Dr.P Phanindra Kumar Reddy Computer Graphics

UNIT-I:

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-
display devices, raster-scan systems, random scan systems, graphics monitors and work
stations and input devices

Output primitives: Points and lines, line drawing algorithms, mid-point circle and ellipse
algorithms.Filled area primitives: Scan line polygon fill algorithm, boundary-fill and flood-fill
algorithms

UNIT-II:

2-D geometrical transforms: Translation, scaling, rotation, reflection and shear
transformations, matrix representations and homogeneous coordinates, composite transforms,
transformations between coordinate systems

2-D viewing : The viewing pipeline, viewing coordinate reference frame, window to view-port
coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping
algorithms, Sutherland —Hodgeman polygon clipping algorithm

UNIT-III:

3-D object representation : Polygon surfaces, quadric surfaces, spline representation, Hermite
curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models,
polygon rendering methods.

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear
transformations, composite transformations.3-D viewing : Viewing pipeline, viewing
coordinates, view volume and general projection transforms and clipping.

UNIT-IV:
Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line,
depth sorting, BSP-tree methods, area sub-division and octree methods

UNIT-V:
Computer animation: Design of animation sequence, general computer animation functions,
raster animation, computer animation languages, key frame systems, motion specifications

Dr.P Phanindra Kumar Reddy Computer Graphics

TEXT BOOKS:
1. “Computer Graphics Cversion”, Donald Hearn and M.Pauline Baker, Pearson Education
2. “Computer Graphics Principles & practice”, second edition in C, Foley, VanDam, Feiner
and Hughes, Pearson Education.
REFERENCES:
1. Computer Graphics”, second Edition, Donald Hearn and M.Pauline Baker, PHI/Pearson
Education.
2. Computer Graphics Second edition”, Zhigand xiang, Roy Plastock, Schaum’s outlines,
Tata Mc-Graw hill edition.
3. rocedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd
edition.
4. Principles of Interactive Computer Graphics”, Neuman and Sproul, TMH.
5. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.
6. Computer Graphics, Steven Harrington, TMH
Outcomes:

Students can animate scenes entertainment.
Will be able to work in computer aided design for content presentation..
Better analogy data with pictorial representation.

Dr.P Phanindra Kumar Reddy Computer Graphics

INDEX
UNIT NO TOPIC PAGE NO

Introduction: Application areas of Computer Graphics

| 1-11
Output primitives: Points and lines
2-D geometrical transforms:

I 12-29
2-D viewing
3-D object representation

1} 30-43
3-D Geometric transformations

v .. . 44-56
Visible surface detection methods

v . . 57-60
Computer animation

Dr.P Phanindra Kumar Reddy Computer Graphics

UNIT- 1

Overview of Computer Graphics

Application of Computer Graphics

Computer-Aided Design for engineering and architectural systems etc.
Objects maybe displayed in a wireframe outline form. Multi-window environment is also
favored for producing various zooming scales and views.
Animations are useful for testing performance.

Presentation Graphics
To produce illustrations which summarize various kinds of data. Except 2D, 3D graphics
are good tools for reporting more complex data.

Computer Art
Painting packages are available. With cordless, pressure-sensitive stylus, artists can
produce electronic paintings which simulate different brush strokes, brush widths, and
colors. Photorealistic techniques, morphing and animations are very useful in commercial
art. For films, 24 frames per second are required. For video monitor, 30 frames per second
are required.

Entertainment
Motion pictures, Music videos, and TV shows, Computer games

Education and Training
Training with computer-generated models of specialized systems such as the training of
ship captains and aircraft pilots.

Visualization
For analyzing scientific, engineering, medical and business data or behavior. Converting
data to visual form can help to understand mass volume of data very efficiently.

Image Processing
Image processing is to apply techniques to modify or interpret existing pictures. It is
widely used in medical applications.

Graphical User Interface
Multiple window, icons, menus allow a computer setup to be utilized more efficiently.

Video Display devices

Cathode-Ray Tubes (CRT) - still the most common video display device presently

Vertical Phosphor-
Focusing Deflection Coated
System Plates Screen
Base
Electron
Connector Electron Horizontal Beam
Pins Gun Deflection

Plates

Dr.P Phanindra Kumar Reddy Computer Graphics

Electrostatic deflection of the electron beam in a CRT

An electron gun emits a beam of electrons, which passes through focusing and deflection
systems and hits on the phosphor-coated screen. The number of points displayed on a CRT is
referred to as resolutions (eg. 1024x768). Different phosphors emit small light spots of
different colors, which can combine to form a range of colors. A common methodology for
color CRT display is the Shadow-mask meth

Electron
Guns

{ ~ V\\\
O Selection
of
Shadow Mask

N A
en0 ?E//‘

Y n |
%0) Uy
(J\ Magnified
%) (,;{-i Red Phosphor-Dot
/ oV Triangle
W] Green Blue

i/screen

Ilustration of a shadow-mask CRT

The light emitted by phosphor fades very rapidly, so it needs to redraw the picture repeatedly.
There are 2 kinds of redrawing mechanisms: Raster-Scan and Random-Scan

Raster-Scan

The electron beam is swept across the screen one row at a time from top to bottom. As it
moves across each row, the beam intensity is turned on and off to create a pattern of
illuminated spots. This scanning process is called refreshing. Each complete scanning of a
screen is normally called a frame.

The refreshing rate, called the frame rate, is normally 60 to 80 frames per second, or
described as 60 Hz to 80 Hz.

Picture definition is stored in a memory area called the frame buffer. This frame buffer
stores the intensity values for all the screen points. Each screen point is called a pixel (picture
element).

On black and white systems, the frame buffer storing the values of the pixels is called a
bitmap. Each entry in the bitmap is a 1-bit data which determine the on (1) and off (0) of the
intensity of the pixel.

On color systems, the frame buffer storing the values of the pixels is called a pixmap

Dr.P Phanindra Kumar Reddy Computer Graphics

(Though nowadays many graphics libraries name it as bitmap too). Each entry in the pixmap

Dr.P Phanindra Kumar Reddy Computer Graphics

occupies a number of bits to represent the color of the pixel. For a true color display, the
number of bits for each entry is 24 (8 bits per red/green/blue channel, each channel 28=256
levels of intensity value, ie. 256 voltage settings for each of the red/green/blue electron guns).

Random-Scan (Vector Display)

The CRT's electron beam is directed only to the parts of the screen where a picture is to be
drawn. The picture definition is stored as a set of line-drawing commands in a refresh display
file or a refresh buffer in memory.

Random-scan generally have higher resolution than raster systems and can produce smooth
line drawings, however it cannot display realistic shaded scenes.

Display Controller

For a raster display device reads the frame buffer and generates the control signals for the
screen, ie. the signals for horizontal scanning and vertical scanning. Most display controllers
include a color map (or video look-up table). The major function of a color map is to provide
a mapping between the input pixel value to the output color.

Anti-Aliasing

On dealing with integer pixel positions, jagged or stair step appearances happen very
usually. This distortion of information due to under sampling is called aliasing. A number
of ant aliasing methods have been developed to compensate this problem.

One way is to display objects at higher resolution. However there is a limit to how big we
can make the frame buffer and still maintaining acceptable refresh rate.

Drawing a Line in Raster Devices

DDA Algorithm

Dr.P Phanindra Kumar Reddy Computer Graphics

In computer graphics, a hardware or software implementation of a digital differential analyzer
(DDA) is used for linear interpolation of variables over an interval between start and end point.
DDA are used for rasterization of lines, triangles and polygons. In its simplest implementation
the DDA Line drawing algorithm interpolates values in interval [(xstart, ystart), (xend, yend)] by
computing for each xi the equations xi = xi—1+1/m, yi = yi—1 + m, where Ax = xend — xstart and
Ay = yend — ystart and m = Ay/Ax.

The dda is a scan conversion line algorithm based on calculating either dy or dx. A line is
sampled at unit intervals in one coordinate and corresponding integer values nearest the line path
are determined for other coordinates.

Considering a line with positive slope, if the slope is less than or equal to 1, we sample at unit x
intervals (dx=1) and compute successive y values as

Subscript k takes integer values starting from 0, for the 1st point and increases by until endpoint
is reached. y value is rounded off to nearest integer to correspond to a screen pixel.

For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at dy=1 and
calculate consecutive x values as

Similar calculations are carried out to determine pixel positions along a line with negative slope.
Thus, if the absolute value of the slope is less than 1, we set dx=1 if i.e. the starting extreme
point is at the left.

The basic concept is:

- Aline can be specified in the form:
y=mx+c

- Let m be between O to 1, then the slope of the line is between 0 and 45 degrees.

- For the x-coordinate of the left end point of the line, compute the corresponding y value
according to the line equation. Thus we get the left end point as (x1,yl), where yl may
not be an integer.

- Calculate the distance of (x1,y1) from the center of the pixel immediately above it and call it
D1

- Calculate the distance of (x1,yl) from the center of the pixel immediately below it and call it
D2

- IfDI1 is smaller than D2, it means that the line is closer to the upper pixel than the lower
pixel, then, we set the upper pixel to on; otherwise we set the lower pixel to on.

- Then increatement x by 1 and repeat the same process until x reaches the right end point
of the line.

- This method assumes the width of the line to be zero

center of
upper pixel “TT—___
T -
/ ? D1
Ling ~———= ‘
Hky‘/\ J‘ D2
e 7_,\ J{
— il ‘\“\
G =L .
center of — ~ point (X1, Y1)

lower pixel

Bresenham's Line Algorithm

Dr.P Phanindra Kumar Reddy Computer Graphics

This algorithm is very efficient since it use only incremental integer calculations. Instead of
calculating the non-integral values of D1 and D2 for decision of pixel location, it computes a
value, p, which is defined as:

p = (D2-D1)* horizontal length of the line
if p>0, it means D1 is smaller than D2, and we can determine the pixel location accordingly

However, the computation of p is very easy:
The initial value of p is 2 * vertical height of the line - horizontal length of the line.
At succeeding x locations, if p has been smaller than 0, then, we increment p by 2 * vertical

height of the line, otherwise we increment p by 2 * (vertical height of the line - horizontal
length of the line)

All the computations are on integers. The incremental method is applied to

void BresenhamLine(int x1, int y1, int x2, int y2)
{ int X, y, p, constl, const2; /* initialize
variables */ p=2%*(y2-y1)-(x2-x1);
constl=2%(y2-yl); const2=2*((y2-
yD-(x2-x1));

x=x1;
y=yl;
SetPixel(x,y);
while (x<xend) {
X++;

if (p<0)

{ p=p+constl;

}

else

{ y++;

p=p+const2;

}
SetPixel(x,y);

Bitmap

- A graphics pattern such as an icon or a character may be needed frequently, or may
need to be re-used.

- Generating the pattern every time when needed may waste a lot of processing time.

- A bitmap can be used to store a pattern and duplicate it to many places on the image
or on the screen with simple copying operations.

Dr.P Phanindra Kumar Reddy Computer Graphics

Mid Point circle Algorithm

However, unsurprisingly this is not a brilliant solution!
Firstly, the resulting circle has large gaps where the slope approaches the vertical
Secondly, the calculations are not very efficient
The square (multiply) operations
The square root operation — try really hard to avoid these!
We need a more efficient, more accurate solution.
The first thing we can notice to make our circle drawing algorithm more efficient is that circles
centred at (0, 0) have eight-way symmetry

(-x, y) T (x,y)

Pl B

-y, x) O, x)

(;y ’ -.)C) (y ’ -.X')

Nl o

(-, -y) | (X, -y)

Similarly to the case with lines, there is an incremental algorithm for drawing circles — the mid-
point circle algorithm

In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points
for the top right eighth of a circle, and then use symmetry to get the rest of the points

Assume that we have
just plotted point (xz, yi)
The next point is a
choice between (xx+1, yi)
and (xk+1, yk-])

Dr.P Phanindra Kumar Reddy Computer Graphics

9

Copdl Cetbyd | |

We would like to choose

the point that is nearest to
the actual circle
So how do we make this choice?

Let’s re-jig the equation of the circle slightly to give us:
The equation evaluates as follows:

fcirc('x’ y) :'x2 +y2 —}"2

<0,

ﬁirc ('x’ y) = 0’
>0,

<0 if (x, y) is outside thecircleboundary
=0if (x, y) is on thecircleboundary
>0if (x, y) is inside thecircleboundary

By evaluating this function at the midpoint between the candidate pixels we can make our
decision

Assuming we have just plotted the pixel at (xx,yx) so we need to choose between (xx+1,yx) and
(Xk+ l,yk— 1)

Our decision variable can be defined as:

pk = f;'irc(-xk + l’yk - yz)

= (o + 124 (y, = b -1

If px < 0 the midpoint is inside the circle and and the pixel at yy is closer to the circle

Otherwise the midpoint is outside and yx-1 is closer

Dr.P Phanindra Kumar Reddy Computer Graphics

To ensure things are as efficient as possible we can do all of our calculations incrementally
First consider:

DPiy :-fciru'/‘H FLL Vi %:

=[(x +1)+1]2+‘/k+ —yj—”Q
P _P 2 RONGH _yf)_(yk*l_y)1

k™ k

where yi.; 1s either yi or yi-1 depending on the sign of pi

The first decision variable is given as:

po=fare(lr = 1)

=14 - %)2 — 2

Then if px < 0 then the next decision variable is given as:

Diy =D +2x.,+1
If pr > O then the decision variable is:

Pry :pk+2xk+1 +1—2yk +1

Input radius r and circle centre (x, y), then set the coordinates for the first point on the
circumference of a circle centred on the origin as:

(X0, y0) =(0, r)
* Calculate the initial value of the decision parameter as:

po=%-r

« Starting with k£ = 0 at each position xi, perform the following test. If px < 0, the next point
along the circle centred on (0, 0) is (xx+1, yi) and:

P = P + 2%, +1
Otherwise the next point along the circle is (x+1, y«-1) and:
Piy =D 2% 12y,
Determine symmetry points in the other seven octants

Move each calculated pixel position (x, y) onto the circular path centred at (x., y.) to plot the
coordinate values:

Dr.P Phanindra Kumar Reddy Computer Graphics

X=X+Xc Yy=Y+Ye
Repeat steps 3 to Suntilx >=y

To see the mid-point circle algorithm in action lets use it to draw a circle centred at (0,0) with
radius 10.

Scan-Line Polygon Fill Algorithm
- Basic idea: For each scan line crossing a polygon, this algorithm locates the intersection

points of the scan line with the polygon edges. These intersection points are shorted from
left to right. Then, we fill the pixels between each intersection pair.

P

o - il 3

+—
10 14 18 24

- Some scan-line intersection at polygon vertices require special handling. A scan line
passing through a vertex as intersecting the polygon twice. In this case we may or may
not add 2 points to the list of intersections, instead of adding 1 points. This decision
depends on whether the 2 edges at both sides of the vertex are both above, both below, or
one is above and one is below the scan line. Only for the case if both are above or both
are below the scan line, then we will add 2 points.

AA Scan Line y'

'/1 2

1 1§V/ 1

Inside-Outside Tests:

Scan Line y

- The above algorithm only works for standard polygon shapes. However, for the cases
which the edge of the polygon intersects, we need to identify whether a point is an interior
or exterior point. Students may find interesting descriptions of 2 methods to solve this
problem in many text books: odd-even rule and nonzero winding number rule.

Dr.P Phanindra Kumar Reddy Computer Graphics

exterior
N
IR

c

interior — interior

Odd Even rule Non. ero Winding Number Rule

Boundary-Fill Algorithm

- This algorithm starts at a point inside a region and paint the interior outward towards the
boundary.

- This is a simple method but not efficient: 1. It is recursive method which may occupy a
large stack size in the main memory.

void BoundaryFill(int x, int y, COLOR fill, COLOR boundary)

{ COLOR current;

current=GetPixel(x,y);

if (current<>boundary) and (current<>fill) then {

SetPixel(x,y,fill);
BoundaryFill(x+1,y,fill,boundary);
BoundaryFill(x-1,y,fill,boundary);
BoundaryFill(x,y+1,fill,boundary);
BoundaryFill(x,y-1,fill,boundary);

\

Seed pixel B sBorder pixels

Pixels filled with the
new colour value

- More efficient methods fill horizontal pixel spands across scan lines, instead of
proceeding to neighboring points.

Dr.P Phanindra Kumar Reddy Computer Graphics

Flood-Fill Algorithm

- Flood-Fill is similar to Boundary-Fill. The difference is that Flood-Fill is to fill an area
which I not defined by a single boundary color.

void BoundaryFill(int x, int y, COLOR fill, COLOR old_color)
{ if (GetPixel(x,y)== old_color) {
SetPixel(x,y,fill);
BoundaryFill(x+1,y,fill,boundary);
BoundaryFill(x-1,y,fill,boundary);
BoundaryFill(x,y+1,fill,boundary);
BoundaryFill(x,y-1,fill,boundary);

11

Dr.P Phanindra Kumar Reddy Computer Graphics

Part —I, UNIT -2
Two Dimensional Transformations

In many applications, changes in orientations, size, and shape are accomplished with
geometric transformations that alter the coordinate descriptions of objects.

Basic geometric transformations are:
Translation
Rotation
Scaling

Other transformations:
Reflection
Shear

3.1 Basic Transformations
Translation

We translate a 2D point by adding translation distances, tx and ty, to the original coordinate
position (X,y):
X'=X+1tx,y'=y+ty

Alternatively, translation can also be specified by the following transformation matrix:

M1 Oty |
lo 1t]
|

o o |l
Then we can rewrite the formula as:
<1 T1 o0txllx]
| I | 1]
FIE R TR

L Lo ot it

For example, to translate a triangle with vertices at original coordinates (10,20), (10,10),
(20,10) by t,=5, ty=10, we compute as followings:

Translation of vertex (10,20):

'] r1 0 5]{101 |r1>*<10'0*20+5>*<1|1 r151
| | ' + + l |
=0 1 10 20, 50%10" 1*20 10*1 = 30

Ly
Lo oIl 1] [T o=tor0=20+ 1]l |11 |l

Translation of vertex
(10,10):

! -y !

|y + + |
Y =01 10 10 = 0510 1#10 F10#1 ='20 |

It]l [fo ot][]l [lo*t0+0*1041%1 |I |l 1]

Dr.P Phanindra Kumar Reddy Computer Graphics

Translation of vertex (20,10):

[xT [1 0 517201 [1%20:0%10+5%1 7 [25]

:y'l 40 1 10"1|o | = |'0*20+*1o1@*1 ||=|2|0||
, |

Hal o ot JI[I 1)l [Fox200 101 |1 [l 1]

The resultant coordinates of the triangle vertices are (15,30), (15,20), and (25,20) respectively.

Exercise: translate a triangle with vertices at original coordinates (10,25), (5,10), (20,10)
by tx=135, ty;=5. Roughly plot the original and resultant triangles.

3.1.2 Rotation Al he Oriei

To rotate an object about the origin (0,0), we specify the rotation angle ?. Positive and
negative values for the rotation angle define counterclockwise and clockwise rotations
respectively. The followings is the computation of this rotation for a point:

x'=xcos?-ysin?
y'=xsin?+ycos?

Alternatively, this rotation can also be specified by the following transformation matrix:
[cos® —-sin® O
i

0 |

sin © cos |

o o 1]

Then we can rewrite the formula as:

[x] [cos® — sin® 0 [x]
yl=sne cost ollyl
(|

fh oo il]l

For example, to rotate a triange about the origin with vertices at original coordinates (10,20),
(10,10), (20,10) by 30 degrees, we compute as followings:

0O - © - _
[cos sin O_I [cos 30 sin 30 O_I f0.866 0.5 O-I

| sin@ cosf 0| =] sin 30 cos30 o/5 05 0.866 o

[l o o 1l o o 1Jl[lo o 1]l

Rotation of vertex (10,20):

[x1 Toges 05 07|f101_ l0.86610* C0.5)%20* 0 1] [-134]

lyl =l 05 0866 o 20 =1 05*10+0.866 %20+ 0*1 |=| 2232

0 0 1/l 1] | 0%0+0%204% N
1L

|
1L I

13

Dr.P Phanindra Kumar Reddy Computer Graphics

Rotation of vertex (10,10):

y' = 05 0866 0l| 10/=] 05*10+0866*10+0#1 | = 1366

1] o 0 1Ii1ii 0*10 0*101*1 | | 1|
1L I] L Lo

Rotation of vertex (20,10):

[x] [0.866 —0.5 0][10] [0.866*10+ (0.5)*10 + 0*1] [3.66 |
|
|
|

[x] 10866 —0.5 0][20] [0.866*20+ (-0.5)*10+ 0*1] [12.32]
lyl 4 05 0866 o'l'10|:|| 0.5 %20+ 0.866 *10+ 0 *1 |:||18.66|
1] 0 0 1] 1| | 0%20+0%*101%1 || 1]
L | L] L L

The resultant coordinates of the triangle vertices are (-1.34,22.32), (3.6,13.66), and
(12.32,18.60) respectively.

Exercise: Rotate a triange with vertices at original coordinates (10,20), (5,10),
(20,10) by 45 degrees. Roughly plot the original and resultant triangles.

Scaling With Respect to the Origin

We scale a 2D object with respect to the origin by setting the scaling factors sxand sy,
which are multiplied to the original vertex coordinate positions (X,y):

X'=x*sx, y'=y *sy

Alternatively, this scaling can also be specified by the following transformation matrix:

s 0 0]
|| 0o S 0 !
y
] ©
Then we can rewrite the formula as: 0 1J|

[x] Tsx 0 Ollx]
[y i=0 Sy°||¥ll
]| U() 01_|[_| 1J|

For example, to scale a triange with respect to the origin, with vertices at original
coordinates (10,20), (10,10), (20,10) by sx=2, sy=1.5, we compute as followings:

Scaling of vertex (10,20):

[xT 2 0 Oﬂ]“(ﬂ r|2*10'0*20;'0*1-! [0]
lyl 20 15011 20l- gs107 1520701 =/3

1) Lo o o)l 11l [Foxt0+0% 20451]I [I1]l

14

Dr.P Phanindra Kumar Reddy Computer Graphics
Scaling of vertex (10,10):

lr’ﬂl Irz 0 olwlo1 2510t 0 #10% 0 %1 Irzo1
Y =015 0 I10':!() £1015%100%1 = {5 |

L [lo o 1l[l 1]l [T o=10+0*10+ 11 |1 {11]l

Scaling of vertex
(20,10):

[xT Ty o 0”201 [2 20+ 0#10" 0*1| f4(ﬂ
lyldo 15 0 I10,:! 0 *20"15%107 01 = 15’

Lo o tl[l 1]l {1 ox20 +010 41 |1 [I1]l

The resultant coordinates of the triangle vertices are (20,30), (20,15), and (40,15) respectively.

Exercise: Scale a triange with vertices at original coordinates (10,25), (5,10), (20,10) by

sx=1.5, sy=2, with respect to the origin. Roughly plot the original and resultant
triangles.

Concatenation Properties of Composite Matrix

I. Matrix multiplication is associative:
A-B-C=(A'B)-C=A:(B-C)

Therefore, we can evaluate matrix products using these associative grouping.

For example, we have a triangle, we want to rotate it with the matrix B, then we translate
it with matrix A.

Then, for a vertex of that triangle represented as C, we compute its transformation as:

C'=A-(B-O)
But we can also change the computation method as:
=(A-B)-C

The advantage of computing it using C' = (A-B)- C instead of C'=A-(B-C) is that, for
computing the 3 vertices of the triangle, Ci, C», C 3, the computation time is shortened:

Usmg C'=A-(B-O):

compute B - C; and put the result into I}
compute A - I; and put the result into C;
compute B - C; and put the result into I
compute A - I» and put the result into C;
compute B - C; and put the result into I3

compute A - I3 and put the result into C3

Usmg C'=(A-B)-C:
compute A - B and put the result into M
compute M - C; and put the result into Cy’
compute M - C, and put the result into C;
compute M - C3 and put the result into C3

15

Dr.P Phanindra Kumar Reddy Computer Graphics

Example: Rotate a triangle with vertices (10,20), (10,10), (20,10) about the origin by 30
degrees and then translate it by tx=5, t,=10,

We compute the rotation matrix:

[cos30 —sin30 0l [0866 — 05 0l
B =Is|in 30 cos30 0 ' =:o.5 0.866 0|
|

[l o o 1]l[lo o 1]l

And we compute the translation matrix:

1 o0 5]
A=l 110

|

1o o 1

Then, we compute M=A-B

[1 o 51[0866 -05 0l

M=10 1 10-" 05 0.866 0|
| I |

o o 1]l[lo o 1]l
{1*0.866*0*0.5 550 1%70570%0.86675%0 1407 0%0* 5%1 |
M= 0%0866 +1#0.5+10%0 0% 05+ 1%0.866+10%0 0*0+1%0+10*1

U 0 *0.866+0*0.5+1*%0 0*-0.5+0*0.866+1*%0 0*0+0*0+1*1,
[0.866 —0.5 5]
M=| 05 0866 10 |
Lo o 1)
Then, we compute the transformations of the 3 vertices:
Transformation of vertex (10,20):

[x] 10866 — 05 571[10] [0.866*10+ (-0.5)*20+5*1] [3.66 |
'v'd 05 0866 10''20'd 05%10+0.866%20 +10*1

| = 32.32
1] o 0 11| 0*10,0%20:0%1 | | 1|
L 1L 1L 1L L
Transformation of vertex
(10,10):
[x] T0.866 - 0.5 51710] [0.866*10+ (-0.5)*10+ 5 *1] [8.66]
lyl=l 05 0866 10"|1o'=! 0.5 ¥10+ 0.866 *10+10%1 !—|23.66|
11|] 0 0 1| 1]] 0*10+ 0 *1041%*1] 1
L I L L 1L L

Dr.P Phanindra Kumar Reddy Computer Graphics

Transformation of vertex (20,10):

Yol 05 0866 1010 | =] 05%20+0.866%10 +10%1 | = 28.66'

—_— <

[x7] 10866 —05 57[20] [0.866*20+ (-0.5)*10+ 5*1] [17.32]
|
|
|

1o 0 1) 1] | 0%20,0%04% 1
L] L L1 1 I
The resultant coordinates of the triangle vertices are (3.66,32.32), (8.66,23.66), and
(17.32,28.66) respectively.

II. Matrix multiplication may not be commutative:
A-B may not equal to B- A

This means that if we want to translate and rotate an object, we must be careful about the
order in which the composite matrix is evaluated. Using the previous example, if you
compute C' = (A-B)-C, you are rotating the triangle with B first, then translate it with A,
but if you compute C' = (B- A)-C, you are translating it with A first, then rotate it with B.
The result is different.

Exercise: Translate a triangle with vertices (10,20), (10,10), (20,10) by tx=5, ty=10 and then
rotate it about the origin by 30 degrees. Compare the result with the one obtained
previously: (3.66,32.32), (8.66,23.66), and (17.32,28.66) by plotting the original
triangle together with these 2 results.

Composite Transformation Matrix

Translations

By common sense, if we translate a shape with 2 successive translation vectors: (txi, ty1) and
(tx2, ty2), it is equal to a single translation of (txi+ tx2, ty1+ t y2).
This additive property can be demonstrated by composite transformation matrix:

[1 0txill1 0 tx2] [1#¥140%0+tx1 %0 1040 *1 +tx1 * 0 1% tx2 40 *ty2 4t x1*1 |
|

I I 1
1 ’
1 1 p® Y =101 10 1y¥ 0 0 *0+1*1 +ty1 *0 0%t B tyaty*l |

lo o 1]I[lo o 1]l [lo*1+0%0+1¥0 0%0+0*1+1%0 0*tx240 *tya H*1 |l
[_1 Otxlitxz-l
| |

— 0l t &t
- ‘ yl y2

oo 1 |

This demonstrates that 2 successive translations are additive.

17

Dr.P Phanindra Kumar Reddy Computer Graphics

Rotations

By common sense, if we rotate a shape with 2 successive rotation angles: ? and a, about the
origin, it is equal to rotating the shape once by an angle ? + a about the origin.
Similarly, this additive property can be demonstrated by composite transformation matrix:

[cos © sin® 0] [cosa sin o 0]

| sin® CoSO 0fin « cosa 0

U 0 0 1l 0 0 1J
[cos@cosa + (sin 0) *sing + 0*0 cos@ * (sina)+ (sin) cos o+ 0*0 cos® *0+ (sin®)*0+ 0 *1]

=| sin@cosg + cosh *sing + 0 *0 sinf * sing)+ cos@ *cosg + 0 *0 sin *0+ cosf *04+ 0*1 |
| O*cose + 0 *sing + 1*0 0*¢Csing)+ 0 *cosg + 1*0 0*%0+0*0+1 *1 |
L]
[cosBos o —sin€in a — (cos Osin o + sin® cosa) O]
| |
=| sing cos g + cOS Hin g —sin@in @™+ cos@os « 0
0 0 1
L |
[cos() —sin@+a) O]
16+ a o
cos(0 + o)
=l sin@ + @)
0 0 1

This demonstrates that 2 successive rotations are additive.

Scalings With Respect to the Origin

By common sense, if we scale a shape with 2 successive scaling factor: (sxi, Sy1) and (sx2,
sy2), with respect to the origin, it is equal to a single scaling of (sx1™ sx2, Sy1™ sy2) with
respect to the origin. This multiplicative property can be demonstrated by composite
transformation matrix:

[le 0 OVsz 0 O_I
| 0 s 0l .'0 s 0
I

yl | y2

[lo o 1]lllo o 1]l

!—sx1*sx2'0*0+0*0sx1*0|0*sy2 "0%0 sx*0 7 0%07 0]
r*sxzsyﬁoo*qo*0sy1*sm0*00*0§y1*00*1 . P '
0*s +0*0+1*0 0*0+0*s +1*0 0%00%0 1%

I_ x2 y2

[_le*SXZ 0 O—|
| 0 s *s ol

| o 0 1
L J

This demonstrates that 2 successive scalings with respect to the origin are multiplicative.

Dr.P Phanindra Kumar Reddy Computer Graphics

General Pivot-Point Rotation

Rotation about an arbitrary pivot point is not as simple as rotation about the origin. The

procedure of rotation about an arbitrary pivot point is:

- Translate the object so that the pivot-point position is moved to the origin.

- Rotate the object about the origin.

- Translate the object so that the pivot point is returned to its original position.

b

(a} (b) (e}

Original Position Translation of Rotation
of Object and Object so that about
Pivot Point Pivot Point Origin
(x.ylisat
Origin

The corresponding composite transformation matrix is:

[1 0 x:l[cos® —sin® 0] [1
I I [
o 1 Yigpe cos o] o

o o1]lllo o 1]lllo

Ircosﬁ —sin@ xrﬂilﬁ O_Xr—l
0

= |sin@ cosf Tl Y
o o 1o o1
rCOS sin X rcosf + yrsin8+xr—||
I
= |sin 0 cosf Xrsin®—yrcos@+yr |
! I
LIo 0 :

General Fixed-Point Scaling

(d)

Translation of
Object so that
the Pivot Point
Is Returned
to Position
(x. y)

Scaling with respect to an arbitrary fixed point is not as simple as scaling with respect to
the origin. The procedure of scaling with respect to an arbitrary fixed point is:

1. Translate the object so that the fixed point coincides with the origin.

2. Scale the object with respect to the origin.

3. Use the inverse translation of step 1 to return the object to its original position.

A

-

(a) (b} ()

Original Position Translate Object Scale Object
of Object and so that Fixed Point with Respect
Fixed Point (X v} Is at Origin to Origin

(X y)

(d)
Translate Object
s0 that the Fixed Point
Is Returned to
Position (x,, y;)

19

Dr.P Phanindra Kumar Reddy Computer Graphics

The corresponding composite transformation matrix is:

[1 0 x¢llsx 0 oll1 0 fxﬁl Ifsx 0 xf(1-sx)]
I I

|IO 1 0 sy g I % =] 0 sy yfasy | |

[0 01||001?|001 | 0 0 1|

L 1L 1L 1L]

Scaling along an arbitrary direction is not as simple as scaling along the x-y axis. The
procedure of scaling along and normal to an arbitrary direction (s; and s2), with respect to
the origin, is:

1. Rotate the object so that the directions for s; and sz coincide with the x and y axes
respectively.
2. Scale the object with respect to the origin using (si, s2).

3. Use an opposite rotation to return points to their original orientation.

v y
s 2.2
5 (12, 3/2)
n mnn
(32, 1/2)
o x 10, 0] (1,0 x (0, 03| o
s, al (L)

A square (a) is converted to a parallelogram (b) using the composite
transformation matrix 5-33, with s, = 1,5, = 2, and 6 = 45°,

The corresponding composite transformation matrix is:

lrcos(—e) ~ sin(-6) O_l lrs1 0 O-} |.Fos 6 “sinf 0
sinQp cos(—8) o] U % || sind cosf 0

0 0 1o 1o o 1
L 1L Il

20

Dr.P Phanindra Kumar Reddy

Computer Graphics

Other Transformations_

Reflection

n ’

0,00 (1.0 x {0, 0)
(a)

Reflection about the x axis:

[x1 10 0lfx]
vido oty

o0 01 1
ol il
1e. X'=X; y'=-y
Reflection about the y axis:
[x] [=10 0] x|
||y'| :!0 1ol yl

il 0 01 1
[Il]!

1e. X'=-X; y'=y

Flipping both x and y coordinates of a point relative to the origin:

[xT [-10 0l[x]
|y'\:!0 "10||5ﬁ||

il o ol

ie. X'=-X; y'=-y

Reflection about the diagonal line y=x:
[x To 1 ollx]
|I y' =! 1 00 | ‘)|/|

ik x=fd g0 1JI[1 1]

Reflection about the diagonal line y=-x:

[xT [0 -1 0]x]
'y 210 Ollﬂ

1] lL[o o1l

ie. X'=-y; y'=-x

X- direction shear, with a shearing parameter shy,
relative to the x-axis:

1T WHH
I |

@n @3

(1,00 %
(b

21

Dr.P Phanindra Kumar Reddy Computer Graphics

X' 1 shx 0 x
y =0 1 0 vy

M o o 1/|l1]

ie. X'=x+y*shy; y'=-x

Exercise: Think of a y-direction shear, with a shearing parameter shy, relative to the y-axis.

Transformation Between 2 Cartesian Systems

For modelling and design applications, individual objects may be defined in their own local
Cartesian References. The local coordinates must then be transformed to position the objects
within the overall scene coordinate system.

Suppose we want to transform object descriptions from the xy system to the x'y' system:

The composite transformation is:

y axis |

lrcos(—é)) “sin(-0) xr1[1 0-x0]
by

0

sinOp cos(-0) i
0 0 1110 0 1
, . L 1l |

ol Xy X axis

22

Dr.P Phanindra Kumar Reddy Computer Graphics

Part-ILUNIT -2
2-Dimensional viewing

Images on the Screen

All objects in the real world have size. We use a unit of measure to describe both the size of an
object as well as the location of the object in the real world. For example, meters can be used to
specify both size and distance. When showing an image of an object on the screen, we use a
screen coordinate system that defines the location of the object in the same relative position as in
the real world. After we select the screen coordinate system, we change the picture to display
interior screen that means change it into screen coordinate system.

4.1.1 Windows and Clipping

The world coordinate system is used to define the position of objects in the natural world. This
system does not depend on the screen coordinate system , so the interval of number can be
anything(positive, negative or decimal). Sometimes the complete picture of object in the world
coordinate system is too large and complicate to clearly show on the screen, and we need to
show only some part of the object. The capability that show some part of object internal a specify
window is called windowing and a rectangular region in a world coordinate system is called
window. Before going into clipping, you should understand the differences between window and
a viewport.

A Window is a rectangular region in the world coordinate system. This is the coordinate
system used to locate an object in the natural world. The world coordinate system does not
depend on a display device, so the units of measure can be positive, negative or decimal
numbers.

wiff(fc;;

1] ~

S -
Picture in world coordinate system

A Viewport is the section of the screen where the images encompassed by the window on the
world coordinate system will be drawn. A coordinate transformation is required to display the
image, encompassed by the window, in the viewport. The viewport uses the screen coordiante
system so this transformation is from the world coordinate system to the screen coordinate
system.

23

Dr.P Phanindra Kumar Reddy Computer Graphics
. "y - ™
viewport
e L oy
Screen SCcrcen

When a window is "placed" on the world, only certain objects and parts of objects can be seen.
Points and lines which are outside the window are "cut off" from view. This process of "cutting
off" parts of the image of the world is called Clipping. In clipping, we examine each line to
determine whether or not it is completely inside the window, completely outside the window, or
crosses a window boundary. If inside the window, the line is displayed. If outside the
window,the lines and points are not displayed. If a line crosses the boundary, we must determine
the point of intersection and display only the part which lies inside the window.

Cohen-Sutherland Line Clipping

The Cohen-Sutherland line clipping algorithm quickly detects and dispenses with two common
and trivial cases. To clip a line, we need to consider only its endpoints. If both endpoints of a line
lie inside the window, the entire line lies inside the window. It is trivially accepted and needs no
clipping. On the other hand, if both endpoints of a line lie entirely to one side of the window, the
line must lie entirely outside of the window. It is trivially and needs to be neither clipped nor
displayed.

Inside-Outside Window Codes
To determine whether endpoints are inside or outside a window, the algorithm sets up a half-
space code for each endpoint. Each edge of the window defines an infinite line that divides the

whole space into two half-spaces, the inside half-space and the outside half-space, as shown
below.

24

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/trivial.html

Dr.P Phanindra Kumar Reddy Computer Graphics

As you proceed around the window, extending each edge and defining an inside half-space and
an outside half-space, nine regions are created - the eight "outside" regions and the one "inside"
region. Each of the nine regions associated with the window is assigned a 4-bit code to identify
the region. Each bit in the code is set to either a 1(true) or a O(false). If the region is to the left of
the window, the first bit of the code is set to 1. If the region is to the top of the window,

the second bit of the code is set to 1. If to the right, the third bit is set, and if to the bottom,

the fourth bit is set. The 4 bits in the code then identify each of the nine regions as shown below.

1001 01 0101

1000 OO0 0100
Window

1010 o010 2110

For any endpoint (X,y) of a line, the code can be determined that identifies which region the
endpoint lies. The code's bits are set according to the following conditions:

First bit set 1l : Point lies to left of window x= x4,
mecond bit set 1 0 Pont lies to right of window x = x..
Third bit set 1 : Point lies below(bottom) window ¥ < ¥on

tourth bit set 1 © Point lies above(top) window ¥ > ¥oax

The sequence for reading the codes' bits is LRBT (Left, Right, Bottom, Top).

Once the codes for each endpoint of a line are determined, the logical AND operation of the
codes determines if the line is completely outside of the window. If the logical AND of the
endpoint codes is not zero, the line can be trivially rejected. For example, if an endpoint had a
code of 1001 while the other endpoint had a code of 1010, the logical AND would be 1000
which indicates the line segment lies outside of the window. On the other hand, if the endpoints
had codes of 1001 and 0110, the logical AND would be 0000, and the line could not be trivially
rejected.

The logical OR of the endpoint codes determines if the line is completely inside the window. If
the logical OR is zero, the line can be trivially accepted. For example, if the endpoint codes are
0000 and 0000, the logical OR is 0000 - the line can be trivially accepted. If the endpoint codes
are 0000 and 0110, the logical OR is 0110 and the line cannot be trivially accepted.

Algorithm

The Cohen-Sutherland algorithm uses a divide-and-conquer strategy. The line segment's
endpoints are tested to see if the line can be trivially accepted or rejected. If the line cannot be
trivally accepted or rejected, an intersection of the line with a window edge is determined and the
trivial reject/accept test is repeated. This process is continued until the line is accepted.

Dr.P Phanindra Kumar Reddy Computer Graphics

To perform the trivial acceptance and rejection tests, we extend the edges of the window to
divide the plane of the window into the nine regions. Each end point of the line segment is then
assigned the code of the region in which it lies.

L.
2

Given a line segment with endpoint P1= (1, ¥1) and Fz= (xz, ¥2)
Compute the 4-bit codes for each endpoint.

If both codes are 0000,(bitwise OR of the codes yields 0000) line lies
completely inside the window: pass the endpoints to the draw routine.

If both codes have a 1 in the same bit position (bitwise AND of the codes is not 0000),
the line lies outside the window. It can be trivially rejected.

If a line cannot be trivially accepted or rejected, at least one of the two endpoints must lie
outside the window and the line segment crosses a window edge. This line must

be clipped at the window edge before being passed to the drawing routine.

Examine one of the endpoints, say P1= (x1, ¥1) . Read F1 's 4-bit code in order: Left-
to-Right, Bottom-to-Top.

When a set bit (1) is found, compute the intersection I of the corresponding window edge
with the line from P1 to P2.Replace Pi with I and repeat the algorithm.

Liang-Barsky Line Clipping

The ideas for clipping line of Liang-Barsky and Cyrus-Beck are the same. The only difference is
Liang-Barsky algorithm has been optimized for an upright rectangular clip window. So we will
study only the idea of Liang-Barsky.

Liang and Barsky have created an algorithm that uses floating-point arithmetic but finds the
appropriate end points with at most four computations. This algorithm uses the parametric
equations for a line and solves four inequalities to find the range of the parameter for which the
line is in the viewport.

N L

Dgtgl Q[x1.x2) ~'m

el ;

Plx1.x At

Let P(x1,y1), Q(x2,y2)be the line which we want to study. The parametric equation of the
line segment from gives x-values and y-values for every point in terms of a parameter that
ranges from 0 to 1. The equations are

26

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/interse.html

Dr.P Phanindra Kumar Reddy Computer Graphics

I=K + (Xg -Xl)*t=X1+dX*t and ¥ =N + (YE 'Fl)*t:}rl-l_ dy:kt

We can see that when t = 0, the point computed is P(x1,y1); and when t = 1, the point computed
is Q(x2,y2).

Algorithm
1. Set tyin =0 and b = 1

2. Calculate the values of tL, tR, tT, and tB (tvalues).
if t= tun or 7 by ignore it and go to the next edge

otherwise classify the tvalue as entering or exiting value (using inner product to
classify)

if t is entering value set bin = ; if t is exiting value set tax =

3 If tmm = ax then draw a line from (x1 + dx*tmin, y1 + dy*tmin) to (x1 + dx*tmax, yl
+ dy*tmax)

4. Ifthe line crosses over the window, you will see (x1 + dx*tmin, y1 + dy*tmin) and (x1 +
dx*tmax, yl + dy*tmax) are intersection between line and edge.

Sutherland - Hodgman Polygon Clipping

The Sutherland - Hodgman algorithm performs a clipping of a polygon against each window edge
in turn. It accepts an ordered sequence of verices vl, v2, v3, ..., vn and puts out a set of vertices
defining the clipped polygon.

Before clipping This figure represents a polygon (the large, solid, upward pointing

arrow) before clipping has occurred.

The following figures show how this algorithm works at each edge, clipping the polygon.

[d)

[a)([b)

27

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/tvalue.html
http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/enter.html
http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/intersec.html

Dr.P Phanindra Kumar Reddy Computer Graphics

a. Clipping against the left side of the clip window.

b. Clipping against the top side of the clip window.

c. Clipping against the right side of the clip window.

d. Clipping against the bottom side of the clip window.
Four Types of Edges

As the algorithm goes around the edges of the window, clipping the polygon, it encounters four
types of edges. All four edge types are illustrated by the polygon in the following figure. For
each edge type, zero, one, or two vertices are added to the output list of vertices that define the
clipped polygon.

clip window

The four types of edges are:

Edges that are totally inside the clip window. - add the second inside vertex point
Edges that are leaving the clip window. - add the intersection point as a vertex

Edges that are entirely outside the clip window. - add nothing to the vertex output list
Edges that are entering the clip window. - save the intersection and inside points as
vertices

i o

How To Calculate Intersections

Assume that we're clipping a polgon's edge with vertices at (x1,yl) and (x2,y2) against a clip
window with vertices at (xmin, ymin) and (xmax,ymax).

The location (IX, IY) of the intersection of the edge with the left side of the window is:

1. IX=xmin
ii. IY =slope*(xmin-x1) + y1, where the slope = (y2-y1)/(x2-x1)

The location of the intersection of the edge with the right side of the window is:

1. IX=xmax
ii. IY = slope*(xmax-x1) + y1, where the slope = (y2-y1)/(x2-x1)

The intersection of the polygon's edge with the top side of the window is:

i. IX=x1+ (ymax-yl)/slope
ii. IY =ymax

Finally, the intersection of the edge with the bottom side of the window is:

28

Dr.P Phanindra Kumar Reddy Computer Graphics

i. IX=x1+ (ymin-yl)/slope
ii. IY=ymin

Some Problems With This Algorithm

1. This algorithm does not work if the clip window is not convex.
2. Ifthe polygon is not also convex, there may be some dangling edges.

29

Dr.P Phanindra Kumar Reddy Computer Graphics

UNIT-3
3D Object Representations

Methods:

= Polygon and Quadric surfaces: For simple Euclidean objects
= Spline surfaces and construction: For curved surfaces

= Procedural methods: Eg. Fractals, Particle systems

= Physically based modeling methods

= QOctree Encoding

= Isosurface displays, Volume rendering, etc.

Classification:

Boundary Representations (B-reps) eg. Polygon facets and spline patches
Space-partitioning representations eg. Octree Representation

Objects may also associate with other properties such as mass, volume, so as to determine
their response to stress and temperature etc.

Polygon Surfaces

This method simplifies and speeds up the surface rendering and display of objects.

For other 3D objection representations, they are often converted into polygon
surfaces before rendering.

Polygon Mesh

- Using a set of connected polygonally bounded planar surfaces to represent an object,
which may have curved surfaces or curved edges.

- The wireframe display of such object can be displayed quickly to give general
indication of the surface structure.

- Realistic renderings can be produced by interpolating shading patterns across the
polygon surfaces to eliminate or reduce the presence of polygon edge boundaries.

Polygon Tables

This is the specification of polygon
surfaces using vertex coordinates and

Vv,
other attributes: T
1. Geometric data table: vertices, edges, . s f
and polygon surfaces. * e
2. Attribute table: eg. Degree of e\ i A
transparency and surface reflectivity s 5 3 4
etc. v
2
Some consistency checks of the [vemrextasie | [eocerasie | [POLYGON-SURFACE |
geometric data table: | B b : : 5 | z iii .
y V3: 23 v

,\ vl
o Vs |

SSSS=
x x
&

N

Anmmmmm

R Eew

Dr.P Phanindra Kumar Reddy Computer Graphics

= Every vertex is listed as an endpoint

for at least 2 edges
= Every edge is part of at least one polygon
= Every polygon is closed

Plane equation and visible points

Consider a cube, each of the 6 planes has 2 sides: inside
face and outside face.

For each plane (in a right-handed coordinate system), if we
look at its surface and take 3 points in counter-clockwise
direction: (x1,y1), (X2,y2), and (x3,y3), we can compute 4
values: A,B,C,D as

1 yi oz x1 1zt x1 y1 1 X1 Y1 7y
D=

A=|1 y2 73 B=x2 1 22 C=|x2 y21 - X2 Y2 22

1 y3 z3 x3 1 z3 X3 y3 1 X3 Y3 Z3

Then, the plane equation at the form: Ax+By+Cz+D=0 has the property that:

If we substitute any arbitrary point (X,y) into this equation, then,
Ax + By + Cz + D < 0 implies that the point (x,y) is inside the surface, and
Ax + By + Cz + D < 1 implies that the point (x,y) is outside the surface.

Polygon Meshes
Common types of polygon meshes are triangle strip and quadrilateral mesh.

Fast hardware-implemented polygon renderers are capable of displaying up to 1,000,000 or
more shaded triangles per second, including the application of surface texture and special
lighting effects.

Curved Surfaces
1. Regular curved surfaces can be generated as

- Quadric Surfaces, eg. Sphere, Ellipsoid, or
- Superquadrics, eg. Superellipsoids

These surfaces can be represented by some simple parametric equations, eg, for ellipsoid:
X =1y 08 S cos 520, -m/2<= <=2
y=r1ycos g sin®?0, -n<=@<=mn
z=1,sin% ¢

31

Dr.P Phanindra Kumar Reddy Computer Graphics

Where s, ry, 1y, and ry are constants. By varying the values of ¢ and 0, points on the
surface can be computed.

2. Irregular surfaces can also be
generated using some special
formulating approach, to form a kind of
blobby objects -- The shapes showing a
certain degree of fluidity.

T RN = s

Dr.P Phanindra Kumar Reddy Computer Graphics

Spline Representations

Spline means a flexible strip used to produce a smooth curve through a designated set of
points. Several small weights are distributed along the length of the strip to hold it in position
on the drafting table as the curve is drawn.

We can mathematically describe such a curve with a piecewise cubic polynomial function =>
spline curves. Then a spline surface can be described with 2 sets of orthogonal spline curves.

.
® p d]
o ~

° £ R
. /’ // \
/o
S & /
-f/ L R { g //

- L > i
/ N Jr s \‘ /
v - ,B';’I' N //
4 e e \\ /'
/ N\ /
; 7N = A
£ K7
//
s / /
S
//
\/

Sweep Representations

Sweep representations mean sweeping a 2D surface in 3D space to create an object.
However, the objects created by this method are usually converted into polygon meshes
and/or parametric surfaces before storing.

A Translational Sweep: A Rotational Sweep:
Pie of ﬂAo):l:l:)'n
77N\
4 \ Pie oP:
{) : Plu, v)
X \
Pl Plu, v) "y
po® °p, : -~
Plu) o
P * *p, u

Other variations:
- We can specify special path for the sweep as some curve function.
- We can vary the shape or size of the cross section along the sweep path.

- We can also vary the orientation of the cross section relative to the sweep path.

33

Dr.P Phanindra Kumar Reddy Computer Graphics

Part-1L,Unit-3

Three Dimensional Transformations:

Methods for geometric transforamtions and object modelling in 3D are extended from 2D
methods by including
the considerations for the z coordinate.
Basic geometric transformations are: Translation, Rotation, Scaling
Basic Transformations
Translation
We translate a 3D point by adding translation distances, tx, ty, and tz, to the original coordinate
position (X,y,z):
X'=X+tx,y'=y+ty,z =z+tz
Alternatively, translation can also be specified by the transformation matrix in the following

formula:
x 1 0 0 ¢ X
yy 01 0 t]ly
z 0 01 ¢]}| z
1 0 0 0 1] 1

Exercise: translate a triangle with vertices at original coordinates
(10,25,5), (5,10.,5), (20,10,10) by
tx=15, ty=5,tz=5. For verification, roughly plot the x and y values of the original and
resultant triangles, and imagine the locations of z values.
Scaling With Respect tothe Origin
We scale a 3D object with respect to the origin by setting the scalinlg factors sx, sy and sz, |which
are
multiplied to the original vertex coordinate positions (X,y,z):
X'=x*sx,y'=y*sy,z'=z%sz
Alternatively, this scaling can also be specified by the transformatién matrix in the following

formula:

X' sx 0 0 0 X

y 0 Sy 0 0 y

z 0 0 S 0 z
z

1 0 0 0 1 1

Exercise: Scale a triangle with vertices at original coordinates (10,25,5), (5,10.,5),
(20,10,10) by sx=1.5, sy=2, and sz=0.5 with respect to the origin. For
verification, roughly plot the x and y values of the original and resultant
triangles, and imagine the locations of z values.

34

Dr.P Phanindra Kumar Reddy Computer Graphics

Scaling with respect to a Selected Fixed Position

Exercise: What are the steps to perform scaling with respect to a selected fixed
position? Check your answer with the text book.

Exercise: Scale a triangle with vertices at original coordinates (10,25,5), (5,10.,5),

(20,10,10) by sx=1.5, sy=2, and sz=0.5 with respect to the centre of the triangle.
For verification, roughly plot the x and y values of the original and resultant
triangles, and imagine the locations of z values.

Coordinate-Axes Rotations

A 3D rotation can be specified around any line in space. The easiest rotation axes to handle are

the

coordinate axes.

4o

/ p

¥

"s«l— y

/ﬁC'

x

Z-axis rotation: X' = x cos ? -y sin ?,
y'=xsin ? + ycos ?, and
7'=1z

write matrix for z- axis rotation
X-axis rotation:
y'=ycos?-zsin?,

z'=ysin 7+ zcos ?, and

X'=x

write matrix for x- axis rotation

Y-axis rotation:

z'=zcos?-xsin ?,
x'=zsin 7+ x cos ?, and
' —
y=y
write matrix for y- axis rotation

3D Rotations About an Axis Which is Parallel to an Axis

35

Dr.P Phanindra Kumar Reddy Computer Graphics

= V.

te)
Rotate Object Through Angle @

{a)
Original Position of Object

>

z x

{b)
Translate Rotation Axis onto x Axis

id)
Translate Rotation
Axis to Original Position

Step 1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.
Step 2. Perform the specified rotation about that axis.

Step 3. Translate the object so that the rotation axis is moved back to its original position.
General 3D Rotations

‘ ‘
Initial Step 1

Position Translate Step 2
P, to the Origin Rotate P;

onto the z Axis

3 Step 4 Step 5

Step 3 Rotate the Axis Translate the

Rotate the to the Original Rotation Axis

Object Around the Orientation to the Original
z Axis Position

Step 1. Translate the object so that the rotation axis passes through the coordinate origin.
Step 2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.
Step 3. Perform the specified rotation about that coordinate axis.

Step 4. Rotate the object so that the rotation axis is brought back to its original orientation.
Step 5. Translate the object so that the rotation axis is brought back to its original position.

Three-Dimensional Viewing

Viewing in 3D involves the following considerations:

- We can view an object from any spatial position, eg. In front of an object, Behind the object, In
the middle of a group of objects, Inside an object, etc.

- 3D descriptions of objects must be projected onto the flat viewing surface of the output device.
- The clipping boundaries enclose a volume of space

Dr.P Phanindra Kumar Reddy Computer Graphics

Viewing Pipeline

Modelling
Coordinates
4
Modelling

Transformations
U Explanation

World
Coordinates

U

— : | &% \
Viewing } A / D
Transformation i O X ‘ |

J

Viewing

Coordinates

U

Projection

Transformation

Y

Projection

Coordinates

J
Workstation
Transformation

J

Device

Coordinates

Modelling Transformation and Viewing Transformation can be done by 3D transformations.
The viewing-coordinate system is used in graphics packages as a reference for specifying the
observer viewing position and the position of the projection plane. Projection operations convert
the viewing-coordinate description (3D) to coordinate positions on the projection plane (2D).
(Usually combined with clipping, visual-surface identification, and surface-
rendering) Workstation transformation maps the coordinate positions on the

37

Dr.P Phanindra Kumar Reddy Computer Graphics

projection plane to the output device L

Viewing Transformation

Conversion of objection descriptions from world to viewing coordinates is equivalent to a
transformation that superimposes the viewing reference frame onto the world frame using the
basic

geometric translate-rotate operations:

1. Translate the view reference point to the origin of the world-coordinate system.

2. Apply rotations to align the xv, yv, and zv axes (viewing coordinate system) with the world
XW, YW,

Zw axes, respectively.

; z, :
yv i x\r yv
: Y 2, X,
,-’{ Ko i Xw *z, Xw
!’znr ."zw &’z‘r
(a) {b) {c)
Projections

Projection operations convert the viewing-coordinate description (3D) to coordinate positions on
the

projection plane (2D). There are 2 basic projection methods:

1. Parallel Projection transforms object positions to the view plane along parallel lines.

A parallel projection preserves relative proportions of objects. Accurate views of the various
sides of

an object are obtained with a parallel projection. But not a realistic representation

2. Perspective Projection transforms object positions to the view plane while converging to a
center

point of projection. Perspective projection produces realistic views but does not preserve relative
proportions. Projections of distant objects are smaller than the projections of objects of the same
size that are closer to the

projection plane.

38

Dr.P Phanindra Kumar Reddy Computer Graphics

View
P, Plane
/ 3 \
P, f o Center of |
P! Projection ” ‘ -

Parallel Projection
Classification:

Orthographic Parallel Projection and Oblique Projection:
i N
Orthographic Projection Obligue Projection

Orthographic parallel projections are done by projecting points along parallel lines that are
perpendicular to the projection plane.

Oblique projections are obtained by projecting along parallel lines that are NOT perpendicular to
the

projection plane.Some special Orthographic Parallel Projections involve Plan View (Top
projection), Side Elevations, and Isometric Projection:

Side Elevation View

Front Elevation View Isometric Projection

The following results can be obtained from oblique projections of a cube:

/’// / /

Perspective Projection

Perspective projection is done in 2 steps: Perspective transformation and Parallel projection.
These

steps are described in the following section.

Perspective Transformation and Perspective Projection To produce perspective viewing effect,
after Modelling Transformation, Viewing Transformation is carried out to transform objects
from the world coordinate system to the viewing coordinate system. Afterwards, objects in the
scene are further processed with Perspective Transformation: the view volume in the shape of a

39

Dr.P Phanindra Kumar Reddy Computer Graphics

frustum becomes a regular parallelepiped. The transformation equations are shown as follows
and are applied to every vertex of each object:

xX'=x *(d/z),
y' =y *(d/z),
7'=7z

Where (X,y,z) is the original position of a vertex, (x',y',z') is the transformed position of the
vertex,

and d is the distance of image plane from the center of projection.

Note that:

Perspective transformation is different from perspective projection: Perspective projection
projects a

3D object onto a 2D plane perspectively. Perspective transformation converts a 3D object into a
deformed 3D object. After the transformation, the depth value of an object remains unchanged.
Before the perspective transformation, all the projection lines converge to the center of
projection.

After the transformation, all the projection lines are parallel to each other. Finally we can apply
parallel projection to project the object onto a 2D image plane. Perspective Projection =
Perspective Transformation + Parallel Projection

back
clipping
plane
front |
; clipping
mag

cenler of ;-;:m’z:c plane

projection 4

(0,0, 0) ¢

nefore perspective transformation

back
lipping
plane
fromt | > back
mage SIEEIO ' x = clippin
center of plane P point at - slipping
Péugsq:élon - = v, 2) plane
4 $ = front
s i » clipping
‘1}4_{,.,—- T image piane

S I plang .___‘--""‘
wolurne 1

Frlunr. e
clippin:
mage B0 =
plane e e
¢ ¥ after perspactive fransformation
D et transformed
e == 1 point at
o e .y z) namal vector
S z = (of visible surtace)
—— 77!%_ —5" normal vector
e {of invisble surface)
transforme. e z
wview volume

View Volumes

View window - A rectangular area in the view plane which controls how much of the scene is
viewed.

The edges of the view window are parallel to the xv and yv viewing axes. View volume - formed
by the view window and the type of projection to be used. Only those objects within the view
volume will appear in the generated display. So we can exclude objects that are beyond the view
volume when we render the objects in the scene. A finite view volume is obtained by bounding
with front plane and back plane (or the near plane and the far plane). Hence a view volume is
bounded by 6 planes => rectangular parallelepiped or a frustum, for parallel projection and
perspective projection respectively. Some

40

Dr.P Phanindra Kumar Reddy Computer Graphics

Parallelpiped
View Volume

Frustum
View Volume

Parallel Projection Perspective
Projection

Some facts:

Perspective effects depend on the positioning of the center point of projection. If it is close to the
view plane, perspective effects are emphasized, ie. closer objects will appear larger than more
distant

objects of the same size. The projected size of an object is also affected by the relative position
of the object and the view plane.

'Viewing' a static view:

The view plane is usually placed at the viewing-coordinate origin and the center of projection is
positioned to obtain the amount of perspective desired.

'Viewing' an animation sequence:

Usually the center of projection point is placed at the viewing-coordinate origin and the view
plane is

placed in front of the scene. The size of the view window is adjusted to obtain the amount of
scene

desired. We move through the scene by moving the viewing reference frame (ie. the viewing
coordinate system).

Some facts:

Perspective effects depend on the positioning of the center point of projection. If it is close to the
view plane, perspective effects are emphasized, ie. closer objects will appear larger than more
distant

objects of the same size. The projected size of an object is also affected by the relative position
of the object and the view

plane.

'Viewing' a static view:

The view plane is usually placed at the viewing-coordinate origin and the center of projection is
positioned to obtain the amount of perspective desired.

'Viewing' an animation sequence:

Usually the center of projection point is placed at the viewing-coordinate origin and the view
plane is

placed in front of the scene. The size of the view window is adjusted to obtain the amount of
scene

desired. We move through the scene by moving the viewing reference frame (ie. the viewing
coordinate system).

Clipping

The purpose of 3D clipping is to identify and saveall surface segments within the view volume
for display on the output device. All parts of objects that are outside the view volume are
discarded. Thus the computing time is saved. 3D clipping is based on 2D clipping. To

41

Dr.P Phanindra Kumar Reddy Computer Graphics

rectanguiar

cased le—" cip region

[~ bounding
box

understand the basic concept we consider the
following algorithm:

Polygon Clipping

Assuming the clip region is a rectangular area,
1. The rectangular clip region can be represented by xmin, xmax, ymin and ymax.

2. Find the bounding box for the polygon: ie. the smallest rectangle enclosing the entire polygon.
3. Compare the bounding box with the clip region (by comparing their xmin, xmax, ymin and
ymax).

4. If the bounding box for the polygon is completely outside the clip region (case 2), the polygon
is

outside the clip region and no clipping is needed.

5. If the bounding box for the polygon is completely inside the clip region (case 1), the polygon
is

original polygon
-
outside

inside A

border line

outside
s outside

synthetic " synthetic

inside inside

clipped polygon inside

inside

inside the clip region and no clipping is needed.

6. Otherwise, the bounding box for the polygon overlaps with the clip region (cases 3 and 4) and
the

polygon is likely to be partly inside and partly outside of the clip region. In that case, we clip the
polygon against each of the 4 border lines of the clip region in sequence as follows:

Using the first vertex as the current vertex. If the point is in the inside of the border line, mark it
as 'inside’. If it is outside, markit as 'outside'. Check next vertex. Again mark it 'inside' or 'outside’
accordingly. Compare the current and the next vertices. If one is marked 'inside’'

and the other 'outside’, the edge joining the 2 vertices crosses the border line. In this case, we
need to calculate where the edge intersects the border (ie. intersection between 2 lines). The
intersection point becomes a new vertex. We mark it 'synthetic'. Now we set the next vertex as
the current vertex and the followingvertex as the next vertex, and we repeat the same operations
until all the edges of the polygon have been considered. After the whole polygon has been
clipped by a border, we throw away all the vertices marked 'outside' while keeping those marked
as 'inside’ or 'synthetic' to create a new polygon.

42

Dr.P Phanindra Kumar Reddy Computer Graphics

We repeat the clipping process with the new polygon against the next border line of the clip
region.
7. This clipping operation results in a polygon which is totally inside the clip region.

Hardware Implementations

Most graphics processes are now implemented in graphics chip sets. Hardware systems are now
designed to transform, clip, and project objects to the output device for either 3D or 2D
applications.

In a typical arrangement, each of the individual chips in a chip set is responsible for geometric
transformations, projection transformation, clipping, visible-surface identification, surface-
shading

procedure, octree representation processing, or ray-tracing etc., in a pipe-line way.

Transformation Operations

World-Coordinate

Object Descriptions

Clipping Operations

Conversion to Device Coordinates

Lo e = ;ﬂ

A hardware implementation of three-dimensional viewing operations using 12 chips for

the coordinate transformations and clipping operations.

43

Dr.P Phanindra Kumar Reddy Computer Graphics

Unit-4
Visible-Surface Detection Methods

More information about Modelling and Perspective Viewing:

Before going to visible surface detection, we first review and discuss the followings:

Modeling Transformation:

In this stage, we transform objects in their local modelling coordinate

systems into a common coordinate system called the world coordinates.
Perspective Transformation (in a perspective viewing system):
After Modelling Transformation, Viewing Transformation is carried out to

transform objects from the world coordinate system to the viewing

back

clipping

plane
front

: clippin
Image nlane 3
center of plane point at
projection : a1 (x v.2)
(0,0, 0) #
!&¢ _‘_/"’_" T
e
d view
volume
back
clipping
plane
front Jv
clippin
image p|ap,.?e 9 :
plane ‘ e
‘,_v-"" transformed
e ® =] pointat
b (. ¥y 2)

transformed Ty
view volume

coordinate system. Afterwards, objects in the scene are further perspectively transformed. The
effect of such an operation is that after the transformation, the view volume in the shape of a
frustum becomes a regular parallelepiped. The transformation equations are shown as follows

and are applied to every vertex of each object:

x'=x *(d/z),
y' =y *(d/2),
zZ'=z

44

Dr.P Phanindra Kumar Reddy Computer Graphics

Where (x,y,z) is the original position of a vertex, (x',y',z") is the transformed position of the

vertex, and d is the distance of image plane

back

clpping
lans
froot
chipping ‘
=) =
srrier of plarse
(=3 qu}:{l:"\
0. C, D} ‘
#&* = z l
beafora perspectve transformataon
-Z -z back
CRpeing
plana
frart
. chppng ‘
image olgr\'-:,g L)
plane i = S
| | P
.
- =
3 =~J
y -
.cil)J ~ ﬁ‘—'x::‘
Aafler parspecive transfommaton o=
e normal vactce
(o vissbia surface)
— normal vector
S {of invisible swurfaca)

from the center of projection.

Note that:

Perspective transformation is different from perspective projection: Perspective projection
projects a 3D object onto a 2D plane perspectively. Perspective transformation converts a 3D
object into a deformed 3D object. After the transformation, the depth value of an object remains
unchanged. Before the perspective transformation, all the projection lines converge to the center
of projection. After the transformation, all the projection lines are parallel to each others.
Perspective Projection = Perspective Transformation + Parallel Projection

Clipping:

In 3D clipping, we remove all objects and parts of objects which are outside of the view volume.
Since we have done perspective transformation, the 6 clipping planes,which form the
parallelepiped, are parallel to the 3 axes and hence clipping is straight forward. Hence the
clipping operation can be performed in 2D. For example, we may first perform the clipping
operations on the x-y plane and then on the x-z plane.

Problem definition of Visible-Surface Detection Methods:

To identify those parts of a scene that are visible from a chosen viewing position.Surfaces which
are obscured by other opaque surfaces along the line of sighn (projection) are invisible to the

viewer.

45

Dr.P Phanindra Kumar Reddy Computer Graphics

Characteristics of approaches:
- Require large memory size?

- Require long processing time?

- Applicable to which types of objects?
Considerations:

- Complexity of the scene

- Type of objects in the scene

- Available equipment

- Static or animated?

Classification of Visible-Surface Detection Algorithms:

Object-space Methods

Compare objects and parts of objects to each other within the scene definition to determine
which

surfaces, as a whole, we should label as visible:

For each object in the scene do

Begin

1. Determine those part of the object whose view is unobstructed by other parts of it or

any other object with respect to the viewing specification.

2. Draw those parts in the object color.

End

- Compare each object with all other objects to determine the visibility of the object parts.

- If there are n objects in the scene, complexity = O(n2)

- Calculations are performed at the resolution in which the objects are defined (only limited by
the

computation hardware).

- Process is unrelated to display resolution or the individual pixel in the image and the result of
the

process is applicable to different display resolutions.

- Display is more accurate but computationally more expensive as compared to image space
methods because step 1 is typically more complex, eg. Due to the possibility of intersection
between surfaces.

- Suitable for scene with small number of objects and objects with simple relationship with each

other.

Image-space Methods (Mostly used)

Visibility is determined point by point at each pixel position on the projection plane.

For each pixel in the image do

Dr.P Phanindra Kumar Reddy Computer Graphics

Begin

1. Determine the object closest to the viewer that is pierced by the projector through the
pixel

2. Draw the pixel in the object colour.

End

- For each pixel, examine all n objects to determine the one closest to the viewer.

- If there are p pixels in the image, complexity depends on n and p (O(np)).

- Accuarcy of the calculation is bounded by the display resolution.

- A change of display resolution requires re-calculation

Application of Coherence in Visible Surface Detection Methods:
- Making use of the results calculated for one part of the scene or image for other nearby parts.
- Coherence is the result of local similarity
- As objects have continuous spatial extent, object properties vary smoothly within a small local
region in the scene. Calculations can then be made incremental.
Types of coherence:

1. Object Coherence:
Visibility of an object can often be decided by examining a circumscribing solid (which may be
of
simple form, eg. A sphere or a polyhedron.)
2. Face Coherence:
Surface properties computed for one part of a face can be applied to adjacent parts after small
incremental modification. (eg. If the face is small, we sometimes can assume if one part of the
face is

invisible to the viewer, the entire face is also invisible).

3. Edge Coherence:

The Visibility of an edge changes only when it crosses another edge, so if one segment of an
nonintersecting edge is visible, the entire edge is also visible.

4. Scan line Coherence:

Line or surface segments visible in one scan line are also likely to be visible in adjacent scan
lines.

Consequently, the image of a scan line is similar to the image of adjacent scan lines.

5. Area and Span Coherence:

A group of adjacent pixels in an image is often covered by the same visible object. This
coherence is

based on the assumption that a small enough region of pixels will most likely lie within a single

polygon. This reduces computation effort in searching for those polygons which contain a given

47

Dr.P Phanindra Kumar Reddy Computer Graphics

screen area (region of pixels) as in some subdivision algorithms.

6. Depth Coherence:

The depths of adjacent parts of the same surface are similar.

7. Frame Coherence:

Pictures of the same scene at successive points in time are likely to be similar, despite small
changes

in objects and viewpoint, except near the edges of moving objects. Most visible surface detection
methods make use of one or more of these coherence properties of a scene. To take advantage of
regularities in a scene, eg. Constant relationships often can be established between objects and

surfaces in a scene.

Back-Face Detection

In a solid object, there are surfaces which are facing the viewer (front faces) and there are
surfaces

which are opposite to the viewer (back faces). These back faces contribute to approximately half
of the total number of surfaces. Since we cannot see these surfaces anyway, to save processing
time, we can remove them before the clipping process with a simple test. Each surface has a
normal vector. If this vector is pointing in the direction of the center of projection, it is a front
face and can be seen by the viewer. If it is pointing away from the center of projection, it is a
back face and cannot be seen by the viewer. The test is very simple, if the z component of the
normal vector is positive, then, it is a back face. If the z component of the vector is negative, it is
a front face. Note that this technique only caters well for non overlapping convex polyhedral.
For other cases where there are concave polyhedra or

overlapping objects, we still need to apply other methods to further determine where the

obscured faces are partially or completely

hidden by other objects (eg.Using Depth-Buffer Method or Depth-sort Method).

48

Dr.P Phanindra Kumar Reddy Computer Graphics

Depth-Buffer Method (Z-Buffer Method)

This approach compare surface depths at each pixel position on the projection plane.Object depth is
usually measured from the view plane

5 y
y 8 s,
- .- s,
y &
At view-plane position (x, y), z,

surface 5, has the smallest depth
from the view plane and so is
visible at that position.

along the z axis of a viewing system. This method requires 2 buffers: one is the image buffer and
the other is called the z-buffer (or the depth buffer). Each of these buffers has the same resolution

as the image to be

. z-buffer image buffer
obtain the depth : . el
and the colour of
the polygon at the
pixel concerned

//'\

captured. As surfaces are processed, the image buffer is used to store the color values of each

pixel position and the z-buffer is used to store the depth values for each (x,y) position.
Algorithm:

1. Initially each pixel of the z-buffer is set to the maximum depth value (the depth of the back
clipping plane).

2. The image buffer is set to the background color.

3. Surfaces are rendered one at a time.

4. For the first surface, the depth value of each pixel is calculated.

5. If this depth value is smaller than the corresponding depth value in the z-buffer (ie. it is closer
to the view point), both the depth value in the z-buffer and the color value in the image buffer are
replaced by the depth value and the color value of this surface calculated at the pixel position.

6. Repeat step4 and 5 for the remaining surfaces.

7. After all the surfaces have been processed, each pixel of the image buffer represents the color
of a visible surface at that pixel. This method requires an additional buffer (if compared with the
Depth-Sort Method) and the overheads involved in updating the buffer. So this method is less
attractive in the cases where only a few objects in the scene are to be rendered.

- Simple and does not require additional data structures.

- The z-value of a polygon can be calculated incrementally.

- No pre-sorting of polygons is needed.

Dr.P Phanindra Kumar Reddy Computer Graphics

- No object-object comparison is required.

- Can be applied to non-polygonal objects.

- Hardware implementations of the algorithm are available in some graphics workstation.
- For large images, the algorithm could be applied to, eg., the 4 quadrants of the image

separately, so as to reduce the requirement of a large additional buffer

Scan-Line Method

In this method, as each scan line is processed, all polygon surfaces intersecting that line are
examined to determine which are visible. Across each scan line, depth calculations are made for
each overlapping surface to determine which is nearest to the view plane. When the visible

surface has been determined, the intensity value for that position is entered into the image buffer.

Yv

Scan Line 1

Scan Line 2
Scan Line 3

D G

X,

Scan lines crossing the projection of two surfaces, S, and S,, in the
view plane. Dashed lines indicate the boundaries of hidden surfaces.

For each scan line do
Begin

For each pixel (x,y) along the scan line do -------------- Step 1
Begin

z_buffer(x,y) =0

Image_buffer(x,y) = background_color
End

For each polygon in the scene do ------------- Step 2
Begin

For each pixel (x,y) along the scan line that is covered by the polygon do
Begin

2a. Compute the depth or z of the polygon at pixel location (x,y).

2b. If z < z_buffer(x,y) then

Set z_buffer(x,y) =z

Set Image_buffer(x,y) = polygon's colour

50

Dr.P Phanindra Kumar Reddy Computer Graphics

End
End
End

- Step 2 is not efficient because not all polygons necessarily intersect with the scan line.

- Depth calculation in 2a is not needed if only 1 polygon in the scene is mapped onto a segment
of

the scan line.

- To speed up the process:

Recall the basic idea of polygon filling: For each scan line crossing a polygon, this algorithm
locates the intersection points of the scan line with the polygon edges. These intersection points

are sorted from left to right. Then, we fill the pixels between each intersection pair.

¥

P

=

| L 1
1‘['.! !Id 1Iﬂ 24

With similar idea, we fill every scan line span by span. When polygon overlaps on a scan line,
we perform depth calculations at their edges to determine which polygon should be visible at
which span. Any number of overlapping polygon surfaces can be processed with this method.
Depth calculations are performed only when there are polygons overlapping. We can take
advantage of coherence along the scan lines as we pass from one scan line to the next. If no
changes in the pattern of the intersection of polygon edges with the successive scan lines, it is not
necessary to do depth calculations. This works only if surfaces do not cut through or otherwise
cyclically overlap each other. If cyclic overlap happens, we can divide the surfaces to eliminate

the overlaps.

Subdividing
Subdividing / Line

|

5 Suﬁdividing,_
- Line _

g -
-
v >
e

51

Dr.P Phanindra Kumar Reddy Computer Graphics

- The algorithm is applicable to non-polygonal surfaces (use of surface and active surface table,
zvalue

is computed from surface representation).

- Memory requirement is less than that for depth-buffer method.

- Lot of sortings are done on x-y coordinates and on depths.

Depth-Sort Method

1. Sort all surfaces according to their distances from the view point.

2. Render the surfaces to the image buffer one at a time starting from the farthest surface.

3. Surfaces close to the view point will replace those which are far away.

4. After all surfaces have been processed, the image buffer stores the final image.

The basic idea of this method is simple. When there are only a few objects in the scene, this
method can be very fast. However, as the number of objects increases, the sorting process can
become very complex and time consuming.

Example: Assuming we are viewing along the z axis. Surface S with the greatest depth is then
compared to other surfaces in the list to determine whether there are any overlaps in depth. If no

depth

v

z., Two surfaces with no depth
overlap.

overlaps occur, S can be scan converted. This process is repeated for the next surface in the list.

However, if depth overlap is detected, we need to make some additional comparisons to

determine whether any of the surfaces should be reordered.

A g

%

Surface § is completely behind
Wl ,Fl 3 281 H &1 (.
Two surfaces with depth overlap) (“inside”) the U‘UI?‘PP‘“Q surface
7, + but no overlap in the x direction. 8

A

5

x

Overlapping surface 5" is
completely in front (“outside”) of
surface 5, but § is not completely
behind 5

52

Dr.P Phanindra Kumar Reddy Computer Graphics

z\v’

Surface § has greater depth
but obscures surface 5.

Binary Space Partitioning

i

v

Three surfaces entered into
the sorted surface list in the
order 5, 5°, 5" should be
reordered 57, 57, 5.

- suitable for a static group of 3D polygon to be viewed from a number of view points

- based on the observation that hidden surface elimination of a polygon is guaranteed if all

polygons on the other side of it as the viewer is painted first, then itself, then all polygons on the

same side of it as the viewer

- aroot polygon is chosen (arbitrarily) which divides the region into 2 half-spaces (2 nodes =>

front and back)

- a polygon in the front half-space is chosen which divides the half-space into another 2

halfspaces

53

Dr.P Phanindra Kumar Reddy Computer Graphics

- the subdivision is repeated until the half-space contains a single polygon (leaf node of the tree)
- the same is done for the back space of the polygon.
1.To display a BSP tree:

- see whether the viewer is in the front or the back
half-space of the root polygon.

- if front half-space then first display back child (subtree) then itself, followed by its front child /
subtree

- the algorithm is applied recursively to the BSP tree.
BSP Algorithm

Procedure DisplayBSP(tree: BSP_tree)

Begin

If tree is not empty then

If viewer is in front of the root then

Begin

DisplayBSP(tree.back_child)
displayPolygon(tree.root)
DisplayBSP(tree.front_child)

End

Else

Begin

DisplayBSP(tree.front_child)
displayPolygon(tree.root)
DisplayBSP(tree.back_child)

End

End

Discussion:

- Back face removal is achieved by not displaying a polygon if the viewer is located in its back
half-space

- Itis an object space algorithm (sorting and intersection calculations are done in object space
precision)

- If the view point changes, the BSP needs only minor re-arrangement.

- A new BSP tree is built if the scene changes

- The algorithm displays polygon back to front (cf. Depth-sort)

Dr.P Phanindra Kumar Reddy Computer Graphics

Area Subdivision Algorithms

The area-subdivision method takes advantage of area coherence in a scene by locating those
view areas that represent part of a single surface. The total viewing area is successively divided
into smaller and smaller rectangles until each small area is simple, ie. it is a single pixel, or is
covered wholly by a part of a single visible surface or no surface at all.

Surrounding Overlapping Inside Outside
Surface Surface Surface Surface
Dividing a square area into . " y
squakaimed quasdimts ot much Possible relationships between polygon surfaces and a rectangular area.

step

The procedure to determine whether we should subdivide an area into smaller rectangle is:

1. We first classify each of the surfaces, according to their relations with the area:

Surrounding surface - a single surface completely encloses the area Overlapping surface - a
single surface that is partly inside and partly outside the area Inside surface - a single surface that
is completely inside the area Outside surface - a single surface that is completely outside the
area. To improve the speed of classification, we can make use of the bounding rectangles of
surfaces for early confirmation or rejection that the surfaces should be belong to that type.

2. Check the result from 1., that, if any of the following condition is true, then, no subdivision of
this area is needed.

a. All surfaces are outside the area.

b. Only one surface is inside, overlapping or surrounding surface is in the area.

c. A surrounding surface obscures all other surfaces within the area boundaries.

For cases b and c, the color of the area can be determined from that single surface.

Octree Methods

In these methods, octree nodes are projected onto the viewing surface in a front-to-back order.
Any surfaces toward the rear of the front octants (0,1,2,3) or in the back octants (4,5,6,7) may be
hidden by the front surfaces.

Viewing
Direction
Octants in Space With the numbering method (0,1,2,3,4,5,6,7), nodes
representing octants 0,1,2,3 for the entire region are visited before the nodes representing octants
4,5,6,7. Similarly the nodes for the front four suboctants of octant O are visited before the nodes

95

Dr.P Phanindra Kumar Reddy Computer Graphics

for the four back suboctants.When a colour is encountered in an octree node, the corresponding

Quadrants for
the View Plane

pixel in the frame buffer is painted only if no previous color has been
loaded into the same pixel position. In most cases, both a front and a back octant must be
considered in determining the correct color values for a quadrant. But

- If the front octant is homogeneously filled with some color, we do not process the back octant.

- If the front is empty, it is necessary only to process the rear octant.

- If the front octant has heterogeneous regions, it has to be subdivided and the sub-octants are
handled recursively.

56

Dr.P Phanindra Kumar Reddy Computer Graphics

Unit-5

Computer Animation

Overview

Motion can bring the simplest of characters to life. Even simple polygonal shapes can convey
a number of human qualities when animated: identity, character, gender, mood, intention,
emotion, and so on. Very simple

Very simple characters (image by Ken Perlin)
A movie is a sequence of frames of still images. For video, the frame rate is typically 24 frames
per second. For film, this is 30 frames per second.
Copyright ¢

CEALLIE OGANDNY®R waned by LELAND STANFORD, suacing 4t = 1 80 ghit dver tha Palo Alto trech. L0th June. 1675

In general, animation may be achieved by specifying a model with n parameters that identify
degrees of freedom that an animator may be interested in such as

* polygon vertices,

¢ spline control,

¢ joint angles,

* muscle contraction,

* camera parameters, or

57

Dr.P Phanindra Kumar Reddy Computer Graphics

¢ color.

With n parameters, this results in a vector ~(in n-dimensional state space. Parameters may be
varied to generate animation. A model’s motion is a trajectory through its state space or a set of
motion curves for each parameter over time, i.e. ~q(t), where t is the time of the current frame.
Every animation technique reduces to specifying the state space trajectory.

The basic animation algorithm is then: for t=t1to tend: render (~q(t)).

Modeling and animation are loosely coupled. Modeling describes control values and their
actions.

Animation describes how to vary the control values. There are a number of animation
techniques,

including the following:

¢ User driven animation

— Keyframing

— Motion capture

¢ Procedural animation

— Physical simulation

— Particle systems

— Crowd behaviors

* Data-driven animation
Keyframing

Keyframing is an animation technique where motion curves are interpolated through states at
times, (a1, ..., "qT), called keyframes, specified by a user

Keyframe 2

Keyframe 3

Position 1

Catmull-Rom splines are well suited for keyframe animation because they pass through their
control points.

* Pros:

— Very expressive

58

Dr.P Phanindra Kumar Reddy Computer Graphics

— Animator has complete control over all motion parameters

* Cons:

Very labor intensive
— Difficult to create convincing physical realism

* Uses:

— Potentially everything except complex physical phenomena such as smoke, water, or
fire

Kinematics

Kinematics describe the properties of shape and motion independent of physical forces that
cause motion. Kinematic techniques are used often in keyframing, with an animator either setting
joint parameters explicitly with forward kinematics or specifying a few key joint orientations
and having the rest computed automatically with inverse kinematics.

16.3.1 Forward Kinematics

With forward kinematics, a point p is positioned by p = f(_) where_isa state vector (81,
02, ...06n)

specifying the position, orientation, and rotation of all joints.

For the above example, p =(I1cos(81) + |2 cos(81+62), |1sin(81)+ 12sin(B1 +
02)).

Inverse Kinematics

With inverse kinematics, a user specifies the position of the end effector, p, and the algorithm

has to evaluate the required _ give p. Thatis, _=f=1(p).

Usually, numerical methods are used to solve this problem, as it is often nonlinear and either
underdetermined or overdetermined. A system is underdetermined when there is not a unique
solution, such as when there are more equations than unknowns. A system is overdetermined
when it is inconsistent and has no solutions.

Extra constraints are necessary to obtain unique and stable solutions. For example, constraints
may be placed on the range of joint motion and the solution may be required to minimize the

kinetic energy of the system.

8.3.1 Motion Capture

In motion capture, an actor has a number of small, round markers attached to his or her body
that reflect light in frequency ranges that motion capture cameras are specifically designed to
pick up

59

Dr.P Phanindra Kumar Reddy Computer Graphics

image from movement.nyu.edu)

With enough cameras, it is possible to reconstruct the position of the markers accurately in 3D.
In practice, this is a laborious process. Markers tend to be hidden from cameras and 3D
reconstructions fail, requiring a user to manually fix such drop outs. The resulting motion curves
are often noisy, requiring yet more effort to clean up the motion data to more accurately match
what an animator wants. Despite the labor involved, motion capture has become a popular
technique in the movie and game industries, as it allows fairly accurate animations to be created
from the motion of actors. However, this is limited by the density of markers that can be placed

on a single actor. Faces, for example, are still very difficult to convincingly reconstruct.

Pros:
— Captures specific style of real actors
¢ Cons:

— Often not expressive enough
— Time consuming and expensive
— Difficult to edit

¢ Uses:
— Character animation
— Medicine, such as kinesiology and biomechanics.

60

	UNIT-I:
	UNIT-II:
	UNIT-III:
	UNIT-IV:
	UNIT-V:
	TEXT BOOKS:
	REFERENCES:
	Outcomes:
	INDEX
	Overview of Computer Graphics
	Application of Computer Graphics
	Video Display devices
	1

	Raster-Scan
	Random-Scan (Vector Display)
	Display Controller
	Anti-Aliasing
	Drawing a Line in Raster Devices
	Bitmap
	Mid Point circle Algorithm
	Scan-Line Polygon Fill Algorithm
	Inside-Outside Tests:
	Boundary-Fill Algorithm
	Flood-Fill Algorithm

	Two Dimensional Transformations
	3.1 Basic Transformations
	Scaling With Respect to the Origin
	Concatenation Properties of Composite Matrix
	II. Matrix multiplication may not be commutative:

	Composite Transformation Matrix
	General Pivot-Point Rotation
	General Fixed-Point Scaling
	Other Transformations Reflection
	Transformation Between 2 Cartesian Systems

	2-Dimensional viewing
	Images on the Screen
	4.1.1 Windows and Clipping
	Cohen-Sutherland Line Clipping
	Inside-Outside Window Codes
	Algorithm

	Liang-Barsky Line Clipping
	Algorithm
	Sutherland - Hodgman Polygon Clipping
	Four Types of Edges
	How To Calculate Intersections
	Some Problems With This Algorithm

	3D Object Representations
	Methods:
	Polygon Tables
	Plane equation and visible points
	Polygon Meshes

	Curved Surfaces

	Spline Representations
	Sweep Representations

	Part-II,Unit-3
	Basic Transformations
	Translation

	Three-Dimensional Viewing
	Viewing in 3D involves the following considerations:

	Viewing Transformation
	Projections
	Parallel Projection
	Classification:

	Perspective Projection

	View Volumes
	'Viewing' a static view:
	'Viewing' an animation sequence:
	Some facts:
	'Viewing' a static view: (1)
	'Viewing' an animation sequence: (1)
	Hardware Implementations

	Unit-4
	Visible-Surface Detection Methods
	Modeling Transformation:
	Note that:

	Clipping:
	Problem definition of Visible-Surface Detection Methods:
	Characteristics of approaches:

	Object-space Methods
	Image-space Methods (Mostly used)
	Types of coherence:
	2. Face Coherence:
	3. Edge Coherence:
	4. Scan line Coherence:
	5. Area and Span Coherence:
	6. Depth Coherence:
	7. Frame Coherence:

	Back-Face Detection
	Depth-Buffer Method (Z-Buffer Method)
	Algorithm:

	Scan-Line Method
	Depth-Sort Method
	Binary Space Partitioning
	1.To display a BSP tree:
	BSP Algorithm
	Discussion:

	Area Subdivision Algorithms
	Octree Methods

	Unit-5
	Very simple characters (image by Ken Perlin)
	Keyframing
	Kinematics
	16.3.1 Forward Kinematics
	Inverse Kinematics

	8.3.1 Motion Capture

