Dr. K. Uday Kumar Reddy Machine Learning

UNIT1: Introduction To Machine Learning

Evolution of Machine Learning:
1. Early Beginnings (1950s - 1960s):

* The idea of machines learning from data started in the 1950s.

* Alan asked, "Can machines think?" which sparked interest in artificial intelligence (Al).

* Early algorithms were simple, like the perceptron (an early neural network) invented in 1958.
2. Symbolic AI and Turing :
Rule-Based Systems (1960s - 1970s)

* Al research focused on symbolic reasoning, where machines followed predefined rules.

* These systems worked well in limited environments but struggled with real-world complexity.
3. Introduction of Statistical Methods (1980s):

* Researchers started using statistics and probability to improve learning from data.

* Algorithms like decision trees, nearest neighbors, and Bayesian networks became popular.
4. Rise of Neural Networks and Back propagation (1980s - 1990s):

* Neural networks regained interest with the discovery of the back propagation algorithm, which helped train
multi-layer networks.

* This allowed machines to learn more complex patterns.
5. Big Data and Advanced Algorithms (2000s):
* As more data became available, ML algorithms could learn better and faster.

* Techniques like support vector machines (SVM)and ensemble methods (combining multiple models) gained
popularity.

6. Deep Learning Era (2010s - Present):
* Deep learning, a type of neural network with many layers, revolutionized ML.
* It excelled in areas like image recognition, speech processing, and natural language understanding.

* This success was driven by powerful computers, lots of data, and improved algorithms.

Dr. K. Uday Kumar Reddy Machine Learning

7. Current Trends and Future (2020s and beyond):
* ML is being used in almost every field: healthcare, finance, self-driving cars, and more.
* Researchers are working on making ML models more explainable, efficient, and ethical.

* New areas like reinforcement learning, transfer learning, and federated learning are growing.

Paradigms for Machine Learning:

ML(Machine Learning) paradigms are distinct approaches or frameworks for how an ML model learns from
data, primarily differing in the type of data used and the learning objective.

1. Learning by Rote:

Learning by rote involves memorizing information exactly as it is, often through repetition. This method does
not require understanding the meaning or logic behind the information; it focuses on recall.

Example: Memorizing multiplication tables, phone numbers, or a poem by repeating it many times.
Use: Useful when facts need to be remembered quickly and accurately, especially in early education.
2. Learning by Deduction:

Deductive learning is a logical process that starts from general truths or rules and applies them to specific cases
to reach a conclusion.

Example:
* All birds have wings (general rule).
* A sparrow is a bird.
* Therefore, a sparrow has wings (specific conclusion).

Nature: Deduction guarantees the truth of the conclusion if the starting premises are true. It is precise and
certain.

3. Learning by Induction:

Inductive learning involves observing specific instances and then generalizing them to form a broader rule or
conclusion

Example:
* Every cat you have seen purrs.

* Therefore, all cats probably purr.

Dr. K. Uday Kumar Reddy Machine Learning

Nature: Induction is probabilistic; it suggests a likely conclusion but does not guarantee it because future
examples might contradict it.

4. Learning by Abduction:

Abductive learning is the process of forming the best possible explanation or hypothesis for an observation,
especially when information is incomplete.

Example:
* You find the ground wet in the morning.
* You hypothesize that it probably rained overnight.

Nature: Abduction is common in everyday reasoning and scientific discovery, helping generate hypotheses to
explain data or events.

5. Reinforcement Learning:

Reinforcement learning is learning by trial and error, where actions are taken in an environment and the learner
receives feedback in the form of rewards or punishments.

Example:
* A child learns not to touch a hot stove after getting burned once.
* A dog learns tricks by receiving treats for good behavior.

Nature: This learning paradigm focuses on interaction with the environment and learning from consequences,
rather than direct instruction.

Understanding these paradigms helps explain how humans and intelligent systems acquire knowledge, solve
problems, and adapt to new situations. Each paradigm plays an important role depending on the context and
type of learning involved.

Types of Data:

Data is the raw information collected for analysis. Understanding the type of data is important because it helps in
choosing the right methods for analysis and machine learning.

There are two main types of data:

1. Categorical Data:

Categorical data represents categories or groups. The values in categorical data describe qualities or characteristics
rather than numbers.

*Characteristics:

Dr. K. Uday Kumar Reddy Machine Learning

* Represents labels or names.
* Can be divided into groups or categories.

* Usually has no inherent numerical order (except in ordinal data).

Types of Categorical Data:

* Nominal: Categories with no natural order.
Example: Colors (red, blue, green), types of fruits (apple, banana, mango), gender (male, female).
* Ordinal: Categories with a meaningful order but no fixed numerical difference between them.
Example: Education level (high school < bachelor’s < master’s), customer ratings (poor < average < excellent).
Examples:
* Blood type: A, B, AB, O
* Car brands: Toyota, Ford, BMW
* Yes/No response
2. Numerical Data:
Numerical data represents quantities or measurements and consists of numbers.
* Characteristics:
* Represents counts or measurements.

* Can be used for mathematical calculations like addition, subtraction, averaging.

Types of Numerical Data:

* Discrete: Countable values, often integers.
Example: Number of students in a class, number of cars in a parking lot.
* Continuous: Values that can take any number within a range, including decimals.
Example: Height of students, temperature, time taken to run a race.
Examples:
* Age: 12,25, 30
* Salary: \$30000, \$50000

* Temperature: 36.6°C, 22.4°C

Dr. K. Uday Kumar Reddy Machine Learning

Matching:

Matching means comparing two pieces of data to see how similar or different they are. It helps machines decide if two
things are alike or not.

When a machine tries to recognize something—like a face, a word, or a product—it compares the new data with what it
already knows. Matching helps it find the closest or most similar example.

How Do Machines Match Data?

Machines use special formulas called distance or similarity measures to compare data.
Two common ones are:

1. Euclidean Distance (Distance Measure):

* Think of Euclidean distance as the straight-line distance between two points, like measuring the shortest path between
two cities on a map.

* The smaller the distance, the more similar the two data points are.

Example:

If you have two points (2, 3) and (5, 7), the Euclidean distance finds how far apart they are.

2. Cosine Similarity (Similarity Measure):

* Cosine similarity measures how close the direction of two data points is, not the distance.

* Imagine two arrows starting from the same point; cosine similarity looks at the angle between them.

* If the arrows point in the same direction, cosine similarity is 1 (very similar). If they point in opposite directions, it is -1
(very different).

Example:

This is useful for comparing text documents or profiles where the amount might differ, but the pattern is similar.
Stages In Machine Learning:
1. Data Acquisition:
* Sources: Databases, CSV files, APls, sensors, web scraping, public datasets (e.g., Kaggle, UCI repository)
Challenges:

* Data quality: missing values, noise, inconsistencies

* Data volume: too little or too much data

* Data privacy and compliance (e.g., GDPR)

Dr. K. Uday Kumar Reddy Machine Learning

Tools: SQL, Python libraries (requests, BeautifulSoup), data pipelines (Apache Kafka, Airflow)
2. Feature Engineering:
Types:
Transformation: log, square root, binning numerical features
Creation: combining features (e.g., BMI from weight and height), extracting text features (TF-IDF, word embeddings)
Aggregation: summarizing time series data (mean, max over a window)
Automated Feature Engineering: Tools like FeatureTools or automated ML (AutoML) platforms help generate features.
Importance: Often more impact on model performance than choice of algorithm.
3. Data Preprocessing and Representation:

Handling Missing Data:

* Imputation (mean, median, mode)
* Using models to predict missing values

Normalization/Scaling:

* StandardScaler (mean=0, std=1)
* MinMaxScaler (scale features to 0-1 range)

Encoding Categorical Data:

* One-hot encoding for nominal categories
* Ordinal encoding for categories with order
* Dimensionality Reduction:
* PCA, t-SNE, UMAP to reduce feature space and noise

Data Representation:

* Tabular data: structured arrays or dataframes
* Images: pixel arrays or tensors
* Text: sequences of tokens or embeddings

4. Model Selection:

Based on Problem Type:

* Regression (Linear Regression, Random Forest, XGBoost)

Dr. K. Uday Kumar Reddy Machine Learning

* Classification (Logistic Regression, SVM, Neural Networks)
* Clustering (K-Means, DBSCAN)
Considerations:
* Dataset size and dimensionality
* Interpretability requirements
* Computational resources and latency constraints
* Ensemble Methods: Combine multiple models for better performance (e.g., Random Forest, Gradient Boosting)
5. Learning (Training):
* Optimization Algorithms: Gradient Descent, Stochastic Gradient Descent (SGD), Adam

*Loss Functions:

* Regression: Mean Squared Error (MSE), Mean Absolute Error (MAE)
* Classification: Cross-Entropy, Hinge Loss
Regularization:
* L1 (Lasso) and L2 (Ridge) to prevent overfitting
* Batching: Mini-batch training to improve convergence and efficiency
6. Evaluation:
Metrics:
* Classification: Accuracy, Precision, Recall, F1-score, ROC-AUC
* Regression: RMSE, MAE, R?
* Cross-Validation: K-Fold, Stratified K-Fold to get robust performance estimates
* Bias-Variance Tradeoff: Understand if model is underfitting or overfitting
* Confusion Matrix: Visualize classification errors
* Learning Curves: Track performance over training epochs or sample sizes
7. Prediction:
Batch vs Real-Time:
* Batch prediction: large volumes processed offline

* Real-time inference: low-latency, live prediction in production

Dr. K. Uday Kumar Reddy Machine Learning

Deployment Platforms:
* Cloud services (AWS SageMaker, Google Al Platform)
* Edge devices for loT applications

* Serving Models: REST APIs, gRPC, serverless functions

8. Explanation (Interpretability):

Helps users trust the model, debug issues, and comply with regulations

* Techniques:
* Feature Importance (e.g., permutation importance, tree-based importance)
* SHAP (SHapley Additive exPlanations) values quantify each feature’s contribution
* LIME (Local Interpretable Model-agnostic Explanations) approximates local behavior
* Partial Dependence Plots (PDP) show marginal effects

Model Choices: Sometimes simpler models (e.g., linear regression) are preferred for explainability.
Search and Learning:
Search in ML:

*Search refers to exploring a space of possible solutions or configurations to find the best one. It’s often used
in:

*Hyperparameter tuning: (searching for the best model parameters like learning rate, tree depth)
*Model architecture search: (e.g., Neural Architecture Search)

*Combinatorial problems: (e.g., pathfinding, game playing)

*Optimization problems: where an explicit gradient might not be available

Common Search Strategies:

*Grid Search: Exhaustive search over a predefined set of parameter values

*Random Search: Randomly sample the parameter space, often more efficient than grid search
*Bayesian Optimization: Uses probabilistic models to guide the search toward promising areas
*Evolutionary Algorithms: Use bio-inspired mechanisms (mutation, crossover) to explore solutions

Heuristic Search: Domain-specific strategies like A, beam search, or greedy search

Dr. K. Uday Kumar Reddy Machine Learning

Learning in ML:
Learning is the core process where the model improves its performance on a task by generalizing from data.
*Types of Learning:

Supervised Learning: Model learns from labeled data (inputs with known outputs).

* Examples: classification, regression

Unsupervised Learning: Model finds patterns in unlabeled data.

* Examples: clustering, dimensionality reduction

Semi-supervised Learning: Uses a small amount of labeled data and a large amount of unlabeled data

Reinforcement Learning: Model learns to make decisions by interacting with an environment and receiving

rewards or penalties.

How Search and Learning Relate?

*Search guides Learning: Hyperparameter search improves learning quality.

*Learning guides Search: Reinforcement learning uses search techniques to explore action spaces.

*Joint Approaches: Neural Architecture Search combines search and learning to find the best model
architecture automatically.

Data Sets:

Here are more classic examples of classification and regression datasets that are widely used in ML:
Classification Dataset :

1. Wisconsin Breast Cancer Dataset:

Task: Predict if a tumor is malignant (cancerous) or benign (non-cancerous) based on features like cell size,
texture, and shape.

Type: Binary classification (two classes).
Use: Medical diagnosis.
2. MNIST Dataset:
Task: Recognize handwritten digits (0 through 9) from images.

Type: Multi-class classification (10 classes).

Dr. K. Uday Kumar Reddy Machine Learning

Use: Image recognition.

3. Iris Dataset:
Task: Classify iris flowers into three species based on petal and sepal measurements.
Type: Multi-class classification (3 classes).

Regression Dataset :

1. Boston Housing Dataset:

Task: Predict house prices based on features like the number of rooms, crime rate, and distance to
employment centers.

Type: Regression (predict continuous values).
2. California Housing Dataset:

Task: Similar to Boston Housing, predict median house values based on demographic and geographic
features.

3. Auto MPG Dataset:

Task: Predict miles per gallon (fuel efficiency) of cars based on attributes like horsepower, weight, and model
year.

Dr. K. Uday Kumar Reddy Machine Learning

UNIT-II: Nearest Neighbor-Based Models:

Introduction to Proximity Measures

Proximity measures are mathematical techniques used to calculate the similarity or dissimilarity between data
points in a dataset. These measures are crucial in clustering, classification, and other machine-learning tasks
where grouping or categorization is based on how "close" or "far" data points are from each other. The term
"proximity" encompasses both similarity (how alike two objects are) and dissimilarity (how different they are).

For example, classifying COVID-19 patients based on symptoms involves grouping patients with similar
symptom patterns using proximity measures. Typically, proximity can be expressed numerically, with higher
similarity scores indicating closer objects, and higher dissimilarity values denoting those more distinct.

Example: Suppose two patients with symptoms scored as vectors (1, 2, 0) and (1, 3, 0): their Euclidean
distance is a proximity measure.

Pros:
e Enables grouping/classification without explicit rules.
¢ Applicable to various data types and contexts.

e Foundation for many machine-learning algorithms.

e Sensitive to scale and metric choice.
e Complex when data is high-dimensional or mixed-type.

e May not capture all relevant real-world relationships.

Distance Measures

Distance measures quantify how similar or dissimilar two objects are using mathematical functions. Key types
include Euclidean, Manhattan, Jaccard, Minkowski, and Cosine measures.

e Euclidean Distance: Straight-line distance between two points; widely used for normalized, continuous
data.
d(x,y)=Si=1n(xi-yi)2d(x,y)=3i=1n(xi-yi)2

Dr. K. Uday Kumar Reddy Machine Learning

¢ Manhattan Distance: Sum of absolute differences; ideal for grid-like structure data.
d(x,y)=Ji=1n|xi-yild(x,y)=3i=1n|xi-yil

¢ Jaccard Distance: Compares sets by unique vs. common elements.
d(A,B)=1-|AnB||AUB|d(A,B)=1-|AUB||ANB|

¢ Minkowski Distance: Generalization combining Euclidean and Manhattan via parameter pp.
d(x,y)=(2i=1nlxi-yilp)1/pd(x,y)=(3i=1nlxi-yilp)1/p

¢ Cosine Distance: Focuses on angle between vectors for textual data.
d(x,y)=1-x-ylIxIl [lylld{x,y)=1-1IxI[lIyl|x-y

Example: Calculating customer segment similarity using Jaccard for shopping cart overlap.
Pros:
¢ Flexible, supports many data types.

¢ Foundation for powerful models (clustering, classification).

¢ Distance measure selection can drastically affect outcomes.

e Some metrics unsuitable for mixed or non-numeric data.

Non-Metric Similarity Functions

Non-metric similarity functions compare data points without strictly following metric-space rules such as
triangle inequality or symmetry. These are important when data relationships are symbolic, non-linear, or
semantic rather than numeric.

Common examples:
e Cosine Similarity: Used for text analysis, measures cosine angle between vectors.
e Custom similarity rules for domain-specific applications.

Example: Comparing text documents for plagiarism using cosine similarity.

Pros:
o Useful for complex, non-numeric, and symbolic datasets.

e Can handle non-linear and domain-specific relationships.

Dr. K. Uday Kumar Reddy Machine Learning

Cons:
o Canviolate mathematical properties, leading to unintuitive behavior.

e Harder to analyze and interpret than metrics.

Proximity Between Binary Patterns

Binary attributes (e.g., 0/1 for pass/fail) require specific proximity measures. Similarity can be measured by
counting matching bits, while dissimilarity measures count mismatches.

Techniques:

¢ Simple matching
coefficient: (Number of matches)/(Total attributes)(Number of matches)/(Total attributes)

e Jaccard index for non-symmetric binaries (e.g., presence of a symptom).
e Hamming distance: Counts the number of positions that differ.
Example: Comparing student performance across courses (P/F as 1/0).
Pros:
¢ Well-suited for categorical or boolean datasets.

e Easy to compute using logical comparisons.

e Lessinformative for multi-state attributes.

e May not capture importance/weight of certain features.

Classification Algorithms Based on Distance Measures

Numerous classification algorithms utilize distance measures to assign class labels based on proximity to
known points.

Key methods:
e K-Nearest Neighbor (KNN): Assigns class of nearest k points.

e Radius Nearest Neighbor: Points within a specific radius are considered.

Dr. K. Uday Kumar Reddy Machine Learning

e Others: Granular computing, decision trees (sometimes combined with distance), Naive Bayes.
Example: Image classification by comparing pixel intensity histograms using Euclidean distance.
Pros:

¢ No need for model training; simple concept.

o Effective for multi-class problems.

e High computation cost for large datasets.

e Struggles with irrelevant or high-dimensional features.

K-Nearest Neighbor Classifier

KNN classifies data based on the most common class among the k closest data points (using a distance metric).
It is non-parametric and lazy-learning

Example: Classifying a new customer as likely to churn by comparing with k-most similar past customers.
Pros:

¢ Simple, intuitive, and highly accurate with well-structured data.

e Works for categorical and numerical data.

e Noassumption about data distribution.

e Computationally expensive for large datasets.
e Sensitive to irrelevant features and the scale of data.

e Requires optimal k selection.

Radius Distance Nearest Neighbor Algorithm

This method selects all points within a user-defined radius as neighbors, rather than a fixed number k. Useful
when data density varies.

Dr. K. Uday Kumar Reddy Machine Learning

Example: Identifying all data points (e.g., users or items) within a 10km radius for geospatial
recommendations.

Pros:
e Adaptable to local data density.

e Flexible for anomaly detection or outlier identification.

o Computationally intensive, especially in high dimensions.

e Requires careful radius selection for best results.

KNN Regression

KNN regression predicts a continuous value by averaging the outcomes of the k closest neighbors in the
feature space.

Example: Predicting the selling price of a house based on k nearest houses’ prices.
Pros:
¢ Nodistribution assumptions, easy to implement.

e Captures local trends in data.

e Sensitive to noisy data and outliers.

e Slow and memory-heavy with large datasets.

Performance of Classifiers

Classifier evaluation is done with metrics like accuracy, precision, recall, F1-score, ROC-AUC, confusion matrix,
etc..

Example: A KNN classifier for medical diagnosis achieves 95% accuracy, 93% precision, and 91% recall.
Pros:

¢ Quantitative assessment allows comparison.

Dr. K. Uday Kumar Reddy Machine Learning

e Detailed metrics reveal strengths/weaknesses.
Cons:
¢ Imbalanced data skews metrics.

e Overfitting can yield misleadingly high scores.

Performance of Regression Algorithms
Performance is measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), R-squared, etc..
Example: A KNN regressor yields MSE=2.1, MAE=1.4 on test data predicting housing prices.
Pros:
e Clearly measures predictive accuracy.

e Multiple error metrics suit various applications.

¢ Sensitive to outliers and data distribution.

¢ Overfitting is an ongoing concern.

Dr. K. Uday Kumar Reddy Machine Learning

UNIT-IIl — Models Based on Decision Trees & The Bayes Classifier

Part A — Models Based on Decision Trees
1. Decision Trees for Classification — Introduction & Definition

A decision tree is a tree-structured model used for classification and regression. Internal nodes test features,
branches correspond to feature values or ranges, and leaf nodes assign a class label (or a regression value).
Decision trees are non-parametric, interpretable, and can handle both categorical and numerical features.

Use cases: classification of emails, credit scoring, medical diagnosis, and any task where interpretability is
important.

2. How a Decision Tree Works (Intuition)
e Start with all training samples at the root.

e Choose a feature and a split (value or category) that best separates the classes according to some
impurity measure.

e Partition the data into child nodes.
e Repeat recursively until stopping criteria (pure node, max depth, minimum samples per leaf) are met.

e Assign each leaf a class label (majority class) or probability distribution.

3. Splitting Criteria & Impurity Measures

Splitting is driven by a measure of impurity (how mixed the classes are). A good split reduces impurity.
Common measures:

3.1 Entropy (Information Gain / ID3/C4.5)

For a node with classes 1..K1..K1..K and class probabilities pkp_kpk:

Information gain for splitting node ttt into children {tL,tR}\{t_L, t_R\KtLtR}:

Dr. K. Uday Kumar Reddy Machine Learning

Gain=H(t)-NLNtH(tL)-NRNtH(tR)\text{Gain} = H(t) - \frac{N_{L}}{N_t}H(t_L) -
\frac{N_{RI{N_t}H(t_R)Gain=H(t)-NtNLH(tL)-NtNRH(tR)

=1H=-0.5l0g20.5-0.5l0g20.5=1 (maximal).
3.2 Gini Impurity (CART)
G=1-5k=1Kpk2G =1 - \sum_{k=1}K} p_k"r2G=1-k=15Kpk2

Gini ranges between 0 (pure) and (1-1/K)(1 - 1/K)(1-1/K). For binary class with ppp: G=2p(1-p)G=2p(1-
p)G=2p(1-p).

3.3 Misclassification Error
Useful for pruning and evaluation but less sensitive for split selection.

Which to use? Gini and entropy often give similar splits. CART commonly uses Gini because it's slightly faster
(no logs). C4.5/ID3 use information gain/ratio.

4. Worked Example — Information Gain (small)

Dataset (toy): 10 samples, attribute A € {Yes, No}, class Y € {+,-}

SampleA Y
1 Yes +
2 Yes +
3 Yes -
4 No +
5 No -
6 No -
7 Yes +

Dr. K. Uday Kumar Reddy Machine Learning

SampleA Y
9 Yes +
10 No +

Root: count of + =5, - =5 = p+=0.5,p—=0.5p_+=0.5, p_-=0.5p+=0.5,p—=0.5. Entropy Hroot=1H_{root}=1Hroot
=1.

Split on A:

e A=Yes:samples{1,2,3,7,9} 2 +:4, -:1 = p+=0.8,p—=0.2p_+=0.8, p_-=0.2p+=0.8,p—=0.2.

=-0.8l0g20.8-0.210g20.2=0.7219.

¢ A=No:samples {4,5,6,8,10} > +:1, -:4 = p+=0.2,p—=0.8p_+=0.2, p_-=0.8p+=0.2,p—-=0.8.
HNo=0.7219H_{No} = 0.7219HN0=0.7219 (symmetric).

Weighted entropy after split =0.5%0.7219+0.5%0.7219=0.7219= 0.5*0.7219 + 0.5*0.7219 =
0.7219=0.5%0.7219+0.5%0.7219=0.7219.

Information Gain = 1-0.7219=0.27811 - 0.7219=0.27811-0.7219=0.2781. If other attributes yield lower
remaining entropy, choose the attribute with highest gain.

5. Building Trees: ID3 / C4.5 / CART — Pseudocode (high level)
ID3 (classification, uses information gain)
ID3(examples, attributes):
if all examples have same class: return leaf with that class
if attributes is empty: return leaf with majority class
choose attribute A that maximizes information gain
tree = new node(A)
for each value v of A:
subset = examples where A=v
if subset empty: attach leaf with majority class of examples

else: attach ID3(subset, attributes - {A})

Dr. K. Uday Kumar Reddy Machine Learning

return tree

CART (binary splits, uses Gini) is similar but chooses numeric thresholds and produces binary splits; leaves
store class via majority.

6. Properties of Decision Trees

Strengths

Interpretable / human-readable rules.

¢ Non-parametric: no global distributional assumptions.

Handles mixed feature types (categorical + continuous).
e Captures non-linear feature interactions.
Weaknesses
e High variance — small data changes can produce different trees.
e Prone to overfitting if not pruned.
e Cancreate biased trees if some classes dominate.
e Poor performance compared to ensembles on many real-world tasks.
Practical considerations
e Scale or encode categorical variables appropriately.
e For numeric features, consider candidate split points (midpoints between sorted unique values).

e Use pruning, minimum samples per leaf, or maximum depth to regularize.

7. Regression Based on Decision Trees (Regression Trees)

Idea: Instead of class labels, leaves contain a numeric prediction (usually the mean of target values in that
leaf).

Splitting criterion: minimize Residual Sum of Squares (RSS) or mean squared error in children.

If node ttt contains NtN_tNt targets yiy_iyi, prediction at node: y*t=1NtJi€tyi\haty t =
\frac{1H{N_tN\sum_{i\in t}y_iy*t=Nt15i€Etyi.

Dr. K. Uday Kumar Reddy Machine Learning

Split chosen to minimize:
A=RSS(t)-RSS(tL)-RSS(tR)\Delta = \text{RSS}(t) - \text{RSS}(t_L) - \text{RSS}(t_R)A=RSS(t)-RSS(tL)-RSS(tR)
where RSS(t)=Siet(yi-y*t)2\text{RSS}(t)=\sum_{i\in t} (y_i- \haty_t)*2RSS(t)=SiE€t(yi-y t)2.

Example: simple house price dataset; splitting on square footage reduces RSS — compute means and RSS
before/after to find best split.

Pruning / cost-complexity (CART regression): use cost function
Ra(T)=R(T)+alTIR \alpha(T) = R(T) + \alpha | T| Ra(T)=R(T)+a|TI

where R(T)R(T)R(T) is total RSS for tree TTT, |T|| T|IT| number of leaves, and a\alphaa penalizes complexity.
Choose a\alphaa via cross-validation.

8. Bias—Variance Trade-off for Trees
¢ Shallow trees (few splits): high bias, low variance — underfit.
¢ Deep trees: low bias, high variance — overfit.
¢ Goal: choose complexity (depth, min samples leaf) to minimize generalization error.

Ensembles (bagging, random forests) reduce variance by averaging many high-variance trees.

9. Tree Pruning
Two main approaches:
e Pre-pruning (early stopping): limit depth, require minimum samples to split, maximum leaf nodes.

e Post-pruning: grow full tree, then prune back using validation/cost-complexity pruning (CART) or
reduced error pruning.

Reduced error pruning: remove a subtree if replacing it by a leaf improves accuracy on validation set.

10. Random Forests (Classification & Regression)

Random Forest (RF) is an ensemble of decision trees built with randomness to reduce variance and improve
generalization.

Key ideas:

Dr. K. Uday Kumar Reddy Machine Learning

1. Bootstrap aggregation (bagging): each tree is trained on a bootstrap sample (sampling with
replacement) of the training data.

2. Feature subsampling: at each split, consider only a random subset of features (parameter mtry).

o Common defaults: classification mtry = sqrt(p), regression mtry = p/3 where ppp is number of
features.

3. Aggregate predictions: for classification use majority vote (or averaged class probabilities); for
regression average predictions.

Benefits
e Greatly reduced variance vs single tree.
e Usually high accuracy out of the box.
¢ Robust to overfitting with enough trees.
Other useful concepts

¢ Out-of-bag (OOB) error: since each tree is trained on bootstrap sample (~63% of records expected),
use the leftover (~37%) as a validation set for OOB error estimate — an internal CV.

¢ Variable importance: measure by average decrease in impurity or permutation importance (drop
feature values and observe top-level impact on OOB error).

e Proximity: measure similarity of instances by how often they end up in the same leaf across trees.
Hyperparameters

e Number of trees n_estimators (higher = better but slower).

e mtry (features per split).

e Max depth, min samples per leaf, etc.

Computational complexity
Training many trees is parallelizable; prediction is linear in number of trees.

Limitations
e Lessinterpretable than single trees.
e Can be large memory footprint.

e May perform poorly when many features are irrelevant.

Dr. K. Uday Kumar Reddy Machine Learning

11. Practical Tips & Typical Workflow

1. Preprocess: handle missing values, encode categoricals (some implementations handle directly), scale
numeric features if desired (trees do not require scaling).

2. Train a baseline decision tree; assess performance and inspect tree.
3. Tune complexity (max depth, min_samples_leaf) to avoid overfitting.
4. |If variance is high or accuracy low, use Random Forests or Gradient Boosting (GBM/XGBoost).

5. Use OOB error for RF introspection and variable importance for feature selection.

12. Summary — Decision Trees & Random Forests
¢ Decision trees are interpretable, flexible, and capture interactions.
¢ Major downside: high variance and tendency to overfit — solved by pruning or ensembles.

¢ Random Forests are powerful, robust, and often a go-to for tabular data.

Part B — The Bayes Classifier
1. Introduction to the Bayes Classifier

The Bayes classifier uses Bayes’ theorem to compute posterior probabilities of classes given features and
selects the class with maximum posterior probability (MAP decision). It is theoretically optimal (in terms of
minimizing misclassification rate) when the true class conditional densities and priors are known.

2. Bayes’ Rule & Inference
Bayes’ rule for class CkC_kCk and feature vector xxx:
P(Ck|x)=P(x|Ck)P(Ck)P(x)P(C_k \mid x) = \frac{P(x \mid C_k) P(C_k)}{P(x)}P(CkIx)=P(x)P(xICk)P(Ck)
Where:
e P(Ck)P(C_k)P(Ck) = prior probability of class CkC_kCk.

e P(x|Ck)P(x \mid C_k)P(x|Ck) = likelihood (class-conditional density).

Dr. K. Uday Kumar Reddy Machine Learning

e P(x)=3jP(xICj)P(Cj)P(x) = \sum_j P(x \mid C_j) P(C_j)P(x)=5jP(x|Cj)P(Cj) ensures normalization.

Decision rule (Bayes classifier):

P(x\mid C_k) P(C_k)C*=argmaxkP(Ck|x)=argmaxkP(x|Ck)P(Ck).

Note: denominator P(x)P(x)P(x) is same for all classes, so you only need P(x|Ck)P(Ck)P(x\mid C_k)P(C_k)P(xICk
)P(Ck).

3. Optimality of Bayes Classifier (Intuition)
The Bayes classifier minimizes the expected 0-1 loss (misclassification rate). Proof sketch:
e Expected loss of classifying as g(x)g(x)g(x):

R(g)=E[1{g(X)#Y}]=[(1-P(Y=g(x)Ix))p(x)dxR(g) = \mathbb{E} \mathbf{1}\{g(X) \ne Y\}] = \int \big(1 -
P(Y=g(x)\mid x)\big) p(x) dxR(g)=E[1{g(X) B=Y}]=[(1-P(Y=g(x)Ix))p(x)dx

e For each xxx, to minimize (1-P(Y=g(x)Ix))(1 - P(Y=g(x)\mid x))(1-P(Y=g(x)Ix)), choose

¢ Therefore Bayes classifier is optimal among all classifiers.

But Bayes classifier requires knowledge of class-conditional densities P(x|Ck)P(x\mid C_k)P(x|Ck), which are
rarely known, so we estimate them.

4. Multi-Class Classification with Bayes
Bayes rule extends naturally to K>2K>2K>2 classes:

Compute likelihoods for each class and combine with priors.

5. Naive Bayes Classifier (NBC) — Class Conditional Independence

Naive Bayes assumes class-conditional independence of features: given the class CCC, features
X1,..., XpX_1,\dots,X_pX1,...,Xp are independent:

P(xICk)=TTj=1pP(xjICk)P(x \mid C_k) = \prod_{j=1}*p P(x_j \mid C_k)P(x|Ck)=j=1TTpP(xjICk)

Dr. K. Uday Kumar Reddy Machine Learning

This simplifies likelihood estimation dramatically and works surprisingly well even when independence is
violated.

Types of Naive Bayes

e Gaussian NB — continuous features assumed Gaussian:

-\mu_{jk})*2K2\sigma_{jk}*2}\right)P(xjICk)=2mncjk21exp(-20jk2(xj-pjk)2)
Estimate pjk,ojk\mu_{jk},\sigma_{jk}ujk,ojk from training data per class.
¢ Multinomial NB — features are counts (e.g., word counts in text).

P(xICk)=TTi(Nkj)xjxj!e=NkjP(x \mid C_k) = \prod_{j} \frac{(N_{kj})*{x_itHx_j'} e {-N_{kj}}P (x| Ck)=jTTxj!(Nkj)xj
e—-NKkj

In practice we use probability of words: P(wj|Ck)=count(wj,Ck)+aJj(count(wj,Ck)+a)P(w_j \mid C_k) =
\frac{\text{count}(w_j,C_k)+\alpha}{\sum_j (\text{count}(w_j,C_k)+\alpha)}P(wjlCk)=5j(count(w;j,Ck
)+a)count(wj,Ck)+a

e Bernoulli NB — binary features (presence/absence of feature).

Laplace (add-alpha) smoothing: to avoid zero probability for unseen features, add small a\alphaa (commonly
1) to counts.

6. Naive Bayes — Training & Prediction (Algorithm)
Training:
e Estimate class priors: PA(Ck)=NkN\hat P(C_k) = \frac{N_k}{N}P~(Ck)=NNk.
e Foreach feature and class, estimate parameters:
o Gaussian: mean & variance per class-feature.
o Multinomial: conditional probabilities of each token/feature per class (with smoothing).
o Bernoulli: probability of feature presence given class.
Prediction for input xxx:

e Compute log-posterior scores:

\mid C_k)logP(Ck|x)cxlogP(Ck)+j=13 plogP(xjlCk)

Dr. K. Uday Kumar Reddy Machine Learning

e Choose class with highest log-posterior.

(Using logs prevents numerical underflow and converts products to sums.)

7. Worked Example — Simple Naive Bayes (Binary Features)
Training data (toy):

Doc Word A Word B Class

1 1 0 Spam
2 1 1 Spam
3 0 1 Ham
4 0 0 Ham

Estimate priors: P(Spam)=2/4=0.5P(Spam)=2/4=0.5P(Spam)=2/4=0.5, P(Ham)=0.5P(Ham)=0.5P(Ham)=0.5.

Estimate conditional probabilities with Laplace (a=1\alpha=1a=1):
For Word A:

e P(A=1|Spam)=(count=2+1)/(NSpam+2)=(2+1)/(2+2)=3/4=0.75P(A=1\mid
Spam)=(\text{count=2}+1)/(N_{Spam}+2)=(2+1)/(2+2)=3/4=0.75P(A=1|Spam)=(count=2+1)/(NSpam
+2)=(2+1)/(2+2)=3/4=0.75

e P(A=1|Ham)=(0+1)/(2+2)=1/4=0.25P(A=1\mid Ham)=
(0+1)/(2+2)=1/4=0.25P(A=1|Ham)=(0+1)/(2+2)=1/4=0.25
For Word B similarly:

e P(B=1|Spam)=(1+1)/(2+2)=2/4=0.5P(B=1\mid
Spam)=(1+1)/(2+2)=2/4=0.5P(B=1|Spam)=(1+1)/(2+2)=2/4=0.5

e P(B=1|Ham)=(1+1)/(2+2)=2/4=0.5P(B=1\mid
Ham)=(1+1)/(2+2)=2/4=0.5P(B=1|Ham)=(1+1)/(2+2)=2/4=0.5

Classify a new doc x=(A=1,B=0)x=(A=1,B=0)x=(A=1,B=0):
Compute log-scores:

e logP(Spam)+logiP(A=1|Spam)+logiiP(B=0|Spam)=logii0.5+log0.75+logiv(1-0.5)\log P(Spam)+\log
P(A=1\mid Spam)+\log P(B=0\mid Spam) = \log 0.5 + \log 0.75 + \log(1-
0.5)logP(Spam)+logP(A=1|Spam)+logP(B=0|Spam)=log0.5+log0.75+log(1-0.5)

Dr. K. Uday Kumar Reddy Machine Learning

e logiP(Ham)+logiP(A=1|Ham)+logiiP(B=0|Ham)=logi0.5+logi0.25+logi»i{(1-0.5)\log P(Ham)+\log
P(A=1\mid Ham)+\log P(B=0\mid Ham) = \log 0.5 + \log 0.25 + \log(1-
0.5)logP(Ham)+logP(A=1|Ham)+logP(B=0|Ham)=log0.5+log0.25+log(1-0.5)

Compare—they will pick the larger.

8. Advantages & Disadvantages of Naive Bayes
Advantages
e Veryfast to train and predict (linear in features).
¢ Works well with high-dimensional data (text).
e Requires small training data to estimate parameters.
¢ Robust toirrelevant features (they cancel out).
Disadvantages
¢ Conditional independence assumption is often violated — can reduce performance.
o If arelevant feature interaction is crucial, NB will fail.

e Estimates of probabilities may be poor (but classification accuracy can still be good).

9. Extensions & Practical Considerations
o Use feature selection or add interaction terms if strong dependencies exist.

e For continuous features, Gaussian NB is common,; if distribution is non-Gaussian consider discretization
or kernel density estimates.

o Apply log probabilities to avoid underflow.
e Use Laplace smoothing to handle zeros.

e Multiclass NB is straightforward — compute class prior and likelihood for each class.

10. Comparing Bayes (Naive Bayes) and Decision Trees

o Interpretability: Single decision tree is highly interpretable; NB yields class probabilities but model
structure is not as intuitively rule-based.

Dr. K. Uday Kumar Reddy Machine Learning

e Assumptions: NB assumes conditional independence; trees make no parametric assumptions.

o Performance: NB often excels on text classification; trees (and especially ensembles) often excel on
tabular numeric data.

¢ Training speed: NB is extremely fast; trees are fast but potentially slower for large data or many
features.

¢ Handling missing data: Trees can handle missing values natively (surrogate splits); NB can handle
missing by marginalizing or imputing.

Additional Topics & Practical Recipes
A. Handling Missing Values
o Decision trees: can use surrogate splits, or treat missing as separate category.
¢ Naive Bayes: ignore missing features in product (i.e., only multiply known feature likelihoods).
B. Categorical Variables
¢ Decision trees handle them directly by splitting on categories.
e Naive Bayes Multinomial/Bernoulli naturally handle categorical/binary features.
C. Hyperparameters to Tune

Decision Trees: max_depth, min_samples_split, min_samples_leaf, max_features (for random forest), pruning
parameter alpha (cost-complexity).
Random Forest: n_estimators, max_features, max_depth, min_samples_leaf.

D. Evaluation & Metrics (recap)
o Classification: accuracy, precision, recall, F1, ROC-AUC, confusion matrix.

e Regression: MSE, RMSE, MAE, R2R"2R2.

Short Checklists (Quick Reference)
Building a Decision Tree: checklist
e Clean/encode data.

e Consider limiting depth to reduce overfitting.

Dr. K. Uday Kumar Reddy Machine Learning

Choose impurity measure (Gini or entropy).

Use cross-validation to choose pruning parameter.

If performance unstable, prefer Random Forest or boosting.

Applying Naive Bayes: checklist

Decide feature model (Gaussian/Multinomial/Bernoulli).

Estimate priors and conditional probabilities with smoothing.

Use log probabilities; compute log-sum-exp when normalizing.

Evaluate on validation set; consider feature selection if correlated features harm performance.

Dr. K. Uday Kumar Reddy Machine Learning

UNIT-IV: Linear Discriminants for Machine Learning

Linear discriminants are mathematical functions that separate classes by drawing linear boundaries in data
space. They play a key role in classification, projecting data onto axes that maximize the difference between
classes while minimizing spread within classes. These methods are useful in supervised learning tasks where
distinguishing between two or more groups is necessary.

Example: In classifying handwritten digits, a linear discriminant can separate the digits '4' and '9' based on
pixel intensity features.

Pros:
e Effective for high-dimensional data.
¢ Simplifies complex datasets for modeling.

e Easytointerpret.

¢ Limited to linearly separable patterns.

¢ May underperform on complex, non-linear datasets.

Linear Discriminants for Classification

In classification, linear discriminants construct decision boundaries to assign data points to specific classes.
Linear Discriminant Analysis (LDA) is commonly used, maximizing the spread between class means and
minimizing within-class variance.

Example: LDA is used to classify Iris flower species by measuring lengths and widths of petals and sepals.
Pros:

e Reduces dimensionality while preserving class information.

e Improves classification accuracy using feature space projections.
Cons:

e Requires assumptions: normal class distribution, equal covariance.

Dr. K. Uday Kumar Reddy Machine Learning

e Less effective when these assumptions are violated.

Perceptron Classifier

The perceptron is a single-layer neural network and a foundational linear classifier. It adjusts weights based on
input features and class labels using a simple rule: if a point is misclassified, update weights to correct future
classifications.

Example: Separating up and down votes (binary) on a social media post using post features such as length or
sentiment.

Pros:
e Fast and simple; easy to implement.

e Suitable for beginners in ML.

¢ Can only solve linearly separable problems.

e Fails for non-linear or noisy data.

Perceptron Learning Algorithm

The perceptron learning algorithm iteratively updates model weights as it processes data, converging only if
the data is linearly separable.

Steps:

e Initialize weights randomly.

e Foreach sample, predict class.

o If misclassified, adjust weights proportionally.

e Repeat until convergence or limit reached.
Example: Training a model to distinguish cats vs dogs using pixel values in images.
Pros:

e Guaranteed to find a solution (if data is linearly separable).

e Computationally efficient.

Dr. K. Uday Kumar Reddy Machine Learning

Cons:
e May not converge on non-linear data.

e Sensitive to input scaling.

Support Vector Machines (SVM)

SVMs are powerful supervised learning models that seek a hyperplane with the largest margin between two
classes. They are versatile, supporting extensions for non-linear boundaries via kernels.

Example: Email spam filter distinguishing spam and legitimate messages using SVM with linear or RBF kernel.
Pros:

¢ High performance and robustness.

e Works with both linearly and non-linearly separable data (with kernels).

e Effective in high-dimensional spaces.

e Can be computationally intensive.

e Requires careful tuning of hyperparameters and kernel choice.

Linearly Non-Separable Case

Many real-world datasets are not linearly separable; a straight line (or plane) cannot divide classes perfectly.
The standard perceptron and linear discriminants struggle in these cases.

Example: XOR logic gate output cannot be classified using a single linear boundary.
Pros:

o Highlights need for advanced ML techniques.
Cons:

e Necessitates non-linear or kernel-based methods.

e Limits basic linear model effectiveness.

Dr. K. Uday Kumar Reddy Machine Learning

Non-linear SVM

Non-linear SVMs extend traditional SVMs using kernel functions, transforming data into higher-dimensional
spaces where linear separability is possible.

Example: Using a Gaussian (RBF) kernel to classify non-linearly separable points in circular clusters.
Pros:
¢ Handles complex, non-linear data.

¢ Flexible with various kernel choices.

e More computational and memory-heavy.

e Parameter selection (e.g., kernel width) critically impacts results.

Kernel Trick

The kernel trick allows algorithms (like SVM) to operate in high-dimensional feature spaces without explicitly
computing transformations. It computes inner products in transformed space directly using kernel functions.

Example: Polynomial kernel enables SVM to classify nested circles without explicitly mapping input features.
Pros:
o Efficiently handles complex feature transformations.

e Enables linear algorithms to solve non-linear problems.

e Kernel choice can be non-intuitive.

e May lead to overfitting if overly complex.

Logistic Regression

Logistic Regression is a linear model for classification, estimating the probability that a sample belongs to a
class using the sigmoid function. It is best for binary and multiclass problems with linearly separable data.

Dr. K. Uday Kumar Reddy Machine Learning

Example: Predicting whether a student passes or fails an exam based on study hours and attendance.
Pros:
e Fast, stable and interpretable.

e Outputs probabilities for decision support.

e Limited by linear decision boundaries.

e Canunderperform when features interact nonlinearly.

Linear Regression

Linear Regression models the relationship between inputs and a continuous output using a straight line (or
hyperplane in multi-dimensional case).

Example: Predicting house price based on area and number of bedroomes.
Pros:
e Simple, fast, and highly interpretable.

e Useful as a baseline in regression tasks.

e Only models linear relationships.

e Sensitive to outliers and feature scaling.

Multi-Layer Perceptrons (MLPs)

MLPs are feedforward neural networks with multiple layers (input, hidden, output) and non-linear activation,
overcoming limitations of single-layer perceptrons.

Example: Recognizing handwritten digits with pixels as features using two hidden layers.
Pros:
e Canlearn complex, non-linear representations.

o Extremely flexible; high capacity for pattern recognition.

Dr. K. Uday Kumar Reddy Machine Learning

Cons:
e Requires careful tuning (architecture, activation, regularization).

e Training can be slow due to large number of parameters.

Backpropagation for Training an MLP

Backpropagation is the backbone of neural network training, using gradient descent to update weights by
computing error derivatives backward through the layers.

Steps:

e Compute output.

e Calculate error.

e Propagate error backward to update weights.
Example: Training an MLP to classify images, adjusting layer weights with backpropagation after each batch.
Pros:

¢ Enables deep networks to learn involved mappings.

¢ Efficient use of data for optimization.

e Sensitive to learning rate and initialization.

e Can suffer from vanishing/exploding gradients in very deep nets.

Dr. K. Uday Kumar Reddy Machine Learning

UNIT-V: Clustering

Introduction to Clustering
Description

Clustering is an unsupervised machine learning technique that groups similar data points into clusters based
on their characteristics, without using labeled data. The goal is to ensure data points within the same cluster
are more similar to each other than to those in other clusters, helping discover natural groupings and hidden
patterns.

Pros
¢ Reveals underlying data structures without predefined categories.
e Useful for exploratory data analysis and anomaly detection.

e Applicable to various domains like customer segmentation and image processing.

¢ Sensitive to initial parameters and similarity measures.
¢ Does not guarantee optimal clusters; results can vary with different algorithms.
o Computationally intensive for large datasets.

Examples

Grouping customers by shopping habits for targeted marketing.
Partitioning of Data
Description

Partitioning of data in clustering involves dividing a dataset into K distinct clusters where each data point
belongs to exactly one cluster, aiming to minimize intra-cluster variance and maximize inter-cluster
differences.

Pros
e Fast and scalable for large datasets.

e Simple to implement and interpret.

Dr. K. Uday Kumar Reddy Machine Learning

o Effective for identifying natural clusters in data.
Cons
e Requires specifying the number of clusters (K) in advance.
e Assumes balanced cluster sizes and spherical shapes, which may not fit all data.
e Sensitive to outliers and initial centroid placement.
Examples
¢ Dividing customer data into segments for personalized recommendations.
¢ Partitioning sensor data in loT applications for anomaly detection.

e Matrix Factorization Description
Matrix factorization decomposes a matrix into lower-dimensional representations, often used in clustering to

uncover latent patterns or for multi-view learning. It models data as products of matrices, such as in
recommender systems or clustering high-dimensional data.

Pros
¢ Handles high-dimensional data effectively by reducing complexity.
¢ Improves interpretability through latent factors.
Cons
o Computationally expensive for large matrices.
e Requires careful initialization and can converge to local optima.
Examples
e Decomposing user-item interaction matrices for personalized recommendations.
e Clustering documents by factoring term-document matrices in text mining.
Clustering of Patterns

Description

Dr. K. Uday Kumar Reddy Machine Learning

Clustering of patterns groups data based on coherent similarities across subsets of attributes or views, often
using models like pCluster for sequential or high-dimensional data where traditional similarity metrics fall
short.expresscomputer+1

Pros
e Uncovers hidden patterns in complex, multi-view datasets.

e Enhances accuracy in predictive models.

¢ Computationally intensive for very large datasets.
e Requires defining similarity criteria, which can be subjective.
Examples
¢ Identifying customer navigation patterns in e-commerce for habit analysis.
¢ Grouping gene expression patterns in bioinformatics.

e Divisive Clustering Description
Divisive clustering is a top-down hierarchical approach starting with all data in one cluster and recursively

splitting it into smaller clusters based on differences, continuing until a stopping criterion is met.
Pros

o Effective for identifying large clusters.

e Provides a hierarchy of partitions for flexible granularity.

e Less sensitive to initial conditions compared to bottom-up methods.

o Computationally expensive for large datasets.
o Splitting decisions are irreversible, potentially leading to suboptimal clusters.

e Requires a stopping criterion, which can be arbitrary.geeksforgeeks+1

https://www.expresscomputer.in/big-data-analytics/uncovering-hidden-patterns-advanced-clustering-and-segmentation-methods-in-data-science-wissen-tech/103821/
https://www.geeksforgeeks.org/artificial-intelligence/divisive-clustering/

Dr. K. Uday Kumar Reddy Machine Learning

Examples

¢ Dividing a broad product category like "Electronics" into subcategories such as "Computers" and
"Mobiles".

e Segmenting a population dataset into demographic groups.geeksforgeeks
Agglomerative Clustering
Description

Agglomerative clustering is a bottom-up hierarchical method starting with each data point as a singleton
cluster and iteratively merging the most similar pairs until one cluster remains, often visualized as a
dendrogram.xistat+2

Pros
¢ Discovers clusters of varying shapes and sizes.
e Produces a dendrogram for visual hierarchy interpretation.

¢ No need to specify the number of clusters upfront.xlIstat+1

¢ Computationally expensive and sensitive to data order.

e Merging decisions are irreversible.

e Struggles with very large datasets due to scalability issues.dev+1
Examples

e Grouping similar documents in text analysis.

e Clustering biological samples based on genetic similarities.
Partitional Clustering
Description

Partitional clustering divides data into non-overlapping subsets (clusters) where each point belongs to exactly
one cluster, optimizing an objective like minimizing within-cluster variance, with methods like K-
means.cse.buffalo+2

Pros

o Computationally efficient and scalable for large datasets.

https://www.geeksforgeeks.org/artificial-intelligence/divisive-clustering/
https://www.xlstat.com/solutions/features/agglomerative-hierarchical-clustering-ahc
https://www.xlstat.com/solutions/features/agglomerative-hierarchical-clustering-ahc
https://dev.to/adityapratapbh1/clustering-algorithms-understanding-hierarchical-partitional-and-gaussian-mixture-based-approaches-46k0
https://cse.buffalo.edu/~jing/cse601/fa12/materials/clustering_partitional.pdf

Dr. K. Uday Kumar Reddy Machine Learning

e Produces clear, non-hierarchical partitions.

e Easytoimplement and suitable for spherical clusters.dev+1

e Requires predefined number of clusters.
e Assumes uniform cluster sizes and shapes, failing on irregular data.
e Sensitive to outliers and initialization.scaler+1
Examples
e Segmenting market data into customer groups.
e Clustering network traffic for anomaly detection.ibm+1
K-Means Clustering
Description

K-means clustering partitions data into K clusters by assigning points to the nearest centroid and iteratively
updating centroids to minimize squared distances, converging when assignments stabilize.geeksforgeeks+2

Pros
¢ Simple, fast, and efficient for large datasets.
e Easytounderstand and implement.

o Works well with spherical clusters.ibom+1

e Requires specifying K; poor choice leads to suboptimal results.
e Sensitive to outliers and initial centroids.

e Assumes equal variance and size across clusters.geeksforgeeks+1

Examples

e Grouping retail customers by purchase behavior.

e Segmenting satellite images into land cover types.geeksforgeeks
Soft Partitioning

Description

https://dev.to/adityapratapbh1/clustering-algorithms-understanding-hierarchical-partitional-and-gaussian-mixture-based-approaches-46k0
https://www.scaler.com/topics/data-mining-tutorial/partitioning-methods-in-data-mining/
https://www.ibm.com/think/topics/clustering
https://www.geeksforgeeks.org/machine-learning/k-means-clustering-introduction/
https://www.ibm.com/think/topics/k-means-clustering
https://www.geeksforgeeks.org/machine-learning/k-means-clustering-introduction/
https://www.geeksforgeeks.org/machine-learning/k-means-clustering-introduction/

Dr. K. Uday Kumar Reddy Machine Learning

Soft partitioning allows data points to belong to multiple clusters with varying degrees of membership, unlike
hard partitioning, enabling overlapping and fuzzy assignments.

Pros
¢ Handles uncertainty and overlapping clusters effectively.
e More flexible for real-world data with ambiguous boundaries.

e Improves robustness in noisy datasets.

¢ Computationally more complex than hard partitioning.

e Requires tuning parameters like fuzziness degree.

¢ Interpretation of memberships can be challenging.
Examples

e Assigning users to multiple interest groups in social networks.

¢ Partitioning genes with overlapping functions in bioinformatics.
Soft Clustering
Description

Soft clustering assigns probabilities or degrees of membership to data points across multiple clusters, allowing
overlaps, as seen in fuzzy or probabilistic models.

Pros
e Captures uncertainty and partial memberships.
e Robust to noise and outliers.

e Useful for complex data structures.

e Higher computational cost.
e Sensitive to initialization and parameter selection.

Examples

Dr. K. Uday Kumar Reddy Machine Learning

¢ Classifying documents into overlapping topics.

e Grouping customers with mixed preferences in marketing.
Fuzzy C-Means Clustering
Description

Fuzzy C-means is a soft clustering algorithm where each data point has a membership degree to every cluster,
minimizing an objective function with a fuzziness parameter, allowing overlaps.

Pros
¢ Handles overlapping clusters and uncertainty well.
¢ More flexible than K-means for non-spherical data.

¢ Provides probabilistic assignments for better insights.

e Requires specifying number of clusters and fuzziness.

¢ Slower convergence and sensitive to initialization.

¢ Canunequally weight features with Euclidean distance.
Examples

e Image segmentation where pixels belong to multiple regions.

e Clustering gene expression data with fuzzy memberships.
Rough Clustering
Description

Rough clustering uses rough set theory to represent clusters with lower and upper approximations, handling
uncertainty where points may belong to boundaries of multiple clusters.

Pros
e Manages vagueness and incomplete information effectively.
e Does not require predefined cluster numbers in some variants.

Cons

Dr. K. Uday Kumar Reddy Machine Learning

Computationally intensive for large datasets.

Selection of clustering attributes can be challenging.

Limited scalability without optimizations.

Examples
e Clustering categorical data in databases with missing values.
e Grouping imprecise sensor readings in loT.

Rough K-Means Clustering Algorithm

Description

Rough K-means extends K-means using rough sets, with clusters having lower (certain) and upper (possible)
approximations, assigning points based on distance thresholds.

Pros
¢ Handles uncertainty and outliers better than standard K-means.
¢ Allows overlapping boundaries for flexible clustering.

e Improves accuracy in noisy datasets.

e Requires parameters like thresholds, affecting results.
e More computationally demanding.
e Convergence can be slower.
Examples
e Clustering gene expression data with uncertain memberships.
e Segmenting images with ambiguous boundaries.
Expectation Maximization-Based Clustering
Description

Expectation Maximization (EM) clustering models data as a mixture of probability distributions, iteratively
estimating parameters to maximize likelihood, often using Gaussian mixtures.

Pros

Dr. K. Uday Kumar Reddy Machine Learning

e Handles complex data structures and variable cluster shapes.
e Automatically determines cluster parameters.

¢ Robust for high-dimensional data.

¢ Slow convergence and sensitive to initialization.
¢ Computationally expensive for large datasets.
e Proneto local optima.
Examples
¢ Clustering customer data modeled as Gaussian distributions.
¢ Segmenting medical images for tissue types.
Spectral Clustering
Description

Spectral clustering uses graph Laplacians and eigenvectors to partition data based on similarity graphs,
effective for non-linearly separable or high-dimensional data.

Pros
e Handles irregular cluster shapes and high dimensions.
e No strong assumptions on cluster forms.

e Robust to noise in some cases.

e Computationally expensive due to eigenvalue computations.
e Requires choosing similarity metrics and number of clusters.
o Scalability issues for very large datasets.

Examples
e Image segmentation with non-convex regions.

¢ Community detection in social networks.

	1. Early Beginnings (1950s - 1960s):
	2. Symbolic AI and Turing :
	3. Introduction of Statistical Methods (1980s):
	4. Rise of Neural Networks and Back propagation (1980s - 1990s):
	5. Big Data and Advanced Algorithms (2000s):
	6. Deep Learning Era (2010s - Present):
	7. Current Trends and Future (2020s and beyond):
	Paradigms for Machine Learning:
	1. Learning by Rote:
	2. Learning by Deduction:
	3. Learning by Induction:
	4. Learning by Abduction:
	5. Reinforcement Learning:

	Types of Data:
	1. Categorical Data:

	Matching:
	Stages In Machine Learning:
	Search and Learning:
	Search in ML:
	Learning in ML:
	How Search and Learning Relate?

	Data Sets:
	Classification Dataset :
	Regression Dataset :

	UNIT-II: Nearest Neighbor-Based Models:
	Introduction to Proximity Measures
	Pros:
	Cons:
	Distance Measures
	Pros: (1)
	Cons: (1)
	Non-Metric Similarity Functions
	Common examples:
	Pros: (2)
	Cons: (2)
	Proximity Between Binary Patterns
	Techniques:
	Cons: (3)
	Classification Algorithms Based on Distance Measures
	Key methods:
	Pros: (3)
	Cons: (4)
	K-Nearest Neighbor Classifier
	Pros: (4)
	Cons: (5)
	Radius Distance Nearest Neighbor Algorithm
	Pros: (5)
	Cons: (6)
	KNN Regression
	Pros: (6)
	Cons: (7)
	Performance of Classifiers
	Pros: (7)
	Cons: (8)
	Performance of Regression Algorithms
	Pros: (8)
	Cons: (9)

	UNIT-III — Models Based on Decision Trees & The Bayes Classifier
	Part A — Models Based on Decision Trees
	2. How a Decision Tree Works (Intuition)
	3. Splitting Criteria & Impurity Measures
	3.1 Entropy (Information Gain / ID3/C4.5)
	3.2 Gini Impurity (CART)
	3.3 Misclassification Error
	4. Worked Example — Information Gain (small)
	5. Building Trees: ID3 / C4.5 / CART — Pseudocode (high level) ID3 (classification, uses information gain)
	6. Properties of Decision Trees Strengths
	Weaknesses
	Practical considerations
	7. Regression Based on Decision Trees (Regression Trees)
	8. Bias–Variance Trade-off for Trees
	9. Tree Pruning
	10. Random Forests (Classification & Regression)
	Key ideas:
	Benefits
	Other useful concepts
	Hyperparameters
	Computational complexity
	Limitations
	11. Practical Tips & Typical Workflow
	12. Summary — Decision Trees & Random Forests
	Part B — The Bayes Classifier
	2. Bayes’ Rule & Inference
	Decision rule (Bayes classifier):
	3. Optimality of Bayes Classifier (Intuition)
	4. Multi-Class Classification with Bayes
	5. Naive Bayes Classifier (NBC) — Class Conditional Independence
	Types of Naive Bayes
	6. Naive Bayes — Training & Prediction (Algorithm) Training:
	7. Worked Example — Simple Naive Bayes (Binary Features)
	8. Advantages & Disadvantages of Naive Bayes Advantages
	Disadvantages
	9. Extensions & Practical Considerations
	10. Comparing Bayes (Naive Bayes) and Decision Trees
	Additional Topics & Practical Recipes
	B. Categorical Variables
	C. Hyperparameters to Tune
	D. Evaluation & Metrics (recap)
	Short Checklists (Quick Reference) Building a Decision Tree: checklist
	Applying Naive Bayes: checklist

	UNIT-IV: Linear Discriminants for Machine Learning
	Pros:
	Cons:
	Linear Discriminants for Classification
	Pros: (1)
	Cons: (1)
	Perceptron Classifier
	Pros: (2)
	Cons: (2)
	Perceptron Learning Algorithm
	Steps:
	Pros: (3)
	Cons: (3)
	Support Vector Machines (SVM)
	Pros: (4)
	Cons: (4)
	Linearly Non-Separable Case
	Pros: (5)
	Cons: (5)
	Non-linear SVM
	Pros: (6)
	Cons: (6)
	Kernel Trick
	Pros: (7)
	Cons: (7)
	Logistic Regression
	Pros: (8)
	Cons: (8)
	Linear Regression
	Pros: (9)
	Cons: (9)
	Multi-Layer Perceptrons (MLPs)
	Pros: (10)
	Cons: (10)
	Backpropagation for Training an MLP
	Steps: (1)
	Pros: (11)
	Cons: (11)

	UNIT-V: Clustering
	Introduction to Clustering Description
	Pros
	Cons
	Partitioning of Data Description
	Pros (1)
	Cons (1)
	Examples
	Pros (2)
	Cons (2)
	Examples (1)
	Clustering of Patterns Description
	Pros (3)
	Cons (3)
	Examples (2)
	Pros (4)
	Cons (4)
	Examples (3)
	Agglomerative Clustering Description
	Pros (5)
	Cons (5)
	Examples (4)
	Partitional Clustering Description
	Pros (6)
	Cons (6)
	Examples (5)
	K-Means Clustering Description
	Pros (7)
	Cons (7)
	Examples (6)
	Soft Partitioning Description
	Pros (8)
	Cons (8)
	Examples (7)
	Soft Clustering Description
	Pros (9)
	Cons (9)
	Examples (8)
	Fuzzy C-Means Clustering Description
	Pros (10)
	Cons (10)
	Examples (9)
	Rough Clustering Description
	Pros (11)
	Cons (11)
	Examples (10)
	Rough K-Means Clustering Algorithm Description
	Pros (12)
	Cons (12)
	Examples (11)
	Expectation Maximization-Based Clustering Description
	Pros (13)
	Cons (13)
	Examples (12)
	Spectral Clustering Description
	Pros (14)
	Cons (14)
	Examples (13)

