

#### ANNAMACHARYA UNIVERSITY

(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016



New Boyanapalli, Rajampet, Annamayya (Dist), Andhra Pradesh – 516 126

#### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course: Electrical and Electronics Measurements

Course Code: 20A242T

Branch: EEE

Prepared by: Mr. T.Arun Kumar

**Designation: Assistant Professor** 

Department: Electrical and Electronics Engineering

#### ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES RAJAMPET (An Autonomous Institution)

#### Department of Electrical and Electronics Engineering

**Title of the Course** Electrical and Electronics Measurements

Category PCC Couse Code 20A242T

Year || Semester || Branch || EEE

| Lecture Hours | Tutorial Hours | Practice Hours | Credits |  |  |
|---------------|----------------|----------------|---------|--|--|
| 3             | -              | -              | 3       |  |  |

#### **Course Objectives:**

- To Describe basic principles of all measuring instruments.
- To describe the measurement of RLC parameters using various bridges.
- To analyze the measurement of voltage, current, power, energy and power factor by using different meters.
- To analyze the digital meters and smart meters.

#### Unit 1 Measuring Instruments

10

Methods of measurements, Classification of instruments, Characteristics of instruments, Error-definition and types, Error Analysis with simple numerical problems – Forces required to operate an instrument, different mechanisms used to obtain deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, Dynamometer, Moving Iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of range using shunts and series resistance.

**Learning Outcomes:** At the end of the unit, the student will be able to:

- describe the concept of basic requirements in measuring instruments(L2)
- describe the construction and working of different basic measuring devices(L2)

#### Unit 2 Measurement of Power, Energy & Power Factor

10

Power measurement: Single-phase dynamometer wattmeter – LPF wattmeter – Double element and three element dynamometer wattmeter. Energy measurement: Single-phase induction type energy meter – Driving and braking torques – Errors and compensations, Single-phase Dynamometer Power factor meters.

**Learning Outcomes:**At the end of the unit, the student will be able to:

- Describe the Construction and Working of Wattmeter, Energy Meter and Power Factor Meter(L2)
- Solve the Numerical Problems on Measurement of Power, Energy and Power Factor(L3)

#### Unit 3 Potentiometers & Measurement of Frequency

10

Principle and operation of D.C. Crompton's potentiometer – standardization – Measurement of unknown resistance, current, voltage. A.C. Potentiometers: Polar and Coordinate type's standardization – applications. Principle and operation of single-phase frequency meter- vibrating reed type, - ferro dynamic type meters.

**Learning Outcomes:**At the end of the unit, the student will be able to:

- Describe the Construction and Working of DC & AC Potentiometers(L2)
- Describe the Construction and Working of different types of Frequency Meters(L2)

#### Unit 4 DC & AC Bridges

10

Method of measuring low, medium and high resistance – sensitivity of Wheat stone's bridge – Kelvin's double bridge for measuring low resistance, measurement of high resistance – loss of charge method. Measurement of inductance–Maxwell's bridge, Anderson's bridge. Measurement of capacitance–Desauty's bridge, Schering Bridge. Measurement of frequency–Wien's bridge.

**Learning Outcomes:** At the end of the unit, the student will be able to:

- Evaluate the unknown parameters using DC & AC Bridges(L5)
- Solve the Numerical Problems in Measurement of Resistance, Inductance, Capacitance and Frequency(L3)

#### Unit 5 Smart & Digital Meter

10

Basic Block Diagram of Digital Voltmeter, Advantages and Disadvantages, Resolution and Simple Numerical Problems, Types of DVM's - Successive approximation, dual slope, ramp and integrating type DVM's, Digital frequency meter-Digital multimeter-Digital Tachometer.

Construction and working of smart energy meter-Advantages and Disadvantages

**Learning Outcomes**: At the end of the unit, the student will be able to:

- Describe the Concept of Working of Different types of DVM's(L2)
- Describe the Construction and Working of Smart Energy Meter(L2)

#### **Prescribed Text Books:**

- 1. E.W. Golding and F.C. Widdis Electrical Measurements and measuring Instruments, 5th Edition, Reem Publications.
- 2. A.K.Sawhney, Electrical & Electronic Measurement & Instruments, Dhanpat Rai & Co. Publications.

#### Reference Books:

- 1. R K Rajput Electrical & Electronic Measurement & Instrumentation., 2nd Edition, S. Chand & Co.
- 2. H. S. Kalsi Electronic Instrumentation. Tata Graw Hill Mc, 3rd Edition.
- 3. Reissland, M.U Electrical Measurements: Fundamentals, Concepts, Applications-New Age International (P) Limited, Publishers.

#### Web Resources:

- 1. https://onlinecourses.nptel.ac.in/noc19\_ee44/preview
- 2. https://www.classcentral.com/course/swayam-electrical-measurement-and-electronic-instruments-14032
- 3. https://www.electrical4u.com/
- 4. https://circuitglobe.com/
- 5. https://www.electricaldeck.com/

| Course Outcomes:                                                             | Blooms Level of Learning |  |  |
|------------------------------------------------------------------------------|--------------------------|--|--|
| At the end of the course, the student will be able to                        |                          |  |  |
| 1. Describe basic requirements and the concepts of electrical measuring      | L3                       |  |  |
| instruments.                                                                 |                          |  |  |
| 2. Measure the energy and power through energy meter and wattmeter           | L2                       |  |  |
| 3. Explain the concept of potentiometers and working of the frequency meters | L3                       |  |  |
| 4. Measure the resistance, inductance, capacitance and frequency             | L2                       |  |  |
| 5. Explain the principle and operation of Smart and Digital meters           | L3                       |  |  |

**CO-PO Mapping:** 

| со        | P04 | P02 | PO3 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 | PS01 | PS02 |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| 20A242T.1 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | 3    |
| 20A242T.2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | 3    |
| 20A242T.3 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | 3    |
| 20A242T.4 | 3   | 3   | 2   | 1   | -   | -   | -   |     | -   | -    | -    | -    |      | 3    |
| 20A242T.5 | 3   | 3   | -   | -   | 3   | -   | -   | -   | -   | -    | -    | -    | 3    | 3    |

# ELECTRICAL AND ELECTRONICS MEASUREMENTS

#### T. ARUN KUMAR

ASSISTANT PROFESSOR
ANNAMACHARYA UNIVERSOITY



#### MEASURING INSTRUMENTS

## \* Melhods of manuaments:

The methods of measurement can be clarified as,

- a) Direct method
- b) Indiruct method
  - c) Absolute (51) Fundamental method
- d) comparative method
- c) Transposition muthod
- 1) Coincidence method
  - g) Defliction methos
  - h) Complementary method
  - i) Contact method

The day property that I day

i) consultation method of null measurment.

## a) Diruct method 2

This is a Simple method of measurement, in which the value of the avantity to be measured is obtained directly without any calculations.

For Example, measurements by using Scales, vernicy callipers, micrometers etc. This method is histly used in production. This method is not very accurate because it depends on human insensitiveness in making judgement.

Bolis will J Wall

#### b) Indirect method 1-

In indirect method the value of Evantity to be measured is obtained by measuring other avantition which are functionally related to the required value.

FOT Example, Angle measurement by Sine bott, measurement of Screw pitch diameter by those with method. etc.

## c) Absolute (n) Fundamental method:

It is based on the measurement of the base avantinos wild to define the avantity.

For Example, musicing a quantity directly in accordance with the defination of that avantity (51) measuring a quantity indirectly by direct measurement of the avantities linked with the defination of the avantities linked with the defination of the avantities are directly to be measured.

## 1) Comparative muchod >

In his method the value of the Quantity to be measured is compared with known value of the Same Quantity (5) Other Quantity practically oclased to it.

So, in, his method only the deviations from a masky guage are dehrmined. (.g., dial indicators, (5)) other comparators.

## e) Transposition muthod 2

or is a multiple of measurement by direct comparison in which the value of Quantity measured is first balanced by an initial known value A of the Same accountity, and turn the

Value of the avantity measured is put in place of this known value and is balanced again by another known value is.

If the position of the element indicating Equilibrium is the Same in both carry, the value of the avantity to be means is As. For swample, determination of man by means of a balance and lenar weights, using the trawn double weighing.

## f) coincidence method b

It is a diffountial method of measurement in whice a very small diffound between the value of the avantity to be measured and the octoring is determined by the observation of the coincidence of contain lines (or) signals.

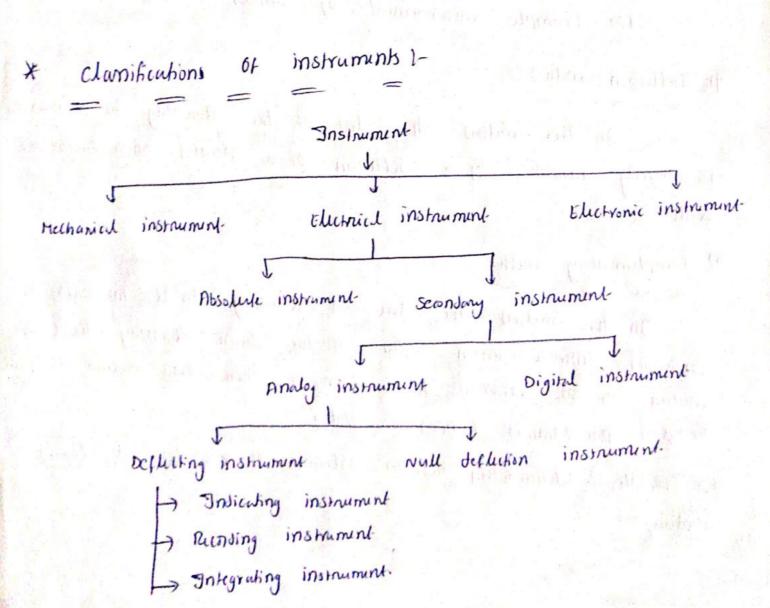
FOT Example, measurement by vornier callips, micrometry.

## g) Deflution muthod ?

In his method the value of the Quantity to be musual is directly indicated by a defletion of a pointer on a calibrated Scale.

## h) complimentary methos i

In his method he value of Quantity to be measured is combained with a lenash value of the Same Quantity. The combination is so adjusted that sum of these two values is Equal to predefermined comparision value.


For Example, dehrmination of the volume of a solid by liquid

#### 1) (ontall method )-

Value of the Same avantity. So Schilled that the Effects are produed in the indicating device by those two values are Sume.

## i) method of null measurement 1-

It is a method of differential measurement. In his method the difference between the value of the avantity to be measured and the known value of the Same avantity with which it is compared is brought to zoro.



- -) The mechanical instrument is used for measuring the physical Quantition. This instrument is suitable for measuring the static Story and Stable conditions because the instrument is unable to give the supporse to the Gramic Condition.
  - -) The electronic instrument is used for quick susponsed in measuring the value ar compared to the electrical and mechanial instrument.
  - -) The electrical instrument is used by measuring electrical duanting like, current, voltage, power etc viz, ammehr, voltmeter & wattmehr
- -) The electrical instrument again clamified into two types.
  - a) Absolute instrument
  - b) Secondary instrument.
  - a) Absolute instrument !-

Absolute instruments are the instruments which give the value of avanity to be measured interms of instrument constant and deflution.

1x' Tangent galvanomehr, nayleigh's current balance instrument.

it old to be so the water of the Maria

b) secondary instrument;

These instruments are so constructed in such away that the avantity being measured by observing the off indicated by at the ending of the Country of instrument:

Ex. Ammila, vollmin and waltmichy The seandary instruments again chamitied into two types \* Analog instrument. \* Digital instrument.

Si to also the de-

\* Digital instrument Digital instrument given the opp in digital form.

The instrument is more accurate an compared to the analog instrument because no human sound occurs in the valings

\* Analog instrument: Analog instrument is the instrument whose operation continuous. The analog instrument has the points which shows the magnitude of the measurable avantities.

The Analog instrument is hunther clarified into two types

- a) Null Jefferion Type
- b) Defliction Tipe.

## a) will dellution Type?

In his instrument, he not deflection indicates he magnitude of the measured avantity. This instrument has tigh accurrent and sensitivity. In null deflection instrument, one known and one unknown avantity are used. When the values of he known and the unknown measuring avantities are equal, the pointer shows two. The null deflection instrument is well in galvanometre.

## b) Deflution Type >

The instrument in which the value of measuring Quantity is Julynmines through the deflection of the pointer is renown as the deflection type instrument.

The deflettion type instrument is again clarified into home types

- i) Indicating instrument
- in racoising instrument
- iii) Integrating instrument
- 1) Indicating instruments

The instrument which indicates he magnitude of electrical avantity at he time of measurement is called as an indicating instrument.

Ez: Ammehr, voltmehr, Hallmehr etc.

is Realding instrument:

Puchding instruments are those which gives the continous of variations of electrical abantity over a soliced period of time. Ex: ECh.

iii) Integrating instrument:

Integrating instruments are those which measure the total avantity of electricity additional in a particular interval of time.

Bic enory much.

- \* characteristics of Instruments 1-
- Instrument characteristics allow was to solve he most suitable instrument for specific measuring Jobs.
- Those are two basic performance characteristics of measuring instruments.
  - a) Static Chanacteristics
  - b) Dynamic Chinactoristics
- a) static characteristics 1-

value of the measured variable change stouly.

- b) Dynamic chanacturistics to war war with the measured variable change vory fust.
- -) The Static charactuistics of an instrument is again clumities on,
  - i) Acturaly
  - ii) Precision
  - iii) linemity
  - iv) Sensitivity
  - V) Dead home
  - vi) Dead Zone
  - vii) Resolution
    - viii) Reproducibility
  - ix) Stability
    - Mrs (X

1) Accuracy :-

Accuracy of an instrument always indicates he degree of cluserum of measured Quantity towards the true Quantity.

ii) Precision:

The most repeatable value out of set of records is called an precision?

Bx: Among the two Ammeters A and B with their Corresponding deadings, In a true occurring of 2A.

Ammun-A scarings are 1-5A, 1-9A, 1-5A, 1-9A, 1-9A --- Accurate & Precision Ammer-B reasings an 1.5A, 1-9A, 1.9A, 1.5A, 1.5A - Procession

Accurate instrument may be precise instrument but pricise instrument will not confirm any accuracy. So always the instrument which is both accurate as well as precise is to be preferred.

The Precision can be mathematically Paparoned as,

$$\int \rho = 1 - \left[ \frac{x_n - \overline{x_n}}{\overline{x_n}} \right]$$

P = Precision

xn = value of nth masurement

In = Average of Set of measured values.

Example; The table shows the set of 5 measurements occorded in a laboratory. calculate the precision of the 3rd measurement.

| Measurant number | value of measurement |
|------------------|----------------------|
| 1                | 49                   |
| 2                | 51                   |
| 3                | 52                   |
| ч                | 50                   |
| 5                | 49                   |

Scanned with CamScanner

$$\overline{x}_n = \frac{\text{Sum of 8 casings}}{\text{Number of 8 casings}} = \frac{251}{5} = 50.2$$

The value of 3rd measurement  $x_n = 52$  When n = 3

$$\rho = 1 - \left[\frac{x_n - \overline{x_n}}{\overline{x_n}}\right] = 1 - \left[\frac{5z - 50.3}{50.3}\right] = 0.964$$

This is precision of 3rd measurement.

#### 111) Linearity >

It the output follows he input with the line of relationship then it is termed as linearity. The linearity is defined as the ability to reproduce the input characteristics Symmetrically and linusty. Graphically Such oclahonship behicen input and output is ocpresented by a Stright line.

#### iv) Sensitivity >

Sensitivity is defined as the ratio of change in output to the unit change in input and it is denoted by 's"

the three three seconds to be

Sensitivity is Equal to the Slope. For portect linear scale instrument (HL type), the sensitivity is constant and it is Equal to one, whereas the sensitivity for a non-linear instrument (141 Type), the Sensitivity varies through out the Scale.

The inverse of sensitivity is called Deflution futting following favor:

Dellution Pavor: Sensitivity.

Ez: A particular ammeter requires a change of ZA in its coil to produce a change in deflection of the points by 5mm.

Determine its sensitivity and deflection factor.

sel The input is current and olp is deflusion

Sensitivity = 5 -) 2.5 mm/A.

deflution futh = 1 - 0.4 A/mm.

v) Dead hime }

The hime taken by the instrument to move the points from its yest position is called as "Dead hime" and the main reason for the dead hime is an instrument is involve.

In all electronic instruments the Toponsible Quantity is voltage. In all electrical instruments the Toponsible Quantity is current.

vi) Dead Zone &

The minimum input beyond Which the Suspense is obtained is termed as "Dead Form."

vii) Resolution & The smallest output that can be dekend with www - clustry is called as "Resolution."

Resolution is given by,

R = Full Scale Value

Total number of divisions

Os he total number of division increases, he resolution decreases.

Breamph: A 30 cm Scale has 30 uniform divisions. You of a Scale division can be estimated with a fair Jegnes of Certainity. Determine the resolution of he Scale in mm.

Sol 1 Scale division =  $\frac{30 \text{ cm}}{30}$  = 1 cm = 10 mm

Resolution =  $\frac{1}{20} \times \text{Scale division}$ =)  $\frac{1}{70} \times 10$  =) 6.5 mm

- viii) Reproducibility: It is the degree of close non with which a given value may be repeatedly measured.
- it) Stability: The ability of an instrument to retain its ~~~~ Portomana throughout its specified operating life is called as Stability.
- A) Errol: The deviation of minimal avantity from the true avantity is called as both. Errol may be positive (5) regative.

(D) [ EYYT) = Heaswas Value - True Value ] (D)
[ Sorn : True value - Heaswas value]

Mathematically it can be expressed as,  $[e = A_t - A_m]$ 

Where e = Broof

At = true value of Quantity

Am = measured value of Quantity.

In this Expression, the sort denoted as it is also called as absolute int." The absolute Enst does not indicate precisely the accuracy of the measurements.

For Example, absolute boots of IV is negligable When the vollage to be measured is of the older of 1000 v but the Same Engli of +14 becomes significant when the vallage union measurement is sv. Hence, generally instead of specifying absolute book, the relative (0) poruntage book is specified.

truth matically, relative tryon can be Exprened as,

The Peruntage odulive bord is Exprience with

The accuracy can be Expressed as

$$A = 1 - er$$

$$A = 1 - \left| \frac{A_t - A_m}{A_t} \right|$$

The porantage accuracy can be Expressed as

Example: The Superks value of the Vollage tote measured is

150 v. Howsver, the measurement gives a Value of 149 v.

Calculate is Absolute East is presenting Sant iii) Petakire

according iv) Assenting according.

iii) 8 dakoe accurety
$$A = 1 - \left| \frac{A_1 - A_m}{A_1} \right|$$

$$= 1 - \frac{1}{150} = 0.9933$$

iv) Prientage accuracy

a = 1 x 100 -) 99.317.

\* Sources of Errins -

In the process of measurement, the bisons are bound to occur. It the Sources of troops are known, then the elfents can be made to deduce the firsts and partly to eliminate them.

The various possible Sources of Events are,

- -> Faulty design of the instrument which sincerty leads to the Socious measurement troops.
- maintenant is not butten by Errors may occur.

- -) The unskilled operator of the instrument can cause Serion with.
- -) Improper way of wing the instrument can cause born.

\* Types of Erros:

There are those types of Errors that are clarified on the basis of the Source they arise from. They are,

- a) Gross Enoss
- b) Systematic bridge
- c) Random Enos
- a) Gross Enos:
- The gross browns mainly occur due to cardinners (5) lack of experience of a human being.
- I These corn human mistalus in readings, recordings and calculating results. These longs are also occur due to incorrect adjustments of instruments.
- I There Errors are also called personal brooks. Some gross errors are sarily detected while others are very difficult to detect.

The complete elimination of gross from is not possible but one can minimize them by the following ways.

- i) Taking great care with taking the occasings, occordings and calculating the south
- ii) By increasing the number of Exporimentus, we can reduce he gross enos. It Each Exporimental takes different readings at different points, then by taking the average of more readings we can reduce the gross errors.

b) Systematic Erross

The Systematic Errors are mainly occurs due to the Shortenings of the instrument and Characteristics of the material wood in the instrument such as defective people, aging Effects, Environmental Effects the There are types of Systematic Errors.

- i) Instrumental Props
  - ii) Chvironmental Moss
  - iii) Observational Ents.

## i) Instrumental smoss -

There Errors can be mainly du to following ocurons.

\* Shout coming of instruments 1-

These are because of mechanical structure of the instruments

For Example, friction in the bearings of various moving parts,

For Example, friction in the bearings of various moving parts,

irregular Spring tensions, variation in air gap etc. There Errors can

be avoided by the following methods.

- -) Schuling a proper instrument and planning the proper procedure for the measurement.
- -) Recogniting the Effect of Such Errors and applying the proportorrection fuctors.

## \* Misure of instruments!

A good instrument it was in abnormal way gives mishasing routh. Pool initial assurtments improper zero selling the are the Examples of miswoing a good instrument. Such things do not cause permanent damage of the instrument but sefinitely cause successful Entry.

Loading Effect but to improper pay of wing he instrument Cause he Serious Errors. The best Example of Such Loading Effect Error is connecting a well calibrated vollment across he has points of high substance circuit. The Same vollment connected in a low substance circuit gives accurate seadings. Thus, he cost due to the loading Effect can be avoided by using an instrument intelligently and correctly.

In the second with the deposit of the

#### iv) environmental soons:

There brows are due to the conditions External to the measuring instrument. The various factors secreting these sovernments trasses are temperature changes, promove changes, Effect of External fields, against of Equipment and frequency sensitivity of instrument. The various methods which can be used to reduce these brows are,

- I wring he propor correction factors and wring he information Supplied the he munifactures of he instrument.
- I wring the arrangements which will keep the Surroundings conditions constant. This includes the use of air conditioning, temperature control ste.
- iii) Observational Strong: There Errors are axise due to an individual's bias, luck of proper setting of the apparatus. (5) an individual carelement in taking observations. The observational series also include to vong Yeasings due to paratlex strong

great the rate was site if again in the

wat side control were a plantage to

- and hina are random.
- in Sepaimental Constitions.
- -) Eample i unpredictable fluctuations in temporature, voltage supply, mechanical vibrations, strong by the observate taking occurrences
  - -) The random Errors follow the laws of probability and hime there smalls can be analyzed statistically and treated materially.
  - The only way to reduce these errors is by increasing the number of observations and using the statistical methods to obtain the best approximation of the reading.

# \* Forces required to operate an Instrument

In case of measuring instruments, the lifeet of unknown availing is convoked into a mechanical form which is transmitted to the pointer which moves over a calibrated scale. The moving to the pointer which moves over a calibrated scale. The moving system of such instrument is mounted on a pivoled spiralle.

System of such instrument is mounted on a pivoled spiralle. For satisfacting operation of any indicating instrument, following systems must be present in instrument.

- i) Defluting System producing Defluting Foru (1) Defluting Torque
- ii) controlling system producing " controlling For (on controlling Torque"
- iii) Damping Sysum producing Dumping Foru (6) Damping Torque.

All same grand shirty

In most of he indicating instruments the mechanical fina is proportional to the avantity to be measured is generated. This force in longer causes the moving system to move from its Zono position. The System which produces such a deflecting troque is called deflecting system" and the Torque is denoted by Ti. The defluting torque overcomen.

- (Ty & Supply) 1) The invition of the moving System
- 2) The controlling Forque provided by controlling System
  - 3) The Jamping Horque provised by Damping Sysum.

The Jesthering System was one of the following Effects produced by current (on) vollage to produce defletting Torque.

a) Maynetic Effect b

when a current carrying conductor is placed in a uniform maynetic fiell, it Experiences a force which causes to move it. This Effect is wood in many instruments like moving iron attraction and sepulsion type, permanent moving coil instrument etc.

b) Thurmul Effect.

The current to be measured is paned through a Small elimine which heats it cause dise in temporation which is convertes into e.m.f by a thermocouple attacked to it.

c) ElicHostatic Effects: Wen two plates are changes, there is a form TIONED between Hum, when moves one of places. This Effect is used in ElitroStatic instruments which are normally voltmeters.

Thus the deflecting system provides the deflecting torque (57) operating torque for movement of pointer from its zero position. It acts as the prime movement for the deflection of pointer.

b) controlling Torque;

There are two purpose of controlling trying

- Tr produces a force Equal and opposite to the deflecting force in Mon to make the deflection of points at a definite magnitude. If this System is absent, then the points will believe beyond its final Steady position and deflection will become indefinite.
- To bring the points to its original position in he absence of ilp

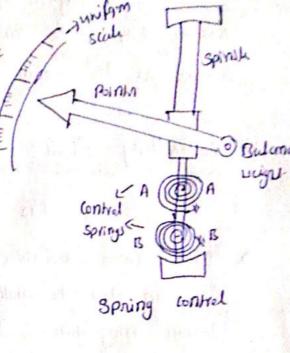
  At Skady State both deflecting and controlling torque are Equal
  in magnitude but acting opposite direction, system produces oscillations
  which is understable controlling forque is generally provided by
  - i) spring control method
  - ii) Gravity Control method
  - i) Spring control method 1-

Two Hair Springs are attacked to the moving System While Exerts Controlling torque. To Employ Spring to the instrument following requirements are Essential.

I The spring should be non-magnetic.

I The Spring Should be free from mechanical Strong

J The spring Should brave a small voistance, sufficient cross-section Large.


J The should have low voistance temporature co-efficient.

The arrangements of spring as shown in fig-

-) The springs are muse upot non-mynutic materials like silicon bronze, hard rolled Silver (0) copper, platinum silver and german Silver.

-) For most of the instruments, phosphor bronze Spiral Springs are provided.

- The controlling torque is provised by he instrument is directly proportional to the angular deflution of pointer.



-1 The controlling torque produced by spiral spring is given by.

E = Young's modulus of Spring matrial in N/m2 Where

t = Thickney in meters

lingth in michas

depth in mchrs.

Ks = Spring Constant = Lbt3

At Equilibrium

Thus the deflution is proportional to the largent. Hence the scale of the instrument wring spring control is uniform.

WHO he lurrent is removed, due to spring force the points Comes back to initial position. The spring control is very popular and is used in almost all indicating instruments.

-) Temporature steet

TA LA JKK IN Or Jethinon is mon gotting gran

winn

- iv Gravity Control method 1-
- -) This type of control consists of the spinish Balank wages a Small beight allacted to the moving system whose position is adjustable.
  - -) This weight produces a controlling control beight toget of the day of the gravity. This weight is called control waght.
  - -) The fig. 1 Shows the gravity control System.
  - -) At the zono position of the pointm, the Controlling torque is zono. This position is Shown as position-A. Of the weight in fig. 2
- position changes to position-B. with anyth d. with anyth d. - If the System deflucts the weight is
- -) The component wind of the wight his to restruct he points back to initial position.
- -) The controlling toque is given by Te: Hising xx - Te: Kising how k. W. To.KI Idsing
- It is a function of sind, the scale of the instrument wring gravity control is not uniform.

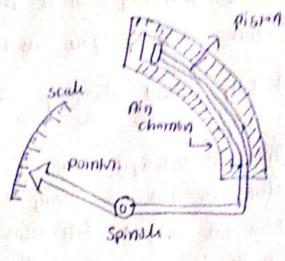
Scanned with CamScanner

#### Advantago

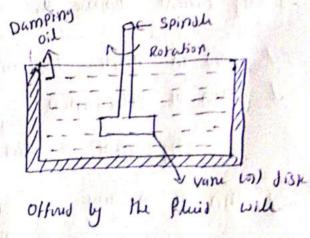
- -) No agoing Ether
- -) Is performance is not dependent on temporation
- -) It is simple and chop.

#### Disadvantago L

- -) non-uniform Scali.
- -) propor levelling required, in general it is not wed for insteading instruments.


The Holden of the action of the party of the party

## iii) Damping Torque >


- -) The torque which is ocquired to occur the number of oscillations.
- -) At Skady State both deflicting and controlling torques are Equal in magnitude but alting opposite direction. However, due to invita of he moving System the points will not come to 80st immediately but oscillate about its final defluted position and taken appriciable time to come steady State
- -) To oversome his difficulty a damping torque is developed by using a damping devia attacked to the moving System.
- -) It damping torque is absent nothing will happen but its be take like a time consumping process in order to take Each rouding.
- The Jamping Horque is produced by the following methods.
  - a) Asy friction damping
  - b) Fluid Friction damping
  - c) Eddy Current damping.

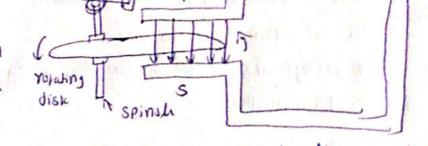
a) Air fischion Jamping Technique

In air kickon damping Technique an aluminium vani is attacked to moving system with the help of line mechanism & pland inside the air container so that friction offered by air will oppose the motion of the points.



- used in HS, EHHL, Thornal instrument.
- -) Pruter Dhere magnetic Enorgy is small.
- -) cost is long. Repeated number of operations be can use.
- b) Fluid Friction damping Technique; Fluid friction damping is mou Pffichive form of damping in his techniques Aluminium vane is attacted to moving system and placed imide the Phis container so that friction offered by the Phis will oppose the motion of the pointing.




- -) used in Esv, wall mounted type instrument
- -) Friction Offered by liquid is more compared to friction offer by wr.

1 cost is mou Disadvantagn I Du to hawage of flid, it is difficult to keep the instrument chan.

I requires more maintenance.

I Not Switable for repeated number of operation

- I Fluid Should not Evaporate quickly
- Fluid Viscosity Should not Change with Empirature.
- I Fluid must be good insulation.
- c) Eddy current damping Technique i-
- Aluminium disk is moving in Communant magnetic hild which repains disk cuts the flux produced by the



Dampins

Pormanent magnet so that an emt is induced in the Aluminium Jisk.

- -) Aluminium disse is a metallic one Which will offer visistante So that produced Emf will send some current scrown as Edy current which is circulating through Aluminium disc.
- -) Eddy lurrent oppose the motion of points.
  - J Wild in PMML, Industrian type instruments central method
    J Solve of Effectivenen

Eddy current > Fluid Friction > Air Friction

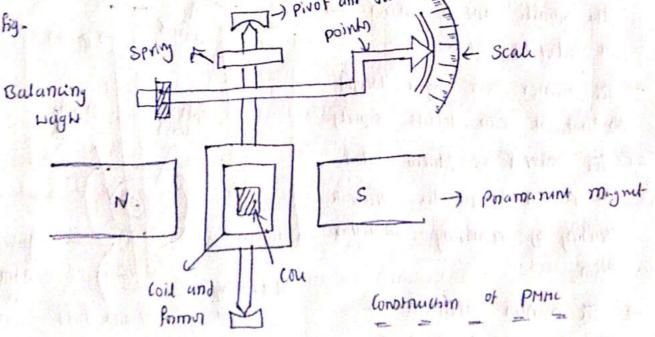
I Then of printing.

Eddy current > Air hickion > Fluid friction

J Wensver Permanent magnets are available 30 for Edy aurunt Jamping Technique.

of the Same in the of the

Control Control (1987) In the Park


Defination }-

The instruments which we the permanent may not by Coealing the Stationary may netic feel between which the wills moves is known as the permanent moving coil (a) PHHC instrument.

Exerted on the moving coil pland in the field of the promount mayord. The prince instrument gives the accurate scoult for De instrument.

Construction of PMHC instrument?

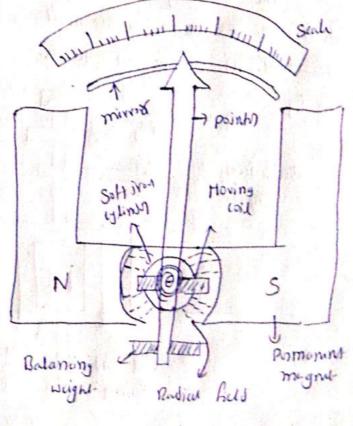
The moving coil and permanent magnet are the main parts of the parts of the parts of the parts instruments are Explained below in details: The parts instrument is shown in hig-



<sup>-)</sup> The moving coil is all secrangular (a) circular in shape.

-) It moving coil is all secrangular (b) circular in shape.

- -) The coil is suspended so that it is free to them about its vertical axis.
- -) The coil is placed in a uniform, horizontal and radial mynetic field of permanent magnet in the shape of a horse-shoe.
- It iron can is spherical it coil is circular and is cylindrical if the coil is rectangular.
- -) Due to iron cou the deflecting troque increases and then increasing sensitivity of the instrument.
- -) The controlling torque is provided by two phosphor bronze hair Springs.
- Obtained by movement of aluminium former in the magnetic field of the permanent magnet.
- -) The points is carried by


  the spinsh and it moves over

  a calibrated Scale.
- so that it can deflect supidly.
- It mirror is placed below the pointry to get the accurate reading by removing purallex surf.
- -) The pointer defliction is

  Jinuckly proportional to the

  Current puring through the coll

  [The Ox I]



PHHE instrument

-) The Top-view of PMML instrument is shown in he hgz

Forque Equation:

The Equation for the developed torque can be obtained from the basic law of electromagnetic torque."

The defluting torque is given to

To NEAT

Who

To = Defluting torque N-m

N. number of twons of the coil

B: Plux Jensity in air gap, Wb/m

A = coil area, m

I = Current in the moving Coil, Amp

: To: bos how to: NBA = Constant.

The Controlling torque is provided by the Springs and is proportional to angular deflution of the points

Te = KO

Who

Te = controlling torque to

IL : Spring Constant, NM Had (1) Nm/deg.

8 - angular defliction, rus (1) deg

At Skudy-state

defletion tonque = lontalling tonque

 $\begin{array}{ll}
T_{i} = T_{i} \\
S_{i} = k \theta \\
\int \theta_{i} \left( \frac{S_{i}}{K} \right) \tau \right] & (n) \\
\int T_{i} = \left( \frac{K}{S_{i}} \right) 0 \\
\end{array}$ 

The pointer defliction can therefore be used to measure buryout.

and it was the at all

- -) As the direction of the current through to the coil changer, he direction of the pointer also changes.
- -) Hence Such instruments are well scriped for the de measurements.
- The the micro amounts and milliamondors upto about 2000, he entire current to be measured is parted through the coil.
- -) The Springs carry current to the coil.
- -) For higher currents, the moving coil is Shunt by Sufficient veristance, while the vollmeters having high ranges were a moving coil together with Sufficient series veristance, to limit the current.
- with a current of 20, 10, 5 (11) 1 mA.
- -) The pason requirement of PHHE instrument is very small, typically of the Thin of 25 ML to 200 MW.

whereing and the more than the fact that the first the second

apart god does gode.

#### Advantaging

- J 31 has uniform scale.
- I The sensitivity is high
- 1 It consumes low power
- J It has high accurate
- 1 Instrument is free from hysterisis Ens.
- I Exhasion is possible.

#### Disadvantago!

- I suitable by de measurements only.
- I Aging of parmanent magnet and control springs creater cornors
- I cost is high due to delicate construction
- I The friction dul to Jewid- pivot Suspension.

ment and an analysis and arrived and arrived

Pa: A PHHE instrument has a coil of dimensions form 18mm The flux density in the air gap is 0.5 Notion. It he coil is wound by 100 horns, carrying a current of 5 mA han Calculate the defletting torque and calculate the deflection it the Spring Constant is 0.2 x 15 hm/seg.

To NEAT =) 100 × 0 5 × 10 × 10 3 × 8 × 103 × 5 × 103 -) 6x10 6 N.m Now To - Te - 100 at Steady State.

> 6x106 = 012x106 x 8  $0 = \frac{6 \times 10^6}{0.2 \times 10^6}$  -) 30° n

[ 0 = 30°]

\* Applications of PMML Instruments !-Fig. Inc. 100

Permanent - magnet moving coil instruments can be used as "ammeters" & with the help of Low Veristance Shunt con "voltmeters with the help of a high Sois Sosistante.

Characteristic male of springly of the course of

The principle of PMMC type instruments has been Wilized in the Construction of the following. a) As galvanometr

- b) Flurmehr
  - c) Ballistic halvanometer.

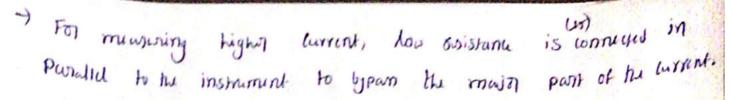
## 6) At galvanomika:

Small De currents. A galvanometh may be used either as an ammeth 19) vollmeth

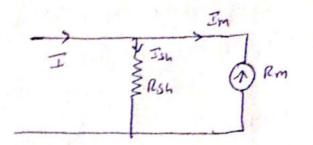
#### b) Flux mito 1-

By climinating the control Springs, he instrument can be used for measuring the aventity of electricity parring through the coil. This method is wood for fluxmeter.

#### c) Ballastic galvanomital


It the control springs of Such an instrument are purposely made of a large moment of inentia, then it can be wild as a ballistic galvanometri.

## \* Exension of Range of PHHE instruments >


By the Extension of range of pittle instrument can be wood as "ammeli" (10) "vollmelin.

# i) Ammuhn Shunk L

- -) when he part instrument is used as an amount, its range can be extended with the help of las-risistance shart.
- -) The moving coil instrument has a coil wound with vory fine wire. It can carry only a few mA sufety to give full-scale deflection.



IT figure Shows a Shunt Turistanu Roh Connected in paralled with basic met.

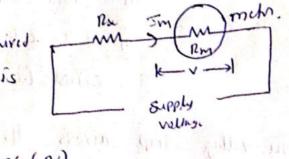


The Busistana of the Shunt can be Calculated wring Conventional Cinuit Analysis.

-) The vollage drop across he shunt and he men must be Same as they connected in parallel.

$$\overline{J}_{Sh} \times R_{Sh} = \overline{J}_{m} \times R_{m} \rightarrow 0$$

$$\overline{J}: \overline{J}_{Sh} + \overline{J}_{m} \rightarrow 0$$


$$\overline{J}_{Sh}: \overline{J}_{m} \rightarrow 0$$

- from Buy, 1 THE PISH: I'm RM

-) The sake of total surrent to surrent in much is called multiplying pown of Shunt and it is given by  $m = \frac{T}{m} = 1 + \frac{Rm}{Rsh} = 1$   $\frac{Rsh}{m-1}$  Scanned with CamScanner

| W vallage | Hulliphors ? | 100 | America | a mal | property. | la Alle | F 17-15 |  |
|-----------|--------------|-----|---------|-------|-----------|---------|---------|--|
|-----------|--------------|-----|---------|-------|-----------|---------|---------|--|

- The sange of prince instrument, when wed us a Voltmehr, can be intreased by using a high soistance in series with it.
- -) For meaning higher voltages, a high veristance is connected in series with the instrument to limit the current in the coil to a safe value.
- This value of current should never exceed the current required to produce full-scale deflection.
- -) The high Voistance connected in Soils with the instrument is called a "multiplier". In the by Re is the multiplier.
- -1 The value of multiplier ocquired my 5mm to Exent he voltage range is k-vcalculated in union,



Pox = multiplin ourisiana (n) Rm: mch Venistana (N)

Im = Pull Scale defluction Current (A)

V = Vollage to be measured (V)

The vollage acress he mehn is given by

Vm : Imlm

V= Im (Am + Asc) Total

-) Now multipling hum for multiplin

$$m = (1 + \frac{1}{4m} + n)$$
 $m = \sqrt{\frac{1}{4m}} + \frac{1}{4m} +$ 

- X ENDS in PHHL instrument :-
- + The basic Bypes Sources of Enters in princ instruments we friction, temporation and aging of various posts.
- To occur the frictional Errors, be ratio of tengue to anight
- -) The most serious Enters are produced by the heart generalises by changes in the Temperature. This changes the Envisional of The working cois, couring large cours.
- -1 In he cane of vollowhas, a large Sovier societaria of a Very Low- Emporature Co-Official Bosista is word- This sedums
- -) The aging of parmonent magnet and control spanings also
- -> The Licalizating of magane and springs cause apposite into--1 The Licakening of magnet cause lon defliction with containing
- Of the Control springs cause large deflection, for a particular

-) The proper was of material and principling during monofastiving can reduce the some due to become ning of the contract spraings.

\* Problems on Extension of vollmeth and Ammeter 1-

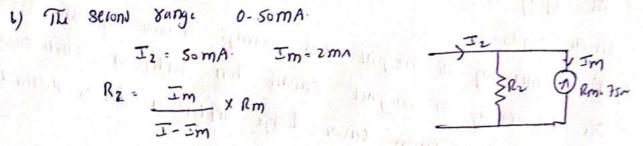
1) Durigh a multirunge die milliammehr with a basic metry having a suistance 750 and full scale deflection for the lument of 2 mA. The required ranger are 0-10mA, 0-50mA and 0-100 mA-

Soy a) The first Yange 0-10 ma

In: 10 mA

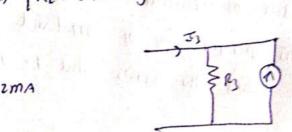
In = 2 mA

Rest = 75 m = 75 m


$$R_{i} = \frac{\Xi_{m}}{\Xi_{i} - \Xi_{m}} \times \Omega_{m} = 0$$

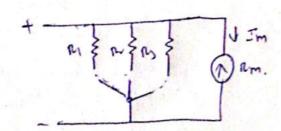
$$II - Im$$

=)  $\frac{2}{10-2} \times 75 = 0.18.75$  |  $II = 18.75$  |  $II =$ 


1) The second range 0-50 mA.

$$R_2 = \frac{\sum_{m} x_m}{\sum_{m} x_m}$$




$$\frac{2}{50-2} \times 75 = \int \left[ R_2 = 3.125 \text{ m} \right]$$

c) The third range 0-100 mA



$$R_3$$
.  $\frac{I_m}{I_3 - I_m} \times R_m = \frac{2}{100 - 2} \times 75 = 1.53N - 1[R_3 \cdot 1.53N]$ 

The durigned multirange amounts with a 3cloth switch is shown in by



(hyren) of 20 mm with a potential difference of 200 mm across it.

Calculate: i) 3 hunt required to use it as an aromator to get the

Yange of 0-200A ii) multiplied required to use it as a volumeter

of Yange 0-500V.

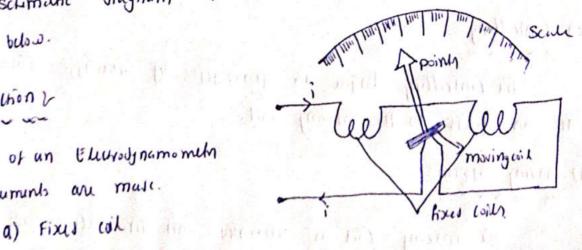
Voltage across mets. 200 mv

mila resistance Rm = ?

i) For wing ir as an ammder.

$$= \frac{2 \times 10^{-3}}{200 - 2 \times 10^{-3}} \times 10 = \int Rsh. 0.001 \, \text{N}$$

ii) for using if as an vollmen


- -> The Elictrodynamoment is a "trunsfor type" instrument.
- A transfir type instrument, is one that may be calibrated by a D.C Same and then used without modification to measure A.C. measures
- -) Such a transfu instrument has same accuracy for both A.c and D.c mlanuminh.
- There instruments are also called "Electrodynamic (s) Dynamomun type instruments.
- -) An elukodynamomum is a moving-loil instrument in which the opposing field is produced not by a permunent may not but by another fixed wil.
- -) This instrument can be used without as an amount (5) voltment but is generally used as a wallmehr.
- -) The chitrolynamomum is a moving boil instrument but the magnetic field is provided by two fixed with rather than by primarent magnet.
- -) The schmatic diagram of the electrolynamometr instrument is

Shoull below.

Construction V

Park of an Elwodynamomen instruments are music.

- b) Hoving with the state of the
- c) Control
- d) Moving Syskm
- e) Damping
- () Stilling
- 9) cosos ans Scales.



- a) Fixed with >
- I The field is produced by a fixed coil. This coil is divided into two sections to give a more uniform field near the central and to allow parage of the instrument shaft.
- Fixed with an wound with fine wire for using an vollmotor, with for amount and wallowing it is wound with heavy wire.
- I The toils are usually varnished. They are clamped in place against the toil Supports. This mulas the construction regist

of the motion of the state of

There were woll by The to Make

- b) Moving coil;
- 1 The moving coil is wound either as a self-sustaining coil con the on a non-metallic former.
- I It metallic formor is used, then it would induce Eddy currents in it.
- ITH construction of moving coil is muse light as well as sigil.

  It is air coust
- e) controlling?

The controlling torque is provided by springs. There springs act as has to the moving coil.

d) Moving Syskm 1-

The moving coil is mounted on an aluminium spinsh.

St Consists of Counter beights and pointer. Sometimes a Suspension may be used, in case of high accuracy is Justiced.

The state of

- c) Dumping >
- by a pair of aluminium vanis, attacked to the spinsh at he bettom

The Harry Warman William

#### 1) Stilling :

The field produced by these instruments is very weak. Even earth's magnetic field considerably affects the deading. So stillding is done to propert it from Stray magnetic fields.

## 9) cover and Scalor 1-

Labotatry Standard instruments are usually contained in polished wooden con motal cases which are rigid. The case is supported by assignmental livelling screws.

- For meaning using electrodynamometr instrument as ammetry, fixed and moving coils are connected in soils and curry the same current. A Suitable Shunt is connected to these with to limit current through them.
- and moving coils are connected in sois with a high nonindustric resistance. It is most accurate type instrument.
- -) For using electrolynamometrs instrument as wallmetrs, he fixed toils are allowed a convert toil and must be connected in suring with the load. The moving wil alto as a voltage willow) premou will any must be connected across he supply terminals.

- -) The Wallmoon institutes Supply Pown.
- -) When lurvent puries through the fixed and moving coils, both the coils produce the magnetic fields.
- -) The first produced by the fixed with is proportional to low current while the field produced by the moving coil is proportional to voltage.
- -) As he deflecting tryon is produced due to the intraction of the hoo fields.

\* Why PHHE instruments connot be wild for all measurements?

The PHAL instrument cannot be wed on a currents (5) vollager. If are Supply is given to these instruments, an alternating from will be swedged. Due to moment of invitia of the moving System, he pointed will not follow the rapidly changing alternating brown and will fail to show any ocasing.

In our to the instrument Should be able to read a c quantities, the magnetic field in the air Jup must change along with the Change in current. This principle is used in electroly namement type instrument.

done is the about the thousands the about the price of the

the American and Armedical for Almerical at the first on their

A standard of the same of the

The court of the state of the s

Harrist will be the same of the later

instantaneous value of current in fixed coll W iz : instantanear value of lurront in moving wil Li . Suf inductana of fixed coils

Lz suf inductana of moving coils

H - Hutval inductiona between fixed and moving coils.

The electrolynamometry instrument can be represent by Equivalent circuit as shown in hig.

The flux linkage of coil-1 Ø, = Lii, +Miz

The state of the s

The flux linlenge of Coil-2

Or : Liz + Hi,

 $e_1 = \frac{d\phi_1}{dr}$  and  $e_2 = \frac{d\phi_2}{dr}$ Now indicas on

Electrical input Envyy = eigly + ezizet

=) indo, + izdoz

=) i,d(L,i,+ Miz) + iz d (Lziz+Mi,)

=) inLidin + 112 dLi + iniz dM + inHdiz + 12 Lz diz + 122dlz + 1,12dm + 12Hdi) -0

in the magnetic held but to Li, Li and M. Stou J lnugs The is given by,

Envly Strud . - Lin + 1/2 iz + iiiz M

Change in Strud Pronty = d [ - Lii + - Liz + i iz H]

-) intidi, + /2 it de, + in codi + /2 in de + india +

from the principle of conscioustion of Envist.

Electrical isp Enorgy = Enorgy Street + Mechanical Propay.

.. Hechanical Enous - Electrical isp Enous - Enous stous.

Substracting Equation (1) Rom Equi, D

.. Mechanical Enory = 2 inde, + 1/2/1022 + inized M

The self inductiones is and in an constants and knew disangle ur zono.

: Hechanich (nors) = i, iz dM

If Ti is the instantaneous defluting torque and do is the change in the deflution then,

Mechanical Energy = Mechanical Look done THE THIRD THE

iniz dM = Tida

This is the Expression for the instantaneous defluting torque. but us see its operation on a.c. and dic

De operation |- For de currents of I and Iz

The controlling torque is provided by spring Linu, To KO

At Shady stak

To = To 11/19/2 (11/19/2)

$$\int \theta = \frac{I_1 I_2}{I_C} \cdot \frac{JH}{J\theta}$$

Thus the deflection is proportional to the product of the two currents and the rate of change of mutual inducanu.

operation 1-

In ac operation, he total defleting toque over a cycle

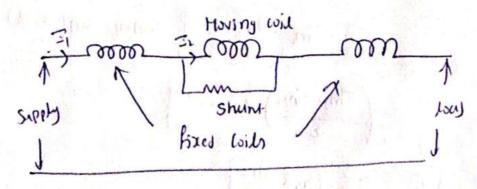
must be obtained by integrating Ti over one

Avviage deflicting Torque over one Cycle is,

$$T_{J} = \frac{1}{T} \int_{0}^{T} J_{1} J_{2} J_{2} \int_{0}^{T} J_{1} J_{2} J_{2} \int_{0}^{T} J_{1} J_{2} J_$$

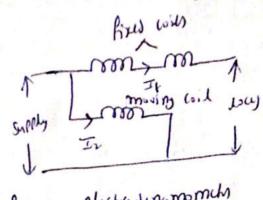
Now if the two currents are sinusoidal and displaced by a then to a soul of the second of phane anyl \$ I = Imi Sinut

and 
$$\overline{I}_2 = \overline{I}_{m_1} \sin (\omega t - \beta)$$


$$= \left(\frac{\sum_{m_1} \sum_{m_2}}{2}\right) \cos \phi \frac{dH}{d\theta}.$$

When  $\overline{J_1}$  and  $\overline{J_2}$  are the 8.m.s values of the two currents.  $\overline{J_1} := \frac{\overline{J_{m_1}}}{\sqrt{\overline{J_2}}} \quad \text{and} \quad \overline{J_2} := \frac{\overline{J_{m_1}}}{\sqrt{\overline{J_2}}}$ 

As Te: ko


At Shady State  $T_J = T_C$   $T_J = T_C$   $T_J = LO$   $0 = T_J T_C \cos \phi \frac{d\pi}{J\theta} = LO$ 

- Thus the Jeflethon is decided by the product of 8.ms values of two currents, losine of phase anyth and rate of change of mutual inductanu.
- The an electrolynamometry instrument is calibrated with a declaration of 1A and pointer indicates 1A dec on scale than on are the pointer will deflect upto the Same mark but 1A in this case will indicate somes value.
- -) The instrument can be wed as an ammeter to measure lumins uph zon. While wring as a voltment it can have low sensitivity of about 10 to 30m/v.
- -) The fig a, b, c Shows the connections of the Cleckodynamometry instrument as ammetr, voltmetr and waternets



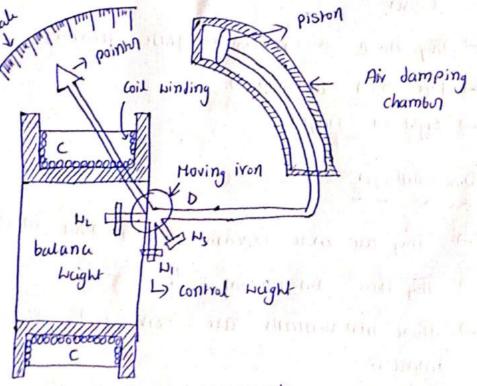
Rgw Elictro Jynamomita ammita.

Fig 16) elitholynamomul vallmon.



elictrosy namomich hy u) Wallmuton,

#### Advantago 1


- -) These instruments are free from hysteresis and Eddy current losson.
- a precision grave accuracy. - They have
- Consimption -) IOU POWN
- -) Light in buight.

## Disadvantago V

- They are more Expensive their other instruments.
- Thy have non-uniform scale
- -) There instruments are sensitive to overloads and mechanical impacts.

The moving Iron instruments are clarifies as

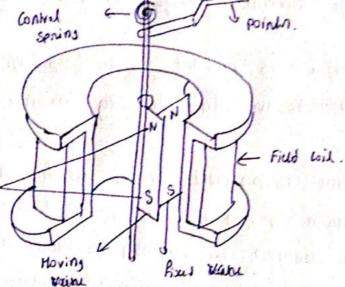
- i) Moving iron altraction type instruments
- ii) Moving ivon sepulsion type instruments.
- i) Hoving ivon attraction type instrumentst
- The busic wolling principle of these instruments is very simple that a soft iron pica it brought new the magnetyes attracted by the magnety
- The construction of the allvaction type instrument is shown



Moving iron attraction type instrument

- -) It consists of fines coll 'c' and moving iron piece o
- -> The coil is flat and has a narrow slot like opening.
- -) The moving iron is a flat disc which is eccentrically mounted on the Spirale. The Spirale is supported between the sewed bearings.

- The spindle currier a pointer which moves over a scale.
- -) The number of turns of the fixed will are dependent on the dange of instrument.
- -) For paring large current through the will only few homes are ocquired.
- -) The controlling tongen is provided by the springs but gravity Control may also be used for vertically mounted pand type instrument.
- -) The damping torque is provided by the air friction.
- -) A light aluminium piston is attacked to the moving System It moves in a Air chamber. The chamber is closed at one Prid.
- -) The operating magnetic field in moving iron instruments is very weak. Henu Eddy current damping is not wood twoe.


# ii) Hoving iron repulsion type instrument:

These instruments have two vanus inside the will, the one is fixed and other is movable. When he lurrent flows in the will both the vanus are magnetized with like polanition induced on the same size. Here due to the ocpulsion of like polarities, there is a fine of repulsion between the two vanus causing the movement of moving vany.

The ocpulsion type instruments are he mostly was instruments. The two diffrent dusign of repulsion type instruments are

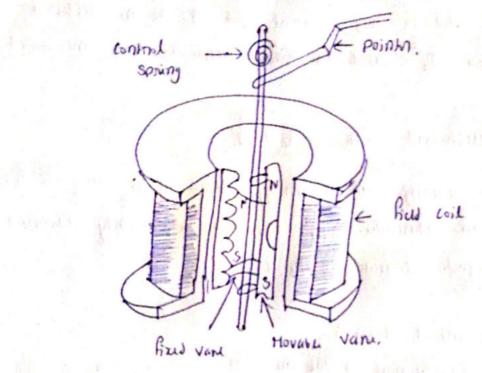
- a) Rasial vane type
- b) Co-axial vane type.

- a) Radial vane Repubsion Type instrument:
- Tig shows the radial vane repulsion type instrument out of the other moving iron mechanisms, this is the most sensitive and has most linear Scale.



Rusial value Yearding
Type instrument

-) The two vanus are sould strips of iron.


Poles indual

by field flux.

- -1 The fixed vanu is attached to the will and the movable vane is attached to the Spinshe and Suspended in the induction field of the will.
- -) pointh is attacked to the movable vane.
- -) Movall vane is curved brighten sectungular in shape.
- -) When he current flow through he coils the two iron varior become magnetized with north poles at their upper Ends and south poles at their lower Ends.
- Here he deflection of the pointer is always in the Same direction.
- I The Jetherion is Effectively proportional to the accord current and Linu the Scale is calibrated Jinetity to read amount to) volts.

b) Concentric varie Repulsion Type instrument?

-) Fig Shows the Conuntric vanu Repulsion type instrument.



- Oil frame while he other can sotate co-axially inside the stationing vanu.
- in he toil. Thus he movable vance value under the vepulsue free.
- As he movable varu is attached to the pivoted Shaft, the sepulation stable in a sorution of the shaft.
- The points deflection is proportional to the current in the coil.
- -1 The Scale of the instrument is non-uniform in nature.
- I Thus Whatsver may be the direction of the current in the cost, the deflection in the moving iron instruments is in the Same direction.
- -) Hence moving iron instruments can be used for both a consider

Torque Equation of moving from instrument:

Consider a Small increment in current supplied to he will of he instrument. Due to his current, let do be the deflusion under the deflution To. Due to such deflution, some mechanical work will be done.

[ Mechanical NON: To do ]

There will be a change in he Energy Stoud, in he maynche hill due to the Change in inductance. The inductance is inversely proportional to orductance of magnetic circuit of he coil.

Let I: initial lurrent

Li Instrument inductiona

O: defluction

dI: increase in current

de change in inductant

do : change in defliction.

Now the e of the state of the s

=) I dL + L dI ... As both I and L are changing.

11. materials and the Sugar term of

The Educational Energy Supplied is given by

 $e \pm dt = \left( \pm \frac{dt}{dt} + L \frac{d \mp}{dt} \right) \pm . dt$ 

7 I'LL LIJI - O

The Street Enougy increases from LLI to L (L+JL) (I+JI) Hena he change in he street shows is given by

エ パルナタア)(エナタエ)、- パトエ~

1 
$$\chi$$
 (1+dL) ( $T$ +  $2TJT$ +  $J^{T}T^{2}$ ) -  $\chi$ L $T^{2}$ 

1  $\chi$  (1+dL) ( $T$ +  $2TLJT$ +  $J^{T}T^{2}$ L +  $T^{2}JL$ +  $2T(J)^{2}$  +  $J^{2}T^{2}JL$ ) -  $\chi$ L $T^{2}$ 

1  $\chi$  (1+dL) ( $T$ +  $2TLJT$ +  $J^{2}TL$ +  $T^{2}JL$ +  $2T(J)^{2}$  +  $J^{2}T^{2}JL$ ) -  $\chi$ L $T^{2}$ 

1  $\chi$  (1+dL) ( $T$ +  $\chi$ T $\chi$ DL) -  $\chi$ L $\chi$ DL

2  $\chi$ DL +  $\chi$ DL

2  $\chi$ DL +  $\chi$ DL

3  $\chi$ DL +  $\chi$ DL

4  $\chi$ DL

4  $\chi$ DL

5  $\chi$ DL

5  $\chi$ DL

6  $\chi$ DL

6  $\chi$ DL

7  $\chi$ DL

7  $\chi$ DL

The Enorgy is supplied is nothing but increase in Street Enorgy
plus he enorgy required for mechanical work done

Wil he controlling torque is given by

Tc = 
$$100$$

At Shewy State Consistion

Td = Tc

 $100 = 12^{-2} \frac{dL}{d0}$ 
 $0 = 12^{-2} \frac{dL}{d0}$ 

Thus the deflection is proportional to the Square of the burrene through the loid.

- \* Advantages !
  - of The moving ivon instruments can be used by both ach sic measuments.
  - is no the torque to weight sations to high, Browns due to the friction are very lon.
  - iii) There are no current carrying parts in the moving System Line there meters are Extremly sugged and reliable
  - in) These can withstand large loads and are not dameged Even under Sever overload conditions.
  - V) The sange of instruments can be Extended.

#### Disadvantagen 1

- 1) Scale is not uniform
- ii) There are surious Enrows due to hystoresis, frequency changes and Stray magnetic fields.
- ii) pason consumption is on higher side.

# \* Errors in Moving iron instruments; The various works in the moving iron instruments,

#### a) Hysterisis brook

Due to hysteresis Effect, he flux density for the same current while ascending and descending values in different. while descending he flux density is higher while ascending it is Lonor. So make scars higher by descending values of current cos vollage. So remity for his is to use smaller iron parts which can Jemynchie quickly (0) to work with laser flux densities.

6) Temporature brown in

The hamperature Book arises due to Effect of temporature on he temporature co-efficient of the spring. This brood is of the order of 0.021 por oc change in temporature brown can cause due to self hating of he wil and due to which change in veristance of he coil. So coil and sorios voistana must have low temporature to-efficient. Henu manyanin is generally wed he he sois xosstances.

# c) Frequency from V

These are soluted to are operation of the instrument. The change in frequency affects he scactanu of the working wil. and also affects the magnitude of the Eddy Currents. This causes errors in he instruments.

## J) Edy Current Sono :-

Who instrument is wood by a.c measurements the soly currents are produced in the iron parts of the instruments. The essy current affects he instrument current causing he change in the defletting torque. This products he broom in the metri readings. the distance April of

and the second second second second second second second

A some was a special of the property of the same of th

the first of the second of the

the state of the s

and the same of the same of the same of the

or in a place of the sale to the sale of the

Gravity control

- Controlling trigui.
- i) Advinstable Small beight is i) The hair Springs are used wied which produces the which second controlling tonque
- ii) controlling torque can be varied.
- il) controlling torque is fixed.
- iii) The performance is not temp, dependent
- iii) The performance is Hoperature dependent.
- iv) The scale is non-uniform
- iv) The scale is uniform.
- V) The controlling torque is proportional V) The controlling torque is to Sind.
  - proportional to o.
- vi) The occurrings cannot be talan accurably.
- vi) The reasings can be taken very accurably.
- vii) The system must be used in vortical position only.
- vii) The system need not be necessarily in votical position.
- gravity control!
- viii) Posper healting is required as viii) The healting is not requires.
- ix) Simple, Cheap but Jelieve
- ix) Simple, rigid but costlict compared to gravity control.
- 4) Rurdy wsed for indicating.
- x) very popularly used for indiwing.

### Example problems

1) The inductance of a moving iron instrument is given by  $L=(12+60-0^2)$  MH, Where O is the deflection in radians from two position. The spring constant is  $12\times10^{-6}$  Nm Iradians. Calculate the deflection for a current of 80.

Deflution 
$$\theta : \frac{1}{L} \times \frac{\Xi^{2}}{1L} \times \frac{dL}{d\theta}$$
 $L : (12 + 6\theta - \theta^{2})$ 
 $\frac{dL}{d\theta} : (-2\theta + 6) \times 10^{6}$ 
 $\therefore \theta : \frac{1}{2} \times \frac{(3)^{2}}{12 \times 10^{6}} \times (-2\theta + 6) \times 10^{6}$ 
 $\theta : 2.667(-2\theta + 6)$ 
 $6.334 \theta = 16.002 = 0$ 
 $\theta : 2.526 \times 300$ 

2) A 2 mA mch with an internal sonstrana of 1000 is to be converted into 6-150 mA ammeter. calculate he value of the Stant Yoristana required.

3) A moving coil instrument gives a full scale deflection with a current of holes, while he inhand societance of he metrics soon. It is to be used as a vollenth to measure the vollege range of 0-10v. Calculate the multiplier Resistance.

So, 
$$\pm m = 40 \mu A$$
,  $Rm = 500 R$   $\frac{Rx}{1}$   $\frac{Rm}{1}$   $\frac{Rx}{1}$   $\frac{Rm}{1}$   $\frac{Rx}{1}$   $\frac{Rm}{1}$   $\frac{Rx}{1}$   $\frac{Rm}{1}$   $\frac{Rx}{1}$   $\frac{Rx}{1}$ 

$$R_{SC} = \frac{V - I_{m}R_{m}}{I_{m}} = \frac{V}{I_{m}} - R_{m}$$

$$R_{SC} = \frac{100}{40\times16^{6}} - 500 = \frac{244.95 \text{ keV}}{I_{m}}$$

4) calware he value of multiplier voistance of soov varye of a de vollment, that was solla mehr movement with an internet voistance of 2001.

Sol Rm = 200A, Im = 50 MA V= 500

=) 9.99HN

Measurement of power, energy & power factor.

## \* power measurements

Electric pour is the sale of doing Louis. It is Expressed in walls. The higher units of power wied in practice include

Pauls = VI coso, i.e, power of one wall is said to be Expensed When a south of one volt pames a current of one amount through a load suristance of one ohm at unity pown factor.

The power measurements are made with the help of a wallmohn. wallmohn is an indicating defletting type of instrument wied in Laboratories for measurement of power in various ranges. A waltmeter consists of two coils as shown in the schemetic representative fig. the bank as the

#### => Current coil &

The current cost connected in ty. Waltmehr connection. svivo with circuit and curries the Load current. It is designed such that it is wound with 2 to 3 twons of thick wire and him it has very low distance.

## =) vollage (0) pountial (0) promure wil > m m m m m

It is connected across the load circuit and Line curries a current proportional to the load current. The total load voltage appears across the posential wit. It is designed such that it is want with Several twons of thin pire and him it has a very high kosistanu.

The wallmichs can be a upf michs with less michs depending on the type of the load connected in the measuring cintuit for power minuments in Ac circuits, the waterneter is visitly adopted.

The electrical paser can be of three forms,

i) Real power is the power Consumed by the power desistive loads on he system. It is Expressed (VAY) as true power, absolute power, average power (so) new power (wall) wallage.

Appount

ii) reactive pour is the power consumed by the ocactive loads on the System - It is Paproned in seachive volt-amoun (VAr)

iii) "Apparent power" is he vector sum of the above two power Components. It is Expressed in volt amounts (NA)

(Apperant power)2= (real power)2+ (realthic power)7 = (VIlosp)2+ (VIsin+)2 - 1 - 100

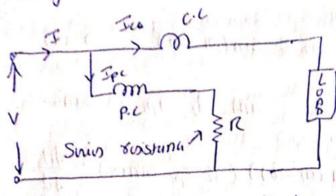
=) V2I2 (05 0 + V2I2 sinto

=) V2I2 (cos2 0 + sin2 0)

[Appriant Paul = VI] all redge to the despera place come

Red pour (P): VI COSA

Los p - P of mind the street ment of ment


Di British had all of Interpreted Doming to

the time the thought the first the mine of the started

from the many that the field the front that the thing that

- Philipping River

- An electrodynamometer type wallmeter is used to measure power.
- a to has two coils, one is fixed coil which is current coil and another and is moving wit with is potential coil.
- of the correct coil carrier the current of the circuit While potential carries current which is persportional to the voltage in the circuit.
- The connections of an electrolynamometry wallmetry in the cincuit are shown in hig.



Elickofnamomen waterich.

Current through Current Loid Ic ?

TPC: Current Horough popenhal coil.

Svivs Vosssana

R. H. S value of Supply Voltage

R.H.s value of current.

Torque Equation >

Auring to theay of elutrodynamic instruments Ti = iniz dn -0

Lit V. instantanes vollage = Vmsinus

= Viv sinut -> (1)

V. Jel Du to high soin outstand, posential will is trucked as purely soistive.

The current Ipe is in phase with V as potential lay point 2 coil is purely toishire. ing! il marginish in a

$$\dot{T}_{pe} = inntantunal \quad Value = \frac{V}{Rp}.$$

$$ipe = \frac{\sqrt{2}V}{Rp} \quad Sinut = 0 \quad \forall z \quad \exists_{pe} \quad Sinut$$

$$ipe = \sqrt{z} \quad \exists_{pe} \quad Sinut \quad \rightarrow \quad \langle 3 \rangle.$$

If current coil current lays the voltage by an angle of tun it instantances value is

If in ic and iz = spe Linu. Non

$$\overline{K} = \overline{I} c \overline{I} p c \left[ (0s \phi - (os (2ut - \phi)) \right] \frac{dH}{d\theta} \rightarrow (s)$$

For a spring controlled wallmuch

Which plant is an

At stray State consinon To Tell 10

$$V_{i} = \frac{1}{L} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j}$$

$$\theta = \frac{1}{4} \left[ \frac{1}{RP} \cos \theta \right]$$

$$\theta = \frac{1}{RP} \left[ \frac{1}{RP} \cos \theta \right] = \int_{-R}^{R} \left[ \frac{1}{RP} \cos \theta \right] = \int_{-R}^{R} \left[ \frac{1}{RP} \cos \theta \right]$$

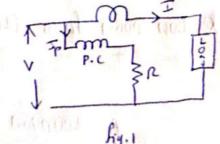
DIM 
$$K_{L} = \frac{k_{I}}{Rp}$$
 and  $p = \sqrt{L}\cos p$ 

$$\left(\partial \alpha P\right) \rightarrow \langle 10 \rangle$$

Thus he wallments defletion when calibrated gives the pour consumption of the circuit.

\* LOW POWN factor (LPF) wattrocks :

A LOWPOUN fucks (LPF) waltmobs is an instrument wied to measure power in Low power factor circuits. This type of wallmuch is Employed for power measurement in cincuits whose P.F. is lon than 0.5


- > bunufully, walterchis are was his municing power in a circuit
- But, the pour measurement wing normal electrodynamomets wallouth in a circuit operating at LPF courses inaccurate in the readings du to the following reusons.

- 1) Who the ordinary wallmuch is connected to a low power factor circum. Even though at full Excitation of current wil and potential wil, the deflicting torque produced on he moving coil is very small.
- is) wallouch operating at LPF introduces large briss due to vollage coil induvanu.
- -> Henu Some additional features are mensured incorporated into the Dinary electrolynamic wallmeter to overcome these difficulties.
- So that accurate readings can be obtained by he waltrucks when will in LPF circuits

## Construction of LPF i

The Construction of a LPF wallmuch is summe as that of an elutrodynamoment type wallmedy with slight modifications by he compensation of STATES (MILLES)

- a) compensation of bost du to primire (0) potential coil current ?
- I wan the pokential wil of the wallmuch is connected across he supply side as shown & Fram



- of In LPF circuis at low power, the current high
- will be very ligh.

  If Down to this power loss in the current coil will be very high.
- I Sinu he propose coil is connected across the supply the total in the current cold.
- in hi current cou. I Thus large Ernol will be introduced.

there are a second of the second of the second

- Muthos 1 :-I suppose, it the promove coil is connected at the load side Shawn in fig. 2
  - I The total power measured will be not the pown loss by he load

#### Huthod-2:

- I In our to nullity the brists due to promune with current, an additional winding known as compensating winding is used and is Connected in socies with the promove coil as shown in fig. to Componenta g coil
- I It is identical to the current coil and It's highly wound with it h produce a hids to spling mat acts in opposition to he find of the he lurrent wil due to load current
- I The current in he current coil is he sum of low current I and current knough he promise (oil (Ip).
- I The environd coil produces a field which is proportional to (I+=p) When we the pronou coil and compensating coil produce a keld, proportional to Ip
- I Thus he had produced by the compensating coil neutralizes the field posseuld by the lurrent wil.
- I Henry he steer of the potential will current the significant field is due to current I only.
- 1 Thurbre, Erross du to promure cost current cur mullibred and compensated wallmake shows no error.

- I In a LPF wallmehr, the pricown coil area is increwed so as to have a low value of systamu.
- I Ou to low resistance, a very high current flows through it producing a high value of operating torque.
- 6) Compensation of Good due to potential coil inductions:
- I be know that snow due to processing coil inductional is proportional to sind ( when the magnitude of brost is given by vising tund)
- I The value of pown facts is low and home the value of & is high. Ix Se
- I In Dan to reduce this Good, a Capacity is connicul across he soin roisto of the posential will as shown in by.
- I The prosence of the Capacity will give a having phone angle due to blick the value of \$ is small. So he sind is small. Hence reducing he sins.
- -) Thuster a modified electrolynamometry type wall meter overcomes the difficulties at LPFs and obtains high accuracy, thus making it a LPF wallmich. the state of the second of the second of the

the same showing the same of the same officer of

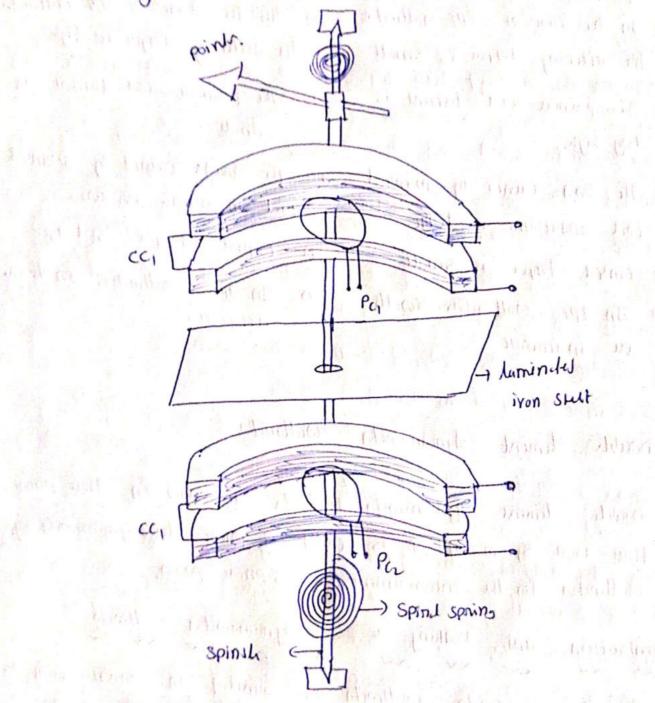
Profession of the state of the state of the

#### LPF Wallmides me my my district and

- Upf Wallmich
- he settletting torque is small
- ii) The powere cold turrent is Voy Ligh.
- 111) The Erry Causes by pountal Coil inductance is large.
- iv) control torque is small
  - V) In LPF wall miles soulls are inaccurate THE WAR TO WELL A LEW

- i) In he case of LPF wallmoons is In he case of UPF wallmoons he settleting torque is high.
  - ii) The pronume coil lurrent Small.
  - iii) The Enon caused by populated cold inductana is wis.
  - iv) control torque is large.
  - V) In UPF wallmotors would are accurate.

# \* Double Climent Synamometr wallmotor 1-


-> Double Climina Synamometry wallmeter is used for thrue phase, two wine system and it is called 3- phase electrodynamometr type wallmeter for the measurement of 3-phone pour.

construction and wolking of 3\$ dynamometer watering

- I The 3\$ dynamomen waltends is similar in construction to that of a single-phase dynamometer waltered. The only differente is it consists of the fixed wills and two moving toils.
- I The Fixed with an connected in sories with the times and moving loids are lonnicus accross he lines.

I Home the fixed coils are known as current coils (cc, e cce), and moving coils are also known as premiere coils (on) potential coils (pc, e pc).

I The below by shows he arrangement of 3\$ - waltmet.



I The combination of a fixed toil and a moving toil is called an element. So, the 3-price synamometr weetmeter consists of his element.

so to injugate the power measures by Each Climent.

Similar to that of the 3p power measurement by using hoo single phase wallowed are shown in below hig.

Jon this muchod, the total pason R—
consumed will be the sum of the
becautings of both wallmeters, when 34-supply
has to calculated manually.

Relimint 1

Supply PC,

PC,

Lows.

Whereas, in a 3-phone electrodynamometh of elegant of waters, the total power consumption of the consumption noticed by both the climins is being integrated internally.

I The complete arrangement just behaves as that of two waltends.

method of power microarument.

I lack set of hour coil and moving coil will Experience a torque which is proportional to the power measured by that set.

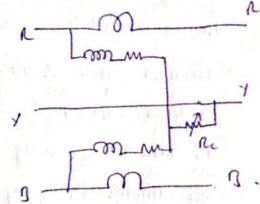
I Hence he not torque is he sum of deflecting torque of the two.

ir, Tox duz

Tox (withou)

I Henre the total deflecting torque of the two sets is Proportional to the total paser measure by the Civilian.

The state of the s


Sections Will as at Sents

- climination of mutual effect blu he has elements of waterwhol-
- thou is no interaction but the fields of the both elimines i.e, only when the mutual effect blu the two elimines is absent.
- It's can be actived by placing an iron skield in behaven the
- -) FWIMM, the presence of any metal

  Effect will be compensated by connecting
  a variable suission called compensating

  Suissin Re in suis with the Admid

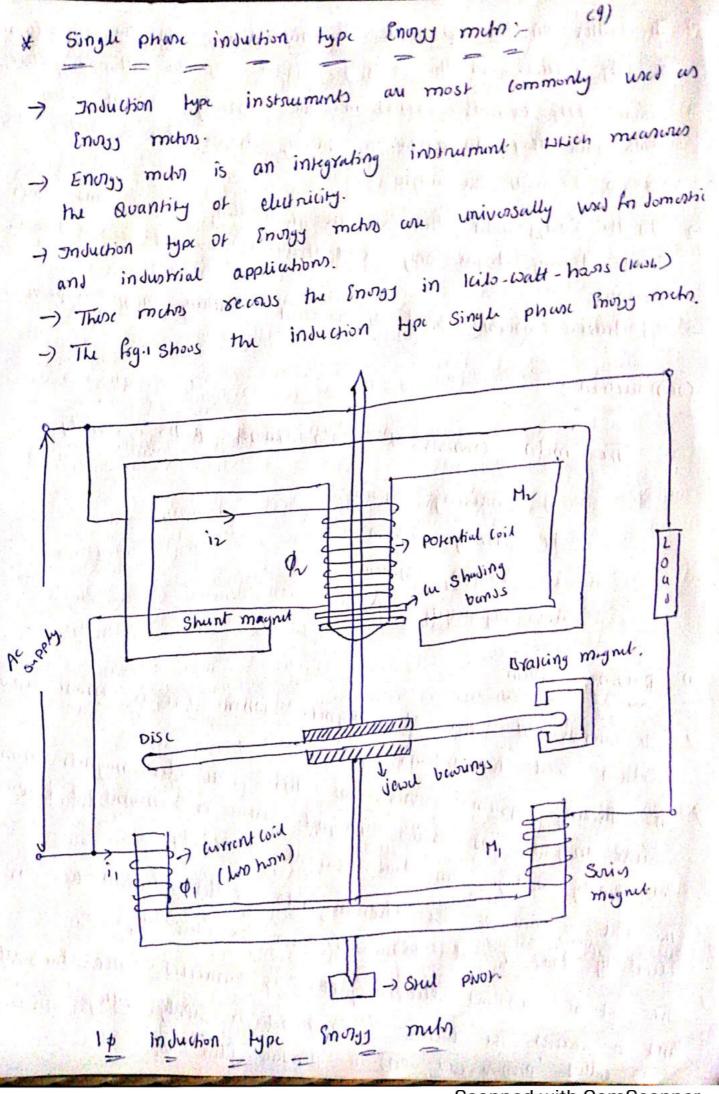
  Coil as shown in Fig.



- -) This method of compensating he mutual Effect is called wishing method.
- -) By varying the rosista Rc the current through the pressure coils are varied which in turn varies the fields.

meconity of promone coil to be purely suristive?

- The electrolynamometr type wallmeter consists of two will i.e,
- -) The current coil Should carry the full line current and Line it will be connected in suries with line where as the promote coil will be connected across the line.
- He whole of the current coil Should be very len so that, the whole of the current flows through it with fewer losses, whereas the very high because of the two seasons.


- horough it and hence lon I'm loss.
- If the voistance is very ligh when compared to its reactioner, the lurrent with be almost in phase with the voltage on the other hans if the voistance is lon, the current will be betind the voltage with a greater angle and have this will introduce an start in the vowings of the instrument.

Shows be parely vosistive.

The Reserve Mild Control of the Control

All the beautiful and the second

White the state of the state of



- -) It willes on his principle of indusion in, on his production of luly turrents in the moving system by the alternating theres
- -> These Esty currents instead in the moving system interact with such others to produce a striving torque due to which disc Notation to reins the innys.
- -) In the Energy metro there is no controlling toque and thus Jul to driving toque only a continuous votation of the disc is
- -7 To have constant speed of volation braking magnet is provided.

#### Construction 1-

The meter consists of four major parts namely i) Driving System ii) Moving Syskm iii) Bralking System iv) Rugistring System.

- 1) Driving Syskm; -
- I It consists of two electromegnets whose con is made up of
- I The Iniving System cornists of two at electromagnets namely, Shurt might and sois might which is might proportional to Supply voltage and load current properties.
- I The will of one of the electromagnets called "Current coil is Exists by Lous current which Produces he flux \$,
- The will of another electromagnet is connected across hu supply and it carries he bereent proportional to supply voltage. This soil is called promone coil and it popular flux by

Scanned with CamScanner

The flux produced by shart magnet is brought in Stact Quarature with Supply vollage with the help of Copper bands whose position is adjustable

# ii) Moving Sysum;

- I light aluminium disc mounted in a light alloy shaft is the main part of the moving System
- I This disc is positioned in between Shunt and Surin maynets. It is supported bla Jewel bearings.
- I The moving System runs on hundered Sted pivot.
- I There is no springs and no controlling torque.

# in) Braking Systeme-

- I A parmament magnet is plant news the aluminium disc for brushing mechanism. This magnit products its own had
- I The disc moves in the hild of this magnet and a braking
- I The position of this magnet is adjustable and while breaking torque is abharms. assumed by shifting his magnet to different Vadial positions. This mognet is called breating magnet

## iv) Registring System;

- I It records continuously a number which is proportional revolutions made by aluminium disc.
- I By a Suitable system, a train of reduction gewis, the pinion on the shaft drives a sories of pointers.
- I There pointers votate on voind dieds which are Equally morning with Equal divisions. 5

- Is connected across the supply, if carries a current proportional to the voltage
- The current coil is curried by the soin magnet HI and it
- Both there coils produces alternating fluxes \$ and \$ sopechily.

  There fluxes are proportional to currents in their coils.
- -) Parts of Each of those fluxes link with the Jisc and induces e.m.f in it. Due to these limfs lidy currents are induced in he disc.
- The Edy current indual by the magnet His sealt with magnets had produced by His also Edy leverent induced by the magnet his sealt with magnet had produced by His
- Inus luch portion of the Jix Experiences a mechanical knu and Ju h motor raction, disc will rotates.
- -) The speed of the magnet is controlled by a Shaped magnet called breaking magnet.
- ) When disc sotates in the curry gap, Eddy Currents are induced in the disc which opposes the Cause producing them i.e, station selative smotion of the disc with suspect to maynet. Here braining Tragui To is generated. This is proportional to speed (N) of the disc.
- -) By adjusting the position of this magnet, desired speed of the disc is obtained.
- -) Spinsh is connected to aconing mechanism through gases which

hut

V= Supply voltage

Iz: Current through privative coil proportional to v

Øz: flux products by Iz

In: Current twagen the Current coil

\$ : Plux produced by I,

- -1 Now Iz lugs V by 90° as prusure Coil is lighty inductive and copper Shuding bands .
  - -) I am or are in phase.
- -) with I lags V by \$ When o is Jecises by the load connected.
- -) I, and o, are in phane
- -) The phino lingram is shown in hig.

E1: insuas limf in sisc du h o,

Er: insuas emf in sisc du to de

Ish : Poly current du to E,

Ise : Puly Current du to Ex

- -) The instead Smf lags the dospective flore producing it by 90°.
- -) The Ruly Currents are in phase with the induced limit producing
- -) Now that is a intraction blu of and Isa Which produces Toyur Ti and intraction between to and Ise Will produces How To. To is opposite timection to Ti. How not deflecting Hayly is

```
I games afront foot at all it
    Tj . T2 - T,
    hun Ta = $ Ise cosp
           Ti = $\psi_1 \text{ Ish (05 (180-$p))}
    To & $ Ise cosp - $, Ish (05 (180-0)
                                       (05 (180-10) = - (05)
     To & the Ise cosp + O, Fish cosp.
 But
          DIX IIX V
                               Ø, ≺ I,
           IXX EIX I
           FUY KEZ X IZ XV
    : TJ = K, VI, COS$ + KZIV COS$
        Tj. (Kithi) VI, LOSA
                                 consumis by load.
        [TJ XVI(059] i.e, pasy
             torque is proportional to speed N with which disc
Now braking
                TAN
 sosals.
                            the long the thirt
              Ti = K2N
                            - Tj = K, VI, Losp
     Sinu
              TJ X VI, 105$
  Skay state Continon
                  下. 丁
                                 Aug Into Th
                KIN = KIVTILOSD
                  N = KI VIIIOSA
Total Number of Sevolution is
              - INST -) Bin VI Cost St
            =) Ki S (Tru pain) dt
```

Scanned with CamScanner

a program

#### Advantagin 1-

- I They can be wish over a long period of him with very little
- I It is an in Expensive Energy mehn and almost wed universally for ac measurements.
- I can be was for the measurement of snorrs over a bise range of loads. the first the state of the state of

#### Disawantagory-

- I It there is no propor adjustments in the metry, large errors are introduced in scadings.
- I The principle of induction can be only in a.c., Line there mehrs are limited to an measurements only.

# \* Errors and compensation in Enory much L

Enougy much should give correct occulings Several years unin normal use conditions. Some of he common toras in Enorgy metry and their remission measures are discurred below.

#### 1) phuse inst

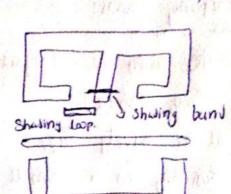
- -) Dr is necessary that the Envry meter should give correct ocusings on all pason factors, which is only possible when the has setup by shurt lays bekind the applied voltage by 90°
- -) But the flux due to shunt magnet does not lay bekind the applies voltage Exactly by 90° because of winding Visistana and iron Losson

and the dament to

#### Compensation!

- -) The flux in the Shunt magnet can be muse to lay bekind the Supply vallage by Exactly 90° by assusting he position of Shading band placed at lown part of central limb of the Shurt mugnet.
- -) This assistment is called as lay assistment (o) pour factor assistment (Pasis facts Compensation)

#### 2. SRUS BOOK -


-) Sometimes he speed of the metro is either fast (51) slow occulting in the brong reasiling of Enougy consumption.

#### Compensation!

- -) An bood in the speed of the moch when test on non-inductive load Can be eliminated by correctly adjusting the position of the magnet
- 3) Friction Broom-
- -) Frichonal Porces at the sotor bearings and in the segistring mechanism cause noticable bron especially at light loads.
- -) At light loads, the torque due to friction als considerably to the braining toque on he disc roto, and it can cause broom in met rousing.

#### Compensation 1

- The Pricional trans we very Ligh during low louds and his Frithand contis overcome by Light Load adjustment.
- -) During light loads, the torque possessed in the disc is insufficient to overcome the frictional trique, which is high during Starting Starting Starting Starting than Junning-



-) The Shaving loop is snongited proportional to the Supply Voltage and the field due to his loop produces mou sturking torque, which is Enough to overcome the frichonal torque at the starting. and the homeway at the few to

4) Comping 1- 11 A mand profit of the man -) Sometimes he disc of the Energy media mailer Stow but Continuous Forution at no loss i.e, when the potential will excited but with no current flowing in he low. This is called couping.

#### Compensation 1-

- In our to prevent this craping at no load, two holes of sloss an drilled in the disc on opposite sides of spinsh. This cause Suthitient distribion of the field.
  - The Scoult is that he disc tens to remain Stutionary Dun one of he holds comes unes one of the Shant magnet.

## 5) Temporation 2

- -1 The Entit due to variation in home, are very small, because The various Effects produced find to neutralise one another.
- -) The suisiance of the disc, potential toil, magnific circuit and break magnet are affected by he changes in the temp,
- -1 Therefore great care is exercised in the design of metro to eliminate the costs du to temp, variations

- () Frequency Course
- -) The meth is designed to give minimum born at a perstaled freque (so Hz).

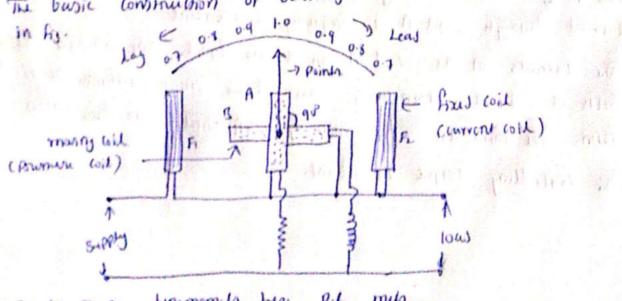
the property of the property of the

1) Final Sugar grants show

- of the Sipply field, Changes, the seasure of the wills also changes, soulding in a small win.
- -) Fortunutely, this is not of much Significance because communical freque are held bithin close limits.
- 7) vallage (mm;
  - The first due to variation of voltage is very Small (027. to 0.3%)
  - of the Shant magnet.
- \* POWN Fach mehns 1-
- 7 The power in Single phase at cintuit is given by,

Where coso = power factor of the circuit.

Thus by using privise voltmen, armound and waltoned in the circuit, the readings of v, I and P (an be obtained. Then power factor can be calculated as,


$$\left[\begin{array}{cc} (osp: \frac{P}{VI} \end{array}\right]$$

- -) But this method is not accurate. The brooms in all the metros together cause the broom in power factor calculations.
- Is varying aunsing to circuit and load conditions.
- Henu it is necessary to have a metry which can directly indicate the pet of the circuit.

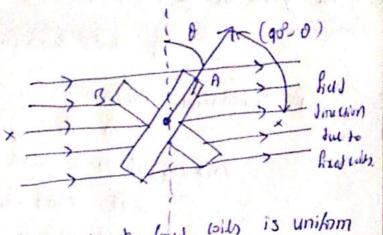
- I such a meta which indicates the instantaneous pot of the circuit is called power factor meta.
- -) Basic construction of p.f is similar to a wallmuch.
- -> It consists of two circuits, current circuit and a voltage circuit.
- -) The lurrent circuit carries current (1) fraction of current in the circuis whose p.f 18 to be musured.
- -> The vallage coil is split into two parallel paths , one inductive and one noninductive.
- -) The currents in the two pates are proportional to the voltage of the circuit
  - Thus the deflection depends upon the phase difference between the main lurrent though current circuit and the currents in the two branches of the vallage circuit i.c, P.f of the circuit.

There are two types of power factor meters

- a) Elicho Synamomely Lype
  - b) Hovingiron type.
  - a) Single phane Elicko Jynamo mety Type P.f metol
    - I The Construction of electrofinamometr type p.f metry is similar
      - to the construction of electrolynamometry type waterche
    - I The busic Construction of electrolynamometr type p.f metr is Shown



Single Phone Synomometr type P.1 miles


- -5 The Fi-Fz are the two fixed with which are connected in some
- The A-B are he two moving coils which are signify conneced to lack other so that their axes are at 90° to Each other.
- The moving coils A-0 are move together and carry the pointer which indicates he power factor of the circuit
- The hard coils Fi-Fz carry the main current in the circuit . If the current is large, he fraction of the current is parned through the coils.
- I Thus the magnetic field is produced by the fixed coils is proportional to the main current
- across the Supply voltage and Line called "potential (all is) voltage will
- The Coil A has non induction Phristana R in sois with it which the lold B has an inductiona L' in Sories Lite it.
- -) The values of R and L are so adjusted that the Coils A and a carry Equal currents at normal frequency. So at normal frequency R=WL.
- The current through he will A is in phase with Supply Vallage which the current through will is lays the supply voltage by 90° due to highly inductive nature of the circuit
- Du to L', current through the coil is frequency dependent while writer through coil-A is frequency independent.
- The currents in the coil A and B are Equal and produce the magnetic fields of Equal strength, which have phase different of 90° between them. The loids are also mutually, perpendicular to face other.

I have said to be the transfer

-) The controlling torque is absent.

-) Compiler the position of the moving system as shoon in hig.

-) Assume that the current through xthe low-is lags the vollage Inally by 90°



(15)

- -) Also arrums that he fell produced by he fixed colls is uniform and in the direction of x-x as shown in hig.
  - -) Due to introducion of the fields produced by the currents through various wills, both the will A and I experience a torque.
    - -) The windings are arranged in such a manner that he brigues Experienced by coil A and B are opposite to Earl other.
  - -) Here the points attains an Equilibrium position when these to
  - The torque on lack will, for a given cold turrent will be maximum went the toil is paralled to the field produced by Fi-Fz i-c, direction x-x

Let

Ø = pour factor anyli O: Angle of tetherion.

The of is musure) from the vertical axis, in Equilibrium position Similar to a synamometry type wallouder, torque on loid. A is given by,

TA = 11VI (05\$ 105 (90-19) -> (1)

When k is constant

-> The Equation (1) is similar to the trave Equi, of Jynomometr Gre instrument.

of The torque on B is proportional to 600 (40- p) its small and 6000

TB: KVI sing lose 70

In Equilibrium condition

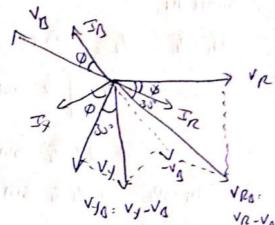
TA - TB (asd cos (40-0) = sind lasd.

Sind - tand cost-

fund: tanb

[0= p]

- Thus the angular position of the moviety cell is equal to Pain fuch ungli.
- -) The operation of the instrument is dependent on the specific supply did to supply in the the frequany.
- -) If he fry is different all it contains harmonics than inducrance Of chola with changer, due to with them with the Serian horas in The instruments reading.


\* Two waltruth mulhod with balances low londition )-

- -) The connection diagram for 12-> two wallmets method of musing the 3p pour of balanced star connectes lows - in as shain in hig.
- I Lit VR, VI, Vs and IR, II, Is are he RHS values of phase 3-3

Voltagos and phone Lyrents.

Montar Res

- The Load is to be considered inductive, the phase currents In, I, and In lag believe the corresponding phase voltages VR, Vy and Vo by an angle of \$1.
- -) The phant) diagram of Such load with a P.f cosp is shown below.
- -) From the phants diagram, the poin ?.
  . mushed by the two wallmeters by and be an given by.



-) Since the load is balances, for star-connected load

-) For balances low undisson

. Loud will be the Sum of two waltmeters rendings i.c.

$$\left[ losc + loso = 2 los \left( \frac{(+0)}{2} \right) los \left( \frac{(-0)}{2} \right) \right]$$

A to the state of the same

market = Wi

100 July 10 2 10

119 ) ... (2) June ( 2000 . 100) }

The walteness connected to measure the power input to a balanas thru phase cincuit insteade 2000 uns soon Suspectively. Find he p.f of the tirtuin when Both suavings are positive The later seasing is obtained after severing the condition: 1 connections to the current coil of Second instrument. Condition: 2 50 Condition: 1 W1: 2000 H W1: 500 H. Ø: fan Ji ( WI-UL ) -) 46-102 (050 = (05 (46.101) - 0.693 11: 2000 W 12: - 500 W Consision: 2  $\phi = \tan^{-1} J_{3} \left( \frac{U_{1} - U_{2}}{U_{1} + U_{1}} \right) = 70.893^{\circ}$ (05\$ . (05 (70.893°) = 0.327 Piz A 3D 440V moto Low has a P.f of 0.6- Two wallowers Connected to measure the power shows the ip to be 25kb. Find the scadings on Each instrument? input power P = WI + WI = 25 KU. line Voltage Ve : 440V Sop p. s = 0.6

from hu relation fan \$= 53 ( \( \bullet 1 - \bullet 1 \)

fan(\( \frac{\psi\_1}{25} \begin{array}{c} \begin{a

on Solving b1: 22.12 km wz: 2.88 160.

[x:3 The wallmooks are used to measure ip pasor to a 1-5 kV, 50 MZ 3\$ rooty supring on full load at an Efficiency of 85%. This seasings are 250km and 80km Expectively. Calmete the isp power, p.f., Line current and off. Line voltage VI 1-5 KV n1.. = 851. = 0-85 Wallmuch readings W, = 250 km Wz = 801km. a) input pour (p) = 11+UZ =) 330 164 1) P.f =) coso: cos [tuni (VI ( 1)+wr)) ( ) 0.746 lug. ( make ) it must be the e) line current IL Pain =) P=5VL =1 (05) TL = P =) JIX 1.5X 103X 0741 1170-27 A. Amended the first on the first 018 5 1000 1100 Chains FI TIP OIP: 330 X 0.85 018 =) 285.5 KW The state of the s

Activities and

4) Two wallouts's are used to measure the power isp to a Somethonars motor. Each of them indicates 60 kw. It has Pf be changed to 0.366 husing then schoming the seasing of , he too wallowing while he total pour ip semains unaltred? go and distribution of the distribution of nearings of wallmus b, = 60 km Since both the wallmeters reads Sume reading a both are the, then he moto must be running at upi hun he moto must be sunning at Jt P.f is 0-866 has V, Tr 605 (30+0) We : VE TE (35 (30+0) UI +UL : 1 V3 V1 IL (05\$ = 60+60=) 120 KW. UI-Wie - VI IL Sing given that 6057: 0.866 17 \$ : 605 (0.366) fand => 1/53 Rom Pav. fand. Ji (without) Transport of the Transport of the Middle of the Wilder of All day of the property of the day of the first L1-W2 = -40 and without 120 and second as the familia Mary Mary with 1 to 1 on Solving pi; 4= 100 Wz = 8016W. The state of the s Santife & a country of a sitter and some a function of the

Problems based on Enors metri-~~~~~~~

1) The much constant of a 2200, SA, SOHZ, 1\$ induction type Enry meta is 3275 revolutions for 1644. It he snays meta is subjected to a full load for one has then find the spend of he disc in the Enorgy much ?

sol Supply vollage: 220 V Line Luyvent: 5A Manual James

muchos constant = 3275 xcvalishons / kwhi

PONON - VI (OSØ ?) 220×5×1 = 1100 W ?) 1.1 160.

Envys: Pow x him =) 1.1×103 x 1 2) 1-1 Koh.

Spard (N): myln constant x Enois Consumition

= 3875 x 1.1 =) 3602.5 YIV 7) 3603 YeV "

2) An Enougy much is Jusignes to make loo revolutions of Jisc for one severes unit of Enorgy. Calculate the now of revolutions muse by the disc who connected to load currying 40A with 230V with 0.4 P.P. for an how. It it acrosly maius 360 revolutions hun fins he pruntinge ins);

Sof Line Current = 40 A P. F = 0.4 Supply voltage: 230V time: 1 hv

POUN CONDUMN) = VIIO) + 230 x 40 x 0-4 = 3680 W. (nowy consumus, pain x hime = 3680 x 17) 3680 kuh =) 3-680 puh,

# Pokationalus & Masurement of frequency

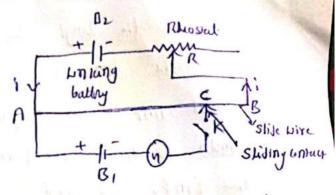
\* De cromptins potentionalis;

## \* Introduction >

- -) A pokntiment is an instrument wild to measure an unknown Simil Which is compared to known Simil. Thus it is a device wood for musicument of unknown E.m.f by comparision.
- -> The unknown Emf is compared with a known Emf which is Obtained from a Standard all (01) any reforence voltage saura.
- The main advantage of the comparision method of the similar muniment is that the pokntiometer is capable of providing high Jegnu of acturaly
- Basically a potentional wies balance (51) null condition during the muaniment of unknown Emf.
- Actually no current flows in the circuit of the unknown E.m.t during the measurement. Thus no power is consumed in such liverit.
- -) A basic application of the populismus is to measure unknown Emf (5) voltage : Ir can also be used to determine turrent.
- -> The unknown current can be papers obtained by using pountionaln by musing voltage Inop across the Standard roisty.
- -> In the field of electrical measurements, a popertionally is most wisely was an Standard for the calibration of the voltmeters, ammuns and wallmulns.

known lmf

The postnerments would on the principle of wavanoments opposing the unknown similar by a known of wavanoment similar with the megative terminals of both unknown similar the similar connected begetten, while the positive terminals are connected begetten a valvanomenta, as shown in fig.


- July the Emits are same values, there is no deflection on galvanomety. Thus to measure the untenant Emit by using above muthal with the known Emit. Wied must be variable.
- I Another important requirement is that known s.m.f Should be varied to give a larger number of known values but it is practically very difficult.
- I three alternatively, the unknown Emp is connected in parallel with and in apposition to a voltage doop measured across the resistance in hig.
- The main advantage of his method is that

  the turrent in the sesister can be varied

  [asily to Obtain any desired voltage with

  You has adjustment.
- I The voltage Inop across her voistor can be determined by calibrating the voistor with Stanland cell.
- The populationalis are clamified as die populationalis and are populationalis. There are various forms of die populationalis while we will wishly practically.
- The basic, simplish type of the dic potentionals is the Slide wire potentionals.

I The slive wire de pountionals is the busic and Simplish Hpc of the die potentionalin on shown



I A basic pokationals Circuit Consists of a slide wire AB having uniform cross section and unit Lingthans it is must up of mungarin.

I hat & be the ocsistance for unit length of the slise pire.

I The bullong Bz supplier a current trough the slide wine which is limited with the help of regulating sinistance i.e, showat.

I The balloy B, whose Emf is to be measured is connected in suis with a galvanometry is. and switch k.

I wan he switch 'k' is opened, the current through slide wire is i!

I It he sliding contact is at position i, let he length AE be 1-unis, then the voltage Josp across AC is given by "ist"

I consider that switch k is closed which puts the buttery B,

I The ballery B, whose E.m.f is to be measured is connected Such that the voltage drop along the slide Live and c.m.f of

I The deflution in the galvanometr in depends on the magnitudes of Voltage drop across hu slide wire portion Ac and P.m.f. of B.

I It he voltage trop across longth 'L' of he Slide wire is greater than Emtof butty Bi, thin the current will flow in the Sineching A to a though the galvanomide.

- Similarly if the Emf of balloy is is greater than the voltage Inop across the lingth L of the Stide wive, then the current with flow in the direction c to A through the galvanometry
- The most important condition Exhibiting the basic principle of the potentionals is that no current flows through the galvanometer when the two Emit's are squal.
  - I bunurally a scale is provided along with the Shink wine Which chapter to measure the length of portion Ac.
  - I though the measure goof of a battery, first addiest the current through slide wire with switch "k" open. Thin insure battery whose Emit is to be measured.
  - I By Closing Switch 1c adjust Sliding Contact Such that the galvanomely shows Zono deflection.
  - I Heasure the length of the portion of the Slide wine with the help of Scale provided. Then the unknown cometize of battery is given by,

### E = i(YL) -O

When or is the posistance per unit length, i is the current assured wring objected R.

- I If E.m.fs of the two ballorins B, and Be are to be compared then insert the first ballory B, in series with the galvanometer and then adjust the sliding contact Such that no current flows through the galvanometer.
- I measur the length of the Slive wire portion say li
- I Repeat the same the procedure with battry Bz in the Circuit.
- I let hu lingth measured be be

I Lt com t of battain B, and By be E, and EL Torpectively, then be can write,

$$E_1 = i(\gamma I_1) \rightarrow (2)$$

$$E_2 = i(\gamma I_2) \rightarrow (3)$$

Thus be can write

$$\frac{E_1}{e_2} : \frac{I_1}{I_2} \rightarrow (4)$$

- I from he above Equation it is that the satio of two lingths gives he sation of the two Em. L's.
- Be of known voltage, the limb of buttery B, is given by,

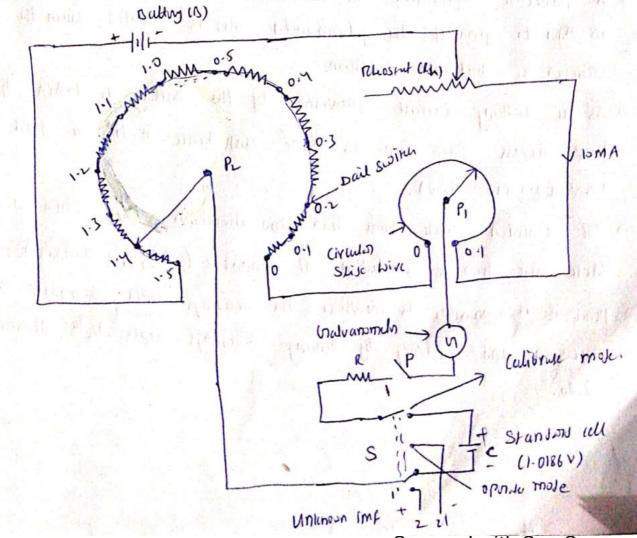
$$\begin{bmatrix} E_1 & E_2 \left( \frac{\lambda_1}{\lambda_1} \right) \end{bmatrix} \xrightarrow{(1)} (5)$$

- -) Which writing buric ships wire pountionally following proceautions must be taken.
- The Supply buttery Bz should be high capacity so that a constant current flows through the Slide wire throughout the measurement.
- 1 A Small vosistance should be well in Series with the galvanome, to project it during the initial adjustments of contact c. Italis takes care that no appreciable current is taken from the Standard cell.
- The accuracy of the measurement deponds on how accurately sucho (11/12) is determined.

- Islandardization of a pountionally is a process of admining the working current supplied by the ballong such that the voltage trop across a portion of sliding hire matches with the standard returns source.
- Shown in hy.
- Be is connected in series with thostal-Ra A

  Which regulates the working current showing Res

  Through the Slide wire.


  Bi Stankers cell
- -) A Standard cell B1 usually a working standard cell of E.m.f 1-0156 volks is connected to galvanometer and a switch k through a Sovier orisistance Rs.
- Thistana Rs. Assuming Rs Rull sensitivity of the galvanometr un be obtained
- -> A Slide wire total lingth of 200 cm and senistance of 2002 is connected which is indicated by points A and a
- -1 During Standardination procum, switch k is closed and the sliting contact is placed at the matter of 101-86 cm along with the slite wire as indicated by point c as shown in hig. Thus we can observe some deflection in the galvanometre.
- -) Now by adjusting the value of thostal Rh Lic can get null deflection in the galvanometr.
- -) under the condition of null deflection, the voltage trap along lot-86 cm portion of the state wire Equals the E.m. + of Standard woman cell

- once the potentianth is standardited, he shooted is not distributed.
- Defron Standard Taken of potentionals, it is used as a direct deading potentionals as the voltage along the slite when at any point is proportional to the length of the slite wine where the point is obtained by moving stiding contact along the wine to set null deflection in the galvanometr for any battery whose something to be measured.

A pokenhiomely is a device word by measuring the Emf of a cell con pokenhial difference blu two points in a cincuit. It works on the Principal of comparision i.e, comparing the unknown voltage with the known voltage and makes we of balanced Condition.

#### Construction: -

- of prucision.
- -) DC compton's pountionally works on the principle of a Slide wine pountionally. In other words, the DC crompton's pountionally consists modified version of a Slide-wine pountionally. It busically consists of a Small Slide wine which is circular in Shape and a dial of a Small Slide wine which is circular in Shape and a dial Switch with calibrated sensions, an shorn in high below.



- In he figure shown,
  - 13 Ballery
    - Rh = Rissal
    - in indivariands
    - R: projective ouristance which is of Jun of take.
      - S: Double throw Suitch
      - C = Standard cell.
- Skeps with Each skep having a ourstand of low.
- -> Henry, the total sonistance of dial Switch is Equal to Ison (Isx ear).
- of long with a Single twon.
- I A doubt know switch is provided for Standardization and for measuring the unknown Emt.
- -) A projective suristanu is connected in suin with the galvanometr in order to project the galvanometr and is shorted when the galvanometr seacher the balanced condition.
- -) As he working current provised by the buttery is what, the voltage drop across Each Ship is only and Line it has a total sunge of 1.8 v (1.5 × 10 = 15 v).
- -) If anular Slike wine has 200 divisions then Each division in Slike wire has a posselution of 0:0005 v (0.1/200 = 0.0005).
- -) Hence it is possible to measure the ocasings upto 0.0001 with great poucision and accuracy by taking ocasings upt 45th division in the Scale.

- Voltage (1-0186v) by kniping he did switch at IV and skide wire at 0.0186.
- The maling there adjustments, Switch's' is operated in calibrates mode and lay k' is closed and the shostal is adjusted in Such away that, he galvanomen shows null deflection.
- -) with this, the potentismed is standardized to the vollage of Standard (ell which is Connected blu the terminals 1 and 1.
- -) NOW the switch is twown into the operating mode for measuring the unknown smf connected blu the horminals 2 and 2'.
- -) The value of unknown simple can be measured directly from the side south south south south balancing the galvanometer to show mult defliction.
- The his way, an unknown Emf can be mushow with gruntPrucision wring De Crompton's pountometre

Standardination of DC Compton's pountionals 1-

of Dc crompton's pokntiometer.

- i) Sellings are made such that, the sum of the voltage across
  the dial voistos and the stide wire is Equal to the standard
  (all voltage.
- ii) The Stritch is closed to calibrate the positions and the shoster is set for mult deflection. The galvanometr tay is the protect the galvanometry the stristance is left in the linear to protect the galvanometry.

replaced by Short circult, and him final sellings are done for null deflucion using a shostat.

Applications of De crompton's pountionators

- -> Measurement of Esistanu
- -) Hewwarment of pour
- -) calibration of waterds.
- -) calibration of voltmuss.
- -) Culibration of amounts.
- \* Measurement of unknown 80 istence wing De poknhiometri-
- -) The set up for measurement of visistance is as shown in hig.

Stubble Rhoyert Ammetr.

Supply

- -) A VOISH Whose Voistance is he measured is connected in Soviet with a Standard Voistal of Voistance Rs.
- -) The current through the circuit is Supplied by a Stable & Supply and it is controlled by a shostat Rh.
- of the Blun of IV.
- -) Due to the current 'I', voltager are developed across Rs and R.
- -> both are then measured by using a sec pountionetre

Let the vollage across standard resistance be ves then be can write, VAS = I. RS - O het he voltage arross unknown voisiana be vp. han, be can write, VR = IR -> (2) VII MAN SAIL OF Dividing Equation (1) by Equation (1) at the multiple of the first  $\frac{V_R}{V_{RS}} = \frac{P}{A_S}$ Hence the unknown voistance is given by, Rs = R ( V/N) -> (3) The trusic requirement of above measurement method is that the current flaving through the circuit should remain same during missariment of voltager across R' and R's. This need can be hulfilled by using a stubilized D.c supply at the isp. and the isp. \* Heaswarment of current, voltage and power 1-- Must Edward -) The circuit siagram for measurement of pown is as shown in To posentionals volt-Yabo box kg. Firm I with modern Jook in the state Supply To Populso and the same of the stage of the stage of the same of the same -) The power across the load can be calculated as, it tolks the file to the state providing the same and -) In above circuit, vollage across standard, voista Rs is munual wsing potentionales. Let it be Vps. Then current though this given by January O Charles of the same

Scanned with CamScanner

- I for the measurement of voltage 'v' across load, volt-ratio box is consuged across load.
- The op of vall-ratio box is then connected to potentionally but it be V.
- \* Then the voltage across the load is given I,

-) Where it is the multiplying fuctor of valt-subs box and VR is actual secusing of potentionaln when it is connected across well-redict box. This from Equations (1) and (1) the power is given by,

$$P = VI = KV_R \left(\frac{V_{RS}}{R_S}\right)$$

$$P = IC \left(\frac{V_R V_{RS}}{R_S}\right)^{3/2} \rightarrow 23$$

\* Ac poknhom ekns;-

\* Ac pokntion this; in in the plant and an interest of plant of

- Poknhomen is Exactly same. Poknhomuh is Exactly Same.
- I But in a de potentionet, the balance blu voltage doop across the Slike hire and the magnitude of unknown voltage is obtained.
- I will in an A.c poknhomehrs, he two voltages should be balanced in magnitude as well as phase.
- I Browly A.c pokinhornohis are clamified on the basis of measurementof unknown valleys. There are two types of A.c pokenhornelis we,
- i) polar type A.c populionalis L

In which he magnitude and phane angle of unknown voltage are measured on different scales directly. The phone angle is musicul with suspect to some octruna phason. As he voltage measures is represented in polar from as VLO", he Are polarhomely called Polon type A.c pokohomehn

ii) Co-visinale type are populsometri-

In will be two components of an unknown vallages are meanus on two diffrent scales. One of component measured is Inphase component while remaining is avalvature component. Both The components are 90° out of phase with Each other. If the imphase component and avadrak components are separaceted by va and vs. Topochidy him he magnifuse and phase angle of an unknown vallage cun be depresented as given below,

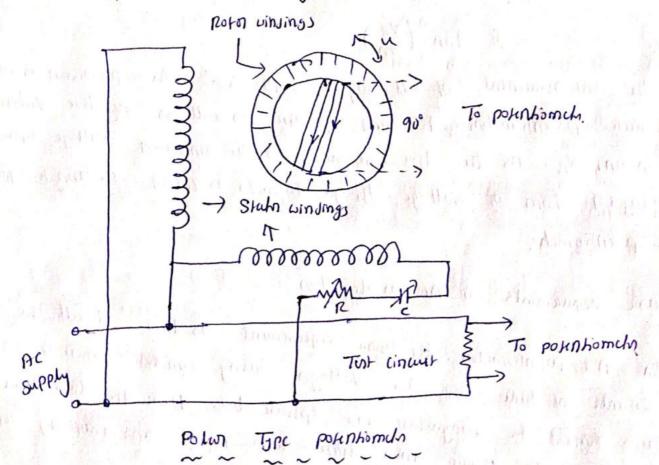
$$V = \sqrt{v_{A^2} + v_{S^2}} \quad \text{and}$$

$$\partial = \ln n^{-1} \left( \frac{v_{A}}{v_{A}} \right)$$

For the measurement of all anylise upt 360°, the provision is music negative Valous in such potentionalors to saus positive as well as of va and va. As the two components of the unknown voltage separate recuangular from of voltage, he populsionely is called to-Juinah Hyre A.c pountionin

\* Busic requirements of Ac populionates:

I In A.c populionelis, the basic requirement is that, at all the instants of time both the voltages being compared must be lavel with forpect to magnituse and phase both. Hence the current in the populational cincuit must have same phone and frequency as compared to the voltage being measured.


I The A.c. South must supply exactly simusoidal signal.

I St is necessary in A.c pountionnels on the detectors will in it are vibration galvanometrs.

I In A.c pokntiometris, another requirement is the control of stray em-ts in helds and coupling cinculs.

Scanned with CamScanner

- \* Drystale Tinsley polar Type Ac pokenhometri-
- Holing a polar type, drysdale-Tinsley are polarhomely measures unlengen Irm-1 inhoms of its magnitude and phase angle.
- The electrosynamometry hype amonder along with the potentioned and phane shifting transformer which is operated by single phase Ac supply.
- -) In a phane-shitting transformer, there is a combination of two ring Shaped luminated Stall Status which are connected perpendicular to lack other as shown in kg.



- one is directly connected to power supply and other one is connected in soin with variable vision and capacition.
- AC supply in the potentioneth by doing Small assustments in it.

- Between the status, there is a laminated 80th having slots and winding which Supplies Voltage to the Slide-vine cincuit of the Potentioneths.
- Dun current start flowing from States, the sorating field is developed around the sorat which induces an limit in the sort winds
- The phase displanment of the solon Emf is Equal to solon movement angle from its original position and it it related to State Supply voltage.
- The Whole arrangement of the winding is done in Such a way that the magnitude of the induced smf in the 80km may change but it does not after the phase angle and it can be send on the scale but it stale how on the top of the instrument.
- -) The induced limf in solar binding by Stula-binding-1 Can be Expressed as,

E1 = KI SINUT COST -> (1)

-) The induct Emf in 80M winding by state binding -2 can be Expressed as

E2. KI SIN (U+ 93) COS (\$ +93)

- - KI LOSAF SIND -> (2)

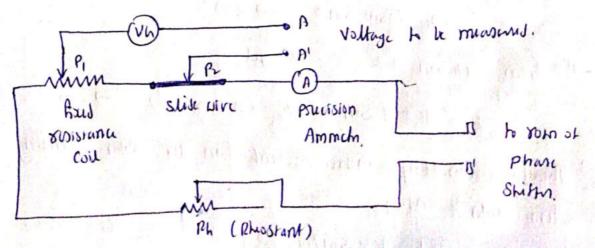
-) from squation -122, be get

E: ICT (Sinur (os + - (osur sin +) -) (1)

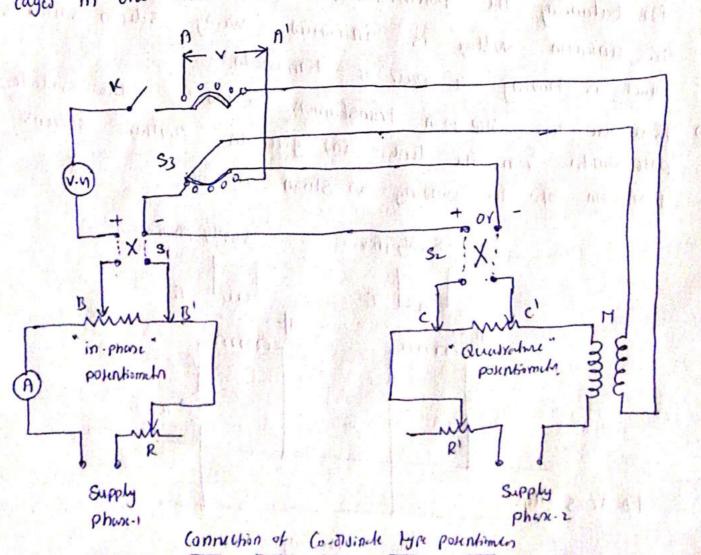
- Thurstone, southing induced 8mt in the solon winding due to two states winding.

[ E = KI Sin (of -6)]

Standardisation of Doysdale - Tinsley A.c. pokntiometricky

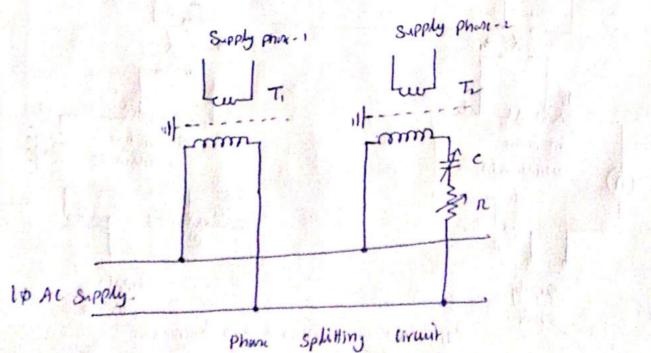

- In Standardisation of a c pountional, both be as well as a c Standardisations and John.
- The die Standardisation is some first by replacing vibration galvanometric by D'Arsonval galvanometri.
- J A Standard cell Such as "Luston cell" is used for de Standardisation.

  Hun by addinstring slisting contacts mult defluction in galvanometr


  is achieved.
- The scusing of precision ammch included in buttery supply is nows.
- 1 During a.c Standardisation again Vibration galvanometr is used.
- I The ammeter Still included in the supply circuit but now this circuit is without standard cell.
- I By property adjusting visistana in the circuit, the oms value of slide live is made same as that of decurrent noted in decentional standardisation.

Hewswarment of unknown Emif L

an a.c poknkomet is as shown in hig.




- -) An simil to be measured is connected across tenminals A-A!
- The Stiding contacts P, and Pe and the position of 80km in phase Shiften are adjusted Simultaneously till the balance is obtained as indicated by the null deflection of vibration galvanomety
- At bulunu, the magnitude of the unknown smf is Obtained from the Scale Room P, and B. and the phase angle is Obtained from the Scale occurring which is mained on the top of the instrument.
- -) Thus the unknown limb can be expressed in polishom as ELO.
- \* Gall- Tinsly Co-ordinate type Ac pokationals 1-
- In co-orinale type Ac posentiometr, two separate posentiometrs are caged in one circuit as shown in the figure.



- The first one is named as in-phase pounts much which is used to mecount the in-phase factor of an uninoun Empt and the other one is named as "available" potentimeters.

  While measures quadrature part of unionish Em.f.
- It sliding contact An' in the in-phase pountionals and as in dualyabre potentionals are used for obtaining the durined leavent in the tinguit.
- -) By assisting shoseat R and R' and sliding contacts, the current in the avadration waterout potentioneths and the gulvanoto to the leavent in the in-phase potentioneths and the gulvanoto meth shows a mult value.
  - -) 's and 's' are signs changing switches which are used to change the polyrity of the first voltage it it is required for balancing the polynkometr.
- -1 The unknown voltage is introduced using solution switch so there's which is having 4 pair of terminals.
- -) Thou are how Step-down transformers To and The Whith isolate potentionals from the line and give an Earthed screens probletion blu the winding on Shown in fig.



- -) It also supplies 6-8 volks to potentionalist.
- Sliding contacts AB' using Switch Sz
- -) By doing some adjustments in sliding contacts and shosted, the whole circuit gets belanded and galvanometre scads zero ext the balanced condition.
- How the in-phase component VA of the unknown [mf is obtained from the in-phase populationally and avadrative component Va is obtained from avadrature populationally.
- Thus the southant voltage of the co-distributed cooperationness is

Standardisation of Co-ordinate type A.c potentionals!

- I First of all d.c Standardisation of pountionalism is done by wring standard cell and D'Arsonval type galvanometre.
- I Tun without dishabing his setting, a.c. Standardisation is done by assuming slise wire current to give zoo deflution.
- I Thin privious galvanomen is replaced by vibration galvanometricans and who direct burrent supply is replaced by a.c. Supply.
- I Thin he shostat is adjusted till he luvrent in he available potentionally wire is same as that in the in-phase potentionally magnitude wise. Also those two currents must be seartly in dualvahre.

Similar to the Lie pokenhometers, are pokenhometers can be was to be calibration of vollmeto, ammeter. Also my are wied for kning of sixty miles and waltmiles. Heavenment of self realtance of a list is also possible with the help of a.c pokulometrs. Remousing are he few applications of are pountionalists.

#### i) Calibration of vallockota

The method of calibration with ac potentionalis is very much Similar to that with d.c potentionalis. It he working vallage is Ion that 1.50, it can be measured dinusty. If the voltage is very Ligh than are pountionals must be used along with well box.

#### ii) calibration of amounts 1

The calibration of a.c. ammeters may be carried out by using mon-inductive standard vosistance and successively noting measurements of various alternating current through it. The procure of calibrating ammeters using a-c and d-c potentioneters is same.

#### in) Toring of Enoumin and willimiter;

The practical set up for the horing of waternets and Inorgymuchon with a c potentismutors is similar to that of calibration of wallrown with J.c popenhometris.

The state of the state of the state of the state of the

the state of the state of the state of the state of the state of

Exil A Slide Wire populationally has a balloy of 4v and negligible inhand surstance. The surstance of slide Wire is took and its longth is 200cm. A Standard cell of 1.0186 v is wad for Standardisahon the populationally and the shootest is adjusted so that balance is obtained when he sliding contact is at 101.86 cm.

a) Find the Littling current and the shostat selling.

b) If the Slide bire has divisions mustad in mm and fach division can be interpolated to one fifth, calculate he susdention of the instrument.

S) a) Since the d-c poentioned is Standardised wring Standard cell

Of P.m.t 1-0186V with sliding contact at 101-88 cm; the Portion

Of Slide wive of the Same lingth represents a voltage of

1-0186V.

: Puristana of 101.86 Cm Lingh of Wire,

: Working Current I: 1/27) 1.0186 7 20mA

Total vosistana in battery circuit: Posistana of shostat + Paristana of Slise wine.

:- Puristana of Blustat = Total Vosistana in balty cut + Vosistana of store

b) The measurement surge is nothing but total vollage across the Slise wire,

Runge of voltage = (nothing lurrent) x (resistance of Shise crive)

= (20×15<sup>3</sup>) x (100)

=) 2v<sub>h</sub>

. The lingth of 200 cm represents 20 80 1mm represents valling.

 $V = \frac{2}{200} \times \frac{1}{10} - \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}$ 

Sinu it is possible to occur ys the of 1mm. The surduhon of instrument is given by

$$V(1/5) = \frac{1\times10^{-3}}{5} = 0.2 \text{ mV}$$

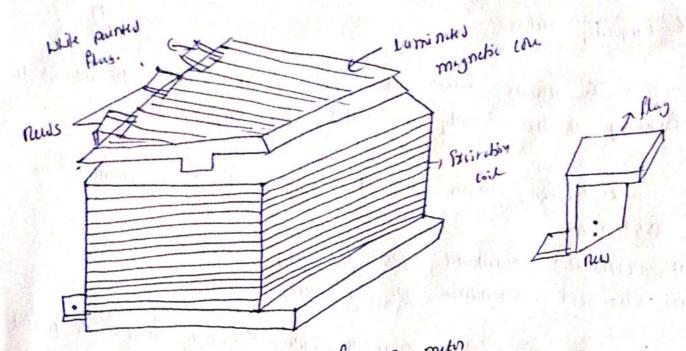
a decree of the view and gold in the land had

there are the fell of the man in the form the second of the second of

Scanned with CamScanner

\* Fruguenty Mehrs :-

The melons which we wood in the linear to indicate the frequency of the supply are called frequency metrs.


The frequency onchos are clarified based on the principle of oppration as

- i) Hechanical oconance type frequency metor.
- ii) Electrical Erronance type frequency melon.

The mechanical ocnonana type frequency met is called Vitrating seed type frequency moder. The electrical scromanu type frequency meter is called formo-dynamic frequency meter.

- i) vibrating seed type frequency metal
  - I This meter works on the principle of mechanical Economica.
  - I The much convists of number of thin steel strips called reads. The bottom of the seed is rigidly hous to an electromagnet.

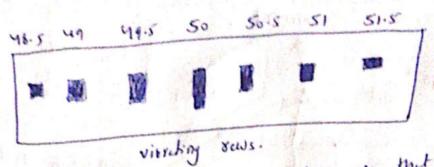
  - I The upper part of he sad is free and bent at sight angles.
  - This uppor poort is called as flag. I An elictromognit has a laminated iron low, while Carries an
  - Crutation coil having large number of homes- This coil is connected across her voltage whose friedwaring is to be measured.
  - The flags are painted High while to have good visibility on
- The basic construction of his type of met and he construction of reed as sharn in hig.



Vibrating seed type freaveny metr.

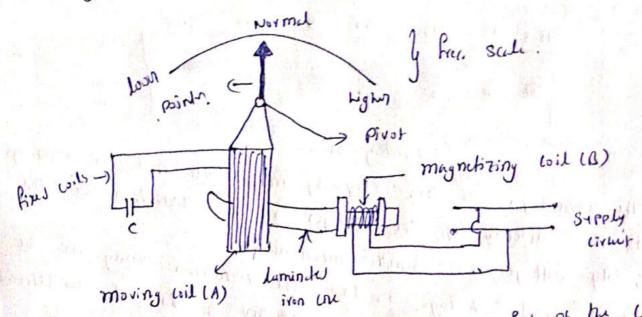
I The rews are manufactured Such that their bughts and dimensions are different. Hence their neutrol frequencies of vibration are different. The dews are arranged in his assending This of their natural frequencies and he neutwal frequencies are generally differ by

I so neiteral frequency of first reed may be 48H7, rest may be 48H7, rest may be 49H7 and so on. I when much is connucted in the system, the Loss carries current i 48-5 HZ, next may be 49HZ and so on.


which alternates at the Supply frequency. This produces an alternating

I This Plus produces an form of attraction on he reads which is proportional & square of the burrent it and kind all the seeds vibrate with a form which varior at this the supply frequency. I But he seed whose natural frey is twice the frey, of supply

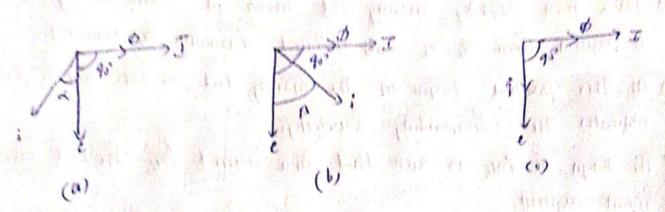
voltage will be in rosonana and will vibrate most.


I The huning in such meters is so precise that ha I to 2% Change in the frequency away from scronding fre, the amplitude of vioration descuss draspielly and become nightigable.

I Thus when a send corresponding to some is vibriting with maximum amplitude, other sours viorate but with negligable amplitudes which cannot be moried. This is shown in hig.



- I The advantage of this Prequency metro are that he deadings is not affected by the changes in the waveform of the
- all it supply voltage is low, the viorations may not be noticed. So supply voltage should not be Row for the steering
- I one more limitation of the metro is that the difference in the frequencies of the assist rees is 0.5 only. I so reasing corresponding to lon than half he frequency
- 1 so privise freg. measurement is not possible. difference can not be obtained!
- I The accuracy of the motor depends on the proper tuning of he rus.


- 11) Euctrical Somana type frequency much
- -) The fig shows the Construction of the electrical scoonance type



- -> It consists of Luminalid iron cone on one End of the core a Roud coil is warns which is called maynching coil.
- -) This coil is connected across the Supply whose frequency is to be measured. This coil carrier current which has same frequency as that of sipply.
- -) on he same the, a moving coil is pivoted which carries a pointin. A capacity "c" is connected across the terminals of the fixed coil.
- I: current horough he magnetizing coil -) The Lit Ø - flux in he iron cou.
- -) The flux of is around to be in phase with the larrent I.
- This floor induces he voltage in he moving coil which always lays flore \$ by 95°.
- i= current through the moving coil. -) hu!

told and the tapacitor 'c'

to undastand the working of the motor as shown in high, t



inductive, him current it lags the induced voltage e by an angle 'x'. Hence the torque alling on the moving coil is givenly

+) JULBARD STIX II (OS (40+a))

apacitive, hence turrent i heads the induced voltage e by an angle p. Hence he torque acting on he moving coil is given by,

## [Tj x II (05 (90-A)]

in case of inductive nature of the moving with concerns

) The hy a) shows he occommon condition whom he indulive occurrent is in phase is equal to the capacitive occurrent. So current it is in phase with 'e' and the trique away on the moving coil is given by

(Tox J: 108(48) = 0.]

-) Hence union seconance condition, he torque acting on the moving colle

- Then, her capacities reastrance to the state is constant for a sixen frequency.
- but also depends on the position of the moving coil on the case.
- a position have X-xe and channel someone is achieved.
- -) At this position toque on the moving air is zons and the pointing indicates the torresponding frequency.
- The design of fry is such that he a normal fry, the coal taker a much position.
- Place at his mean position and points indicates he resimilar
- decreases and Hence  $x_1 2xfl$  must decrease in the for actions
- -) so moving will moves away from he magnetiting wild on he tou and pointing moves to the oright of the muon position, instability light freezency.
- increases so be assigned than the month value, he see experimentally soil moves to the magnificant soil where industring increases. Then pointed moves to the magnificant soil where industring increases the boar frequency.

  To the left of the mean position, insticking the boar frequency.
- In important advantage of the instrument is that the great Scrottivity is accessed as the industrina of the moving wit things.

  Slowly with variables of its position on the cre.

#### D.C & A.c Bridger

#### \* Inmouchion;

- The bridges are used for not only the measurement of Visistana but also used for the measurement of various component like capacitance, inductance etc.
  - A bridge cinuit in its simplish form consists of a nework of four suistance comes forming a closed cincuit. A source of current is applied to two opposite junctions. The current detector is connected to other two junctions.
  - The bridge cincuits use the comparision measurement methods and operate on null-indication principle. The bridge cincuit compares the value of an unknown component with that of an accurately known standard component.
  - The a bridge circuit, Who no current flows through the null detected which is generally galvanometer, the bridge is said to be balanced. The relationship between the component values of the balancing four arms of the bridge at the balancing is called balancing Condition (5) balancing Equation.
  - This balancing savation gives us the value of the unknown component.

The various advantages of the bridge cincuit an,

- 1) The buluning Equation is independent of he magnitude of he inputvoltage (51) its samu impedante. These Quantition do not appeal in the balana Equation Expression.
- ii) The measurement accuracy is Ligh.
- iii) The accuracy is independent of the Ch. Machrishis of a mill deketor and is dependent on the component values.
- in) The bedance Equation is independent of the Sensitivity of the nell oderan
- 1) The balance Constition remains unchanged if the sound and delector are interchanges.

## profit of Action of the Company of the state \* Types of Bridger 1- Department for the Marine Marine

The two types of bridges are, the man and a second placement

- i) Dc. bnidger ii) Ac brilgn.

The Je bridges are wood to measure the vosistance while the are bridges are used to measure the impedances consisting capacitances and inductantes.

The De bridges were the de vollage as the Excitation vollage While he Ac bridges was the alternating voltage us the Excitation voltage.

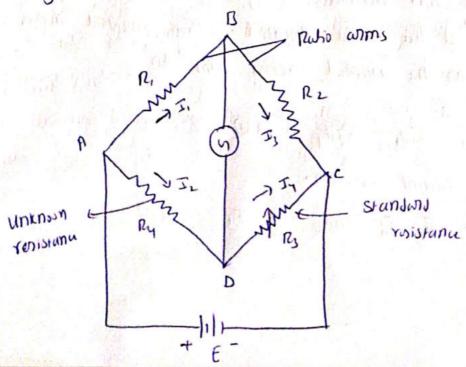
hi his long he water

Almost the finding broad out the

and death is friend to stark out the

many the state of the the

The two types of de bridges are,


- a) bhatstone bridge
- b) kelvin bridge.

varias types of ac bridges are, The

- Capacitana comparision bridge
- Inductiona comparision bridge
- Haxwell's bridge many of the square state
- Hay's bridge
- Anduson bridge
- Schering bridge

### \* Whatstone Bridge 1-

- -) For measining accurately any electrical societana Wheatstone bridge is widely wood.
- -) The bridge consists of four visitive arms together with a source of 8.m.f and null detector. The galvanometer is used as null detector.
- The fig Shows he basic Wheatstone bridge Cintuit.



- one ununoun voishon conneces in bridge from an shown in fig.
- The battery is connected between A and C White galvanometr is connected between B and D.
- galvanometer is muse zono.
- Then the current through the galvanometr becomes zero, the substitute of the substitute of the substitute adjusted value of variable substance and the value of unknown substance.
- To his way he value of unknown cluthical subistance an larily be measured by using a "What Stone" bridge.

## Balance condition >

who he bridge is balanced, the galvarometri carrier two current and it does not show any defliction. Thus bridge works on the principle of null defliction (n) null indication.

To have zono current through galvanometri, the points B and D must be at the Same potential. Thus potential across wim An must be same as the potential across wim "AD"

Thus 
$$I_1R_1 = I_2R_4 \rightarrow 0$$
As galvanomula current is zero
$$I_1 = I_3 \quad \text{and} \quad I_2 \cdot I_4 \rightarrow 0$$

Substituting Equations (3) and (4) in Equation (1)

$$\frac{E}{R_1 + R_2} \times R_1 = \frac{E}{R_3 + R_4} \times R_7$$

.. R1 ( P3+R4) = R4 (B+R2)

R1R3+R1R4 = R1R4+R4R2

 $\begin{array}{cccc}
R_1 R_3 &= R_4 R_2 \\
\hline
R_1 &= \frac{R_4}{R_2}
\end{array}$ 

This is required butana condition of bleatstone bridge.

The following points can be observed.

- I It depends on the ratio of Re unit he have arms are called ratio arms.
- ITU Standond voistanu B' can be varied to obtain the required balana.

- \* Schrikivity of Whatstone bridge !-
- I when he bridge is balanad, the current brough galvanomehr is zono. But when bridge is not balanad current flows through the galvanomehr causing the deflection.
- I The amount of Seflection depends on "Sensitivity" of the galvanometer.

  I The Sensitivity of can be Paprimed as amount of Seflection por

unit current.

I As he legrent is in microampere and deflection can be measured in mm, radians (on) degrees, the sensitivity is expressed as mm was

I then is the sensitivity of a galvonometre, more in its defliction. for the same amount of luvrent.

- I Another way of separating the galvanometer sensitiving is the amount of deflution for unit voltage across the galvanometer. This is called "voltage sensitivity" of the galvanometer
- I Mathematically it is denoted us,

Sv: e ) l: voltage across galvanoments

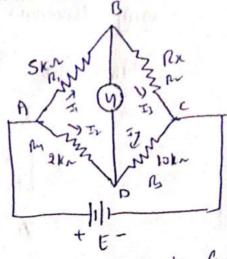
d: peffethion of galvanoments

1 It is measured in degree per volts and dadians per volts.

I while the bridge sensitivity is defined as the deflection of the golvanimeter, por unit fractional change in the unknown surstance. It is denoted as SB.

Dhon DRIR - unit fractional change in unknown Esistana.

The bhatstone bridge is used to measure he vosistance in the range of In to lew mignohms. But contain errors occum during the measurement using the bleatstone bridge. These brooms are follows.


- i) The main born is because of limiting brooms of the three known voistanus. Hence vory pricise vosistances are required having tolurance of 17. (0) Even 0-17.
- ii) The insufficient Somitivity of the null detector may cause the bost.
- (ii) Heating Uffect !-

WHO he lurent panes though the distances, due to the making street (I'R) the temporature increases. Hence he values of his ouristances of he bridge arms change due to healing Effect. The Excernively high lurrent may cause the permanent change in the Vosistana Valus. This may cause Serious Crost in measurement. To avoid this, power dissipation in the arms must be calculated well in advana and larrends must be limited to sak value.

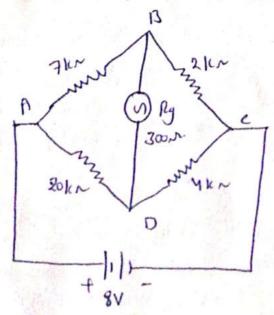
- in) Thormal limb & In the galvanometr cincuit the dissimilar metals come in contact and generale the thornal Emis. Such thornal Emis may course the brooms while measuring low value visistances. To privery his, mre sensitivity galvanometers having copper coils and copper suspersion systems are used.
- v) The rosistana of hass and contact Exterior to the actual bridge Cincip. asses the Extra posistana and is the major cause of the ENDS. With measuring low voistana values. These Ends may be ocdured by using another bridge called " kelvin bridge".

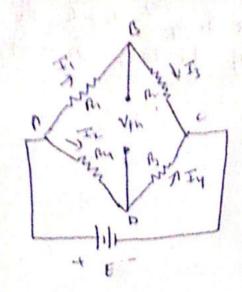
- -) The bhatstone bruge is busically a de bruge and west to musere the Stristanu in the sange of In to low migroun.
- -) It is was to measure he de ovoissance of various types of wines for the purpose of availity control of wire.
- -) It is wild to measure he voistance of rooky winding, relay with the
- \* Asvantager of Whatstone bridge:
- The rosults are not dependent on the calibration and characteristics of galvanomela as it works on mill defliction.
- -) THE SOUTH C-m.f and inaccuracion due to South fluctuations do not affect the balance of the bridge. Hence the corresponding vinters are completely avoided.
- I Due to mull defliction method used, the accuracy and sensitivity is Light than direct deflection mouns.
- \* Limitations of Whatshope bridge 1-
- I The Piffet of had voistance and contact voistance is vong much Significant which measuring low soistanus.
- The bridge Cannot be used for Ligh vonistance measurement i.e, measurement in Ligh megachm range. This is because Which such measurement the disistance presented by the bridge becomes so large that the galvanometer becomes insensitive to show any
- I similarly heating effect but to large current also plays a maio Joh. The Executive Currents may generate that which may cause the pomonent change in the visitanu.
- I The posistance wild must be very precise having tolorance upp 15. (51) 0-11. Linu cost is high.

Pris The Whatstorn bridge is shown in he hy calculate the value of unknown resistance, arouning the bridge to be in balanced condition.

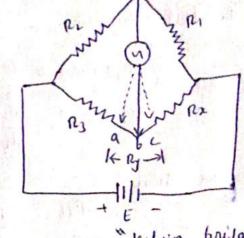


Sal As por the bridge shown in his R1 = SKR R2 = RX R3 = 10 Km R4 = 2KR


unson balana consinon


$$\frac{P_1}{R_2} = \frac{P_4}{R_3}.$$

$$R_2 = \frac{P_3}{R_4} \times P_4 = \frac{10 \text{ km}}{2 \text{ km}} \times 5 \text{ km}$$


The unknown rosistana is -) 25 Km

12:2 Calculate the current through the galvanometr for the bridge shown in his





This is the current though the galvarremetre



-) Thus by measuring the values of ouristante below in, the modified

form of bleatstone bridge is used, known as "kelvin bridge".

-) The fig shows the basic circuit of the Kelvin bridge.

-) The consideration of the Effect of contact and had vosistanus is the busic aim of the kelvin bridge.

-) The visistance By represents the visistance of the connecting

- The voistance Rx is the unknown voistance to be measured.

> The galvanometer can be connected to either forminal a, b con)

-> when it is connected to a, the had resistance by gets added to Rx, Lince the value measured by the bridge, indicates much Ligher when of Rx.

-) If he galvanomen is connected to terminalic, then by gets added to Rg. This doubt in the measurement of Rx much lower than the actual value.

- The point b is in between the points a and c in such a way that the vatio of the visistana from c to b and that from a to b is Equal to the satio of R, and Rz

Rab = Rab > 0

Now her bridge balance Equ, in its Standard from is,

Ri Rs/An +) RiRg = RiRx >0

$$(R_1 + R_{16}) = \frac{R_1}{R_2} (R_3 + R_{16}) \rightarrow (A_3)$$

NOO We have

$$\frac{R_{Cb}}{R_{ab}} = \frac{R_1}{n_2}$$

$$\frac{R_{Cb}}{R_{ab}} + 1 = \frac{R_1}{n_2} + 1$$

$$\frac{R_{ab} + R_{Cb}}{R_{ab}} = \frac{R_1 + R_2}{R_2} \longrightarrow 25$$
but 
$$R_{ab} + R_{Cb} = R_2$$

$$R_1 + R_2$$

$$R_2 \longrightarrow 45$$

$$R_3 \longrightarrow 45$$

$$R_4 \longrightarrow R_1 + R_2$$

$$R_4 \longrightarrow R_4 + R_4$$

$$R_4 \longrightarrow R_4$$

$$R_4 \longrightarrow R_4 + R_4$$

$$R_4 \longrightarrow R_4$$

$$R_4$$

$$\frac{R_y}{R_{ab}} = \frac{R_1 + R_2}{R_2} \rightarrow (b)$$

$$\left[\begin{array}{ccc} Rab & R_1 R_2 \\ \hline R_1 + R_2 \end{array}\right] \rightarrow (27)$$

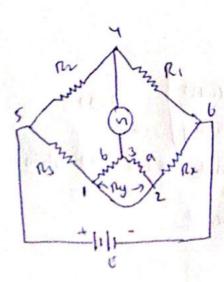
NOW 
$$R_{10} + R_{01} = Ry - R_{01}$$

$$R_{10} = Ry - R_{01} \longrightarrow (17)$$

$$R_{10} = Ry - Ry \longrightarrow (17)$$

$$R_{10} = Ry - Ry \longrightarrow (17)$$

$$R_{10} = Ry \longrightarrow (17)$$


$$\begin{array}{ccc}
R_{ib} & = & R_{i} R_{y} \\
R_{ib} & = & R_{i} R_{y} \\
R_{i+n_{1}}
\end{array}$$

$$R_{1} + \frac{R_{1}R_{3}}{R_{1}+R_{1}} = \frac{R_{1}}{R_{2}} \left( R_{3} + \frac{R_{1}R_{3}}{R_{1}+R_{2}} \right)$$

$$R_{1} + \frac{R_{1}R_{3}}{R_{1}+R_{2}} = \frac{R_{1}R_{3}}{R_{2}} + \frac{R_{1}R_{3}}{R_{1}+R_{2}}$$

$$\left( R_{2} - \frac{R_{1}R_{3}}{R_{2}} \right) \longrightarrow (10)$$

- Thus 840/. (10) represents Standard bridge belance Equation for the Dualstone bridge. Thus the Effect of the Connecting head two istance is completely eliminated by Connecting the galvanormetry han informediate position b.
- This principle from the basis of the Construction of Kelvin's danker bridge." Which is popularly called "Kelvin bridge."
- \* Kelvin's Double bridge ?



- Itis bridge consists of another set of radge "doubt bridge".
- ILL hig Shows the conceit diagram of Kelvin's doubt bridge.
- The second set of sakis arms are the sovietanes a and b! with the help of these sovietanes the gulvanometr is connected to point 3
- -) The galvanometer gives null indication when the potential of the terminal-y

(1)

Hur Eys = populated across Rz

Esis = potential across Rs and b.

The satio of the sosistances a and b is same as the satio of Ren

$$\frac{a}{b}$$
  $\frac{a}{a}$   $\rightarrow (\bar{a})$ 

$$a_1 \times \frac{\mathbf{E}}{a_1 + a_2} \rightarrow \mathfrak{D}$$

Consider he path from 5-1-26 back to 5 through the buttery E.
The visistance blo the terminals 1-2 is parallel combination of my and cuts)

$$E = I \left[ R_3 + R_x + \frac{R_y (a+b)}{a+b+R_y} \right] \rightarrow (y)$$

Substituting Paul (4) in (au, 63)

$$\frac{E_{45} = \frac{R_{2}}{R_{1} + R_{2}} \times T \left[ R_{3} + R_{2} + \frac{R_{3} (a+1)}{a+b+R_{3}} \right] \rightarrow (5)$$

For Esis, comins the path from the hominal stor as showing fig. undersometh carries we carrent

Now from he above hy. We can write.

$$V_{12} = I \times \left[ \frac{n_y (a+b)}{a+b+a_y} \right]$$

and 
$$V_{13} = \frac{b}{a+b} \times V_{12}$$

$$V_{13} = \frac{b}{a+b} \times \mathbb{I} \left[ \frac{p_{1}(a+b)}{a+b+p_{2}} \right] \longrightarrow (b)$$

$$E_{S13} = I_{N_3} + V_{13}$$

$$E_{S13} = I_{N_3} + I_{N_$$

$$\frac{A_{1}}{a_{1}+\alpha_{1}} \times \left[ \frac{R_{3}+R_{1}+\frac{(u+b)R_{3}}{a+b+\alpha_{3}}}{a+b+\alpha_{3}} \right] = \frac{A_{1}}{a_{1}} \left[ \frac{R_{3}+\frac{b}{a+b}}{a+b} \left( \frac{\frac{R_{3}}{a+b+\alpha_{3}}}{\frac{a+b+\alpha_{3}}{a+b+\alpha_{3}}} \right) \right]$$

$$\frac{R_{3}+R_{2}+\frac{(u+b)R_{3}}{a+b+\alpha_{3}}}{a+b+\alpha_{3}} = \frac{R_{1}+R_{2}}{R_{2}} \left[ \frac{R_{3}+\frac{b}{a+b}}{\frac{a+b}{a+b}} \left( \frac{\frac{R_{3}}{a+b+\alpha_{3}}}{\frac{a+b+\alpha_{3}}{a+b+\alpha_{3}}} \right) \right]$$

$$\frac{R_{3}+R_{2}+\frac{(u+b)R_{3}}{a+b+\alpha_{3}}}{a+b+\alpha_{3}} = \frac{R_{1}R_{3}}{a+b+\alpha_{3}} + \frac{R_{1}R_{3}}{a+b$$

$$R_{x} = \frac{R_{1}R_{3}}{R_{1}} + \frac{bR_{y}}{a+v+Ry} + \frac{bR_{1}Ry}{R_{1}(a+b+Ry)} - \frac{aR_{2}}{a+b+Ry} - \frac{bR_{2}}{a+b+Ry}$$

$$R_{x} = \frac{R_{1}R_{3}}{R_{1}} + \frac{bR_{1}Ry}{R_{1}(a+b+Ry)} - \frac{aR_{2}}{a+b+Ry}$$

$$R_{x} = \frac{R_{1}R_{3}}{R_{1}} + \frac{bR_{y}}{a+b+Ry} \left[\frac{R_{1}}{R_{1}} - \frac{a}{b}\right] \xrightarrow{R_{1}} - \langle 8 \rangle$$

$$but \quad \frac{a}{b} = \frac{R_{1}}{R_{1}} \quad thus \quad \frac{R_{1}}{R_{2}} - \frac{a}{b} = 0.$$

$$R_{x} = \frac{R_{1}R_{3}}{R_{2}} \xrightarrow{R_{2}} \xrightarrow{R_{2}} - 29$$

This is he standard Equation of he bridge balance. The sosistance as be and by are not present in this Equation. Thus he street of head and contact sosistance is completely eliminated.

In a typical kelvin's doubt bridge, the sange of a susistante covered is in to lown with an accuracy of \$0.05%. Let 0.2%.

Andrew Andrews Andrews

and the second of the second o

- \* Amounty Voltanta method for measurement of newstance ?
- I Bured on the value of Enistance, the Enistances are Clarified as low (In), medium (In to looka) and high (> wolca) Enistance.
- There are various methods wild for measuring visistance based on their clanification.
- -) Among those methods, the ammehr-voltmehr method is one of the method wild for measuring low and medium values of visiting.
- and a vollmen which will be Easily available in the laboratory.
- Also, he connections are very simple and there is no longthy procedure for the measurement of resistance.
- -) The amount around, will be connected in Series and vollometer in parallel.
- -) The valio of voltanta to amonth vecusing will give the value of voltante under measurement.
- -) Based on the velative connections of the ammetr and voltanch with respect to the unknown veristance there are two methods.

Hethodell Ammeta Connected I the Sise of unknown Swistances

Win his ammets is connected in Sories with it.

A Ve voltmeh readings

Readings

T. Ammela readings

Va: Voltage across amondo

VR = Voltage arross unknown roismnu.

Ra inhonal susstana of amounts.

R': Meanured Value of Vosistana Litra the above Connections.

- I In the above circuit, since the amount is directly in series with 12, The ammch ocadings indicate the luvrent twangh " 12."
- I The vallmehn is not in parallel with R, Souther it is connected in puralle with the Suiv combination of ununan visistance and the ammula

# :- The voltmen reading is given by

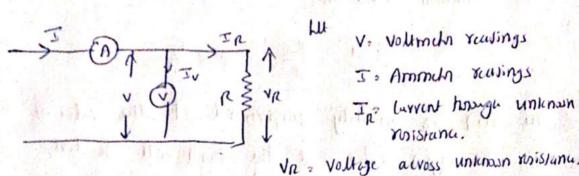
$$V = V\alpha + V\rho$$

When Va : IRa , VR = IR

$$\int V = \pm (\alpha + \rho_{\alpha}) \int_{-1}^{\rho_{\alpha}} d\rho_{\alpha} d\rho_{\alpha}$$

.. The measured value of Visistana.

$$R^{\prime 2} \stackrel{\text{def}}{=} 2 \qquad \qquad \underbrace{F(R+Rn)}_{F}$$


:. True value of sosistana

- I from the above Equations. The measures value is not ligal to the Exact value (0) true value of the unknown sixistanu. This is because informal suristana of ammeta.
- I The internal Ginistana of the ammelon (a) any device cannot be made Equal to Zoro, hence always there Exist an Good in the measured value of & roistana. The amount of Good is given by

$$\left[e'-\frac{R'-R}{R}-\frac{R_A}{R}\right]$$

Hethol-2: vollmen connected to the size of unknown disistance :

The below shows new connections for meaning me unknown susistance Wen he voltmen is connected to the size of unknown mistance.



Vn = Voltage across unknown mistanu.

Iv: corrent though Vollmich. I day is properly

Ry: internal resistance of Valtracks. Il 11 11 11 11 11 11

R" = meaners value of Yosistana with above Connection

- I In the above consist, the vollmeter is connected directly in 11h with unknown Moistana, whereas the amount is in soin with the parallel combination of voltmen and 1.

I The volumen suass voltage across R, but the amonth saiss the Sum a Current Mosyl Rand voltmet. :. Ammuten reasing

$$\therefore \quad R^{\nu}: \quad \frac{\nu}{2} \Rightarrow \quad \frac{\nu}{\gamma(\frac{1}{R\nu} + \frac{1}{R\nu})} \Rightarrow \quad \frac{RR\nu}{R+R\nu} \Rightarrow \quad \frac{R}{1+\frac{R}{R\nu}}$$

A measure value of voistance

B. 
$$\int_{R} \frac{\rho'' \rho v}{\rho v \cdot \rho^{-}} \int_{R} \frac{\rho'' - \rho}{\rho v} = \frac{\rho'' - \rho}{\rho v} = \frac{1}{\rho v} \frac{1}{\rho v}$$

Consistion for the selection of brains

Of unknown rosstana,

- The first is inversely proportional to the value of unknown sossana, i.e., the right value of R. the error will be loss.
- I Here this connection is wed for measuring of high value of Yosistana so that Error is Small and accuracy is more.
- of unknown knistuna

$$e^{-\frac{R}{R_{V}}}$$
,  $e^{R} \times R$ 

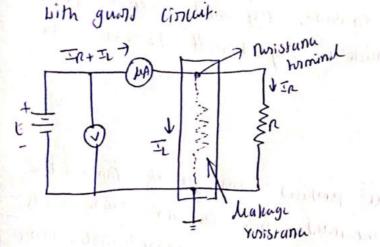
- ITE MAN is directly proportional to the value of unknown rowand inc, known is the value of R, EDD with be lon.
- Henre Connection 2 is well by measuring low value of resistance in

The measurement of high suristance of the older of hundrads and thowans of myaches is often required in clipnical Equipments. The Examples of such voistanus are,

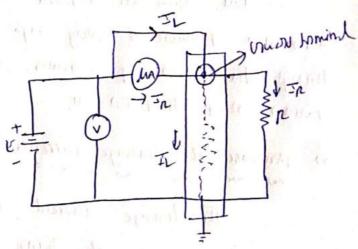
- i) Insulation ovistance of components like machines, cables etc.
- ii) Liakage Sisistanie of Capacitos
  - iii) Resistance of Ligh circuit elements like vaccom take conceits.

But there are cortain difficulties in measurement of such high Visistanus. Because of vury Ligh Visistanu, vury Smill currents flows through the measuring circuits, which is very difficult to sense. The various other difficulties au,

=) Prusinge of hakage currents:


The leakage currents are produced and are of competible magnitude to the current being measured. Such currents cause Ensits. There currents depend on humidity and hence are unpredictable. Hence hakeye currents must be climinated from he measurement.

- > The strang charges may appear due to electrostatic street. Such charges and alternating fields can cause Serious measurement tons.
- =) one point of the cinuit may be connected to Ewith for accuracy in municipants.


  =) win he voltage is applied to the insulation suristance, it takes
  - Some time for changing and absorbing currents. The measurement should be seleged Still these currents vanish Completely. In some cases, this may take very long time hand the terring conditions include the time the he application of vollage and observation of the reading. This time must be specified for the accuracy.

The galvanometh Should be very sensitive and propor steps must be later to prevent the damage of galvanometh due to high voltager.

Hence to Solve the problem of luckage currents in capacitive current we use a guard circuit. The concept of guard circuit is to bypar the hallage current from the amounts. So as to measure the true voistive current. Figure below Shows two connections on voltaments and micro amounts to measure P. one without guard circuit and one



a) without grund.



b) with guests.

In the Brot Grant the MA musicus both capacitie and visissive current hading to Erry in value of R, while in the other circuit the MA reads only the rosistive current.

Following few methods used by measurement of Ligh resistance

- i) Loss of Change method
  - ii) Heggs
- jii) rugohm bridge method.
  - iv) Direct defletion method.

- \* Loss of change mulhod 1-
- This method is applicable for measurement of rosstance greater than looke 100) 0.1 Mr.
- -) There are various examples for Ligh voisiance like.

I Insulation soistance of cables and machines

I vacuum tute voistanu.

I Lakage Visistana of Capacitos.

- The busic idea is bured on the changing and discharging of a known value of capacita
- connection for the loss of change method.
- to be measured, c is a tenson value Capacity plans across R', V is an

Capacity plans across R', V is an electrostatic type voltanty to measure the voltage across the parallel Cornbination of R and C.

- -) The circuit is shiven by a buttery having a voltage (V.)
- -) Si and Si are the switches wow for changing and dischanging the capacity
- -) Bt is around that he internal sonstance of the volumeter and leukage sovistance of the capacity is infinite.
- -) The Sequence of operation can be Explained as follows,

Win suitch Si closed and Si open !

bith Switch SI Closed and Si open, the capacity charges to a particular voltage. The voltage across "C" is measured by the voltands "V" and is noted down.

Livin switch s, open and se closed 2-

with Switch 3, open and Sz closed, the battery is disconnected and the unknown swistana R gets connected across C. Now the capacity discharges through the During this, the capacity voltage is measured by the voltage.

-) Tuning he above two scadings of voltmen, we get two squations, Salving these two squations, he value of unknown suristance can be determined.

Durivation >

I If ve be the forminal voltage of the capacity consisting of capacitanic formal (anamed to be losslen) and a coordomb) be the charge at time tises) then the charging current is is,

officer's Hambley all 21 to from a

$$i = \frac{-dQ}{dt} \rightarrow -\frac{d(cv_c)}{dt} \rightarrow -c\frac{dv_c}{dt} \rightarrow 0$$

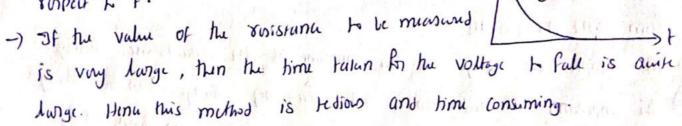
$$i = \frac{v_c}{R} \rightarrow 0$$

Pasting Equations 1 and 2 Le gut
$$\frac{v_c}{R} = -c \frac{dv_c}{dt}$$

$$\frac{dv_c}{dt} = -\frac{v_c}{cR}$$

Applying integration of both silvs to gut

-) The vollege across he capacity (VL) at hime t is given by


$$V_{c} = Ve^{-(t/n_{c})} \rightarrow discharging$$

$$\frac{V_{c}}{V} = e^{-(t/n_{c})} \rightarrow \frac{V_{c}/V_{c}}{V_{c}} + \frac{V_{c}}{V_{c}} + \frac{V_{$$

$$c\left(\ln\left(\frac{v}{v}\right)\right) = \frac{-t}{n}$$

$$R = \frac{-1}{c \ln(\frac{1}{\sqrt{c}})} = \frac{-1}{2.303} c \log(\frac{1}{\sqrt{c}})$$

-) The graph shows he variation of ve with vee-the



- -) Hastvir, he accuracy of he vallage minured dethors depends upon multiples implemented to reduce ensors.
- -) In this to obtain Ligh accuracy, a dosop in voltage it, v-ve is taken industrial of Ve

$$\left[\begin{array}{cccc} R & \frac{0.434t}{c \log_{10}\left(\frac{v}{v.\sqrt{v}}\right)} \end{array}\right]$$

# brins in law of charge method in

- i) Ensy du to hakage and Absorption.
- ii) from due to variation in insulation possessance due to variation in temp,
- in) from du to time of application of voltage.

# \* Ac bridges &

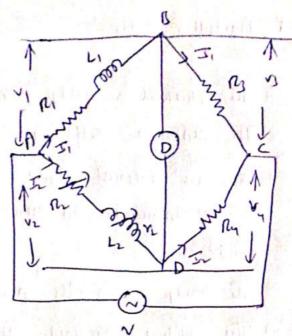
- -) An ace bridge in its busic from consists of four wrms, a same of sacitation and a balana Schehn
- -) Each arm Consists of an impedance.
- -) The Source is an acc Supply which Supplies are voltage at the ocquired frequency.
- -) For Ligh Prequencies, the electronic oscillators are used as the Sasa.
- -) The believe defectors commonly word for a.c. bridges are head phones, vibration galvanometrs.
- -) The howphones are will as detectors at the frequencies of 250HZ to 4KHZ,
- -) The vibration galvanometres are withet for low audito frequency range From 5H7 h 1000 HZ-
- -) The Simple a.c bridge is the obtain of the Whatstone bridge.
- -) The impedance at audio and sadio frequency sange can be Easily determined by such Simple we Wheatstone bridge as shown in fig.
- -) This is Similar I die Whelstone bridge.
- -) The bridge wims are impedances. The bridge E ( is faciled by a.c. Supply and pair of had phones is used as a null detects.
- -) The null response is Obtained by varying one of the bridge wins.

\* Muzbul's bridge 2

- The Marwell's bridge is an Ac bridge word to find (5) mumbere
  the unknown Self-inductance.
- There are different types of ac bridges wild for the measurement of Self-inductance in which Hascoell's bridge is the most commonly wild bridge.
- -) The bridge was the principle of null defluction
- -) The Equation obtained when the bridge is balanced and it can be used to dehomine the unknown inductance connected to it.

There are two types of Harwell's bridge wild to find unknown inductions.

- a) Muxwell's inductiona bridge.
- b) Maxwell's inductance Capacitana bridge.
- a) Muswell's inductanu bridge it
- I In maxwell's inductance bridge the unknown self inductance to be measured is compared with the lenson inductance.
- I thru hu unknown self-inductance and internal pristance of an inductance bridge.
- I The cruit dignam is shown in hig.


Li = unknown inductione to be missiand

R: Resistance of unleasen inductiona.

Ryk Ry = Standard non- inductive Visistanus

Rz: Standard variable Buism.

Li. Standard Variable inductance with Bed Vositance 82

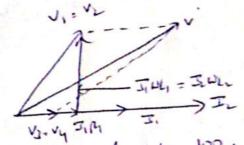


I from he awar fig the impedances of the respective wims au given on

$$Z_{13}$$
  $R_1+jUL_1$  ,  $Z_2=(R_2+8_2+jUL_2)$ 

I unin belanus condition, we have

I on squeting he red and imaginary parts on both sist, begu-


also L, Ry - Lz Ry : >

The state of the s

Hinn, the unknown self inductions and visistance of the induction are obtained in terms of known standard values.

Phin digram :

-) In Huxuell's inductuna bridge the Visistana Rz is the decade Visistana box.

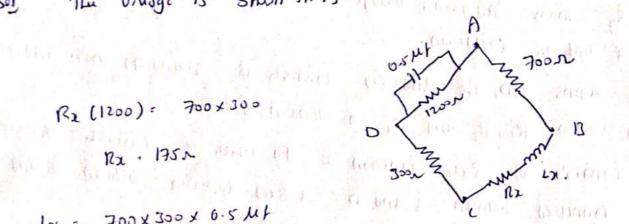


- -) The resists of any Ry can have their values as from 10, 100, 100, 1000 and 10,000 by the Successive additionant of L, and Az
- -) The phant diagram of Haxuell's indusance bridge union belonger consistent is sharp above.

sx' The arms of an a.c maxwell's bridge are assured as,

Arm As 1. non reactive Essistance of 700 s.

Arm (D) non seaching stristance of 3000


Arm AD: non seattle voistance of 12000 in postlle with Capacin of 0.5 MF.

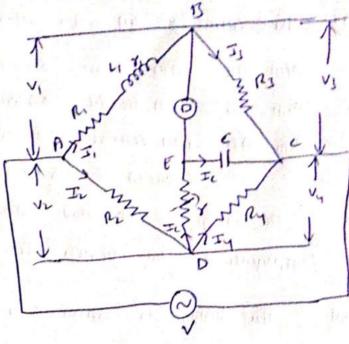
It he bridge is balanced unon his condition, kind the the Bi-street of syrrough and the Components of the brinch Bc.

The bridge is shown in by.

R2 (1200) = 700 x 300 Rx . 1752 11 11 3002

Lx = 700 x 300 x 6.5 Mt appeared a contraction of the property of the second




\* Andorson's Bridge :-

- -) The Anderson's bridge is an alternating burrent bridge, which is was to find the self-inductional of the circuit.
- -) Actually this bridge is modified from of Maxwell's inductiona capetion bridge for the measurement of self-inductance inhorms of the Standard Capacity of Low Q' coils (Q(1).
  - -) The bridge was a fixed capacity instead of a variable Capacity on san in Mazoul's bridge and when gives more accurate boalls. ALX X

\* condinuction of Anison's bringe;

- The bridge consists of hur arms 1 AG, AD, BC, KD.

- The arm AB of the bridge cornists of unknown inductance 4 to be measured in suis with a non-insuctive roistana R, and Y, be the Evistana of insults.



- The hig shows Andonson's bridge unia balana condition.

-) The arms AD, Be and CD comists of Standard mon-insuctive 807 istanus Ri, Ry and Ry of 100000 value.

7 It comists of Extra Junction I to which a variable knistn'y' is connected between Eand D, a fixed capacity between Eand C, and a null detected between E and B.

opposition and theory of Androson's bridge 1-

Lut

C = Standard Capacity of Rized 100000 value.

Re, By, Ry = Standard non-inductive voistance of known values.

Li = Self insurance to be measures.

81 - Aurisyana of the unknown insuctor.

unter bulance Consission, we have

五: エナエノ コイン

V3 = V6 -> (1)

From [ay, (1) Le hove

$$V_{3} = V_{X}$$

$$V_{4} = V_{4} + V_{4}$$

$$V_{5} = V_{5} + V_{7}$$

$$V_{1} = V_{2} + V_{7}$$

$$V_{1} = V_{2} + V_{3}$$

$$V_{1} = V_{3} + V_{4}$$

$$V_{2} = V_{3} + V_{4}$$

$$V_{3} = V_{4}$$

$$V_{4} = V_{4} + V_{4}$$

$$V_{5} = V_{6}$$

$$V_{7} = V_{7} + V_{7}$$

$$V_{7} = V_{7} + V_{7} + V_{7}$$

$$V_{7} = V_{7} + V_{7} + V_{7}$$

$$V_{7} = V_{7} + V_{7} + V_{7} + V_{7}$$

$$V_{7} = V_{7} + V_{7} + V_{7}$$

Scanned with CamScanner

$$\frac{\mathbb{E}\left(x_{1}+R_{1}+j\omega L_{1}-j\varkappa R_{3}x\right)}{R_{1}}=\frac{1}{R_{1}}\left(\frac{j\omega CR_{3}x}{R_{4}}+j\omega CR_{3}+\frac{R_{3}}{R_{1}}\right)$$

$$\frac{1}{R_{1}}\left(x_{1}+R_{1}+j\omega (L_{1}-CR_{2}x)\right)=\frac{R_{1}R_{3}}{R_{4}}+j\omega \left(CR_{2}R_{3}+\frac{R_{3}}{R_{4}}\right)$$

Equating Ked picts:
$$8_1 + R_1 = \frac{R_2 R_3}{R_1}$$

$$\left(R_1 = \frac{R_2 R_3}{R_1} - x_1\right)$$
and

Equating imaginary poorts.

$$L_1 - (R_3 x = C R_2 R_3 + \frac{C R_2 R_3 x}{R y})$$

$$L_1 = C R_3 x + (R_2 R_3 + \frac{C R_2 R_3 x}{R y})$$

$$L_1 = C R_3 \left[ x + R_2 + \frac{R_2 x}{R y} \right]$$

$$L_1 = \frac{C R_3}{R y} \left[ R_2 R_4 + x \left( R_2 R_4 \right) \right]$$

$$\left[ L_1 = \frac{C R_3}{R y} \left[ R_2 R_4 + x \left( R_2 R_4 \right) \right] \right]$$

- I Insical of a variable capacity, a fixed capacity can be used. This makes the bridge chape than Horsell's bridge.
- I Deformination of unknown capacitance in terms of Ichan inductance is also possilli. Committee and the second

# Diswantago

ITY ANNOSOP'S bridge is more complex in homs of lineuit Connections and comparations when compared to Maxwell's bridge due to the increase in the number of components wied in the circuir-I The balance Equation calculations are also complicated them nazvell's brige calculations.

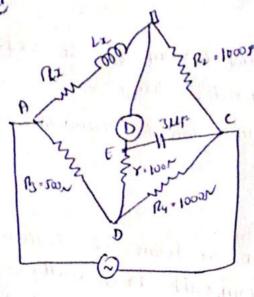
An Anjoson a.c bridge is an follows!

Arm As: unknown inductance 12x and Lx

Arm BC: Non reachire Einistante Re: 10002

Arm (0: Non-Yeachire Visistana Ry: 10000 Arm DA: Non-reactive & Nistana R3 = SOON

Arm DE : Avistana 8:1000


Arm Es - Detector and a.c sipply 6/4 Ac

Arm Ect Capacity C: 3 UF

to the second the great 30 State the Expression for Lx and Rx and kind the values of them to given values of elements. And the fee site of the state of the state of

The Hall M. Course Chair Mile

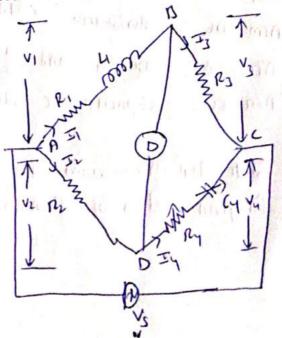




$$n_{x} = \frac{n_{x} n_{y}}{n_{y}}$$
 $= \frac{1000 \times 500}{1000} = 500 \Omega$ 

$$12 = \frac{CR_1}{R_1} \left[ R_2 R_4 + 8(R_2 + R_4) \right]$$
=)  $\frac{3 \times 10 \times 500}{1000} \left[ 1000 \times 1000 + 100 (2000) \right]$ 

the price of the H8-11 (com


The interior parties of the trees are other sent as the \* Hay's Bridge 2

- Hay's bridge is the electrical circuit wed for the measurement of Self- inductanu.
- -) It is alternating current bridge similar to Mazaell's bridge with Small mosifications.
- and Maxwell's bridge is that -) The main difference blu Hay's bridge Hay's bridge Employs a Vosistana in Svius with the Standard Capacity, Wheras Maxwell's bridge was a Sosistof in passallel with The Standard capacital

construction i-

I The Hay's bridge is a modified form of Maxwell's inductance - Capacitana bridge.

1 It measures inductional by companing it with a Standard Variable Capacitana. of The linear Stagnam of Hay's bridge is shown in high



If longists of an induction Lite an inductional Li and supistance Ry in an and As and non-inductive standard shistance Rz and Rz in as my AD and Be supperfively, and a known variable standard superitarially in Sviss with known non-inductive variable standard moistance Ry in as an as we will be standard moistance Ry in som co.

Operation and theory of Hay's bridge 2

The bridge can be balanced by additioning the values of the and by and bridge cincuit.

Z1= P1+jw1, Z2=P2 Z3=P3 Z4=P4-J/wc4

unso balanus Consilhon,

$$Z_1 Z_4 = Z_2 Z_3$$

$$\left(R_1 + j\omega L_1\right) \left(R_4 - \frac{j}{\omega c_4}\right) = R_3 R_2$$

Equating scal paris, and imaginary paris.

$$R_{1}R_{1} + \frac{L_{1}}{C_{4}} = R_{3}R_{2} \longrightarrow \mathbb{O}$$

$$R_{1}R_{1} + \frac{L_{1}}{C_{4}} = R_{3}R_{2} \longrightarrow L_{1}R_{4} - \frac{R_{4}}{L_{14}} = 0$$

$$R_{1} = L_{1}R_{4} = \frac{R_{4}}{L_{14}}$$

$$R_{1} = L_{2}L_{1}C_{4}R_{4} \longrightarrow C_{2}$$

Substituting (1) in (1)

(
$$\omega^{2} R_{4} L_{1} L_{1}$$
)  $R_{4} + \frac{L_{1}}{C_{4}} = R_{2} R_{3}$ 
 $L_{1}$  [  $\omega^{2} R_{4}^{2} L_{1} + \frac{1}{C_{4}}$ ] =  $R_{2} R_{3}$ 
 $L_{1}$  [  $L_{1} + \frac{L_{2}^{2} R_{4}^{2} L_{4}^{2}}{C_{4}}$ ] =  $R_{2} R_{3}$ 
 $L_{1}$  [  $L_{1} + \frac{L_{2}^{2} R_{4}^{2} L_{4}^{2}}{C_{4}}$ ] =  $R_{2} R_{3}$ 
 $L_{1}$  [  $L_{1} = \frac{R_{2} R_{3} R_{4}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}}$ ]  $C_{1}$ 
 $R_{1} = \omega^{2} R_{4} \left( \frac{R_{2} R_{3} R_{4} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} \right) C_{1}$ 
 $R_{1} = \frac{L_{2}^{2} R_{2} R_{3} R_{4} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 

Now has availty factor of an inductor is given by,

 $R_{2} = \frac{L_{3} L_{4}}{R_{4}} \left( \frac{R_{2} R_{3} R_{4} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} \right) C_{1}$ 
 $R_{2} = \frac{L_{3} L_{4}}{L_{4}^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 
 $R_{3} = \frac{L_{4} L_{4}^{2} R_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 
 $R_{3} = \frac{L_{4} L_{4}^{2} R_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 
 $R_{3} = \frac{L_{4} L_{4}^{2} R_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} R_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} R_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2}}{1 + \omega^{2} R_{4}^{2} L_{4}^{2}} C_{4}^{2}} C_{4}^{2}$ 
 $R_{4} = \frac{L_{4} L_{4}^{2} L_{4}^{2} L_{4}^{2} L_{4}^{2}} C_{4}^{2} L_{4}^{2} L_{4}^{2} L_{4}^{2} L_{4}^{2}} C_{4}^{2} L_{4}^{2} L_{4}^{2}$ 
 $R_{4} = \frac{L$ 

For Ligh & coils i-e, & >10, 1/2 is almost rugligable.
Hence the above Equ, reduces to

- I from the above Equations, we can say that for high a coils the Expression for Li is from the frequency from.
- I For low & with 1/22 cunnot be neglected and know to find Line frequency of source is to be accurately known.
- of Ligh & with.

Advantages >

-) The Expression obtained by the Q-facts of the wing Hay's bridge is not complicated.

-) From the above Equation, it can be seen that the xusistance Ry is investy proportional to Q-factor. Thun for high Q-factor the Ry 8hould be Small. Hence his bridge xequives low value of Ry

Disadvantayor 1 -

-) Not wished to Americany with having a Q-factor lon than 10.

- \* Measurement of Capacitanu;
- \* Desauty's bridge >

he he measurement of unknown capacitane. The bridge gives a fain degree of accuracy he measuring capacitane over a wise sange. It can be also used he comparing two capacitance.

VI CI

Construction & Thing of Desautis bridge 1

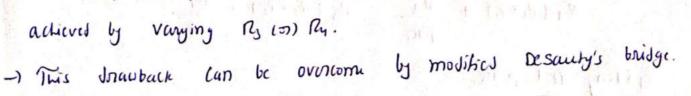
- -) The bridge comiss of Pows wims.
- between AB and AD SOSpectively.
- The branches BC and CO Consist of Veristos Rs and Ry Verpectively.
- In Rq.
- institutes mult deflution when the bridge is balances.

Lit G: un known Capacitana

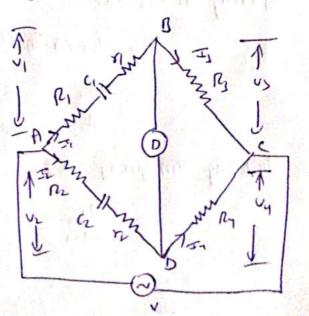
C2: linoun Standard Capacitana.

R3, R4: 16 noon Standard non-inductive Vosistana.

from the above hy, the impedances in lack arm is given us  $7_1 \cdot \frac{1}{j wc_1} \qquad 7_2 = \frac{1}{j wc_2} \qquad 7_3 \cdot \rho_3, \quad 7_4 \cdot \rho_4$ 


when the bridge is balanced, he have

$$\frac{R_{1}}{J_{1}} = \frac{R_{2}}{N_{1}} = \left(\frac{J_{1}}{J_{1}}\right) R_{3}$$


$$\frac{R_{4}}{C_{1}} = \frac{R_{3}}{C_{2}}$$

$$\left[C_{1} = \frac{R_{4}}{R_{3}} \times C_{2}\right]$$

- as it has a simple cincuit and only one variable elimint.
- -) In our L bring the bridge into a balanced Consistion, Uther Rz (5) Ry can be choosen as a variable Clement.
- -) The fig shows the phonon diagram for Desauly's bridge.
- This method is with only h measure The capacitance of losslern capacities.
- imposfect, then the balance can nover be achieved by varying Ps (3) Py.



- \* Modified Dasawy's bridge:
- is used for the measurement of unknown imported capacitany.
- bridge Imported Capacituna is those phich contain dichern dichern lasson.



Scanned with CamScanner

- In modified Desauty's bridge, he two capacities en and or are connected in svive with Ry and Re.
- -) To measure capacitance with dielectric lossor another two societies of any re are connected to the two capacities that give the closs component of their suspective capacities.

Let G- unknown imporfect capacitana.

a = lenoun Standard Capacitana.

R. R., Rs, Ry = lenous Non-inductive Kosistates:

81, 82 = Peristana having loss component of two capacities.

-) From the above by, the impedances in lack arm is given as

-) When bridge is balanced, be have

$$\left(R_1+\gamma_1+\frac{1}{j\omega_{11}}\right)R_{12}=\left(R_2+\gamma_1+\frac{1}{j\omega_{11}}\right)R_{2}$$

$$R_{11}\left(R_1+\gamma_1\right)+\frac{R_{11}}{j\omega_{11}}=R_{2}\left(R_2+\gamma_2\right)+\frac{R_{2}}{j\omega_{11}}$$

Equating real parts,

$$\frac{R_{Y}}{R_{S}} = \frac{R_{2} + v_{2}}{R_{1} + v_{1}} \rightarrow \mathbb{O}$$

lyvating imaginary paris.

pust control of the same some first

$$\frac{c_1}{c_2} \cdot \frac{\rho_1}{\rho_3} \cdot \frac{\rho_2 + \gamma_1}{\rho_1 + \gamma_1} \rightarrow c_1$$

-) The balanced condition in modified Desacting's bridge is determined by changing the soistanus R., R., R., and Ry in the cinquit. The dissipating Pacify D' of the two capacitors au,

prescipating factor of c, . D, . tun S, - weigh Dissipating Packs of Cz = Dz = tuns: Wci82

-> Simplifying (40). (3) Le get

$$\frac{C_1}{C_1} = \frac{R_2 + \gamma_1}{R_1 + \gamma_1}$$

C1 R1 + C181 = C2 R2 + C282

multiplying with 'w' on both sists

weight on: warny or

Also from (40, 13)

$$C_1 = \frac{R_1 C_2}{R_3}$$

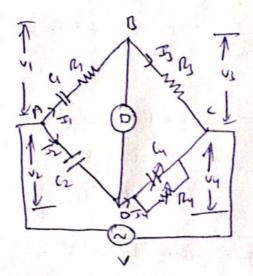
sussiming G in 14. (4)

$$D_2 - D_1 = \omega \left( \frac{R_1 c_1}{R_2} R_1 - c_2 R_2 \right)$$

$$D_2-D_1-Uc_2\left[\frac{R_1R_1}{R_3}-R_2\right]$$

- In above law, it one of the dissipation factor is given, the other dissipation factor can be determined.

to spirit them same with the


the way to the state of the sta

is not precise and accurate because the dissipation factor quantities are very small.

# \* Schwing Bridge &

Schwing bridge is an ac bridge word for the meanument of Capacitana, diclethic loss and power factor of an unknown Capacitor. It is the most popular and widdy used method for measuring Capacitana. The principle of operation is similar to other ac bridges i.e, balancing the bridge and comparing the unknown value with a summer value.

- a) Low voltage Schring bridge 1
- The circuit connection of a low vollage Schning bridge is as shown in hy.
- in suiv with roish Ry.
- Ass component of the Capacity (1.



- -) The Capacity Cz is the standard Capacity and cy is variable one.
- -) THE YVISH Ry is a non-inductive Yvistana and Ry is a variable non inductive Yvistana Connected in parallel with a Capacita Cy.
- -) The Supply is connected blu nows A and c while the detector is connected blu B and D.

$$\frac{7_{1}7_{4} = 7_{2}7_{3}}{\left(R_{1} + \frac{1}{j\omega c_{1}}\right)\left(\frac{R_{4}}{1 + j\omega R_{4}C_{4}}\right) = \frac{1}{j\omega c_{2}} \times R_{3}}$$

$$\frac{\left(\frac{j\omega c_{1}R_{1} + 1}{j\omega c_{1}}\right)}{\frac{j\omega c_{1}}{1 + j\omega R_{4}C_{4}}} \times \frac{R_{4}}{1 + j\omega R_{4}C_{4}} = \frac{R_{3}}{j\omega c_{2}}$$

$$\frac{j\omega c_{1}R_{1}R_{4} + R_{4}}{\left(\frac{j\omega}{\omega}c_{1}\right)\left(1 + j\omega R_{4}C_{4}\right)} = \frac{R_{3}}{j\omega c_{2}}$$

Equating seal and imaginary posses

$$R_{4} = \frac{c_{1}}{c_{1}} \times R_{3}$$

$$c_{1} R_{4} = c_{1} R_{3}$$

$$c_{1} R_{4} = c_{1} R_{3}$$

$$c_{1} R_{5} \times c_{1}$$

- NOW the dissipation facts of the Capacital under musuument is

Later Francisco Garage

D<sub>1</sub> = tuns
$$= \omega c_1 R_1$$

$$= \omega \left( \frac{R_1}{R_2} \times / \nu \right) \left( \frac{C_4}{G_4} / S \right)$$

$$D = 0 \quad \omega c_4 R_1$$

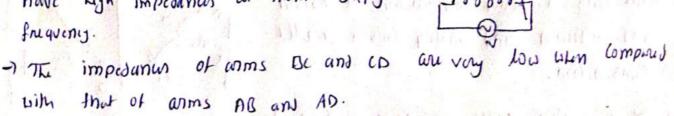
I benorally a and an lapt constant and belone is obtained by varying by and a, so that the dissipation factor can be directly measured informs of by.

dismitations of L.V. Schring bridge 1-

I The selection wild is not so simplifie

I It is duit difficult to obtain a bulanced condition.

Soms are present in the measurement of Small Capacitanus wring a low voltage schang bridge.


4 (1) ( 18 31) 1 ( ) to

The state of the

- b) High Voltage schering bridge -
- -> The H.V Schning bridge is mainly would be the measurement of small capacitaness by using high voltage and high frequency.
- -) H.v schning bridge is the most suitable method for musurement at high vallage because of fillowing reasons.
  - · Results are very accurate.
  - · Dutchy is very sensitive.
  - · The mosts due to Earth capacitana are climinated using wagner's lanth devia.
  - · The Circuit provises greater security for the operation.
  - · Low power loss
- -) The ky Shows H.V Schning bridge.
- -) It consists of a Step-up Warshomy that supplies the sugared high vollage po to the bridge from a normal Ac supply.
- 7) The Capacitons Gand Cz in the coms AB and AD are specially disigned to withstand high voltages and

have high impedances at normal Supply

frequency.



- bridge will be very small due -) The lurrents parring through the to high impedance, When sweath in los pour Consumption.
- This moun hu bridge to use a sensitive detects.
- The voltage stops in the soms Be and co will be very small, as The mujor part of vollage trops in coms AB and AD due to Ligher

-) Point c is Ewitherd, as the Contalling elements are present in orms the and co, it assures her safety of operating person.

the second of the second of the

A hours of they signed to

may be strong at the flag it

#### Asvantages !-

- I was to find the value of enpacitance across he bridge.
- I Low cost
- I The bulanus squ, does not depens on frus.

#### \* Wien's bridger

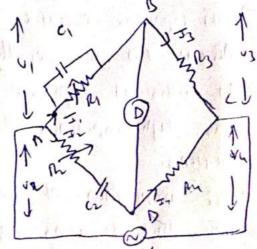
The state of the state of

- -) The Lien's bridge is an all chetrical cincuit biddy used for meaning of freque, and can also used for the measurement of capacitante with high accuracy.
- -) The bridge can be used Even at Light voltages but the Cistomit is sensitive to frequency.
- and a parallel combination in another wim.

Asset 1

and silling a so at appear and country and

production of the second second second second


Contract of a policy of a second

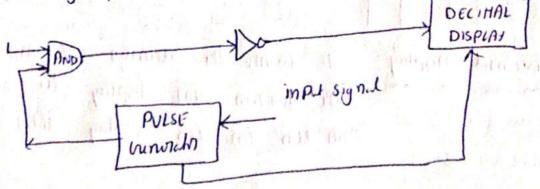
#### Construction 1-

I The linear Countests of four warms, one with a suring Combination of Yusistin and another with a parallel Combination.

I The two other arms comprise a disistance.

I The tig shows the livewif dragnam of bein's bridge.




## & DINSTAL HETER

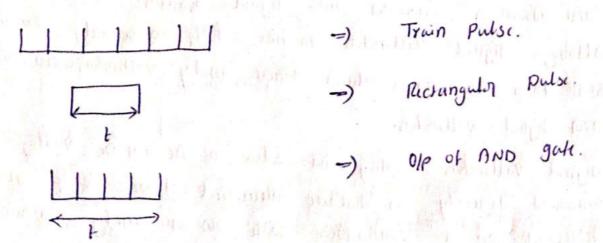
# \* Digiral voltmehr >

- I vollowh is an electrical measuring instrument wild to musical the pokential difference between two points.
- I The Vollage to be measured may be Accor) D.C
- I Two yes of voltactors are available by the purpose of voltage munument ic, Analog and Digital.
- i Analog volumehrs generally contain a stall bith a neigh moving over it according to the measure and tina displaying the value
- I with time analog voltmeters are replaced by "digital valenches" due to Same advantages comociated with digital Systems.
- I Although digital voltmeters do not fully replace analy voltmeters, Still there are many places where analog vollmehrs are preferred over digital voltmehrs.
- I Digital vollmehrs display he value of Ac (11) De vollage being mianned directly as discrete numerical istead of a pointy dellution on a continuous scale as in analog instruments.

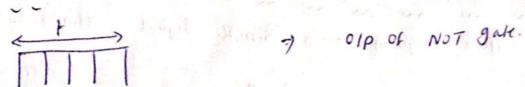
working principle of Digital Vollmits L

-) The block Jingmam of a simple digital vollmen is shown in




- a) Input signal t It is busically he signal i.e, voltage h be measured.
- Pulse generated: Actually it is a voltage source. It was digital,
  analog of both techniques to generate a sectangular
  pulse. The width and frequency of the sectangular
  pulse is controlled by the digital circuity inside the
  generate while amplifies and rise and fall time is
  generated by analog Gravitry.
- e) AND gate! It gives high old only when both the ilps are high.

  When a train pulse is fed to it along with sectangular


  pulse, it provides we are old having train pulses with

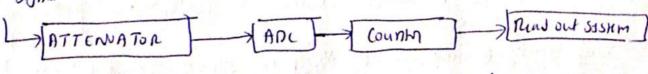
  durition as same as the sectangular pulse from the

  pulse generals.



d) NOT gut: It invoks the old of ANO gate.




c) Decimal Display it It camps he number of impulses and hine of voltage of willing the value of voltage on ~ ~ he dwintern and display after calibrating it.

bothing of a digital vollmehr?

- · unicrossy voltage signal is hed to he pulse generally which generales a pulse whose with is proportional to he ip signal.
- · OIP of pulse generate is led to one by of the AND gate.
- · The ip signal to the other by of the AND gate is a train of pulsor
- · OIP OF AND gate is positive triggers train of durition same as the width of the pulse generaled by the pulse generation
  - · This positive triggend train is fed to the invotor which convolus it into a negative triggered train.
  - · OIP Of the involve is led to the country which counts the numer of thiggers in the duration blick is proportional to The ip signal i.e., voltage union muserument.
    - · Thur, country can be calibrated to indicate voltage in valls and the asymptotic directly. L. Marchant Gate

The boiling of digital vollmen that it is nothing but an analog to digital converte blick converts an analog signal into a train or pulsos, the not of which is proportional to the ilp Signal. So a digital voltmen can be made by using any one of the AID Conversion methods.

ilp signal



on he busis of AID conversion method used signil valenchy can be charified as,

- 1) Rump type signal voltmen.
- in Integrating type digital valenchs.
- in) potentiometric type digital vollmetre
- iv) Summire approximation type digital voltmets.
- V) continues believe type digital voltands.

# Advantagin 1-

- -> Remont of DVHs is Ewy as it eliminates observational trops in measurement committed by operators.
- penallar cross and approximation sort is entirely eliminated.
- -) Measing can be talan very fast
- -) Output can be led to memory devices for storage and future
- -) Vonsatile and accurate.
- -) compact and Cheap.
- -) Low power sequirements.

- Disadvantages L -) It gives some Extra featine are Expensive.
- speed of operation is limited due to the digitizing Circuit.
- -) It is would very hard to spot transient voltage Spikes etc.

have been a first freely freel

3 Total de de

\* Resolution ?

The sombution of DVH is determined by the number of Rell (57) active digits wied in DVH Which is given by [R. 10N]

When in represents number of full digits.

Ex. An N=3, R: 103 =) 0.001 April M do Ann an private of

\* Sensitivity L

Schrikvity is the Smallest change in input which a digital met is able to detect. Hense it is the full scale value of the lowest voltage sange multiplies by the sesolution of the Dura. 11. The can be beginned by

troop & denie o

Dhou R: rosolution (fs)min : lover hill scale value of his melon

Note: According to the display of DVM, the various DVH's are,

- i) N digit display DVM
- ii) NY dight display DVM
- iii) N34 digit display DVM
- iv) NS16 digit display DVM.

Where N represents number of full digits in display and 4,34,516 digit are word for lexending he lount sunge of N signt DVM.

Ex: A 41/2 digit voltante is used for voltage measurement tun

i) kind its posselution

ii) How would 11.87 v be displayed on lov sange.

iii) Has would 0.5573 v be displayed on 1v and lov danger

e) NO, of hul digins N=4

i) Russlition R: 1 = 0.0001

T' A SHE THE ii) sensitivity of DVM on IV range is S= (f-s) x R =) S= IV \* 0.0001 =) 0.0001

Semithvity of DVM on lov range is

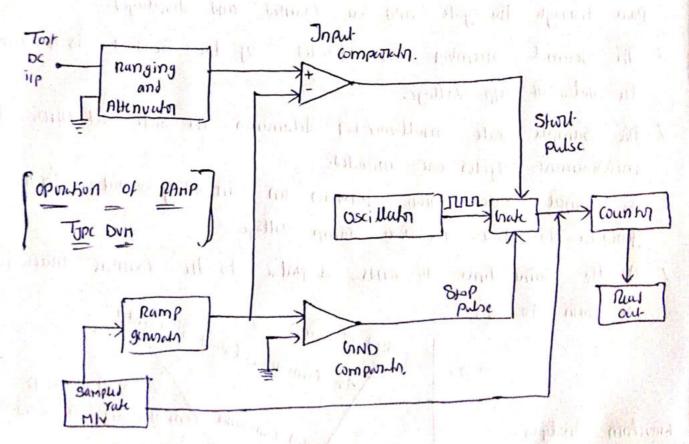
S = lov x 0.0001 =) 0.0011d1 at the land 11.87 Can be displayed by 41/2 digit DUM on lov range is 11.870 V

iii) 0.557] v can be displayed by 41/2 digit DVM on IV range ors) and the sold volume is the ds 0-5573

tive place type to a

tivo poles a light great

Tipe I police and the land


and the place to the out.

The quality of a gift Al A to toleran countries it will

But the state of the state of the state of

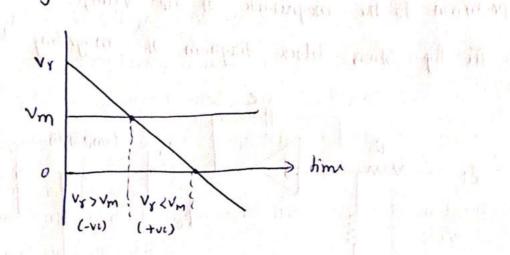
Ry lov range as 0.557v

- \* Ramp Type Digital vollment to the state of the said to
  - > The operating principle of a sump type digital volumetr is to musure he time that a linear samp voltage terms to change from live of input voltage to zono voltage (or via vona)
  - -) This time interval is measured with an electronic time interval country and he count is displayed as a number of digits on electronic indicating haves of the OIP readout of the voltmehr.
- The conversion of a voltage value of a time interval is shown in He himiny digram given below.



of RAMP Type DVM:

新加工程度與11 有利益


I At the State of musicumint a samp voltage is initiated. I A regulive going samp is shown in Fig. 1 but a positive going Jame may also be www.

The Samp voltage value is continuously compared with the voltage being measured (unicoson vollage). I At the instant the value of samp voltage is Equal to that of unknown Voltage. I The damp voltage continues to decrease till it reaches growns land. I At his instant another comperated called ground comperated generales a pulse (stop pulse) and closer the gate. I The hime chapsed between opining and closing of the gate is it as indicated in Fig. I During this time interval pulser from a (lock pulse general Coscillator) Pan through the gate and are counted and displayed. I The desimil number as indicated by the soudout is a measure of the value of ip voltage. I The Sample rule multivibrator determines he rate at which the measurement yells are initialed. 1 The sample rate circuit provisor un initiating pulse for the sump generate to start its next ramp voltage. I At the Sume time it sense a pulse to the Countries which set all Ast Coincidence (start of count) of them to o! Start of YAMP and Coincidence (ent of count) measured Howeform Analysis: 0 vollage THAT WHEN YOU Total him of clock pulsos to tounking TITULY of pulse ountry during time Scanned with CamScanner

a) At input comparator!

An unknown voltage Vm is given to the ije of non-involving terminal. When the ije at inventing terminal of opening is lon than Vm out at the ije comparated is positive otherwise it is negative.

Pulse, his pulse major the gating cinemit to start and the pulse produced by the chock generate purpos through the gating cinemit. These pulse are counted by decade counter.



# b) At ground comportating

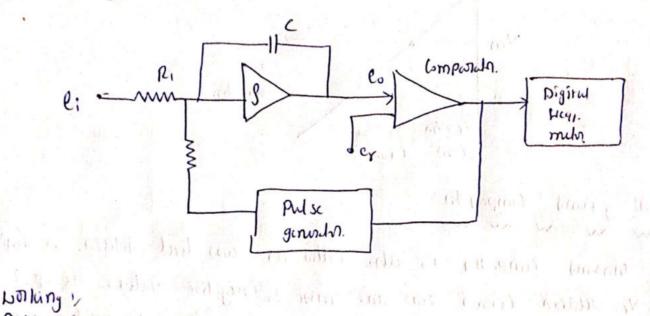
the vy received crosses zono and move to negative values, he is put inventing hominal is greater than non-inventing hominal.

pulse which makes the gating cincuit to stop.

#### Advantages L

-> The samp technique circuit is Easy to Jusign and its cost is law.

Man P and Amenin


-) Also, the opp pulse can be transmitted over long fewer lines.

Disalvantagor Library Springer and The

- -) Longe Entry are possible when noise is supprimposed on he is Signals.
  - -) The fillers are suggested with this type of converter.

    Scanned with CamScanner

- \* Integrating type digital voltandor
- The integrating type digital vollments measures the frece avorage value of he input voltage over a fixed measuring period.
- This vollmeter employs an integration technique which was a vollage to brequency conversion.
- The voltage to frequency (VIF) converter functions as a fewback control system which governs the sale of pulse generation in proportion to the magnitude of the Voltage.
- -) The fig Stows block diagram of integriting type digital vallents



- I The isp voltage produces a Charging Current espe, that changes the capacita 'c' to the reforma voltage er.
- I when exis occurred, he comparate changes state, so as the thigger the precision pulse genuita
- I The pulse generaln products a pulse of precision charge content, that sapisty discharges the capaciton
- I The Nate of Changing and discharging produces a signal hogang that is directly proportional to ei.

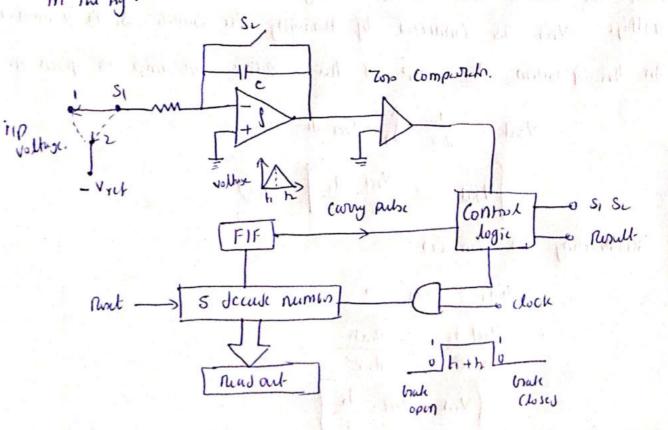
I During changing

During discharging

Substrating Paul (1) from Paul (1)

$$= -\frac{e_r}{Rc} - \left(-\frac{e_i}{Rc} + \frac{h_i}{Rc}\right) = 0$$

=) 
$$\frac{e_i h_i}{g_c} = e_s \frac{h}{g_c}$$


But in this case, ex and to are constants,

Hence 
$$e_i = \frac{k_2}{t_i}$$
  
=)  $e_i = k_2 (\frac{1}{k_1})$  =)  $\left[e_i - k_2(A)\right]$ 

I The old her is proportional to the ile voltage ex-

plant the second to the second the second

- \* Dual Slope integrating Tipe digital vollmeter:
- -) This is the most popular method of analog to digital conversion.
- in dual stope method the noise is averaged and by the positive and negative ramps wring the process of integration.
  - integrated for a fixed interval of time and then the sume integrated is used to integrate the returna voltage with reverse Slope.
  - -) Hence the name given to the technique is dual stope integration technique.
- -) The block diagram of dual Slope inkyrding type DVH is Shown in the fig.



-) It consists of five blocks of an op-amp used as an integrator, a zero compassion, check pube generator, a set of Jeans Country and block of control logic.

- -) when the switch si is in position !, the supacing a stark changing from zoro hvd.
- -) The vale of charging is proportional to the isp vollege lived. The OPP of the opening is given by,

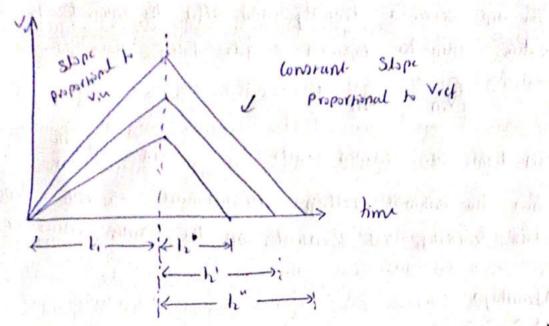
Vout = 
$$-\frac{1}{R_1c} \int_0^h v_{in} dt$$
  

$$\int_0^h v_{in} dt$$

$$\int_0^h v_{in} dt$$

$$\int_0^h v_{in} dt$$

Where to : home taken for chepacity Charging.


Vin = ijp voltage

R1 = Series Visistana

- -) Athor the introval h, the ip voltage is disconnected and a regulive vollage - Vect is connected by knowing he switch S, to position-L
- -1 In this position, the oip of the supply op-amp is given by.

Substracting (1) from (1)

-) Thus, he is voltage is dependent on he time priods he and he but not on he values of R and C.



- of of the flip-flip is who zero, this is given to the control logic.
- -) This control Senis a Signal so as to close an eletronic switch to position -1 and integration of the ip voltage States, it continues till the time pried to
- -) As he opp of he integrated changes from its zons value, the zons compatited of changes its state.
- He gale and he counting of the clock pulser strong.
- The Country Counts he pulso and who it seather to 9994, it generates a carry pulse and all digits go to zero.
  - -) The flip flip of gets activated to the logic livel T. This activates he control logic.
- This Servis a Signal Which Changes he switch position from 1 be
- Thus Very gets connected to op-amp.
- -1 As Vect polarity is opposite, he capacity stark discharging.
- -) The integrater of p will have constant regulive Stope as shown in the figure.

-) The OIP decreases linearly and after the interval 12 allains was value, when he capacitor c gets fully dischonged.

in terms of country counts Vin: Velt The

- of brown amil of the

ing I dealer in roberties

-) Thus the unknown voltage measurement is not dependent on he Clock frequency, but dependent on the lains measured by the country.

### Advantago

1 Excellent noise ocyclion.

I The Re time constant does not affect he ilp voltage measurement I The Capacity is connected via an electronic Switch. This capacity

is an auto zn. capacita and avoids the street of offset voltage.

was at the right the pain some from a contrary of

to the rings only per come into the line light in the

since parties and and all equals made days a close part

property his house all strongs or private me of a

Section Mary to American Special Date of the Section of the

Made in explains state and appear and

Sign by all ansmoots the and while

I High accuracy and open to the police of the que of the

Disadvantugn :-

mile mil d'inter se sepre le contre l'inter de I spay of openation is slow. Conner of the party of the Court of the Same

July 1 to