ANNAMACHARYA UNIVERSITY

EXCELLENCE IN EDUCATION; SERVICE TO SOCIETY (ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) $RAJAMPET-516126:A.P;\ INDIA$

DEPARTMENT OF MECHANICAL ENGINEERING

LECTURE NOTES

MECHANICS OF SOLIDS [24AMEC33T]

ANNAMACHARYA UNIVERSITY

EXCELLENCE IN EDUCATION: SERVICE TO SOCIETY

(ESTD, UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016)

Title of the Course: Mechanics of Solids

Category: PCC

Semester: III Semester
Course Code: 24AMEC33T

Branch/es: Mechanical Engineering

Lecture Hours	Tutorial Hours	Practice Hours	Credits		
3	0	0	3		

Course Objectives:

- 1. To understand the nature of stresses induced in material under different loads.
- 2. To plot the variation of shear force and bending moments over the beams under different types of loads.
- 3. To understand the behavior of beams subjected to bending and shear loads.
- 4. To calculate the deflection of beams under complex loading.
- 5. To analyze the thin and thick cylinders under circumferential and radial loading conditions.

Course Outcomes:

At the end of the course, the student will be able to

- 1. Solve for simple stresses and strains when members are subjected to load
- 2. Analyze Shear Force and Bending Moment in the beam subjected to different loading conditions.
- 3. Evaluate shear stresses and bending stresses in a beam subjected to different loading conditions.
- 4. Analyze the deflections in beam subjected to different loading conditions
- 5. Analyze thin cylindrical and spherical shell

Unit 1 Simple Stresses & Strains

09

Elasticity— Types of stresses & strains—Hooke's law— stress — strain diagram for mild steel — Working stress — Factor of safety — Lateral strain, Poisson's ratio & volumetric strain — Elastic moduli & the relationship — Bars of varying section—composite bars (simple problems)—Thermal stresses (simple problems). Strain energy—Resilience, principal stresses and strains - Mohr's circle (Elementary treatment only).

Unit 2 Shear Force and Bending Moment

08

Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, UDL, uniformly varying loads and combination – Point of contra flexure –Relation between S.F.,B.M and rate of loading at a section of a beam.

Unit 3 Bending Stresses & Shear Stresses

08

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis—Determination of bending stresses—section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I,T and angle sections.

Unit 4 Deflection of Beams

09

Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam –Double integration and Macaulay's methods. Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L, uniformly varying load.

Unit 5 Thin Cylinders & Thick Cylinders

07

Thin Cylinders: Thin seam less cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains – changes in diameter, and volume of thin cylinders.

Thick Cylinders: lame's equation – cylinders subjected to inside & outside pressures.

Prescribed Textbooks:

- 1. Strength of materials by S S Bhavikatti
- 2. Strength of Materials by S. Ramamrutham

Reference Books:

- 1. Strength of materials by R S Khurmi& N. Khurmi, S. Chand Publishing
- 2. S.B. Junnarkar, Mechanics of Structures Vol-III, Charotar publishing house.
- 3. S.Timoshenko, Strength of Materials, D Van Nostrand Company.
- 4. Strength of Materials by Dr. Sadhu Singh, ISBN: 978-81-7409-048-5,11th edition..
- 5. Strength of Materials by SS Rattan, Tata McGraw Hill Education Private Limited; 2nd edition (July 11, 2011)

Web Resources:

- 1. https://youtu.be/KMiz5UBCplk?si=iipl2kfLhiTP3HIY
- 2. https://youtu.be/Fui9Lxj3aJc?si=EmXJ9GRpD8oZaoek
- 3. https://youtu.be/SZM0kGBote4?si=j1yNQZk4TfxVBUKF
- 4. https://youtu.be/4TJ9DHueyxU?si=yK1neE L6UvDBdcB
- 5. https://youtu.be/MvBqCeZllpQ?si=QexhXifAQ01Xb447
- 6. https://youtu.be/BUVgrefgHWk?si=REJDjtsAgbgmOF3D
- 7. https://youtu.be/UEmgT1JhMYs?si=S2rOGi1mwfeU3lbp

CO-PO Mapping:

Course Outcomes	Engineering Knowledge	Problem Analysis	Design/Development of solutions	Conduct investigations of complex problems	Engineering Tool usage	The Engineer and The World	Ethics	Individual and Collaborative team work	Communication	Project management and finance	Life-long learning	PS01	PSO2
24AMEC33T.1	3	3	2	3	-	-	-	1	-	1	-	3	2
24AMEC33T.2	3	3	3	3	-	-	-	-	-	-	-	3	2
24AMEC33T.3	3	3	3	3	-	-	-	-	-	1	-	3	2
24AMEC33T 4	3	3	3	3	-	-	1	1	-	1	-	3	-
24AMEC33T.5	3	3	3	3	-	-	-	1	-	-	-	3	2

Mechanical Properties

The following are the most important mechanical properties of engineering materials:

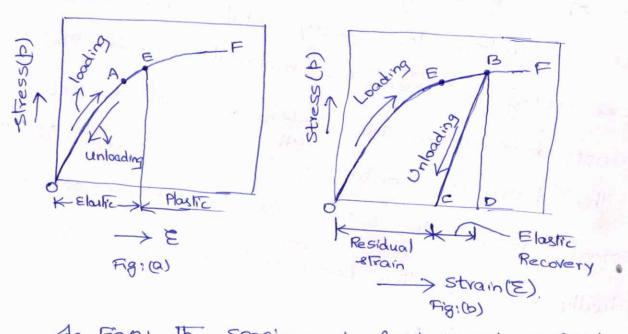
(i) Elasticity (ii) Plasticity

(iii) Ductility (iv) Brittleness

(V) Malleability (Vi) Toughness

(Vii) Hardness (VIII) Strength.

(i) Elasticity: -


When external forces are applied on a body, made of engineering materials, the external forces tends to deform the body while the molecular forces acting between the molecules offer resistance against deformation. The deformation of displacement till of the particles continues full resistance to the external forces is setup. If the forces one now gradually removed, the body will relivin, wholly or portly to its original shape.

"Elasticity is the property by virtue of which a material detoimed under the load and is enabled to return to its original dimension when the load is gremoved."

If a body regains completely its oliginal shape,

noterial, a limited of critical Value of the load at which the body detorms and regain its shape of the load is known as Elastic limit. The Value of the load is known as Elastic limit. The Value of the load beyond the Elastic limit tends to detorm the body and exten removal of the load it known as premoval of the load beyond the Elastic limit tends to detorm the body and exten removal of the load it does not regain its original shape results in a permanent detormation or permanent set.

Ex! Steel, aluminium, copper, Stone, concrete etc may be considered lo be perfectly elastic, within certain limits.

In Fig. a), the Specimen is loaded only up to point A, i've within the Elastic limit E. Due to the applied load up to boint A', the path traces the curve oA'. During unloading, again it traces the curve oA. So, finally loading and unloading Curves are Same when the load is applied up to point A'.

In fig(b), the specimen is loaded up to point B', beyond the electric limit E. When the path triaced by the curve during loading is curve OB, and during Unloading it triaces the curves (31 path) BC, resulting in a spesidual strain (OC) 31 permanent strain.

Homogeneity and Asotropy: A material is homogenous if it has same composition throughout the body.

If a material is equally elastic in all the directions, it is said to be isotropic.

If, it is having different elastic properties in different directions, it is called anisotropic.

(ii) Plasticity: - It is the converse of Elasticity.

"It is the characteristic of the moterial by which it undergoes determation permanently beyond the elastic limit and is known as plasticity"

In the plastic oregion, i'e in the body is loaded beyond the stastic limit and if it undergoes large deformations, the material is said to undergo plastictions.

This property is very metal in pressing and forging operations, and it is also useful for the design of structural members, utilising its ultimate strength.

to be drawn out longitudinally to a reduced section, under the action of a tensile force.

An a ductile material, large determation is possible before absolute failure of Mupture takes place. It possess a high degree of plasticity and strength. In a ductile material it shows a certain degree of Elasticity, together with a considerable degree of plasticity.

buctility is measured in the tensile test of specimen of the material, either in terms of 1, elongation of in lerms of 1, ereduction in the cross-sectional area of the test specimen. Dob The property of ductility is utilised in wine drawing.

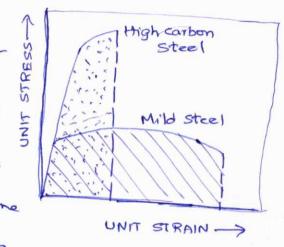
(IV) Brittleness:

A material is said to be brittle when it is not possible to drawnout, smaller section by applying tensile load.

In Brittle material, fracture takes place -> stram(E) E without warning and it does not determ significantly before failure takes place under the load. Thus property of the material is highly undesirable.

Examples of brittle materials are: cast from, high coorbon steel, concrete, stone, glass, ceramic materials.

- (V) Malleability: Malleability is a property of a material
- o which permits the materials to be extended in all directions without supture.

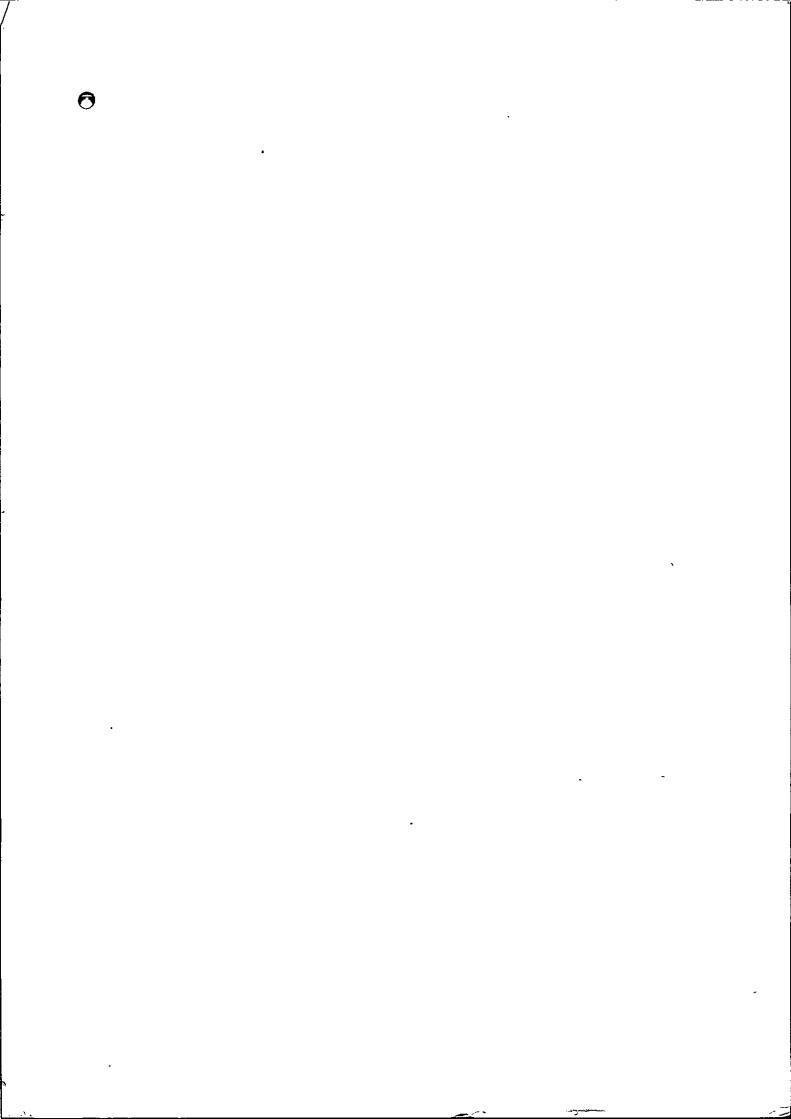

A malleable material possesses a high degree of plasticity, but not necessarily great strength.

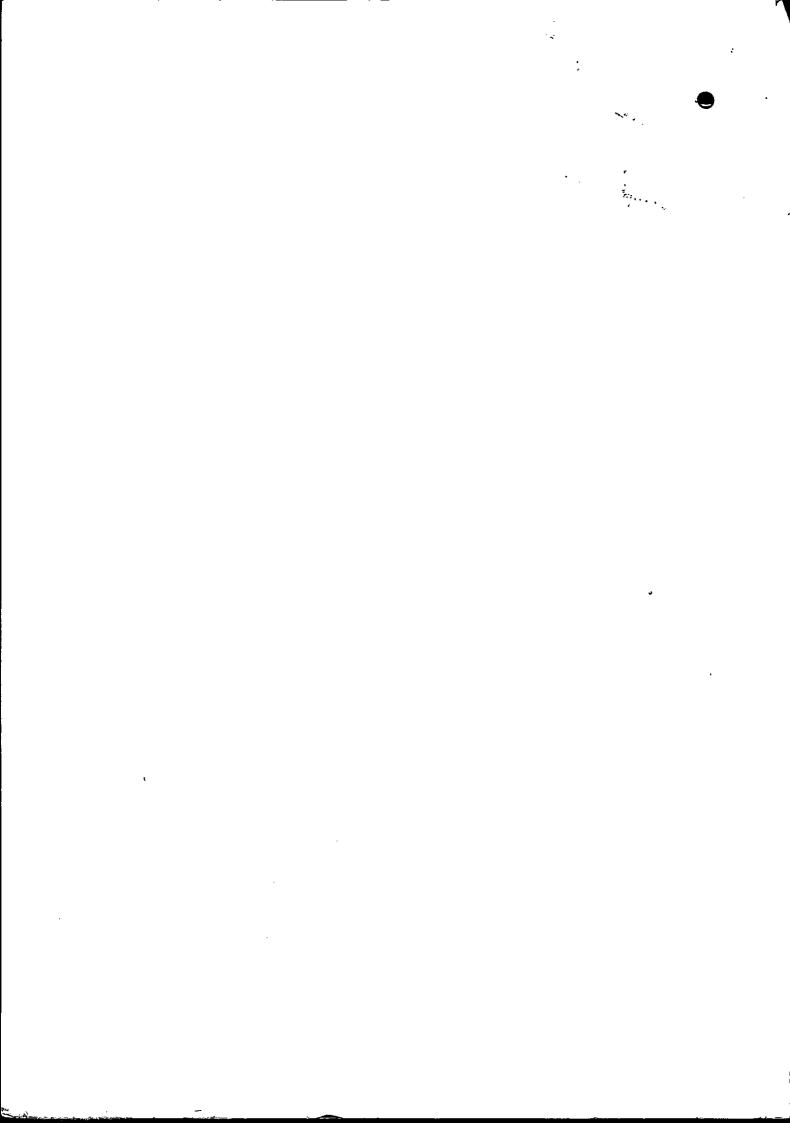
This property is utilised in many operations such as forging, hot stolling, deap-stamping etc.

(Vi) Toughness:

Toughness is the property of a material which enables it to absorb Energy without failure

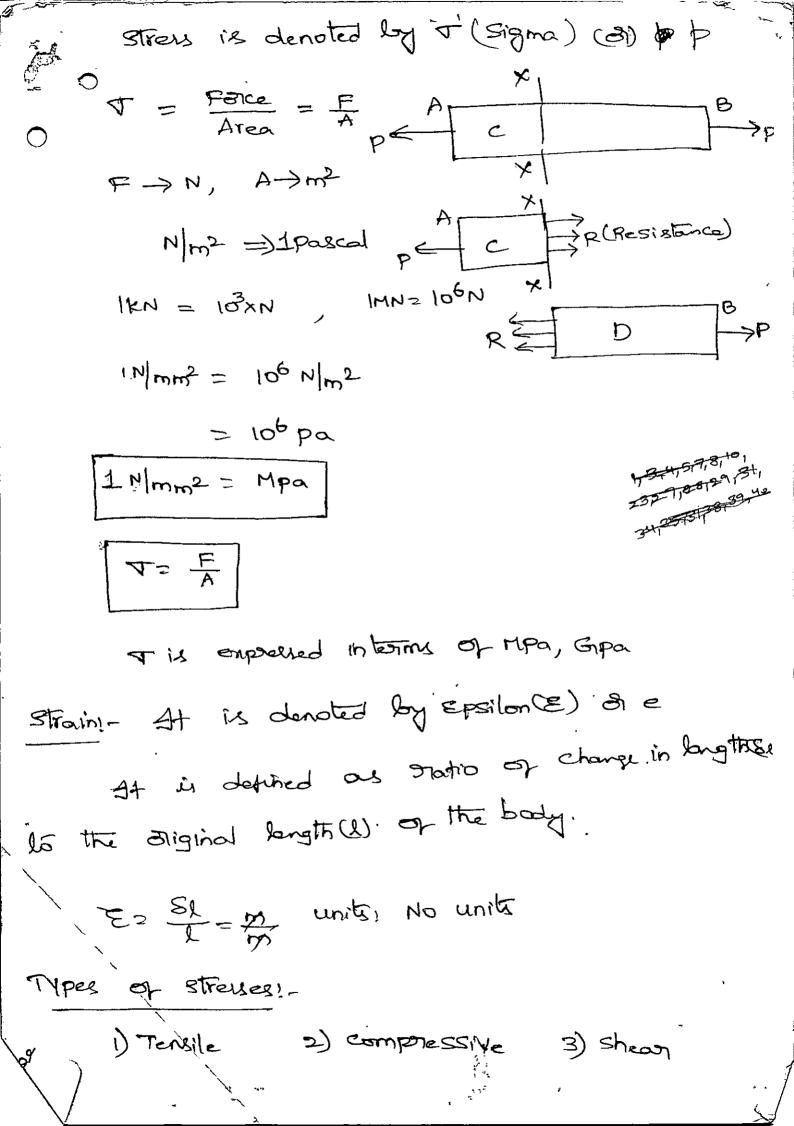
Toughness is measured in terms of snergy required per unit volume of the material, to cause supture


under the action of gradually increasing tensile load.


This property is very desirable in components subject to cyclic 87 shock looding.

Vii)Hondness: Handness is the ability of a material to mesist.

Permanent indentation of impression.


(Viii) Strength: The Strength of a material enables it Do 9resist
fracture under load.

Simple stresses and stowins Dynamics & study of external effects on Rigid bodies S.M -> Study of Antennal effects and detalmention that are caused by the applied loads. Introduction? - Materials which we come across may be classified into three types. 2. Plastic 3. Rigid 1 l- Ela stic material undergoes a detarmation when subjected to an external loading and oregain its original position often oremoral of the load. Ex. Rubber band 2. Plastie malerial! - A plastic malerial undergoes a continuous determation during the period of loading and the determation is permanent and the material does not regain its original dimensions on the removal

fid Material! A Rigid material does not indugo any determation. Ex: Aron Rod., An practice no material is absolutely na plastic na origid. These properties are applicable when the deformations one contain limit. Resistance la Detarmationi-The 912518 time offered by the material as long as the member is forced to gremain in the deformed state is called strength of the material. Stress- The force of mesistance offered by a body against the deformation is called the stress. Resistance offered by the body against the unit orea is called strew. pen of serietime of sering per unit orea ils called strew. The external force acting on the body is called straulant

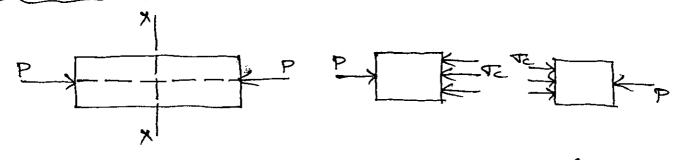
Stress ! When some external system of forces by & loads act on a body, the internal forces (equal and opposite) are set up at Harmous sections of the body, which nesist the external forces. This internal sorce per unit area at any section of the body is known as unit stress & Simply a stress. It is denoted by a Greek Letter Sigma (T), Mathematically Strew, J= PlA P= Force &T load acting on a body Az els Area of the body. Tensile strens and straining P P

When a body is subjected to two equal and epposite axial pulls P (also called tensile load), then the stress induced at any section of the body is known as tensile stress.

one to the tensile load, there will be decree

in cle area and an increase in length of the body. The gratio of Ancrease in length to the digital Right is known as lensile strain.

Let P= Ascial tensile force acting on the body


A= cls Area of the body

l= original length

Sl= Ancrease in length

tensile strain, Et = Sl

Compressive stress and strains-

When a body is subjected to two equal and opposite areial pushes P (also called compressive lad), then the stress induced at any section of the body is known as compressive stress.

Due to the compressive load, those will be an increase in cls area and a decrease in length of the body. The gratio of decrease in length lotter

Assial compressive force Cle area of the body Lo aliginal length 822 decrease in length ". Compressive strew, TZ = P -strain, & Sl Note: - These two strenes Tensile and compressive acts Normal to the ch area of the body, so there strever are called Namal Stresses. Shear Strew and Strain-When a body is subjected to two equal and Opposite forces, acting tongentially across the resisting as a gresult of which the body tends to Shear off the section, than the stress induced is alle Shear Stress. The coversponding strain is known as

Shear stress is denoted by Tau (T) and Shear strain is denoted by Phi (\$).

Shewn Strain.

end bugth L and width unity.

(at the bottom face of the block be fixed to a surface. h let a force P be applied tangentially along the lop face of the block. Such a force acting tangentially along a surface is called shoon force. For the Equilibrium of the block, Tongential meachion Reguel and opposite to the applied tangential force P. resistance R and 18 called Shear Resistance 167791 Shoon strew = T = K = P = Shear Area 1221/23 $=\frac{R}{LXh}=\frac{P}{LXh}$ =) Shear failure takes place petamation: Tx

de soll = change in length

Tang= dh.

or: Since of is very small Tamps of the dh = shear strain.

angular determation pln radians.

Elastic Limit: For every material the property of assuming of negatining its previous shape and size is exhibited on the nemoval of the loading, when the intensity of stress is within a contain limit.

Hookels laws- Hookels law states that when a material is louded within elevatic limit, the stress is directly propositional to strain

JAE

FBI Namal Stressess-

FBI NBIMAL Strewy

205 =) 25EE

E, T

where E is constant of propositionality

and is called Young's Modulus of Modulus of

Bos units: N/m2

It can bales be expressed in terms of kpa, Mpa, Gipa.

for Tongential Strewin

stren & strain

て又中

T= 60

GIE T

where G is called constant of proportionality and as called Rigidity Modulus of modulus of Rigidity.

units: Nm

At is also denoted by c'si N' & G

Problems

1) An elastic grad 25mm in diameter, 200mm long exceeds by 0.25mm under a tensile load of 40km. Fin the intensity of stress, the strain and the elastic modulus for the material of the grad.

Ans: $T = 81.52 \, \text{N/mm}^2$, E = 0.00125, $E = 65216 \, \text{N/mm}^2$

A c.I column has an external diameter of 300mm and 20mm thick. Find the safe compressive load on the column with a factor of safety of 5 if the coushing strength of the material is 550 N/mm².

Ans! P= 1934240 N & 1934.24KN.] 1935.22KN-

2) A 30mm diameter steel good whon subjected boom on inval broke force was, subjected to a strain of 0.6×153, And the tonsile force that coursed the above strain. Take E = 200 kN/mm².

[Ans: P= 84780N & 84.78 kn]

Engineering Materials!

fig show the streng-strain 1.

diagram obtained for a proper subjected

to a tensile test. The

mechanical properities mostly used

in mechanical Enga Practice are

commonly determined from a tensile test.

The plot from a to A is a straight line. The stress corresponding to the point A is called the limit of proportionality. In this stange stress is proportional to strain(E) (3) the load is proportional to Extension in thookels have is applicable.

In the Trange A to B the Trebation between stress and strain is not linear. The stress at B is called the Elastic limit.

Af the specimen is extended beyond the electic limit, the plantic decisionation lakes place. In the mange is to it the strain increases with almost constant stress. The stress of c is called upper yield point and the strug

As the load is increased, the Extension increases and at the condition shown at E a Waist of necking of the specimen is developed. The stress coverponding to E is called ultimate tensile strew. The stress at F is called Fallure stress. V-E curves for typical Enga materials !-FBI Elastic material! Elastic - plastic material! For purely plastic material for Digit motorials Ductile materials Brittle materials Maximum strew = Max stron= Yield point Ultimate strey

desirable to keep the strew lower than the maximum of ultimate strew at which the failure of the material takes place. Thus strew is known as Design strew of walking strew. It is also known as safe of allowable strew.

Factor of Safety ! (FS)

At is defined in general as the stalio of max stress to the working stress.

F.s= Mazimum stress
Walking (31) design stress

An case of Brittle materials, where the Vield Point is clearly defined, the Factor of Safety is based upon the Vield point stress.

F. S = Yield point stress
Walking all design stress

For Ductle materials

Fisz Ultimate strey
Walking (21) Design strey

Note: The above relations are valied for static bodium only.
For timber: 4 to 6; For concrete = 3.

F31 steel: 1.85

i) A copper rod 3mm in diameter when subjected to a pull of 495N Exceeds by 0.07mm over a gauge length of bomm. calculate the Youngh Modulus for copper. [Ans: 100.04 KN/mm2] 2) A wooden tie is 75mm wide, 150mm deep and 1.5m long. It is subjected to an axial pull of 45000N. The stretch of the member is found to be 0.638 mm. · Find the Youngly modulus for the material. Ans: 9404, 38 N/mm2] 3) A load of 4000N has lobe maised at the end of steel wisher. If the unit strew in the wisher must not Exceed 80N/mm2. What is the minimum diameter read? What will be extension of 3.5m length of wine? Take E= 2×105 N/mm2. [Ans: d=7.98mm; Sl=1.4mm] 4) Find the minimum diameter of a steel wire, which is used to maise a load of 4000N if the strey in the grad is not to Exceed 95MN/m². [Ars: d=7.32mm 5). The safe stress for a hollow steel column which Couries an asual load of 2-1x 103 kn 1x 125 MN/m2, It the External diameter of the column 14 30cm. Determ the internal diameter. [Arus di= 261.93mm] 6) The ultimate strey for a hollow steel column which Carolles an axial load of 1.9MN is 480 N/mm². If the

External diameter of the column is 200mm, det the Merral diameter. Take FS=4. [di=140.85mm] The A square steel god 20mm x 20mm in section is to carry an axial load (compressive) of looks. calculate the shortening in a length of 50mm. E= 2.14x108kN/m2. Ans: 81=0,058mm]. 8). The following dimensions were made during a tensile test on a mild steel specimen 40mm in diameter and 200mm long. Elongation with 40km load, 81=0.0304mm. Vield load = 161EN Max load = 242 EN. length of specimen at fracture = 249mm, Determine 1) E 2) Vield point stress 3) ultimate stress 4) Percentage elongation. (ANSI)E=209414.39N/mm² 2) 128.119N/mm² 3) 192.57N/mm² 4) 24.5% 9) A steel were 2m long and 3mm in diameters 1. Extended by 0.75mm when a weight W is suspended from the worse. It the same weight is supended from a brown voisie, 2.5m long and 2mm in diameter, it is clongated by 4.64mm. Determine the modulus of Elasticity of brown it that of steel be sylos N/mm2.

Ans: Bb= 90921.33 N/mm2

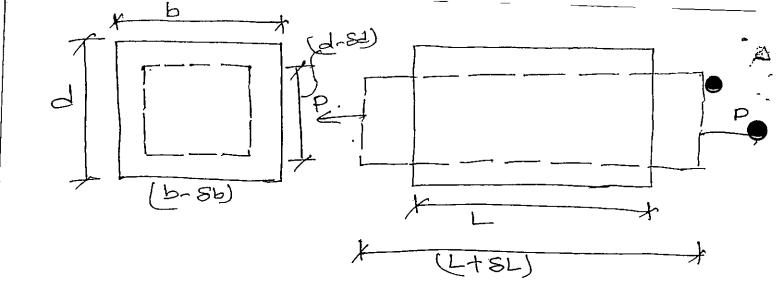
Topphydinal strain! - When a body is subjected to an axial teneile of compressive load, there is an axial deformation in the length of the body.

The gratio of axial determation to the Bright Dugth of the body is known as longitudial of linear strain.

longitudinal strain, Ele change inlength

lateral strain! - The strain at night angles to the discerte of applied load is known as lateral strain.

lot a Rectangular bor of longth L', brooth! and depth d' in subjected to an axial tensile load? as shown in fig.


The bright of the book will increase while the breadth and depth will decrease.

let BL= Ancrook in length

Sb= Decrease in breadth

Sd= 11 depth.

Than longitudinal strain = 81

Note:-

(i) It longistudinal strain is tensile, the lateral strains with be compressive.

(i) It longitudinal strain is compressive, than lateral straw, coill be lensite.

(iii) Hence every longitudinal strain in the direction of load is accompanied by lateral strains of the opposite kind in all directions perpendicular to the load.

Poisson's Ratio! - At is denoted by " (3) in.

The Tatio of lateral strain to the longitudinal strain is a constant, when the determation of the member is within the elastic limit. This ratio is called poissonly Ratio.

Policions Ratio (M) 8(m) = lateral strain longitudus etrain

The Value of poissons ratio Varies from 0.21 co:33. For subbon, its value granges from 0.45 to 0.5 lateral strain = $\mu \times \text{longitudinal strain}$ As lateral strain is apposite in sign to largitudinal strain, hence algebrically

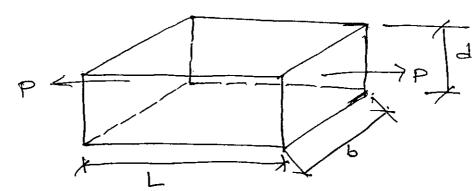
laterial strain = - Mx longistudinal strain.

Volumetric Strain: - The Gratio of Change in Volume lo the Diguid Volume of a body is called Volumetric strain. It is denoted by EV.

Ev= SV, where SV= change in volume.

V= 37igital Volume.

Bulk Modulus! - It is denoted by K'


When a body is subjected to three mutually Perpendicular strenes of equal intensity, then the ratio of direct stress to the corresponding volumetric strain is known as Bülk modulus.

K2 Digrect stress = T Volumetric strain = 8V/V

t 4 y

* 6 sp

Volumetric strain of a Rectangular born which is subjected to an axial load P in the direction of its length!

consider a rectangular borr of length Lywidth and depth of which is subjected to an assist load p in the direction of its length as shown in the

Let SL= change in length

Sb= 11 breadth

Sd= 11 depth.

i. Final length of the box = L+8Li. width

ii. = b+8bii. depth

ii. = d+8d

low Blighad Volume of the body = Lbd.

Final Volume of the body = (+SL)(b+8b)(d+8d)

= Lbd+ Lb:8d + L.8b.d+ L.8p.8d+ 8L.b.d+ 8L.b.d+ 8L.p.8d

+ 8L &b.d+ 8L.&b.8d

= Lbd+ Lb.8d + L.d.8b+ b.d.8L

change in Volume = Pind Volume - 311gind Volume 0= Lbd+ Lb.8d+ Lid.8b+ bid.8L- Lbd L.b. Sdt Lid. Sbt bid. SL ! Volumetric strain, Ev= SV Lb&+ L.d. 8b+ b.d.8L

= 84 86 4 86

But SL = longistudinal estrain Sb 37 Sd = lateral Strain

Ev= longitudinal strain+ (2x lateral strain)

But lateral strain = - 4x longitudinal strain

Ev= longitudinal strain - 2 4 longitudinal strain = longitudinal strain (1-24).

Er= F(1-5M)

引 Ev= 至(1-24)

Rectangular bor subjected volumetre strain of - a to three forces which are murhally perpendicul consider a rectangular block of dimensioner 2, y and Z subjected to three direct tensile streves along three mutually perpendicular aseir as shown in fig. Then volume of block 1= sey 2. Taking logarithms on both sides 5-gol + regal = regal Differentiating on both sides weget Tdv= = 2dx+ +dv+ =dz But dv = change involume Buguid Vol = Volumetre strain change in dimensions x Oliginal dimension & = strain in the 2-direction = Ex. change in dimentions y Blighal dimenworky = strain in the Viduserius

O 2 = change in dimensions 2

Digital dimensions 2

= strain in the 2-direction = 52

いかっとれまりもを

Now,

Let The Tensile Stress in 2-x disection

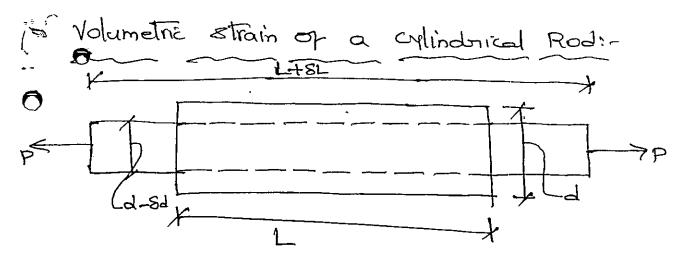
11 11 11 Year 11

亿 1 2-2 11

E = Youngle modulus

Ma poissonly Ratio.

Now to will produce a length strain equal to the in the direction of the and a compressive strain equal to the in the direction of 1 and 2.


Similarly, Ty will produce a torsite strain end to The hote direction of y and a compressive strain and to HTY in the direction of z and Z.

Similarly, To produce a tensile strain equal to

If it the direction of 2 and a comprehence train

could be ME in the direction. "of and y.".

Hence Ty and To will produce compression is strains eared to MTY and MTE in the direction of 2. .. Net tonste strain along a-direction is grenby Ex = = - HUZ - HUZ Ex= = (2x - M(25423)) BEN = AS - FOAMS EN= 型- 円(2+23) 至一年(25424) Adding all the strains EX+ EX+ ES = TEX+ DX+ AS - H (32xx+ 32x+ 52x+ 52x) E = 5H (1×41/412) EV = (2x+14+13) = (1-2M) In this equation the streeters the, Ty and to are all tensile. If any of the strenes is compressive, it may be gregarded as -ve, and the above ey holds good If the value of SV is the, it supresents morale To volume whereas the regarder value of der supresents a decrease in volumo.

consider a cylindrical tood which is subjected to an avoid tentile load p.

let d= diameter of the god.

Due to tensile load P, there will be an increase if the length of the sod, but the diameter of the sod will decrease.

. Final length = L+SL

i Final diameter = d-8d

Now Triginal Volume of the God

かずみし、

Final Volume = I (d+8d) (L+8L)

三耳 d2L+ 耳d28L+ 耳 8f2.L+ 耳 8cl) (SL) +耳・2.d. SdL+ 耳 2d/8d ÷ SL

= 军战上十军战器上十五世界别、

Change in Volume = find Volume - Anthol vol

= Tyle + Tyle 28L + 2dl Tyse - Type

= Tyle + 2dl 8d Ty

SV = Tyle 28L + 2dl 8d)

Volumetric strain, Ev = Change in Volume

Tyle 28L + 2dl 8d)

Volumetric strain, Ev = Tyle 24L 8d)

Tyle 24L 8d Tyle 24L 8d)

Tyle 31 T

EV = SL + 2 Sd .

Volumetric strain = strain in length + livice the straw of diameter.

Note:

volumetric strain of a sphere = 3.81. = 3.81

Relation between the modulus of Elasticity and the modulus of sigidity?

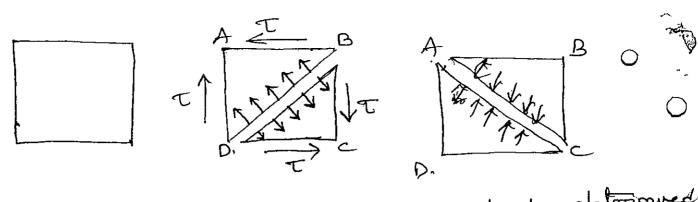
consider a square block ABCO Thickness unity

of side a and of thickness unity

perpendicular to the plane of the

drawing.

let the block be subjected to shear strewer of intensity to Due to their strewers the block will be subjected to a deformation such that the diagonal Ac Melongation to a deformation such that the diagonal Ac Melongation and the diagonal BD is shortened. consider the


the incotage in bright of the diagonal can be completed by considering the effect of the diagonal tensile and diagonal compressive streves.

Strain in the length of the diagonal Ac= strain in the length of A

strain in the longth of the strewes on the plane BD+
strain in the length of Ac due to diagonal compression
where the plane Ac.

estrain of AC= =+ =. M= (I+W)-=

strain of the diagonal Acia (HM). = >0

strain of the diagonal Ac may alloke determined from the geometri of the district shape of the block

let the block ABCD determines
the position ABCD through the
angle ϕ .

angle φ .

On Difference in the length of the diagonal $Ac = A_1c - Ac$ Anothered in the length of the diagonal $Ac = A_1c - Ac$ Let AA_2 be ΔA_1A_2 . Since the ΔA_2 is very small ΔA_1A_2 . $\Delta A_2 = A_2C$.

. Increase in the length of the diagonal Ac

= A1C- A2C

= AiA2 = AA, Cos AA1A2

But the angle LAAIA in nearly sound to LBAC = 45

'. Ancreau in length of the diagonal AC=AA, cosus'

AA22 A AI COSUS = AAI

shear strain= $\phi = \frac{AA_1}{A0} = \frac{AA_1}{a}$

'AA12 Qp

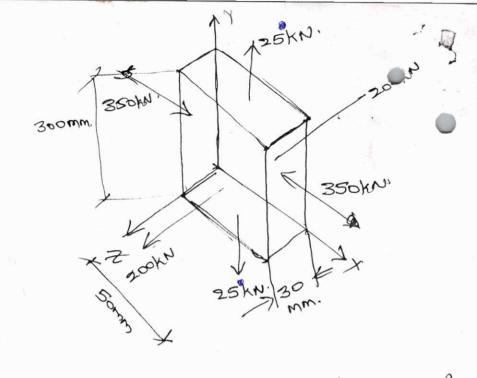
I Annale in the highest diagnolates Adas

diagnal Acz VZa 1. Strain of the diagonal Ac = Aneruanin length = 90 / RA = = ->0. But eq0 = eq0). 皇2章(1+14) 是~量(1+W). E= G(I+M) Where Ez Young's moduly 1. E= 2G(1tH) G12 Modulus of guigidity Relation between Young's Modulus and Bulk modulus Fig shows a cube ABCDBRGH of 81de 9. lot the faces of the cube p. E be subjected to advised stress of Intensity V. let E = Young's modulus. Ma pollonh stalio. comider the Buy AB.

(, E=3k(1-2H)

Relation between B, c and k? E= 2G(H M) , | E= 3K(1-2M) 2G(1+H)= 3K(1-2H) 2G+6K) 42 3K-2C 12621312201 M-3K-2C 6K+2C در 174= E 1-24= E 2+2M= E , 1-2H= = >0 Adding Dand D 3- E + E = 3 = E = + 3 E $E = \frac{9kG}{3k+G} \qquad \exists I E = \frac{9kC}{3k+C}$ Problems 1) AE= 1,25×105 N/mm2, 4=0,25, 5=7, k=? [Ans! Gr 0:5x105N/mm², K2 0:83x 105N/mm².] (2) Socil, bersonon Find the change in volume gracubited block of steel of side 250mm whom placed stadepth of 5km in sea water.

2) A bor 30mm x 30mm x 250mm long is subjected to a right pull of 90km in the direction of its builts. The orderings of the ban was found to be 0.125mm, while the decreave in each lateral dimension is found to be 000875mm. Find the Young's modulus, potessons tratio, Hodulus of the bar. [Ansi E = 2x105N/mm? H= 0.25, G1=8XLOUN/mm2, K= 1.33xLo 3) CBIG=018×105N/mm². When a 6mm×6mm2rod of little moletical was subjected to an axial pull of 3600N it was found that the lateral dimention of the said changed to . 1819 5.9991 mmx 5.9991 mm. And the 14, B 40 3 1 10 101 (And: 4= 0315, E= 2-1x 105 N/mm2) 4) E= 11×105N/mm², C= 0143×105N/mm², K=?, Sd=?, d=40m 122.5m, Sla 2.5mm. [Ans 1 k = 8-29 x 104 N/mm², 8d = 0.0112mm] 5) A concrete, cylinder of diameter 150mm and broth 300mm when subjected to an arrial compressive load of 240kin succepted in an increase of diameter by 01127mm and a decrease in length of 028mm. compute the Value of poissons gration and moduly of elasticity E. (M=0.907, E= 14.55 GN/m2),


First a given material, E= 110GiN/m2 and G= 42GiN/m2 emitte Bulk modulus &=?, and lateral continaction of a Ground boar of 37.5 mm diameter and 2.4m length when stretched [Ans: K= 96.776]N/m², 80 80 = 0.012/mm]

7) The following data relate to a boar subjected to a etensile test: Diameter of the books do 30mm, Tensile load P=54KN, Brouge bright l=300 mm, Extension of the bos, Els 0,112 mm, change in diameter Ed=0,00366m calculate: (1) Poisson's Ratio (1) The Value of three moduli (Ans: M= 0.327, B= 2.05×105MN/m², C= 0.777 X105MN/m²) K= 1.97× 105 MN/m2].

8) A C.I Plat, 300mm long and of 30mm x 50mm uniteding section, is acted upon by the following forces unitarily distribited over the suspective cross-scotion: 25km in the direction of britts (tendle): 350km in the direction of width (compressed) and 200km in the direction of thickness Itensie). Determine the change in volume of the Host. 1 9,0 6 P. 521

Take Es 140GN/m2, m=4.

ANJ EV = 14, 13 min 3

9) A bor of stell is bomm to section and 180mm long. It is subjected to a bruile load of 300km along the longitudinal axis and lenth loads of 750km and 600km on the lateral faces. Find the change is the dimensions of the book and the change is the Take E=200GN/mf and m=0.3

Ams: SL = 0.0412 mm, Sb = 0.00291 mm, Sd = 0.00833 mm,

SV = 269.9 mm

60km

60km

4300km

4300km

4300km

Defermation of borrs under assial loading.

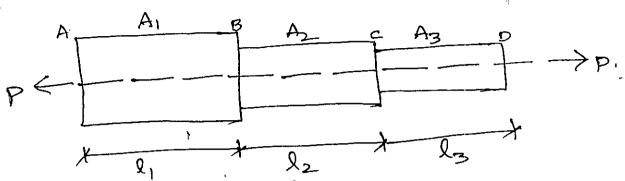


Fig shows a boon which consists of three buther ly land la with the area of AI, Az and Az and Bubjected to an assial load P.

ntenerty of stress will be different for the three sections.

Intensity of strew for the position AB

= $\nabla I = \frac{P}{AI}$

Strew for the position BC, strew for the position CD $\sqrt{3} = \frac{P}{A_3}$

let E be the Young's moduly

Strains of the post AB, $E = \frac{\nabla T}{E} = \frac{P_0}{A_1 E_1}$ $E_2 = \frac{\nabla Z}{E_1} = \frac{P}{A_2 E_3}$ $E_3 = \frac{\nabla Z}{A_3 E_3}$

A change in bright of the foot AB =

Solic line =
$$\frac{Pl_1}{A_1E_1}$$

I change in length of the poot BC

Solic line = $\frac{Pl_2}{A_2E_2}$

Change in length of the poot co

Solic line = $\frac{Pl_3}{A_2E_2}$

Change in length of the boot

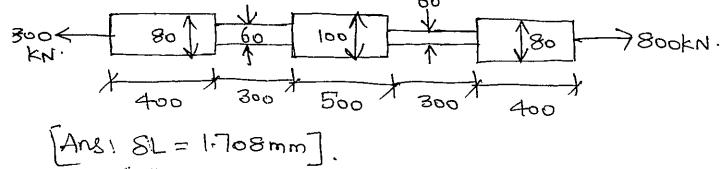
Solic line = $\frac{Pl_3}{A_3E_3}$

I Total change in length of the boot

Solic Solit Solic + Solic

= $\frac{Pl_1}{A_1E_1} + \frac{Pl_2}{A_2E_2} + \frac{Pl_3}{A_3E_3}$

I Ele = $\frac{Pl_3}{A_1E_1} + \frac{Pl_2}{A_2E_2} + \frac{Pl_3}{A_3E_3}$


= $\frac{Pl_1}{A_1E_1} + \frac{Pl_2}{A_2E_2} + \frac{Pl_3}{A_3E_3}$

= $\frac{Pl_1}{A_1E_1} + \frac{Pl_2}{A_2E_2} + \frac{Pl_3}{A_3E_3}$

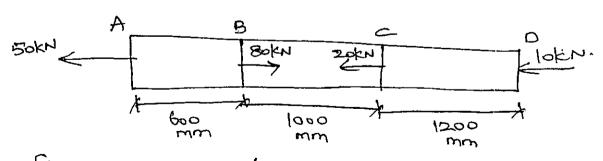
$$= \frac{PQ_1}{A_1E} + \frac{PQ_2}{A_2E} + \frac{PQ_3}{A_3E}$$

$$Sl = \frac{P}{E} \left[\frac{Q_1}{A_1} + \frac{Q_2}{A_2} + \frac{Q_3}{A_3} \right]$$

1. A circular steel bar of Vanious cls is subjected to a pull of 800 km as shown in tig. Det the Extension of the bar. E = 204 GrPa.

Problems 1111 i. A hollow steel tube is to be used to carry a axial compressive bad of 140KN. The Vield strent steel is 250Nmm². A factor of safety of 1.75 islo be used in the design. The following three clause tubes of External diameter 101.6mm are available clay Thickney Light 3-92 ww Medium 4.05mm Heary 4.85mm, which section do You secommend? t=3.169mm, use of light section is Tecommended] 2. A specimen of steel 25mm diameter with a gauge bugth of 200mm is tested to distruction. At how an Experiment of orlamm under a word of 80kN and the load out elastic limit is lookn. The mase load is 180kn. The total Extension at fraction is 56mm and diameter at neck is 18mm, Find i) the stress out elastic limit

(111) Percentage elongation (11) Percentage reduction in area (V) Ultimate tensile stress. [AMI J = 325.949N mm2, E=203718N mm2 1/ elongation = 281/. 1/ 9 reduction in one = 48.169. Jult = 366.693 N/mm2 3. The boon shown in fig is tested in Universal Testing machine. It is observed that at a load of 40KN the total extension of the ban is 0.285 Determine the Young's Modulus of the mortesial. $P = \frac{1}{4} = 25 \text{mm} \quad \frac{1$ [Ang! E = 198714.72 N/mm2] 4. A boor of length looomm and diameter 30mm is centrally based for 400mm, the base diameter being lomm as shown in fig. Under a load of 25kN, it the Extension of the boon is 0-183 mm, what is the modulus of clasticity of the boot? [Ans!, E=200736 North Principle of euperposition!When a number of loads are acting on a


body, the presulting strain, will be the algebraic sum of strains coursed by individual loads is called the Principle of superposition.

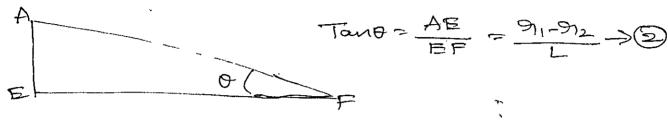
sleps to solve:) Draw the free body diagram of individual restriction of each section is obtained.

3) Total determation of the body will be then end lo the algebraic sum of determations of the individual sections.

Problems

i) A braws boon having a chs owned of 1000mm2 insubjecture to assist forces as shown in fig. Find the total change in length of the boon. Take E= 1.05×105N/mm2.

Ans: SL,=0,285 (Extersion), SLz=-0,2857 (contraction)


SLz = -0-144 (contraction)., SL= -0.143 mm (contraction)

A member ABCD is subjected to point loads P, R, and P4 as shown in fig. calculate the force P3

necessary for Equilibrium it P1= 120Km, P2= 220 and P4= 160kN. Det also the net change in long.in of the member. Take Bo 2x 105 Mmm2. [Ans: P3= 260KN, SL1 = +0.28mm (Extension) SL3 = +ho7mm(Extension), 822 - 0.8mm (contraction), EL= to.55mm(Extension), member ABCD is subjected to point loads, P1, P2, P3 and P4 as shown in fig. calculate the force P2 necessary for equilibrium if P1245kN, P3= 450km, P4= 180km. Det the total elongation of the member, assuming the modulus of Elasticity to be 2.1×105N/mm2. (Ans: 12 = 365km, SLI = ONLY (Externion)

Applying similar triangles

Tong =
$$\frac{AC}{CD} = \frac{91-91x}{x}$$
 $\rightarrow 0$

Area of Section
$$A_{2} = \frac{T}{4} \Omega_{1}^{2}$$

$$= \frac{T}{4} \left(D_{1} - \frac{2}{4} \left(D_{1} - D_{2}\right)^{2}\right)$$

>> Detamation produced in the section

determention = Ex. de (dx)

Determation produced forthe total body

$$SL = \frac{4P}{TIE} \left[\frac{Q_1 - kx}{-2+1} \cdot \frac{1}{-k} \right]_0 = \frac{4P}{TIE} \left[\frac{1}{k}, \frac{1}{Q_1 - kx} \right]_0$$

$$SL = \frac{4P}{\text{TIEK}} \left(\frac{1}{D_2} - \frac{1}{D_1} \right) = \frac{4P(D_1 - D_2)}{\text{TIEK}, D_1D_2} = \frac{4P(D_1 - D_2)}{\text{TIE}(D_1 - D_2)}$$

where P= load acting on the body L= length of the body Dis Dia of the body at one end the other end

change: In temperature, it either elongates of contracts depending upon whether heat is added to or removed from the material.

When a member is free to expand of contrav due to the rise of tall of temperature, no streves toll be induced in the member, but it undergoes a strain.

The strain due to temperature change is called thermal strain and is expressed as.

ET = Q. AT

Where d is a material property known as coefficient of thermal Expansion

Since strain is a dimensionless quantity and DT is expressed in k 81°C. & how a unit that is inscriptoral of k 81°C.

The free Expansion of Contraction of malerials.
When prestrained induces induces stresses in the malerial and it is preserved to as thermal stress

O Consider a good and AB of length L which & fixed at both ends as shown in fig. the Temperature of the God be spised by as the Expansion is sustricted, the develops a Compressive strew. In This Problem, static equilibrium equations alone are not sufficient to solve for unknowns and hence is called Statically indeterminate problem. To determine the stress due to DT, assume that the support at the end B is removed and the is allowed to Expand freely. Ancrease in the length of the god Er due lo free Expansion can be found out Equation 87 = ET.L = Q. (AT).L Now apply a compressive load Pat the end B to bring it back to its initial position and the deflection due to mechanical load ST= PL

	Posti
	Problems
	· I. A steel god is stretched between two gigit
	and carrier a tensile load of 50000 at 20'c. At
	allowable stress is not to exceed 130MPa et -20°C.
	what is the minimum diameter of the Irod?
	Assume: 9=11.7 µm/m-c and E= 200 Gipa.
	[Ans: d=13.22mm]
	2. A steel 9 rod 15m long is at a temperature of 15'c. Find H
	free Expansion of the length when the temp is howed
	650. Find the temp stress produced when?
	1. The Expansion of the good is prevented
-	2. The God is permitted to Expand by 6mm.
	Take / 0/2 12×156/2 and E=20061N/m2.
	(Ans. (1) 120MN/m2 (11) 40MN/m2)
	3. calculate the Values of the stren and strain in
	partions Ac and CB of the steel boar Shoron in
	Rig. A close the exists at both of the Digid support
	at groom temp and the temp is graised by 75c.
<	Take E=20061pa and &= 12x 156/2 for steel. Area of
	do of Ac is 400 mm² and of Bc is 800 mm².
_	Ans: EAC = 900×106; EB = 900×106; JCB = 180HN/m2]

and their signs differ,

ST= -5

O. AT.L = -PL AE

Thermal strew, $\sqrt{T} = \frac{P}{A} = -\alpha. \Delta T. E$

Minus sign in the education indicates a compressive stress in the material.

with the decrease in temperature, the stress developed is lensile stress as DT becomes negative.

Thermal etress produces the same effect in the malerial similar to that of mechanical etress.

The SE stored that Dady diesto mout load VS P (H JABh) Toyghness! Toughness of a material can be defined as "The ability of a moterial to absorb sudden Shock without breaking is Shattering " Toughness in materials science of metallways, is the modistance la fracture es.a material when stresses It is defined as the amount of Energy Per Volume that a material can absorb before Supturing. Handress:-"Hondness is the measure of how resistant Solid matter is to Various kinds of Permanent Shape change when a force is applied! Strength: - "Strength is a measure of the Extent of a material's elastic Harge, of Elastic and Partic proges together! The ability to withstand an applied essent infthant tailure.

so handness is about (Permanent change) Strength is about slastic (non- Permanent) charge, col toughness is about Energy (routher than torce).

UNIT-II

SHEAR FORCES AND BENDING MOMENTS

Definitions!

Beam! A Beam is a structural member subjected to a system of External forces at right angles to its axes. (townsverse loads).

Types of supports:

1) Fixed Support!

An fined supposit

there is no displacement

The state of the s

Beams may be of the tollowing Type section

Square section

Rectargular Section

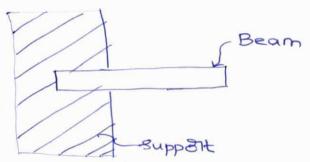
Circular .

Section

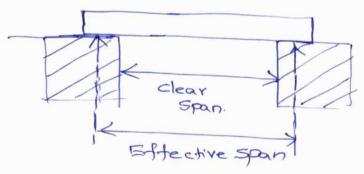
Equal I-Section

Unequal I-Scotion

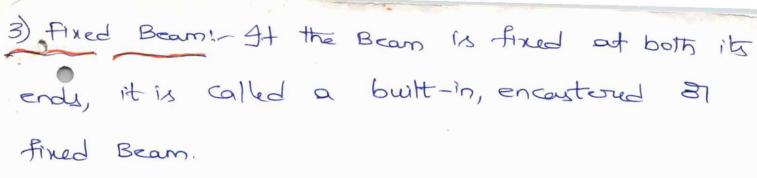
T-Section

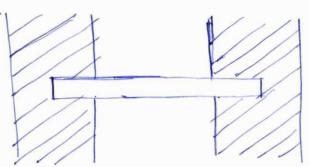

Z-Section

The type of Section depends upon the graminement of strength, stability etc.

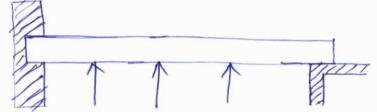

Declawtication of Beans :-

Depending upon the type of supports beams

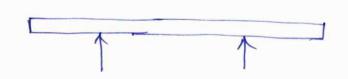

1. cantilever: A cantilever is a beam whose one end is fixed (31 built-in) and the other end is force.

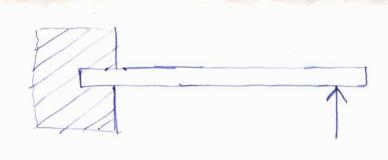


2. Simply supposted Beam! — It the ends of a Beam one made to feely sweet on supposts the beam beam is called a feely of simply supported beam beam is called a feely of simply



The clear horizontal distance between the walls is called the clear span of the beam. The horizontal distance between the centres of the end bearings is called the Effective span of the beam




A. Continuous Beams- A Beam which is provided with more than two supports is called a continuous Beam.

5. overhanging Beam! - Afthe Beam is Extended beyond the supports, it is called a overhanging Beams.

6. Propped cantilever Beam. When a supposit is provided at some suitable point of a countilever beam in order to sucret the deflection of the beam, it is known as Propped countilever beam.

Types of loads: Beams are commonly loaded with the following three types of loads.

- i) concentrated 87 point load in in onitermy dustributed load in white working load.

i) Concentrated 31 point Load: - A concentrated load (also called a point load) is a load applied overa Very small area and is regarded as a single load.

ii) Uniformly dustributed load:-

A distributed load is a load which is spread on some length of a beam.

A distributed load is Expressed by its intensity (Ex: Newton metre).

If the Intensity of the distributed load is constant the load is called uniformly distributed

iii) Unitermy Variling Load: - A Varying Load. has an intensity that varies according to some law along the length of the beam. The Beams cantilever, Simply Supported beam and overhanging beams are known as Statically Determinate Beams as the Heactions of these beam at their supports can be determined by the use of equations of Static Equilibrium and the Heactions are independent of the determined of Beams.

Fixed Beams and continuous Beams are known as Statically Indeterminate beams as their reactions at supports cannot be determined by the weat equations of static Equilibrium.

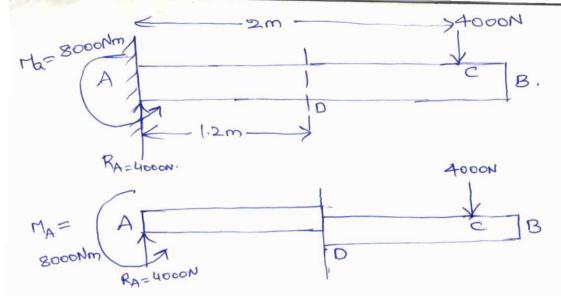

Conception of Shear force and Bending Moment?

Fig shows a cantilever AB whose end A is fixed.

Let the countilever coory a Vertical load of 4000N at C. For the equilibrium of the cantilever the fixed support at A will provide a Vertical Greaction Vertically upwards of magnitude RA = 4000N.

Taking moments about A, we have a clockwise moment of $4000\times2 = 8000\,\mathrm{Nm}$.

thence for the equilibrium of the contilever the fixed support at A must also provide a Treacting moment of 8000Nm of an Anticlockwise order

SHEAR FORCE!

Now consider a Section D. At this section there is a possibility of failure by Shear as shown in fig.

If such a failure will occur at section Dithe cantileven is liable to be sheared off into two parts.

At is clear that the force acting normal to the centre line of the member on each bout equals $FS = 4000 \, \text{N}$.

The force acting on the night point of the Section D is downward. The negultant force acting on the left point is upward.

The gresultant force acting on the left point is upward, any one of the points normal lotter axis of the member is called the Shear force at the section D."

Bending Moment:

Faithe Equilibrium of the contilever, the tired support at A will provide a Heacting & Desisting anticlockwise moment of 8000Nm. Af the support A is not able to provide such a susisting moment the contilever will not be in equilibrium and will therefore state about A in the clockwise of them.

The magnitude of the neacting moment at A depends on (1) The magnitude of the land and

4000N.

Now consider for instance, the section D.

Suppose the point DB was free to notate about D

obviously the load on the point DB would be come

the point DB to notate in a clockwise order about

D.

considering the boot DB taking moments about D, we find there is a clockwise moment of 4000×0.8=

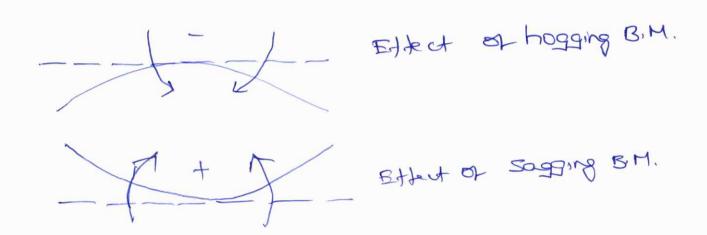
3200Nm about D. Hence for the Equilibrium of the boot DB it is necessary that the boot DA of the boot DB it is necessary that the boot DA of the cantilever should provide a greating of sestoling anti-clockwise moment of 3200Nm about D.

let us now discuss the Equilibrium of the boot AD . Taking moments about D, we have following moments about D.

- (1) RAX 1.2 = 4000×1.2 = 4800 Nm. (clockwise)
- (i) couple = 8000 Nm (A.C.w).

Net moment about D = 8000-2800= 3200Nm(Arcu)

Hence for the Equilibrium of the bout AD, the bout

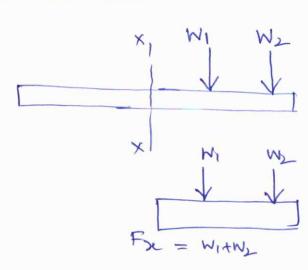

DB should provide a clockwise moment of 3200Nm.

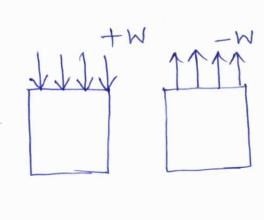
Hence, we find that at the Reution D, the

the boost DA provides an A-Ciw moment of 3200Nm and

moment of 3200Nm.

The Bending moment at the section of isthe algebraic sum of the moment of forces and seactions acting on one side of the section about the section.




SHEAR FORCE: "Shear force at a Section in abeam is the force that is boying to shear off the section is the force that is boying to shear off the section and is obtained as the algebraic sum of all the forces including the greactions acting normal to the axis of the beam either latter left on the sight of the section."

Bending Moment: Bending Moment at a Section in a beam is the moment that is trying to bend it and is obtained as the algebraic sum of the moments

about the section of all the forces (including the Treactions) acting on the beam either to the left of to the night of the section".

i) If the for Some Amportant Hints to be noted

(1) Consider the left on the right point of the

(ii) Add the forces normal to the member one

of the points.

If the snight point of the section IR section is chosen, a force on the

Tight fait acting downwards is the while a force

on the right part acting upwards is negative.

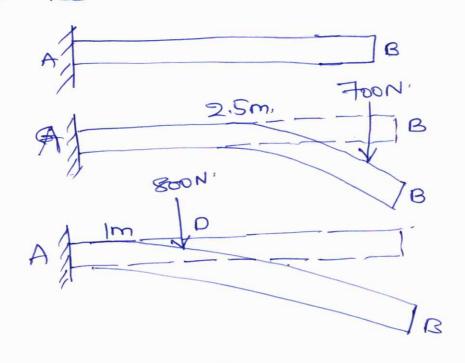
for instance, if the SF at a Section X of a beam is suggested and if the sight poort XB be considered the forces P and Q are the

while the force R 1s -ve.

1. S.F at x = P+Q-R

At the left part of the section be chosen, a force on the left part acting upwoords is tre and a force on the left part acting downwoords is negative. For instance, if the sip at x of a beam is required and if xA is the left part, force of is tre while the forces W, and W, are negative.

Sipatx = Q-M-W2


A X X X

Bending Moment!
1) consider the left 81 sught part of the section

1) consider the left 81 sught part of the section

2) Remove all sustriants and all forces on the food

Selected.

(111) Now Introduce each force of neaching element. one at a time and find its effect at the section Treat sagging moments as positive and hogging moments as positive and hogging moments as negative.

Note that the moment due to every downward force is nigative and the moment due to every upward force is positive.

- -> If the Sight Poort of the section be selected
- -> Remove the sustigaints on the point GIB.
- -> Introduce the load of Toon at B.
- -) The independent effect of the load is lo Produce a hogging moment of -700x2,5 =-1750 Nm

Now consider the independent effect of the 800N load, at D.

obviously this will also produce a hogging moment of -800x1 = -800 Nm.

Resultant Bir at G12-1750-800-2550Nm (hogging)

Sheari Force Diagram! - A Sheary force for a structural member is a diagram of the values of sheary forces at Various sections of the member.

Bending Moment diagram! - A Bending Moment diagram For a member is a diagram which shows the Values of Bending Moment at Various Sections of the member.

 \circ

- (Simply Supported Beaut).
- 1) Simply supported beam of span I covarying a concenterated local at mid span.

 $\frac{1}{\sqrt{gs}}$ Date $\frac{1}{\sqrt{gs}}$ $\frac{1}{\sqrt{gs}}$

STB at Reaction at each supposit = W

RAZ RBZ N

for any section between A and c

SiF= Se= W

A CH) W/2

A CH) W/2

W/2 = WL

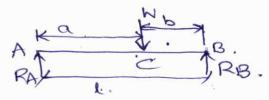
Why the

MX

atte

(H) (+)

1 2 2


A and c

Mr. 2 (2) - W(1) (0) [Wx- W(x-1)]

OTX=L M= WL - WE =0.

1 2 5)

(11) simply supported beam coverying a concentrated land placed eccontrically on the Span.

S. Fat a section X from B as at a dier of X.

consider the static equilibrium of the beam Take the moments about any point sound lo zelo.

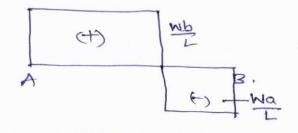
MASO MASO

RBXL - Na=0

RB= Ng

RA+RB= N.

RAZ W-RB


= W- Wa

= M(F3)

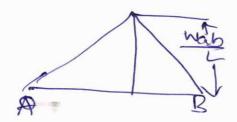
RA = Wb

RAZ Wb RBZ Wa

Stood SX= RB, = -Wa at c=-RB+W = -Wa+W= Wb at A= -RB+W-RA = 0

My at sa dita from a B'

ME RBXb


MA = RBXL-WXa

- Waxk- wa

MA = 0

Mp = Waxb= Wab

MB = 0

(iii) simply supported beam: several point loads.

A FIS 2 PIRB

let us consider section Earnows. 6
At any scetion bet Earnows at a dist of & from B.

Mae= RBXZE.

Taking Moments about A 4 equal lo 3000

MASO.

RATRB= 22

RA=16/1

RBX6-8X4-16X3-4X1,=0.

RA222-311

RB = 3+30+4 = 6= 11

RB2 FKN

Mar 2000 x 3 x 2

A+2=2

Muz Bat E

At any scepion bet DandBB ata duit of x homB.

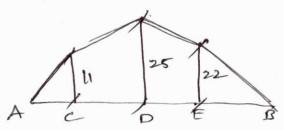
MD= RBXZ- BFEX(2-2)

otyz3

= 11x3 - 8x1

= 33-8

Mp, > 25


At any section bet could atadurous domb,

Mc= RBX2-FEX(2-2)-FD(2-5),

291×5-8×(3)-10×2

255-24-20

Me = 11

(IV) simply supported beam: UDL over the whole span.

A promosodo scoposodo B.

RAZ RB = WL

SIRD FX2-RB+ WX

At 220

H FZ= -RB

FB2-NL

Atx = 5

R=-RB+WL

F= 0

At x2 L

FA2-RB+WL

2-WL TWL

= WL

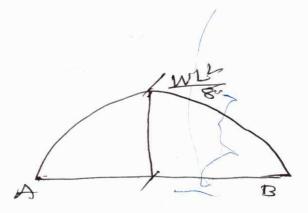
B-MID?

atany

Maz + BINL xx - WXX Z

Otro

MB2 0.

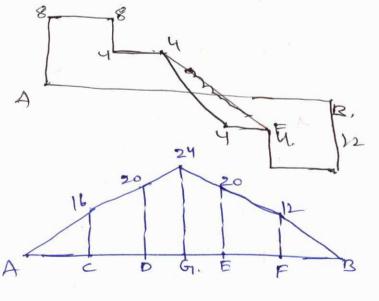

ataz 5

M= WLZ - WLZ

M. = WL2

atus L

M2 WIL - WIL 20,


(v) simply supported beam! combination of loads! Attacky section bet Rands ata dit of & from B. SIF FXC - PR SMA= 0. RBX19- 9 FFX 9- FORX5- PCX2 =0 RB2 24 8×5+8 72 10 = 10 2 120 2 12 RATEBS 140

.

PA=14-1222

SiF & FB = -12 SiF & FR = -12 SiF & FR = -12 SiF & B = -14 SiF

Sipat As 4+428

supported beam with one Side Overhanging!

RA W. UDL

12kn/m.

RBX L = WX(Lta)²

 $RB = \frac{W(Lta)^2}{2L}$

RBX6-(2X9X45)=0.

RB=RBW(Lta)
-W(Lta)²

= W(L+a) [1- L+9]

PA= We(Lda) (Ling).

RA2 WLLta) (1+a) 1.

27/08-3

1,2,12,13,

. 1. It LZa, RA will out upwoords. 1415, \$1,30,

It Lea, RA will act downwoods. 6x 38,39

13/ L=a RA=0

 $\frac{311}{12} RA = \frac{2(9)(3)}{12} = 4.7 + RB = \frac{2(9)^2}{312} = \frac{2(8)^2}{12} = \frac{2(8)^2}{12} = \frac{2(8)^2}{12}$

6-13-r2-7,r4 612

MA = 0 $MB = -(6 \times 1.5) = 9$ $MA = (9 \times 2 \times 4.1) + (13.5 \times 6)$ 2 - 81 + 3581 MA = 0 MA = 0

7

6.8 = 4.5 L-2 = 4.5 6.82 = 4.5L-4.5.

11.3x=14.5x6

-Mx = RBX (6-2.38) - (2×6.62×3.3))
= 13.5×3.69-43.82

M2 = 4.5.99

point of contrastinuae (31) point of inflexion: At is the point where the BM is 3000 after changing its sign from Positive la Negalite & vice-versa.

overhanging beams,

SMA =0. RBX4-(2x6x3)=0

PB=3609.

RA= 12-9=13.

R s, Rat pointc, Fe=0

11 B, PB=(2x2) = 9- 4-9-5.

" , " A, PA=12-9零3,

RA23-320.

5 = 3

52-12-32

8x=12

72 12 1.5 BM of pointe, Mc= 0 " B, MB=(2x2x1)=-4.

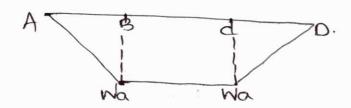
1, D, MD= (2x(4.5)2) + (9x2.5)

= - 20.2rt 22.5

Mp,= 2.95

MA2-(2×6×3)+(9×4)==36+3620

At any section bet Aand B is given by Mx =0 = 10 xx2 + 9x(2-2) =>-12+92-18=0 229141820 w(cta) + Pe L20 2-62-32+1820 2(2-6)-3(2-6)20 N-2003 Relawas willeal. · \2=863 1. Ye3. Sifat D at B2 FB2 OW at my PAZ WEW ate Mc = -Wxaz -Wa


ats MB2-W(Ltg) tWL

MB = -Wa

at A MA= -W(L+2a)+W(L+a)+Wa

= - WL - 2ghv + WL+ Wa+ Wa

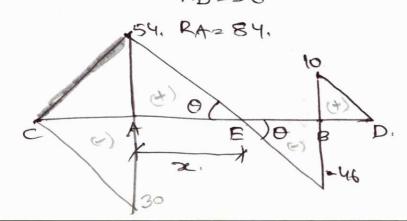
= 0

Q15-1411 13-143.

16)

lokulm.

Marianos Constantino D


Sm. RAS84 RBIM.

SV=0; RATRB= lox14=140

EMA=0 RBX10- (10X14X(7-3))=0

RB= 14x4= 56

RB=56

SFOTD: FD=0

CHB: PB= lOXI-RB

=10-RB.

= 10-56

FB=-46

ONTA FAZ-46+100

= 54.

FA=54-84230

etcel = 54

FC = -30+30

PC=0

MB B.H at D MD20

at & MB= -lox1x0.5= -5 knm.

at A MA= (-10x11x5.5)+(56x10)

= -60,5+560

MA = -45

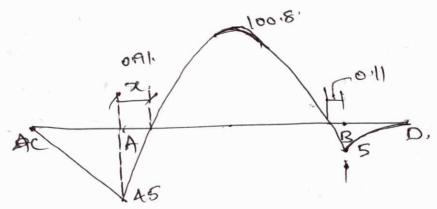
Mc= (-lox14x7) + (56x13) +(84x3)

= -980+728+252

Mc = 0

54 = 46 72 = 10-2.

54 (10-2)= 46x


540-542-462

540 = 100x

X2 5-4

MR = 10x(1+4.6) + (56x4.6)

= -1568+ 257.6 = 100.8knm.

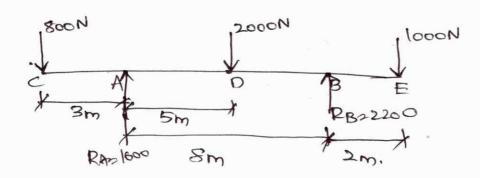
My=0. = 10x(1+(0-2))2-66x103

2

10(11-x)2 = 56(10-x).

10(11-1)= 56/12(10-11).

(11-x)= 11.2 (10-x)


121+8 - 224 = 112-11-24.


21-10.8x+9=0

7=0,9 m.

21=9.89m

17)

B.Mat Point E: ME = 0

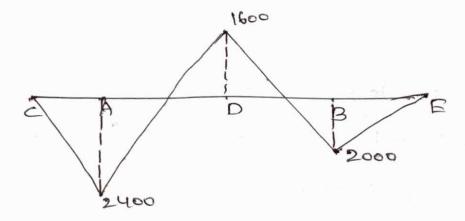
at 11 B: MB=-1000x 2= -2000

11 D: MD= (1000x5)+(2200x3)

= -5000+ 6600

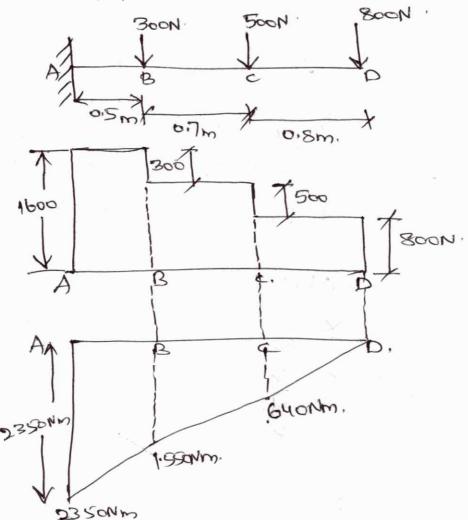
Mp= 1600

11 A MA=(-1000×10)+ (2200×8)-(2000×5)


= -10000+ 17600-10000

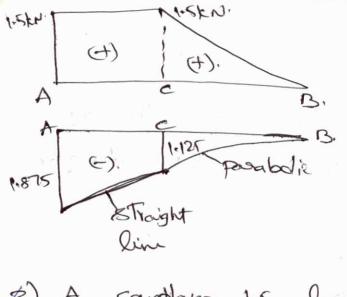
MA = -2400

" < Mc= (-1000×13) +(2200×11)-(2000×8)+(1600×3)


= -13000+24200-16000+4800

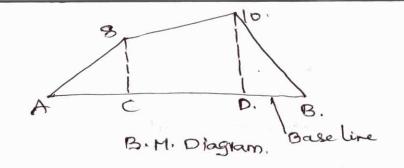
Mc = 0

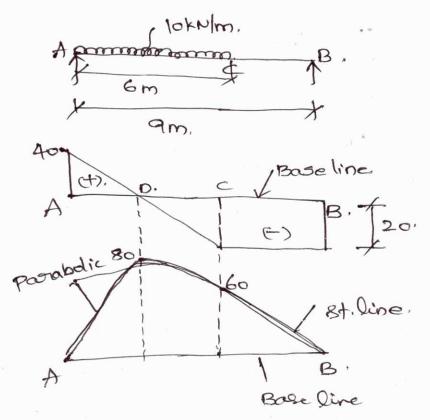
Problems!


D) A cantilever beam of length 2m consider the point lands as shown in try. Drown the SIF & B.M. diagrams for the cantilever beam.

B). A conflever of length 2m cookies on UDL of IKN/m.

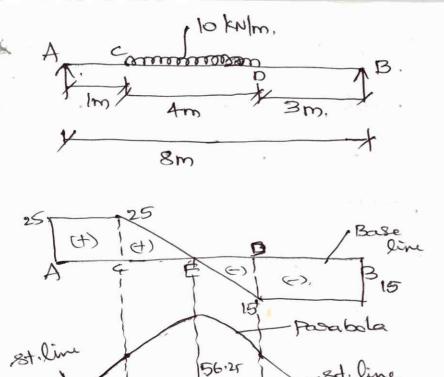
Sum over a length of 1.5m from the free end. Draw.


The S.F & B.M diagram for the cantilever.


B) A courtheren 1.5m long is loaded with a UDL of 9
2kN/m sun over a length of 1.25m from the free end.

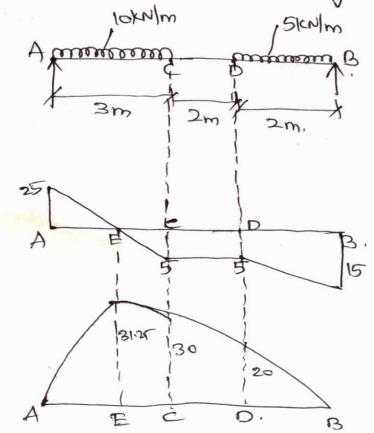
At also caraies a point load of 3kN at a diet of
0.25m from the free end. Draw the 5.pf Bry diagrams

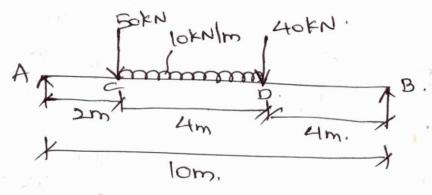
for the candilover. 4.563

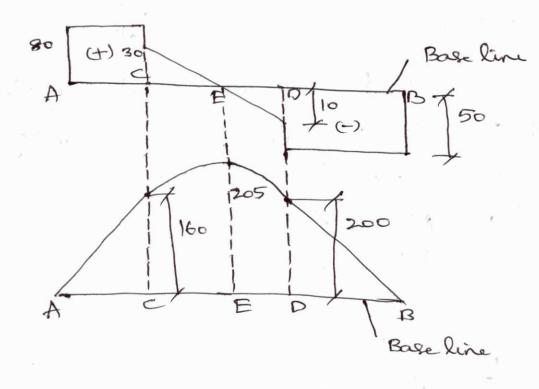


(G), Draw the SIFEB. M diagram sona Simply supposted bean of length 9m and coorying a UDL of lokn/m son a distance of 6m from the left end. Also calculate the Houx BIM on the section,

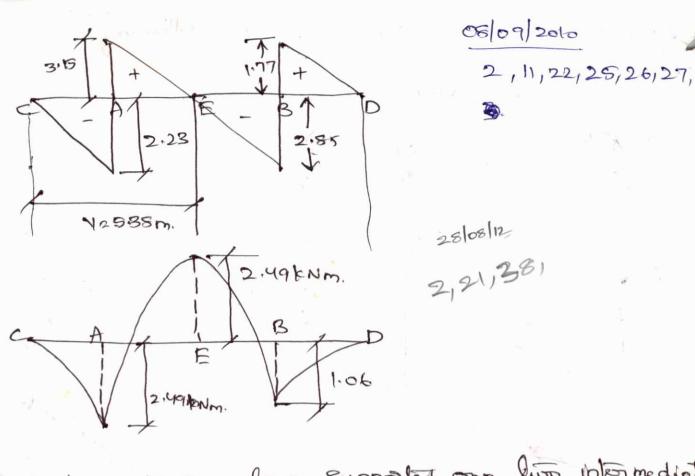
7). Drew the S.F and B.M diagrams for a simply supported beam of length 8m and coorning a. UDL of lokulm for a dist of 4m as shown in the.



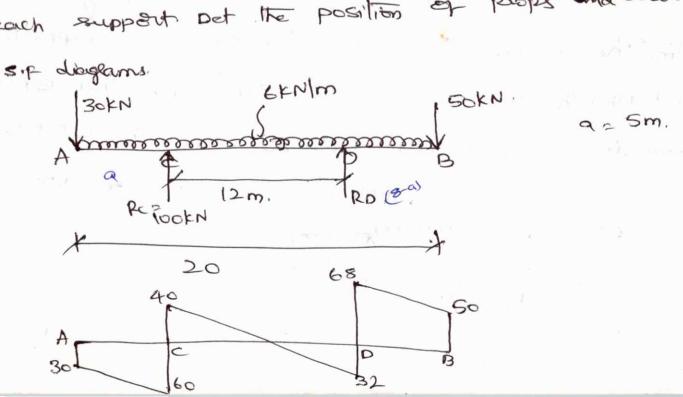

15 = 25 42 = 25 150 - 250 400

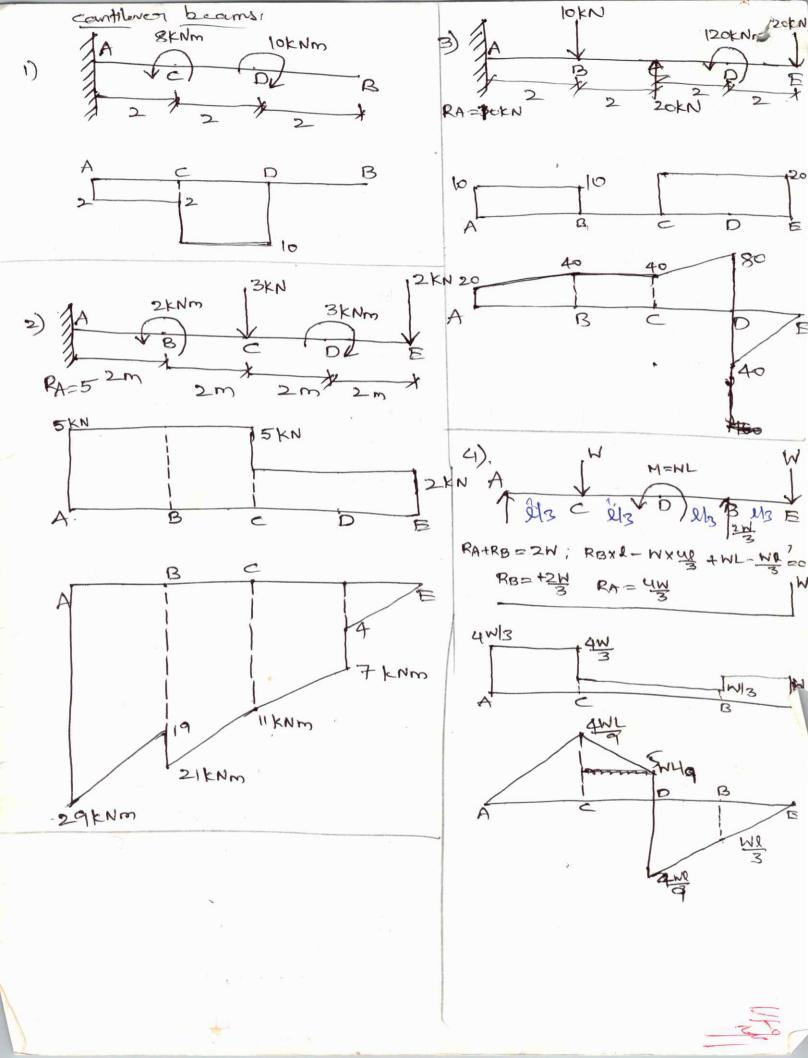

11X45- (40X16X)=

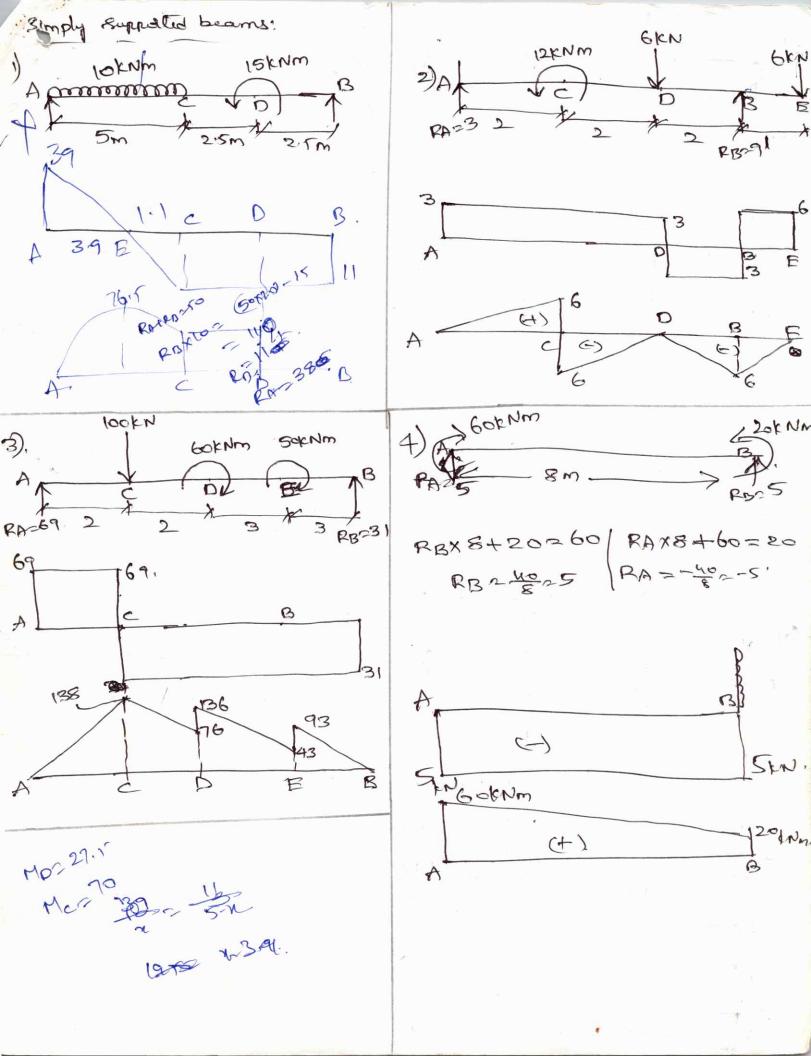
8) Draw the Sif and BiM diagrams of a simply supported beam of length 7m coorning UDL as shown in tig.

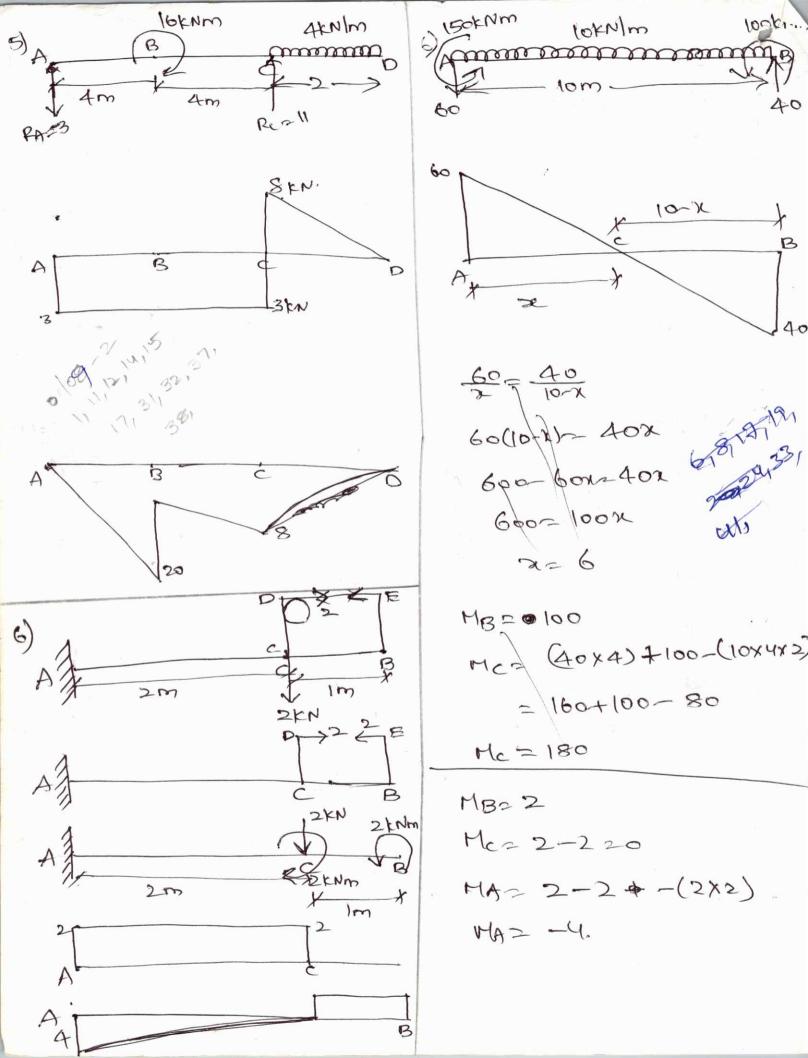


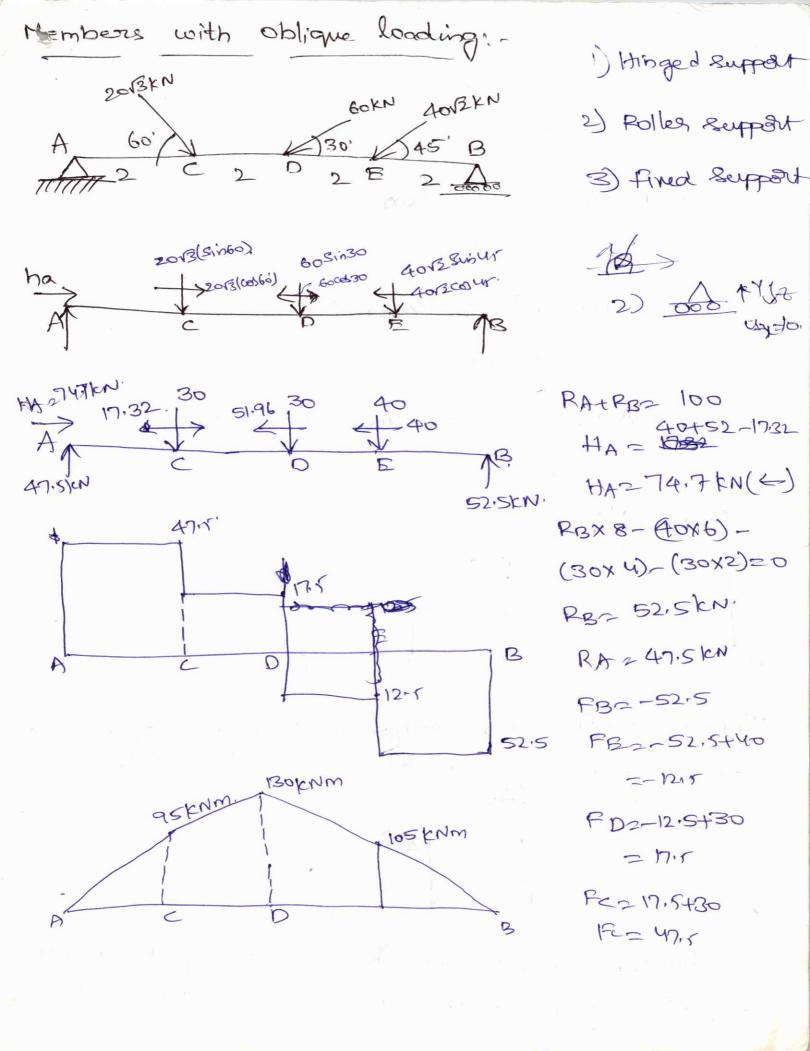
gi). A simply supported beam of length 10m, corries the UDL and live point leads as shown in hig. Draw the S.F. & B.M. diagram for the beam. Also calculate the B.M.



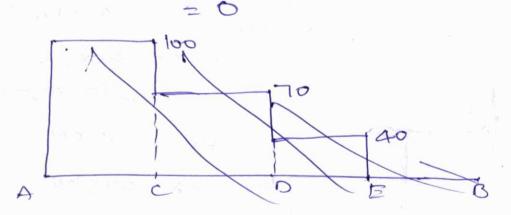

to Daw the S.F. & B.M diagrams for the following bea ii). A horizontal beam lom long in caseying a UDL of IKN/m. The beam is supported on los supports om aposit find the position of the supports, so that BM on the been is as small as possible. Also drown the S.F.L.B.Mday




12). A beam AB, 20m long supported one low intermediate props 12m apart consider a UDI GKN/m logether with consorted a loads of 30kN at the left end A and 50kN at the Rightente loads of 30kN at the left end A and 50kN at the Remode The peops are so located that the seaching in the search in the search support Det the position of peops and draw B.M.



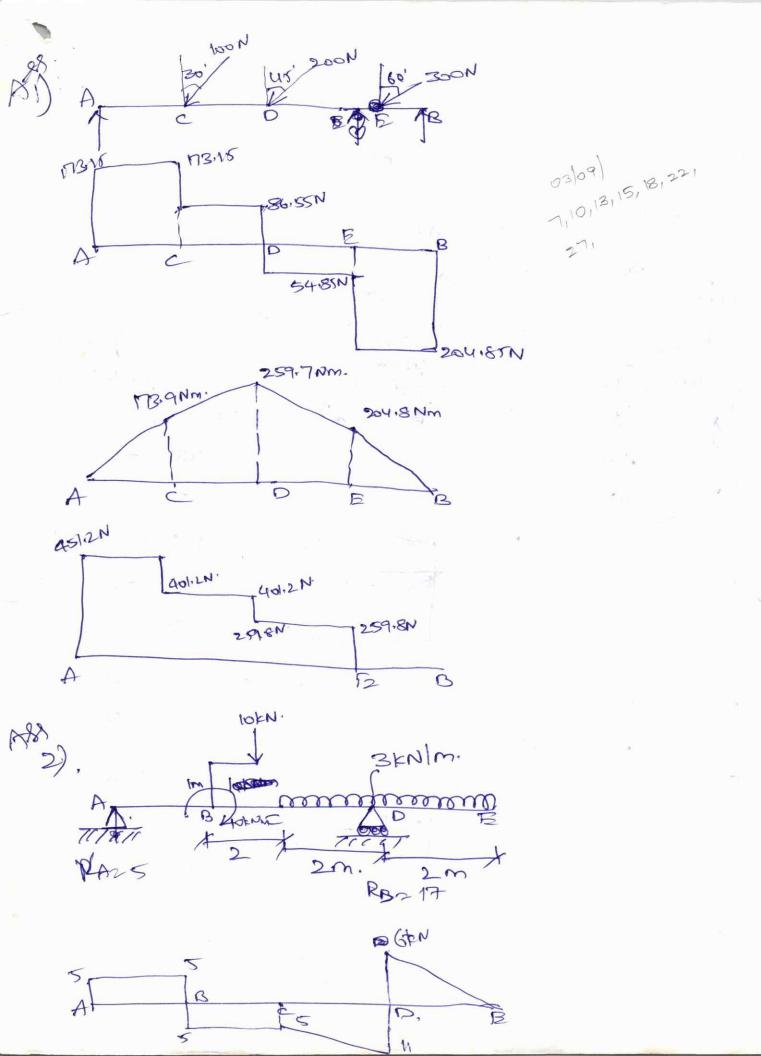
B.M et a section due lo a couple: Cet cantilever (AB) of length & subjected to couple of anticlockwise disrection Mapp be applied at a section distance à from A. couple here congists of the equal and porallel force P with a lover somp between them. Hence at every section X, in Ac BIM = Moment of the individual forces pigthe couple. = anticlockwise moment Pp. = sagging Moment Pp= M Hence at every section between A and c there Sugging moment M. Due to the couple alone there will be no shoon Fig shows the BIM for the diagram. A X C P

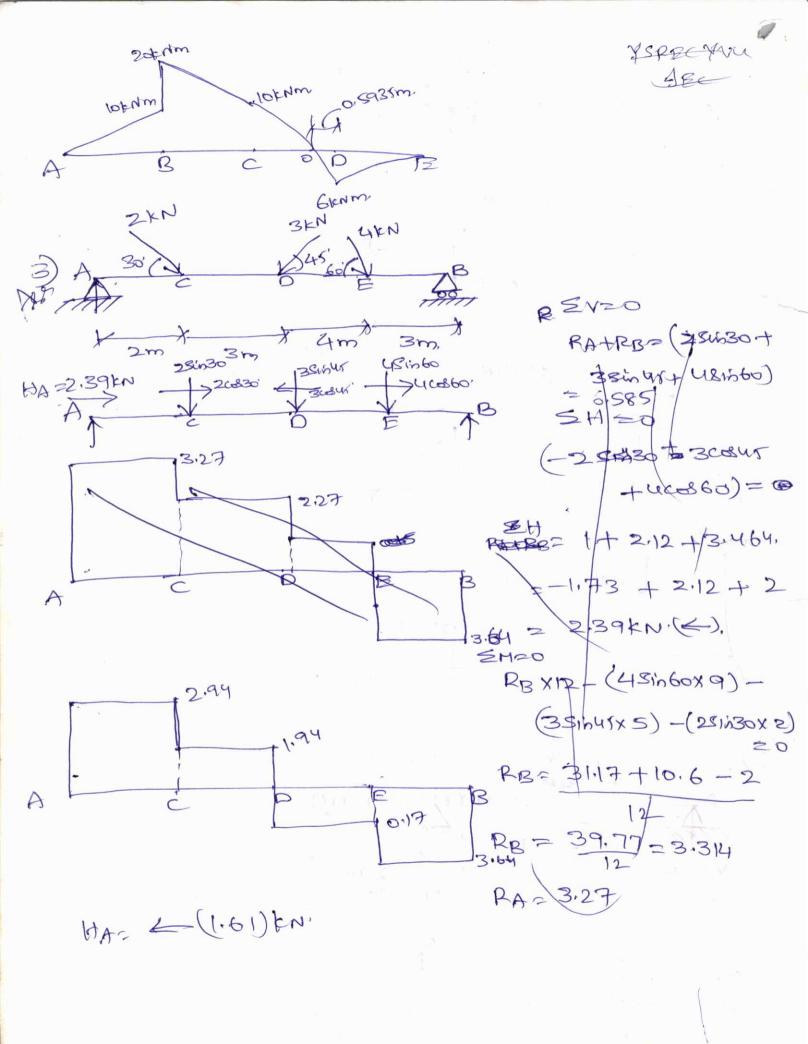


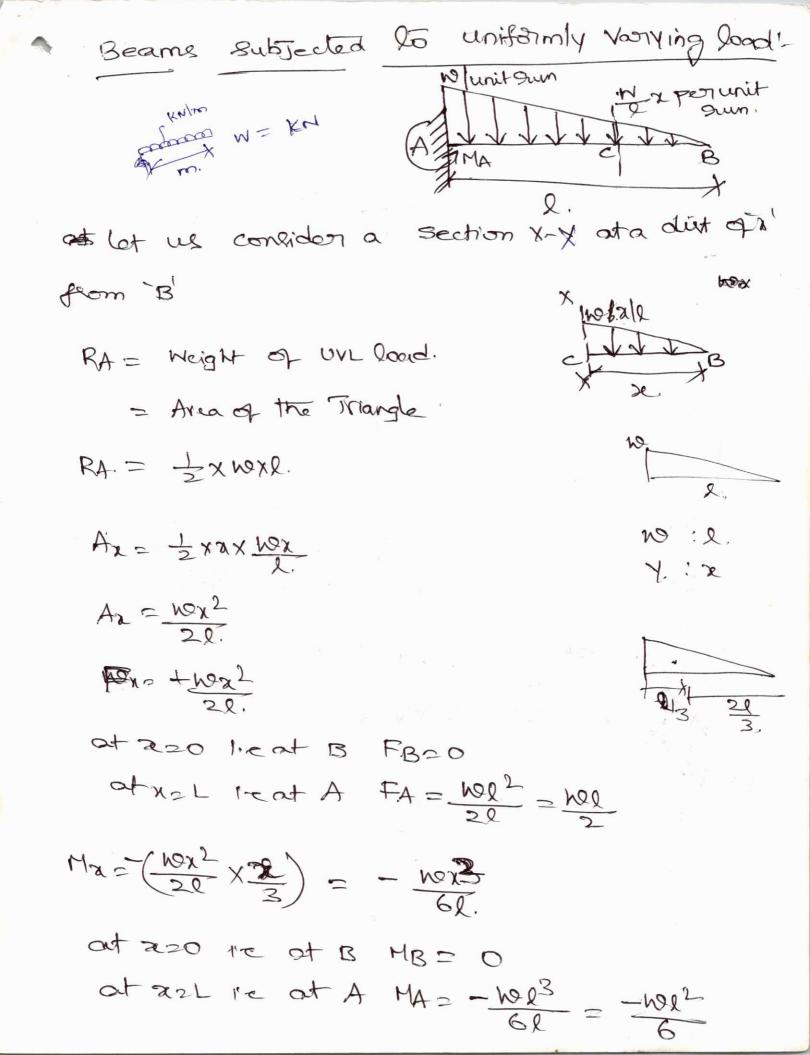
BM at B;MB20 11 11 BMB2525X2 = 105 kNm

11 0 MD= 52,584-40XL

11 4 C:MC=(52.5xb)-(40x4)-(30x2) = 95kNm


" A!MA= (52.5x8) - (40x6) - (30x4) - (30x2)




Thrust diagrams The horzontal components of the boads on the beam will introduce and force (3) them in the 91.96 members

A C D B B

A disespeem which shows the Variation of the anid told of the anid told of the Span is called Themer disespeem

S.F Diagram! Proabolic curve B.M Diogram! B SIF Varies Bllowing a posabolic our
RIM 1111 2) Mar 12: , st ash

FAZ OF WE NO !

++WO XX+ B, = + Ne2 = We2 = We2 oubic curve W MBSQ MB 2 ZWOV _ WOV INDE WOV CΣ - NO 12 -

Fix =
$$+\frac{NQ}{4}$$
 - $(2N)^{2} \times \frac{1}{2} \times 2$),

of = 0 of $= 2$

Fr = $= \frac{NQ}{4}$ - $(7 \times \frac{NN}{2} \times \frac{1}{2} \times \frac{1}{2})$

Fr = $= \frac{NQ}{4}$ - $(7 \times \frac{NN}{2} \times \frac{1}{2} \times \frac{1}{2})$

Fr = $= \frac{NQ}{4}$ - $= 0$

of $= \frac{NQ}{$

RAT RB = - X WXL

FOR RAXL-(MXX)=0

RA= Wa3

RB= WE NOW

RAYL-(ZXWXLXZ)=0

RAZWE RBZ WE = ZWE WE

S.P atx Fn= +RA-(WN X-1xn)

01x20

FA = 100 - 100 Mg

FA=Wl

atx= 2

FB= Wel = Wel = Wel =

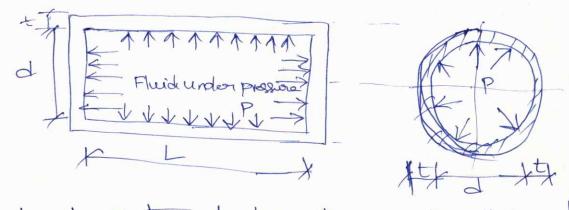
FB2-Me

Maz nel (2) - (WX xzmx 10 = 10x2 x2= 22 2 (4,6 MB = Web (Nex3) 7/2 l F2 RA - 10 2 20 (73) 2 = 100 - 1002 = 400 Mex 20 MB = 3446 5 344 (ASE) atra & Mc= W2(2) - (w 2)3) = RST - RST - RST = Well - 3 = 2 Well = Well = Well = 913 WE HAB

Thin cylinders

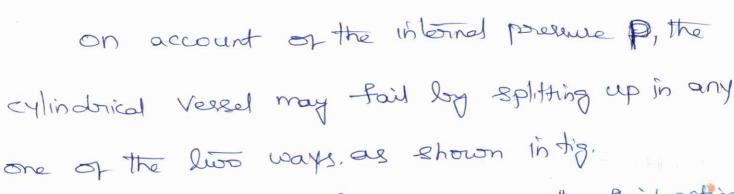
The versely such as boilers, compressed own special forms,

Friday Since

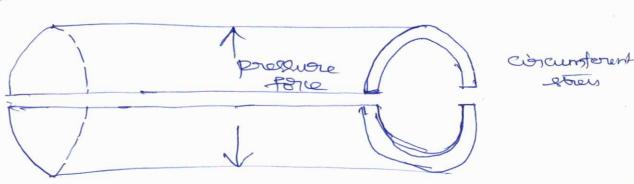

These Vessels are generally used for storing fluids (riquids 31 gas) under preshue.

The walls of such Versels are thin one compared to their diameters.

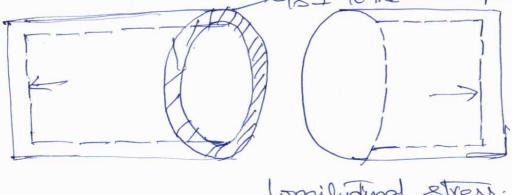
It the thickness of the wall of the cylindrical versel is less than is to so of its internal drameter, The cylindrical versel is known as thin cylindrical versel is known as thin cylindrical versel is known as thin


In call of thin cylinders, stores distribution is assumed uniform over the thickness of the wall.

Thin cylindrical Vessel subjected to internal prossure?



Let d=Internal diameter of the Itin cylinder to thickness of the wall of the cylinder


P= Internal pressure of the fluid L= Length of the cylinder.

The force due la pressure of the fluid acting Vertically upwards and downwards on the thin cylinder, tend to buret the cylinder or shown in tig.

The forces, due to pressure of the fluid, acting out the ends of the thin cylinder, tend lo burset the thin cylinder as shown in fig.

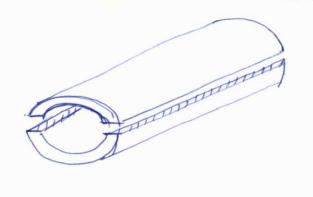
longiludinal stress.

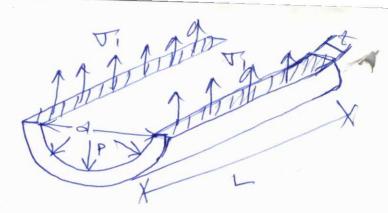
streezes in a thin cylinderical Vessel subjected to internal pressure:

When a thin cylindrical versel is subjected to internal fluid pressure, the stress in the wall of the cylinder on the cls along the along the axis and on the cls I' to the axis are set up.

There stresses are tensile and are known as

1. Circumferential stress (& hoop stress) and


2. Longiludinal stress


The stress acting along the circumsterence of the cylinder is called circumsterential stress (hoop stress) sign

The stress acting along the bright of the cylinder is known as longitudinal stress type

Expression for circumferential stress (31 hoopstress)

consider a thin cylindrical Vessel Subjected to an internal fluid pressure. The concumberation stress will be setup in the material of the cylinder, if the burgating of the cylinder later place as shown in the

The expression for hoop strew & corremposition strew (Ti) is obtained as given below.

Let P = Internal pressure of fluid

d = " diameter of the cylinder

t = Thickness of the wall of the cylinder

Vic cincumferential & hoop stress in the motories

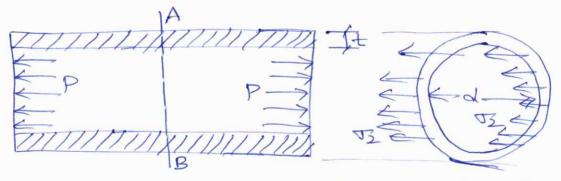
The bursting will lake place if the force due

to fluid pressure is more than the sussisting force

due to cincumferential stress set up in the motorial.

An the limiting case, the limo forces should be

.' Force due lo fluid pressure = PX Area on which pis acting


Force due lo cincumferential prossure dxL)

Stress

= VIX Area on which VI is acting = VIX (LX++ LX+) = VIX2L+ = 2VIXLX+ Equating D = 2 $p_X d_X K = 2\sigma_{i,X} t_{X} L$ $\sigma_{i} = \frac{p_d}{2t}$

Expression for Longillational strens-

consider a thin cylindrical vessel subjected to internal fluid pressure. The longitudinal stress will be set up in the material of the cylinder, if the bursting of the cylinder lakes place along the section AB 4thg.

The longitudinal stress (12) developed in the material is obtained as!

Let b= Internal pressure of fluid stored in thin cylinder

de Internal diameter of cylinder

t = thickness of the cylinder

V2= longitudinal stress in the material.

The bursting will take place if the force due to

Aluid prossure acting on the ends of the cylinder is more than the resisting force due to longitudinal force (UZ) developed in the material as shown in fig. In the limiting case, both the forces should be equal

Parce due la fluid pressure = PXArea on which pir acting

$$=$$
 $PX \frac{T}{4}d^2$

Resulting force = $\sqrt{2} \times \text{Area} \rightarrow \text{on which } \sqrt{2} \text{ is acting}$ $= \sqrt{2} \times \text{Tid} \times \text{t}$

Force due la fluid pressure = Resirting force

... Longitudinal stress = Halt of cincumferential stress

This also means that circumferential stress (VI) is live times the longitudinal stress (VI).

Maseimum shear stres: At any point in the material of the cylindrical shell, there are two principal shells namely a circumferential stress of magnitude of the acting circumferentially and a longitudinal stress of magnitude of the axis of the shell. These two stresses are tensile and I'll to each other.

. Maximum Shear Streis

$$T_{\text{max}} = \frac{7i - 7i}{2} = \frac{4d}{2t} - \frac{4d}{8t}$$

$$T_{\text{max}} = \frac{4d}{8t}$$

$$T_{\text{max}} = \frac{4d}{8t}$$

Efficiency of a Joint?

The cylindrical shells such one boilers are having two types of joints namely longitudinal joint and cincumferential joint.

At the efficiency of the longitudinal sourtand circumsterential sourt are given then the circumsterential and longitudinal stresses are obtained as:

Let $N_{\ell} = Etticency$ of a longitudinal font $N_{c} = v$ Then the circumferential stress (V_{ℓ}) is given $V_{\ell} = \frac{Pd}{2t \cdot N_{\ell}}$ and the longitudinal stress (V_{ℓ}) is given as $V_{\ell} = \frac{Pd}{v_{\ell} \cdot N_{\ell} \cdot N_{\ell}}$ Problems

i) A cylindrical pipe of diameter tem and thickney with subjected to an internal fluid pressure of 12N/mmh Dest (1) longitudinal stress developed in the Pipe (2) eincumferential 11

[Ans. 7] - 30N/mml 7] 260N/mm²]

2) A cylinder of internal diameter 2.5m and of thickness 5cm contains a gas. At the tensile stress in the material is not lo enceed 80N/mm², Delevirone the internal processore of the gas.

Ans: P= 3.2 N/mm².

3) A thin cylinder of internal diameter 1-21m contains a fluid at an internal pressure of 2N/mm². Det the maximum Thickness of the cylinder if:

(1) The longitudinal stren is not to exceed USN/mm²

Ansidt 2-77cm, (1) to 2.08cm

Effect of internal pressure on the dimensions of a Thin cylinderical Shellin

When a fluid having internal pressure (P) is stolled in a thin cylindrical shell, due to internal pressure of the fluid the stresses setup at any point of the material of the shell are:

- (1) Hoop 31 concumrerential strew (VI), acting on longitudinal section.
- (ii) longitudinal stress (72) acting on the circumsterential section.

These strenes agre principal strenes, as they agre acting on principal planes. The strens in the link principal plane is zero as the thickness of the cylinder is Very small.

Actually the strew in the third principal plane is sadial strew which is very small for this

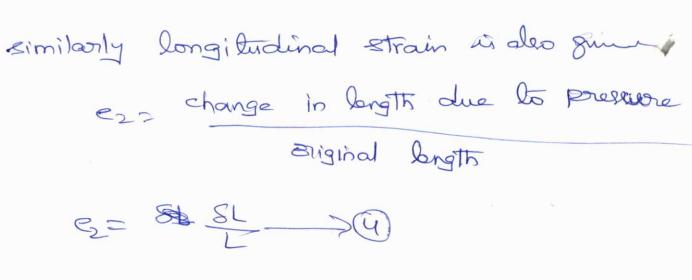
cylinders and can be neglected. let be internal prossure of fluid L= length of cylindrical Shell dis diameter of the " to thickney " " E= Modulus of Blasticity for the material of the Shell Vic Hoop stress in the material UZ a longitudinal stress in the material. 42 poissons statio 8d = Change in diameter SL= " Lergth SV= " Volume. The Values of Ti and TI some given by Vic Pd 72 = Pd 4+ Circumferential strain el= B- MIZ e1 = Pd - M. Pd = Pd 1- H er Pd [-M] ->0

$$e_{2} = \frac{Pd}{E} - \mu \frac{Pd}{E}$$

$$= \frac{Pd}{44E} - \mu \frac{Pd}{24E} = \frac{Pd}{24E} \left[\frac{1}{2} - \mu \right]$$

$$e_{2} = \frac{Pd}{24E} \left[\frac{1}{2} - \mu \right]$$

$$= \frac{Pd}{24E} \left[\frac{1}{2} - \mu \right]$$


But circumferential strain is also given as

er change in circumference due la prossure original circumference.

= Treate Final Cincumference - Briginal Cincumf

Bliginal cincumberence

equating 1 and cors

Volumetric strains: It is defined as charge in volume divided by original Volume.

But change in Volume = Final Volume - Biginal Volume original Volume = Area of cylindrical Shell X length

= IJd2L

Final Volume = Ty (Col + Sd). [+8]

1. Change in Volume (SV) = Final Vol - Suginal Vol

1. Volumetric strain = SV

. 1 Also change in volume (SV)= VX (2e1+e2)

2,6,15,18,28,

Farmulas

- 1) circumferential stress VIZ Pd
- 2) longitudinal stress 522 Pd
- 3) Moreimum shear stress Tmax = 17-52 Dd
- 4) change in dimensions

5) Change in volume

6) Major principal stress = The Top = | Deby Day] }

7) Min & Principal stress

Ihin Sphenical Shells: fig shows a thin spherical shell of internal diameters d'and resulting Thickness it subjected to an internal fluid peressure p. The fluid inside the shell has a tendency to split the shell into livo hemispheres along X-X axis. The force (P) which has a tendency to splitthe = bx Td2 The area susuiting this force = Trdit i. Hoop or concumparential stress (VI) induced in the material or the shell is given by Ti= Force &

Area Dresiting the force &

The street of in tensile in nature

The street of in tensile in nature

The fluid inside the Shell in also having

The fluid inside the Shell is also having tendency to split the Shell wite live hemisphores along Y-Y axis. Then it can be shown that the

lever hoop stren will also be equal to pd. let this stren is J. V2= Pd The stren Tz will be out sight angles to Tr. That = Pd - pd =0 Tmax 20 for thin spherical shells change in dimensions of a thin spherical shell due lo an internal perellure! (: 0 = UE) E15 A - MAS = A [1-M] B E= Ed [1-12] ->0 图= 型一地 = 型门一村 = 中山门一村 E12 Chorney Std) 3 CaO2 893 8d = Pd [I-W] 18d2 Pd2 [1-M]

& Volumetric strain ! [for a Volume Svary Sv V= STIP V= \(\frac{1}{4} \) \(\frac{ 39(29) - 120 SV = = [d3+3d48d] - Ed3 = = [3d36d) .. Ev2 Sv = # 3d2 Su] #d3 EV = # 3.5d SV= 8. 38d SV- 3, Pd (1-H)

Problems

) calculate: (1) the change in diameter (1) change in length (11) change in Volume of a thin cylindrical shell loom diameter, Icm thick and 5m long when subjected to internal prossure of 3N/mm². E = 2×105N/mm² M = 0.3

[Ans: 8d = 0.6375mm, SL2 0.75mm, 8v= 5595.96x10mm²

2) A cylindrical thin down 80cm in diameter and 3m long how a Shell thickness of lcm. Afthe down is

Subjected to an internal pressure of 2.5 W/mm/, determine (1) change in diameter (ii) change in length (iii) change in volume, Take E= 2x105 N/mm/ 420.25

Ans: Sd=0.35, SL=0.375, SV=1507.964.47 mm³

200 Pot

3

A thin cylinderical versel subjected to internal fluid Pressure and a Toque:

When a thin cylindrical vessel in subjected to internal fluid pressure (b), the assessed set up in the material of the vessel are circumferential stress (ti) and longitudinal stress (ti). These lux stress are tensile and are acting IN to each other. It the cylindrical vessel is subjected to a toque, shear stresses will also be setup in the material of the vessel.

Hence at any point in the material of the cylinder, there will be two lensile stresses murtually IV 25 each other accompanied by a shear stress.

let viz circumferential stress

J2 = longitudinal stren

T= shear stress due lo terque.

The major principal stress = THE + 3 (THOS) + 4T ming) 11 = Vitas - 1 (5/2) + 422

Maximum Sheag Stress = VI-TZ

Problems

) A thin cylinderical tube somm internal diameter and 5mm thick, in closed at the ends and is Subjected to an internal pressure of 6N/mm2. A torque of 2009600 Nmm is also applied to the lube. Find the hoop stress, longitudinal -stress, maximum and minimum principal stress and the maximum shear stress.

Ans: Ti=48N/mm², Tz=24N/mm², Maix principal strew= Thing Min principal sters = 12.68 N/mm? Track = 43.32 N/mm? 2) A spherical shell of Internal diameter oran and of thickness lomm is subjected to an internal prehime of 1.4N/mm2. Det the increase in diameter and increase in Volume. Take B22X105N/mm+ 42 \$ Ans: 8d= 0.09USmm SV= 1202858mm3

i) It the thickness of the wall cylinder is legs than 31 equal to 15 to 20 of its interfal diameters the cylinder is known as this cylinder

It it is greater than to of its internal diameter the cylinder is known as thick cylinder.

H = < = = Thin cylinder.

- 2) In case of this dilinders stress distribution is uniterm over the thickness of the wall.
- 3) Due to interped pressure of the fluid in this cylinder may two lipper of strews will be developed
 - 1) cincumferential strew of hoop strew
 - 2) Longitudinal Stress.

The stress acting along the circumstrence of the cylinder is known as circumstrential or hoopship the stress acting along the length of the cylinder is known as longitudinal stress.

acircumferential & hoop strew Viz Pd longitudinal stress J2= Pd where p= procesure of the fluid do internal dia of the cylinder t= thickness of the cylinder Maximum Shean strew! Track = VI- B2 Rt T2 Pd Efect of internal poessure on the dimensions of athin cylindrical Shell! 된 = - 100 Sd = Pd - MPd = Pd [1- H] 8d= Pd (1- 1) · · · E 12 Pd (1-47) 3 8d= Pd2 (1-47) EZZ B- MJ = Pd - MPd 到二品之一的可见了到人

Volumetric strain!

N

where era Pd [1-14]

. . change in volume

E22 Pd (1 -M)

Thin Sphenical Shelli-

of \$ oz > Pd

Image TI-TO 0

change in dimensions:

Volumetrie Strain.

Problems

1. calculate the bursting pressure for a cold drawn seamless steel tubing of 60mm inside diameters with 2mm wall thickness. The ultimate strength of steel is 380 MN/m².

[Ans: P=25.33MPa]

2. calculate the thickness of the metal grequired for a cast-ignon main 800mm in diameter for water at a pressure head of loom if the max permissible tensile stress is 20 MN/m² and weight of water is 10 km/m³.

[Ans: 19.62 mm (81) 20mm]

3. A cylindrical water tank of height 25m, inside diameter 2.2m, having Vertical axis is open at the top. The tank is made of steel having Vield stress of 210MN/m². Determine the littleheur of steel used when the tank is full of water.

Given! Efficiency of the longitudinal joint = 70%, Fis=3.

[Ans! t = 5.6mm Say t = 6mm]

4. A boiler shell is to be made of 15mm thick plat having tensile stress of 120mm/m². It the Editional of the longitudinal and concumferential Joints are 70% and 30% suspectively. determine!

(i) Maximum Penmissible diameter of the Shell-for an internal pressure of 2 MN/m².

(ii) Penmissible intensity of Internal pressure when the Shell diameter is 1.5m.

[Ansignd= 1.26m (1260mm) (ii) P=1.44mpa]

5. A cylindrical air drum is 2.25m in diameter with plates 1.2cm thick. The Editiciencies of the longitudinal and circumferential joints are respectively 75% and 40%. At the tensile stress in the Plating is lobe limited to 120MN/m² find the maximum safe air pressure.

Ans: P= 0.96 MPa]

6. A cylindrical Vessel whose ends are closed by means of rigid flange plates is made of sted plate 3mm thick. The internal length and diameter of Vessel are 50cm and 25cm respectively.

Determine the longitudinal and circumferential stresses in the cylindrical shell due to an internal fluid pressure of 3MN/m². Also calculate increase in length, diameter, and volume of the Vessel.

Take E= 200 GIN/m² and H=0.3

[Ans: $\sqrt{1} = 125 \text{ MN/m²}$; $\sqrt{2} = 62.5 \text{ Mpa}$; Sd=0.01328@m (increase)

[Ans! $\sqrt{1} = 125 \text{ MN/m}^2$; $\sqrt{2} = 62.5 \text{ Mpa}$; 8d = 0.01328 mm]

Sl = 0.0625 mm $8V = 29150 \text{ mm}^3$ (Increase)

(Increase)

7. A built up cylindrical Shell of 300mm diameter, 3mlong and 6mm thick is subjected to an internal pressure of 2MN/m². Calculate the change in length, diameter and volume of the cylinder under that pressure if the Efficiencies of the longitudinal and circumferential joints are 80%, and 50%, respectively. Ec 200 GIN/m²; mo 3.5.

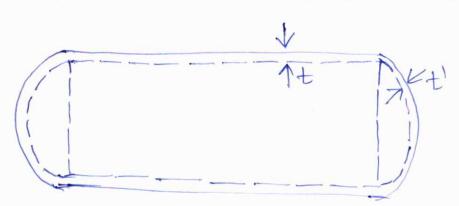
[Any 1 TZ = 62.5 Mpa; Tg = 50 Mpa, 8d = 0.0723 mm (increase) St = 0.483 mm (increase), SV = 136300 mm (increase)

8. A copper cylinder 90cm long, 40cm External diameter and wall thickness of 6mm has its both ends closed by 91igid blank flanges. It is inshally

fully of oil at almospheric pressure. Calculate the additional Volume of oil which must be pumped into it in order to pressure the oil pressure 5MN/m above atmospheric pressure. For copper assume E= 100GN/m² and poiseonly shatio = \frac{1}{3}. Take Bulk modulus of oil as 2.6GN/m².

 $Ans: SV_1 = 301298.56 \text{mm}^3$, $SV_2 = 204640.92 \text{mm}^3$, $SV_2 = 505939.5 \text{mm}^3$

9. A cylindrical shell goom long and 20cm internal diameter having thickness of metal as 8mm istilled with fluid at atmospheric pressure. It an additional 20cm³ of fluid at is pumped into the cylinder, find (i) the pressure exerted by the fluid on the cylinder, and (ii) the hoop stress induced.


Ans: P= 5.958 Mpa; Jaj= 78.59 Mpa] H=0.3

10. calculate the increase in volume of a sphonial shall im in diameter and Icm thick when it is subjected to an internal pressure of 1.6 MN/m². Take E=200GN/m² and \(\frac{1}{2} = 0.3. \) [Arus: 8V=219911.48mm³]

11. A thin spherical shell in in diameter with it wall of 1.2cm thickness is filled with a Huide atmospheric previous. What intensity of previous will be developed in it if 175cm3 more of fluid is pumped in to it? Also, calculate the concumbration estress at that pressure and the increase in diameter. Take E= 200GIN/m² and m=0.3

[Ans: P=1.522MN/m²; 8d=0:1109mm; VZ=31.714Mpa]

Thin cylinder with spherical ends:-

Let it be the thickness of the cylinderical polition and it' of the hemispheric polition of the shell. The internal diameter may be taken as d' both for the cylinder and for the spherical ends.

stresses in the cylinder;

Hoop strew, $\sqrt{c} = \frac{pd}{2t}$ and longitudinal strew $\sqrt{i} = \frac{pd}{4t}$

Hoop strain, & = TE - MTI

stresses in the Hemispherical Pathionin

Hoop strew, To = Fd HtT

If there is no distartion of the Junction under

pressure

If
$$\mu$$
 is taken as 0.3, $\frac{t'}{t} = \frac{7}{17}$

Then
$$\sqrt{\frac{Pd}{4t}} = \frac{Pd}{4(1)t} = \frac{17Pd}{28t} = \frac{17Pd}{14(2t)}$$

which is greather than the hoop strew in the bell cylinder,

F81 maseimum strey to be equal

I) A cylindrical boiler down has hemispherical endy.

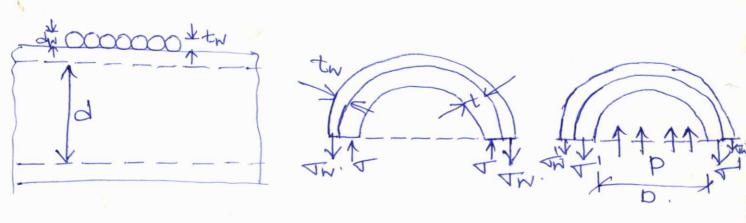
The cylinder position is 1.6m long, 800mm indianate and 20mm thick. Atten filling it with water out atmospheric pressure, it is put on a hydraulic text and the pressure is graised to 12Mpa. Find the additional Volume of water sequired to be filled in the Jrum at this pressure. Assume the hoop strain at the Junction of cylinder and the hemisphere to be the same for both.

E=205Gpa, K=2080 Mpa and M=0.3

[Ans! Increase in capacity to in cylinder (SVI) = 1.789×106 mm

" Sphere (SV2) = 0.8×106 mm

De Increase in Volume of water (SV2) = 6.187×106 mm


Total Increase (SV) = 8.776×106 mm³.

Wire Winding of thin cylinders

A tube can be strengthened against the internal pressure by winding it with wine under tension are putting the tube wall in compression.

As the pressure is applied, the susultant hoop show produced is much less as it would have been in the absence of wine.

The analysis of wine wound cylinders is made on the assumption that one layer of wine of diameterd' is closely wound on the tube with an initial Tension of the procedure is as follows:

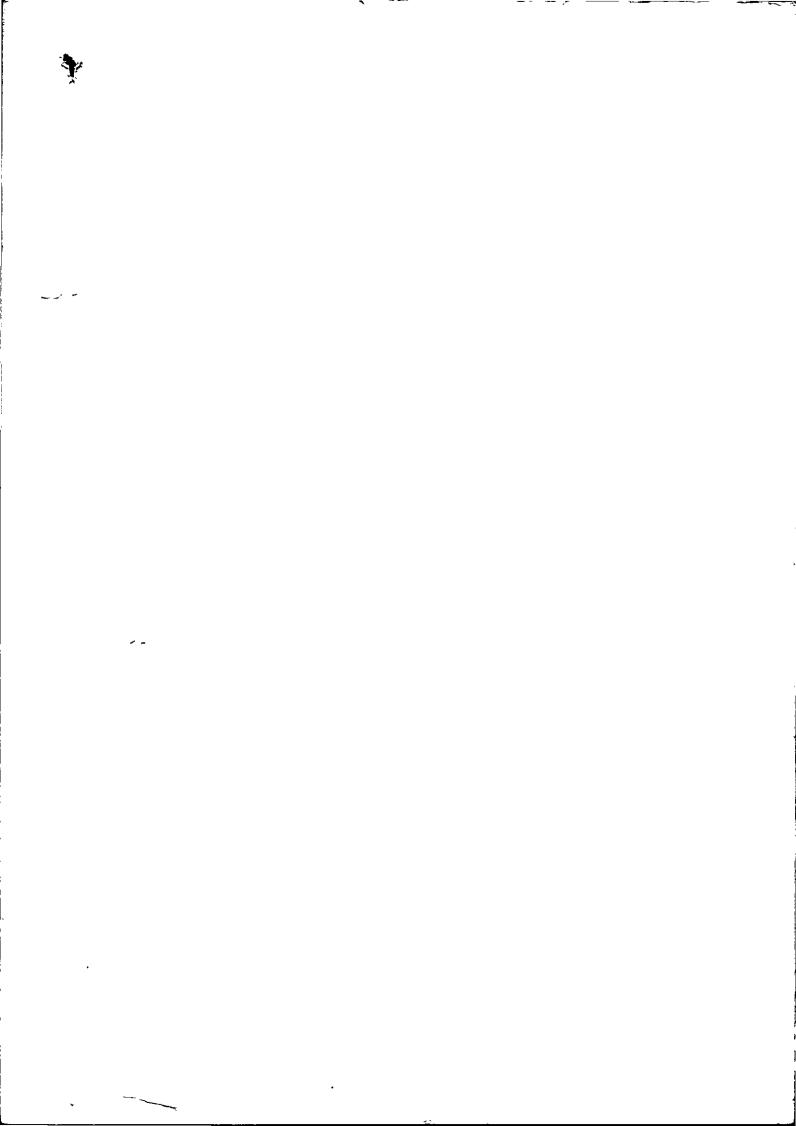
- 1. Anitial Tension stress in the wine, The Tan = 47
- 2. Replace the wire by a wire of Rectangular cls
 of thickness two and width dw having the same cls
 area of circular wire. Thus.

1 tw. gh = 11 dh the Tide ->0 Thus now the cylinder is assumed to be wound with a nectangular wine of width dw and thickneutu 2. For unit axial length of the cylinder The initial compressive hoop stress T in the cylindu can be found by equating the compressive circumtended force in the cylinder to tensile force in the wine for a unit axial length re. T= tw.Th > 2 / l=1. 3. Stresses due la fluid pressure alone on applying an internal pressure by lot the stresses be of tensile (hoop) in the cylinder and or tensile in the wise due la fluid pressure alone. Then for Equilibrium

Resisting force in the cylinder and wine =

Fluid force on Projected area.

(2t.1)T' + (2tw.1).Tw = pxd $2td' + 2tw.Tw' = p.d. \longrightarrow 3$


4. Equating the concumterential strains of the wire and the cylinder.

2

on solving eggs and eggs, T'and Th' can be determined.

Final stresses combos are calculated by taking the algebraic sum of the initial stresses and stresses and stresses due to fluid Pressure.

Final stresses! In the Pipe = J-J.
In the wise = Thit + Th.

