Shift Right Q 0 1100 0101 0110 0000
SC<-SC+1 1 1100 0101 0110 0000
Qo =1, So, Left half of P <- Left half of P + 1 1100 0101 10010

M 0000

M.JOSHNA

Table 9.1 Workout for unsigned multiplication (12 x 11 = 132)

Shift Counter Multiplicand Multiplier

Operation Step Value M Q
Shift Right P, Shift Right Q 1 1100 0010
SC<-SC+1 2 1100 0010
Qo =0, do nothing 2 1100 0010
Shift Right P, Shift Right Q 2 1100 0001
SC<-SC+1 3 1100 0001
Qo =1, So, Left half of P <- Left half of P +3 1100 0001
M

Shift Right P, Shift Right Q 3 1100 0000
SC<-SC+1 4 1100 0000
Signed Multiplication

Signed numbers are always better handled in 2's complement format. Further, the earlier signed
algorithm takes n steps for n digit number. The multiplication process although implemented
in hardware 1-step per digit is costly in terms of execution time. Booths algorithm addresses
both signed multiplication and efficiency of operation.

Booth's Algorithm

Booth observed that multiplication can also be done with mixed additions and subtractions,
instead of only additions. And it deals with signed multiplication as well.

The motivation for Booth's Algorithm is that ALU with add or subtract can get the same
result in more than one way .i.e. the multiplier 6 can be dealt as:

6=—-2+8

Booth's Algorithm categorises the multiplier as the run of 1's and further as begin, middle and
end of runs. The run is identified as below for a number 01110.

Product P

1001 0000

1001 0000

1001 0000

0100 1000

0100 1000

10000
1000

1000 0100

1000 0100

M.JOSHNA

Runof 1’s

<o | 1| 1 |a | o

End of run Beginning of run

Run of 1's

Based on the run status, the operation to be performed in the multiplication process is defined
as in table 9.2. The values of the current bit (Q0) and the outgoing bit (Qe) of the multiplier
decide the operation to be performed. By this, the multiplication is achieved in less number of
cycles based on the multiplier. A multiplier may have many combinations of runs based on its
value. This algorithm is sensitive to bit patterns of Multiplier. A pattern like 01010101 may be
the worse as it has many begin and end runs necessitating as many additions and subtractions
and may not save cycle time. But by and large Booth’s algorithm saves cycles.

Table 9.2 Booth Encoding for Multiplication — Operation regarding the run

Current BitBit to the right

(Qo) (Qe) Explaination Example Operation
1 0 Begins run of 1s 0001111000 Subtract multiplicand from partial
product
1 1 Middle of run of0001111000No arithmetic operation
Is
0 1 End of run of Is 0001111000 Add multiplicand to partial product
0 0 Middle of run of0001111000No arithmetic operation
0Os

Booth's algorithm uses Arithmetic Shift Right for collecting partial product. Arithmetic Shift
right is a sign-extended shift; i.e if the sign bit is 0, then 0 is extended while shifting; if the sign
bit is 1, then 1 is extended while shifting. For this reason, n+1 is the register size. You may
observe this in our work out in table 9.3. The work out is for (-12x -11). This example is taken
to demonstrate the outcome of signed multiplication with Booth's algorithm. Both multiplicand
(M) and Multiplier (Q) use 5-bits as against 4-digit binary number.

The partial product and Product is collected in P and Q register. The Q register initially holds
the Multiplier; as it gets shifted out with every digit multiplication, the space in Q register is
occupied by partial product. Qe is a 1-bit register holding the outgoing bit. Together PQQe is
treated as one entity during the arithmetic shift, whereas only P is considered for addition or
subtraction of multiplicand. The multiplicand is loaded in M. Both Multiplicand and Multiplier

M.JOSHNA

are loaded in the simple binary form if these are positive numbers and in 2's complement form
if these are negative numbers. The shift counter stops the operation once it reaches the digit
count of Q, in this case, 4. Q0Qe are evaluated at every step to decide the operation to be carried
out on M and P.

Booth’s Algorithm Work cut Example (-12 x -11 =132)

Comments SC | Multiplicand
M

Product Qe

QyQ, =

01100 10101 0
Arsh.r. PQQ, 10100 00110 01010 :

10; PEP-M 0 10100

SC € SC+1 1 10100 00110 01010 i

QyQ, = 10; P<P-M

10100

01001

00101

2
Arsh.r. PQQ, 2 10100 00100 10010
SC € SC+1 3 10100 00100 10010

QqQ = 10; PEP-M 10100 | 01000 01001
Arsh.r. PQQ, 10100 00100 00100
SE & 56 10100 00100 00100

-12x-11 = 132

Table 9.3 Booth's Signed Multiplication

It is seen that the resulting Product of multiplying two negative numbers is a positive number
which is correct. One need not handle the signs separately. It is handled as part of the algorithm.
The flow chart and the datapath may be drawn by an interested reader as an exercise or the
reader may contact the author.

There is a category of Multipliers called Array multiplier which avoids this sequential operation
and produces the result at once. These require a large number of gates for implementation.
However, with the advancement in VLSI, it is a reality. Different CPUs have different
implementations.

M.JOSHNA

DIVISION:

Performing division is a difficult task as we have seen in case of fixed point
arithmetic also. Divider architectures are complex to implement. Floating point
division is nothing but a fixed point division with some extra hardwares to take
care for the exponents. This extra hardwares make the divider circuit more
complex. A floating point division where a number divides another
number can be expressed as

Thus it can be said that in a floating point division, mantissas are divided and
exponents are subtracted.

The major steps for a floating point division are
« Extract the sign of the result from the two sign bits.

o Find the magnitude of the difference between two exponents ().
Add to the bias if or subtract from the bias if

o Divide mantissa of ()by mantissa of () considering the hidden
bits.

o Ifthere is a leading zero then normalize the result by shifting it left.

o Due to the normalization, the exponent is to be decremented according to
the number of left shifts.

Floating point division can be more clearer with an example. Lets discuss a
division operation between two numbers and . The result of the
division operation is

Example : Floating Point Division

« Representation: The input operands are represented
as and

« Sign extraction: As one of the number is negative then sign of the output
will be negative. Thus

M.JOSHNA

« Exponent subtraction: and . Thus magnitude of their
difference 1is . As thus the resulted exponent
1s

o Mantissa division: Divide the mantissas by any division algorithm used in
the fixed point arithmetic. Considering the hidden bits, the division
operation is restricted to 12-bits. The result of the division is

o There i1s a leading zero in the result thus a left shift can be applied to
normalize the result. Thus the new result is . The final value
of the mantissa () is excluding the hidden bit.

o The action of normalization step must reflect on exponent correction. The
value of the exponent is corrected by a decrement corresponding to a left
shift. The new value of the exponent () is

e The final result is . The decimal value of this
18

A simple architecture for floating point division is shown below in Figure 1 .
There are three 4-bit subtractors used in the divider architecture, two for exponent
subtraction and one for correction of exponents. The major hardware block is the
divider block. The divider used here is a 12-bit unsigned divider and that can be
any divider circuit as discussed in the blog for division. If the result of the divider
contains any leading zero then normalizing step is executed. But here in this case,
as the hidden bit is also considered thus the result can not go below . Thus
there will be maximum of one leading zero present in the result. This why only
the MSB of the result () 1s considered and left shift block shifts only by one bit.
Pipeline registers are also must be inserted according to the pipe lining stages of
the divider.

https://digitalsystemdesign.in/division-algorithms/

M.JOSHNA

Saqu Z ‘ B, M, My
Q@ b /
(_) 11 11
| 1 >0 e 1
delay bias delay 19 19
a b a b .
Pipeline
() (b/2) Fgiaces
0 1 q
e
0 T 11
delay delay \—‘—/ delay
| |
% 6 Left Shift
) l
, ,
S E M

Figure 1: A Basic Scheme for Floating Point Division

Introduction to CPU

Introduction to CPU (Central Processing Unit)

The CPU (Central Processing Unit) is the brain of the computer
responsible for executing instructions of a program. It interprets,
controls, and processes the data stored in memory using arithmetic
and logical operations.

M.JOSHNA

In Digital Logic Design & Computer Organization (DLD&CO), the
CPU is studied as the control and execution unit of the computer
system.

1. Functional Role of CPU
 Fetches instructions from memory.

« Decodes the instructions to understand what operation to
perform.

« Executes the instructions using ALU and registers.
« Stores results back into registers or memory.

This cycle is called the Instruction Cycle (Fetch — Decode —
Execute — Store).

2. Major Components of CPU
1. Arithmetic Logic Unit (ALU):

o Performs arithmetic operations (addition, subtraction,
multiplication, division).

o Performs logical operations (AND, OR, NOT, XOR,
comparison).

2. Control Unit (CU):

o Directs the flow of data between memory, ALU, and I/O
devices.

o Generates control signals for execution of instructions.
o Ensures proper sequencing of instruction cycle.

3. Registers:

M.JOSHNA

o Small, high-speed storage units inside CPU.
o Examples:

Program Counter (PC): Holds address of next
instruction.

Instruction Register (IR): Holds current instruction.
Accumulator (ACC): Stores intermediate results.

General Purpose Registers (RO, R1, ...): Temporary
storage.

Memory Address Register (MAR) & Memory Data
Register (MDR): For memory communication.

3. CPU Organization

 Single Bus Organization: All units share a single
communication path.

« Multiple Bus Organization: Separate buses for instructions, data,
and control (faster).

4. Types of CPU Operations
« Data transfer (move, load, store).
« Arithmetic operations (+, —, X, +).
« Logical operations (AND, OR, NOT, shift).

« Control operations (branch, jump, halt).

5. CPU Performance Factors

M.JOSHNA

« Clock Speed: Number of instructions executed per second.
« Word Length: Number of bits processed at a time.

« Instruction Set Architecture (ISA): Defines operations CPU can
perform (RISC, CISC).

« Number of Cores: Multiple processing units improve
performance.

Execution of a Complete Instruction

n the blog post on the von Neumann Architecture, we established that
the CPU consists of a control unit for processing the instructions sent
to the CPU, the arithmetic logic unit for performing the operations

specified in the instructions, and registers for storing instructions and
data that are immediately required by the CPU.

The fetch-decode-execute cycle makes use of these components in
addition to the memory unit.

In the fetch step of the cycle, the instructions are retrieved from the
memory unit (RAM) and stored in the registers on the CPU. Next, the
control unit decodes the instructions, which are then executed by the
arithmetic and logic unit. The results of the instruction execution are
sent back to RAM for storage, and the next instruction cycle begins.

What is CPU Clock Speed?

The number of instruction cycles a CPU can execute is stated as clock
speed and measured in Hertz. If a CPU has a clock speed of 2 700 000
000 Hertz or 2.7 GHz, it executes 2.7 billion instruction cycles per
second.

The Fetch Decode Execute Cycle Step By Step

https://programmathically.com/what-is-the-von-neumann-architecture/

M.JOSHNA

In the following section, we will walk through the operations
performed during the instruction cycle. Recall that a CPU has several
different registers

o Program counter

o Memory address register

o Memory data register
o Current instruction register
o Accumulator

For an explanation of what these registers do, check out my post
on von Neumann architecture.

What is a Fetch Cycle?

The instruction cycle begins with the fetch operation. The program
counter keeps track of the next instruction to be processed. A fetch
operation starts by loading the memory address of the next instruction
into the program counter. In the next step, the processor transfers the
address from the program counter to the memory address register and
subsequently loads the data stored at that memory location into the
memory data register. The program counter is automatically
incremented to the next memory location unless the current
instruction explicitly points to a different memory location for the
next instruction.

Let’s see how that works in practice using a concrete example:
1. The program counter initially points to the memory address 001

2. The memory address 001 is loaded into the memory address
register by the processor

3. The processor next retrieves the instruction stored at memory
address 001 and loads it into the memory data register.

https://programmathically.com/an-introduction-to-memory-registers/
https://programmathically.com/what-is-the-von-neumann-architecture/

M.JOSHNA

4. Since the data contains the instruction “Get 203>, it 1s forwarded
to the instruction register.

5. The program counter is incremented by 1, pointing to 002

6. The instruction in the instruction register is forwarded to the
control unit.

What is an Execute Cycle?

After the fetch operation, the instruction cycle continues with the
decode and execute portions. During the fetch stage, the control unit
has been supplied with the instruction. It now needs to decode the
instruction so that the processor can understand what to do next. In
our example, I’ve supplied the instruction in plain English, such as
“Get 203” which tells the processor to get the piece of data stored at
memory location 203. In memory, the instruction is supplied in
binary. For example, in a 16-bit memory, the first 4 bits may encode
the operation to be performed, while the remaining bits specify the
address from which to load the data.

Lastly, the processor will execute the instruction supplied. So if the
instruction is to get some other piece of data, the “execute” action will
consist of retrieving the data from the supplied memory address and
storing it in the appropriate register. If the instruction specifies a
calculation such as adding two numbers, the execution of the
calculation will be handed off to the arithmetic and logic unit (ALU)

Let’s continue with our concrete example:

1. The Control Unit decodes the instruction and tells the processor
to go to memory address 203 and fetch the piece of information
stored there.

2. The address 203, is stored in the memory address register.

M.JOSHNA

3. The data, the number 4, is stored in the memory data register.
4. The

5. Since the data is a number that will be necessary for a future
operation and not another instruction, the number is stored in the
accumulator.

This concludes the first fetch-decode-execute cycle. The processor
starts the next cycle by fetching the next instruction stored in the
program counter.

The fetching process is the same as in the previous cycle. This time,
the instructions tell the processor to add the number stored at memory
location 204 to the number currently stored in the accumulator.

After fetching the instruction, the processor retrieves the number
stored at memory address 204 and places it in the accumulator while
the previously stored number is forwarded to the arithmetic and logic
unit (ALU).

Then, the number 3 is also forwarded to the arithmetic and logic unit,
where the addition specified in the instruction is performed. Finally,
the result is returned to the accumulator, where 1t will sit until the next
instruction is executed.

In this example, we’ve used two instruction cycles to perform the
addition. But modern processors may also load several pieces of data
and perform calculations in one cycle.

M.JOSHNA

What is an Interrupt in Computer Organization and
Architecture?

As the term implies, an interrupt is a mechanism by which the normal
course of actions of the processor is interrupted. This may be
necessary for a variety of reasons, such as hardware failure or waiting
for an I/O operation to complete.

Interrupts are part of a broader class of events known as exceptions.
Exceptions essentially handle cases when the CPU encounters
conditions that interfere with normal processing.

The main utility of interrupts lies in their ability to improve
efficiency. Performing I/O operations is usually orders of magnitude
slower than normal processing. If the computer had to communicate
with an external device attached via USB, such as a flash drive,
without the use of interrupts, the processor would have to wait until
the 1/0 operation completes. The processor would spend thousands of
instruction cycles just polling the peripheral device, asking if it was
done processing without doing any useful work.

To make processing more efficient, the processor can receive an
interrupt signal from the I/O device enabling it to work on something
that is unrelated to the I/O operation while that operation is in
progress.

Once the I/O device is done with its operations and requires
communication with the processor, it sends an interrupt request signal
to the processor. The processor then interrupts the execution of its
current program and services the I/O device. This is achieved via a
special device known as the interrupt handler. When the processor is
finished with the 1/O processing, it returns to the original process.

What happens during an Interrupt?

M.JOSHNA

Once an Interrupt signal arrives, the processor has to perform a series
of steps to handle the interrupt and continue processing:

o The CPU needs to save the current context as it exists in the
registers to memory. Some processor architectures push the
context onto a stack and then pop it off the stack. That way, they
can restore the previous context in reverse order.

o Secondly, the CPU needs to retrieve the instructions of the
interrupt handler from memory. The interrupt handler is
basically a set of instructions stored in memory. Each type of
interrupt has its own associated set of instructions.

o The CPU executes the instructions specified by the interrupt
handler

o After concluding the operations specified by the interrupt
handler, the CPU needs to restore the context of its previous
operations by loading the associated instructions and data into
the registers

o The CPU continues the previous flow of operations.

To include the handling of interrupts into the instruction cycle, an
additional interrupt cycle is included.

Source: “Computer Organization and Architecture” 10th Edition by
William Stallings

Multiple Interrupts
If multiple interrupts occur, there are essentially two options.

If an interrupt is currently being handled and a second interrupt
occurs, the processor can push the second and all subsequent
interrupts onto a stack and execute them in reverse sequential order.
This has the disadvantage that we cannot prioritize interrupts. If an

M.JOSHNA

I/O device that causes a notoriously long interrupt, like a printer, is
currently executing, all other interrupts would have to wait.

Alternatively, interrupts can be associated with priorities. If an
interrupt with a higher priority were to occur while a lower priority
interrupt is being handled, the lower priority interrupt would itself be
interrupted. The processor then would handle the higher-priority
interrupt first before turning back to the lower-priority one. Naturally,
the second approach engenders more complexity but is usually more
efficient.

Types of Interrupts

So far, we have focused on interrupts as caused by I/O devices. In
fact, there are several reasons for a processor to interrupt its course of
action leading to different types of interrupt handlers.

Failure of Hardware

A computer relies on electricity. If there is a power outage or
something overheats, the processor needs to be able to handle that
case when the underlying hardware fails. The hardware failure
handler also kicks in when there is an inconsistency in memory
access. For example, if a piece of data is different in memory when it
is accessed from when it was stored, it may cause system crashes.

Scheduled Interrupt

Interrupts may be generated by the processor on a regular basis to
perform updates or other functions that may be necessary.

Program Condition

If an error occurs during the execution of a program, the program
itself can trigger an interrupt. If you are a programmer, you probably
have run into buffer overflow errors or other errors generated when
executing your program. These errors are triggered when your

https://programmathically.com/memory-access-time-and-memory-cycle-time/
https://programmathically.com/memory-access-time-and-memory-cycle-time/

M.JOSHNA

program attempts to do something that the processor cannot or will
not handle. In that case, the processor will generate an interrupt or an
exception. In fact, good programmers anticipate potential modes of
failure and handle these through exceptions in their code.

I/0 Devices

The controller of an I/O device can trigger interrupts as described
previously. They either start a new interrupt by requesting service
from the processor, signal normal completion of an I/O process, or
indicate an error condition.

MULTIPLE BUS ORGANIZATION:

Rout, R=B, IRin
R4outA, R50outB, SelectA, Add, R6in, End
* Instruction execution proceeds as follows:

Step 1--> Contents of PC are passed through ALU using R=B control-
signal and loaded into

MAR to start a memory Read operation. At the same time, PC is
incremented by 4.

Step2--> Processor waits for MFC signal from memory.

Step3--> Processor loads requested-data into MDR, and then transfers
them to IR.

Step4--> The instruction is decoded and add operation take place in a
single step.

M.JOSHNA

Note:

To execute instructions, the processor must have some means of
generating the control signals needed in the

proper sequence. There are two approaches for this purpose:

1) Hardwired control and 2) Microprogrammed control.

Hardwired Control and Multi programmed Control:-

Introduction :

In computer architecture, the control unit is responsible for directing
the flow of data and instructions within the CPU. There are two main
approaches to implementing a control unit: hardwired and micro-
programmed.

A hardwired control unit is a control unit that uses a fixed set of logic
gates and circuits to execute instructions. The control signals for each
instruction are hardwired into the control unit, so the control unit has
a dedicated circuit for each possible instruction. Hardwired control
units are simple and fast, but they can be inflexible and difficult to
modify.

On the other hand, a micro-programmed control unit is a control unit
that uses a microcode to execute instructions. The microcode is a set
of instructions that can be modified or updated, allowing for greater
flexibility and ease of modification. The control signals for each
instruction are generated by a microprogram that is stored in memory,
rather than being hardwired into the control unit.

M.JOSHNA

The control unit is the brain of the CPU, and it can be implemented in
two ways: hardwired or micro-programmed. Understanding the
differences between these implementations is essential for those
studying computer organization.

If we talk about Micro-programmed control units they are generally
slower than hardwired control units because they require an extra step
of decoding the microcode to generate control signals, but they are
more flexible and easier to modify. They are commonly used in
modern CPUs because they allow for easier implementation of
complex instruction sets and better support for instruction set
extensions.

To execute an instruction, the control unit of the CPU must generate
the required control signal in the proper sequence. There are two
approaches used for generating the control signals in proper sequence
as Hardwired Control unit and the Micro-programmed control unit.

Hardwired Control Unit: The control hardware can be viewed as a
state machine that changes from one state to another in every clock
cycle, depending on the contents of the instruction register, the
condition codes, and the external inputs. The outputs of the state
machine are the control signals. The sequence of the operation carried
out by this machine is determined by the wiring of the logic elements
and hence named “hardwired”.

« Fixed logic circuits that correspond directly to the Boolean
expressions are used to generate the control signals.

« Hardwired control is faster than micro-programmed control.
« A controller that uses this approach can operate at high speed.

« RISC architecture is based on the hardwired control unit

M.JOSHNA

Instruction Register

Op code Address field I
Instruction
Regular signal from decoder
quartz generator
Timing

Unit
[Control signals
for other

computer units

Control signal
generation matrix

T

Flags and variables External signals

Next control
state generator

e

Micro-programmed Control Unit -

« The control signals associated with operations are stored in
special memory units inaccessible by the programmer as Control
Words.

« Control signals are generated by a program that is similar to
machine language programs.

« The micro-programmed control unit is slower in speed because
of the time it takes to fetch microinstructions from the control
memory.

Some Important Terms

1. Control Word: A control word is a word whose individual bits
represent various control signals.

2. Micro-routine: A sequence of control words corresponding to
the control sequence of a machine instruction constitutes the
micro-routine for that instruction.

3. Micro-instruction: Individual control words in this micro-routine
are referred to as microinstructions.

M.JOSHNA

4. Micro-program: A sequence of micro-instructions is called a
micro-program, which is stored in a ROM or RAM called a
Control Memory (CM).

5. Control Store: the micro-routines for all instructions in the
instruction set of a computer are stored in a special memory
called the Control Store.

Micro instruction From main memory
address register
- Instruction register
g I Op code I Address l
Control store ' 8
N——
(Micro programs) : 3 —
A L
o
/
Operation part | C 1 | Add Micro instruction
P P ontro ress register
T 17T
7 Micro instruction State

address generation ' inf from executive

Decoder unit '. units
EC1\ ECp\ 1

>V cdhtrol s\§n§'!s

The differences between hardwired and micro-programmed control
units:

Micro-programmed

Hardwired Control)
arawire@ LOonto Control Unit

Unit

i) Microcode stored in
Fixed set of logic

Implementation

. memory
gates and circuits

M.JOSHNA

Flexibility

Hardwired Control
Unit

Less flexible,
difficult to

modify

Micro-programmed
Control Unit

More flexible, easier
to modify

Instruction Set

Supports limited
instruction sets

Supports complex
instruction sets

Complexity of
Design

Simple design,
easy to implement

Complex design, more
difficult to implement

Fast operation

Slower operation due
to microcode decoding

Debugging and
Testing

Difficult to debug
and test

Easier to debug and
test

Size and Cost

Smaller size,
lower cost

Larger size, higher
cost

M.JOSHNA

Micro-programmed

H ired Control .
ardwired Contro Control Unit

Unit

: Difficult to Easier to upgrade and
Maintenance and

upgrade and maintain

Upgradability maintain

Types of Micro-programmed Control Unit - Based on the type of
Control Word stored in the Control Memory (CM), it is classified into
two types :

1. Horizontal Micro-programmed Control Unit :

The control signals are represented in the decoded binary format that
is 1 bit/CS. Example: If 53 Control signals are present in the
processor then 53 bits are required. More than 1 control signal can be
enabled at a time.

. It supports longer control words.
« It is used in parallel processing applications.

. It allows a higher degree of parallelism. If degree is n, n CS is
enabled at a time.

« It requires no additional hardware(decoders). It means it is faster
than Vertical Microprogrammed.

« It is more flexible than vertical microprogrammed

2. Vertical Micro-programmed Control Unit :
The control signals are represented in the encoded binary format. For
N control signals- Log2(N) bits are required.

« It supports shorter control words.

M.JOSHNA
« It supports easy implementation of new control signals therefore
it is more flexible.

. It allows a low degree of parallelism i.e., the degree of
parallelism is either O or 1.

« Requires additional hardware (decoders) to generate control
signals, 1t implies it is slower than horizontal microprogrammed.

« Itis less flexible than horizontal but more flexible than that of a
hardwired control unit.

Note: Types of Control Unit in descending order of speed :

Hardwired control unit > Horizontal microprogrammed CU > Vertical
microprogrammed CU

M.JOSHNA

UNIT-IV: THE MEMORY MANAGEMENT SYSTEM

Basic Concepts, Semiconductor RAM, Types of Read-only Memory (ROM), Cache Memory,
Performance Considerations, Virtual Memory, Secondary Storage.

4.1 Basic Concepts:

The maximum size of the memory that can be used in any computer is determined by the
addressing scheme.

Address Memory Locations
16 Bit 2°=64K

32 Bit 2% = 4G (Giga)

40 Bit 2*" =1T (Tera)

Fig: Connection of Memory to Proclessor:

Processor Lobit Memory

address bus

MAR | 5

71-bit
lata bus

» 2" addressable

locations

el

o

Hi:

MDR

Word length i bits

Control hines

(R/W, MFE(

If MAR is k bits long and MDR is n bits long, then the memory may contain upto 2K
addressable locations and the n-bits of data are transferred between the memory and

processor.
This transfer takes place over the processor bus.
The processor bus has,

Address Line

Data Line

Control Line (R/W, MFC — Memory Function Completed)

The control line is used for co-ordinating data transfer.

M.JOSHNA

The processor reads the data from the memory by loading the address of the required
memory location into MAR and setting the R/W line to 1.

The memory responds by placing the data from the addressed location onto the data lines
and confirms this action by asserting MFC signal.

Upon receipt of MFC signal, the processor loads the data onto the data lines into MDR
register.

The processor writes the data into the memory location by loading the address of this
location into MAR and loading the data into MDR sets the R/W line to 0.

[Measures for the speed of a memory:
[memory access time.

[It is the time that elapses between the initiation of an Operation and the completion of
that operation.

B memory cycle time.

[It is the minimum time delay that required between the initiation of the two successive
memory operations.

RAM (Random Access Memory):

In RAM, if any location that can be accessed for a Read/Write operation in fixed amount of
time, it is independent of the location’s address.

Cache Memory:

It is a small, fast memory that is inserted between the larger slower main memory and the
processor.

It holds the currently active segments of a program and their data.
Virtual memory:

The address generated by the processor does not directly specify the physical locations in
the memory.

The address generated by the processor is referred to as a virtual / logical address.

The virtual address space is mapped onto the physical memory where data are actually
stored.

M.JOSHNA

The mapping function is implemented by a special memory control circuit is often called the
memory management unit.

Only the active portion of the address space is mapped into locations in the physical
memory.

The remaining virtual addresses are mapped onto the bulk storage devices used, which are
usually magnetic disk.

As the active portion of the virtual address space changes during program execution, the
memory management unit changes the mapping function and transfers the data between
disk and memory.

Thus, during every memory cycle, an address processing mechanism determines whether
the addressed in function is in the physical memory unit.

If it is, then the proper word is accessed and execution proceeds. If it is not, a page of words
containing the desired word is transferred from disk to memory.

This page displaces some page in the memory that is currently inactive.

Semiconductor RAM

Semi-Conductor memories are available is a wide range of speeds. Their cycle time ranges
from 100ns to 10ns.

INTERNAL ORGANIZATION OF MEMORY CHIPS:

Memory cells are usually organized in the form of array, in which each cell is capable of
storing one bit of information.

Each row of cells constitute a memory word and all cells of a row are connected to a

common line called as word line.
The cells in each column are connected to Sense / Write circuit by two bit lines.

The Sense / Write circuits are connected to data input or output lines of the chip. During a
write operation, the sense / write circuit receive input information and store it in the cells of
the selected word.

M.JOSHNA

b-; b", b| b') bo b’O
W, | o J| |
— - — FF — FF
A LA T I
A = .
Address Memory
decoder . - . . Z i cells
A, —»
Ay —» + /
w15 1 "o 1 1
Sense / Write Sense / Write Sense / Write |~ R/W
circuit circuit circuit |, g
Data input/output lines: b, b, by

Figure 5.2 Organization of bit cells in a memory chip.

The data input and data output of each senses / write ckt are connected to a single
bidirectional data line that can be connected to a data bus of the cptr.

R/ W [Specifies the required operation.
CS [Chip Select input selects a given chip in the multi-chip memory system
Static Memories:

Memories that consist of circuits capable of retaining their state as long as power is applied
are known as static memory.

Fig: Static RAM cell

M.JOSHNA

.1 Word line

- Bit lines -

B Two inverters are cross connected to form a batch.
[The batch is connected to two bit lines by transistors T1 and T2.

[These transistors act as switches that can be opened / closed under the control of the
word line.

[l When the word line is at ground level, the transistors are turned off and the latch retain its
state.

Read Operation:

[In order to read the state of the SRAM cell, the word line is activated to close switches T1
and T2.

[If the cell is in state 1, the signal on bit line b is high and the signal on the bit line b is low.
Thus b and b are complements of each other.

Sense / write circuit at the end of the bit line monitors the state of b and b’ and set the
output accordingly.

Write Operation:

M.JOSHNA

[The state of the cell is set by placing the appropriate value on bit line b and its
complement on b and then activating the word line. This forces the cell into the
corresponding state.

B The required signal on the bit lines are generated by Sense / Write circuit.

Fig:CMOS cell (Complementary Metal oxide Semi Conductor):

Figure 5.4 A siatic RAM cell.

T, 1
Yt ™5 \/ y e

-

Word line

e Bit lines -

Figure 5.5 An example of a CMOS memory cell.

Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch.
In state 1, the voltage at point X is high by having T5, T6 on and T4, T5 are OFF.

[Thus T1 and T2 returned ON (Closed), bit line b and b will have high and low signals
respectively.

[The CMOS requires 5V (in older version) or 3.3.V (in new version) of power supply voltage.

M.JOSHNA

[The continuous power is needed for the cell to retain its state
Merit :

It has low power consumption because the current flows in the cell only when the cell is
being activated accessed.

Static RAM’s can be accessed quickly. It access time is few Nano seconds.

Demerit:

SRAM’s are said to be volatile memories because their contents are lost when the power is
interrupted.

Asynchronous DRAMS:-

[l Less ex pensive RAMs can be implemented if simplex call s are used such c ell s cannot
retain their state indefinitely. Hence they are called Dynamic RAM’s (DRAM).

[The information stored in a dynamic memory cell in the form of a charge on a capacitor
and this charge can be maintained only for tens of Milliseconds.

[The contents must be periodically refreshed by restoring by restoring this capacitor charge
to its full value.

[@ In order to store information in the cell, the transistor T is turned on & the appropriate
voltage is applied to the bit line, which charges the capacitor.

] After the transistor is turned off, the capacitor begins to discharge which is caused by the
capacitor’s own leakage resistance.

[l Hence the information stored in the cell can be retrieved correctly before the threshold
value of the capacitor drops down.

Fig:A single transistor dynamic Memory cell

M.JOSHNA

Bit line

Word line

_,___rr—_%c

Figure 5.6 A single-ransistor dynamic memory cell.

During are ad operation, the transistor is turned ,,0 n“ & a sense amplifier connected to the
bit line detects whether the charge on the capacitor is above the threshold value.

If charge on capacitor > threshold value -> Bit line will have logic value 1.
If charge on capacitor < threshold value -> Bit line will set to logic value 0.

Fig:Internal organization of a 2M X 8 dynamic Memory chip

RAS
|
Row
Row . 14096 x(512x8)
| address N ocger | 5 | ceamay
latch .
Ay-9lAg_g Sense / Write [+ CS
’ circuits | o/
Column
| " address S
latch
CAS ———— D, Dy

Figure 5.7 Internal organization of a 2M x 8 dynamic memory chip.

M.JOSHNA

DESCRIPTION:

The 4 bit cells in each row are divided into 512 groups of 8.

21 bit address is needed to access a byte in the memory(12 bit=>To select a row,9
bit=>Specity the group of 8 bits in the selected row).

Ag.o 2Row address of a byte.
Ap.9 = Column address of a byte.

e During Read/ Write operation ,the row address is applied first. It is loaded into the
row address latch in response to a signal pulse on Row Address Strobe(RAS)
input of the chip.

e When a Read operation is initiated, all cells on the selected row are read and
refreshed.

e Shortly after the row address is loaded,the column address is applied to the
address pins & loaded into Column Address Strobe(CAS).

e The information in this latch is decoded and the appropriate group of 8
Sense/Write circuits are selected.

e R/W =I(read operation)-> The output values of the selected circuits are
transferred to the data lines DO - D7.

e R/W =0(write operation)=> The information on D0 - D7 are transferred to the
selected circuits.

e RAS and CAS are active low so that they cause the latching of address when they
change from high to low. This is because they are indicated by RAS & CAS.

e To ensure that the contents of a DRAM ‘s are maintained, each row of cells must
be accessed periodically.
Refresh operation usually perform this function automatically.
A specialized memory controller circuit provides the necessary control signals
RAS & CAS, that govern the timing.

e The processor must take into account the delay in the response of the memory.
Such memories are referred to as Asynchronous DRAM’s.

Fast Page Mode:

Transferring the bytes in sequential order is achieved by applying the consecutive sequence
of column address under the control of successive CAS signals.

This scheme allows transferring a block of data at a faster rate. The block of transfer
capability is called as Fast Page Mode.

Synchronous DRAM:
Here the operations are directly synchronized with clock signal.
The address and data connections are buffered by means of registers.

[The output of each sense amplifier is connected to a latch.

M.JOSHNA

[@ A Read operation causes the contents of all cells in the selected row to be loaded in these

latches.

Fig: Synchronous DRAM

Refresh
counter

Row

Row .
address | decoder | 1 | Cellamy

Row/Column —
address 7]

Column .
Column . Read/Write
Aidecly :D decoder | : §circuits & latches

counter
Clock —» __?!
RAS —=

R Mode register "
CAS —» and Data input Data output

R/W —a| timing control register register

il Y

Data

Figure 5.8 Synchronous DRAM.

[Data held in the latches that correspond to the selected columns are transferred into the
data output register, thus becoming available on the data output pins.

Fig: Timing Diagram [Burst Read of Length 4 in an SDRAM

M.JOSHNA

Fig: Timing Diagram => Burst Read of Length 4 in an SDRAM

|
R/ W :] |

RAS j I
|
=

i
\

Address ' R‘ﬂ X Col x
i F =y I |

Data (l)u DI |)3X1)<)———

[First, the row address is latched under control of RAS signal.

[The memory typically takes 2 or 3 clock cycles to activate the selected row.

[Then the column address is latched under the control of CAS signal.

[@ After a delay of one clock cycle, the first set of data bits is placed on the data lines.

[0 The SDRAM automatically increments the column address to access the next 3 sets of bits
in the selected row, which are placed on the data lines in the next 3 clock cycles.

Latency & Bandwidth:
A good indication of performance is given by two parameters. They are,
Bl Latency

[Bandwidth

Latency:
[@ It refers to the amount of time it takes to transfer a word of data to or from the memory.

[@ For a transfer of single word, the latency provides the complete indication of memory
performance.

[For a block transfer, the latency denotes the time it takes to transfer the first word of data.

M.JOSHNA

Bandwidth:
It is defined as the number of bits or bytes that can be transferred in one second.

Bandwidth mainly depends upon the speed of access to the stored data & on the number
of bits that can be accessed in parallel.

Double Data Rate SDRAM (DDR-SDRAM):

The standard SDRAM performs all actions on the rising edge of the clock signal.

The double data rate SDRAM transfer data on both the edges (loading edge, trailing edge).
B The Bandwidth of DDR-SDRAM is doubled for long burst transfer.

[0 To make it possible to access the data at high rate, the cell array is organized into two
banks.

[} Each bank can be accessed separately.
[Consecutive words of a given block are stored in different banks.

[Such interleaving of words allows simultaneous access to two words that are transferred
on successive edge of the clock.

Larger Memories:
Dynamic Memory System:
[The physical implementation is done in the form of Memory Modules.

[If a large memory is built by placing DRAM chips directly on the main system printed circuit
board that contains the processor, often referred to as Motherboard; it will occupy large
amount of space on the board.

[@ These packaging considerations have led to the development of larger memory unit s
known as SIMMs & DIMM:s.

o SIMM-Single Inline memory Module

o DIMM-Dual Inline memory Module

@ SIMM & DIMM consists of several memory chips on a separate small board that plugs
vertically into single socket on the motherboard.

MEMORY SYSTEM CONSIDERATION:

M.JOSHNA

To reduce the number of pins, the dynamic memory chips use multiplexed
Address inputs. The address is divided into two parts. They are,

High Order Address Bit (Select a row in cell array & it is provided first and latched into
memory chips under the control of RAS signal).

Low Order Address Bit(Selects a column and they are provided on same Address pins and
latched using CAS signals).

The Multiplexing of address bit is usually done by Memory Controller Circuit.

Fig:Use of Memory Controller

Row/Column
Address address
— RAS
RIW —
Memory S
Request controller R/ W
Processor 5 Memory
Clock
Clock
< —>
Data

B The Controller accepts a complete address & R/W signal from the processor, under the
control of a Request signal which indicates that a memory access operation is needed.

[@ The Controller then forwards the row & column portions of the address to the memory
and generates RAS &CAS signals.

[It also sends R/W &CS signals to the memory. The CS signal is usually active low, hence it is
shown as CS.

Refresh Overhead:

All dynamic memories have to be refreshed. In DRAM ,the period for refreshing all rows is
16ms whereas 64ms in SDRAM.

Eg:Given a cell array of 8K(8192).

Clock cycle=4

M.JOSHNA

Clock Rate=133MHZ

No of cycles to refresh all rows =8192*4 =32,768

Time needed to refresh all rows=32768/133*10=246*10-6 sec=0.246sec
Refresh Overhead=0.246/64

Refresh Overhead =0.0038

Rambus Memory:

The usage of wide bus is expensive.

Rambus developed the implementation of narrow bus

Rambus technology is a fast signaling method used to transfer information between chips.

[Instead of using signals that have voltage levels of either 0 or Vsupply to represent the
logical values, the signals consists of much smaller voltage swings around a reference voltage
Vref.

[The reference Voltage is about 2V and the two logical values are represented by 0.3V
swings above and below Vref

[This type of signaling is generally is known as Differential Signalling.

[Rambus provides a complete specification for the design of communication links (Special
Interface circuits) called as Rambus Channel.

@ Rambus memory has a clock frequency of 400MHZ. The data are transmitted on both the
edges of the clock so that the effective data transfer rate is S00MHZ.

[The circuitry needed to interface to the Rambus channel is included on the chip. Such
chips are known as Rambus DRAMs (RD RAM).

Rambus channel has,
[9 Data lines(1-8 Transfer the data,9th linellparity checking).
[Control line

Bl Power line

A two channel rambus has 18 data lines which has no separate address lines. It is

M.JOSHNA

also called as Direct RD RAM’s. Communication between processor or some other device
that can serves as a master and RDRAM modules are serves as slaves, is carried out by
means of packets transmitted on the data lines.

There are 3 types of packets. They are,
Bl Request

[Acknowledge

B Data

Types of Read-only Memory (ROM)

I Both SRAM and DRAM chips are volatile, which means that they lose the stored
information if power is turned off.

Bl Many application requires Non-volatile memory (which retain the stored

information if power is turned off).

[l Eg: Operating System software has to be loaded from disk to memory which

[l requires the program that boots the Operating System ie. It requires non-volatile memory.
I Non-volatile memory is used in embedded system.

[Since the normal operation involves only reading of stored data ,a memory of this type is
called ROM.

¥
Bit line

Word hne

& Connected to store a)

@] Notl connected to store a

At Logic value ‘0’ B Transistor (T) is connected to the ground point(P). Transistor switch is
closed & voltage on bitline nearly drops to zero.

At Logic value ‘1’ [Transistor switch is open.

M.JOSHNA

The bitline remains at high voltage.

To read the state of the cell, the word line is activated.

A Sense circuit at the end of the bitline generates the proper output value.
Types of ROM:

Different types of non-volatile memory are,

PROM

EPROM

EEPROM

B Flash Memory

PROM:-Programmable ROM:

I PROM allows the data to be loaded by the user.

B Programm ability is achieved b y inserting a fuse at point P in a ROM cell .
[Before it is programmed, the memory contains all 0“s

[The user can insert 1s at the required location by burning out t he fuse at these locations
using high-current pulse.

[This process is irreversible.

Merit:
[It provides flexibility.
[It is faster.

[@ It is less expensive because they can be programmed directly by the user.

EPROM:-Erasable reprogrammable ROM:

[l EPROM allows the stored data to be erased and new data to be loaded.

@ In an EPROM cell, a connection to ground is always made at P and a special transistor is
used, which has the ability to function either as a normal transistor or as a disabled
transistor that is always turned off.

M.JOSHNA

[This transistor can be programmed to behave as a permanently open switch, by injecting
charge into it that becomes trapped inside.

[l Erasure requires dissipating the charges trapped in the transistor of memory cells. This can
be done by exposing the chip to ultra-violet light, so that EPROM chips are mounted in
packages that have transparent windows.

Merits:
It provides flexibility during the development phase of digital system.

It is capable of retaining the stored information for a long time.

Demerits:

[The chip must be physically removed from the circuit for reprogramming and its entire
contents are erased by UV light.

Electrically erasable programmable read-only memory (EEPROM)

Electrically erasable programmable read-only memory (EEPROM) chips that can be
electrically programmed and erased. EEPROM s are typically changed 1 byte at time. Erasing
EEPROM takes typically quite long. The drawback of EEPROM is their speed. EEPROM chips
are too slow to use in many products that make quick changes to the data stored on the
chip. Typically EEPROMs are found in electronics devices for storing the small amounts of
nonvolatile data in applications where speed is not the most important. Small EEPROMs with
serial interfaces are commonly found in many electronics devices.

Flash Memory:
[In EEPROM, it is possible to read & write the contents of a single cell.

[l In Flash device, it is possible to read the contents of a single cell but it is only possible to
write the entire contents of a block.

[@ Prior to writing, the previous contents of the block are erased. Eg. In MP3 player, the flash
memory stores the data that represents sound.

[@ Single flash chips cannot provide sufficient storage capacity for embedded system
application.

There are 2 methods for implementing larger memory modules consisting of number of
chips. They are,

o Flash Cards

M.JOSHNA

o Flash Drives.

Merits:

Flash drives have greater density which leads to higher capacity & low cost per bit.
It requires single power supply voltage & consumes less power in their operation.
Flash Cards:

One way of constructing larger module is to mount flash chips on a small card.
Such flash card have standard interface.

[The card is simply plugged into a conveniently accessible slot.

[l Its memory size are of 8,32,64MB.

[Eg:A minute of music can be stored in 1MB of memory. Hence 64MB flash cards

can store an hour of music.

Flash Drives:

[l Larger flash memory module can be developed by replacing the hard disk drive.
[The flash drives are designed to fully emulate the hard disk.

[The flash drives are solid state electronic devices that have no movable parts.

Merits:
[They have shorter seek and access time which results in faster response.

[They have low power consumption which makes them attractive for battery driven
application.

They are insensitive to vibration.

Demerits:

The capacity of flash drive (<1GB) is less than hard disk(>1GB).
It leads to higher cost per bit.

Flash memory will deteriorate after it has been written a number of times(typically at least
1 million times.)

M.JOSHNA

SPEED.SIZE COST:

Characteristics SRAM DRAM Magnetis Disk

Speed Very Fast Slower Much slower than
DRAM

Size Large Small Small

Cost Expensive Less Expensive Low price

Magnetic Disk:
* A huge amount of cost effective storage can be provided by magnetic disk:The
main memory can be built with DRAM which leaves SRAM’s to be used in
smaller units where speed is of essence.

Memory Speed Size Cost

Registers Very high Lower Very Lower

Primary cache High Lower Low

Secondary cache Low Low Low

Main memory Lower than High High
Seconadry cache

Secondary Very low Very High Very High

Memory

4.4 Cache Memory

Ideally, computer memory should be fast, large and inexpensive. Unfortunately, it is
impossible to meet all the three requirements simultaneously. Increased speed and size are
achieved at increased cost. Very fast memory systems can be achieved if SRAM chips are
used. These chips are expensive and for the cost reason it is impracticable to build a large
main memory using SRAM chips. The alternative used to use DRAM chips for large main
memories. The processor fetches the code and data from the main memory to execute the
program. The DRAMs which form the main memory are slower devices. So it is necessary to
insert wait states in memory read/write cycles. This reduces the speed of execution. The
solution for this problem is in the memory system small section of SRAM is added along with
the main memory, referred to as cache memory. The program which is to be executed is
loaded in the main memory, but the part of the program and data accessed from the cache
memory. The cache controller looks after this swapping between main memory and cache
memory with the help of DMA controller, Such cache memory is called secondary cache.
Recent processors have the built in cache memory called primary cache. The size of the
memory is still small compared to the demands of the large programs with the voluminous
data. A solution is provided by using secondary storage, mainly magnetic disks and magnetic
tapes to implement large memory spaces, which is available at reasonable prices. To make
efficient computer system it is not possible to rely on a single memory component, but to
employ a memory hierarchy which uses all different types of memory units that gives
efficient computer system. A typical memory hierarchy is illustrated below in the figure:

M.JOSHNA

Fig:Memory Hierarchy

Processor

|\'L‘_‘,l|\lL‘l'\

Increasing Increasing Increasing
s12¢ \‘\g'k'\’ COSL per bit
Primary

cache I l 4‘
A

B

SCC (illxl.ll_\
Cac Ilk'

I

Main

meemaory
A
Y
‘} f\]:l;'ll&‘llk disk

secondary
memory

I Y

e Fastest access is to the data held in processor registers. Registers are at the top of the
memory hierarchy.

e Relatively small amount of memory that can be implemented on the processor chip. This is
processor cache.

* Two levels of cache. Level 1 (L1) cache is on the processor chip. Level 2 (L2) cache is in
between main memory and processor.

e Next level is main memory, implemented as SIMMs. Much larger, but much slower than
cache memory.

e Next level is magnetic disks. Huge amount of inexpensive storage.

* Speed of memory access is critical, the idea is to bring instructions and data that will be
used in the near future as close to the processor as possible.

The effectiveness of cache mechanism is based on the property of “ Locality of reference’.

Locality of Reference:

M.JOSHNA

Many instructions in the localized areas of the program are executed repeatedly during
some time period and remainder of the program is accessed relatively infrequently.

It manifests itself in 2 ways. They are,
Temporal(The recently executed instruction are likely to be executed again very soon.)

Spatial(The instructions in close proximity to recently executed instruction are also likely to
be executed soon.) If the active segment of the program is placed in cache memory, then the
total execution time can be reduced significantly.

The term Block refers to the set of contiguous address locations of some size.

The cache line is used to refer to the cache block.

Fig:Use of Cache Memory

Main

memory

Processor [«———=] Cache |=—»

[l The Cache memory stores a reasonable number of blocks at a given time but this number
is small compared to the total number of blocks available in Main Memory.

[@ The correspondence between main memory block and the block in cache memory is
specified by a mapping function.

[@ The Cache control hardware decide that which block should be removed to create space
for the new block that contains the referenced word.

The collection of rule for making this decision is called the replacement algorithm.

The cache control circuit determines whether the requested word currently exists in the
cache.

If it exists, then Read/Write operation will take place on appropriate cache location. In this
case Read/Write hit will occur.

M.JOSHNA

[In a Read operation, the memory will not involve.

The write operation is proceeding in 2 ways. They are,

o Write-through protocol

o Write-back protocol

Write-through protocol:

Here the cache location and the main memory locations are updated simultaneously.
Write-back protocol:

This technique is to update only the cache location and to mark it as with associated flag
bit called dirty/modified bit

[The word in the main memory will be updated later, when the block containing this
marked word is to be removed from the cache to make room for a new block.

[If the requested word currently not exists in the cache during read operation, then read
miss will occur.

[To overcome the read miss Load — through / Early restart protocol is used.
Read Miss:

The block of words that contains the requested word is copied from the main memory into
cache.

Load - through:

] After the entire block is loaded into cache, the particular word requested is forwarded to
the processor.

[If the requested word not exists in the cache during write operation, then Write Miss will
occur.

[If Write through protocol is used, the information is written directly into main memory.

[If Write back protocol is used then block containing the addressed word is first brought
into the cache and then the desired word in the cache is over-written with the new
information.

Cache Memories — Mapping Functions

First generation processors, those designed with vacuum tubes in 1950 or those designed
with integrated circuits in 1965 or those designed as microprocessors in 1980 were generally
about the same speed as main memory. On such processors, this naive model was perfectly

M.JOSHNA

reasonable. By 1970, however, transistorized supercomputers were being built where the
central processor was significantly faster than the main memory, and by 1980, the difference
had increased, although it took several decades for the performance difference to reach
today's extreme.

Solution to this problem is to use what is called a cache memory between the central
processor and the main memory. Cache memory takes advantage of the fact that, with any
of the memory technologies available for the past half century, we have had a choice
between building large but slow memories or small but fast memories. This was known as
far back as 1946, when Berks, Goldstone and Von Neumann proposed the use of a memory
hierarchy, with a few fast registers in the central processor at the top of the hierarchy, a large
main memory in the middle, and a library of archival data, stored off-line, at the very
bottom.

A cache memory sits between the central processor and the main memory. During any
particular memory cycle, the cache checks the memory address being issued by the
processor. If this address matches the address of one of the few memory locations held in
the cache, the cache handles the memory cycle very quickly; this is called a cache hit. If the
address does not, then the memory cycle must be satisfied far more slowly by the main
memory; this is called a cache miss.

data
CrU MEM

address

U U

CACHE

Figure T:Adding s cache to the naive view

The correspondence between the main memory and cache is specified by a Mapping
function. When the cache is full and a memory word that is not in the cache is referenced,
the cache control hardware must decide which block should be removed to create space for
the new block that constitutes the Replacement algorithm.

Mapping Functions

There are three main mapping technigues which decides the cache organization:
1. Direct-mapping technique

2. Associative mapping Technique

3. Set associative mapping technique

To discuss possible methods for specifying where memory blocks are placed in the cache, we
use a specific small example, a cache consisting of 128 blocks of 16 word each, for a total of

M.JOSHNA

2048(2k) word, and assuming that the main memory is addressable by a 16-bit address. The
main memory has 64k word, which will be viewed as 4K blocks of 16 word each, the
consecutive addresses refer to consecutive word.

Direct Mapping Technique

The cache systems are divided into three categories, to implement cache system. As shown
in figure, the lower order 4-bits from 16 words in a block constitute a word field. The second
field is known as block field used to distinguish a block from other blocks. Its length is 7-bits,
when a new block enters the cache; the 7-bit cache block field determines the cache
position in which this block must be stored. The third field is a Tag field, used to store higher
order 5-bits of the memory address of the block, and to identify which of the 32blocks are
mapped into the cache.

Figure 8:Muain Memory Address

It is the simplest mapping technique, in which each block from the main memory has only
one possible location in the cache organization. For example, the block | of the main
memory maps on to block i module128 of the cache. Therefore, whenever one of the main
memory blocks 0, 128, 256, Is loaded in the cache, it is stored in the block 0. Block 1,
129, 257,..... are stored in block 1 of the cache and so on.

Main memory
Cache DR
| tag Block O Block1
tag Block 1
Block 127
tag Block 127 Block 128
Block 129
Block 255

Figure 9:Direct Mapped Cache

block is present. This is called associative-mapping technique. It gives the complete freedom
in choosing the cache location in which to place the memory block.

M.JOSHNA

Cache
| = Block O
| Block 1

22 | Block 127

Main memory

Block O

Block 1

Block i

Block 4035

Figure 10: Assoviative mapped cache

Set-Associative Mapping

It is a combination of the direct and associative-mapping techniques can be used. Blocks of
the cache are grouped into sets and the mapping allows a block of main memory to reside in
any block of the specific set. In this case memory blocks 0, 64,128......4032 mapped into
cache set 0, and they can occupy either of the two block positions within this set. The cache
might contain the desired block. The tag field of the address must then be associatively

compared to the tags of the two blocks of the set to check if the desired block is present this

two associative search is simple to implement.

Cache
Set Il{ tag Block 0
tag Block 1
tag
Block 2
st Hag | <{—
oc
t
Set 63 =R Block 126
tag Block 127
Tag Set Word
6

| Main memory address

Figure 11: Set- Associative Mapped Cache

Main memory

Block 0

Block 1

Block B3

Black B4

Black 65

Block 127

Block 128

M.JOSHNA

Replacement Algorithms

In a direct-mapped cache, the position of each block is fixed, hence no replacement strategy
exists. In associative and set-associative caches, when a new block is to be brought into the
cache and all the Positions that it may occupy are full, the cache controller must decide
which of the old blocks to overwrite. This is important issue because the decision can be
factor in system performance.

The objective is to keep blocks in the cache that are likely to be referenced in the near
future. Its not easy to determine which blocks are about to be referenced. The property of
locality of reference gives a clue to a reasonable strategy. When a block is to be over written,
it is sensible to overwrite the one that has gone the longest time without being referenced.
This block is called the least recently used(LRU) block, and technique is called the LRU
Replacement algorithm.

The LRU algorithm has been used extensively for many access patterns, but it can lead to
poor performance in some cases. For example, it produces disappointing results when
accesses are made to sequential elements of an array that is slightly too large to fit into the
cache. Performance of LRU algorithm can be improved by introducing a small amount of
randomness in deciding which block to replace.

Example of mapping techniques

We now consider a detailed example to illustrate the effects of different cache mapping
techniques. Assume that a processor has separate instruction and data caches. To keep
the example simple, assume the data cache has space for only eight blocks of data. Also
assume that each block consists of only one 16-bit word of data and the memory is
word-addressable with 16-bit addresses. (These parameters are not realistic for actual
computers, but they allow us to illustrate mapping techniques clearly.) Finally, assume
the LRU replacement algorithm is used for block replacement in the cache.

Let us examine changes in the data cache entries caused by running the following
application: A 4 x 10 array of numbers, each occupying one word, is stored in main
memory locations 7A00 through 7A27 (hex). The elements of this array, A, are stored in
column order, as shown in Figure 5.18. The figure also indicates how tags for different
cache mapping techniques are derived from the memory address. Note that no bits are
needed to identify a word within a block, as was done in Figures 5.15 through 5.17,
because we have assumed that each block contains only one word. The application
normalizes the elements of the first row of A with respect to the average value of the
elements in the row. Hence, we need to compute the average of the elements in the row

M.JOSHNA

(TA00)
(7A01)
(TA02)
(7A03)
(7A04)

(7A24)
(7A25)
(TA26)
(7A27)

o o o o o
— b e h e

== R - R -~ |

]
1
]
1

P e b ek

1
]
1
1

Memory address

o o O O

oo o o

000000000
000000001
000000010
000000011
000000100

000100100
000100101
000100110
00010041 141

~s— Tag for direct mapped —

-«——— Tag for set-associative ———

Contents

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(1,9)

A(2,9)

A(3,9)

- Tag for associative —————

Figure 5.18 An arroy stored in the main memory.

SUM =0

for j;=0to 9 do
end

AVE :=SUM / 10

for i:= 9 downto 0 do
A(0,i) := A(0,i) / AVE

end

SUM := SUM + A(0])

Figure 5.19 Task for example in
Section 5.5.3.

M.JOSHNA

o~ i N oo i

! Contents of data cache after pass:
i e e T
Block | . , . N _ . . . _ !
pﬂiﬁ:}n ;=1EJ=3 ;:5;;:7 _;:93;:6 iz=4ti=21i=01
0 A00) | A©2) | ADA) | A0S) | AD8) | A0S) | A(04) | AD.2) | A(D0)
. - i
2 i i
3 i
4 L A(0]) : A03) | A(05) | AQT) | AD9) AD,T) | A05) | AD.3) | A1)
i T ;] : i
3 4 ¢ _1 ! ; ; |
| SN ATNRHSYT, PP i SR | RPN S — e ¥ e {
e L 1 T 1 T |
(O N R

Figure 5.20 Contents of a directmapped data cache.

and divide each element by that average. The required task can be expressed as
A(0,i)

(Z)-040,0) /10

Figure 5.19 gives the structure of a program that corresponds to this task. In a machine
language implementation of this program, the array elements will be addressed as
memory locations. We use the variables SUM and AVE to hold the sum and average
values, respectively. These variables, as well as index variables i and j, will be held in
processor registers during the computation.

A0,i) « fori =0,1,...,9

Direct mapped Cache:

In a direct-mapped data cache, the contents of the cache change as shown in
Figure 5.20. The columns in the table indicate the cache contents after various passes
through the two program loops in Figure 5.19 are completed. For example, after the
second pass through the first loop (j = 1), the cache holds the elements A(0, 0) and

A(0, 1). These elements are in block positions () and 4, as determined by the three least-
significant bits of the address. During the next pass, the A(0, 0) element is replaced by
A(0, 2), which maps into the same block position. Note that the desired elements map
into only two positions in the cache, thus leaving the contents of the other six positions
unchanged from whatever they were before the normalization task was executed.

M.JOSHNA

After the tenth pass through the first loop (j = 9), the elements A(0, 8) and A(0, 9)
are found in the cache. Since the second loop reverses the order in which the elements
are handled, the first two passes through this loop (i =9, 8) will find the required data
in the cache. When i = 7, the element A(0, 9) is replaced with A(0, 7). When i = 6,
element A(0, 8) is replaced with A(0, 6), and so on. Thus, eight elements are replaced
while the second loop is executed.

Associate mapped cache:

Figure 5.21 presents the changes if the cache is associative-mapped. During the
first eight passes through the first loop, the elements are brought into consecutive block
positions, assuming that the cache was initially empty. During the ninth pass (j = 8),
the LRU algorithm- chooses A (0, 0) to be overwritten by A(0, 8). The next and last
pass through the j loop sees A(0, 1) replaced by A (0, 9). Now, for the first eight passes
through the second loop (i = 9, 8,, 2) all required elements are found in the cache.
When i = 1, the element needed is A(0, 1), so it replaces the least recently used
element, A(0, 9). During the last pass, A(0, 0) replaces A(0, 8).

In this case, when the second loop is executed, only two elements are not found in
the cache. In the direct-mapped case, eight of the elements had to be reloaded during
the second loop. Obviously, the associative-mapped cache benefits from the complete
freedom in mapping a memory block into any position in the cache. Good utilization

[e = e ey

é Contents of data cache afier pass:

Block | . _
position | /

j=8§j=9!r—1 ;:=u§

0 |AWQD) AOS) “a08) | A0g) | AQD) |

AL | A0 | CA09) | AQY) | AQ1)
A02) | A02) | AQ2) | A02) | AD2)
A(3) [AD3) | AQ) | A©3) | ADD) |
A 4}"}"5{(6 4) | AO, 1 A4 | AGA) |
TAQ5) | A0S) | AQS) LA0S) | ADS)
) *‘.ﬁ?r_‘f’?_;._%E.E?..._._.f}.(?__ﬁl_ AQS) | A0S
|A0T) | AQT) | AQT) | AGT) | AGT)

| R ..“.. EREARCIAG BRI A Il fy el SRty

-1 On W R W B e

Figure 5.21 Contents of an associafive-mapped
data cache.

M.JOSHNA

I —— {

Contents of data cache after pass: !

0 TS R IR B
%;j=3?j-7'=j=9§£=_li-2éi—0‘

I el N D |

{AQ0) | A04) AD8) | A04) | AD4) A{O 0
TAQD) ADS) A0Y) F ADS) ?A(ﬂ 5) AQD)

Sl | A0,2) | A(DS) ADS) | ADS) | AD) | ‘A02) |
| [A(03) | A(0,7) [A7) [A7) | A, 3) | A0
AN jws

: ; | |
e T e

e ¥ w sk .-~ W (R N

Figure 5.22 Contents of a set-associative-mapped data cache.

of this cache also occurred because we chose to reverse the order in which the elements
are handled in the second loop of the program. It is interesting to consider what would
happen if the second loop dealt with the elements in the same order as in the first loop
(see Problem 5.12). Using the LRU algorithm, all elements would be overwritten before
they are used in the second loop. This degradation in performance would not occur if
a random replacement algorithm were used.

Set Associative mapped cache:

For this example, we assume that a set-associative data cache is organized into two
sets, each capable of holding four blocks. Thus, the least-significant bit of an address
determines which set the corresponding memory block maps into. The high-order 15
bits constitute the tag.

Changes in the cache contents are depicted in Figure 5.22. Since all the desired
blocks have even addresses, they map into set 0. Note that, in this case, six elements
must be reloaded during execution of the second loop.

Even though this is a simplified example, it illustrates that in general, associative
mapping performs best, set-associative mapping is next best, and direct mapping is the
worst. However, fully associative mapping is expensive to implement, 5o set-associative
mapping is a good practical compromise.

4.5 Performance Considerations:

Two Key factors in the commercial success are the performance & cost ie the best possible
performance at low cost.

M.JOSHNA

Bl A common measure of success is called the Price/ Performance ratio. Performance
depends on how fast the machine instruction are brought to the processor and how fast
they are executed.

[To achieve parallelism(ie. Both the slow and fast units are accessed in the same
manner),interleaving is used.

Interleaving:

If the main memory system is divided into a number of memory modules. Each module
has its own address buffer register (ABR) and data buffer register (DBR).

@ Memory access operations may proceed in more than one module at the same time. Thus
the aggregate rate of transmission of words to and from the main memory system can be
increased.

[l Two methods of address layout are indicated they are
[Consecutive words in a module

[l Consecutive words in a consecutive module

Consecutive words in a module

- k bits —= m bits

Module Address in module MM address

i — _,_+,.._ R o

: |ABR|DBR 1 ABR | DBR ABR | DBR

i

i - L

1 Module "™ Module | ™| Moduk
0 sae i s n=1

{a) Consecutive words in a module

Consecutive words are placed in a module.
[High-order k bits of a memory address determine the module.

[@ Low-order m bits of a memory address determine the word within a module.

M.JOSHNA

[When a block of words is transferred from main memory to cache, only one module is
busy at a time.

Consecutive words in a consecutive module

- m bits -— k bits —=

Address in module Module MM address

L__T._._I Loy)

ABR|DBR| | |ABR|DBR| : |ABR|DBR
J 2
Module [~ | Module [~ | Module [*~
0 i 2-1

{b) Consecutive words in consecutive modules

Consecutive words are located in consecutive modules.
[l Consecutive addresses can be located in consecutive modules.

@ While transferring a block of data, several memory modules can be kept busy at the same

time.
[This is called interleaving

[When requests for memory access involve consecutive addresses, the access will be to

different modules.

[Since parallel access to these modules is possible, the average rate of fetching words from

the Main Memory can be increased.

Example:

M.JOSHNA

The effect of imterleaving is substantial. Consider the time needed to transfer a block
of data firom the main memory to the cache when a read miss occurs. Suppose that a
cache with B-word blocks is used, similar to our examples in Section 5.5, On a read
miss, the block that contains the desired word must be copied from the memory into
the cache. Assame that the hardware has the following propecties. It takes one clock
cycle to send an address to the main memory. The memory is built with relatively slow
DRAM chips that allow the first word to be accessed in B cycles, but subseguert words
of the block are accessed in 4 clock cycles per word. {Recall from Section 5.2.3 that,
when consecutive locations in a DRAM are read from a given row of cells, the row
address is decoded only once. Addresses of consecutive columns of the amray arc then
applied to access the desired words, which takes only half the time per access.) Also,
one clock cycle is needed to send one word to the cache.

If a single memory module is used, then the time needed to load the desired block
into the cache is

1+B4+ (T x4)+ 1 = 38 cycles

Suppose now that the memory is constructed as four interleaved modules, using the
scheme in Figure 5.25&. When the starting address of the block arrives at the memory,
all four modules begin accessing the required data, using the high-crder bits of the
address. After 8 clock cycles, each module has one word of data in its DBER. These
words are transferred to the cache, one word at a time, during the next 4 clock cycles.
Daaring this time, the next word in cach module is accessed. Then it takes another 4
cycles to transfer these words to the cache. Therefore, the total time needed to load the

block from the interleaved memory is
1+ 8 4+ 4= 17T cycles
Thus, interleaving reduces the block transfer time by more than a factor of 2.

-

Hit Rate and Miss Penalty

An excellent indicator of the effectiveness of a particular implementation of the memory
hierarchy is the success rate in accessing information at various level of the hierarchy. A
successful access to data in a cache is called a hit.

The number of hits stated as fraction of all attempted access is called the hit rate, and the
miss rate is the number of misses stated as a fraction of attempted accesses.

[@ Hit rate can be improved by increasing block size, while keeping cache size constant.
[@ Block sizes that are neither very small nor very large give best results.

[@ Miss penalty can be reduced if load-through approach is used when loading new blocks
into cache.

Example:

M.JOSHNA

Consider now the impact of the cache on the overall performance of the computer. Let
h be the hit rate, M the miss penalty, that is, the time to access information in the main
memory, and C the time to access information in the cache. The average access time
experienced by the processor is

Igug - hC'{" {1 S k)M

We use the same parameters as in Example 5.1. If the computer has no cache, then,
using a fast processor and a typical DRAM main memory, it takes 10 clock cycles for
each memory read access. Suppose the computer has a cache that holds 8-word blocks
and an interleaved main memory. Then, as we showed in Section 5.6.1, 17 cycles are

needed to load a block into the cache. Assume that 30 percent of the instructions in
a typical program perform a read or a write operation, which means that there are
130 memory accesses for every 100 instructions executed. Assume that the hit rates
in the cache are 0.95 for instructions and 0.9 for data. Let us further assume that the
miss penalty is the same for both read and write accesses. Then, a rough estimate of

the improvement in performance that results from using the cache can be obtained as
follows:

Time without cache _ 130 x 10 _ 504
Time with cache ~ 100(0.95 x 1 +0.05 x 17) +30(09x 1 +0.1x17) ~

This result suggests that the computer with the cache performs five times better.

It is also interesting to consider how effective this cache is compared to an ideal
cache that has a hit rate of 100 percent (in which case, all memory references take one
cycle). Our rough estimate of relative performance for these caches is

100(0.95 x 1 +0.05 x 17) + 30(09 x 1 + 0.1 x 17)

=1.98
130

This means that the actual cache provides an environment in which the processor
effectively works with a large DRAM-based main memory that appears to be only two
times slower than the circuits in the cache.

In this example, we made a simplifying assumption that the same clock is used to
access the on-chip cache and the main memory via the system bus. A high-performance
processor is likely to operate under the control of a clock that is much faster than the
system bus clock, perhaps up to ten times faster. Let us consider the impact of a cache
in a system of this type.

Example 2:

M.JOSHNA

Suppose that there is a single cache that is implemented on the processor chip and that
the main memory is realized using SDRAM chips. Assume that the system bus clock
is four times slower than the processor clock. As in Example 5.2, assume that a cache
block contains 8 words, and that the hit rates in the cache are 0.95 for instructions and
0.9 for data. The SDRAM timing diagram is similar to Figure 5.9. The only difference
is that there is a burst of 8 data words rather than four. Thus, according to Figure 5.9,
it will take 14 clock cycles from when the RAS signal is asserted to transfer a block
of data between the main memory and the cache. Since the RAS and CAS signals are
generated by the memory controller, as indicated in Figure 5.11, one more cycle is
needed during which the processor sends the address of the first word in a block to the
memory controller. Therefore, a total of 15 cycles is needed to transfer a block. The
cycles shown in Figure 5.9 are the system bus clock cycles. If the processor clock is
four times faster, then it takes 60 processor cycles to transfer an 8-word block to or
from the main memory. Note also that Figure 5.9 indicates that the processor can read
or write a single word in the main memory in 9 bus clock cycles, consisting of the 8
cycles indicated in Figure 5.9 plus one cycle needed to send an address to the memory
coentroller. Hence, 36 processor cycles are needed to access a single word in the main
memory. Yet, the processor accesses a word in the cache in one processor cycle!

Repeating the calculation in Example 5.2 gives:
Time without cache 130 x 36
Time with cache ~ 100(0.95 x 1 + 0.05 x 60) + 30(0.9 x 14 0.1 x 60)

Thus, accounting for the differences between processor and system bus clock speeds
shows that the cache has an even greater positive effect on the performance.

=7.77

Caches on processor chip:

M.JOSHNA

In high-performance processors two levels of caches are normally used. The L1
cache(s) is on the processor chip. The L2 cache, which is much larger, may be im-
plemented externally using SRAM chips. But, a somewhat smaller L2 cache may also
be implemented on the processor chip,

If both L1 and L2 caches are used, the L1 cache should be designed to allow very
fast access by the processor because its access time will have a large effect on the clock
rate of the processor. A cache cannot be accessed at the same speed as a register file
because the cache is much bigger and, hence, more complex. A practical way to speed
up access to the cache is to access more than one word simultaneously and then let the
processor use them cne at a time, This technique is nsed in many commercial processors.

The L2 cache can be slower, bat it should be much larger to ensure a high hit rate.
Its speed is less critical because it only affects the miss penalty of the L1 cache. A
workstation computer may include an 1.1 cache with the capacity of tens of kilobytes
and an L2 cache of several megabytes.

Including an L2 cache further reduces the impact of the main memory speed on
the performance of a computer. The average access time experienced by the processor
in a system with two levels of caches is

Love = RiCy + (1 — hidhaCa + (1 — ky)(1 — h2)M
where

h, is the hit rate in the 1.1 cache.

k- is the hit rate in the L2 cache.

C; is the time to access information in the L1 cache.

C5 1s the time to access information in the L2 cache.

M is the time to access information in the main memory.
The number of misses in the L2 cache, given by the term (1 — A;){1 — A}, should be
low. If both k; and h; are in the 90 percent range, then the number of misses will be

less than 1 percent of the processor’s memory accesses. Thus, the miss penalty M will
be less critical from a performance point of view.

Other enhancements:

Write buffer

@ Write-through:

e Each write operation involves writing to the main memory.

e If the processor has to wait for the write operation to be complete, it slows down the
processor.

® Processor does not depend on the results of the write operation.

e Write buffer can be included for temporary storage of write requests.

M.JOSHNA

* Processor places each write request into the buffer and continues execution.

e If a subsequent Read request references data which is still in the write buffer, then this
data is referenced in the write buffer.

Write-back:
* Block is written back to the main memory when it is replaced.

e If the processor waits for this write to complete, before reading the new block, it is slowed
down.

¢ Fast write buffer can hold the block to be written, and the new block can be read first.

Prefetching
* New data are brought into the processor when they are first needed.
* Processor has to wait before the data transfer is complete.

» Prefetch the data into the cache before they are actually needed, or a before a Read miss
occurs.

» Prefetching can be accomplished through software by including a special instruction in the
machine language of the processor.

[Inclusion of prefetch instructions increases the length of the programs.
e Prefetching can also be accomplished using hardware:

[Circuitry that attempts to discover patterns in memory references and then prefetches
according to this pattern.

Lockup-Free Cache

e Prefetching scheme does not work if it stops other accesses to the cache until the prefetch
is completed.

e A cache of this type is said to be “locked” while it services a miss.
e Cache structure which supports multiple outstanding misses is called a lockup free cache.

e Since only one miss can be serviced at a time, a lockup free cache must include circuits
that keep track of all the outstanding misses.

» Special registers may hold the necessary information about these misses.

4.6 VIRTUAL MEMORY:

M.JOSHNA

[Techniques that automatically move program and data blocks into the physical main
memory when they are required for execution is called the Virtual Memory.

[@ The binary address that the processor issues either for instruction or data are called the
virtual / Logical address.

Bl The virtual address is translated into physical address by a combination of hardware and
software components. This kind of address translation is done by MMU (Memory
Management Unit).

When the desired data are in the main memory, these data are fetched /accessed
immediately.

[If the data are not in the main memory, the MMU causes the Operating system to bring
the data into memory from the disk.

[Transfer of data between disk and main memory is performed using DMA scheme.

Fig: Virtual Memory Organization

Processor
!
{ Virtual address
Data MMU
Physical address
Cache
Data Physical address
Main memory
DMA transfer
Disk storage

Figure 5.26 Virtual memory organization,

Memory management unit (MMU) translates virtual addresses into physical addresses.

M.JOSHNA

e If the desired data or instructions are in the main memory they are fetched as described
previously.

e If the desired data or instructions are not in the main memory, they must be transferred
from secondary storage to the main memory.

* MMU causes the operating system to bring the data from the secondary storage into the
main memory.

Address Translation:

In address translation, all programs and data are composed of fixed length units called
Pages.

The Page consists of a block of words that occupy contiguous locations in the main memory.

The pages are commonly range from 2K to 16K bytes in length. The cache bridge speed up
the gap between main memory and secondary storage and it is implemented in software
techniques.

Each virtual address generated by the processor contains virtual Page number (Low order
bit) and offset(High order bit) Virtual Page number+ Offsetf Specifies the location of a
particular byte (or word) within a page.

Page Table:

It contains the information about the main memory address where the page is stored & the
current status of the page.

Page Frame:

An area in the main memory that holds one page is called the page frame.
Page Table Base Register:

[It contains the starting address of the page table.

[Virtual Page Number+Page Table Base registerlf Gives the address of the corresponding
entry in the page table.ie)it gives the starting address of the page if that page currently
resides in memory.

Control Bits in Page Table:
[@ The Control bit specifies the status of the page while it is in main memory. Function:

The control bit indicates the validity of the page ie) it checks whether the page is actually
loaded in the main memory.

M.JOSHNA

[It also indicates that whether the page has been modified during its residency in the
memory; this information is needed to determine whether the page should be written back
to the disk before it is removed from the main memory to make room for another page.

Fig: Virtual Memory Address Translation

Virtual address from processor

Page table base register

1
S |
Page table address Virtual page number Offset !

\
>

PAGE TABLE

Control Page frame :
bits in memory Page frame Offset

l

Physical address in main memory

The Page table information is used by MMU for every read & write access.

The Page table is placed in the main memory but a copy of the small portion of the page
table is located within MMU.

This small portion or small cache is called Translation Look Aside Buffer (TLB).

This portion consists of the page table entries that corresponds to the most recently
accessed pages and also contains the virtual address of the entry.

M.JOSHNA

Virtual address. from processor

1

f 1
i Virtual page number i Oiffset i

WVirtual page Control Page frame
number bits in memory

L]
L]

Ll'agﬁfrmnn 1 D‘Eacli
-]

Physical address in main memory

Figure 5.28 Use of an associative mapped TLB.

When the operating system changes the contents of page table , the control bit in TLB will
invalidate the corresponding entry in the TLB. Given a virtual address, the MMU looks in TLB
for the referenced page.

[If the page table entry for this page is found in TLB, the physical address is obtained
immediately. If there is a miss in TLB, then the required entry is obtained from the page
table in the main memory & TLB is updated.

B When a program generates an access request to a page that is not in the main memory,
then Page Fault will occur.

The whole page must be brought from disk into memory before an access can proceed.
When it detects a page fault, the MMU asks the operating system to generate an interrupt.

The operating System suspend the execution of the task that caused the page fault and
begin execution of another task whose pages are in main memory because the long delay
occurs while page transfer takes place.

M.JOSHNA

[When the task resumes,either the interrupted instruction must continue from the point of
interruption or the instruction must be restarted.

[If a new page is brought from the disk when the main memory is full,it must replace one of
the resident pages.In that case,it uses LRU algorithm which removes the least referenced
Page.

A modified page has to be written back to the disk before it is removed from the main
memory. In that case,write — through protocol is used.

MEMORY MANAGEMENT REQUIREMENTS:

Management routines are part of the Operating system. Assembling the OS routine into
virtual address sp ace is called “System Space”. The virtual space in which the user
application programs reside is called the “User Space”. Each user space has a separate page
table. The MMU uses the page table to determine the address of the table to be used in the
translation process. Hence by changing the contents of this register, the OS can switch from
one space to another. The process has two stages. They are,

[User State

Bl Supervisor state.

User State: In this state, the processor executes the user program.

Supervisor State: When the processor executes the operating system routines, the
processor will be in supervisor state. Privileged Instruction:

In user state, the machine instructions cannot be executed. Hence a user program is
prevented from accessing the page table of other user spaces or system spaces.

The control bits in each entry can be set to control the access privileges granted to each
program. ie) One program may be allowed to read/write a given page, while the other
programs may be given only red access.

4.7 SECONDARY STORAGE:
The Semi-conductor memories do not provide all the storage capability.

The Secondary storage devices provide larger storage requirements. Some of the Secondary
Storage devices are,

Magnetic Disk
Optical Disk

Bl Magnetic Tapes.

M.JOSHNA

Magnetic Disk:
Magnetic Disk system consists o one or more disk mounted on a common spindle.
A thin magnetic film is deposited on each disk, usually on both sides.

The disks are placed in a rotary drive so that the magnetized surfaces move in close
proximity to read /write heads.

Each head consists of magnetic yoke & magnetizing coil.

Digital information can be stored on the magnetic film by applying the current pulse of
suitable polarity to the magnetizing coil.

[Only changes in the magnetic field under the head can be sensed during the Read
operation.

B Therefore if the binary states 0 & 1 are represented by two opposite states of
magnetization, a voltage is induced in the head only at 0-1 and at 1-0 transition in the bit
stream.

[A consecutive (long string) of 0“s & 1“s are determined by using the clock which is mainly

used for synchronization.

[@ Phase Encoding or Manchester Encoding is the technique to combine the clocking
information with data.

[l The Manchester Encoding describes that how the self-clocking scheme is implemented.

M.JOSHNA

Fig:Mechanical Structure

(a) Mechanical structure (b)) Read/Write head detail

Direction of
magncuzation

S i A e i Ep Bl

(c) Bit representation by phase encoding

The Read/Write heads must be maintained at a very small distance from the moving disk
surfaces in order to achieve high bit densities.

[l When the disks are moving at their steady state, the air pressure develops between the
disk surfaces & the head & it forces the head away from the surface.

[@ The flexible spring connection between head and its arm mounting permits the head to fly
at the desired distance away from the surface.

Wanchester Technology:

[Read/Write heads are placed in a sealed, air — filtered enclosure called the Wanchester
Technology.

In such units, the read/write heads can operate closure to magnetic track surfaces because
the dust particles which are a problem in unsealed assemblies are absent.

Merits

It have a larger capacity for a given physical size. The data intensity is high because the
storage medium is not exposed to contaminating elements.

M.JOSHNA

B The read/write heads of a disk system are movable. The disk system has 3 parts.They are,
o Disk Platter(Usually called Disk)

o Disk Drive(spins the disk & moves Read/write heads)

o Disk Controller(controls the operation of the system.)

Fig:Organizing & Accessing the data on disk

Sector 3. track n = Sector O, track |

Sector 0, track 0

Each surface is divided into concentric tracks.

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the
sector number.

The Read/Write operation start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains identification information.

It helps to find the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.
An unformatted disk has no information on its tracks.

The formatting process divides the disk physically into tracks and sectors and this process
may discover some defective sectors on all tracks.

The disk controller keeps a record of such defects.

M.JOSHNA

The disk is divided into logical partitions. They are,
Primary partition

Secondary partition

In the diag, Each track has same number of sectors.

So all tracks have same storage capacity.

Each surface is divided into concentric tracks.

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the
sector number.

The Read/Write operation start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains identification information.

It helps to find the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.
An unformatted disk has no information on its tracks.

The formatting process divides the disk physically into tracks and sectors and this process
may discover some defective sectors on all tracks.

The disk controller keeps a record of such defects.
The disk is divided into logical partitions. They are,
Primary partition

Secondary partition

In the diag, Each track has same number of sectors.
So all tracks have same storage capacity.

Each surface is divided into concentric tracks.

M.JOSHNA

Each track is divided into sectors. The set of corresponding tracks on all surfaces of a stack of
disk form a logical cylinder.

The data are accessed by specifying the surface number, track number and the
sector number.

The Read/Write operation start at sector boundaries. Data bits are stored serially on each
track.

Each sector usually contains 512 bytes.

Sector header -> contains identification information.

It helps to find the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.
An unformatted disk has no information on its tracks.

The formatting process divides the disk physically into tracks and sectors and this process
may discover some defective sectors on all tracks.

The disk controller keeps a record of such defects.
The disk is divided into logical partitions. They are,
Bl Primary partition

[Secondary partition

In the diag, Each track has same number of sectors.

So all tracks have same storage capacity.

Thus the stored information is packed more densely on inner track than on outer track.
Access time

There are 2 components involved in the time delay between receiving an address and the
beginning of the actual data transfer. They are,

Seek time

Rotational delay / Latency

Seek time — Time required to move the read/write head to the proper track. Latency — The
amount of time that elapses after the head is positioned over the correct track until the
starting position of the addressed sector passes under the read/write head.

M.JOSHNA

Seek time + Latency = Disk access time
Typical disk

One inch disk- weight=1 ounce,

size -> comparable to match book
Capacity -> 1GB

Inch disk has the following parameter
Recording surface=20

Tracks=15000 tracks/surface
Sectors=400.

Each sector stores 512 bytes of data
Capacity of formatted disk=20x15000x400x512=60x109 =60GB
Seek time=3ms

Platter rotation=10000 rev/min
Latency=3ms

Internet transfer rate=34MB/s

Data Buffer / cache

A disk drive that incorporates the required SCSI circuit is referred as SCSI drive. The SCSI can
transfer data at higher rate than the disk tracks.

[An efficient method to deal with the possible difference in transfer rate between disk and
SCSI bus is accomplished by including a data buffer.

[This buffer is a semiconductor memory.

B The data buffer can also provide cache mechanism for the disk (ie) when a read request
arrives at the disk, then controller first check if the data is available in the cache (buffer).

[If the data is available in the cache, it can be accessed and placed on SCSI bus.
[If it is not available then the data will be retrieved from the disk.

Disk Controller:

[The disk controller acts as interface between disk drive and system bus.

[The disk controller uses DMA scheme to transfer data between disk and main memory.

M.JOSHNA

B When the OS initiates the transfer by issuing Read/Write request, the controllers register
will load the following information. They are,

Main memory address(address of first main memory location of the block of words involved
in the transfer)

[Disk address(The location of the sector containing the beginning of the desired block of
words) (number of words in the block to be transferred).

Diskette or Floppy Disk

e spinning platter of special material

¢ Information stored by magnetically

e read/write head positioned by mechanical arm

e Storage capacity is at a few MBs

e Random access

e seek time from 10 to 40 milliseconds

e Easily portable

Optical Disks

e CD-ROM - read only (books, software releases)

* WORM - write once, read many (archival storage)
¢ Laser encoding, not magnetic

® 30-50 ms seek times

* 640MB - 17GB storage capacity

e Cheaper than hard disks per MB of storage capacity, but slower
* portable

» Jukeboxes of optical disks are becoming popular for storing really, really large collections of
data. The Mercury-20 jukebox (no I'm not selling these, just using it as a typical example)
provides access to up to 150 CD-ROM:s, or in other words 94GBs of storage capacity. The
Mercury jukebox takes a maximum of four seconds to exchange and load a disc into a drive,
2.5 seconds to spin up and access the data and 10 seconds to transfer a 6.0 MB file to the
computer or server.

M.JOSHNA

Input/Output Interface:

INPUT-OUTPUT INTERFACES: An interface is a data path between two separate devices in
a computer system. Interface to buses can be classified based on the number of bits that are
transmitted at a given time to serial versus parallel ports. In a serial port, only 1 bit of data is
transferred at a time. Mice and modems are usually connected to serial ports. A parallel port allows
more than 1 bit of data to be processed at once. Printers are the most common peripheral devices
connected to parallel ports. Table 8.4 shows a summary of the variety of buses and interfaces used

in personal computers.

TABLE 5.4

Deseriptions of Buses and Interfaces Used in Personal Computers

Bus/Interface

Desenpbon

PS/2

Industry standard
architecture (ISA)

Extended industry
standard
architecture
(EISA)

Micro channel
architecture

(MCA)

VESA (Video
electronics
standards
association) local
bus (VLLB)

Penpheral
component
interconnect (PCL)

Advaneced graphie
port (AGP)

A type of port (or interface) that can be used to connect mice and
keyboards to the computer. The PS/2 port 1s sometimes called the
IMOUsSe port.

ISA was originally an 8-bit bus and later expanded to a 16-bit bus in
1984, In 1993, Intel and Microsoft introduced a plug and play
IS5 A bus that allowed the computer to automatically detect and set
up computer ISA peripherals such as a modem or sound card.

EISA 15 an enhanced form of ISA, which allows for 32-bat data
transfers, while maintaining support for 8- and 16-bit expansion
boards. However, its bus speed. like [SA, 15 only 8 MHz. EISA s
not widely used, due to 1ts high cost and comphicated nature.

MCA was miroduced by IBM 1 1987, It offered several additional
features over the ISA such as a 32-bit bus, automatically
configured cards and bus mastering for greater efficiency. It is
slightly supernor to EISA, but not many expansion boards were
ever made to fit MCA specifications.

The VESA_ a nonprofit organization founded by NEC, released the
VLB in 1992, Itis a 32-bit bus that had direct access to the system
memory at the speed of the processor, commaonly the 486 CPU
(33 /40 MHz). VLB 2.0 was later released in 1994 and had a
&d-bit bus and a bus speed of 50 MHz.

PCI was infroduced by Intel n 1992, revised in 1993 to version 2.0,
and later revised i 1995 to PCI 2.1. It 15 a 32-bit bus that i1s also
available as a 64-bit bus today. Many modem expansion boards
are connected to PCI slots.

AGP was ntroduced by Intel in 1997, AGP 15 a 32-bit bus designed for
the high demands of 3D graphics. AGP has a direct line to memory,
which allows 3D elements o be stored o the system memory
instead of the video memory. AGP 18 geared towards data-mtensive
graphics cards, such as 3D aceelerators; its design allows for dat
throughput at rates of 266 MB /s.

M.JOSHNA

TABLE

84 Continued

Bus/Interface

Description

Universal serial bus
(USB)

FireWire (IEEE
1394)

Small computer
system interface
(SCSI)

Integrated dnve
clectronics (IDE)

Enhanced integrated
dnove electronics
(EIDE)

PCI-X

Communication and
network nser
(CNE)

USB is an external bus developed by Intel, Compaq, DEC, IBM,
Microsoft, NEC and Northern Telcom. It was released m 1996 with
the Intel 430HX Triton I Mother Board. USB has the capability of
transfernng 12 Mbps, supporting up to 127 devices. Many devices
can be connected o USB ports, which support plug and play.

FireWire 15 a type of external bus, which supports very fast transfer
rates: 400 Mbps. Because of this, FireWire s suitable for
connecting video devices, such as VCRs, to the computer.

SCS11s a type of parallel interface that 15 commonly wsed for mass
storage devices. SCSI can transfer data at rates of 4 MB/s; in
addition, there are several vaneties of SCSI that support higher
speeds: Fast SCSI (10 MB/s), Ulra SCS1 and Fast Wide SCSI
(20 MB/s), as well as Ultra Wide SCSI (40 MB /s).

IDE 15 a commaonly used interface for hard disk drives and
CD-ROM drives. It is less expensive than SCSL bat offers
slightly less in terms of performance.

EIDE 15 an improved version of IDE, which offers better
performance than standard SCSLL It offers transfer rmtes between
4 and 16.60 MB/s.

PCI-X 15 a high pedormance bus that is designed to meet the
increased 1,0 demands of technologies such as Fibre Channel,
Gigabit Ethernet, and Ultra3 SCSI.

CNE was introduced by Intel in 20000, It 15 a specification that
supports audio, modem USB and local area networking interfaces
of come logic chipsets.

Accessing 1/0 Devices:

Accessing I/0 Devices.: In computing, input/output, or I/O, refers to the communication between
an information processing system (computer), and the outside world. Inputs are the signals or data
received by the system, and outputs are the signals or data sent from it. /O devices are used by a
person (or other system) to communicate with a computer.
Some of the input devices are keyboard, mouse, track ball, joy stick, touch screen, digital camera,
webcam, image scanner, fingerprint scanner, barcode reader, microphone and so on. Some of the
output devices are speakers, headphones, monitors and printers. Devices for communication
between computers, such as modems and network cards, typically serve for both input and output.
I/O devices can be connected to a computer through a single bus which enables the exchange of
information. The bus consists of three sets of lines used to carry address, data, and control signals.
Each I/O device is assigned a unique set of addresses. When the processor places a particular
address on the address lines, the device that recognizes this address responds to the commands
issued on the control lines. The processor requests either a read or a write operation, and the

M.JOSHNA

requested data are transferred over the data lines. Figure 5.1 shows the simple arrangement of I/O
devices to processor and memory with single bus.

Processor Main memory

Bus

I/0 Device 1 1/0 Device 2 . I/O Device n

Figure 5.1 A Single bus structure

Memory-mapped I/O: The arrangement of I/O devices and the memory share the same address
space is called memory-mapped I/O. With memory-mapped I/O, any machine instruction that
can access memory can be used to transfer data to or from an I/O device. For example, if
DATALIN is the address of the input buffer associated with the keyboard, the instruction
Move DATAIN,R0

reads the data from DATAIN and stores them into processor register RO. Similarly, the
instruction

Move RO,DATAOUT

sends the contents of register RO to location DATAOUT, which may be the output data buffer of
a display unit or a printer. Most computer systems use memory-mapped I/O. Some processors
have special In and Out instructions to perform I/O transfers.

Figure 5.2 illustrates the hardware required to connect an I/O device to the bus. The address
decoder enables the device to recognize its address when this address appears on the address lines.
The data register holds the data being transferred to or from the processor. The status register
contains information relevant to the operation of the I/O device. Both the data and status registers
are connected to the data bus and assigned unique addresses. The address decoder, the data and
status registers, and the control circuitry required to coordinate I/O transfers constitute the device's
interface circuit.

M.JOSHNA

Address lines

Bus Data lines
Control lines

A
Address Control Data and o
decoder circuits status registers Interface

Input device

Figure 5.2 /O interface for an input device

I/O devices operate at speeds that are vastly different from that of the processor. When a human
operator is entering characters at a keyboard, the processor is capable of executing millions of
instructions between successive character entries. An instruction that reads a character from the
keyboard should be executed only when a character is available in the input buffer of the keyboard
interface. An input character is read only once.

For an input device such as a keyboard, a status flag, SIN, is included in the interface circuit as
part of the status register. This flag is set to 1 when a character is entered at the keyboard and
cleared to 0 once this character is read by the processor. Hence, by checking the SIN flag, the
software can ensure that it is always reading valid data. This is often accomplished in a program
loop that repeatedly reads the status register and checks the state of SIN. When SIN becomes equal
to 1, the program reads the input data register. A similar procedure can be used to control output
operations using an output status flag, SOUT.

Example:

Program-controlled I/0: Consider a simple example of I/O operations involving a keyboard and
a display device in a computer system. The four registers shown in Figure 5.3 are used in the data
transfer operations. Register STATUS contains two control flags, SIN and SOUT, which provide
status information for the keyboard and the display unit, respectively. The two flags KIRQ and
DIRQ in this register are used in conjunction with interrupts. They, and the KEN and DEN bits in
register CONTROL, Data from the keyboard are made available in the DATAIN register, and data
sent to the display are stored in the DATAOUT register.

M.JOSHNA

DATAIN
DATAOUT

STATUS DIRQ | KIRQ sSoU SIN
CONTROL DEN KEN

7 6 5 4 3 2 1 0
Figure 5.3 Registers in keyboard and display interfaces.

The program in Figure 5.4 reads a line of characters from the keyboard and stores it in a memory
buffer starting at location LINE. Then, it calls a subroutine PROCESS to process the input line.
As each character is read, it is echoed back to the display. Register RO is used as a pointer to the
memory buffer area. The contents of RO are updated using the Autoincrement addressing mode so
that successive characters are stored in successive memory locations. Each character is checked to
see if it is the Carriage Return (CR) character, which has the ASCII code 0D (hex). If it is, a Line
Feed character (ASCII code 0A) is sent to move the cursor one line down on the display and
subroutine PROCESS is called. Otherwise, the program loops back to wait for another character
from the keyboard.

In program-controlled I/O the processor repeatedly checks a status flag to achieve the required
synchronization between the processor and an input or output device. The processor polls the
device. There are two other commonly used mechanisms for implementing I/O operations:
interrupts and direct memory access. In the case of interrupts, synchronization is achieved by
having the I/O device send a special signal over the bus whenever it is ready for a data transfer
operation. Direct memory access is a technique used for high-speed I/O devices. It involves having
the device interface transfer data directly to or from the memory, without continuous involvement
by the processor.

Move #LINE.RO Initialize memory pointer.

WAITK TestBit #0.STATUS Test SIN.
Branch=0 WAITK Wait for character to be entered.
Move DATAIN.RI Read character.

WAITD TestBit #L.STATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
Move RL.LDATAOUT Send character to display.
Move RL.(RO)+ Store character and advance pointer.
Compare #$0D.RI Check if Carriage Return.
Branch!=0 WAITK If not. get another character.
Move #$0A.DATAOUT Otherwise. send Line Feed.
Call PROCESS Call a subroutine to process the input line.

Figure 5.4 A program that reads one line from the keyboard, stores it in memory buffer,
and echoes it back to the display.

M.JOSHNA

Interrupts:

Interrupts: Interrupt is a hardware signal to the processor from I/O devices through one of the
control line called interrupt-request line. The routine executed in response to an interrupt request
is called the interrupt-service routine, Interrupts bear considerable resemblance to subroutine calls.
Assume that an interrupt request arrives during execution of instruction i in Figure 4.5. The
processor first completes execution of instruction i. Then, it loads the program counter with the
address of the first instruction of the interrupt-service routine. For the time being, let us assume
that this address is hardwired in the processor. After execution of the interrupt-service routine, the
processor has to come back to instruction i 1. Therefore, when an interrupt occurs, the current
contents of the PC, which point to instruction i 1, must be put in temporary storage in a known
location. A Return from-interrupt instruction at the end of the interrupt-service routine reloads the
PC from that temporary storage location, causing execution to resume at instruction i 1. In many
processors, the return address is saved on the processor stack. Alternatively, it may be saved in a
special location, such as a register provided for this purpose.

Program 1 Program 2
COMPUTE routine PRINT routine
1
2
Interrupt . i
occurs ", +1f .
here ! +—

M

Figure 5.5 Transfer of control through the use of interrupts

The processor must inform the device that its request h been recognized so that it may remove its
interrupt-request signal. This may be accomplished by means of a special control signal on the
bus called an interrupt-acknowledge signal. The execution of an instruction in the interrupt -
service routine that accesses a status or data register in the device interface implicitly informs the
device that its interrupt request has been recognized.

M.JOSHNA

Processor MG HBRE
F 3
¥
Cache
F 3
¥
| Memory-1/O bus
F 3 F F 3 F
¥ ¥ ¥ ¥
1/O /0 1/O
Mai Controlle; Controllen Controlled
ain -

memory “ I
Monitor | DNetwork

Interrupt Hardware:

Interrupt Hardware: In the above discussion, we have assumed that the processor has recognized
the occurrence of an interrupt before proceeding to serve it. Computers are provided with interrupt
hardware capability in the form of specialized interrupt lines to the processor. These lines are used
to send interrupt signals to the processor. In the case of I/O, there exists more than one 1/O device.
The processor should be provided with a mechanism that enables it to handle simultaneous
interrupt requests and to recognize the interrupting device. Two basic schemes can be implemented
to achieve this task. The first scheme is called daisy chain bus arbitration (DCBA) and the second
is called independent source bus arbitration (ISBA).

According to the DCBA (see Fig. 8.6a), I/O devices present their interrupt requests to the interrupt
request line INR (similar to the polling arrangement). Upon recognizing the arrival of an interrupt
request, the processor, through a daisy chained grant line (GL), sends its grant to the requesting
device to start communication with the processor. The GL goes through all devices starting from
the first device nearer to the processor and going to the next device and so on until it reaches the
last device (Device #N). If Device #1 has put a request, then it will hold the grant signal and start
communication with the processor. If, on the other hand, Device #1 has no interrupt request, it will
pass the grant signal to device #2, which will repeat the same procedure, and so on. In the case of
multiple requests, the DCBA arrangement gives highest priority to the device physically nearer to
the processor. The furthest device from the processor has the lowest priority.

M.JOSHNA

According to the ISBA (see Fig. 8.6b), each I/O device has its own interrupt request line, through
which it can send its interrupt request, independent of the other devices. Similarly, each I/O device
has its own grant line, through which it receives the grant signal for its request such that it can start
communicating with the processor. I/O device priority in the ISBA does not depend on the device
location. A priority arbitration circuitry is needed in order to deal with simultaneous interrupt
requests. 8.3.2.

Interrupt in Operating Systems When an interrupt occurs, the operating system gains control.
The operating system saves the state of the interrupted process, analyzes the interrupt, and passes
control to the appropriate routine to handle the interrupt. There are several

INR Line
A r F Y
g
§
Grant Line K)]
p Device #1 — Device #2 —® =+« —»| Device #N
(a)
INR,
B Device #N
GL #N
5 :
'§u g,
L] g
51 e] R
é = Device #2
= e |
i) Gl #2
iNR,
* "
Device #1
GL #1
()

Figure 8.6 Interrupt hardware schemes. (a) Daisy chain interrupt amrangement
(b) Independent interrupt arrangement

types of interrupts, including I/O interrupts. An I/O interrupt notifies the operating system that an
I/O device has completed or suspended its operation and needs some service from the CPU. To

M.JOSHNA

process an interrupt, the context of the current process must be saved and the interrupt handling
routine must be invoked. This process is called context switching. A process context has two parts:
processor context and memory context. The processor context is the state of the CPU’s registers
including program counter (PC), program status words (PSWs), and other registers. The memory
context is the state of the program’s memory including the program and data. The interrupt handler
is a routine that processes each different type of interrupt.

The operating system must provide programs with save area for their contexts. It also must provide
an organized way for allocating and deallocating memory for the interrupted process.When the
interrupt handling routine finishes processing the interrupt, the CPU is dispatched to either the
interrupted process, or to the highest priority ready process. This will depend on whether the
interrupted process is preemptive or nonpreemptive. If the process is nonpreemptive, it gets the
CPU again. First the context must be restored, then control is returned to the interrupts process.

User Processes +
/O Request | | /O Reply

Device Independent Software +
') c |
Device Drivers +

! _ :

Interrupt Handlers Wakeup driver when I/O is done
*
v |
Hardware Perform 1O

Figure 8.7 Layered 1/O software

Figure 8.7 shows the layers of software involved in I/O operations. First, the program issues an
I/O request via an I/O call. The request is passed through to the I/O device.When the device
completes the I/O, an interrupt is sent and the interrupt handler is invoked. Eventually, control is
relinquished back to the process that initiated the I/O.

Examples of interrupt 1/0

Example 1: 80386 Interrupt Architecture The 8086 processors have just two hardware interrupt
pins. These are labeled INTR andNMI.NMI is a nonmaskable
interrupt, which means it cannot be blocked and the processor must respond to it. The NMI input
is usually reserved for critical system functions. The INTR input is a maskable interrupt request
line between the CPU and the programmable interrupt controller (8259A PIC). Interrupts on INTR
can be enabled and disabled using the instructions STI (set interrupt flag) and CLI (clear interrupt
flag), respectively. Interrupt handlers are called interrupt service routines (ISR). The address of
each interrupt service routine is stored in four consecutive memory locations in the interrupt vector
table (IVT). The IVT stores pointers to ISR for each type of interrupt. When an interrupt occurs,
an 8-bit type number is supplied to the processor, which identifies the appropriate entry in this
table.

M.JOSHNA

When an interrupt is generated by a device, it goes to the PIC. Multiple interrupts may be generated
simultaneously. However, they are all buffered by the PIC. The PIC decides which one of these
interrupts should be forwarded to the CPU. To inform the CPU that an outstanding interrupt is
waiting to be processed, the PIC sends an interrupt request (INTR) to the CPU, which then, at the
appropriate time, responds with an interrupt acknowledgment (INTA). At this time, PIC will put
an 8-bit interrupt type number associated with the device on the bus so that the CPU can identify
which interrupt handler to invoke. In the case when several interrupts are pending, PIC will send
next interrupt request to the CPU only after it receives an end of interrupt command from the
current ISR. Figure 8.8 shows the simple protocol that is used to determine which ISR is to be
invoked. In the computer designs that used a single PIC (PC and XT), eight different interrupt

requests are allowed (IRQO-IRQ7). Table 8.1 shows a list of standard interrupt type numbers for
typical devices. When AT was designed, a second PIC was added,

—

l/ Device \ L ey / 82359A _Q\
\ s / im e \ PIC /
S~ o ||

.l
6. Service \

/ ISR \;;;;;n—-_‘_ ‘k -
M

)

— —

Figure 8.8 Interrupt handling in 80x 86

increasing the number of interrupt inputs to 15. Figure 8.9 shows two PICS wired in cascade. One
PIC is designated as master and the other becomes the slave. As shown in the figure, all slave
interrupts are input via IRQ1 of the master. In general, eight different slaves can be accommodated
by a single PIC.

Example 2: ARM Interrupt Architecture ARM stands for Advanced RISC Machines. ARM is
a 16/32-bit architecture that is used for portable devices because of its low power consumption and
reasonable performance. Interrupt requests to the ARM core are collected and controlled by the
interrupt controller, which is called ATIC. The interrupt controller provides an interface to the core
and can collect up to 64 interrupt requests.
The usual sequence of events for interrupts is as follows. Interrupts would be enabled at the source
(such as a peripheral), then enabled in the interrupt controller, and finally, enabled to the core.
When an interrupt occurs at the source, its signal is routed to the interrupt controller then to the

ARM core. In the interrupt controller, the interrupt can be enabled or disabled to the core and can
be assigned a priority

M.JOSHNA

TABLE 8.1 Standard IBM-PC Interrupt Type Numbers

for Typical Devices

IRQ Interrupt
Device no. type number
Programmable interval timer 0 08H
Keyboard 1 09H
Cascading to the second PICs 2 Reserved
Serial communication port (COM2) 3 0BH
Serial communication port (COM1) 4 OCH
Fixed disk controller 5 ODH
Floppy disk controller 6 OEH
Parallel printer controller 7 OFH
82994 Master
NTR
- INT —
INTA "
O INTA kel
— Y L
—| T3 il
—] SWEN "t
Adddress bus -+
L 4 b 4 h 4
INT -—
) INTA .
.‘7
m— 8
l——
i —
| T8
|——
-] TREN —
Address bus o E—
BI50A Slave

TR
28]
B2
IR(3
R4
RS
1:Te
R7

RS
RO

IR10
moll
Rz
13
R4

RIS

Figure 8.9 Fifieen different intermupts are supponed by two PICs wined in cascade

M.JOSHNA

level. Once the interrupt request reaches the core, it will halt the core from its normal processing
routines to allow the interrupt request to be serviced. Among the different interrupt requests that
the ARM core can handle are IRQ and FIQ requests. The IRQ (normal interrupt request) is used
for general-purpose interrupt handling. It has a lower priority than an FIQ (fast interrupt request)
and is masked out when an FIQ sequence is entered. The FIQ is used to support highspeed data

transfer or channel processes.
TABLE 8.2 Interrupt Vector Table

Exception type Mode Address

Reset Supervisor 0 00000000
Undefined instructions Undefined 0 00000004
Software interrupts (SWI) Supervisor 03 00000008
Prefetch abort Abort 0> 0000000C
Data abort Abort 0x 00000010
IRQ (Normal interrupt) IRQ 0x 00000018
FIQ (Fast interrupt) FI1Q 0 0000001C

Similar to the 8086, the addresses of the interrupt handlers are stored in a vector table, which is
shown in Table 8.2. For example, when an IRQ is detected by the core, it accesses address 018 of
the vector table and executes the instruction loaded in that address. Normally, the instruction found
at 018 of the vector table is of the form: LDR PC, IRQ Handler (load the address of the IRQ
interrupt handler in the PC). When an FIQ is detected by the core, it accesses address 01C of the
vector table and executes the instruction loaded in that address. Normally, the instruction found at
01C of the vector table is of the form: LDR PC, FIQ Handler.

Enabling and Disabling Interrupts:

ENABLING AND DISABLING INTERRUPTS: There are many situations in which the
processor should ignore interrupt requests. For example, in the case of the Compute-Print program
of Figure 5.5, an interrupt request from the printer should be accepted only if there are output lines
to be printed. After printing the last line of a set of n lines, interrupts should be disabled until
another set becomes available for printing.

A simple way is to provide machine instructions, such as Interrupt-enable and Interruptdisable.
The processor hardware ignores the interrupt-request line until the execution of the first instruction
of the interrupt-service routine has been completed. Then, by using an Interrupt-disable instruction
as the first instruction in the interrupt-service routine, the programmer can ensure that no further
interruptions will occur until an Interrupt-enable instruction is executed. Typically, the Interrupt-
enable instruction will be the last instruction in the interrupt-service routine before the Return-
from-interrupt instruction. The processor must guarantee that execution of the Returnfrom-
interrupt instruction is completed before —further interruption can occur.

The second option, which is suitable for a simple processor with only one interrupt- request line,
is to have the processor automatically disable interrupts before starting the execution of the
interrupt-service routine. After saving the contents of the PC and the processor status register (PS)
on the stack, the processor performs the equivalent of executing an Interrupt -disable instruction.
It is often the case that one bit in the PS register, called Interrupt-enable, indicates whether

M.JOSHNA

interrupts are enabled. An interrupt request received while this bit is equal to 1 will be accepted.
After saving the contents of the PS on the stack, with the Interrupt-enable bit equal to 1, the
processor clears the Interrupt-enable bit in its PS register, thus disabling further interrupts. When
a Return-frominterrupt instruction is executed, the contents of the PS are restored from the stack,
setting the Interrupt-enable bit back to 1. Hence, interrupts are again enabled.

In the third option, the processor has a special interrupt-request line for which the interrupthandling
circuit responds only to the leading edge of the signal. Such a line is said to be edgetriggered. In
this case, the processor will receive only one request, regardless of how long the line is activated.
Hence, there is no danger of multiple interruptions and no need to explicitly disable interrupt
requests from this line. Before proceeding to study more complex aspects of interrupts, let us
summarize the sequence of events involved in handling an interrupt request from a single device.

Assuming that interrupts are enabled, the following is a typical scenario:

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of edge
triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it deactivates the
interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

Handling Multiple Devices:

HANDLING MULTIPLE DEVICES: Let us now consider the situation where a number of
devices capable of initiating interrupts are connected to the processor. Because these devices are
operationally independent, there is no definite order in which they will generate interrupts. For
example, device X may request an interrupt while an interrupt caused by device Y is being
serviced, or several devices may request interrupts at exactly the same time. This gives rise to a
number of questions:

I. How «can the processor recognize the device requesting an interrupt?
2. Given that different devices are likely to require different interrupt -service routines, how can
the processor obtain the starting address of the appropriate routine in each case?
3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?
4. How should two or more simultaneous interrupt requests be handled? If
two devices have activated the line at the same time, it must be possible to break the tie and elect
one of the two requests for service. When the interrupt-service routine for the selected device has
been completed, the second request can be serviced.

Vectored interrupts: To reduce the time involved in the polling process, a device requesting an
interrupt may identify itself directly to the processor. Then, the processor can immediately start
executing the corresponding interrupt-service routine. The term vectored interrupts refers to all
interrupt - handling schemes based on this approach.

M.JOSHNA

A device requesting an interrupt can identify itself by sending a special code to the processor over
the bus. This enables the processor to identify individual devices even if they share a single
interrupt-request line. The code supplied by the device may represent the starting address of the
interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits.
The remainder of the address is supplied by the processor based on the area in its memory where
the addresses for interrupt-service routines are located.

This arrangement implies that the interrupt-service routine for a given device must always start at
the same location. The programmer can gain some flexibility by storing in this location an
instruction that causes a branch to the appropriate routine. In many computers, this is done
automatically by the interrupt-handling mechanism. The location pointed to by the interrupting
device is used to store the starting address of the interrupt-service routine. The processor reads this
address, called the interrupt vector, and loads it into the PC. The interrupt vector may also include
a new value for the processor status register.

In most computers, I/O devices send the interrupt-vector code over the data bus, using the bus
control signals to ensure that devices do not interfere with each other. When a device sends an
interrupt request, the processor may not be ready to receive the interrupt-vector code immediately.
For example, it must first complete the execution of the current instruction, which may require the
use of the bus. There may be further delays if interrupts happen to be disabled at the time the
request is raised. The interrupting device must wait to put data on the bus only when the processor
is ready to receive it. When the processor is ready to receive the interrupt-vector code, it activates
the interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt- vector
code and turning off the INTR signal.

Interrupt nesting: I/O devices should be organized in a priority structure. An interrupt request
from a highpriority device should be accepted while the processor is servicing another request
from a lowerpriority device. A multiple-level priority organization means that during execution of
an interruptservice routine, interrupt requests will be accepted from some devices but not from
others, depending upon the device's priority. To implement this scheme, priority level can be
assigned to the processor that can be changed by the program.
The processor's priority is usually encoded in a few bits of the processor status word. It can be
changed by program instructions that write into the PS. These are privileged instructions, which
can be executed only while the processor is running in the supervisor mode. The processor is in
the supervisor mode only when executing operating system routines. It switches to the user mode
before beginning to execute application programs. Thus, a user program cannot accidentally, or
intentionally, change the priority of the processor and disrupt the system's operation. An attempt
to execute a privileged instruction while in the user mode leads to a special type of interrupt called
a privilege exception.

A multiple-priority scheme can be implemented easily by using separate interrupt- request and
interrupt-acknowledge lines for each device, as shown in Figure 5.7. Each of the interruptrequest
lines is assigned a different priority level. Interrupt requests received over these lines are sent to a

M.JOSHNA

priority arbitration circuit in the processor. A request is accepted only if it has a higher priority
level than that currently assigned to the processor.

Se INTR

(=] -+

@ I [
(=] NT

B

{= 5

Figure 5.7 Implementation of interrupt priority using individual interrupt-request and
acknowledge lines.

Simultaneous request: When simultaneous interrupt requests are arrived from two or more I/O
devices to the processor, the processor must have some means of deciding which request to service
first.

Using a priority scheme such as that of Figure 5.7, the solution is straightforward. The processor
simply accepts the request having the highest priority. If several devices share one interrupt-
request line, as in Figure 5.6, some other mechanism is needed. Polling the status registers of the
I/O devices is the simplest such mechanism. In this case, priority is determined by the order in
which the devices are polled. When vectored interrupts are used, we must ensure that only one
device is selected to send its interrupt vector code. A widely used scheme is to connect the devices
to form a daisy chain, as shown in Figure 5.8. The interruptrequest line INTR is common to all
devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that
the INTA signal propagates serially through the devices. When several devices raise an interrupt
request and the INTR line is activated, the processor responds by setting the INTA line to 1. This
signal is received by device 1. Device 1 passes the signal on to device 2 only if it does not require
any service. If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds
to put its identifying code on the data lines. Therefore, in the daisy-chain arrangement, the device
that is electrically closest to the processor has the highest priority. The second device along the
chain has second highest priority, and so on.

Controlling Device Requests:

CONTROLLING DEVICE REQUESTS: The control needed is usually provided in the form of
an interrupt-enable bit in the device's interface circuit. The keyboard interrupt-enable, KEN, and
display interrupt- enable, DEN, flags in register CONTROL in Figure 5.3 perform this function. If
either of these flags is set, the interface circuit generates an interrupt request whenever the
corresponding status flag in register STATUS is set. At the same time, the interface circuit sets bit
KIRQ or DIRQ to indicate that the keyboard or display unit, respectively, is requesting an interrupt.
If an interrupt-enable bit is equal to 0, the interface circuit will not generate an interrupt request,
regardless of the state of the status flag.
There are two independent mechanisms for controlling interrupt requests. At the device end, an
interrupt-enable bit in a control register determines whether the device is allowed to generate an

M.JOSHNA

interrupt request. At the processor end, either an interrupt enable bit in the PS register or a priority
structure determines whether a given interrupt request will be accepted.

EXCEPTIONS: The term exception is often used to refer to any event that causes an interruption.
Hence, I/O interrupts are one example of an exception.

Recovery from errors: Computers use a variety of techniques to ensure that all hardware
components are operating properly. For example, many computers include an error-checking code
in the main memory, which allows detection of errors in the stored data. If an error occurs, the
control hardware detects it and informs the processor by raising an interrupt. The processor may
also interrupt a program if it detects an error or an unusual condition while executing the
instructions of this program. For example, the OP-code field of an instruction may not correspond
to any legal instruction, or an arithmetic instruction may attempt a division by zero.
When exception processing is initiated as a result of such errors, the processor proceeds in exactly
the same manner as in the case of an I/O interrupt request. It suspends the program being executed
and starts an exception-service routine. This routine takes appropriate action to recover from the
error, if possible, or to inform the user about it. Recall that in the case of an I/O interrupt, the
processor completes execution of the instruction in progress before accepting the interrupt.
However, when an interrupt is caused by an error, execution of the interrupted instruction cannot
usually be completed, and the processor begins exception processing immediately.

Debugging: Another important type of exception is used as an aid in debugging programs. System
software usually includes a program called a debugger, which helps the programmer find errors in
a program. The debugger uses exceptions to provide two important facilities called trace and
breakpoints.

When a processor is operating in the trace mode, an exception occurs after execution of every
instruction, using the debugging program as the exception-service routine. The debugging program
enables the user to examine the contents of registers, memory locations, and so on. On return from
the debugging program, the next instruction in the program being debugged is executed, then the
debugging program is activated again. The trace exception is disabled during the execution of the
debugging program. Breakpoints provide a similar facility, except that the program being
debugged is interrupted only at specific points selected by the user. An instruction called Trap or
Software interrupt is usually provided for this purpose. Execution of this instruction results in
exactly the same actions as when a hardware interrupt request is received. While debugging a
program, the user may wish to interrupt program execution after instruction i. The debugging
routine saves instruction i 1 and replaces it with a software interrupt instruction. When the program
is executed and reaches that point, it is interrupted and the debugging routine is activated. This
gives the user a chance to examine memory and register contents. When the user is ready to
continue executing the program being debugged, the debugging routine restores the saved
instruction that was at location 1 1 and executes a Return-from-interrupt instruction.

Privilege exception: To protect the operating system of a computer from being corrupted by user
programs, certain instructions can be executed only while the processor is in the supervisor mode.
These are called privileged instructions. For example, when the processor is running in the user
mode, it will not execute an instruction that changes the priority level of the processor or that
enables a user program to access areas in the computer memory that have been allocated to other

M.JOSHNA

users. An attempt to execute such an instruction will produce a privilege exception, causing the
processor to switch to the supervisor mode and begin executing an appropriate routine in the
operating system.

Use of Interrupts in Operating Systems:

USE OF INTERRUPTS IN OPERATING SYSTEMS: The operating system (OS) is
responsible for coordinating all activities within a computer. It makes extensive use of interrupts
to perform I/O operations and communicate with and control the execution of user programs. The
operating system incorporates the interrupt-service routines (ISR) for all devices connected to a
computer. Application programs do not perform I/O operations themselves. An operating system
provides a variety of services to application programs. To facilitate the implementation of these
services, most processors have several different software interrupt instructions, each with its own
interrupt vector. They can be used to call different parts of the OS.

e In a computer that has both a supervisor and a user mode, the processor switches its operation
to supervisor mode at the time it accepts an interrupt request. It does so by setting a bit in the
processor status register after saving the old contents of that register on the stack. Thus, when
an application program calls the as by a software interrupt instruction, the processor
automatically switches to supervisor mode, giving the as complete access to the computer's
resources. When the as executes a Return-from-interrupt instruction, the processor status word
belonging to the application program is restored from the stack. As a result, the processor
switches back to the user mode.

o Multitasking is a mode of operation in which a processor executes several user programs at the
same time. A common as technique that makes this possible is called time slicing. when
operating system 1is started, an initialization routine OSINIT called for initialization. OSINIT
loads the starting address of a routine called SCHEDULER in the interrupt vector
corresponding to the timer interrupt. Hence, at the end of each time slice, the timer interrupt
causes this routine to be executed.

e A program, together with any information that describes its current state of execution, is
regarded by the as an entity called a process. A process can be in one of three states: Running,
Runnable, or Blocked. The Running state means that the program is currently being executed.
Assume that program A is in the Running state during a given time slice. At the end of that
time slice, the timer interrupts the execution of this program and starts the execution of
SCHEDULER. This is an operating system routine whose function is to determine which user
program should run in the next time slice. It starts by saving all the information that will be

needed later when execution of program A is resumed. The information saved, which is called

M.JOSHNA

the program state, includes register contents, the program counter, and the processor status
word.

e SCHEDULER selects for execution some other program, B, that was suspended earlier and is
in the Runnable state. It restores all information saved at the time program R was suspended,
including the contents of PS and PC, and executes a Retum-from-interrupt instruction. As a
result, program B resumes execution for T seconds, at the end of which the timer clock raises
an interrupt again, and a context switch to another runnable process takes place. Suppose that
program A needs to read an input line from the keyboard. Instead of performing the operation
itself, it requests I/O service from the operating system. It uses the stack or the processor
registers to pass information to the OS describing the required operation, the I/O device, and
the address of a buffer in the program data area where the line should be placed. Then it
executes a software interrupt instruction. The interrupt vector for s instruction points to the OS
SERVICES. This routine examines the information on the stack and initiates the requested
operation by calling an appropriate OS routine. In our example, it calls, which is a routine
responsible for starting I/O operations.

e While an I/O operation is in progress, the program that requested it cannot continue execution.
Hence, the 10INIT routine sets the process associated with program A into the Blocked state,
indicating to the scheduler that the program cannot resume execution at this time. The 10INIT
routine carries out any preparations needed for the I/O operation, such as initializing address
pointers and byte count, then calls a routine that performs the 1/O transfers. It i1s common
practice in operating system design to encapsulate all software pertaining to a particular device
into a elf-contained module called the device driver. Such a module can be easily added to or
deleted from the OS. We have assumed that the device driver for the keyboard consists of two
routines, KBDINIT and KBDDATA, as shown n Figure 4.1 Oc. The 10INIT routine calls
KBDINIT, which performs any initialization operations needed by the device or its interface
circuit. KBDINIT also enables interrupts in the interface circuit by setting the appropriate bit
in its control register, d then it returns to IOINIT, which returns to OSSERVICES. The
keyboard is now ready to participate in a data transfer operation. It will generate an interrupt
request whenever a key is pressed.

o Following the return to OSSERVICES, the SCHEDULER routine selects another user program
to run. Of course, the scheduler will not select program A, because that program is now in the
Blocked state. The Return-from-interrupt instruction that causes the selected user program to

begin execution will also enable interrupts in the processor by loading new contents into the

M.JOSHNA

processor status register. Thus, an interrupt request generated by the keyboard's interface will
be accepted. The interrupt vector for this interrupt points to an OS routine called 10DATA.
Because there could be several devices connected to the same interrupt request line, 10DATA
begins by polling these devices to determine the one requesting service. Then, it calls the
appropriate device driver to service the request. In our example, the driver called will be
KBDDATA, which will transfer one character of data. If the character is a Carriage Return, it
will also set to 1 a flag called END, to inform 10DATA that the requested I/O operation has
been completed. At this point, the 10DATA routine changes the state of process A from
Blocked to Runnable, so that the scheduler may select it for execution in some future time

slice.

Handling Multiple Devices:

HANDLING MULTIPLE DEVICES: Let us now consider the situation where a number of
devices capable of initiating interrupts are connected to the processor. Because these devices are
operationally independent, there is no definite order in which they will generate interrupts. For
example, device X may request an interrupt while an interrupt caused by device Y is being
serviced, or several devices may request interrupts at exactly the same time. This gives rise to a
number of questions:
1. How can the processor recognize the device requesting an interrupt?
2. Given that different devices are likely to require different interrupt -service routines, how can
the processor obtain the starting address of the appropriate routine in each case?
3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?
4. How should two or more simultaneous interrupt requests be handled? If
two devices have activated the line at the same time, it must be possible to break the tie and elect
one of the two requests for service. When the interrupt-service routine for the selected device has
been completed, the second request can be serviced.

Vectored interrupts: To reduce the time involved in the polling process, a device requesting an
interrupt may identify itself directly to the processor. Then, the processor can immediately start
executing the corresponding interrupt-service routine. The term vectored interrupts refers to all
interrupt - handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special code to the processor over
the bus. This enables the processor to identify individual devices even if they share a single
interrupt-request line. The code supplied by the device may represent the starting address of the
interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits.
The remainder of the address is supplied by the processor based on the area in its memory where
the addresses for interrupt-service routines are located.

M.JOSHNA

This arrangement implies that the interrupt-service routine for a given device must always start at
the same location. The programmer can gain some flexibility by storing in this location an
instruction that causes a branch to the appropriate routine. In many computers, this is done
automatically by the interrupt-handling mechanism. The location pointed to by the interrupting
device is used to store the starting address of the interrupt-service routine. The processor reads this
address, called the interrupt vector, and loads it into the PC. The interrupt vector may also include
a new value for the processor status register.

In most computers, I/O devices send the interrupt-vector code over the data bus, using the bus
control signals to ensure that devices do not interfere with each other. When a device sends an
interrupt request, the processor may not be ready to receive the interrupt-vector code immediately.
For example, it must first complete the execution of the current instruction, which may require the
use of the bus. There may be further delays if interrupts happen to be disabled at the time the
request is raised. The interrupting device must wait to put data on the bus only when the processor
is ready to receive it. When the processor is ready to receive the interrupt-vector code, it activates
the interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt- vector
code and turning off the INTR signal.

Interrupt nesting: /O devices should be organized in a priority structure. An interrupt request
from a high priority device should be accepted while the processor is servicing another request
from a lower priority device. A multiple-level priority organization means that during execution
of an interrupt service routine, interrupt requests will be accepted from some devices but not from
others, depending upon the device's priority. To implement this scheme, priority level can be
assigned to the processor that can be changed by the program.
The processor's priority is usually encoded in a few bits of the processor status word. It can be
changed by program instructions that write into the PS. These are privileged instructions, which
can be executed only while the processor is running in the supervisor mode. The processor is in
the supervisor mode only when executing operating system routines. It switches to the user mode
before beginning to execute application programs. Thus, a user program cannot accidentally, or
intentionally, change the priority of the processor and disrupt the system's operation. An attempt
to execute a privileged instruction while in the user mode leads to a special type of interrupt called
a privilege exception.
A multiple-priority scheme can be implemented easily by using separate interrupt- request and
interrupt-acknowledge lines for each device, as shown in Figure 5.7. Each of the interrupt request
lines is assigned a different priority level. Interrupt requests received over these lines are sent to a
priority arbitration circuit in the processor. A request is accepted only if it has a higher priority
level than that currently assigned to the processor.

B INTR

)
2 { \

=] NT

==

(=5

M.JOSHNA

Figure 5.7 Implementation of interrupt priority using individual interrupt-request and
acknowledge lines.

Simultaneous request: When simultaneous interrupt requests are arrived from two or more I/O
devices to the processor, the processor must have some means of deciding which request to service
first.

Using a priority scheme such as that of Figure 5.7, the solution is straightforward. The processor
simply accepts the request having the highest priority. If several devices share one interrupt-
request line, as in Figure 5.6, some other mechanism is needed. Polling the status registers of the
I/O devices is the simplest such mechanism. In this case, priority is determined by the order in
which the devices are polled. When vectored interrupts are used, we must ensure that only one
device is selected to send its interrupt vector code. A widely used scheme is to connect the devices
to form a daisy chain, as shown in Figure 5.8. The interruptrequest line INTR is common to all
devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that
the INTA signal propagates serially through the devices. When several devices raise an interrupt
request and the INTR line is activated, the processor responds by setting the INTA line to 1. This
signal is received by device 1. Device 1 passes the signal on to device 2 only if it does not require
any service. If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds
to put its identifying code on the data lines. Therefore, in the daisy-chain arrangement, the device
that is electrically closest to the processor has the highest priority. The second device along the
chain has second highest priority, and so on.

Controlling Device Requests:

CONTROLLING DEVICE REQUESTS: The control needed is usually provided in the form of
an interrupt-enable bit in the device's interface circuit. The keyboard interrupt-enable, KEN, and
display interrupt- enable, DEN, flags in register CONTROL in Figure 5.3 perform this function. If
either of these flags is set, the interface circuit generates an interrupt request whenever the
corresponding status flag in register STATUS is set. At the same time, the interface circuit sets bit
KIRQ or DIRQ to indicate that the keyboard or display unit, respectively, is requesting an interrupt.
If an interrupt-enable bit is equal to 0, the interface circuit will not generate an interrupt request,
regardless of the state of the status flag.
There are two independent mechanisms for controlling interrupt requests. At the device end, an
interrupt-enable bit in a control register determines whether the device is allowed to generate an
interrupt request. At the processor end, either an interrupt enable bit in the PS register or a priority
structure determines whether a given interrupt request will be accepted.

EXCEPTIONS: The term exception is often used to refer to any event that causes an interruption.
Hence, I/O interrupts are one example of an exception.

Recovery from errors: Computers use a variety of techniques to ensure that all hardware
components are operating properly. For example, many computers include an error-checking code
in the main memory, which allows detection of errors in the stored data. If an error occurs, the
control hardware detects it and informs the processor by raising an interrupt. The processor may

M.JOSHNA

also interrupt a program if it detects an error or an unusual condition while executing the
instructions of this program. For example, the OP-code field of an instruction may not correspond
to any legal instruction, or an arithmetic instruction may attempt a division by zero.
When exception processing is initiated as a result of such errors, the processor proceeds in exactly
the same manner as in the case of an I/O interrupt request. It suspends the program being executed
and starts an exception-service routine. This routine takes appropriate action to recover from the
error, if possible, or to inform the user about it. Recall that in the case of an I/O interrupt, the
processor completes execution of the instruction in progress before accepting the interrupt.
However, when an interrupt is caused by an error, execution of the interrupted instruction cannot
usually be completed, and the processor begins exception processing immediately.

Debugging: Another important type of exception is used as an aid in debugging programs. System
software usually includes a program called a debugger, which helps the programmer find errors in
a program. The debugger uses exceptions to provide two important facilities called trace and
breakpoints.

When a processor is operating in the trace mode, an exception occurs after execution of every
instruction, using the debugging program as the exception-service routine. The debugging program
enables the user to examine the contents of registers, memory locations, and so on. On return from
the debugging program, the next instruction in the program being debugged is executed, then the
debugging program is activated again. The trace exception is disabled during the execution of the
debugging program. Breakpoints provide a similar facility, except that the program being
debugged is interrupted only at specific points selected by the user. An instruction called Trap or
Software interrupt is usually provided for this purpose. Execution of this instruction results in
exactly the same actions as when a hardware interrupt request is received. While debugging a
program, the user may wish to interrupt program execution after instruction i. The debugging
routine saves instruction i 1 and replaces it with a software interrupt instruction. When the program
is executed and reaches that point, it is interrupted and the debugging routine is activated. This
gives the user a chance to examine memory and register contents. When the user is ready to
continue executing the program being debugged, the debugging routine restores the saved
instruction that was at location i 1 and executes a Return-from-interrupt instruction.

Privilege exception: To protect the operating system of a computer from being corrupted by user
programs, certain instructions can be executed only while the processor is in the supervisor mode.
These are called privileged instructions. For example, when the processor is running in the user
mode, it will not execute an instruction that changes the priority level of the processor or that
enables a user program to access areas in the computer memory that have been allocated to other
users. An attempt to execute such an instruction will produce a privilege exception, causing the
processor to switch to the supervisor mode and begin executing an appropriate routine in the
operating system.

Use of Interrupts in Operating System:

USE OF INTERRUPTS IN OPERATING SYSTEMS: The operating system (OS) is
responsible for coordinating all activities within a computer. It makes extensive use of interrupts
to perform I/O operations and communicate with and control the execution of user programs. The
operating system incorporates the interrupt-service routines (ISR) for all devices connected to a

M.JOSHNA

computer. Application programs do not perform I/O operations themselves. An operating system
provides a variety of services to application programs. To facilitate the implementation of these
services, most processors have several different software interrupt instructions, each with its own
interrupt vector. They can be used to call different parts of the OS.

. In a computer that has both a supervisor and a user mode, the processor switches its
operation to supervisor mode at the time it accepts an interrupt request. It does so by setting a bit
in the processor status register after saving the old contents of that register on the stack. Thus,
when an application program calls the as by a software interrupt instruction, the processor
automatically switches to supervisor mode, giving the as complete access to the computer's
resources. When the as executes a Return-from-interrupt instruction, the processor status word
belonging to the application program is restored from the stack. As a result, the processor
switches back to the user mode.

. Multitasking is a mode of operation in which a processor executes several user programs
at the same time. A common as technique that makes this possible is called time slicing. when
operating system is started, an initialization routine OSINIT called for initialization. OSINIT
loads the starting address of a routine called SCHEDULER in the interrupt vector corresponding
to the timer interrupt. Hence, at the end of each time slice, the timer interrupt causes this routine
to be executed.

. A program, together with any information that describes its current state of execution, is
regarded by the as an entity called a process. A process can be in one of three states: Running,
Runnable, or Blocked. The Running state means that the program is currently being executed.
Assume that program A is in the Running state during a given time slice. At the end of that time
slice, the timer interrupts the execution of this program and starts the execution of SCHEDULER.
This is an operating system routine whose function is to determine which user program should
run in the next time slice. It starts by saving all the information that will be needed later when
execution of program A is resumed. The information saved, which is called the program state,
includes register contents, the program counter, and the processor status word.

. SCHEDULER selects for execution some other program, B, that was suspended earlier
and is in the Runnable state. It restores all information saved at the time program R was
suspended, including the contents of PS and PC, and executes a Retum-from-interrupt
instruction. As a result, program B resumes execution for T seconds, at the end of which the
timer clock raises an interrupt again, and a context switch to another runnable process takes place.

Suppose that program A needs to read an input line from the keyboard. Instead of performing the

M.JOSHNA

operation itself, it requests I/O service from the operating system. It uses the stack or the
processor registers to pass information to the OS describing the required operation, the /O
device, and the address of a buffer in the program data area where the line should be placed. Then
it executes a software interrupt instruction. The interrupt vector for s instruction points to the OS
SERVICES. This routine examines the information on the stack and initiates the requested
operation by calling an appropriate OS routine. In our example, it calls, which is a routine
responsible for starting I/O operations.

. While an I/O operation is in progress, the program that requested it cannot continue
execution. Hence, the 10INIT routine sets the process associated with program A into the
Blocked state, indicating to the scheduler that the program cannot resume execution at this time.
The 10INIT routine carries out any preparations needed for the I/O operation, such as initializing
address pointers and byte count, then calls a routine that performs the I/O transfers. It is common
practice in operating system design to encapsulate all software pertaining to a particular device
into a elf-contained module called the device driver. Such a module can be easily added to or
deleted from the OS. We have assumed that the device driver for the keyboard consists of two
routines, KBDINIT and KBDDATA, as shown n Figure 4.1 Oc. The 10INIT routine calls
KBDINIT, which performs any initialization operations needed by the device or its interface
circuit. KBDINIT also enables interrupts in the interface circuit by setting the appropriate bit in
its control register, d then it returns to IOINIT, which returns to OSSERVICES. The keyboard is
now ready to participate in a data transfer operation. It will generate an interrupt request
whenever a key is pressed.

. Following the return to OSSERVICES, the SCHEDULER routine selects another user
program to run. Of course, the scheduler will not select program A, because that program is now
in the Blocked state. The Return-from-interrupt instruction that causes the selected user program
to begin execution will also enable interrupts in the processor by loading new contents into the
processor status register. Thus, an interrupt request generated by the keyboard's interface will be
accepted. The interrupt vector for this interrupt points to an OS routine called I0DATA. Because
there could be several devices connected to the same interrupt request line, 10DATA begins by
polling these devices to determine the one requesting service. Then, it calls the appropriate device
driver to service the request. In our example, the driver called will be KBDDATA, which will
transfer one character of data. If the character is a Carriage Return, it will also set to 1 a flag

called END, to inform 10DATA that the requested I/O operation has been completed. At this

M.JOSHNA

point, the 10DATA routine changes the state of process A from Blocked to Runnable, so that the

scheduler may select it for execution in some future time slice.

Direct Memory Access:

DIRECT MEMORY ACCESS (DMA): The main idea of direct memory access (DMA) is to
enable peripheral devices to cut out the “middle man” role of the CPU in data transfer. It allows
peripheral devices to transfer data directly from and to memory without the intervention of the
CPU. Having peripheral devices access memory directly would allow the CPU to do other work,
which would lead to improved performance, especially in the cases of large transfers. The DMA
controller is a piece of hardware that controls one or more peripheral devices. It allows devices to
transfer data to or from the system’s memory without the help of the processor. In a typical DMA
transfer, some event notifies the DMA controller that data needs to be transferred to or from
memory. Both the DMA and CPU use memory bus and only one or the other can use the memory
at the same time. The DMA controller then sends a request to the CPU asking its permission to use
the bus. The CPU returns an acknowledgment to the DMA controller granting it bus access. The
DMA can now take control of the bus to independently conduct memory transfer. When the
transfer is complete the DMA relinquishes its control of the bus to the CPU. Processors that support
DMA provide one or more input signals that the bus requester can assert to gain control of the bus
and one or more output signals that the CPU asserts to indicate it has relinquished the bus. Figure
8.10 shows how the DMA controller shares the CPU’s memory bus.

DMA Request

B
L

DMA Acknowledgement

DMA -
Controller [* CPU
___________ e ————————
/ 1
Address Bus .
I i
* M : - 7 7 Data Bus
v - v
1
------------ I . N N BN BN BN S S
Device Control Signals Memory

Figure 8.10 DMA controller shares the CPU's memory bus

Direct memory access controllers require initialization by the CPU. Typical setup parameters
include the address of the source area, the address of the destination area, the length of the block,
and whether the DMA controller should generate a processor interrupt once the block transfer is
complete. A DMA controller has an address register, a word count register, and a control register.
The address register contains an address that specifies the memory location of the data to be
transferred. It is typically possible to have the DMA controller automatically increment the address
register after each word transfer, so that the next transfer will be from the next memory location.

M.JOSHNA

The word count register holds the number of words to be transferred. The word count is
decremented by one after each word transfer. The control register specifies the transfer mode.

Direct memory access data transfer can be performed in burst mode or singlecycle mode. In burst
mode, the DMA controller keeps control of the bus until all the data has been transferred to (from)
memory from (to) the peripheral device. This mode of transfer is needed for fast devices where
data transfer cannot be stopped until the entire transfer is done. In single-cycle mode (cycle
stealing), the DMA controller relinquishes the bus after each transfer of one data word. This
minimizes the amount of time that the DMA controller keeps the CPU from controlling the bus,
but it requires that the bus request/acknowledge sequence be performed for every single transfer.
This overhead can result in a degradation of the performance. The single-cycle mode is preferred
if the system cannot tolerate more than a few cycles of added interrupt latency or if the peripheral
devices can buffer very large amounts of data, causing the DMA controller to tie up the bus for an
excessive amount of time.
The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in memory, and reducing the count of words to be
moved).

3. When word count reaches zero, the DMA informs the CPU of the termination by means
of an interrupt.

4. The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Each channel has associated with it an address
register and a count register. To initiate a data transfer the device driver sets up the DMA channel’s
address and count registers together with the direction of the data transfer, read or write. While the
transfer is taking place, the CPU is free to do other things. When the transfer is complete, the CPU
is interrupted. Direct memory access channels cannot be shared between device drivers. A device
driver must be able to determine which DMA channel to use. Some devices have a fixed DMA
channel, while others are more flexible, where the device driver can simply pick a free DMA
channel to use.

Linux tracks the usage of the DMA channels using a vector of dma chan data structures (one per
DMA channel). The dma chan data structure contains just two fields, a pointer to a string
describing the owner of the DMA channel and a flag indicating if the DMA channel is allocated
or not.

M.JOSHNA

Buses:

BUSES: A bus in computer terminology represents a physical connection used to carry a signal
from one point to another. The signal carried by a bus may represent address, data, control signal,
or power. Typically, a bus consists of a number of connections running together. Each connection
is called a bus line. A bus line is normally identified by a number. Related groups of bus lines are
usually identified by a name. For example, the group of bus lines 1 to 16 in a given computer
system may be used to carry the address of memory locations, and therefore are identified as
address lines.

Depending on the signal carried, there exist at least four types of buses: address, data, control, and
power buses. Data buses carry data, control buses carry control signals, and power buses carry the
power-supply/ground voltage. The size (number of lines) of the address, data, and control bus
varies from one system to another. Consider, for example, the bus connecting a CPU and memory
in a given system, called the CPU bus. The size of the memory in that system is 512Mword and
each word is 32 bits. In such system, the size of the address bus should be log2(5122%%) = 29 lines,
the size of the data bus should be 32 lines, and at least one control line (RR=W) should exist in
that system. In addition to carrying control signals, a control bus can carry timing signals. These
are signals used to determine the exact timing for data transfer to and from a bus; that is, they
determine when a given computer system component, such as the processor, memory, or I/O
devices, can place data on the bus and when they can receive data from the bus. A bus can be
synchronous if data transfer over the bus is controlled by a bus clock. The clock acts as the timing
reference for all bus signals. A bus is asynchronous if data transfer over the bus is based on the
availability of the data and not on a clock signal. Data is transferred over an asynchronous bus
using a technique called handshaking. The operations of synchronous and asynchronous buses are
explained below.

To understand the difference between synchronous and asynchronous, let us consider the case
when a master such as a CPU or DMA is the source of data to be transferred to a slave such as an
I/O device. The following is a sequence of events involving the master and slave:

. Master: send request to use the bus

. Master: request is granted and bus is allocated to master
. Master: place address/data on bus

. Slave: slave is selected

. Master: signal data transfer

. Slave: take data

. Master: free the bus

NN ON Dbk W

Svynchronous and Asynchronous Buses:

M.JOSHNA

Bus Protocols: A bus is a communication channel shared by many devices and hence rules need
to be established in order for the communication to happen correctly. These rules are called bus
protocols. Design of a bus architecture involves several tradeoffs related to the width of the data
bus, data transfer size, bus protocols, clocking, etc. Depending on whether the bus transactions are
controlled by a clock or not, buses are classified into synchronous and asynchronous buses.
Depending on whether the data bits are sent on parallel wires or multiplexed onto one single wire,
there are parallel and serial buses. Control of the bus communication in the presence of multiple
devices necessitates defined procedures called arbitration schemes. In this section, different kinds
of buses and arbitration schemes are described.

Synchronous Buses: In synchronous buses, the steps of data transfer take place at fixed clock
cycles. Everything is synchronized to bus clock and clock signals are made available to both master
and slave. The bus clock is a square wave signal. A cycle starts at one rising edge of the clock and
ends at the next rising edge, which is the beginning of the next cycle. A transfer may take multiple
bus cycles depending on the speed parameters of the bus and the two ends of the transfer.One
scenario would be that on the first clock cycle, the master puts an address on the address bus, puts
data on the data bus, and asserts the appropriate control lines. Slave recognizes its address on the
address bus on the first cycle and reads the new value from the bus in the second cycle.
Synchronous buses are simple and easily implemented. However, when connecting devices with
varying speeds to a synchronous bus, the slowest device will determine the speed of the bus. Also,
the synchronous bus length could be limited to avoid clock-skewing problems.

-
\ddress >< Memory address 1o be r< |
f
'.
READ /
| S
\\ | - 7
J
MASTER /
N -

—~ ~ 3 _f—" '0 \\
\ |

Dt ‘ \ XI Jata §.1|»‘\l>z
|I ’:‘ \

\
\

SLAVI e o W \\

. Yy

>

Figure 6. Read Operations on an Asynchronous Bus

A memory read transaction on the synchronous bus typically proceeds as illustrated in Fig. 5.
During the first clock cycle the CPU places the address of the location it wants to read, on the
address lines of the bus. Later during the same clock cycle, once the address lines have stabilized,

M.JOSHNA

the READ request is asserted by the CPU. Many times, some of these control signals are active
low and asserting the signal means that they are pulled low. A few clock cycles are needed for the
memory to perform accessing of the requested location. In a simple non-pipelined bus, these
appear as wait states and the data is placed on the bus by the memory after the tow or three wait
cycles. The CPU then releases the bus by deasserting the READ control signal. The write
transaction is similar except that the processor is the data source and the WRITE signal is the one
that is asserted. Different bus architectures synchronize bus operations with respect to the rising
edge or falling edge or level of the clock signal.

Asynchronous Buses: There are no fixed clock cycles in asynchronous buses. Handshaking is
used instead. Figure 8.11 shows the handshaking protocol. The master asserts the data-ready line

Data-Bus % Data /‘ “ Data — Data >

3 l

4

Data-ready 1

Data-accept 2

Figure 8.11 Asynchronous bus timing using handshaking protocol

(point 1 in the figure) until it sees a data-accept signal. When the slave sees a dataready signal, it
will assert the data-accept line (point 2 in the figure). The rising of the data-accept line will trigger
the falling of the data-ready line and the removal of data from the bus. The falling of the data-
ready line (point 3 in the figure) will trigger the falling of the data-accept line (point 4 in the figure).
This handshaking, which is called fully interlocked, is repeated until the data is completely
transferred. Asynchronous bus is appropriate for different speed devices.

An asynchronous bus has no system clock. Handshaking is done to properly conduct the
transmission of data between the sender and the receiver. The process is illustrated in Fig. 6. For
example, in an asynchronous read operation, the bus master puts the address and control signals
on the bus and then asserts a synchronization signal. The synchronization signal from the master
prompts the slave to get synchronized and once it has accessed the data, it asserts its own
synchronization signal. The slave's synchronization signal indicates to the processor that there is
valid data on the bus, and it reads the data. The master then deasserts its synchronization signal,
which indicates to the slave that the master has read the data. The slave then deasserts its
synchronization signal. This method of synchronization is referred to as a full handshake. Note

M.JOSHNA

that there is no clock and that starting and ending of the data transfer are indicated by special
synchronization signals. An asynchronous communication protocol can be considered as a pair of
Finite State machines (FSMs) that operate in such a way that one FSM does not proceed until the
other FSM has reached a certain state.

Synchronous buses are typically faster than asynchronous buses because there is no overhead to
establish a time reference for each transaction. Another reason that helps the synchronous bus to
operate fast is that the bus protocol is predetermined and very little logic is involved in
implementing the Finite State machine. However, synchronous buses are affected by clock skew
and they cannot be very long. But asynchronous buses work well even when they are long because
clock skew problems do not affect them. Thus asynchronous buses can handle longer physical
distances and higher number of devices. Processor-memory buses are typically synchronous
because the devices connected to the bus are fast, are small in number and are located in close
proximity. I/O buses are typically asynchronous because many peripherals need only slow data
rates and are physically situated far away.

Bus Arbitration:

Bus Arbitration: Bus arbitration is needed to resolve conflicts when two or more devices want to
become the bus master at the same time. In short, arbitration is the process of selecting the next
bus master from among multiple candidates. Conflicts can be resolved based on fairness or priority
in a centralized or distributed mechanisms. Centralized Arbitration In centralized arbitration
schemes, a single arbiter is used to select the next master. A simple form of centralized arbitration
uses a bus request line, a bus grant line, and a bus busy line. Each of these lines is shared by
potential masters, which are daisy-chained in a cascade. Figure 8.12 shows this simple centralized
arbitration scheme. In the figure, each of the potential masters can submit a bus request at any time.

A fixed priority is set among the masters from left to right. When a bus request is received at the
central bus arbiter, it issues a bus grant by asserting the bus grant line. When the potential master
that is closest to the arbiter (potential master 1) sees the bus grant signal, it checks to see if it had
made a bus request. If yes, it takes over the bus and stops propagation of the bus grant signal any
further. If it has not made a request, it will simple turn the bus grant signal to the next master to
the right (potential master 2), and so on. When the transaction is complete, the busy line is
deasserted.

Instead of using shared request and grant lines, multiple bus request and bus grant lines can be
used. In one scheme, each master will have its own independent request and grant line as shown
in Figure 8.13. The central arbiter can employ any prioritybased or fairness-based tiebreaker.
Another scheme allows the masters to have multiple priority levels. For each priority level, there
is a bus request and a bus grant line. Within each priority level, daisy chain is used. In this scheme,
each device is attached to the daisy chain of one priority level. If the arbiter receives multiple

M.JOSHNA

p . b o Bus Grant p ol
) otentia) otentia otentia
Master 1 Master 2 P Master n
A A
Central
Bus Bus Request
Atbiter € — [[T~
Bus Busy
Figure 8.12 Centralized arbiter in a daisy-chain scheme
Reg-1
4— Potential Potential Potential
- | Master 1 Master 2 » Master n
Grant- | A A A
Reg-2
el
Central
Bus -
ﬂtrbi:r:r Grant-2 Reg-n Grant-n
]
Bus Busy

Figure 8.13 Centralized arbiter with independent request and grant lines

bus requests from different levels, it grants the bus to the level with the highest priority. Daisy
chaining is used among the devices of that level. Figure 8.14 shows an example of four devices
included in two priority levels. Potential master 1 and potential master 3 are daisy-chained in level
1 and potential master 2 and potential master 4 are daisy-chained in level 2.

Decentralized Arbitration In decentralized arbitration schemes, priority-based arbitration is
usually used in a distributed fashion. Each potential master has a
unique arbitration number, which is used in resolving conflicts when multiple requests are
submitted. For example, a conflict can always be resolved in favor of the device with the highest
arbitration number. The question now is how to determine which device has the highest arbitration
number? One method is that a requesting device would make its unique arbitration number
available to all other devices. Each device compares that number with its own arbitration number.
The device with the smaller number is always dismissed. Eventually, the requester with the highest
arbitration number will survive and be granted bus access.

M.JOSHNA

Grant level 1 #
Potential Potential Potential Potential
Master | Master 2 Master 3 Master 4

Central Grant level 2 A A _| A ? 4
Bus
Arbiter

h 4 Y

Request level | L

A

Request level 2

Bus Busy

Figure 8.14 Centralized arbiter with two priority levels (four devices)

Interface Circuits:

Interface circuits: An Input/output (I/O) interface consists of the circuitry required to connect an
I/O device to a computer bus. On one side of the interface we have the bus signals for address,
data, and control. On the other side we have a data path with its associated controls to transfer data
between the interface and the I/O device. This side is called a port, and it can be classified as either
a parallel or a serial port. A parallel port transfers data in the form of a number of bits, typically 8
or 16, simultaneously to or from the device. A serial port transmits and receives data one bit at a
time. Communication with the bus is the same for both formats; the conversion from the parallel
to the serial format, and vice versa, takes place inside the interface circuit. I/O interface does the
following:

1. Provides a storage buffer for at least one word of data (or one byte, in the case of byte-oriented
devices)

2. Contains status flags that can be accessed by the processor to determine whether the buffer is
full (for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by the processor
4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the bus and
the I/O device, such as parallel-serial conversion in the case of a serial port

Parallel port: Figure 5.20 shows the hardware components needed for connecting a keyboard
to a processor. A typical keyboard consists of mechanical switches that are normally open. When
a key is pressed, its switch closes and establishes a path for an electrical signal. This signal is

M.JOSHNA

detected by an encoder circuit that generates the ASCII code for the corresponding character. A
difficulty with such push-button switches is that the contacts bounce when a key is pressed.
Although bouncing may last only one or two milliseconds, this is long enough for the computer to
observe a single pressing of a key as several distinct electrical events; this single pressing could
be erroneously interpreted as the key being pressed and released rapidly several times. The effect
of bouncing must be eliminated. We can do this in two ways: A simple de-bouncing circuit can be
included, or a software approach can be used. When debouncing is implemented in software, the
I/O routine that reads a character from the keyboard waits long enough to ensure that bouncing has
subsided. Figure 5.20 illustrates the hardware approach; debouncing circuits are included as a part
of the encoder block.

Data

Address DATAIN

Data
) . Eiceder |

R/W and Keyboard
Pr) SIN
TOCessor - D debouncing " switches

Master -ready circuit
Valid =

-]

Input -

Sla ve-ready

interf ace -

-

Figure 5.20 Keyboard to processor connection.

The output of the encoder consists of the bits that represent the encoded character and one control
signal called Valid, which indicates that a key is being pressed. This information is sent to the
interface circuit, which contains a data register, DATAIN, and a status flag, SIN. When a key is
pressed, the valid signal changes from 0 to 1,, causing the ASCII code to be loaded into DATAIN
and SIN to be set to 1. The status flag SIN is cleared to 0 when the processor reads the contents of
the DATAIN register. The interface circuit is connected to an asynchronous bus on which transfers
are controlled using the handshake signals Master-ready and Slave-ready. The third control line,
R/W distinguishes read and write transfers.

M.JOSHNA

DATAIN
o7 ﬂ:«lﬂ @y Dyf—
" Keyooard
5 data
DO ﬂ Gy Dple——o
A
<2 Status Valid
N =
Slave- .
reaty

Read-
status

Read-
v daia

RIW
Master -

ready

A3l ——— =

Al —

Address
decoder

AD

Figure 3.21 Input interface circuit.

input interface.

Figure 5.21 shows a suitable circuit for an

The output lines of the DATAIN register are connected to the data lines of the bus by means of
three-state drivers, which are turned on when the processor issues a read instruction with the ad-
dress that selects this register. The SIN signal is generated by a status flag circuit. This signal is
also sent to the bus through a three-state driver. It is connected to bit DO, which means it will
appear as bit 0 of the status register. Other bits of this register do not contain valid information. An
address decoder is used to select the input interface when the high-order 31 bits of an address
correspond to any of the addresses assigned to this interface. Address bit AO determines whether
the status or the data registers is to be read when the Master-ready signal is active. The control
handshake is accomplished by activating the Slaveready signal when either Read-status or Read-
data is equal to 1.

Read-data

Master- D

ready

SIN ——“‘

Y

o)

M.JOSHNA

Figure 5.22 Circuit for the status Rag block in Figure 5.21.

A possible implementation of the status flag circuit is shown in Figure 5.21. An edgetriggered D
flip-flop is set to 1 by a rising edge on the Valid signal line. this event changes the state of the
NOR latch such that SIN is set to 1. The state of this latch must not change while SIN is being read
by the processor. Hence, the circuit ensures that SIN can be set only while Masterready is equal to
0. Both the flip- flop and the latch are reset to 0 when Read-data is set to 1 to read the DATAIN
register.

Data
Address > DATAOUT Data
Processor R/W - S50UT Valid Printer
—
Master -ready
Lt Dul‘put Idle
Sla ve-ready interface
-

Figure 5.23 Printer to processor connection.

Let us now consider an output interface that can be used to connect an output device, such as a
printer, to a processor, as shown in Figure 5.23. The printer operates under control of the handshake
signals Valid and Idle in a manner similar to the handshake used on the bus with the Master-ready
and Slave-ready signals. When it is ready to accept a character, the printer asserts its Idle signal.
The interface circuit can then place a new character on the data lines and activate the Valid signal.
In response, the printer starts printing the new character and negates the Idle signal, which in turn
causes the interface to deactivate the Valid signal.

Serial port: A serial port is used to connect the processor to I/O devices that require transmission
of data one bit at a time. The key feature of an interface circuit for a serial port is that it is capable
of communicating in a bit-serial fashion on the device side and in a bit-parallel fashion on the bus
side. The transformation between the parallel and serial formats is achieved with shift registers
that have parallel access capability. A block diagram of a typical serial interface is shown in Figure
5.27. Tt includes the familiar DATAIN and DATAOUT registers. The input shift register accepts
bit-serial input from the I/O device. When all 8 bits of data have been received, the contents of this
shift register are loaded in parallel into the DATAIN register. Similarly, output data in the
DATAOUT register are loaded into the output shift register, from which e bits are shifted out and
sent to the I/O device.

M.JOSHNA

Inpurt shift register Siflgjfl
" En
r '
DATAIN
_{7 | e B | %?
o7
|
n
Do =
J |
ol DATAOUT
o
RS1
e
RS0
W | o et Serial
g - o Output shift register
Ready select _houtpm
-
Accept
e —
Receiving clock
MMTR Status [
- it Transmission clock
comntrol

|- ————

Figure 5.27 A serial interface.
The part of the interface that deals with the bus is the same as in the parallel interface described
earlier. The status flags SIN and SOUT serve similar functions. The SIN flag is set to 1

ewhen new data are loaded in DATAIN; it is cleared to 0 when the processor reads the contents
of DATAIN. As soon as the data are transferred from the input shift register into the DATAIN
register, the shift register can start accepting the next 8-bit character from the I/O device. The
SOUT flag indicates whether the output buffer is available. It is cleared to 0 when the processor
writes new data into the DATAOUT register and set to 1 when data are transferred from
DATAOUT into the output shift register.

eThe double buffering used in the input and output paths are important. A simpler interface could
be implemented by turning DATAIN and DATA OUT into shift registers and eliminating

M.JOSHNA

the shift registers in Figure 5.27. However, this would impose awkward restrictions on the
operation of the I/O device; after receiving one character from the serial line, the device cannot
start receiving the next character until the processor reads the contents of DATAIN. Thus, a pause
would be needed between two characters to allow the processor to read the input data. With the
double buffer, the transfer of the second character can begin as soon as the first character is
loaded from the shift register into the DATAIN register. Thus, provided the processor reads the
contents of DATAIN before the serial transfer of the second character is completed, the interface
can receive a continuous stream of serial data. An analogous situation occurs in the output path

of the interface.

Because it requires fewer wires, serial transmission is convenient for connecting devices that are
physically far away from the computer. The speed of transmission, often given as a bit rate,
depends on the nature of the devices connected. To accommodate a range of devices, a serial
interface must be able to use a range of clock speeds. The circuit in Figure 5.27 allows separate
clock signals to be used for input and output operations for increased flexibility. Because serial
interfaces play a vital role in connecting I/O devices, several widely used standards have been
developed. A standard circuit that includes the features of our example in Figure 5.27 is known as
a Universal Asynchronous Receiver Transmitter (UART). It is intended for use with low-speed
serial devices. Data transmission is performed using the asynchronous start-stop format. To
facilitate connection to communication links, a popular standard known as RS-232-C was
developed.

Standard I/O Interfaces:

Introduction: A number of standards have been developed for I/O Interface. IBM developed a
they called ISA (Industry Standard Architecture) for their personal computer known at the time as
PC AT. The popularity of that computer led to other manufacturers producing ISA -compatible
interfaces for their 110 devices, thus making ISA into a de facto standard. Some standards have
been developed through industrial cooperative efforts, even among competing companies driven
by their common self-interest in having compatible products. In some cases, organizations such as
the IEEE (Institute of Electrical and Electronics Engineers), ANSI (American National Standards
Institute), or international bodies such as ISO (International Standards Organization) have blessed
these standards and given them an official status.
There are three widely used bus standards, PCI (Peripheral Component Interconnect), SCSI (Small
Computer System Interface), and USB (Universal Serial Bus). The way these standards are used
in a typical computer system is illustrated in Figure 5.28. The PCI standard defines an expansion
bus on the motherboard. SCSI and USB are used for connecting additional devices, both inside
and outside the computer box. The SCSI bus is a high-speed parallel bus intended for devices such
as disks and video displays. The USB bus uses serial transmission to suit the needs of equipment
ranging from keyboards to game controls to internet connections. The figure shows an interface
circuit that enables devices compatible with the earlier ISA standard, such as the popular IDE
(Integrated Device Electronics) disk, to be connected. It also shows a connection to an Ethernet.

M.JOSHNA

The Ethernet is a widely used local area network, providing a high-speed connection among
computers in a building or a university campus. A given computer may use more than one bus
standard. A typical Pentium computer has both a PCI bus and an ISA bus, thus providing the user
with a wide range of devices to choose from.

Alain

Processor memory

Proceszor bus

Bridze
PCT bus
Additional 5CSI Ethernet UsSB ISA
memory controller Interface controller Interface
SC5I bus /
IDE
dizk
Videa
Dizk CD-E OM
controller controller
CD-
Dizk1 Dizk 1 ROM K evboard Game

Figure 5.28 An example of a computer system using different interface standards.

5.7.1 PCI (Peripheral Component Interconnect)

The PCI bus is a good example of a system bus. It supports the functions found on a processor bus
but in a standardized format that is independent of any particular processor. Devices connected to
the PCI bus appear to the processor as if they were connected directly to the processor bus. They
are assigned addresses in the memory address space of the processor. Early PCs used the 8-bit XT
bus, whose signals closely mimicked those of Intel's 80x86 processors. Later, the 16-bit bus used
on the PC AT computers became known as the ISA bus. Its extended 32- bit version is known as
the EISA bus. Other buses developed in the eighties with similar capabilities are the Microchannel
used in IBM PCs and the NuBus used in Macintosh computers.

M.JOSHNA

The PCI was developed as a low-cost bus that is truly processor independent. Its design anticipated
a rapidly growing demand for bus bandwidth to support high-speed disks and graphic and video
devices, as well as the specialized needs of multiprocessor systems. As a result, the PCI is still
popular as an industry standard almost a decade after it was first introduced in 1992. An important
feature that the PCI pioneered is a plug-and-play capability for connecting I/O devices. To connect
a new device, the user simply connects the device interface board to the bus. The software takes
care of the rest.

Data Transfer: Most memory transfers involve a burst of data rather than just one word. The
reason is that modem processors include a cache memory. The PCl is designed primarily to support
this mode of operation. A read or a write operation involving a single word is simply treated as a
burst of length one. The bus supports three independent address spaces: memory, I/O, and
configuration. The first two are self-explanatory. The I/O address space is intended for use with
processors, such as Pentium, that have a separate I/O address space. Figure 5.28 shows the main
memory of the computer connected directly to the processor bus. An alternative arrangement that
is used often with the PCI bus is shown in Figure 5.29. The PCI Bridge provides a separate physical
connection for the main memory. For electrical reasons, the bus may be further divided into
segments connected via bridges. However, regardless of which bus segment a device is connected
to, it may still be mapped into the processor's memory address space.

Host
PCI Bridge Main
Memory
PCIBUS ‘
Main Ethernet
Memory Printer Interface

Figure 5.29 Use of a PCI bus in a computer system.: At any given time, one device is the bus
master. It has the right to initiate data transfers by issuing read and write commands. A master is
called an initiator in PCI terminology. This is either a processor or a DMA controller. The
addressed device that responds to read and write commands is called a target. The main bus signals
used for transferring data are listed in Table 5.1. Signals whose name ends with the symbol # are
asserted when in the low- voltage state. The main difference between the PCI protocol with others
is that in addition to a Target-ready signal, PCI also uses an Initiatorready signal, IRDY #. The
latter is needed to support burst transfers.

SCSI Bus:

SCSI (Small Computer System Interface): The acronym SCSI stands for Small Computer
System Interface. It refers to a standard bus defined by the American National Standards Institute
(ANSI) under the designation X3.131. In the original specifications of the standard, devices such
as disks are connected to a computer via a 50- wire cable, which can be up to 25 meters in length

M.JOSHNA

and can transfer data at rates up to 5 megabytes/s. The SCSI bus standard has undergone many
revisions, and its data transfer capability has increased very rapidly, almost doubling every two
years. SCSI-2 and SCSI-3 have been defined, and each has several options.
A SCSI bus may have eight data lines, in which case it is called a narrow bus and transfers data
one byte at a time. Because of these various options, the SCSI connector may have 50, 68, or 80
pins. The maximum transfer rate in commercial devices that are currently available varies from 5
megabytes/s to 160 megabytes/so The most recent version of the standard is intended to support
transfer rates up to 320 megabytes/s, and 640 megabytes/s is anticipated a little later. Devices
connected to the SCSI bus are not part of the address space of the processor in the same way as
devices connected to the processor bus. The SCSI bus is connected to the processor bus through a
SCSI controller, as shown in Figure 5.28. This controller uses DMA to transfer data packets from
the main memory to the device, or vice versa. A packet may contain a block of data, commands
from the processor to the device, or status information about the device. A controller
connected to a SCSI bus is one of two types - an initiator or a target. An initiator has the ability to
select a particular target and to send commands specifying the operations to be performed. The
disk controller operates as a target. It carries out the commands it receives from the initiator. The
initiator establishes a logical connection with the intended target. Once this connection has been
established, it can be suspended and restored as needed to transfer commands and bursts of data.
While a particular connection is suspended, other devices can use the bus to transfer information.
This ability to overlap data transfer requests is one of the key features of the SCSI bus that leads to
its high performance.

Data transfers on the SCSI bus are always controlled by the target controller. To send a command
to a target, an initiator requests control of the bus and, after winning arbitration, selects the
controller it wants to communicate with and hands control of the bus over to it. Then the controller
starts a data transfer operation to receive a command from the initiator. Assume that the processor
wishes to read a block of data from a disk drive and that these data are stored in two disk sectors
that are not contiguous. The processor sends a command to the SCSI controller, which causes the
following sequence of events to take place:

1. The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the 'initiator wins the arbitration process, it selects the target controller and hands
over control of the bus to it.

3. The target starts an output operation (from initiator to target); in response to this, the
initiator sends a command specifying the required read operation.

4. The target, realizing that it first needs to perform a disk seek operation, sends a message to
the initiator indicating that it will temporarily suspend the connection between them. Then
it releases the bus.

5. The target controller sends a command to the disk drive to move the read head to the first
sector involved in the requested read operation. Then, it reads the data stored in that sector

and stores them in a data buffer. When it is ready to begin transferring data to the initiator,

M.JOSHNA

the target requests control of the bus. After it wins arbitration, it res elects the initiator
controller, thus restoring the suspended connection.

6. The target transfers the contents of the data buffer to the initiator and then suspends the
connection again. Data are transferred either 8 or 16 bits in parallel, depending on the width
of the bus.

7. The target controller sends a command to the disk drive to perform another seek operation.
Then, it transfers the contents of the second disk sector to the initiator, as before. At the
end of this transfer, the logical connection between the two controllers is terminated.

8. As the initiator controller receives the data, it stores them into the main memory using the
DMA approach.

9. The SCSI controller sends an interrupt to the processor to inform it that the requested

operation has been completed.

This scenario shows that the messages exchanged over the SCSI bus are at a higher level than
those exchanged over the processor bus. The SCSI bus standard defines a wide range of control
messages that can be ex- changed between the controllers to handle different types of I/O devices.
Messages are also defined to deal with various error or failure conditions that might arise during
device operation or data transfer.

Table 5.1 Data transfer si9na on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a transaction.

AD 32 address/data lines. which may be OJtionally increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit bus).

IRDY# . TRDY# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has recognized its
Address and is ready for a data transfer transaction.

IDSEL# Initialization Device Select,

Consider a bus transaction in which the processor reads four 32-bit words from the memory. In
this case, the initiator is the processor and the target is the memory. A complete transfer operation
on the bus, involving an address and a burst of data, is called a transaction. Individual word
transfers within a transaction are called phases. The sequence of events on the bus is shown in
Figure 5.30. A clock signal provides the timing reference used to coordinate different phases of a
transaction. All signal transitions are triggered by the rising edge of the clock. The signals changing
later in the clock cycle to indicate the delays they encounter.

Bus Signal: The bus signals are summarized in Table 5.2. For simplicity we show the signals
for a narrow bus (8 data lines). Note that all signal names are preceded by a minus sign. This
indicates that the signals are active, or that a data line is equal to 1, when they are in the low-
voltage state. The bus has no address lines. Instead, the data lines are used to identify the bus
controllers involved during the selection or reselection process and during bus arbitration. For a

M.JOSHNA

narrow bus, there are eight possible controllers, numbered o through 7, and each i, associated with
the data line that has the same number. A wide bus accommodates up to 16 controllers. A controller
places its own address or the address of another controller on the bus by activating the
corresponding data line. Thus, it is possible to have more than one address on the bus at the same
time, as in the arbitration process we describe next. Once a connection is established between two
controllers, there is no further need for addressing, and the data lines are used to carry data.

Table 5.2 The SCSI bus signal

Category Name Function
Data -DB(O) to | Data lines: Carry one byte of information during the information transfer phase and
-DB(7) identify device during arbitration. selection and reselection phases
-DB(P) Parity bit for the data bus
Phase -BSY Busy: Asserted when the bus is not free
-SEL Selection: Asserted during selection and reelection
Information | -C/D Control/Data: Asserted during transfer of control information (command. status or
type message)
-MSG ssage: indicates that the information being transferred is a message
Handshake | -REQ quest Asserted by a target to request a data transfer cycle
-ACK Acknowledge: Asserted by the initiator when it has completed a data transfer operation
Direction of | -I'O Input/Output. Asserted to indicate an input operation
transfer
Other -ATN ention: Asserted by an initiator when it wishes to send a message to a target
-RST tet: Causes all Device controls to disconnect from the bus and their start-up state

The main phases involved in the operation of the SCSI bus are arbitration, selection, information
transfer, and reselection.

Arbitration: The bus is free when the -BSY signal is in the inactive (high-voltage) state. Any
controller can request the use of the bus while it is in this state. Since two or more controllers may
generate such a request at the same time, an arbitration scheme must be implemented. A controller
requests the bus by asserting the - BSY signal and by asserting its associated data line to identify
itself. The SCSI bus uses a simple distributed arbitration scheme. It is illustrated by the example
in Figure 5.32, in which controllers 2 and 6 request the use of the bus simultaneously. Each
controller on the bus is assigned a fixed priority, with controller 7 having the highest priority.
When -BSY becomes active, all controllers that are requesting the bus examine the data lines and
determine whether a higher-priority device is requesting the bus at the same time. The controller
using the highest-numbered line realizes that it has won the arbitration process. All other
controllers disconnect from the bus and wait for -BSY to become inactive again.

M.JOSHNA

Targers examine ID

=]
=]
»

=]
-]
E

—

w
w
-

S B
]
i
|

LT

w
™
=

Free Arbitration Selection

Figure 5.32 Arbitration and selection on the SCSI bus. Device6 wins arbitration and selects device2.

In Figure 5.32, we have assumed that controller 6 is an initiator that wishes to establish a
connection to controller 5. After winning arbitration, controller 6 proceeds to the selection phase,
in which it identifies the target.

Selection: Having won arbitration, controller 6 continues to assert -BSY and -DB6 (its address).
It indicates that it wishes to select controller 5 by asserting the -SEL and then the - DBS5 lines. Any
other controller that may have been involved in the arbitration phase, such as controller 2 in the
figure, must stop driving the data lines once the -SEL line becomes active, if it has not already
done so. After placing the address of the target controller on the bus, the initiator releases the -
BSY line. The selected target controller responds by asserting - BSY. This informs the initiator
that the connection it is requesting has been established, so that it may remove the address
information from the data lines. The selection process is now complete, and the target controller
(controller 5) is asserting - BSY. From this point on, controller 5 has control of the bus, as required
for the information transfer phase.

Information Transfer: The information transferred between two controllers may consist of
commands from the initiator to the target, status responses from the target to the initiator, or data
being transferred to or from the I/O device. Handshake signaling is used to control information
transfers. The - REQ and - ACK signals replace the Master-ready and Slave-ready signals. The
target asserts - I/O during an input operation (target to initiator), and it asserts -CID to indicate that
the information being transferred is a command or a status response rather than data.
High-speed versions of the SCSI bus use a technique known as double-edge clocking or Double
Transitions (DT). Each data transfer requires a high-to-low transition followed by a lowto- high
transition on the two handshake signals. Double-edge clocking means that data are transferred on
both the rising and falling edges of these signals, thus doubling the transfer rate. At the end of the
transfer, the target controller releases the - BSY signal, thus freeing the bus for use by other devices.

Reselection: When a logical connection is suspended and the target is ready to restore it, the target
must first gain control of the bus. It starts an arbitration cycle, and after winning arbitration, it
selects the initiator controller in exactly the same manner as described above. But with the roles
of the target and initiator reversed, the initiator is now asserting - BSY. Before data transfer can
begin, the initiator must hand control over to the target. This is achieved by having the target

M.JOSHNA

controller assert - BSY r selecting the initiator. Meanwhile, the initiator waits for a short period
after being selected to make sure that the target has asserted -BS and then it releases the -BSY line.
The connection between the two controllers has now been reestablished, with the target in control
of the bus as required for data transfer to proceed.

The bus signaling scheme described above provides the mechanisms needed for two controllers to
establish a logical connection and exchange messages. The connection may be suspended and
reestablished at any time. The SCSI standard defines the structure and contents of various types of
packets that the controllers exchange to handle different situations. The initiator uses these packets
to send the commands it receives from the processor to the target. The target responds with status
information and data transfer operations. The latter are controlled by the target, because it is the
target that knows when data are available, when to suspend and reestablish connections, etc.

Universal Serial Bus (USB):

USB (Universal Serial Bus).: Universal Serial Bus (USB) is an industry standard developed
through a collaborative effort of several computer and communications companies, including
Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips. USB is a
simple and low cost mechanism to connect the devices such as keyboards, mouse, cameras,
speakers, printer and display devices to the computer.

The USB supports two speeds of operation, called low-speed (1.5 megabits/s) and fullspeed (12
megabits/s). The most recent revision of the bus specification (USB 2.0) introduced a third speed
of operation, called high-speed (480 megabits/s). The USB is quickly gaining acceptance in the
market place, and with the addition of the high-speed capability it may well become the
interconnection method of choice for most computer devices. The USB has been designed to meet
several key objectives:

e Provide a simple, low-cost, and easy to use interconnection system that overcomes the
difficulties due to the limited number of I/O ports available on a computer

o Accommodate a wide range of data transfer characteristics for I/O devices, including
telephone and Internet connections

o Enhance user convenience through a "plug-and-play" mode of operation

Port limitation: Only a few ports are provided in a typical computer. To add new ports, a user
must open the computer box to gain access to the internal expansion bus and install a new interface
card. The user may also need to know how to configure the device and the software. An objective
of the USB is to make it possible to add many devices to a computer system at any time, without
opening the computer box.

Device Characteristics: The different kinds of devices may be connected to a computer cover a
wide range of functionality. The speed, volume, and timing constraints associated with data
transfers to and from such devices vary significantly. In the case of a keyboard, one byte of data

M.JOSHNA

is generated every time a key is pressed, which may happen at any time. These data should be
transferred to the computer promptly. Since the event of pressing a key is not synchronized to any
other event in -8 computer system, the data generated by the keyboard are called asynchronous.
Furthermore, the rate at which the data are generated is quite low. It is limited by the speed of the
human operator to about 100 bytes per second, which is less than 1000 bits per second.

Let us consider a different source of data. Many computers have a microphone either externally
attached or built in. The sound picked up by the microphone produces an analog electrical signal,
which must be converted into a digital form before it can be handled by the computer. This is
accomplished by sampling the analog signal periodically. For each sample, an analog-to-digital
(A/D) converter generates an n-bit number representing the magnitude of the sample. The number
of bits, n, is selected based on, the desired precision with which to represent each sample. Later,
when these data are sent to a speaker, a digital-to-analog (D/A) converter is used to restore the
original analog signal from the digital format. The sampling process yields a continuous stream of
digitized samples that arrive at regular intervals, synchronized with the sampling clock. Such a
data stream is called isochronous, meaning that successive events are separated by equal periods
of time.

Plug-and-play: The plug-and-play feature means that a new device, such as an additional speaker,
can be connected at any time while the system is operating. The system should detect the existence
of this new device automatically, identify the appropriate device-driver soft- ware and any other
facilities needed to service that device, and establish the appropriate addresses and logical
connections to enable them to communicate. The plug-and-play requirement has many
implications at all levels in the system, from the hardware to the operating system and the
applications software. One of the primary objectives of the design of the USB has been to provide
a plug-and-play capability.

USB Architecture: A serial transmission format has been chosen for the USB because a serial bus
satisfies the low-cost and flexibility requirements. Clock and data information are encoded
together and transmitted as a single signal. Hence, there are no limitations on clock frequency or
distance arising from data skew. Therefore, it is possible to provide a high data transfer bandwidth
by using a high clock frequency. As pointed out earlier, the USB offers three bit rates, ranging
from 1.5 to 480 megabits/s, to suit the needs of different I/O devices.
To accommodate a large number of devices that can be added or removed at any time, the USB
has the tree structure shown in Figure 5.33. Each node of the tree has a device called a hub, which
acts as an intermediate control point between the host and the I/O devices. At the root of the tree,
a root hub connects the entire tree to the host computer. The leaves of the tree are the I/O devices
being served (for example, keyboard, speaker, or digital TV), which are called functions in USB
terminology.

M.JOSHNA

Host computer

Root
hub

Hub Hub

I I/ I I
Hub de 1?1:@ de \?ce de 'I.?te de 1?(‘9

/

| f
deiit'}::e d PL‘I.?{'E

Figure 5.33 Universal Serial Bus tree structure.

The tree structure enables many devices to be connected while using only simple point -topoint
serial links. Each hub has a number of ports where devices may be connected, including other
hubs. In normal operation, a hub copies a message that it receives from its upstream connection to
all its downstream ports. As a result, a message sent by the host computer is broadcast to ill VO
devices, but only the addressed device will respond to that message. A message from an I/O device
is sent only upstream towards the root of the tree and is not seen by other devices. Hence, the USB
enables the host to communicate with the I/O devices, but it does not enable these devices to
communicate with each other.

The USB operates strictly on the basis of polling. A device may send a message only in response
to a poll message from the host. Hence, upstream messages do not encounter conflicts or interfere
with each other, as no two devices can send messages at the same time. This restriction allows
hubs to be simple, Low-cost devices.

M.JOSHNA

-

Host computer

Root
Hub

HS
HS H
}V FILS
A HS - High Speed

Device Device F/LS - Full/Low Speed
C D

Figure 5.34 USB Split bus operations.

The mode of operation described above is observed for all devices operating at either low speed
or full speed. However, one exception has been necessitated by the introduction of highpeed
operation in USB version 2.0. Consider the situation in Figure 5.34. Hub A is connected to the root
hub by a high-speed link. This hub serves one high-speed device, C, and one low-speed device, D.
Normally, a message to device D would be sent at low speed from the root hub. At 1.5 megabits/s,
even a short message takes several tens of microseconds. For the duration of this message, no other
data transfers can take place, thus reducing the effectiveness of the high-speed links and
introducing unacceptable delays for high-speed devices. To mitigate this problem, the USB
protocol requires that a message transmitted on a high-speed link is always transmitted at high
speed, even when the ultimate receiver is a low-speed device. Hence, a message intended for
device D is sent at high speed from the root hub to hub A, then forwarded at low speed to device
D. The latter transfer will take a long time, during which high-speed traffic to other nodes is
allowed to continue. For example, the root hub may exchange several messages with device C
while the low-speed message is being sent from hub A to device D. During this period, the bus is
said to be split between high-speed and low-speed traffic. The message to device D is preceded
and followed by special commands to hub A to start and end the split-traffic mode of operation,
respectively.

The USB standard specifies the hardware details of USB interconnections as well as the
organization and requirements of the host software. The purpose of the USB software is to provide
bidirectional communication links between application software and I/O devices. These links are
called pipes. Any data entering at one end of a pipe is delivered at the other end. Issues such as
addressing, timing, or error detection and recovery are handled by the USB protocols. The software
that transfers data to or from a given 1JO device is called the device driver for that device. The
device drivers depend on the characteristics of the devices they support. Hence, a more precise
description of the USB pipe is that it connects an VO device to its device driver. It is

M.JOSHNA

established when a device is connected and assigned a unique address by the USB software. Once
established, data may flow through the pipe at any time.

Addressing: 1/0 devices are normally identified by assigning them a unique memory address. In
fact, a device usually has several addressable locations to enable the software to send and receive
control and status information and to transfer data. When a USB is connected to a host computer,
its root hub is attached to the processor bus, where it appears as a single device. The host software
communicates with individual devices attached to the USB by sending packets of information,
which the root hub forwards to the appropriate device in the USB tree.
Each device on the USB, whether it is a hub or an 1JO device, is assigned a 7 -bit address. This
address is local to the USB tree and is not related in any way to the addresses used on the processor
bus. A hub may have any number of devices or other hubs connected to it, and addresses are
assigned arbitrarily. When a device is first connected to a hub, or when it is powered on, it has the
address 0. The hardware of the hub to which this device is connected is capable of detecting that
the device has been connected, and it records this fact as part of its own status information.
Periodically, the host polls each hub to collect status information and learn about new devices that
may have been added or disconnected.

USB Protocol: All information transferred over the USB is organized in packets, where a packet
consists of one or more bytes of information. There are many types of packets that perform a
variety of control functions. The information transferred on the USB can be divided into two broad
categories: control and data. Control packets perform such tasks as addressing a device to initiate
data transfer, acknowledging that data have been received correctly, or indicating an error. Data
packets carry information that is delivered to a device. For example, put and output data are
transferred inside data packets.

A packet consists of one or more fields containing different kinds of information. The first field of
any packet is called the packet identifier, PID, which identifies the type of that packet. There are
four bits of information in this field, but they are transmitted twice. The first time they are sent
with their true values, and the second time with each bit complemented, as shown in Figure 5.35(a).
This enables the receiving device to verify that the PID byte has been received correctly.

M.JOSHNA

PID
PID 0 PID 1 PID 2 PID 3 0 PID 1 PID 9 PID 3

(a) Packet identifier field

Bits 8 7 4 5

PID ADDR ENDP CRC16

(b) Token packet, IN or OUT

Bits 8 0 to 8192 16

PID DATA CRC16

(c) Data packet

Figure 5.35. USB packet format.

The four PID bits identify one of 16 different packet types. Some control packets, such as ACK
(Acknowledge), consist only of the PID byte. Control packets used for controlling data transfer
operations are called token packets. They have the format shown in Figure 5.35(b). A token packet
starts with the PID field, using one of two PID values to distinguish between an IN packet and an
OUT packet, which control input and output transfers, respectively. The PID field is followed by
the 7 -bit address of a device and the 4-bit endpoint number within that device. The packet ends
with 5 bits for error checking, using a method called cyclic redundancy check (CRC). The CRC
bits are computed based on the contents of the address and endpoint fields. By performing an
inverse computation, the receiving device can determine whether the packet has been received
correctly.

Data packets, which carry input and output data, have the format shown in Figure 4.45c. The packet
identifier field is followed by up to 8192 bits of data, then 16 error-checking bits. Three different
PID patterns are used to identify data packets, so that data packets may be numbered 0, 1, or 2.
Note that data packets do not carry a device address or an endpoint number. This information is
included in the IN or OUT token packet that initiates the transfer. Consider an output device
connected to a USB hub, which in turn is connected to a host computer. An example of an output
operation is shown in Figure 5.36. The host computer sends a token packet of type OUT to the
hub, followed by a data packet containing the output data. The PID field of the data packet
identifies it as data packet number o. The hub verifies that the transmission has been error free by

M.JOSHNA

checking the error control bits, and then sends an acknowledgment packet (ACK) back to the host.
The hub forwards the token and data packets downstream. All I/O devices receive this sequence
of packets, but only the device that recognizes its address in the token packet accepts the data in
the packet that follows. After verifying that transmission has been error free, it sends an ACK
packet to the hub.

Host Huh 10 Nevice

Token
Data0 %

A CK
. Token

Datal kﬁ:

Token

Data’ %:
- Token

] B
/ ACK

Figure 5.36 An output transfer

Successive data packets on a full-speed or low-speed pipe carry the numbers 0 and 1, alternately.
This simplifies recovery from transmission errors. If a token, data, or acknowledgment packet is
lost as a result of a transmission error, the sender resends the entire sequence. By checking the data
packet number in the PID field, the receiver can detect and discard duplicate packets. High-speed
data packets are sequentially numbered 0, 1, 2, 0, and so on. Input operations follow a similar
procedure. The host sends a token packet of type IN containing the device address. In effect, this
packet is a poll asking the device to send any input data it may have. The device responds by
sending a data packet followed by an ACK. If it has no data ready, it responds by sending a negative
acknowledgment (NAK) instead.

Electrical characteristics: The cables used for USB connections consist of four wires. Two are
used to carry power, 5 V and Ground. Thus, a hub or an I/O device may be powered directly from
the bus, or it may have its own external power connection. The other two wires are used to carry
data. Different signaling schemes are used for different speeds of transmission. At low speed, 1s
and Os are transmitted by sending a high voltage state (5 V) on one or the other of the two signal
wires. For high-speed links, differential transmission is used.

