

ANNAMACHARYA UNIVERSITY

(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016

New Boyanapalli, Rajampet, Annamayya (Dist), Andhra Pradesh – 516 126

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course: HVDC & FACTS

Course Code: 20A27BT

Branch: Electrical & Electronics Engineering

Prepared by: Dr.O.Hemakesavulu

Designation: Professor

Department: Electrical & Electronics Engineering

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES RAJAMPET

(An Autonomous Institution)

Department of Electrical and Electronics Engineering

Title of the Course HVDC & FACTS

Category PEC Couse Code 20A27BT

 Year
 IV

 Semester
 I

 Branch
 EEE

Lecture Hours	Tutorial Hours	Practice Hours	Credits		
3	-	-	3		

Course Objectives:

- To introduce the concept of HVDC Transmission system and FACTS.
- To familiarize with operation of HVDC converters and their control.
- To distinguish series & shunt compensation.

Unit 1 Introduction

Comparison of AC and DC Transmission systems, Applications of D.C. Transmission, Types of DC links, Typical layout of a HVDC converter station. HVDC converters, Analysis of 3-phase Bridge circuit with and without overlap.

Learning Outcomes: At the end of the unit, the student will be able to:

- Compare HVDC & AC Transmission(L4)
- List the applications of D.C Transmission.(L1)

Unit 2 Converter and HVDC Control

10

10

Principle of DC link control, Converter control characteristics, System control Hierarchy, Firing angle control, Current and Extinction Angle control.

Harmonics, Filters and Sources of Reactive Power:

Introduction of Harmonics, Generation of Harmonics, AC and DC Filters, Sources of Reactive power.

Modeling of DC/AC converters, Converter controller equations, Solutions of AC/DC load flow- Simultaneous approach and Sequential approach

Learning Outcomes: At the end of the unit, the student will be able to:

- Explain the Principle of DC Link control(L2)
- Identify the various filters for elimination of Harmonics.(L2)

Unit 3 Introduction to FACTS Concepts

08

FACTS concepts, Flow of power in AC parallel paths and meshed systems, Basic types of FACTS controllers, Brief description and Definitions of FACTS controllers.

Learning Outcomes: At the end of the unit, the student will be able to:

- Analyze the flow of power in AC parallel paths(L4)
- Explain about the basic types of FACTS controllers(L2)

Unit 4 Static Shunt & Series Compensators

10

Objectives of shunt compensation, Methods of controllable VAR generation, Static VAR compensators, SVC and STATCOM comparison. Objectives of series compensation, Variable impedance type- Thyristor Switched Series Capacitors (TSSC), and Switching Converter type Series Compensators – Static Series Synchronous Compensator (SSSC)

Learning Outcomes: At the end of the unit, the student will be able to:

- Explain the objectives of series & shunt compensation (L2)
- Distinguish series & shunt compensators (L2)

Unit 5 Combined Compensators

Unified power flow controller (UPFC), Basic operating principle, Independent real and reactive power flow controller.

10

Learning Outcomes: At the end of the unit, the student will be able to:

- Explain the operation and principle of UPFC.(L2)
- Analyze the concept of independent real and reactive power flow control in UPFC.(L4)

Prescribed Text Books:

- 1. Padiyar, K.R., 'HVDC transmission systems', Wiley Eastern Ltd., 2010.
- 2. Hingorani ,L.Gyugyi, 'Concepts and Technology of Flexible AC Transmission System', IEEE Press New York, 2000 ISBN –078033 4588.

Reference Books:

- 1. Padiyar K.R., 'FACTS controllers for Transmission and Distribution systems' New Age International Publishers, 1st Edition, 2007.
- 2. Mohan Mathur R. and Rajiv K.Varma, 'Thyristor based FACTS controllers for Electrical Transmission systems', IEEE press, Wiley Inter science, 2002.

Web Resources:

- 1. http://www.nptelvideos.in/2012/11/high-voltage-dc-transmission.html
- 2. http://nptel.ac.in/courses/108104013/
- 3. https://nptel.ac.in/courses/108/107/108107114/

Course Outcomes:	Blooms Level of Learning
At the end of the course, the student will be able to	
1. Analyze the Economical & Technical aspects of AC & DC Transmission	L4
2. Analyze the Converter control characteristics & Filters for harmonics elimination.	L4
Identify the basic types of FACTS controllers	L4
4. Distinguish series and shunt compensation	L1
5. Analyze the operation of Unified Power Flow Controller (UPFC) with independent	L4
real and reactive power flow control	L4

CO-PO Mapping:

со	P04	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PS01	PS02
20A27BT.1	3	3	-	-	-	-	-	-	-	-	-	-	3	-
20A27BT.2	3	3	-	3	-	-	-	-	-	-	-	-	3	-
20A27BT.3	3	3	3	3	3	-	-	-	-	-	-	-	-	3
20A27BT.4	3	3	3	3	3	-	-	-	-	-	-	-	1	3
20A27BT.5	3	2	3	1	1	-	-	-	-	-	-	-	-	1

HVDC -> High voltage Direct current tr FACTS -> Flexible Ac Tr. systems AC-> Generation -> Tr-> Distribution -> AC (AC tr) ulalizataon AC - DC - AC -> HVDC tr. Why HVDC ? for long distance bulk power to we use HVDC. unit 1: Introduction comparision of AC & OC tr: 1. Economic of tr. is all again and 2. Technical performance de los marcos es sa in 3. Releability: 2010/100 0001 01 1011/200 00 04 (4 1. Economics of tr:- Smolesh and on and > Economics of tr is cost of tr. > cost of tras of 2 types. Investment of cost : Ha All Hors - Supporting It is the cost of it would It as the losses terminal equipment.

*) No of conductors reg. for AC is 3 while to requ eres 2 conductors so oc requires less conductors *) No. of ansulators requires for AC 18 3 and DC requi res 2 so, proport insulators in be are less. *) A Two: conductor be line can carry as much power as three conductor Ac line when provided with same conductor size and insulation level. Jd= Ja] Jd= oc current deco exol x Losses in DC = 2 Ja2R Losses in Ac = 3 IaR 312R>212R Hence losses on DC are less compared with Ac

skin effect & corona are present in Ac tr. Line and are absent on bc line. cost vs bistance graph: action Acid -bx in mont to sh cost distance d'-> Break even destance *) In the above graph, bc is *) Ac 9s economical upto break even destances (d*) *) Ac as costlaer for long distance while oc. cost is less for long distance. *) Hence DC. 25 more feasible as it remains some for short/long destances. To be it to dear *) d" > 500 ~ 800 kms for overhead ! Lines 48 ~ 96 kms for underground carbles 24 ~ 48 kms -> submarine *) Beyond these distances for beyond d*) oc is economical upto dx. Ac is economical. so, HVDC is used for long distance bulk power tr. Terminal Equipment: with the Act of the strugger Delokery book of * Terminal equipment regi. * Terminal equipment as in Ac as transformes requiremble Linare: Converters (Rectafiers (Ac-Co * Less Cost * less cost in in A * confiler (as at requires falters to remove harmohecs) losses in Act 6.25 R WW. 2 KREE

comparision stypes real layout " Types of ic links or 1/2 2-0 bridge Applications ** 2) Technical performance: of tr. has the following advantages over Ak tr 2) The stability to enhance bynamic a transient State stability in associated Ac networks. 3) fast control to limit fault currents in ox lines. In addition to this . Dc tr. over-comes some of the problems in Actr 2010 : 200 10 They are as follows: * Also known as power transfer * power transfer on Ac lane as dependent on 1) Stability Limit: the angle difference between the Vy phasors at the two ends. of the two extra level this angle increases with distance. P = VIV2 Sms FITHER NA FINATE power Vs Distance power

sortife and to allegations dx pribadistance bacing spice il

* p from the curve, power vs Distance. Power transfer is unaffected with distance in beline Id = current 16 so each De conductor. Ia = current an each Ac conductor. Vd = voltage of an each Dc conductor. cosp = power factor of Ac trne

and Id = Ia (: conductors of same size & gisulation level)

* consider 2 conductors of 2 tx line and 3 conductors of Ac time ensulation line then power in a be time, Pa= 2 Va Id power in a Ac line, Pa= 3 Vo. I acosp 2 Vd Jd - 2 Vd Jd Ja 3Va Iocosp 3 No cosp (::]d=Ja) 2 Val Who in Pa =) = 2√2 = 0.945 Pa = 3 1/2 COSP => 2/2 - 0.9 45 COSP - COSP (Vd = V2 V3) (Vs = V0) If cosp = 0.945 then Pa=Pa A 2 conductor oc time can carry more power when compared with 3 conductors. Ac Line for power factors less than o.gus. 99) Voltage control: Voltage control as not needed in case of oc lines since via drop, is due to only resistance. -> In case of Ac lines, voltage control as load vail es as required. P=0 Flat v/g profile 1 - length of the line Pn-surge imbedance Loading iscording to occupy out mother P = Actual (Loading) n -> pestance from the sending end =>P<Pn -> Reactive power Absorbtion =>P>Pn -> Reactive power injection 15 there then the 25 roads more no of reactors ve power Absorbtions what iskes -> more no of capacitors as there the 11 1s reactive

power in section. -> In oc curve is flat curve in Ac 13 suring. Til) compensation :--> Ac line required shunt and series compansatron no such compensation as required in case of Dec line. iv) problems of Ac Interconnection: [VC] LY VC synchronous Interconnection [AC] DC TAC ~ HVDC Asynchronous Interconnection. when two power systems are connected by AC lines it is called as synchronous Interconnection. the problems are: 1) The presence of large power oscillations which Can lead to frequent tripping 2) Increase in fault level. 3) Transmission of distribution - From Jone system to other coordinated control of interconnected systems i resided in power flow in Do lines eliminates all the above problems. Telephonic Interfaces affected the Acultines: V) Ground Return : 1100 311 of Ac because impedance offered by is high.

Interferce with communication lines. => Ground can be used as return path in case of DC line because of following advantages. I) In a two conductor de line of there is a fault on one conductor power can be transferred from other healthy conductor & around.

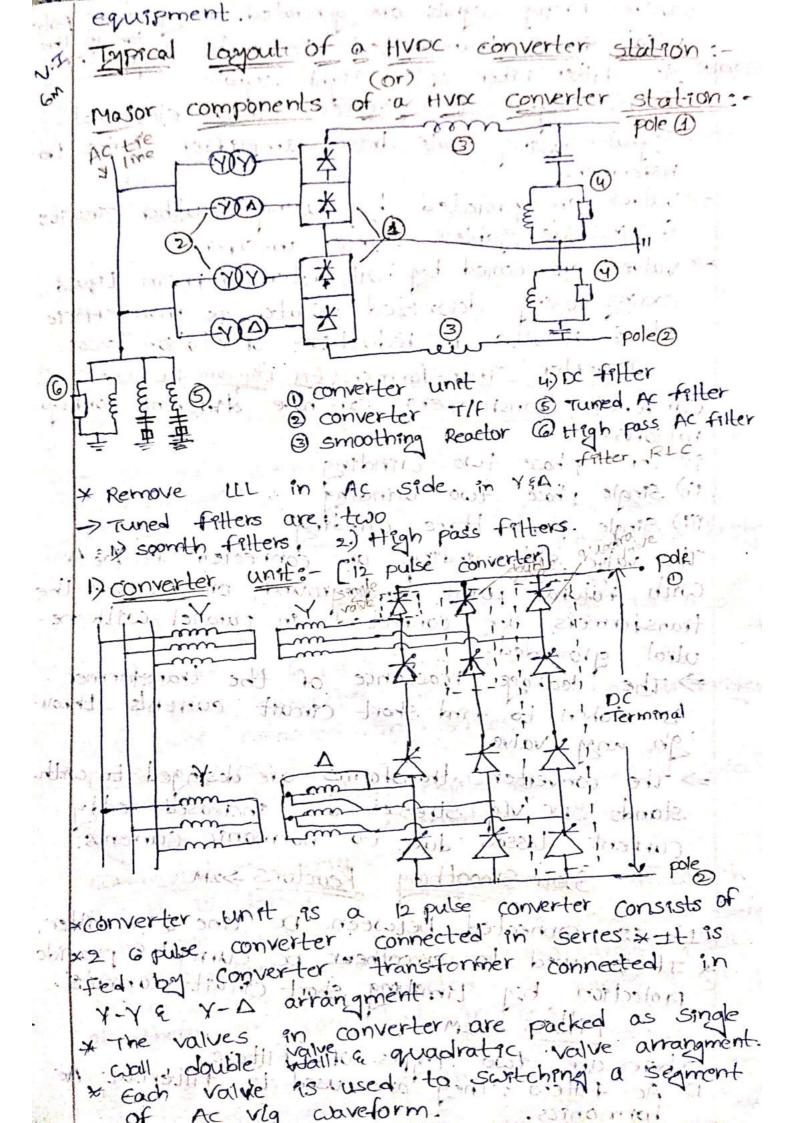
Vi) Relatability:

V(probability of soucess Hailure)

>> Reliability of be transmission is quite good & comparable to that of Ac system. -> performance of thyrestor values 25, much more relable than mercury Are values. There are two measures for overall system rehability. 1) Energy Availability 71) Transient Reliability 1) Energy Availability:-E.A = 100 [1 - Egripmalent outage - rime] 1. Total teme Equivalent terms is the product of actual outage of time & -fraction of system copacity lost due to outage. 90) Transient Reliability. apple from the same of the last to some with the Con Least to - 11 per l' trippi de I with mi restrictive outage = blackout milatribute to more smenit (Transient Retrability - bolomby T.R = 100× No. of termes HVDe system performed as Designe No of Recordable Ac faults bytes Recordable AG faults, are those faults which cause one can more Ac bus phase voltages to drop below 90% of the voltage prior to the fault. Both energy availability & transient reliability of transient reliability of transient reliability of transient reliability.

Applications of DC transmissions: 1) long destance bulk power transmission. min underground/water cables

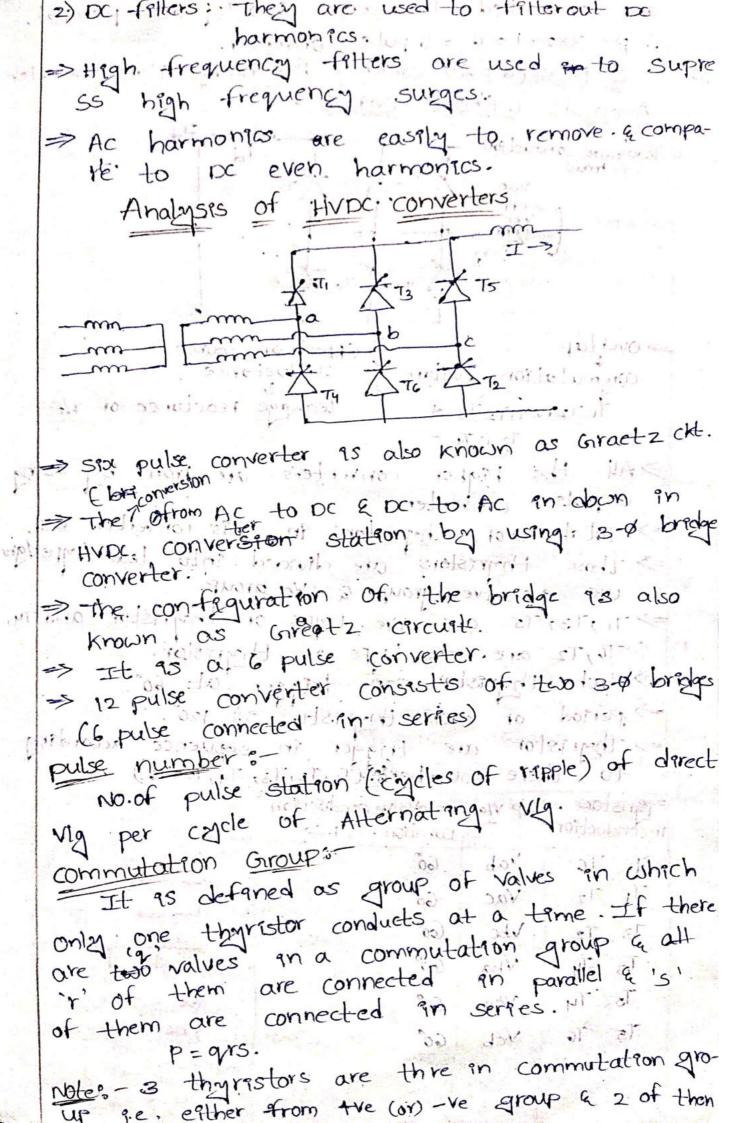
Interconnection of Ac system operation of the system operation opera ratingolat different frequencies. Py) control & stabilization of powerflow, in Ac the lines to white the is the

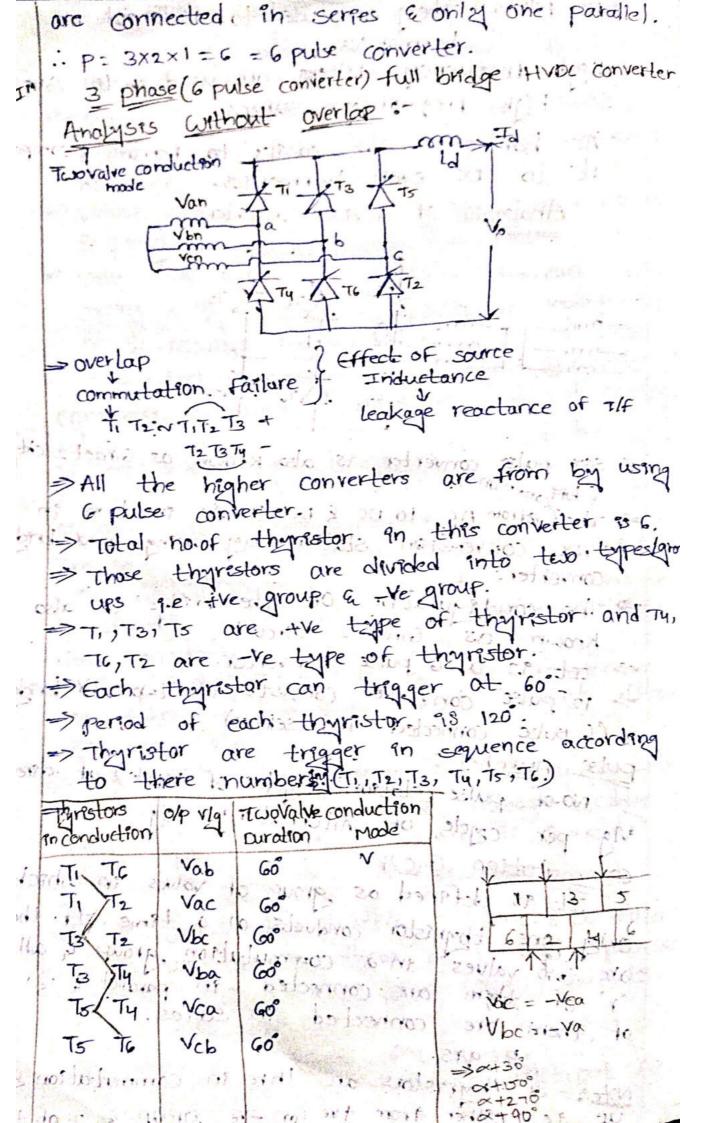

v.) simple line construction. ve) Greater power per conductor. visi) cables can be worked at high v/g gradients. Types of to links There are three types of De Links 9) Monopolar Link 19) Bipdar Link ssi.) Homopolar Link. i) monopolar Link: It has, only one conductor usually of negative polarity and uses ground (or) sea as return path sometimes metallic return as also used. to -ilo -> It has two conductors one positive and other negative. Each may be double conductor in EHV Lines. has two sets of converters of. => Each terminal in series iron or side identical aratings => The sunction between two sets, of convertors is grounded at one end (or) both the ends. => Both poles ignerate at equal currents and hence there is zero ground current flowing. in Homopolar Links is later to contains It has too (or) more conductors usually all having the same polarity is negative It as always

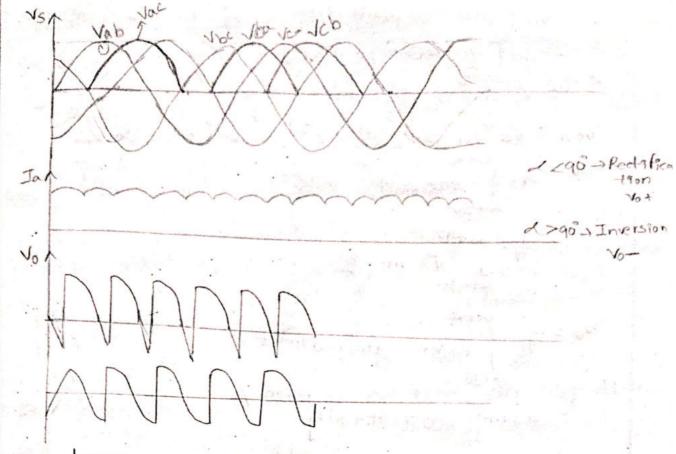
operated with ground (or) metallic return. 40) - - 110/c - - 1100 DIn, 3 links the most preparable in Bipobi Link Homopolar link is having the advantages of red => corona effect is less in -ve polarity conductor on comparision with the polarity.

The monopolar (on) Homopolar are used in underground => The Bipolar is used in overhead lines and wir. Desadvantages of ox Transmission:-DThe difficulty of breaking oc currents which results in high cost of converters.

2) Inability to use transformers to change by uses Levels. 3) High cost of conversion i equipment. 4.) Generation of Hormonics which requires ACECC -fritters adding to the cost of converter stations
5) complexity of control due to Due to the significant advances in oc techno. long all the desadvantages mentioned above have a) bevelopment not or breakers b) modular construction of thyrestor value. c) Increase on the ratings of cells that make up ja, value. d) twelve pulse operation of converters e) use of metal office gaplen surge arresters f) Application of bigital electronics & fibre operato population of converters.


Some of these advances has improved the relability and reduced the cost of conversion




nteal a are transmitted to each they is throw value gh -fatter faber optic light sagnal. => light signal 13 converted into electrical Signal using gale drive; amplifier pulse to hsformer. > valves are protected by using snubber circuits & zinconiale: galpless surge arrestrers. > Values are cooled by only water (or) freon liquid coding using deionized water as more effecte. nt & results in reduction of station losses. Converter Transformers (6M Daugram for comperter und converter transformers can have different configurations opilis all whood prividances to ?) Three phase two winding. 11) Single phase two winding 199) Single phose three winding The valve side windings are connected in Y&A With freutral point underground on AC side the transformers are connected in parallel with neutral grounded.

The leakage reactance of the transformer sometoken to find short currents through gh any Valve! > the converter transforms are desinged to with stands; DC Mg stresses and increased eddy current lasses due to harmonic currents. Soom Smoothing Reactors -> 2M itt is connected between or line & or filter. ix It is used to smoother or current & provide protection by Limiting short circuit currents. There are two types of filters.

D) Ac fallers: They are cused to filterout Ac hormonics.

operation:

> The thyristor Ts, To are already in conduction.

=> Ti is trigger at an angle of x+30.

> The thyrastor Ts slops conduction due to natural commutation. At this incidance Ti, T6 are in conduction. therefore Vo=Vab.

> The thyristor 72 is trigger at an angle of atgo. then To stops conduction due to natural commutation. At this incidence Titz are in conduction. therefore vo-vac. In this manner thyrestor get >triggering according to their mnumber of to oblain 6-pulse converter.

Average output voltage:-

Van = Vm sincet

Vbn = Vm Sin(cot-120)

Van - Vm (5in (wt - 240°)

1,6 -> Vo=Vab

Vab = Van-Vbn

= Vm sincet - Vmsin (ut -120°)

= Vm (sino - ¿sino coso 120 - coso sin 120)

= Vm (sino - {sin (-1/2) - (050 53)

Unit-2 most any another to wife Converter and HVDc control And Principle of De link control (or) Expression for steady state De current (Ta) in De link: isobad bysones the foronal fig: steady state equivalent terminal DC, link TINK: NEW TO THE SOUL SOUL S NEW TONE fig: Schematic Diagram of De Link showing transformer ratios. on sorter get lectorer T= Tap changing r= rectafer (e) · 3 (s) () apps portaldoros 9: inverter +) the control of power in De link can be achieved through control of voltage l'aurrent to It is important to maintain constant voltage in the link and adjust the current to meet the required power this strategy is also helpful for vig regulation. *) The vig drop along a De line is small compared to Ac line mainly because of absence of reacteve ulg ap drop. ,7th *) Consider steady state equivalent ckt of two terminal Dc link. It is based on the assumption that all the series connected bridges in both poles of a converter station are tolentical in rating: and have the same delay angle. *) Also the no. of series connected bridges in

both the stations are same. +) The ulg sources are given by: END = (3/2) UPEN COSAL -> 1) Ed: = (3/2) nb Ev, cos7, -> 2 offring angle 318 - 12 VL -000 ~ Rectification 13(Advanced fring angle) - 11 to 6 pulse - 1 bridge 12 pulse - 2 bridge of (Extinction angle) - Soversion 18 " - 3 " No No of Series connected bridges Ev. Ev, = line vig's of in the value side wdg's of rectifier & inverter transformer respectively. EV, = Ns. Er ; Ev, = Ns. Er -> 3 Er, E:= Ac line-line vigs of converter bus on rectifrer & inverter, side Tr, T: off nominal tap rateou on rectifier & toverter side combining equi (1) (2) & (3) Edr = (ArEn) cos x - A Edi = (A: E:) cos ?: -> (S) controlle = Tap.charge where Ar & As are constants; Are (312) no Nor Nor polo por ple sois A: (352) no No: therefore, steady state current Id in the De Link is given by:

Sad = Edr - Edr

Rer + Ra - Reg

Rer + Rd - Reg

Rer = Commutation resistance of rectifier

Rs = De link resistance.

Rci = commutation resistance of inverter

tap changing.

to At inverter, there shall be 'D' control & transformer tap changings.

Note: At a time both & and I cannot be controlled to For fast control, & or of control is used to For slow control, tap changing is used

Constant voltage System (cvs):

All power sources and loads are connected in porallel. Voltages across all is maintained constant.

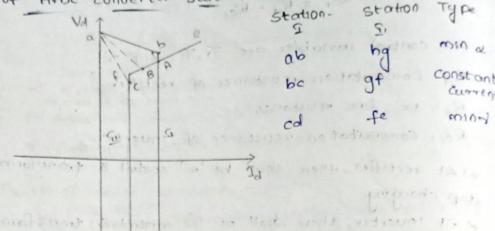
Merst:

+) T'P loss will be as per the Load.

+) At light loads, it will be less

Demerit: short circuits produce larger currents.

Constant Current System: (ccs)


All power sources and loads are connected in Series current is maintained constant.

Merit: For short ckt faults, the current cuill remain the Same.

Demerit: I'R loss in the System will remain the same at full load.

Note: When a re controlled. then it corrier variable current & at inverter state, of would current will be constant. When it controlled then variable current. I and current are controlled.

CEA-Constant Extraction Angle
Converter Control characteristics con Va-Sa characteristics
of HVDC converter station:

Wate: R 1) Rectifier acts as rectifier, a control, constant current and opp operation or scale; e enverter

the hing in a love

as At any converter station, there will be 3 controlls &, I, constant current control).

of control is also known as CEA control

determines normal mode of operation re station-±
operates as rectifier with constant current control
(ccc) and station-I operating as inverter with
constant extenction Angle control (CEA)

there are three moder for operation of a De Link

1) Constant Current Control (ccc) at the rectifier and
constant Extenction Angle (CEA) at the enverter is
the normal mode of operation with intersection point's

11) With slight fall in Ac ulg point of intersection
shifts to 'c' which implies min & at the rectifier
and min 2 at the inverter

sin with Lower Ac vig at rectifier the point of intersection shifts to 'B', which implies min. acc at the inverter. the operation at min extinction angle at the enverter and current control at the rectifier results en better ulg regulation than operation, with min. delay angle at the rectifier and current control at Note: In when co is consperated then another with CEA. 2) When Station - 1 operates at min is operated at cc. Faciling angle Co 3rd a-Rectifier - R 9 Race mind mind Ba Enverter - [] wing cc FAC EFA Normal Fault Reversal of power flow characteristics: Station 9 -> Inverter - CEA Station & - Rectifier -1 Sugarder who wasponed Exhaust storted proneit, was a marting of the said of pasting there are a property to the skilling & comes at about a whom lowness 4) Station S operates as inverter with of CEA control 4) Station- I operates as rectifier with co control 4) Point of intersection is D'. Resulting in reversal of power flow. Rectifier . Sinvater Ed = (Arter) cosa - (A:Er) cosy; Rc+ Rd - Re commutation inductions Control Rer = Re: (3Wlc) = Gfle w=211f

Rechfren - mind cc Inverter - mind cc

System Control Hierarchy (or) Block diagram of HUDC control

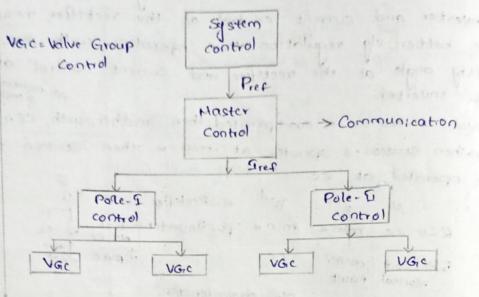
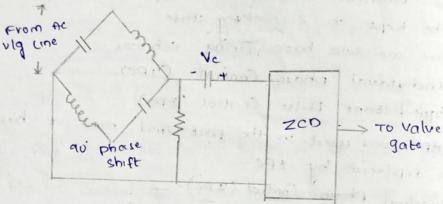


fig: Hierarchial control structure of HVDc Link

Master Control for bipole is located at one of the tereminals VGC-Value Group Control and is provided with power order reference (Pref) from the System Control.


- *) It also have other information such as Ac up at converter bus, De vlg
- the pole control transmite current reference to the pole control units which in turn provide firing pulses to individual valve group control to Pole control incorporates pole protection and Doline protection.
- to Value control provides value monitoring and commutation failure protection.
- * Moster control includes functions of power modulation, frequency control, Ac vig & reactive power & damping control and takes care of complete bipole

orintering angle Control: the following are the two basic requirements for the firing pulse generation of HVDc valves. e) the firing instant for all the values are determin ed at ground potential and the firing signaling sent to individual thyristors by light signals through fibre optic cables i wholeyou in while single pulse is adequate to turn on a thyristor. The Gate pulse generator must send a pulse whenever required if a particular valve is to be kept in conductiong state there are two basic firing schemes a) Individual phase Control (IPC) 6) Equidistant Pulse Control (EPC) to sepe was used in the past and now it has been replaced by EPC. Individual Phase Control (IPC): this scheme was used in early HUDE projects. the main feature of this scheme is that firing pulse generation for each phase con value is independent of each other and firing pulses are origidly synchronized with commutation ulg. there are two ways in which this can be achieved n Constant & calphal control 11) Inverse cusine control Constant & Control : Delta TIF ; 3 Variable Gate crossing Delay Pulse as should all box (all god Ve (contro)

Six Commutation ulg's are derived from converter Ac bus via vilg TF's and the six gate pulses are generated at nominally identical delay times subsequent to respective vilg zero crossings.

the instant of zero crossing of a portroller commutating via corresponds to x=0 for that value. In the delays are produced by independent delay circuits and controlled by a common control via (Ve) derived from current controller.

Inverse Cosine Control:

ZCD: Zero crossing Detectur

13 Vm 32 n (wt-90°) + Vc = 0

- V3Vm cocwt + Va =0

V3Vmcosx= Vc

d = cos-1 (Ve Ve

*1 Six commutation voltages obtained just like constant of control are each phase shifted by 90° and added seperately to common control Voltage, Ve.

ogenerates firing pulses for a particular valve.

to the delay a is proportional to inverse cosine of control voltage (Ve) and also depends on Ac System voltage amplitude & phase.

stored in the south of the process a briefly with one and Carladas paragoni when the Gali Pule Tentries Large Land or Lat Gre lardied since where the Main drawback of SPC is harmonic instability due to non characteristed harmonics in steady state. the following are the measures to overcome harmone tostability.

1) Usage of felters to filter out non-characteristic instability. barmonics 11) Provision of synchronous condensor (Improvement were contribute of relegation, Compared to sterning and description , the alle gallest of the finite parter General rollmos pers sir and the free material to be the part of the comounts populate all men

Equidistant Pulse Control: In this scheme, firing pulses are generated in Steady State at equals entervals through a ring there are three Variations of EPC scheme 1) Pulse Frequency Contro(PFC)

11) Pulse Period Control ***) Rulee Phase Control (PPC)

Pulse Frequency Control Sin this scheme, a voltage controlled @Oscillator (veo) is used the frequency of which is determined by the control vig 'Ve' which is related to the error en the quantity being required.

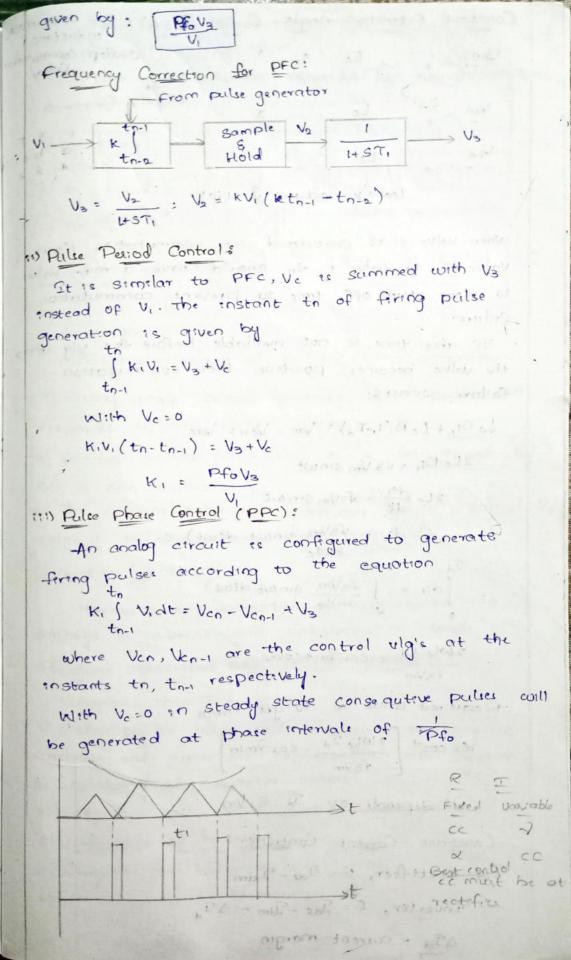
equal

the frequency is steady state is called to P- Pulse number

to- nominal frequency of Ac System. Generator Counter

fig: Vco block diagram of PFC Vco consists of integrator, Comparator and Grate pulse generator . the old pulses of the Gate Pulse Generator drive the ring counter.

the firing instandition of the gate pulse is determined from the following equation. Ki (Ve +Vi) at = Va


where, U. - Constant Vla

Vz-proportional to the System Period

Ve-Control vlg In steady state, Ve = 0

K, V, (tn - tn-1) = V3

Since to-to-1 = Pf In steady state, goin ki of the integrator is

Constant Extraction Angle Control (CEA): Le Commutation ovelap : Commutation -Sailes 24 -1000leakage reactance of the commettation problem is their in invote (severa When valve 1 is considered i.e commutation from value is to valve 1 In should have a min. Value to allow turn off time to prevent commutation failure. If this time, is not available before the vig across the valve becomes positive then commutation failure occurs. Le Di, + Le D(1,-Id) = Van - Ven = Vae 21. Di = V3 Vm sinwt 26 di = valmsinut die = 1 13/m sinut diwt) Zwle Id = cos Dn + cosa Required value & to get Amin d= cost 2WLc Id - costmin of depends on it & Vm Constant Current Controller: For rectifier, E= Ids - Idm Inverter, E = Ids - Idm - AI DId - current margin

Ids = Setting of current regulator
Idm = Measured value

Current is maintained constant by sising Constant current regulator.

Disturbing magnitude

Therefore

Thought a controller

Therefore

Tesponals to the control signal (Vc);

Current is maintained constant by sising Constant

Disturbing magnitude

Therefore

Selector

FAC

A

Selector

FAC

A

Selector

FAC

A

Tesponals to the control generates gate pulse in

Tesponals to the control signal (Vc);

*) Selector chooses min. Value of & determined by

CC & CEA Controller

*) The current controller generates control signal; Ve related to the firing angle required:

Generation of hormonica:

Heirmonies are generated to disturbances in voltage or current and unbalance in load.

Problems associated with hormonic generation:

- 1) Telephone enterface
- 2) Extra power losses and consequent heating in machines and capacitors connected in the system.
- 3) Sinstability of converter control
- 4) Interface with ripple control management

Classifications of harmonics:

- i) characteristic harmonece
- 2) Non-characteristic harmonics

is characteristics harmonics:

the harmonic that are present in ideal operation in

1) Balanced Ac voltages

11) 3-8 symmetrical networks

iii) Equidistant pulses

The harmonies in Ac : h= np11

harmonice in De: henp

where n-integer, h-order of harmonice, p-pulse no.

2) Non-characteristec harmonics:

the harmonics of the order other than the characteristic harmonics are termed as non-characteristic harmonics. These are due to

1) firing angle errors

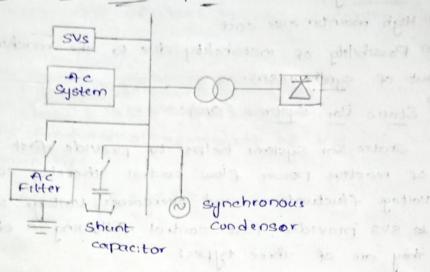
15) Unbalance and distortion in Ac voltage 16) Unequal transformer leakage reactonce 10) Simbalance in operation of 12-pulse converter unit.

*) Triplen, even harmonics comes under non-characteristic

Residual harmonics:

The harmonics that are present due to imbalance in operation of two bridge firing 12 - pulse converters und are known as residual harmonics.

** Even harmonics are considered as both characteristic and non-characteristic


*) Odd harmonics in both balanced condition are called as Ac harmonics.

*) Odd harmonics under unbalanced condition are called as triplen harmonics.

odd Ac harmonics - balance AR AC Felters: pe-sunbalanced & balanced the main objective of design of Ac filters is to reduce telephone enterference. De Priguiscal 3) Single Tuned filter & Elimination of lower order 11) Double Tuned filter) harmonics 19:1) Second order high pass filter 2 Elemenation 14) Second order high pass 'c' type -filter higher order harmonics Single Tured Filter: It is used to filter out harmonics of single Z-characterist empedance fig: Z Vs f characteristics fig: ckt diagram Double Tuned Felter: It is used to filter out two discrete frequencies enstead of using two single tuned filters. southern of deposit Advantages monly i inductor is subject to full line impedance voitage \$) Reduced power losses at fundamental frequency of harmonic component current.

Mote: Lower order harmonics -> cipto 12 Pulse 5,7,11, 13, -> lower order 1x611: 5,7 1×12+1:18,13 tigher the lower bnumber, lower order barmonic are eliminated Upto 12 pulses, single & double tuned -felters me used (to eliminate lower order hormonics) "119) Second Order High Poss filters: It is used to filter out higher order harmonics. (i.e > 13 Pulses) the notify of C. fig: cket diagram fig: 2 Vs f characteristics (v) Second order High pass 'c' ty pe filter: Losses at fundamental frequency can be reduced by a 'c' type filter in which capacitor 'c' is in series with enductor 'L' provides low impedance . Path to harmonic component of Current. and open and that it designed constant power looker at temporarios besides

vinte Sources of reactive power:

Sve - State Var Systems of stander

fig: Reactive power Sources of converter bus

the requirements for the reactive power at the converter bus are given by the following sources:

ordensers and states var. systems (SVS).

For slow variations in load to provide control Switched capacitors and filters can be used to provide control synchronous condensors and statre Var Systems provides continous control of reactive power. St can follows fast load changes.

They acts as source of reactive power.

Synchronous condensors are syn. motors operating at no-load with excitation control to maintain the terminal ulg.

Advantages:

at the inverter of connected to the Ac System

2) Better voltage regulation during transient due to the maintenance of flux linkages en rotor wendings.

Disadvantagess vig source is 1) High maintenance cost 2) Possibility of instability due to the machine going contral turn on (ch) out of synchronism. presented turn off (UT Vision State Var Systems (SVS): - SCR to used. States Var Systems helps to provide fast control of reactive power flow control thereby controlling voltage fluctuations and overcomes voltage instability. to sus provider fast control following a disturbance they are of three types: 1) voriable impedance Type sus - CT, UTO 11) Voltage source Type SVS } FACTS CTO fff) Current source type sus STATCOM 1) Variable impedance Type sys: voriable impedance Type sus is commonly for power system applications. to variable impedance type sus devices ar in Thyristor Controlled BReactor (TCR) 19) Fixed capacitor thyristor Controlled Reactor (FCTCR) 199) Thyristor switched capacitor (Tsc) in thyristor Controlled Reactor: fig: Single phase

the reactor control can be controlled by controlling the firing angle of back to back connected thyristors.

4) For 2=90', current is maximum

to For d=180°, current is zero

The fundamental component of inductor current
is given by:

$$G_1 = \left(\frac{\sigma - \sin \sigma}{\pi x_L}\right) V \rightarrow 0$$

where,

X1: Fundamental frequency reactance V: RMs voltage across SCR

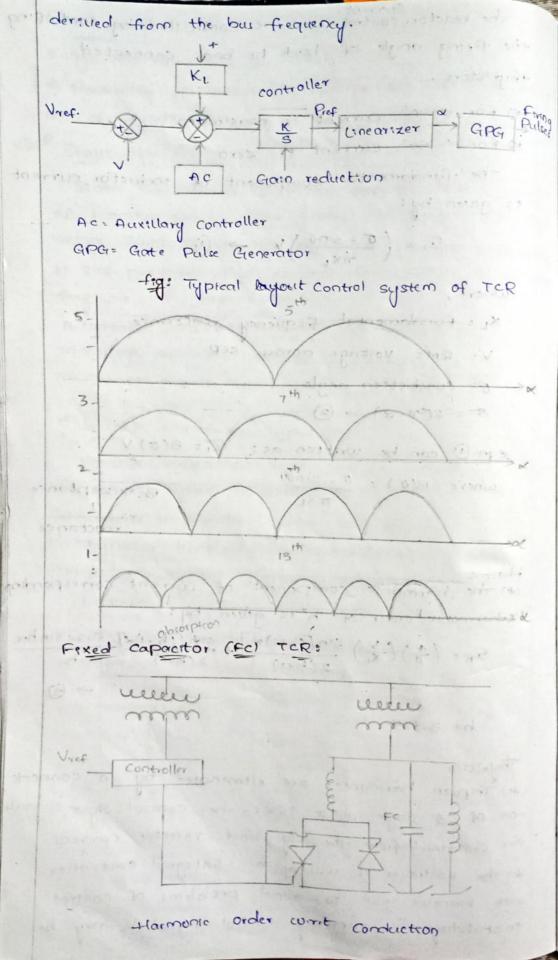
5 = conducteon angle

egn. O can be written as: It= B(0) V

where
$$B(\sigma) = \frac{\sigma - \sin \sigma}{\pi x_L}$$

B: susceptance

ck) the harmonic component of current corresponding to harmonic order of 'h' is given by:


$$I_h = \left(\frac{4}{\pi}\right) \left(\frac{V}{XL}\right) \frac{\sin\left((h+1)\alpha\right)}{2(h+1)} + \frac{\sin\left((h-1)\alpha\right)}{2(h-1)} \frac{\cos\alpha \sinh\alpha}{h}$$

h= 3.5.7 triples harmonici-> Non characteristic

thyristor

+) Triplen harmonics are eleminated by a connecting
-on of 3 single phase TCR's. The control systemsignals
are obtained from the ulg and reactor current.

+) The controller is usually an Sntegral controller
with variable gain to avoid problems of control
instability. The auxillary control signal Vi may be

TCR's are usually operated with fixed capacitor to provide variation of reactive power consumption from inductive to capacitive.

TCR Isus

Thyristor Switched Capacitor (TSC):

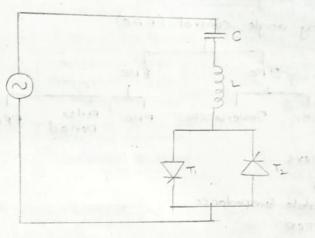


fig: Thyristor Switched Capacitor

thyristor switching is faster than mechanical Switching.
Also it is possible to have transient free operation
by controlling the instant of switching.

A enductor is usually connected in series with eapacitor to reduce the rate of change of

Advantages of TSC over TCR:

- * Required rating of TCR can be realuced.
- *) Reduced power Losses in inductive operation.

Loss comparison of FC-TCR & TCR-TSC:

Power Loss

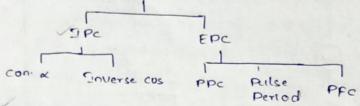
TCR-TSC

FETER /

70 .v

- Principle of De link control

-Steady state equivalent ckt of oc link


Derive the expression of for Dc current in HVDe tr.

O Converter Control characteristics

-> Va-ga characteristics of Hube Converter Station

3 Hierarchial control of Structure of HUDC (01)
Block diagram of HUDC control

-> Firing angle control (FAC)

- @ Filters
- 3 SVS

(3

-> Variable Simpedance

=> TCR

All Solutions of Actor load flows:

the solution methodology. can be classified as

- 1) Simultaneous (or) Unified method
- 2) Sequential (or) Alternating method

In the first approach, the ACE DC quantities are solved together. The simplest implementation of this approach is to consider all the equations (ACE DC quantities) Combined into one set of non-linear algebraic equations.

k) Jacobian matrix is then constructed & newton raphion method is used to solve the set of equations.

In Fast decouple method can also be used to solve jacobian matrix for Ac system equation solutions.

START Read data solve Ac power flow Largest mismatch Select closest Converter Solve De equations Compute P.Q NO largest mismatch) yes 1 & Sz END Here, Box to the vector of dependent variables for the De system and DR 12 the Vector mumatches De system equations. 2) Sequential or alternating method: In this method, Ac & De system equations solve seperately and Sequentially. Ac system is solved some degree of *) The Convergence using a simple model of based on its last solution

Flow chart of Acloc load flow:

to the Do system is solved in a simplified representation of Ac system.

In there are many approaches given below:

Perfectent the Ac system as a constant voltage.

In Represent the Ac system as a constant voltage.

In Represent the Ac system as a constant voltage.

Constant active or reactive source or load during the Ac solutions.

2) Represent the Ac system by uncoupled or coupled thevenin's equivalent model during De solutions.

thevenin's equivalent model during De Solutions.

3) Represent De nlw as Do model with Jacobian term sequential method has advantage of modulating programming where the Ac and De systems are modelled seperately in different program. Segments.

Madeline as a subject to the sequence of modeling.

Modeling of Dc network flink:

Rcr Rd -Rc.

the Dc network consists of Dc Links, smoothing reactors and conventers can be viewed as a resistive network excited by current (or) ula sources in steady state.

Depending on Series or shunt connection of converters: It may be approximate to consider loop resistance (or) nodal conductance matrix.

the converters are not ideal sources but are described by converter controller equations.

Sin general the elements of DC network can be represented into the tree, branch & links. The converters can be divided into either tree, branches (br) links.

the equations describing the DC network are

-[g] Vg = ig -> 1

ig = -Big Idi -> 2

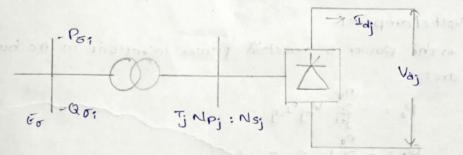
idt = -Bit Idi -> 3

Vdi = Big Vg + Bit Vat

where g=matrix of conductorice element (diagonal)

Vg, ig = ulg & current vectors corresponding to

conductorice.


= Big [g] Big Sac + Bt Var → @

ide, idt = Currents through the converters that are encluded in the links & trees.

Vdi, Var = Counter voltages

Bug, Ber = components of fundamental cutset motrex

Modeling of Dc converter:

Schematic diagram of conventer

Sit is assumed that 'N' convertiers, can be put into in groups such that for all the converters in the group the converter bus is identical.

Normally all the converters to the in groups is in a stateon can be grouped together

the number of converters in the ith group is it.

It is obvious that,

≥ n = N → 0

the ulg equation for the converter j' in group

$$V_{dj} : \left(\frac{3\sqrt{2}}{\pi}\right)\left(\frac{NS_{ij}}{NP_{ij}}\right)\left(\frac{E_{0}}{T_{j}}\right) V_{bo} \cos d_{i} - \left(\frac{3}{\pi}\right) X_{c_{i}} \cdot \int_{d_{i}} d_{i} \rightarrow 0$$

$$\frac{3}{\pi} \times_{c_{i}} : R_{d_{i}}$$

T= Tap changing where . .

Vbo = Base of vlg of the converter bus 'o'

Tj = off nominal tap ratio of the Tlfr

Eo = Pu Ac vlg at the converter bus

Ns; Np; = Nominals turns ratio of the primary & secondary windings:

Xc; = Leakage reactance of the tlf refer to secondary

4) All the Ac quantities are represented in pour

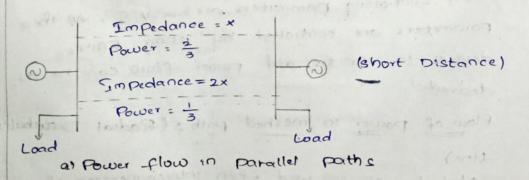
w) All the Da quantities are represented en volts/amperes.

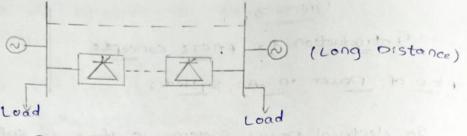
* the power & reaction power injections in Ac bus

St is to be noted that both vaj and Tang

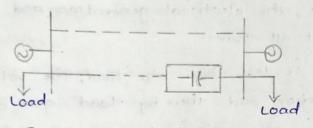
this results in Po being positive while Qo is negative.

UNIT-3

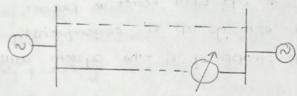

Introduction to FACTS concepts Flow of Power in Ac system:


In electrical power systems, of there es sufficient electrical storage, the electrical generation and load must balance at all times.

- to equal the generation minus transmission losses.
- the system will so up to the system will collapse.
- the system can have voltage collapse.
- +) When adequate generation is available, active power flows from surplus, generation areas to deficit areas and it flows through all parallel paths available.
 - to By using parallel or meshed path power flow can be controlled as desired.


 Necessity of Ac power flow in parallel/meshed path:

Power flow in parallel paths:



b) Power flow control in HVDC

c) Power flow control with variable impedance

d) Power flow control with phase angle regulator

- +) Power in Ac systems is given by P=V sins
- +) Power can controlled by varying 'x' and 's'
- +) If the distance involved is long, power can be controlled by current control and HUDC tranmission
- *) Variable impedance is obtained by using variable capacitance.
- * Variable phase angle is obtained by using AVR Automatic via Regulator / Phase Angle Regulator to the controlling Parameters in the parameters are controlled by using Facts devices in the tr. and power flow can be as desired.

Flow of power in meshed path: (Radial Distribution)

Meshed path is used when interconnection of times and 18 is required, and it provides

power division.

*) When overload occurs, in order to compensate that meshed system in adopted. The controlling parameter in meshed system are v, 8, and 8

*) Also ulg can be easily enjected in meshed system.

*) In mesh network, if any one of line is overloaded,

the line power can be controlled by FACTS controllers.

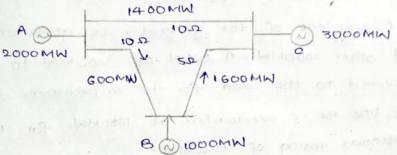


fig: Power flow in method system

Suppose lines AB, Bc and Ac have continous ratings of 1000MW, 1250MW and 2000MW respectively. They can carry twice those ratings in case of loss on any one of the line.

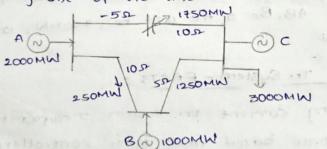


fig1: Power flow control by using Thyristor controlled series capacitor

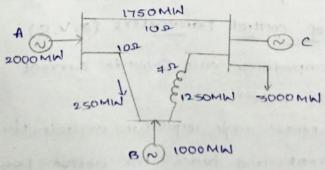


fig2: Power flow control by using Thyristor controlled serves reactance.

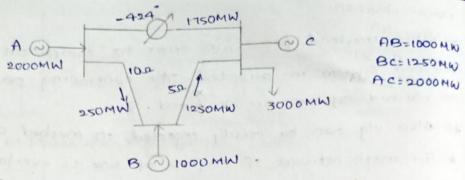


fig 3: Power flow control by using Thyristor Controlled AVR.

If any one of the generator is generating accommon and other 1000MW. A total of 3000MW to be delivered to the load for the impedances shown. The line BC is overloaded at 1600MW for its continuous rating of 1250MW.

Generation has to be decreased at B and increased at A in order to meet the load without overloading line Be. The capacitance whose reactonce is -52 is inserted in I line it reduces the line impedance from los to -52 so that power flow in the lines AB, Be & Ac will be 250MW, 1250MW and 1750MW.

Flexible Ac Tr. System - FACTS:

Alternating current tr. system incorporating power electronic based and other controllers to enhance controllability and increase the power transfer stability.

V.S

Importance of control parameters (2, V, S)

- +) Control of impedance can Provide current control & other power.
- vis control of phase angle regulator controls the vig and current and hence the active power when angle is not large.

end share angle can control the magnetic of the current.

Types of FACTS Controllers 5 7 Why?

- 1) Series controllers To compensate reactive power
- 2) Shunt controllers
- 3) & Combined Series Series controllers
- 4) Combined serves shunt controllers

FACTS controllers provide control of one or more

Ac tr. parameters (V, X, S)

1) Series Controllers (eg: sssc -> static syn. series compensator)

All the series controllers inject vlg in series with line as long as the vlg is in phase quadrature with line current.

Serves controllers consumes (or) supplies power. Every controller has storage devices like battery, capacitor fuel cell, SCMES.

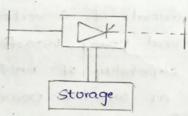
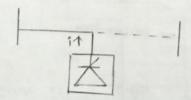



fig: Series controller with storage (battery)

2) Shunt Controllers: (eq: STATCOM)

All the shint controllers inject current into the system line as long as injected current is in phase quadrature with line voltage.

Shunt controllers acts as a source (or) absorber of reactive power. Every controller has storage devices like bottery, capacitor fiel cell. SCMES.

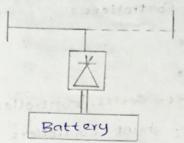


fig: Shunt controller with storage (battery)

3) Series - Series Controllers:

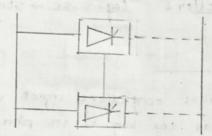


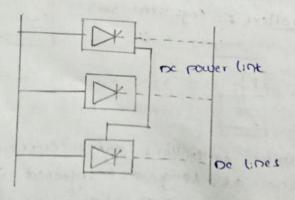
fig: Series - Series capacitor

It is a combination of series controllers

Coordinated in a multiline transmission system.

to It is also known as unified controller. Unified

means all the no terminals of converters are


connected together to real power transfer. The

real power transfer capability of unified series

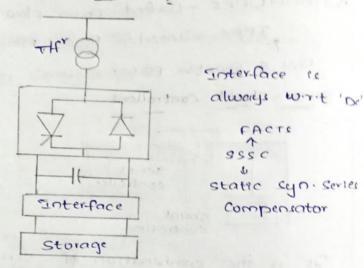
controller is referred as interline power flow

controller if it transfers both real 8 reactive

power.

Note: about series -> 2 line tr. series - vig Preactive power injected) shunt -> aurrent (-Abcorbed) If any 2 controllers are interconnected then only server- server of there's no interconnection then only series controller. Real POW 4 - Upf c - Uni-fred Power Flow Controller IPFC - Interline Power Flow Controller Real & Reactive power Series - Shunt Controller: controller controller It is the combination of series & shunt controllers that provides control of real & reactive power. STATCOM - Static Synchronous Compensator shunt controller Line GITU STATCOM (Gate ulg Turn off" Thyristor) source 47 STATCOM "1 a type of shunt controller

*) A STATCOM is a type of shunt controller


*) A STATCOM acts as vig source of it is

connected with capacitor & acts as current source

of it is connected with reactor.

- *) STATCOM is preferred to be act as ulg source rather than current source so that you can inject vig into the system.
- *) Diode is connected in parallel to make the commutation process easier.
- *) Shunt elements are always provided with external energy cource i.e transformer.

Statec synchronous Generator (38G):

All the thyrestor controlled devices are Impedance -ce type (only reactor is controlled in impedance)
All the switching type devices are stated
type

- to sscy is also known as STATCOM/ shunt controller
- * STATCOM is energy storage and large De copocitor acts as syn. Generator to supply & absorb reactive power.
- * Battery Energy Storage System (BESS): A chemical based energy Storage system using shunt connected vig source converters capable of rapidly adjusting the energy supplied / absorbed from Ac systems.