

Artificial Intelligence

UNIT I INTRODUCTION

Introduction–Definition - Future of Artificial Intelligence – Characteristics of Intelligent

Agents– Typical Intelligent Agents – Problem Solving Approach to Typical AI problems.

UNIT II PROBLEM SOLVING METHODS

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics - Local

Search Algorithms and Optimization Problems - Searching with Partial Observations –

Constraint Satisfaction Problems – Constraint Propagation - Backtracking Search - Game

Playing – Optimal Decisions in Games – Alpha - Beta Pruning - Stochastic Games.

UNIT III KNOWLEDGE INFERENCE

 Knowledge Representation - Production based System, Frame based System. Inference -

Backward Chaining, Forward Chaining, Rule value approach, Fuzzy Reasoning - Certainity

factors, Bayesian Theory - Bayesian Network - Dempster Shafer Theory.

UNIT-IV PLANNING AND MACHINE LEARNING

 Basic plan generation systems – Strips - Advanced plan generation systems - K strips -

Strategic explanations - Why, Why not and how explanations. Learning - Machine learning,

adaptive learning.

UNIT-V EXPERT SYSTEMS

 Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge

Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert

systems shells.

TEXT BOOKS:

1 S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach‖, Prentice Hall, Third

Edition, 2009. 2 I. Bratko, ―Prolog: Programming for Artificial Intelligence‖, Fourth edition, Addison-

Wesley Educational Publishers Inc., 2011.

REFERENCES: 1. M. Tim Jones, ―Artificial Intelligence: A Systems Approach(Computer Science)‖, Jones

and Bartlett Publishers, Inc.; First Edition, 2008

Dr. N. Penchalaiah, Associate Professor, AI&ML, Annamacharya University

2. Nils J. Nilsson, ―The Quest for Artificial Intelligence‖, Cambridge University Press, 2009. 3. William F. Clocksin and Christopher S. Mellish,‖ Programming in Prolog: Using the ISO Standard‖, Fifth Edition, Springer, 2003. 4. Gerhard Weiss, ―Multi Agent Systems‖, Second Edition, MIT Press, 2013. 5. David L. Poole and Alan K. Mackworth, ―Artificial Intelligence: Foundations of Computational Agents‖, Cambridge University Press, 2010

UNIT I INTRODUCTION

Introduction–Definition - Future of Artificial Intelligence – Characteristics of

Intelligent Agents–Typical Intelligent Agents – Problem Solving Approach to

Typical AI problems.

Artificial Intelligence – An Introduction

What is AI?

Artificial intelligence is the study of how to make computers do things which, at the

moment people do better.

Some definitions of artificial intelligence, organized into four categories

I. Systems that think like humans

1. "The exciting new effort to make computers think machines with minds, in the full

and literal sense." (Haugeland, 1985)

2. "The automation of activities that we associate with human thinking, activities

such as decision-making, problem solving, learning" (Bellman, 1978)

II. Systems that act like humans

3. "The art of creating machines that performs functions that require intelligence

when performed by people." (Kurzweil, 1990)

4. "The study of how to make computers do things at which, at the moment, people

are better." (Rich and Knight, 1991)

III. Systems that think rationally

5. "The study of mental faculties through the use of computational models."

(Chamiak and McDermott, 1985)

6. "The study of the computations that make it possible to perceive, reason, and act."

(Winston, 1992)

IV. Systems that act rationally

7. "Computational Intelligence is the study of the design of intelligent agents." (Poole

et al., 1998)

8. "AI is concerned with intelligent behavior in artifacts." (Nilsson, 1998)

The definitions on the 1, 2, 3, 4 measure success in terms of human performance,

whereas the ones on the 5, 6, 7, 8 measure against an ideal concept of intelligence.

A system is rational if it does the "right thing," given what it knows.

The term AI is defined by each author in its own perceive, leads to four important

categories

i. Acting humanly: The Turing Test approach

ii. Thinking humanly: The cognitive modeling approach

iii. Thinking rationally: The "laws of thought" approach

iv. Acting rationally: The rational agent approach

(i) Acting humanly: The Turing Test approach

To conduct this test, we need two people and the machine to be evaluated.

One person plays the role of the interrogator, who is in a separate room from the

computer and the other person. The interrogator can ask questions of either the person

or the computer but typing questions and receiving typed responses. However, the

interrogator knows them only as A and B and aims to determine which the person is and

which is the machine.

The goal of the machine is to fool the interrogator into believing that is the person. If

the machine succeeds at this, then we will conclude that the machine is acting humanly.

But programming a computer to pass the test provides plenty to work on, to possess the

following capabilities.

 Natural language processing to enable it to communicate successfully in English.

 Knowledge representation to store what it knows or hears;

 Automated reasoning to use the stored information to answer questions and to draw

new conclusions

 Machine learning to adapt to new circumstances and to detect and extrapolate

patterns.

Total Turing Test: the test which includes a video so that the interrogator can test the

perceptual abilities of the machine. To undergo the total Turing test, the computer will

need

 computer vision to perceive objects, and

 robotics to manipulate objects and move about

(ii) Thinking humanly: The cognitive modeling approach

 To construct a machines program to think like a human, first it requires the knowledge

about the actual workings of human mind. After completing the study about human

mind it is possible to express the theory as a computer program.

 If the program’s inputs/output and timing behavior matched with the human behavior then we can say that the program’s mechanism is working like a human mind.

Example: General Problem Solver (GPS) – A problem solvers always keeps track of

human mind regardless of right answers. The problem solver is contrast to other

researchers, because they are concentrating on getting the right answers regardless of

the human mind.

An Interdisciplinary field of cognitive science uses computer models from

AI and experimental techniques from psychology to construct the theory of the

working of the human mind.

(iii) Thinking rationally: The "laws of thought" approach

Laws of thought were supposed to govern the operation of the mind and their study

initiated the field called logic

Example 1:"Socrates is a man; All men are mortal; therefore, Socrates is mortal."

Example 2:“Ram is a student of III year CSE; All students are good in III year CSE;
therefore, Ram is a good student”

Syllogisms : A form of deductive reasoning consisting of a major premise, a minor

premise, and a conclusion

Syllogisms provided patterns for argument structures that always yielded correct

conclusions when given correct premises

http://grammar.about.com/od/d/g/deductionterm.htm
http://grammar.about.com/od/d/g/deductionterm.htm
http://grammar.about.com/od/pq/g/premiseterm.htm

There are two main obstacles to this approach.

1. It is not easy to take informal knowledge and state it in the formal terms required by

logical notation, particularly when the knowledge is less.

2. There is a big difference between being able to solve a problem "in principle" and doing

so in practice

(iv) Acting rationally: The rational agent approach

An agent is just something that acts. A rational agent is one that acts so as to achieve the

best outcome or, when there is uncertainty, the best expected outcome. The study of

rational agent has two advantages.

1. Correct inference is selected and applied

2. It concentrates on scientific development rather than other methods.

Foundation of Artificial Intelligence

AI derives the features from Philosophy, Mathematics, Psychology, Computer

Engineering, Linguistics topics.

Philosophy(428 B.C. – present)

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the

rational part of the mind. He developed an informal system of syllogisms for proper

reasoning, which allowed one to generate conclusions mechanically, given initial

premises.

Mathematics (c. 800-present)

 What are the formal rules to draw valid conclusions?

 What can be computed?

 How do we reason with uncertain information?

Philosophers staked out most of the important ideas of k1, but the leap to a formal

science required a level of mathematical formalization in three fundamental areas: logic,

computation, and probability

Economics (1776-present)

 How should we make decisions so as to maximize payoff?

 How should we do this when others may not go along?

The science of economics got its start in 1776, when Scottish philosopher Adam

Smith (1723-1790) published An Inquiry into the Nature and Causes of the Wealth of

Nations. While the ancient Greeks and others had made contributions to economic

thought, Smith was the first to treat it as a science, using the idea that economies can be

thought of as consisting of individual agents maximizing their own economic well-being

Neuroscience (1861-present)

o How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. The exact way in

which the brain enables thought is one of the great mysteries of science. It has been

appreciated for thousands of years that the brain is somehow involved in thought,

because of the evidence that strong blows to the head can lead to mental incapacitation

 Computer Human Brain

Computational

units

Storage units

Cycle time

Bandwidth

Memory

updates/sec

1 CPU,108 gates

1010 bits RAM

1011 bits disk

10-9 sec

1010 bits/sec

109

1011 neurons

1011 neurons

1014 synapses

10-3 sec

1014 bits/sec

1014

Comparison of the raw computational resources and brain.

Psychology (1879 – present)

The origin of scientific psychology are traced back to the wok if German physiologist

Hermann von Helmholtz(1821-1894) and his student Wilhelm Wundt(1832 – 1920). In

1879, Wundt opened the first laboratory of experimental psychology at the University of

Leipzig. In US,the development of computer modeling led to the creation of the field of

cognitive science. The field can be said to have started at the workshop in September

1956 at MIT.

 Computer engineering (1940-present)

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The

computer has been the artifact of choice.A1 also owes a debt to the software side of

computer science, which has supplied the operating systems, programming languages,

and tools needed to write modern programs

Control theory and Cybernetics (1948-present)

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a water clock

with a regulator that kept the flow of water running through it at a constant, predictable

pace. Modern control theory, especially the branch known as stochastic optimal control,

has as its goal the design of systems that maximize an objective function over time.

Linguistics (1957-present)

Modem linguistics and AI, then, were "born" at about the same time, and grew up

together, intersecting in a hybrid field called computational linguistics or natural

language processing.

History of Artificial Intelligence

The gestation of artificial intelligence (1943-1955)

There were a number of early examples of work that can be characterized as AI, but it

was Alan Turing who first articulated a complete vision of A1 in his 1950 article

"Computing Machinery and Intelligence." Therein, he introduced the Turing test,

machine learning, genetic algorithms, and reinforcement learning.

The birth of artificial intelligence (1956)

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring

together U.S. researchers interested in automata theory, neural nets, and the study of

intelligence. They organized a two-month workshop at Dartmouth in the summer of

1956. Perhaps the longest-lasting thing to come out of the workshop was an agreement

to adopt McCarthy's new name for the field: artificial intelligence.

Early enthusiasm, great expectations (1952-1969)

The early years of A1 were full of successes-in a limited way. General Problem Solver

(GPS) was a computer program created in 1957 by Herbert Simon and Allen Newell to

build a universal problem solver machine. The order in which the program considered

subgoals and possible actions was similar to that in which humans approached the same

problems. Thus, GPS was probably the first program to embody the "thinking humanly"

approach. At IBM, Nathaniel Rochester and his colleagues produced some of the first A1

programs. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which

was able to prove theorems that many students of mathematics would find quite tricky.

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts Institute

of Technology (MIT). In 1963, McCarthy started the AI lab at Stanford. Tom Evans's

ANALOGY program (1968) solved geometric analogy problems that appear in IQ tests,

such as the one in Figure

Fig : The Tom Evan’s ANALOGY program could solve geometric analogy problems

as shown.

A dose of reality (1966-1973)

From the beginning, AI researchers were not shy about making predictions of their

coming successes. The following statement by Herbert Simon in 1957 is often quoted:

 “It is not my aim to surprise or shock you-but the simplest way I can summarize is to say

that there are now in the world machines that think, that learn and that create.

Moreover, their ability to do these things is going to increase rapidly until-in a visible

future-the range of problems they can handle will be coextensive with the range to

which the human mind has been applied.

Knowledge-based systems: The key to power? (1969-1979)

Dendral was an influential pioneer project in artificial intelligence (AI) of the 1960s, and

the computer software expert system that it produced. Its primary aim was to help

organic chemists in identifying unknown organic molecules, by analyzing their mass

spectra and using knowledge of chemistry. It was done at Stanford University by Edward

Feigenbaum, Bruce Buchanan, Joshua Lederberg, and Carl Djerassi.

AI becomes an industry (1980-present)

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build

intelligent computers running Prolog. Overall, the A1 industry boomed from a few

million dollars in 1980 to billions of dollars in 1988.

The return of neural networks (1986-present)

Psychologists including David Rumelhart and Geoff Hinton continued the study of

neural-net models of memory.

AI becomes a science (1987-present)

In recent years, approaches based on hidden Markov models (HMMs) have come to

dominate the area. Speech technology and the related field of handwritten character

recognition are already making the transition to widespread industrial and consumer

applications.

The Bayesian network formalism was invented to allow efficient representation of, and

rigorous reasoning with, uncertain knowledge.

The emergence of intelligent agents (1995-present)

One of the most important environments for intelligent agents is the Internet.

Sample Applications

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's

Remote Agent program became the first on-board autonomous planning program to

control the scheduling of operations for a spacecraft. Remote Agent generated plans

from high-level goals specified from the ground, and it monitored the operation of the

spacecraft as the plans were executed-detecting, diagnosing, and recovering from

problems as they occurred.

Game playing: IBM's Deep Blue became the first computer program to defeat the world

champion (Garry Kasparov) in a chess match. The value of IBM's stock increased by $18

billion.

Autonomous control: The ALVINN computer vision system was trained to steer a car to

keep it following a lane. The computer-controlled minivan used to navigate across the

United States-for 2850 miles and it was in control of steering the vehicle 98% of the

time. A human took over the other 2%, mostly at exit ramps.

Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able

to perform at the level of an expert physician in several areas of medicine

Logistics Planning: During the Gulf crisis of 1991, U.S. forces deployed a Dynamic

Analysis and Replanning Tool, DART to do automated logistics planning and scheduling

for transportation. This involved up to 50,000 vehicles, cargo, and people at a time, and

had to account for starting points, destinations, routes, and conflict resolution

Robotics: Many surgeons now use robot assistants in microsurgery

Language understanding and problem solving: PROVERB is a computer program that

solves crossword puzzles better than most humans, using constraints on possible word

fillers, a large database of past puzzles, and a variety of information sources including

dictionaries and online databases such as a list of movies and the actors that appear in

them.

Typical problems to which AI methods are applied

Pattern recognition, Optical character recognition , Handwriting recognition , Speech

recognition , Face recognition, Computer vision, Virtual reality and Image processing ,

Diagnosis , Game theory and Strategic planning , Natural language processing,

Translation and Chatterboxes , Nonlinear control and Robotics, Artificial life, Automated

reasoning , Automation , Biologically inspired computing ,Concept mining , Data mining ,

Knowledge representation , Semantic Web , E-mail spam filtering, Robotics, ,Cognitive ,

Cybernetics , Hybrid intelligent system, Intelligent agent ,Intelligent control.

INTELLIGENT AGENTS

Introduction - Agents and Environments

An agent is anything that can be viewed as perceiving its environment through sensors

andacting upon that environment through actuators.

Different types of agents

1. A human agent has eyes, ears, and other organs for sensors and hands, legs,

mouth, and other body parts for actuators.

2. A robotic agent might have cameras and infrared range finders for sensors and

various motors for actuators.

http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Virtual_reality
http://en.wikipedia.org/wiki/Virtual_reality
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)
http://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Strategic_planning
http://en.wikipedia.org/wiki/Strategic_planning
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Translation
http://en.wikipedia.org/wiki/Translation
http://en.wikipedia.org/wiki/Chatterbot
http://en.wikipedia.org/wiki/Chatterbot
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Concept_mining
http://en.wikipedia.org/wiki/Concept_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Cybernetics
http://en.wikipedia.org/wiki/Cybernetics
http://en.wikipedia.org/wiki/Hybrid_intelligent_system
http://en.wikipedia.org/wiki/Hybrid_intelligent_system
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_control
http://en.wikipedia.org/wiki/Intelligent_control

3. A software agent receives keystrokes, file contents, and network packets as

sensory inputs and acts on the environment by displaying on the screen, writing files,

and sending network packets.

4. Generic agent – A general structure of an agent who interacts with the

environment.

Fig : Agents interact with environments through sensors and effectors (accuators)

The term percept is to refer to the agent's perceptual inputs at any given instant.

PERCEPT SEQUENCE: Agent's percept sequence is the complete history of everything

the agent has ever perceived.

An agent's behavior is described by the agent function that maps any given percept

sequence to an action.

AGENT PROGRAM : The agent function for an artificial agent will be implemented by an

agent program.

Example : The vacuum-cleaner world has just two locations: squares A and B. The

vacuum agent perceives which square it is in and whether there is dirt in the square. It

can choose to move left, move right, suck up the dirt, or do nothing. One very simple

agent function is the following: if the current square is dirty, then suck, otherwise move

to the other square.

Fig : A vacuum-cleaner world with just two locations

Partial tabulation of a simple agent function for the vacuum-cleaner world

• Percepts: location and status, e.g., [A,Dirty]

• Actions: Left, Right, Suck, NoOp

Percept

sequence

Action

[A,

Clean]

Right

[A, Dirty]

Suck

[B,

Clean]

Left

[B, Dirty]

Suck

The agent program for a simple agent in the two-state vacuum environment for

above tabulation

function VACUUM-AGENT([location,status]) if status = Dirty then return Suck else

if location = A then return Right else if location = B then return Left Concept of

Rationality

A rational agent is one that does the right thing. The right action is the one that will

cause the agent to be most successful.

Performance measures

A performance measure embodies the criterion for success of an agent's behavior. When

an agent is plunked down in an environment, it generates a sequence of actions

according to the percepts it receives. This sequence of actions causes the environment to

go through a sequence of states. If the sequence is desirable, then the agent has

performed well.

Rationality

Rational at any given time depends on four things:

1. The performance measure that defines the criterion of success.

2. The agent's prior knowledge of the environment.

3. The actions that the agent can perform.

4. The agent's percept sequence to date.

Definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is

expected to maximize its performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent has. A rational agent

should be autonomous

Definition of an omniscient agent:

An omniscient agent knows the actual outcome of its actions and can act accordingly;

but omniscience is impossible in reality.

Autonomy

A rational agent should be autonomous-it should learn what it can to compensate for

partial or incorrect prior knowledge.

Information Gathering

Doing actions in order to modify future percepts is called as information gathering.

Specifying the task environment

In the discussion of the rationality of any agent, we had to specify the performance

measure, the environment, and the agent's actuators and sensors. We group all these

together under the heading of the task environment and we call this as PEAS

(Performance, Environment, Actuators, Sensors) or PAGE (Percept, Action, Goal,

Environment) description. In designing an agent, the first step must always be to

specify the task environment.

Example : PEAS description of the task environment for agents

Agent

Type

Performa

nce

Measure

Environ

ment

Actuato

rs

Sensors

Automa

ted

Taxi

Driver

Safe, fast,

legal,

comfortab

le trip,

maximize

profits

Roads,

traffic,

pedestria

n

customers

Steering

accelera

tor

,

brake,

signal,

horn,

display

Cameras,

sonar,

speedome

ter, GPS,

odometer,

accelerom

eter

engine

sensors,

keyboard

Medical

diagnos

is

system

Healthy

patient,

minimize

costs,

lawsuits

Patient,

hospital,

staff

Screen

display

(questio

n tests,

diagnos

es

treatme

nt

referral

s)

Keyboard

(entry of

symptoms

, findings,

patient's

answers)

Part-

Picking

Robot

Percentag

e of parts

in correct

Conveyor

belt with

parts, bins

Jointed

arm and

hand

Camera,

joint angle

sensors

bin

Interac

tive

English

tutor

Maximize student’s
score on

test

Set of

students

Screen

display

(exercis

es)

Keyboard

robot

soccer

player

amount of

goals

scored

soccer

match

field

legs cameras,

sonar or

infrared

Satellit

e

Image

Analysi

s

Correct

Image

Categoriza

tion

Downlink

from

satellite

Display

categori

zati on

of scene

Color

pixel

arrays

Refiner

y

controll

er

Maximum

purity,

safety

Refinery

operators

Valves,

pumps,

heaters,

Temperat

ure,

pressure,

chemical

sensors

 displays

Vacuu

m

Agent

minimize

energy

consumpti

on,

maximize

dirt pick

up

two

squares

Left,

Right,

Suck,

NoOp

Sensors to

identify

the dirt

Properties of task environments (Environment Types)

Fully observable vs. partially observable

If an agent's sensors give it access to the complete state of the environment at each point

in time, then we say that the task environment is fully observable. A chess playing

system is an example of a system that operates in a fully observable environment.

An environment might be partially observable because of noisy and inaccurate sensors

or because parts of the state are simply missing from the sensor data. A bridge playing

program is an example of a system operating in a partially observable environment.

Deterministic vs. stochastic

If the next state of the environment is completely determined by the current state and

the action executed by the agent, then we say the environment is deterministic;

otherwise, it is stochastic

Image analysis systems are examples of deterministic. The processed image is

determined completely by the current image and the processing operations.

Taxi driving is clearly stochastic in this sense, because one can never predict the

behavior of traffic exactly;

Episodic vs. sequential

An episodic environment means that subsequent episodes do not depend on what

actions occurred in previous episodes.

In a sequential environment, the agent engages in a series of connected episodes. In

sequential environments, on the other hand, the current decision could affect all future

decisions. Chess and taxi driving are sequential.

Static vs. dynamic

If the environment can change while an agent is deliberating, then we say the

environment is dynamic for that agent; otherwise, it is static. Taxi driving is clearly

dynamic. Crossword puzzles are static.

Discrete vs. continuous

If the number of distinct percepts and actions is limited, the environment is discrete,

otherwise it is continuous. Taxi driving is a continuous state and continuous-time

problem. Chess game has a finite number of distinct states.

Single agent vs. Multi agent

 The distinction between single-agent and multi agent environments may seem simple

enough. For example, an agent solving a crossword puzzle by itself is clearly in a single-

agent environment, whereas an agent playing chess is in a two-agent environment.

 Chess is a competitive multi agent environment. Taxi-driving environment is a partially

cooperative multi agent environment.

Environment Characteristics

Examples of task environments and their characteristics

Tas

k

Envi

ron

men

t

Ob

ser

va

ble

Dete

rmin

istic

Ep

is

od

ic

S

t

a

ti

c

Di

scr

et

e

A

g

e

n

t

Cros

swo

rd

puzz

Full

y

Dete

rmin

istic

Se

qu

en

tia

S

t

a

ti

Dis

cre

te

S

i

n

g

le l c l

e

Ches

s

with

a

cloc

k

Full

y

Stoc

hasti

c

Se

qu

en

tia

l

S

e

m

i

Dis

cre

te

M

u

l

t

i

Poke

r

Par

tial

ly

Stoc

hasti

c

Se

qu

en

tia

l

S

t

a

ti

c

Dis

cre

te

M

u

l

t

i

Back

gam

mon

Full

y

Stoc

hasti

c

Se

qu

en

tia

l

S

t

a

ti

c

Dis

cre

te

M

u

l

t

i

Taxi

dnvi

ng

Par

tial

ly

Stoc

hasti

c

Se

qu

en

tia

l

D

y

n

a

m

ic

Co

nti

nu

ou

s

M

u

l

t

i

Medi

cal

diag

Par

tial

ly

Stoc

hasti

c

Se

qu

en

D

y

n

Co

nti

nu

S

i

n

nosi

s

tia

l

a

m

ic

ou

s

g

l

e

Imag

e-

anal

ysis

Full

y

Dete

rmin

istic

Ep

is

od

ic

S

e

m

i

Co

nti

nu

ou

s

S

i

n

g

l

e

Part-

picki

ng

robo

t

Par

tial

ly

Stoc

hasti

c

Ep

is

od

ic

D

y

n

a

m

ic

Co

nti

nu

ou

s

S

i

n

g

l

e

Refi

nery

cont

rolle

r

Par

tial

ly

Stoc

hasti

c

Se

qu

en

tia

l

D

y

n

a

m

ic

Co

nti

nu

ou

s

S

i

n

g

l

e

Inter

activ

e

Engl

ish

tuto

Par

tial

ly

Stoc

hasti

c

Se

qu

en

tia

l

D

y

n

a

m

ic

Dis

cre

te

M

u

l

t

i

r

• The simplest environment is

– Fully observable, deterministic, episodic, static, discrete and singleagent.

• Most real situations are:

– Partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

Structure of the Agents

The job of AI is to design the agent program that implements the agent function mapping

percepts to actions.

Intelligent agent = Architecture + Agent program

 Agent programs

Agent programs take the current percept as input from the sensors and return an

action to the actuators

The agent program takes the current percept as input, and the agent function takes the

entire percept history

Architecture is a computing device used to run the agent program.

The agent programs will use some internal data structures that will be updated as new

percepts arrive. The data structures are operated by the agents decision making

procedures to generated an action choice, which is then passed to the architecture to be

executed. Two types of agent programs are

1. A Skeleton Agent 2. A Table Lookup Agent

Skeleton Agent

The agent program receives only a single percept as its input.

If the percept is a new input then the agent updates the memory with the new percept

function SKELETON-AGENT(percept) returns action static: memory, the agent’s
memory of the world memory <- UPDATE-MEMORY(memory, percept) action <-

CHOOSE-BEST-ACTION(memory) memory <- UPDATE-MEMORY(memory, action)

 return action

Table-lookup agent

A table which consists of indexed percept sequences with its corresponding action

The input percept checks the table for the same

function TABLE-DRIVEN-AGENT(percept) returns an action

 static: percepts, a sequence initially empty table, a table of actions,

indexed by percept sequence

append percept to the end of percepts action LOOKUP(percepts,

table) return action

Drawbacks of table lookup agent

• Huge table

• Take a long time to build the table

• No autonomy

• Even with learning, need a long time to learn the table entries

Four basic types in order of increasing generality

• Simple reflex agents

• Model-based reflex agents

• Goal-based agents

• Utility-based agents

Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the

basis of the current percept, ignoring the rest of the percept history.

This agent describes about how the condition – action rules allow the agent to make the

connection from percept to action

It acts according to a rule whose condition matches the current state, as defined by the

percept.

Condition – action rule : if condition then action

Example : condition-action rule: if car-in-front-is-braking then initiatebraking

Fig : Schematic diagram of a simple reflex agent.

 Rectangles - to denote the current internal state of the agent's decision process

Ovals - to represent the background information used in the process.

function SIMPLE-REFLEX-AGENT(percept) returns action static : rules, a set of

condition-action rules

 state < - I N T E R P R E T - I N P U T (percept)

 rule <- R U L E - M A T C H (state, rules),

 action <- R U L E - A C T I O N [rule]

 return action

• INTERPRET-INPUT function generates an abstracted description of the current state

from the percept

• RULE-MATCH function returns the first rule in the set of rules that matches the given

state description

• RULE - ACTION – the selected rule is executed as action of the given percept

Example : Medical Diagnosis System

If the patient has reddish brown spots then start the treatment for measles.

Model based Reflex Agents

An agent which combines the current percept with the old internal state to generate

updated

description of the current state.

function REFLEX-AGENT-WITH-STATE(percept)returns action

static: state, a description of the current world state rules, a set

of condition-action rules action, the most recent action, initially

none

state <- UPDATE-STATE(state, action, percept) rule <- RULE -

MATCH (state, rules) action <- RULE-ACTION [rule]

UPD ATE-

STATE - is responsible for creating the new internal state description

Example: Medical Diagnosis system

If the Patient has spots then check the internal state (i. e) any change in the

environment may lead to cause spots on the patient. From this internal state the current

state is updated and the corresponding action is executed.

Goal based Agents

An Agent knows the description of current state as well as goal state. The action matches

with the current state is selected depends on the goal state.

If the name of disease is identified for the patient then the treatment is given to the

patient to recover from him from the disease and make the patient healthy is the goal to

be achieved

Utility base agents

An agent which generates a goal state with high – quality behavior (i.e) if more than one

sequence exists to reach the goal state then the sequence with more reliable, safer,

quicker and cheaper than others to be selected.

Utility is a function that maps a state onto a real number, which describes the associated

degree of happiness

The utility function can be used for two different cases :

Example : Medical diagnosis system

1. When there are conflicting goals, only some of which can be achieved (for example,

speed and safety)

2. When there are several goals that the agent can aim for, none of which can be achieved

with certainty, utility provides a way in which the likelihood of success can be weighed

up against the importance of the goal

Example : Medical diagnosis System

If the patient disease is identified then the sequence of treatment which leads to recover

the patient with all utility measure is selected and applied

Learning agent

All agents can improve their performance through Learning

The learning task allows the agent to operate in unknown environments initially and

then become more competent than its initial knowledge.

A learning agent can be divided into four conceptual components:

1. Learning element

2. performance element

3. Critic

4. Problem generator

The learning element uses feedback from the critic on how the agent is doing and

determines how the performance element should be modified to do better in the future.

Learning element is also responsible for making improvements

Performance element is to select external action and it is equivalent to agent

The critic tells the learning element how well the agent is doing with respect to a fixed

performance standard

The last component of the learning agent is the problem generator. It is responsible for

suggesting actions that will lead to new and informative experiences.

Problem solving – Introduction

Search is one of the operational tasks that characterize AI programs best. Almost every

AI program depends on a search procedure to perform its prescribed functions.

Problems are typically defined in terms of state, and solution corresponds to goal states.

Problem solving using search technique performs two sequence of steps:

(i) Define the problem - Given problem is identified with its required initial and goal state.

(ii) Analyze the problem - The best search technique for the given: problem is chosen from

different an AI search technique which derives one or more goal state in minimum

number of states.

Types of problem

In general the problem can be classified under anyone of the following four types which

depends on two important properties. They are

(i) Amount of knowledge, of the agent on the state and action description. (ii) How the

agent is connected to its environment through its percepts and actions?

The four different types of problems are:

(i) Single state problem

(ii) Multiple state problem

(iii) Contingency problem

(iv) Exploration problem

Problem solving Agents

 Problem solving agent is one kind of goal based agent, where the agent decides what to

do by finding sequence of actions that lead to desirable states. The complexity arises

here is the knowledge about the formulation process, (from current state to outcome

action) of the agent.

 If the agent understood the definition of problem, it is relatively straight forward to

construct a search process for finding solutions, which implies that problem solving

agent should be an intelligent agent to maximize the performance measure.

The sequence of steps done by the intelligent agent to maximize the performance

measure:

i) Goal formulation - based on current situation is the first step in problem solving.

Actions that result to a failure case can be rejected without further consideration.

(ii)Problem formulation - is the process of deciding what actions and states to

consider and follows goal formulation.

(iii) Search - is the process of finding different possible sequence of actions that lead to

state of known value, and choosing the best one from the states. (iv) Solution - a search

algorithm takes a problem as input and returns a solution in the form of action sequence.

(v) Execution phase - if the solution exists, the action it recommends can be carried out.

A simple problem solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns

action input : p, a percept

static: s, an action sequence, initially empty state, some

description of the current world state g, a goal initially null

problem, a problem formulation state <- UPDATE-STATE(state,

p) if s is empty then g <- FORMULATE-GOAL(state) problem <-

FORMULATE-PROBLEM(state,g) s <- SEARCH(problem)

action <- RECOMMENDATION(s, state) s <- REMAINDER(s,

state) return action

an

Note :

RECOMMENDATION - first action in the sequence

REMAINDER - returns the rest

SEARCH - choosing the best one from the sequence of actions

FORMULATE-PROBLEM - sequence of actions and states that lead to goal state.

UPDATE-STATE - initial state is forced to next state to reach the goal state

Well-defined problems and solutions

A problem can be defined formally by four components:

1. initial state 2. successor function 3. goal test 4. path cost

The initial state that the agent starts in.

Successor function (S) - Given a particular state x, S(x) returns a set of states reachable

from x by any single action.

The goal test, which determines whether a given state is a goal state. Sometimes there is

an explicit set of possible goal states, and the test simply checks whether the given state

is one of them.

A path cost function that assigns a numeric cost to each path. The problemsolving agent

chooses a cost function that reflects its own performance measure.

A solution to a problem is a path from the initial state to a goal state

Operator - The set of possible actions available to the agent.

State space (or) state set space - The set of all possible states reachable from the initial

state by any sequence of actions.

Path (state space) - The sequence of action leading from one state to another

The effectiveness of a search can be measured using three factors. They are:

1 Solution is identified or not?

2. Is it a good solution? If yes, then path cost to be minimum.

3. Search cost of the problem that is associated with time and memory required to

find a solution.

For Example

Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. Now, suppose

the agent has a nonrefundable ticket to fly out of Bucharest the following day. In that

case, it makes sense for the agent to adopt the goal of getting to Bucharest. The agent's

task is to find out which sequence of actions will get it to a goal state.

This process of looking for such a sequence is called search.

A search algorithm takes a problem as input and returns a solution in the form of an

action sequence. Once a solution is found, the actions it recommends can be carried out.

This is called the execution phase.

Formulating problems

Initial state : the initial state for our agent in Romania might be described as In(Arad)

Successor function : Given a particular state x, SUCCESSOR-FN(x) returns a set of

(action, successor) ordered pairs, where each action is one of the legal actions in state x

and each successor is a state that can be reached from x by applying the action. For

example, from the state In(Arad), the successor function for the Romania problem would

return

{(Go(Sibzu),In(Sibiu)), (Go(Timisoara), In(Tzmisoara)), (Go(Zerznd),In(Zerind)))

Goal test : The agent's goal in Romania is the singleton set {In(Bucharest)).

Path cost : The step cost of taking action a to go from state x to state y is denoted by c(x,

a, y).

Example Problems

The problem-solving approach has been applied to a vast array of task environments.

A toy problem is intended to illustrate or exercise various problem-solving methods. It

can be given a concise, exact description. It can be used easily by different researchers to

compare the performance of algorithms

A real-world problem is one whose solutions people actually care about.

Some list of best known toy and real-world problems

Toy Problems

i) Vacuum world Problem

 States: The agent is in one of two locations, each of which might or might not contain

dirt. Thus there are 2 * 22 = 8 possible world states.

Initial state: Any state can be designated as the initial state.

Successor function: three actions (Left, Right, and Suck).

Goal test: This checks whether all the squares are clean.

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Fig : The complete state space for Vacuum World

ii) 8-puzzle Problem

 The 8-puzzle problem consists of a 3 x 3 board with eight numbered tiles and a blank

space. A tile adjacent to the blank space can slide into the space. The object is to reach a

specified goal state

States: A state description specifies the location of each of the eight tiles and the blank

in one of the nine squares.

Initial state: Any state can be designated as the initial state.

Successor function: This generates the legal states that result from trying the four

actions (blank moves Left, Right, Up, or Down).

Goal test: This checks whether the state matches the goal configuration (Other goal

configurations are possible.)

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

 Initial State Goal State

 iii) 8-queens problem

 The goal of the 8-queens problem is to place eight queens on a chessboard such that no

queen attacks any other. (A queen attacks any piece in the same row, column or

diagonal.

States: Any arrangement of 0 to 8 queens on the board is a state.

Initial state: No queens on the board.

Successor function: Add a queen to any empty square.

Goal test: 8 queens are on the board, none attacked.

Path cost : Zero (search cost only exists)

solution to the 8-queens problem.

 iv) Crypt arithmetic Problem

In crypt arithmetic problems letters stand for digits and the aim is to find a substitution

of digits for letters such that the resulting sum is arithmetically correct, each letter stand

for a different digit

http://images.google.co.in/imgres?imgurl=http://www.8puzzle.com/images/8_puzzle_goal_state_b.png&imgrefurl=http://www.8puzzle.com/8_puzzle_problem.html&usg=__IKJqUZwK-CI3JOWlUUTg6G-WuhM=&h=211&w=211&sz=9&hl=en&start=13&um=1&tbnid=DPhNvdeWgxIUwM:&tbnh=106&tbnw=106&prev=/images%3Fq%3D8-puzzle%2Bproblem%2Bfinal%2Bstate%26hl%3Den%26sa%3DG%26um%3D1
http://images.google.co.in/imgres?imgurl=http://brainwagon.org/images/8q.png&imgrefurl=http://brainwagon.org/2007/03/29/92-ways-to-place-8-queens-on-a-chessboard/&usg=__nh8yCi8GaT12RF8hyn2Jsk215gA=&h=400&w=400&sz=8&hl=en&start=22&um=1&tbnid=sv_RpwAiEmdwHM:&tbnh=124&tbnw=124&prev=/images%3Fq%3Dsolution%2Bto%2Bthe%2B8-queens%2Bproblem.%26ndsp%3D20%26hl%3Den%26sa%3DN%26start%3D20%26um%3D1

Rules

There should be no more than 10 distinct characters

The summation should be the longest word

The summation can not be too long

There must be a one-to-one mapping between letters and digits The leftmost letter can't

be zero in any word.

States: A crypt arithmetic puzzle with some letters replaced by digits

Initial state: No digits is assigned to the letters

Successor function: Replace all occurrences of a letter with a digit not already

appearing in the puzzle

Goal test: Puzzle contains only digits and represents a correct sum

Path cost : Zero

Example 1:

 S E N D

 + M O R E

 ---------- M O N E Y

Solution : S=9 , E = 5, N = 6, D=7, M= 1, O= 0, R = 8, Y=2

Example 2:

 FORTY

 +TEN

 +TEN

 ------- SIXTY

Solution : F=2, O=9, R=7, T=8 , Y=6, E=5, N=0

v) Missionaries and cannibals problem

 Three missionaries and three cannibals are on one side of a river, along with a oat that

can hold one or two people. Find a way to get everyone to the other side, without ever

leaving a group of missionaries in one place out numbers by the cannibals in that place

Assumptions :

1. Number of trips is not restricted

2. Both the missionary and cannibal can row the boat

States: A state consists of an ordered sequence of two numbers representing the

number of missionaries and cannibals

Example : (i,j) = (3,3) three missionaries and three cannibals

Initial state: (i,j) = (3,3) in one side of the river

Successor function: The possible move across the river are:

1. One Missionary and One Cannibal

2. Two Missionaries

3. Two Cannibals

4. One Missionary

5. One Cannibal

Rule No. Explanation

(i) (i, j) : One missionary and one

cannibal can cross the river

only when ((i-1) >= (j-1)) in one

side of the river and ((i+1) >=

(j+ 1)) in the other side of the

river.

(ii)

(i,j) : Two missionaries can

cross the river only when ((i-

2)>=j) in one side of the river

and ((i+2)>=j) in the other side

of the river.

(iii) (i,j) : Two cannibals can cross

the river only when ((j-2)<= i)

in one side of the river and

((j+2)<= i) in the other side of

the river.

(iv) (i,j) : One missionary can cross

the river only when ((i-1)>=j))

in one side of the river and ((i-

1)>=j)) in the other side of the

river.

(v) (i,j) : One cannibal can cross the

river only when (((j-l)<=i) in

one side of the river and

(((j+l)<=i)in the other side of

the river.

Initial state : (i.j) = (3,3) in one side of the river.

Goal test: (i,j) = (3,3) in the other side of the river.

Path cost : Number of crossings between the two sides of the river.

Solution:

Bank

1

-

>

<

-

-

>

<

-

-

>

<

-

-

>

<

-

B

o

at

-

>

<

-

-

>

<

-

-

>

<

-

-

>

<

-

Bank

2

Rule

App

lied

(i,j)=(

3,3)

 (i,j)=(

0,0)

(3,1) (0

,2

)

(0,2) (iii)

(3,2) (0

,1

)

(0,1) (v)

(3,0) (0

,2

)

(0,3) (iii)

(3,1) (0

,1

)

(0,2) (v)

(1,1) (2

,0

)

(2,2) (ii)

(2,2) (1

,1

)

(1,1) (i)

(0,2) (2 (3,1) (ii)

-

>

<

-

-

>

,0

)

-

>

<

-

-

>

(0,3) (0

,1

)

(3,0) (v)

(0,1) (0

,2

)

(3,2) (iii)

(0,2) (0

,1

)

(3,1) (v)

(0,0) (0

,2

)

(3,3) (iii)

Real-world problems

Airline travel problem

States: Each is represented by a location (e.g., an airport) and the current time. Initial

state: This is specified by the problem.

Successor function: This returns the states resulting from taking any scheduled flight

(perhaps further specified by seat class and location), leaving later than the current time

plus the within-airport transit time, from the current airport to another.

Goal test: Are we at the destination by some pre specified time?

Path cost: This depends on monetary cost, waiting time, flight time, customs and

immigration procedures, seat quality, time of day, type of airplane, frequentflyer mileage

awards, and so on.

Route-finding problem is defined in terms of specified locations and transitions along

links between them. Route-finding algorithms are used in a variety of applications, such

as routing in computer networks, military operations planning, and airline travel

planning systems

The traveling salesperson problem (TSP) is a touring problem in which each city must

be visited exactly once. The aim is to find the shortest tour.

A VLSI layout problem requires positioning millions of components and connections on

a chip to minimize area, minimize circuit delays, minimize stray capacitances, and

maximize manufacturing yield. The layout problem comes after the logical design phase,

and is usually split into two parts: cell layout and channel routing. In cell layout, the

primitive components of the circuit are grouped into cells, each of which performs some

recognized function. Each cell has a fixed footprint (size and shape) and requires a

certain number of connections to each of the other cells. The aim is to place the cells on

the chip so that they do not overlap and so that there is room for the connecting wires to

be placed between the cells. Channel routing finds a specific route for each wire through

the gaps between the cells.

Robot navigation is a generalization of the route-finding problem described earlier.

Rather than a discrete set of routes, a robot can move in a continuous space with (in

principle) an infinite set of possible actions and states. For a circular robot moving on a

flat surface, the space is essentially two-dimensional. When the robot has arms and legs

or wheels that must also be controlled, the search space becomes many-dimensional.

Advanced techniques are required just to make the search space finite. In addition to the

complexity of the problem, real robots must also deal with errors in their sensor

readings and motor controls.

Automatic assembly sequencing of complex objects by a robot was first demonstrated

by FREDDY (Michie, 1972). In assembly problems, the aim is to find an order in which to

assemble the parts of some object. If the wrong order is chosen, there will be no way to

add some part later in the sequence without undoing some of the work already done.

Checking a step in the sequence for feasibility is a difficult geometrical search problem

closely related to robot navigation.

UNIT II- PROBLEM SOLVING METHODS

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics -

Local Search Algorithms and Optimization Problems - Searching with Partial

Observations - Constraint Satisfaction Problems – Constraint Propagation -

Backtracking Search - Game Playing - Optimal Decisions in Games – Alpha - Beta

Pruning - Stochastic Games.

Searching for Solutions

Search techniques use an explicit search tree that is generated by the initial state and

the successor function that together define the state space. In general, we may have a

search graph rather than a search tree, when the same state can be reached from

multiple paths

Example Route finding problem

The root of the search tree is a search node corresponding to the initial state, In(Arad).

The first step is to test whether this is a goal state.

Apply the successor function to the current state, and generate a new set of states

In this case, we get three new states: In(Sibiu),In(Timisoara), and In(Zerind). Now we

must choose which of these three possibilities to consider further.

Continue choosing, testing, and expanding until either a solution is found or there are no

more states to be expanded.

The choice of which state to expand is determined by the search strategy

 Tree Search algorithm

 Task : Find a path to reach F from A

1. Start the sequence with the initial state and check whether it is a goal state or not.

a, If it is a goal state return success.

b. Otherwise perform the following sequence of steps

From the initial state (current state) generate and expand the new set of states. The

collection of nodes that have been generated but not expanded is called as fringe. Each

element of the fringe is a leaf node, a node with no successors in the tree.

Expanding A

Expanding B

Expanding C

Sequence of steps to reach the goal state F from (A = A - C - F)

2. Search strategy: In the above example we did the sequence of choosing, testing

and expanding until a solution is found or until there are no more states to be expanded.

The choice of which state to expand first is determined by search strategy.

3. Search tree: The tree which is constructed for the search process over the state

space.

4. Search node: The root of the search tree that is the initial state of the problem.

The general tree search algorithm

function TREE-SEARCH(problem. strategy) returns a solution or failure

initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy if the node contains a goal state

then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

There are many ways to represent nodes, but we will assume that a node is a data

structure with five components:

STATE: the state in the state space to which the node corresponds

PARENT-NODE: the node in the search tree that generated this node; ACTION (RULE):

the action that was applied to the parent to generate the node;

PATH-COST: the cost, traditionally denoted by g(n) , of the path from the initial state to

the node

DEPTH: the number of steps along the path from the initial state.

The collection of nodes represented in the search tree is defined using set or queue

representation.

Set : The search strategy would be a function that selects the next node to be expanded

from the set

Queue: Collection of nodes are represented, using queue. The queue operations are

defined as:

MAKE-QUEUE(elements) - creates a queue with the given elements

EMPTY(queue)-returns true only if there are no more elements in the queue. REM0VE-

FIRST(queue) - removes the element at the front of the queue and returns it

INSERT ALL (elements, queue) - inserts set of elements into the queue and returns the

resulting queue.

FIRST (queue) - returns the first element of the queue.

INSERT (element, queue) - inserts an element into the queue and returns the resulting

queue

The general tree search algorithm with queue representation

function TREE-SEARCH(problem,fringe) returns a solution, or

failure

fringe <- INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure node <- REMOVE-

FIRST(fringe)

ifGOAL-TEST[problenl]applied to STATE[node] succeeds then

return SOLUTION(node) fringe <- INSERT-ALL(EXPAND(node,

problem),fringe)

function EXPAND(node, problem) returns a set of nodes successors <-

the empty set

for each <action, result> in SUCCESSOR-FN

[problem](STATE[node])do

S <- a new NODE

STATE[s] <- result

PARENT-NODE[s] <- node

ACTION[s] <- action

PATH-COST[s] <- PATH-COST[node]+STEP-COST(node,action,s)

DEPTH[s] <- DEPTH[node] + 1 add s to successors return successors

Example: Route finding problem

Task. : Find a path to reach E using Queuing function in general tree search algorithm

Measuring problem solving performance

 The search strategy algorithms are evaluated depends on four important criteria’s. They
are:

(i) Completeness : The strategy guaranteed to find a solution when there is one.

(ii) Time complexity : Time taken to run a solution

(iii) Space complexity : Memory needed to perform the search.

(iv) Optimality : If more than one way exists to derive the solution then the best one is

Selected

Definition of branching factor (b): The number of nodes which is connected to each of

the node in the search tree. Branching factor is used to find space and time complexity of

the search strategy

Solving Problems by Searching

The searching algorithms are divided into two categories

1. Uninformed Search Algorithms (Blind Search) 2. Informed Search Algorithms

(Heuristic Search)

There are six Uninformed Search Algorithms

1. Breadth First Search 2. Uniform-cost search 3. Depth-first search 4. Depth-

limited search 5. Iterative deepening depth-first search 6. Bidirectional Search

There are three Informed Search Algorithms

1. Best First Search 2. Greedy Search 3. A* Search Blind search Vs Heuristic search .

Blind search Heuristic search

No information about the

number of steps (or) path cost

from current state to goal state

The path cost from the current

state to the goal state is

calculated, to select the

minimum path cost as the next

state.

Less effective in search method More effective in search method

Problem to be solved with the

given information

Additional information can be

added as assumption to solve

the problem

Breadth-first search

Breadth-first search is a simple strategy in which the root node is expanded first, then

all the successors of the root node are expanded next, then their successors, and so on. In

general, all the nodes are expanded at a given depth in the search tree before any nodes

at the next level are expanded.

Breadth-first search can be implemented by calling TREE-SEARCH with an empty fringe

that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will

be expanded first.

In other words, calling TREE-SEARCH(Problem, FIFO-QUEUE())results in a breadth-

first search. The FIFO queue puts all newly generated successors at the end of the queue,

which means that shallow nodes are expanded before deeper nodes

Breadth first search trees after node expansions

Example: Route finding problem

 Task: Find a ,path from. S to G using BFS

The path in the 2nd depth level is selected, (i.e) SBG{or) SCG.

 Algorithm :

function BREADTH-FIRST-SEARCH(problem)

returns a solution, or failure node ←a node with
STATE = problem.INITIAL-STATE, PATH-COST = 0 if

problem.GOAL-TEST(node.STATE) then return SOLUTION(node) frontier ←a FIFO queue with node as the only element explored ←an empty set loop

do

if EMPTY?(frontier) then return failure node←POP(frontier) /* chooses the shallowest
node in frontier */ add node.STATE to explored

for each action in problem.ACTIONS(node.STATE)

do child ←CHILD-NODE(problem, node, action) if

child.STATE is not in explored or frontier then

if problem.GOAL-TEST(child.STATE) then return SOLUTION(child) frontier ←INSERT(child, frontier)

Time and space complexity:

Example:

Time complexity

= 1 +b + b 2 + + b d

= O(b d)

The space complexity is same as time complexity because all the leaf nodes of the tree

must be maintained in memory at the same time = O(b d)

Completeness: Yes

Optimality: Yes, provided the path cost is a non decreasing function of the depth of the

node

Advantage: Guaranteed to find the single solution at the shallowest depth level

Disadvantage: Suitable for only smallest instances problem (i.e.) (number of levels to

be minimum (or) branching factor to be minimum) ')

Uniform-cost search

function UNIFORM-COST-SEARCH(problem) returns a solution, or

failure node ←a node with STATE = problem.INITIAL-STATE, PATH-

COST = 0 frontier ←a priority queue ordered by PATH-COST, with node

as the only element explored ←an empty set

loop do

if EMPTY?(frontier) then return failure node←POP(frontier) /*

chooses the lowest-cost node in frontier */ if problem.GOAL-

TEST(node.STATE) then return SOLUTION(node) add node.STATE to

explored for each action in problem.ACTIONS(node.STATE) do child ←CHILD-NODE(problem, node, action) if child.STATE is not in explored

or frontier then frontier ←INSERT(child, frontier) else if child.STATE is

in frontier with higher PATH-COST then replace that frontier node with

child

Breadth-first search is optimal when all step costs are equal, because it always expands

the shallowest unexpanded node. By a simple extension, we can find an algorithm that is

optimal with any step cost function. Instead of expanding the shallowest node, uniform-

cost search expands the node n with the lowest path cost. Note that if all step costs are

equal, this is identical to breadth-first search.

Uniform-cost search does not care about the number of steps a path has, but only about

their total cost.

Example: Route finding problem

Task : Find a minimum path cost from S to G

 Since the

value of A is less it is expanded first, but it is not optimal.

B to be expanded next

SBG is the path with minimum path cost.

No need to expand the next path SC, because its path cost is high to reach C from S, as

well as goal state is reached in the previous path with minimum cost.

Time and space complexity:

Time complexity is same as breadth first search because instead of depth level the

minimum path cost is considered.

Time complexity: O(b d) Space complexity: O(b d)

Completeness: Yes Optimality: Yes

Advantage: Guaranteed to find the single solution at minimum path cost.

Disadvantage: Suitable for only smallest instances problem.

Depth-first search

Depth-first search always expands the deepest node in the current fringe of the search

tree

The search proceeds immediately to the deepest level of the search tree, where the

nodes have no successors. As those nodes are expanded, they are dropped from the

fringe, so then the search "backs up" to the next shallowest node that still has

unexplored successors. This strategy can be implemented by TREESEARCH with a last-

in-first-out (LIFO) queue, also known as a stack.

Depth first search tree with 3 level expansion

Example: Route finding problem

Task: Find a path from S to G using DFS

The path in the 3rd depth level is selected. (i.e. S-A-D-G

Algorithm:

function DFS(problem) return a solution or failure

TREE-SEARCH(problem, LIFO-QUEUE())

Time and space complexity:

In the worst case depth first search has to expand all the nodes

Time complexity : O(bm).

The nodes are expanded towards one particular direction requires memory for only that

nodes.

Space complexity : O(bm)

b=2

m = 2 :. bm=4

Completeness: No

Optimality: No

Advantage: If more than one solution exists (or) number of levels is high then DFS is

best because exploration is done only in a small portion of the whole space.

Disadvantage: Not guaranteed to find a solution

Depth - limited search

1. Definition: A cut off (maximum level of the depth) is introduced in this search

technique to overcome the disadvantage of depth first search. The cutoff value depends

on the number of states.

Example: Route finding problem

The number of states in the given map is 5. So, it is possible to get the goal state at a

maximum depth of 4. Therefore the cutoff value is 4

Task : Find a path from A to E.

A recursive implementation of depth-limited search

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE [problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or

failure/cutoff cutoff-occurred? <- false

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

else if DEPTH[node] =limit then return cutoff else for each successor in

EXPAND(node, problem) do result <- RECURSIVE-DLS(successor,

problem, limit) if result = cutoff then cutoff-occurred?<- true else if

result failure then return result if cutoff-occurred? then return cutoff

else return failure

Time and space complexity:

The worst case time complexity is equivalent to BFS and worst case DFS.

Time complexity : O(bl)

The nodes which is expanded in one particular direction above to be stored.

Space complexity : O(bl)

Optimality: No, because not guaranteed to find the shortest solution first in the search

technique.

Completeness : Yes, guaranteed to find the solution if it exists.

Advantage: Cut off level is introduced in the DFS technique

Disadvantage : Not guaranteed to find the optimal solution.

Iterative deepening search

Iterative deepening search

Definition: Iterative deepening search is a strategy that sidesteps the issue of choosing

the best depth limit by trying all possible depth limits.

Example: Route finding problem

Task: Find a path from A to G

Limit = 0

Limit = 1

Limit = 2

Solution: The goal state G can be reached from A in four ways. They are:

1. A – B – D - E – G ------- Limit 4 2. A - B - D - E - G ------- Limit 4 3. A - C - E - G -------

Limit 3 4. A - F - G ------ Limit2

Since it is a iterative deepening search it selects lowest depth limit (i.e.) A-F-G is selected

as the solution path.

The iterative deepening search algorithm :

function ITERATIVE-DEEPENING-SEARCH (problem) returns a

solution, or failure inputs : problem for depth <- 0 to do

result <-DEPTH-LIMITED-SEARCH(problem, depth) if result cutoff then

return result

Time and space complexity :

Iterative deepening combines the advantage of breadth first search and depth first

search (i.e) expansion of states is done as BFS and memory requirement is equivalent to

DFS.

Time complexity : O(bd)

Space Complexity : O(bd)

Optimality: Yes, because the order of expansion of states is similar to breadth first

search.

Completeness: yes, guaranteed to find the solution if it exists.

Advantage: This method is preferred for large state space and the depth of the search is

not known.

Disadvantage : Many states are expanded multiple times

Example : The state D is expanded twice in limit 2

Bidirectional search

Definition : Bidirectional search is a strategy that simultaneously search both the

directions (i.e.) forward from the initial state and backward from the goal, and stops

when the two searches meet in the middle.

 Example: Route finding problem

Task : Find a path from A to E.

Search from forward (A) :

Search from backward (E) :

Time and space complexity:

The forward and backward searches done at the same time will lead to the solution in

O(2bd/2) = O(bd/2)step, because search is done to go only halfway If the two searches

meet at all, the nodes of at least one of them must all be retained in memory requires

O(bd/2) space.

Optimality: Yes, because the order of expansion of states is done in both the directions.

Completeness: Yes, guaranteed to find the solution if it exists.

Advantage : Time and space complexity is reduced.

Disadvantage: If two searches (forward, backward) does not meet at all, complexity

arises in the search technique. In backward search calculating predecessor is difficult

task. If more than one goal state 'exists then explicit, multiple state search is required

Comparing uninformed search strategies

Cri

teri

on

Br

ea

dt

h

Fi

rs

t

Un

ifo

r

m

Co

st

D

e

p

t

h

F

i

r

s

t

D

ep

th

Li

m

it

ed

Iter

ativ

e

Dee

peni

ng

Bi

dir

ect

ion

Co

mp

let

e

Ye

s

Ye

s

N

o

N

o

Yes Yes

Ti

me

O(

bd

)

O(

bd

)

O

(

b

m

)

O(

bl

)

O(b

d)

O(

bd/

2)

Spa

ce

O(

bd

)

O(

bd

)

O

(

b

m

)

O(

bl

)

O(b

d)

O(

bd/

2)

Opt

im

al

Ye

s

Ye

s

N

o

N

o

Yes Yes

Avoiding Repeated States

The most important complication of search strategy is expanding states that have

already been encountered and expanded before on some other path

A state space and its exponentially larger search tree

The repeated states can be avoided using three different ways. They are:

1. Do not return to the state you just came from (i.e) avoid any successor that is the

same state as the node's parent.

2. Do not create path with cycles (i.e) avoid any successor of a node that is the same

as any of the node's ancestors.

3. Do not generate any state that was ever generated before.

The general TREE-SEARCH algorithm is modified with additional data structure, such as

:

Closed list - which stores every expanded node.

Open list - fringe of unexpanded nodes.

If the current node matches a node on the closed list, then it is discarded and it is not

considered for expansion. This is done with GRAPH-SEARCH algorithm. This algorithm is

efficient for problems with many repeated states

function GRAPH-SEARCH (problem, fringe) returns a solution, or

failure closed <- an empty set

fringe <- INSERT (MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTv?(fringe) then return failure node <- REMOVE-FIKST (fringe)

if GOAL-TEST [problem](STATE[node]) then return SOLUTION

(node)

if STATE [node] is not in closed then add STATE [node] to closed

fringe <- INSERT-ALL(EXPAND(node, problem), fringe)

The worst-case time and space requirements are proportional to the size of the state

space, this may be much smaller than O(bd)

Informed search and exploration

Uninformed search strategies can find solutions to problems by systematically

generating new states and testing them against the goal. These strategies are inefficient

in most cases.

An informed search Strategy uses problem-specific knowledge and it can find solutions

more efficiently.

Informed Heuristic Search Strategies

An informed search strategy uses problem-specific knowledge beyond the definition of

the problem itself and it can find solutions more efficiently than an uninformed strategy.

The general approach is best first search that uses an evaluation function in TREE-

SEARCH or GRAPH-SEARCH.

Best-first search is an instance of the general TREE-SEARCH or GRAPH-SEARCH

algorithm in which a node is selected for expansion based on an evaluation function,

f(n)

The node with the lowest evaluation is selected for expansion, because the evaluation

measures distance to the goal.

Best-first search can be implemented within our general search framework via a priority

queue, a data structure that will maintain the fringe in ascending order of f –values

 Implementation of Best-first search using general search algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence inputs:

problem, a problem EVAL-FN, an evaluation function

QUEUEING -FN<- a function that orders nodes by EVAL-FN return TREE-

SEARCH(problem, QUEUEING-FN)

The key component of these algorithms is a heuristic functions denoted h(n)

h(n) = estimated cost of the cheapest path from node n to a goal node.

One constraint: if n is a goal node, then h(n) = 0

The two types of evaluation functions are:

(i) Expand the node closest to the goal state using estimated cost as the evaluation is

called greedy best first search.

(ii) Expand the node on the least cost solution path using estimated cost and actual

cost as the evaluation function is called A*search

Greedy best first search (Minimize estimated cost to reach a goal)

Definition : A best first search that uses h(n) to select next node to expand is called

greedy search

Evaluation function : The estimated cost to reach the goal state, denoted by the letter

h(n)

h(n)= estimated cost of the cheapest path from the state at node n to a goal state

Algorithm :

Function GREEDY-BEST-FIRST SEARCH (problem) returns a solution or failure

return BEST-FIRST-SEARCH (problem, h)

Example 1 : Route Finding Problem

Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is Straight-

Line Distance to the goal and it is denoted as hSLD(n).

hSLD(n) = Straight-Line distance between n and the goal locatation

Note : The values of hSLD(n) cannot be computed from the problem description itself.

Moreover, it takes a certain amount of experience

Values of hSLD-straight-line distances to Bucharest

 Solution :

From the given graph and estimated cost, the goal state is identified as B u c h a r e s t

from Arad. Apply the evaluation function h (n) to find a path from Arad to Burcharest

from A to B

The first node to be expanded from Arad will be Sibiu, because it is closer to Bucharest

than either Zerind or Timisoara.

The next node to be expanded will be Fagaras, because it is closest. Fagaras in turn

generates Bucharest, which is the goal.

For this particular problem, greedy best-first search using hSLD finds a solution without

ever expanding a node that is not on the solution path; hence, its search cost is minimal.

It is not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers

longer than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is

called "greedy'-at each step it tries to get as close to the goal as it can.

Minimizing h(n) is susceptible to false starts. Consider the problem of getting from Iasi

to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest to

Fagaras, but it is a dead end. The solution is to go first to Vaslui-a step that is actually

farther from the goal according to the heuristic-and then to continue to Urziceni,

Bucharest, and Fagaras.

Time and space complexity : Greedy search resembles depth first search, since it

follows one path to the goal state, backtracking occurs when it finds a dead end. The

worst case time complexity is equivalent to depth first search, that is O(bm), where m is

the maximum depth of the search space. The greedy search retains all nodes in memory,

therefore the space complexity is also O(bm) The time and space complexity can be

reduced with good heuristic function.

Optimality : It is not optimal, because the next level node for expansion is selected only

depends on the estimated cost and not the actual cost.

Completeness : No, because it can start down with an infinite path and never return to

try other possibilities.

Example 2 : Finding the path from one node to another node

Solution :

From the given graph and estimated cost, the goal state IS identified as B from A.

Apply the evaluation function h(n) to find a path from A to B

From F, goal state B is reached. Therefore the path from A to Busing greedy search is A -

S - F - B = 450 (i.e) (140 + 99 + 211)

A* search (Minimizing the total estimated solution cost)

The most widely-known form of best-first search is called A* search (pronounced "A-

star search"). A* search is both complete and optimal.

It evaluates nodes by combining g(n), the cost to reach the node, and h(n.),the cost to get

from the node to the goal

f(n) =g(n) + h(n)

g(n) - path cost from the start node to node n h(n) - estimated cost of the cheapest path

from n to the goal f (n) - estimated cost of the cheapest solution through n

A* Algorithm

function A* SEARCH(problem) returns a solution or failure return BEST-FIRST-SEARCH

(problem, g+h)

 Example 1 : Route Finding Problem

 Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is Straight-

Line Distance to the goal and it is denoted as hSLD(n).

hSLD(n) = Straight-Line distance between n and the goal locatation

Values of hSLD-straight-line distances to Bucharest

Stages in an A* search for Bucharest. Nodes are labeled with f (n) = g (n) + h(n)

Example 2 : Finding the path from one node to another node

Solution:

From the given graph and estimated cost, the goal state is identified as B from A Apply

the evaluation function f(n) = g(n) +h(n) to find a path from A to B

From P, goal state B is reached. Therefore the path from A to B using A* search is A – S -

R - P -B : 418 (ie) {140 + 80 + 97 + 101), that the path cost is less than Greedy search

path cost.

Time and space complexity: Time complexity depends on the heuristic function and

the admissible heuristic value. Space complexity remains in the exponential order.

The behavior of A* search

Monotonicity (Consistency)

In search tree any path from the root, the f- cost never decreases. This condition is true

for almost all admissible heuristics. A heuristic which satisfies this property is called

monotonicity(consistency).

A heuristic h(n) is consistent if, for every node n and every successor n' of n generated

by any action a, the estimated cost of reaching the goal from n is no greater than the step

cost of getting to n' plus the estimated cost of reaching the goal from n':

If the heuristic is non-monotonic, then we have to make a minor correction that restores

monotonicity.

Example for monotonic

 Let us consider two nodes n and n’, where n is the parent of n’

For example

g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7. g(n’) = 54 and h(n’) = 3. then f(n’) = g(n’) + h(n’) = 8
 Example for Non-monotonic

 Let us consider two nodes n and n’, where n is the parent of n’. For example
 g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7. g(n’) = 4 and h(n’) = 2. then f(n’) = g(n’) + h(n’) = 6.

To reach the node n the cost value is 7, from there to reach the node n' the value of cost

has to increase as per monotonic property. But the above example does not satisfy this

property. So, it is called as non-monotonic heuristic.

 How to avoid non-monotonic heuristic?

We have to check each time when we generate anew node, to see if its f-cost is less that its parent’s f-cost; if it is we have to use the parent’s f- cost instead.

Non-monotonic heuristic can be avoided using path-max equation.

f(n') = max (f{n), g(n') + h(n'))

Optimality

A* search is complete, optimal, and optimally efficient among all algorithms

A* using GRAPH-SEARCH is optimal if h(n) is consistent.

Completeness

A* is complete on locally finite graphs (graphs with a finite branching factor) provided

there is some constant d such that every operator costs at least d.

Drawback

A* usually runs out of space because it keeps all generated nodes in memory

Memory bounded heuristic search

The simplest way to reduce memory requirements for A* is to adapt the idea of iterative

deepening to the heuristic search context, resulting in the iterativedeepening A" (IDA*)

algorithm.

The memory requirements of A* is reduced by combining the heuristic function with

iterative deepening resulting an IDA* algorithm.

Iterative Deepening A* search (IDA*)

Depth first search is modified to use an f-cost limit rather than a depth limit for IDA*

algorithm.

Each iteration in the search expands all the nodes inside the contour for the current f-

cost and moves to the next contour with new f - cost.

Space complexity is proportional to the longest path of exploration that is bd is a good

estimate of storage requirements

Time complexity depends on the number of different values that the heuristic function

can take on

Optimality: yes, because it implies A* search.

Completeness: yes, because it implies A* search.

Disadvantage: It will require more storage space in complex domains (i.e) Each contour

will include only one state with the previous contour. To avoid this, we increase the f-

cost

limit by a fixed amount on each iteration, so that the total number of iteration is

proportional to 1/ . Such an algorithm is called admissible.

The two recent memory bounded algorithms are:

• Recursive Best First Search (RBfS)

• Memory bounded A* search (MA*)

Recursive Best First Search (RBFS)

 A recursive algorithm with best first search technique uses only linear space. It is

similar to recursive depth first search with an inclusion (i.e.) keeps track of the f-value of

the best alternative path available from any ancestor of the current node.

If the current node exceeds this limit, the recursion unwinds back to the alternative path

and replaces the f-value of each node along the path with the best f-value of its children.

The main idea lies in to keep track of the second best alternate node (forgotten node)

and decides whether it's worth to reexpand the subtree at some later time.

 Algortihm For Recursive Best-First Search

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution,

or failure

RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]),)

function, RBFS(problem, node, f_limit) returns a

solution, or failure and a new f-cost limit if GOAL-TEST[problem](state)

then return node successors <- EXPAND(node, problem) if successors is

empty then return failure, for each s in successors do f[s]<-max(g(s) +

h(s),f[node]) repeat

best <- the lowest f-value node in successors if f[best] > f_limit then return

failure,f[best] alternative <- the second-lowest f-value among successors

result,f[best]<-

RBFS(problem,best,min(f_limit,alternative)) if result failure then return

result

Stages in an RBFS search for the shortest route to Bucharest.

Example:

 After expanding A, S, and R, the current best leaf(P) has a value that is worse than the

best alternative path (F)

f-limit value of each recursive call is shown on top of each current node. After expanding

R, the condition f[best] >f-limit (417 > 415) is true and returns f[best] to that node.

a) After unwinding back to and expanding F

Here the f[best] is 450 and which is greater than the f-limit of 417. Therefore if returns

and unwinds with f[best] value to that node.

b) After switching back to Rand expanding P.

The best alternative path through T costs at least 447, therefore the path through R and

P is considered as the best one.

Time and space complexity : RBFS is an optimal algorithm if the heuristic function h(n)

is admissible. Its time complexity depends both on the accuracy of the heuristic function

and on how often the best path changes as nodes are expanded. Its space complexity is

O(bd), even though more is available.

A search techniques (algorithms) which uses all available memory are:

a. MA* (Memory - bounded A*)

b. SMA* (Simplified MA*)

Simplified Memory - bounded A* search (SMA*)

SMA* algorithm can make use of all available memory to carry out the search.

Properties of SMA* algorithm:

(a) It will utilize whatever memory is made available to it.

(b) It avoids repeated states as far as its memory allows.

It is complete if the available memory is sufficient to store the deepest solution path.

It is optimal if enough memory is available to store the deepest solution path. Otherwise,

it returns the best solution that can be reached with the available memory.

Advantage: SMA* uses only the available memory.

Disadvantage: If enough memory is not available it leads to unoptimal solution.

Space and Time complexity: depends on the available number of node.

The SMA* Algorithm

function SMA*(problem) returns a solution sequence inputs: problem, a problem

local variables: Queue, a queue of nodes ordered by

f-cost

Queue<-MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])}) loop do

if Queue is empty then return failure n<-deepest least-f-cost node in Queue if GOAL-

TEST(n) then return success s<-NEXT-SUCCESSOR(n)

if s is not a goal and is at maximum depth then f{s)<- else

f{s)<- MAX(f(n), g(s)+h(s))

if all of n’s successors have been generated then update n’s f-cost and those of its ancestors

if necessary if SUCCESSORS(n) all in the memory then remove n from Queue

if memory is full then

delete shallowest, highest-f-cost node in Queue remove it from its parent's successor list

insert its parent on Queue if necessary insert s on Queue end

 Example:

The values at the nodes are given as per the A* function i.e. g+h=f

From the Figure we identified that the goal states are D,F,J,I because the h value of these

nodes are zero (marked as a square)

Available memory - 3 nodes of storage space.

Task: Find a optimal path from A to anyone of the goal state.

Solution:

HEURISTIC FUNCTIONS

The 8-puzzle was one of the earliest heuristic search problems.

Given :

Task : Find the shortest solution using heuristic function that never over estimates the

number of steps to the goal.

Solution : To perform the given task two candidates are required, which are named as

h1 and h2

h1 = the number of misplaced tiles.

All of the eight tiles are out of position in the above figure, so the start state would have

hl = 8. hl is an admissible heuristic, because it is clear that any tile that is out of place

must be moved at least once.

h2 = the sum of the distances of the tiles from their goal positions. Because tiles cannot

move along diagonals, the distance we will count is the sum of the horizontal and

vertical distances. This is called as the city block distance or Manhattan distance. h2 is

also admissible, because any move can do is move one tile one step closer to the goal.

Tiles 1 to 8 in the start state give a Manhattan distance of

h2=3+1+2+2+2+3+3+2=18.

True solution cost is h1 + h2 = 26

Example :

h1=7

h2 = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18

True Solution Cost is h1 + h2 = 25

Effective branching factor(b*)

In the search tree, if the total number of nodes expanded by A* for a particular problem

is N, and the solution depth is d, then b* is the branching factor that a uniform tree of

depth d, would have N nodes. Thus:

N= l+ b* + (b*)2 + (b*)3 + +(b*)d

Example:

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective

branching factor is 1.92.

Depth = 5

N = 52

Effective branching factor is 1.92.

Relaxed problem

A problem with less restriction on the operators is called a relaxed problem. If the given

problem is a relaxed problem then it is possible to produce good heuristic function.

Example: 8 puzzle problem, with minimum number of operators.

Local Search Algorithms And Optimization Problems

In many optimization problems, the path to the goal is irrelevant; the goal state itself is

the solution.

The best state is identified from the objective function or heuristic cost function. In such

cases, we can use local search algorithms (ie) keep only a single current state, try to

improve it instead of the whole search space explored so far

For example, in the 8-queens problem, what matters is the final configuration of queens,

not the order in which they are added.

Local search algorithms operate a single current state (rather than multiple paths) and

generally move only to neighbors of that state. Typically, the paths followed by the

search are not retained.

They have two key advantages:

(1) They use very little memory-usually a constant amount; (2) They can often find

reasonable solutions in large or infinite (continuous) state spaces for which systematic

algorithms are unsuitable.

The local search problem is explained with the state space land scape. A landscape has:

Location - defined by the state

Elevation - defined by the value of the heuristic cost function or objective function, if

elevation corresponds to cost then the lowest valley (global minimum) is achieved. If

elevation corresponds to an objective function, then the highest peak (global maximum)

is achieved.

A complete local search algorithm always finds a goal if one exists, an optimal algorithm

always finds a global minimum/maximum.

A one-dimensional state space landscape in which elevation corresponds to the

objective function.

Applications

Integrated - circuit design

Factory - floor layout

Job-shop scheduling

Automatic programming

Vehicle routing

Telecommunications network Optimization

Advantages

 Constant search space. It is suitable for online and offline search

 The search cost is less when compare to informed search

 Reasonable solutions are derived in large or continuous state space for which systematic

algorithms are unsuitable.

Some of the local search algorithms are:

1. Hill climbing search (Greedy Local Search)

2. Simulated annealing

3. Local beam search

4. Genetic Algorithm (GA)

Hill Climbing Search (Greedy Local Search)

The hill-climbing search algorithm is simply a loop that continually moves in the

direction of increasing value. It terminates when it reaches a "peak" where no neighbor

has a higher value. The algorithm does not maintain a search tree, so the current node

data structure need only record the state and its objective function value. At each step

the current node is replaced by the best neighbor;

Hill-climbing search algorithm

function HILL-CLIMBING(problem) returns a state that is a local

maximum

inputs: problem, a problem

local variables:current, a node and neighbor, a node current <- MAKE-

NODE(INITIAL-STATE[problem]) loop do

neighbor <- a highest-valued successor of current if VALUE[neighbor]

<= VALUE[current] then return STATE[current] current <- neighbor

To illustrate hill-climbing, we will use the 8-queens, where each state has 8 queens on

the board, one per column. The successor function returns all possible states generated

by moving a single queen to another square in the same column (so each state has 8 x 7

= 56 successors).

Hill-climbing algorithms typically choose randomly among the set of best successors, if

there is more than one.

The heuristic cost function h is the number of pairs of queens that are attacking each

other, either directly or indirectly.

The global minimum of this function is zero, which occurs only at perfect solutions.

An 8-queens state with heuristic cost estimate h = 17, showing the value of h for each possible

successor obtained by moving a queen within its column. The best moves are marked.

A local minimum in the 8-queens state space; the state has h = 1 but every successor has

a higher cost.

Hill climbing often gets stuck for the following reasons:

Local maxima or foot hills : a local maximum is a peak that is higher than each of its

neighboring states, but lower than the global maximum

Example :

The evaluation function value is maximum at C and from their there is no path exist for

expansion. Therefore C is called as local maxima. To avoid this state, random node is

selected using back tracking to the previous node.

Plateau or shoulder: a plateau is an area of the state space landscape where the

evaluation function is flat. It can be a flat local maximum.

Example :

The evaluation function value of B C D are same, this is a state space of plateau. To avoid

this state, random node is selected or skip the level (i.e) select the node in the next level

Ridges: Ridges result in a sequence of local maxima that is very difficult for greedy

algorithms to navigate. But the disadvantage is more calculations to be done function

Structure of hill climbing drawbacks

Variants of hill-climbing

Stochastic hill climbing - Stochastic hill climbing chooses at random from among the

uphill moves; the probability of selection can vary with the steepness of the uphill move.

First-choice hill climbing - First-choice hill climbing implements stochastic hill

climbing by generating successors randomly until one is generated that is better than

the current state

Random-restart hill climbing - Random-restart hill climbing adopts the well known

adage, "If at first you don't succeed, try, try again." It conducts a series of hill-climbing

searches from randomly generated initial state, stopping when a goal is found.

Simulated annealing search

An algorithm which combines hill climbing with random walk to yield both efficiency

and completeness

In metallurgy, annealing is the process used to temper or harden metals and glass by

heating them to a high temperature and then gradually cooling them

When the search stops at the local maxima, we will allow the search to take some down

Hill steps to escape the local maxima by allowing some "bad" moves but gradually

decrease their size and frequency. The node is selected randomly and it checks whether

it is a best move or not. If the move improves the situation, it is executed. E variable is

introduced to calculate the probability of worsened. A Second parameter T is introduced

to determine the probability.

 The simulated annealing search algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a

solution state

inputs: problem, a problem schedule, a mapping from time to

"temperature" local variables: current, a node

next, a node

T, a "variable" controlling the probability of downward steps

current <- MAKE-NODE(INITIAL-STATE[problem]) for t<- l to do T

<- schedule[t]

if T = 0 then return current next <- a randomly selected successor of

current

E <- VALUE[next] - VALUE[current] if E > 0 then current <- next else

current <- next only with probability e E/T

Property of simulated annealing search

T decreases slowly enough then simulated annealing search will find a global optimum

with probability approaching one

Applications

VLSI layout

Airline scheduling

Local beam search

Local beam search is a variation of beam search which is a path based algorithm. It uses

K states and generates successors for K states in parallel instead of one state and its

successors in sequence. The useful information is passed among the K parallel threads.

 The sequence of steps to perform local beam search is given below:

• Keep track of K states rather than just one.

• Start with K randomly generated states.

• At each iteration, all the successors of all K states are generated.

• If anyone is a goal state stop; else select the K best successors from the complete list and

repeat.

This search will suffer from lack of diversity among K states.

Therefore a variant named as stochastic beam search selects K successors at random,

with the probability of choosing a given successor being an increasing function of its

value.

Genetic Algorithms (GA)

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor

states are generated by combining two parent states, rather than by modifying a single

state

GA begins with a set of k randomly generated states, called the population. Each state,

or individual, is represented as a string over a finite alphabet.

For Example an 8 queen’s state could be represented as 8 digits, each in the range from 1

to 8.

Initial population: K randomly generated states of 8 queen problem

Individual (or) state: Each string in the initial population is individual (or) state. In one

state, the position of the queen of each column is represented.

 Example: The state with the value 24748552 is derived as follows:

 The Initial Population (Four randomly selected States) are :

Evaluation function (or) Fitness function: A function that returns higher values for

better State. For 8 queens problem the number of non attacking pairs of queens is

defined as fitness function

Minimum fitness value is 0

Maximum fitness value is : 8*7/2 = 28 for a solution

The values of the four states are 24, 23, 20, and 11.

The probability of being chosen for reproduction is directly proportional to the fitness

score, which is denoted as percentage.

24 / (24+23+20+11) = 31%

23 / (24+23+20+11) = 29%

20 / (24+23+20+11) = 26%

11 / (24+23+20+11) = 14%

Selection : A random choice of two pairs is selected for reproduction, by considering

the probability of fitness function of each state. In the example one state is chosen twice

probability of 29%) and the another one state is not chosen (Probability of 14%)

Cross over: Each pair to be mated, a crossover point is randomly chosen. For the first

pair the crossover point is chosen after 3 digits and after 5 digits for the second pair.

offspring : Offspring is created by crossing over the parent strings in the crossover

point. That is, the first child of the first pair gets the first 3 digits from the first parent

and the remaining digits from the second parent. Similarly the second child of the first

pair gets the first 3 digits from the second parent and the remaining digits from the first

parent.

The 8-queens states corresponding to the first two parents

Mutation : Each location is subject to random mutation with a small independent

probability. One digit was mutated in the first, third, and fourth offspring

 Production of Next Generation of States

The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for

mating in (c). They produce offspring in (d), which are subject to mutation in(e).

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual

inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual repeat

new-population <- empty set

loop for i from 1 to SIZE(population) do x <- RANDOM-SELECTION(Population,FITNESS-FN) y

<- RANDOM-SELECTION(Population,FITNESS-FN) child <- REPRODUCE(yX),

if (small random probability) then child MUTATE(chi1d) add child to new-population

population <- new-population

until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN

function REPRODUCE(x,y), returns an individual inputs: x, y, parent individuals n <-

LENGTH(x)

c <- random number from 1 to n

return APPEND(SUBSTRING(x,1,c),SUBSTRING(y, c + 1, n))

The sequence of steps to perform GA is summarized below:

• A successor state is generated by combining two parent states.

• Start with K randomly generated states population

• Each state or individual is represented as a string over a finite alphabet (often a string of

O's and 1's)

• Evaluation function (fitness function) is applied to find better states with higher values.

• Produce the next generation of states by selection, crossover and mutation

Local Search In Continuous Spaces

Local Search in continuous space is the one that deals with the real world problems.

• One way to solve continuous problems is to discretize the neighborhood of each state.

• Stochastic hill climbing and simulated annealing are applied directly in the continuous

space

• Steepest - ascent hill climbing is applied by updating the formula of current state

x <- x + f(x)

- small constant

 f(x) - magnitude & direction of the steepest slope.

• Empirical gradient, line search, Newton-Raphson method can be applied in this domain

to find the successor state.

• Local search methods in continuous space may also lead to local maxima, ridges and

plateau. This situation is avoided by using random restart method.

Online Search Agents and Unknown Environments

Online search agent operates by interleaving computation and action, that is first it takes

an action, then it observes the environment and computes the next action, whereas ,the

offline search computes complete solution (problem solving agent) before executing the

problem solution.

online search agents suits well for the following domains.

 Dynamic or Semi dynamic domain

 Stochastic domain

Online search is a necessary idea for an exploration problem, where the states and

actions are unknown to the agent. For example, consider a newborn baby for

exploration problem and the baby's gradual discovery of how the world works is an

online search process

Online search problems

An online search problem can be solved by an agent executing actions rather than by a

computational process. The agent knows the following terms to do the search in the

given environment

• ACTIONS(S) - which returns a list of actions allowed in state s ;

• c(s, a, s’) - The step-cost function known to the agent when it reaches s’
• GOAL-TEST(S).

Searching With Partial Information

 When the knowledge of the states or actions is incomplete about the environment, then

only partial information is known to the agent. This incompleteness lead to three distinct

problem types. They are:

(i) Sensorless problems (conformant problems) : If the agent has no sensors at all,

then it could be in one of several possible initial states, and each action might therefore

lead to one of possible successor states.

(ii) Contigency problems: If the environment is partially observable or if actions are

uncertain, then the agent's percepts provide new information after each action. A

problem is called adversarial if the uncertainty is caused by the actions of another agent.

To handle the situation of unknown circumstances the agent needs a contigency plan.

(iii) Exploration problem: It is an extreme case of contigency problems, where the

states and actions of the environment are unknown and the agent must act to discover

them.

CONSTRAINT SATISFACTION PROBLEMS(CSP)

Constraint satisfaction problems (CSP) are mathematical problems where one must find

states or objects that satisfy a number of constraints or criteria. A constraint is a

restriction of the feasible solutions in an optimization problem.

Some examples for CSP's are:

The n-queens problem

A crossword puzzle

A map coloring problem

The Boolean satisfiability problem

A cryptarithmetic problem

All these examples and other real life problems like time table scheduling, transport

scheduling, floor planning etc. are instances of the same pattern,

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables {X1,X2,….Xn,}

and a set of constraints {C1,C2,…,Cm}. Each variable Xi has a nonempty domain D, of

possible values. Each constraint Ci involves some subset of variables and specifies the

allowable combinations of values for that subset.

A State of the problem is defined by an assignment of values to some or all of the

variables,{Xi = vi, Xj = vj,…}. An assignment that does not violate any constraints is called a

consistent or legal assignment.

A complete assignment is one in which every variable is mentioned, and a solution to a

CSP is a complete assignment that satisfies all the constraints. Some CSPs also require a

solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

The map coloring problem. The task of coloring each region red, green or blue in such a

way that no neighboring regions have the same color.

Map of Australia showing each of its states and territories

We are given the task of coloring each region either red, green, or blue in such a way that

the neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA,

and T.

The domain of each variable is the set {red, green, blue}.

The constraints require neighboring regions to have distinct colors: for example, the

allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

(The constraint can also be represented as the inequality WA NT)

There are many possible solutions, such as

{ WA = red, NT = green, Q = red, NSW = green, V = red ,SA = blue,T = red}.

Constraint Graph : A CSP is usually represented as an undirected graph, called constraint

graph where the nodes are the variables and the edges are the binary constraints.

The map-coloring problem represented as a constraint graph.

 CSP can be viewed as a standard search problem as follows :

 Initial state : the empty assignment {},in which all variables are unassigned.

 Successor function : a value can be assigned to any unassigned variable, provided that

it does not conflict with previously assigned variables.

 Goal test : the current assignment is complete.

 Path cost : a constant cost(E.g.,1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there

are n variables. So Depth first search algorithms are popular for CSPs.

Varieties of CSPs

Discrete variables

Discrete variables can have

 Finite Domains

 Infinite domains

Finite domains

The simplest kind of CSP involves variables that are discrete and have finite domains.

Map coloring problems are of this kind. The 8-queens problem can also be viewed as

finite-domain CSP, where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and each variable has the domain
{1,2,3,4,5,6,7,8}.

If the maximum domain size of any variable in a CSP is d, then the number of possible

complete assignments is O(dn) – that is, exponential in the number of variables.

Finite domain CSPs include Boolean CSPs, whose variables can be either true or false.

Infinite domains

Discrete variables can also have infinite domains – for example, the set of integers or

the set of strings. With infinite domains, it is no longer possible to describe constraints

by enumerating all allowed combination of values. For example, if Jobl, which takes five

days, must precede Jobs, then we would need a constraint language of algebraic

inequalities such as

 Startjob1 + 5 <= Startjob3.

Continuous domains

CSPs with continuous domains are very common in real world. For example, in

operation research field, the scheduling of experiments on the Hubble Telescope

requires very precise timing of observations; the start and finish of each observation and

maneuver are continuous-valued variables that must obey a variety of astronomical,

precedence and power constraints.

The best known category of continuous-domain CSPs is that of linear programming

problems, where the constraints must be linear inequalities forming a convex region.

Linear programming problems can be solved in time polynomial in the number of

variables.

Varieties of constraints :

Unary constraints – Which restricts a single variable.

Example : SA ^ green

Binary constraints - relates pairs of variables.

Example : SA ^ WA

Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles. Each letter stands for a distinct digit

The aim is to find a substitution of digits for letters such that the resulting sum is

arithmetically correct, with the added restriction that no leading zeros are allowed.

Constraint graph for the cryptarithmetic Problem

Alldiff constraint can be broken down into binary constraints - F T, F U, and so on.

The addition constraints on the four columns of the puzzle also involve several variables

and can be written as

O + O = R + 10 . X1 X1 + W + W = U + 10 . X2

X1 + T + T = O + 10 . X3

X3 = F

Where X1, X2, and X3 are auxiliary variables representing the digit (0 or 1) carried over

into the next column.

Real World CSP's : Real world problems involve read-valued variables,

• Assignment problems Example : who teaches what class.

• Timetabling Problems Example : Which class is offered when & where?

• Transportation Scheduling

• Factory Scheduling

Backtracking Search for CSPs

 The term backtracking search is used for depth-first search that chooses values for

one variable at a time and backtracks when a variable has no legal values left to assign.

Part of search tree generated by simple backtracking for the map coloring

problem

Improving backtracking efficiency is done with general purpose methods, which can

give huge gains in speed.

• Which variable should be assigned next and what order should be tried?

• What are the implications of the current variable assignments for the other unassigned

variables?

• Can we detect inevitable failure early?

Variable & value ordering: In the backtracking algorithm each unassigned variable is

chosen from minimum Remaining Values (MRV) heuristic, that is choosing the variable

with the fewest legal values. It also has been called the "most constrained variable" or

"fail-first" heuristic.

If the tie occurs among most constrained variables then most constraining variable is

chosen (i.e.) choose the variable with the most constraints on remaining variable. Once a

variable has been selected, choose the least constraining value that is the one that rules

out the fewest values in the remaining variables.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that

the variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the

constraints earlier in the search, or even before the search has started, we can drastically

reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking.

Whenever a variable X is assigned, the forward checking process looks at each unassigned variable Y that is connected to X by a constraint and deletes from Y ’s domain
any value that is inconsistent with the value chosen for X.

The progress of a map-coloring search with forward checking.

In forward checking WA = red is assigned first; then forward checking deletes red from

the domains of the neighboring variables NT and SA. After Q = green, green is deleted

from the domains of NT, SA, and NSW. After V = blue, blue is deleted from the domains of

NSW and SA, leaving SA with no legal values. NT and SA cannot be blue

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them.

Constraint propagation is the general term for propagating the implications of a

constraint on one variable onto other variables.

Constraint propagation repeatedly enforces constraints locally to detect

inconsistencies. This propagation can be done with different types of consistency

techniques. They are:

Node consistency (one consistency)

Arc consistency (two consistency)

Path consistency (K-consistency)

Node consistency

• Simplest consistency technique

• The node representing a variable V in constraint graph is node consistent if for every

value X in the current domain of V, each unary constraint on V is satisfied.

• The node inconsistency can be eliminated by simply removing those values from the

domain D of each variable V that do not satisfy unary constraint on V.

Arc Consistency

 The idea of arc consistency provides a fast method of constraint propagation that is substantially stronger than forward checking. Here, 'arc’ refers to a directed arc in the

constraint graph, such as the arc from SA to NSW. Given the current domains of SA and

NSW, the arc is consistent if, for every value x of SA, there is some value y of NSW that is

consistent with x.

In the constraint graph, binary constraint corresponds to arc. Therefore this type of

consistency is called arc consistency.

Arc (vi, vj) is arc consistent if for every value X the current domain of vi there is some

value Y in the domain of vj such vi =X and vj=Y is permitted by the binary constraint

between vi and vj

Arc-consistency is directional ie if an arc (vi, vj) is consistent than it does not

automatically mean that (vj, vi) is also consistent.

An arc (vi, vj) can be made consistent by simply deleting those values from the domain of

Di for which there is no corresponding value in the domain of Dj such that the binary

constraint between Vi and vj is satisfied - It is an earlier detection of inconstency that is

not detected by forward checking method.

The different versions of Arc consistency algorithms are exist such as AC-I, AC2,AC-3,

AC-4, AC-S; AC-6 & AC-7, but frequently used are AC-3 or AC-4.

AC - 3 Algorithm

In this algorithm, queue is used to cheek the inconsistent arcs.

When the queue is not empty do the following steps:

 Remove the first arc from the queue and check for consistency.

 If it is inconsistent remove the variable from the domain and add a new arc to the queue

 Repeat the same process until queue is empty

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj) <- REMOVE-FIRST(queue) if REMOVE-INCONSISTENT-

VALUEXS(xi,xj) then for each Xk in NEIGHBORS[Xj) do add (Xk , Xi)to

queue

function REMOVE-INCONSISTENT-VALUEXS(xi,xj) returns true iff we

remove a value removed <-false

for each x in DOMAIN[xi] do

if no value y in DOMAIN[xj] allows (x, y) to satisfy the constraint

between Xi and Xj

then delete x from DOMAIN[Xi]removed <- true return removed

k-Consistency (path Consistency)

A CSP is k-consistent if, for any set of k - 1 variables and for any consistent assignment to

those variables, a consistent value can always be assigned to any kth variable

 1-consistency means that each individual variable by itself is consistent; this is also called

node consistency.

 2-consistency is the same as arc consistency.

 3-consistency means that any pair of adjacent variables can always be extended to

a third neighboring variable; this is also called path consistency.

 Handling special constraints

Alldiff constraint - All the variables involved must have distinct values.

Example: Crypt arithmetic problem

The inconsistency arises in Alldiff constraint when m>n (i.e.) m variables are involved in

the constraint and n possible distinct values are there. It can be avoided by selecting the

variable in the constraint that has a singleton. domain and delete the variable's value

from the domain of remaining variables, until the singleton variables are-exist. This

simple algorithm will resolve the inconsistency of the problem.

Resource constraint (Atmost Constraint) - Higher order constraint or atmost

constraint, in which consistency is achieved by deleting the maximum value of any

domain if it is not consistent with minimum values; of the other domains.

Intelligent backtracking

Chronological backtracking : When a branch of the search fails, back up to the

preceding variable and try a different value for it (i.e.) the most recent decision point is

revisited. This will lead to inconsistency in real world problems (map coloring problem)

that can't be resolved. To overcome the disadvantage of chronological backtracking, an

intelligence backtracking method is proposed.

Conflict directed backtracking: When a branch of the search fails, backtrack to one of

the set of variables that caused the failure-conflict set. The conflict set for variable X is

the set of previously assigned variables that are connected to X

by constraints. A backtracking algorithm that was conflict sets defined in this way

is called conflict directed backtracking

Local Search for CSPs

 Local search method is effective in solving CSP's, because complete state formulation is

defined.

 Initial state - assigns a value to every variable.

 Successor function - works by changing the value of each variable

Advantage : useful for online searching when the problem changes.

Ex : Scheduling problems

The MIN-CONFLICTS algorithm for solving CSPs by local search.

function MIN-CONFLICTS (CSP, max-steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem max-steps, the number of

steps allowed before giving up current <- an initial complete assignment

for csp for i = 1 to max-steps do

if current is a solution for csp then return current var <- a randomly

chosen, conflicted variable from VARIABLES[CSP]

value <- the value v for var that minimizes

CONFLICTS(var, v, current, csp) set var = value in current return failure

A two-step solution for an &-queens problem using min-conflicts. At each stage, a queen

is chosen for reassignment in its column. The number of conflicts (in this case, the

number of attacking queens) is shown in each square.

The structure of problems

The complexity of solving a CSP-is strongly related to the structure of its constraint

graph. If CSP can be divided into independent sub problems, then each sub problem is

solved independently then the solutions are combined. When the n variables are divided

as n/c subproblems, each will take dc
 work to solve. Hence the total work is O(dc n/c). If

n=lO, c=2 then 5 problems are reduced and solved in less time.

Completely independent sub problems are rare, in most cases sub problems of a CSP are

connected

The way how to convert the constraint graph of a tree structure CSP into linear ordering

of the variables consistent with the tree is shown in Figure. Any two variables are

connected by atmost one path in the tree structure

If the constraint graph of a CSP forms a tree structure then it can be solved in linear time

number of variables). The algorithm has the following steps.

1. Choose any variable as the root of the tree and order the variables from the root to

the leaves in such a way that every node's parent in the tree preceeds it in the ordering

label the variables Xl Xn in order, every variable except the root has exactly one parent

variable.

2. For j from n down 2, apply arc consistency to the arc (Xi , Xj), where Xi is the parent

of Xj removing values from Domain [Xi] as necessary.

3. For j from 1 to n, assign any value for Xj consistent with the value assigned for Xi,

where Xi is the parent of Xj Keypoints of this algorithm are as follows:

 Step-(2), CSP is arc consistent so the assignment of values in step (3) requires no

backtracking.

 Step-(2), the arc consistency is applied in reverse order to ensure the consistency of

arcs that are processed already.

General constraint graphs can be reduced to trees on two ways. They are:

(a) Removing nodes - Cutset conditioning

(b) Collapsing nodes together - Tree decomposition.

(a) Removing nodes - Cutset conditioning

 Assign values to some variables so that the remaining variables form a tree.

 Delete the value assigned variable from the list and from the domains of the other

variables any values that are inconsistent with the value chosen for the variable.

 This works for binary CSP's and not suitable for higher order constraints.

 The remaining problem (tree structure) is solved in linear order time variables.

Example: In the constraint graph of map coloring problem, the region SA is assigned

with a value and it is removed to make the problem in the form of tree structure, then it

is solvable in linear time

The original constraint graph

The constraint graph after the removal of SA

 If the value chosen for the variable to be deleted for tree structure is wrong, then the

following algorithm is executed.

(i) Choose a subset S from VARIABLES[CSP] such that the constraint graph becomes a

tree after removal of S-cycle cutset.

(ii) For each variable on S with assignment satisfies all constraints on S.

* Remove from the deomains of the remaining variables any values that are

inconsistent with the assignment for S.

* If the remaining CSP has a solution, return it with the assignment for S.

(b) Collapsing nodes together-Tree decomposition

 Construction of tree decomposition the constraint graph is divided into a set of

subproblems, solved independently and the resulting solutions are combined.

 Works well, when the subproblem is small.

 Requirements of this method are:

• Every variable in the base problem should appear in atleast one of the subproblem.

• If the binary constraint is exist, then the same constraint must appear in atleast one of

the subproblem. .

• If the variable appears in two subproblems in the tree, it must appear in every

subproblem along the path connecting those subproblems, that is the variable should be

assigned with same value and constraint in every subproblem.

A tree decompositon of the constraint graph

Solution

 If any subproblem has no solution then the entire problem has no solution.

 If all the sub problems are solvable then a global solution is achieved.

Adversarial Search

 Competitive environments, in which the agent’s goals are in conflict, give rise to
adversarial search problems-often known as games.

In our terminology, games means deterministic, fully observable environments in which

there are two agents whose actions must alternate and in which the utility values at the

end of the game are always equal and opposite. For example, if one player wins a game

of chess (+1), the other player necessarily loses (-1).

There are two types of games

1. Perfect Information (Example : chess, checkers) 2. Imperfect Information (

Example : Bridge, Backgammon)

In game playing to select the next state, search technique is required. Game playing itself

is considered as a type of search problems. But, how to reduce the search time to make

on a move from one state to another state.

The pruning technique allows us to ignore positions of the search tree that make no

difference to the final choice.

Heuristic evaluation function allows us to find the utility (win, loss, and draw) of a

state without doing a complete search.

Optimal Decisions in Games

A Game with two players - Max and Min.

• Max, makes a move first by choosing a high value and take turns moving until the game

is over

• Min, makes a move as a opponent and tries to minimize the max player score, until the

game is over.

At the end of the game (goal state or time), points are awarded to the winner.

The components of game playing are :

Initial state - Which includes the board position and an indication of whose move and

identifies the player to the move.

Successor function - which returns a list of (move, state) pairs, each indicating a legal

move and the resulting state.

Terminal test - Which determines the end state of the game. States where the game has

ended are called terminal states.

Utility function (also called an objective function or payoff function), - which gives a

numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, with

values +1, -1, or 0. Some games have a wider , variety of possible outcomes; the payoffs

in backgammon range from +192 to -192.

The initial state and the legal moves for each side define the game tree for the game

Example : Tic – Tac – Toe (Noughts and Crosses)

From the initial state, MAX has nine possible moves. Play alternates between MAX'S

placing an X and MIN'S placing an O until we reach leaf nodes corresponding to

ter.mina1 states such that one player has three in a row or all the squares are filled.

Initial State : Initial Board Position

Successor Function : Max placing X’s in the empty square
 Min placing O’s in the empty square
 Goal State : We have three different types of goal state, any one to be reached.

i) If the O’s are placed in one column, one row (or) in the diagonal continuously then, it is a
goal state of min player. (Won by Min Player)

ii) If the X’s are placed in one column, one row (or) in the diagonal continuously then, it is a
goal state of min player. (Won by Max Player) iii) If the all the nine squares are filled by

either X or O and there is no win condition by Max and Min player then it is a state of

Draw between two players.

Some terminal states

 Won by Min Players

X O X

 O

 O

 Won by Max Players

X O X

 X

X 0 O

Draw between two Players

X O X

O O X

X O O

Utility function

Win = 1 Draw =0 Loss = -1

A (partial) search tree for the game of tic-tac-toe

Optimal strategies

In a normal search problem, the optimal solution would be a sequence of moves leading

to a goal state-a terminal state that is a win. In a game, an optimal strategy leads to

outcomes at least as good as any other strategy when one is playing an infallible

opponent

Given a game tree, the optimal strategy can be determined by examining the minimax

value of each node, which we write as MINIMAX- VALUE(n).

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree.

The possible moves for MAX at the root node are labeled al, a2, and a3. The possible

replies to a1 for MIN are b1, b2, b3, and so on.

A Two Ply Game Tree

- Moves

by

Max

Player

- Moves

by

Min

Player

• The terminal nodes show the utility values for MAX; The other nodes are labeled with

their minimax values.

• MAX'S best move at the root is al, because it leads to the successor with the highest

minimax value

• MIN'S best reply is bl, because it leads to the successor with the lowest minimax value.

• The root node is a MAX node; its successors have minimax values 3, 2, and 2; so it has a

minimax value of 3.

• The first MIN node, labeled B, has three successors with values 3, 12, and 8, so its

minimax value is 33

The minimax algorithm

The minimax algorithm computes the minimax decision from the current state. It uses

a simple recursive computation of the minimax values of each successor state, directly

implementing the defining equations. The recursion proceeds all the way down to the

leaves of the tree, and then the minimax values are backed up through the tree as the

recursion unwinds.

For Example

The algorithm first recurses down to the three bottom left nodes, and uses the UTILITY

function on them to discover that their values are 3, 12, and 8 respectively. Then it takes

the minimum of these values, 3, and returns it as the backed-up value of node B. A

similar process gives the backed up values of 2 for C and 2 for D. Finally, we take the

maximum of 3,2, and 2 to get the backed-up value of 3 for the root node.

 An algorithm for minimax decision

function MINIMAX-DECISION (state) returns an action inputs: state, current state in

game v <- MAX-VALUE(state) return the action in SUCCESSORS(state) with

value v

• Generate the whole game tree, all the way down to the terminal state.

• Apply the utility function to each terminal state to get its value.

• Use utility functions of the terminal state one level higher than the current value to

determine Max or Min value.

• Minimax decision maximizes the utility under the assumption that the opponent will

play perfectly to minimize the max player score.

Complexity : If the maximum depth of the tree is m, and there are b legal moves at each

point then the time complexity of the minimax algorithm is O(bm). This algorithm is a

depth first search, therefore the space requirements are linear in m and b. For real

games the calculation of time complexity is impossible, however this algorithm will be a

good basis for game playing.

Completeness : It the tree is finite, then it is complete.

Optimality : It is optimal when played against an optimal opponent

ALPHA - BETA PRUNING

Pruning - The process of eliminating a branch of the search tree from consideration

without examining is called pruning.

The two parameters of pruning technique are:

Alpha () : Best choice for the value of MAX along the path (or) lower bound on the

value that on maximizing node may be ultimately assigned.

Beta () : Best choice for the value of MIN along the path (or) upper bound on the value

that a minimizing node may be ultimately assigned.

Alpha - Beta pruning : The and values are applied to a minimax tree, it returns the

same move as minimax, but prunes away branches that cannot possibly influence the

final decision is called Alpha - Beta pruning (or) Cutoff Consider again the two-ply

game tree from

Let the two unevaluated successors of node C have values x and y and let z be the

minimum of x and y. The value of the root node is given by

MINIMAX-VALUE(ROOT)=max((min(3,12,8),min(2,x,y),min(l4,5,2))

= max(3, min(2, x, y), 2) = max(3, z, 2) where z <=2 = 3.

In other words, the value of the root and hence the minimax decision are independent of

the values of the pruned leaves x and y.

Stages in the calculation of the optimal decision for the game tree

(a) The first leaf below B has the value 3. Hence, B, which is a MIN node, has a value of

at most 3

(b) The second leaf below B has a value of 12; MIN would avoid this move, so the

value of B is still at most 3

c) The third leaf below B has a value of 8; we have seen all B's successors, so the value of

B is exactly 3. Now, we can infer that the value of the root is at least 3, because MAX has a

choice worth 3 at the root.

(d) The first leaf below C has the value 2. Hence, C, which is a MIN node, has a value of

at most 2. But we know that B is worth 3, so MAX would never choose C. Therefore, there

is no point in looking at the other successors of C. This is an example of alpha-beta

pruning.

(e) The first leaf below D has the value 14, so D is worth atmost 14. This is still higher

than MAX'S best alternative (i.e., 3), so we need to keep exploring D's successors. Notice

also that we now have bounds on all of the successors of the root, so the root's value is

also at most 14.

(f) The second successor of D is worth 5, so again we need to keep exploring. The third

successor is worth 2, so now D is worth exactly 2. MAX'S decision at the root is to move

to B, giving a value of 3.

The alpha-beta search algorithm

Effectiveness of Alpha – Beta Pruning

Alpha - Beta pruning algorithm needs to examine only O(bd/2) nodes to pick the best

move, instead of O(bd) with minimax algorithm, that is effective branching factor is

instead of b.

 Imperfect Real Time Decisions

The minimax algorithm generates the entire game search space, whereas the alpha-beta

algorithm allows us to prune large parts of it. However, alpha-beta still has to search all

the way to terminal states for at least a portion of the search space. This depth is usually

not practical, because moves must be made in a reasonable amount of time-typically a

few minutes at most.

 Shannon’s proposed instead that programs should cut off the search earlier and apply a
heuristic evaluation function to states in the search, effectively turning non terminal

nodes into terminal leaves.

• The utility function is replaced by an Evaluation function

• The terminal test is replaced by a Cut-off test

1. Evaluation function

Example: Chess Problem

In chess problem each material (Queen, Pawn, etc) has its own value that is called as

material value. From this depends on the move the evaluation function is calculated and

it is applied to the search tree.

This suggests that the evaluation function should be specified by the rules of probability.

For example If player A has a 100% chance of winning then its evaluation function is 1.0

and if player A has a 50% chance of winning, 25% of losing and 25% of being a draw

then the probability is calculated as; 1x0.50 -lxO.25 + OxO.25 = 0.25.

As per this example is concerned player A is rated higher than player B. The material

value, of each piece can be calculated independently with-out considering other pieces in

the board is also called as one kind of evaluation function and it is named as weighted

linear function. It can be expressed as

Eval(s) = w1f1(s) + w2f2(s) + w3f3(s)..... + wnfn (s) w - Weights of the pieces (1 for Pawn, 3

for Bishop etc) f - A numeric value which represents the numbers of each kind of piece

on the

board.

2. Cut - off test

To perform a cut-off test, an evaluation function, should be applied to positions that are

quiescent, that is a position that will not swing in bad value for long time in the search

tree is known as waiting for quiescence.

Quiescence search - A search which is restricted to consider only certain types of

moves, such as capture moves, that will quickly resolve the uncertainties in the position.

Horizon problem - When the program is facing a move by the opponent that causes

serious damage and is ultimately unavoidable

Example:

1. Beginning of the search - one ply

2. This diagram shows the situation of horizon problem that is when one level is

generated from B, it causes bad value for B

3. When one more successor level is generated from E and F and situation comes

down and the value of B is retained as a good move. The time B is waited for this

situation is called waiting for quiescence.

Games That Include An Element Of Chance

Backgammon Game

Backgammon is a typical game that combines luck and skill. Dice are rolled at the

beginning of a player's turn to determine the legal moves.

Goal State

 The goal of the game is to move all one's pieces off the board. White moves clockwise

toward 25, and black moves counterclockwise toward 0

Successor Function or Operator

Move to any position except where two or more of the opponent pieces. If it moves to a

position with one opponent piece it is captured and again it has to start from Beginning

Task : In the position shown, White has rolled 6-5. So Find out the legal moves for the

set of the dice thrown as 6 and 5.

Solution :

There are Four legal moves. They are

 (5-11,5-10)

 (5-11, 19-24)

 (10-16,5-10)

 (5-11,11-16)

A game tree in backgammon must include chance nodes in addition to MAX and MIN

nodes. Chance nodes are shown as circles. The branches leading from each chance node

denote the possible dice rolls, and each is labeled with the roll and the chance that it will

occur. There are 36 ways to roll two dice, each equally likely; but because a 6-5 is the

same as a 5-6, there are only 21 distinct rolls. The six doubles (1-1 through 6-6) have a

1/36 chance of coming up, the other 15 distinct rolls a 1/18 chance each.

The resulting positions do not have definite minimax values. Instead, we have to only

calculate the expected value, where the expectation is taken over all the possible dice

rolls that could occur.

Terminal nodes and MAX and MIN nodes (for which the dice roll is known) work exactly

the same way as before; chance nodes are evaluated by taking the weighted average of

the values resulting from all possible dice rolls, that is,

EXPECTIMINIMAX(n)=

UTILITY(n) if n is a terminal state

Max s successors(n) EXPECTIMINIMAX(S) if n is a MAX node

Min s successors(n) EXPECTIMINIMAX(S) if n is a MIN node

s successors(n) P(s).EXPECTIMINIMAX(S) if n is a chance node

where the successor function for a chance node n simply augments the state of n with

each possible dice roll to produce each successor s and P(s) is the probability that that

dice roll occurs.

Card games

Card games are interesting for many reasons besides their connection with gambling.

Imagine two players, MAX and MIN, playing some practice hands of four-card two

handed bridge with all the cards showing.

The hands are as follows, with MAX to play first:

MAX : 6 , 6 , 9 , 8

MIN : 2 , 4 , 10 , 5

Suppose that MAX leads wiht 9. MIN must now follow suit, playing either with

 10 or 5 . MIN plays with 10 and wins the trick.

MIN goes next turn leads the with 2. MAX has no spades (and so cannot win the trick)

and therefore must throw away some card. The obvious choice is the

6 because the other two remaining cards are winners.

Now, whichever card MIN leads for the next trick, MAX will win both remaining tricks

and the game will be tied at two tricks each.

UNIT-III

KNOWLEDGE INFERENCE

Knowledge Representation - Production based System, Frame based System.

Inference - Backward Chaining, Forward Chaining, Rule value approach, Fuzzy

Reasoning - Certainity factors, Bayesian Theory - Bayesian Network - Dempster

Shafer Theory

3.0 Knowledge representation: -

• The task of coming up with a sequence of actions that will achieve a goal is called

Planning.

• “Deciding in ADVANCE what is to be done”
• A problem solving methodology

• Generating a set of action that are likely to lead to achieving a goal

• Deciding on a course of actions before acting

 Representation for states and Goals:-

o In the STRIPS language, states are represented by conjunctions of function-free ground

literals, that is, predicates applied to constant symbols, possibly negated.

o For example,

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^….

o Goals are also described by conjunctions of literals.

o For example,

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill)

o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

• Representation for actions:- o Our STRIPS operators consist of three

components:

o the action description is what an agent actually returns to the environment in

order to do something.

o the precondition is a conjunction of atoms (positive literals) that says what must

be true before the operator can be applied.

o the effect of an operator is a conjunction of literals (positive or negative) that

describes how the situation changes when the operator is applied.

o Here’s an example for the operator for going from one place to another:
 Op(Action:Go(there),

 Precond:At(here)^Path(here, there),

 Effect:At(there)^ ¬At(here))

• Representation of Plans:- o Consider a simple problem: o Putting on a pair of

shoes o Goal

• RightShoeOn ^ LeftShoeOn

• Four operators:

3.1.1 Forward state-space search:-

• Planning with forward state-space search is similar to the problem solving using

Searching.

• It is sometimes called as progression Planning.

• It moves in the forward direction.

• we start in the problems initial state, considering sequence of actions until we find

a sequence that reaches a goal state.

• The formulation of planning problems as state-space search problems is as

follows, o The Initial state of the search is the initial state from the planning problem. o

In general, each state will be a set of positive ground literals; literals not appearing are

false. o The actions that are applicable to a state are all those whose preconditions

are satisfied.

o The successor state resulting from an action is generated by adding the positive

effect literals and deleting the negative effect literals. o The goal test checks whether the

state satisfies the goal of the planning problem.

o The step cost of each action is typically 1.

• This method was too inefficient.

• It does not address the irrelevant action problem, (i.e.) all applicable actions are

considered from each state.

• This approach quickly bogs down without a good heuristics.

• For Example:- o Consider an air cargo problem with 10 airports, where each

airport has 5 planes and 20 pieces of cargo.

o The Goal is to move the entire cargo form airport A to airport B. o There is a

simple solution to the Problem,

o Load the 20 pieces of cargo into one of the planes at A, then fly the plane to B, and

unload the cargo.

o But finding the solution can be difficult because the average branching factor is

huge.

3.1.2 Backward state- space search:-

• Backward search is similar to bidirectional search.

• It can be difficult to implement when the goal states are described by a set of

constraints rather than being listed explicitly.

• It is not always obvious how to generate a description of the possible predecessors

of the set of goal states.

• The main advantage of this search is that it allows us to consider only relevant

actions.

• An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the

goal.

• The following diagram shows the Backward state-space search

 For example:- o The goal in our 10-airport cargo problem is to have 20 pieces of cargo

at airport B, or more precisely,

At(C1,B)  At(C2,B) ...... At(C20,B)

o Now consider the conjunct At(C1,B). working backwards, we can seek actions that

have this as an effect. There is only one unload(C1,p,B), where plane p is unspecified. o In

this search restriction to relevant actions means that backward search often has a much

lower branching factor than forward search.

• Searching backwards is sometimes called regression planning.

• The principal question is:- what are the states from which applying a given action

leads to the goal?

• Computing the description of these states is called regressing the goal through the

action.

• consider the air cargo example;- we have the goal as,

At(C1,B) At(C2,B) ......At(C20,B)

and the relevant action Unload(C1,p,B), which achieves the first conjunct.

• The action will work only if its preconditions are satisfied.

• Therefore , any predecessor state must include these preconditions :

 In(C1,p) At(p,B), Moreover the subgoal At(C1,B) should not be true in the predecessor

state.

• The predecessor description is

In(C1,p)  At(p,B)  At(C2,B) ...... At(C20,B)

In addition to insisting that actions achieve some desired literal, we must insist that

the actions not undo any desired literals.

• An action that satisfies this restriction is called consistent.

• From definitions of relevance and consistency, we can describe the general

process of constructing predecessors for backward search.

• Given a goal description G, let A be an action that is relevant and consistent.

The corresponding predecessor is as follows o any positive effects of A that appear in G

are deleted o Each precondition literal of A is added, unless it already appears

• Termination occurs when a predecessor description is generated that is satisfied

by the initial state of the planning problem.

3.1.3 Heuristics for State-space search:-

Heuristic Estimate:-

• The value of a state is a measure of how close it is to a goal state.

• This cannot be determined exactly (too hard), but can be approximated.

• One way of approximating is to use the relaxed problem.

 Relaxation is achieved by ignoring the negative effects of the actions.

 The relaxed action set, A’, is defined by: A’ = {<pre(a),add(a),0> | a in A}

 The earliest possible achiever is always used for any goal.

 This maximizes the possibility for exploiting actions in the relaxed plan.

 The relaxed plan might contain many actions happening concurrently at a layer.

The number of actions in the relaxed plan is an estimate of the true cost of achieving the

goals.

How FF uses the Heuristics:-

 FF uses the heuristic to estimate how close each state is to a goal state

 any state satisfying the goal propositions.

The actions in the relaxed plan are used as a guide to which actions to explore when

extending the plan.

All actions in the relaxed plan at layer i that achieve at least one of the goals required at

layer i+1 are considered helpful.

 FF restricts attention to the helpful actions when searching forward from a state.

 Properties of the Heuristics:-

 The relaxed plan that is extracted is not guaranteed to be the optimal relaxed plan.

the heuristic is not admissible.

 FF can produce non-optimal solutions.

 Focusing only on helpful actions is not completeness preserving. Enforced hill-

climbing is not completeness preserving.

3.2 Partial Order Planning:-

 Formally a planning algorithm has three inputs:

o A description of the world in some formal language, o A description of the agent’s
goal in some formal language, and o A description of the possible actions that can be

performed.

• The planner’s o/p is a sequence of actions which when executed in any world

satisfying the initial state description will achieve the goal.

 Representation for states and Goals:-

 o In the STRIPS language, states are represented by conjunctions of function-free

ground literals, that is, predicates applied to constant symbols, possibly negated.

o For example,

At(Home)^ ¬ Have(Milk)^ ¬ Have(Bananas)^ ¬ Have(Drill)^….

o Goals are also described by conjunctions of literals.

o For example,

At(Home)^Have(Milk)^ Have(Bananas)^ Have(Drill)

o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

• Representation for actions:- o Our STRIPS operators consist of three

components:

o the action description is what an agent actually returns to the environment in

order to do something.

o the precondition is a conjunction of atoms (positive literals) that says what must

be true before the operator can be applied.

o the effect of an operator is a conjunction of literals (positive or negative) that

describes how the situation changes when the operator is applied.

o Here’s an example for the operator for going from one place to another:
 Op(Action:Go(there),

 Precond:At(here)^Path(here, there),

 Effect:At(there)^ ¬At(here))

• Representation of Plans:-

o Consider a simple problem:

o Putting on a pair of shoes o Goal

RightShoeOn ^ LeftShoeOn

o Four operators:

Op(Action:RightShoe,PreCond:RightSockOn,Effect:Right
Op(Action:RightSock , Effect:
Op(Action:LeftShoe, Precond:LeftSockOn,
Op(Action:LeftSock,Effect:Left

 Least The general strategy of delaying a choice during search is
commit

 Partial-order Any planning algorithm that can place two actions
without specifying which come first is called a partial order

 Lineari - The partial-order solution corresponds to six possible total order
of these is called a linearization of the partial

 Total order - Planner in which plans consist of a simple lists

 A plan is defined as a data
o A set of plan
o A set of step
o A set of variable binding
o A set of causal i

c

s j

” s i

achieves j ”

 Initial plan before any
Start <

Refine and manipulate until a plan that is a

• The following diagram shows the partial order plan for putting on shoes and

socks, and the six corresponding linearization into total order plans.

loop: begin

if solution?(plan) then return plan;

(S-need, c) = select-subgoal(plan) ; // choose an unsolved goal choose-operator(plan,

operators, S-need, c);

// select an operator to solve that goal and revise plan resolve-threats(plan); // fix any

threats created

end

 end

 function solution?(plan)

if causal-links-establishing-all-preconditions-of-all-steps(plan)

and all-threats-resolved(plan)

and all-temporal-ordering-constraints-consistent(plan) and all-variable-bindings-

consistent(plan)

then return true; else return false; end

 function select-subgoal(plan) pick a plan step S-need from steps(plan) with a

precondition c

that has not been achieved;

return (S-need, c);

end

procedure choose-operator(plan, operators, S-need, c)

// solve "open precondition" of some step

choose a step S-add by either

Step Addition: adding a new step from operators that has c in its Add-list

or Simple Establishment: picking an existing step in Steps(plan)

that has c in its Add-list;

if no such step then return fail;

add causal link "S-add --->c S-need" to Links(plan); add temporal ordering constraint "S-

add < S-need" to Orderings(plan); if S-add is a newly added step then

begin

add S-add to Steps(plan);

add "Start < S-add" and "S-add < Finish" to Orderings(plan); end

end

procedure resolve-threats(plan) foreach S-threat that threatens link "Si --->c Sj" in

Links(plan)

begin // "declobber" threat

choose either

Demotion: add "S-threat < Si" to Orderings(plan) or Promotion: add "Sj < S-threat" to

Orderings(plan);

if not(consistent(plan)) then return fail;

end

end

• Partial Order Planning Example:- o Shopping problem: “get milk, banana, drill and bring them back home” o assumption 1)Go action “can travel the two locations”
2)no need money

The following diagram shows the, partial plan that achieves three of four preconditions

of finish

The following diagram shows the, partial plan that achieves three of four preconditions

of finish Refining the partial plan by adding casual links to achieve the sells

preconditions of the buy steps.

•

•

• The following diagram shows the partial plan that achieves At Precondition of the

three buy conditions

 The following diagram shows the solution of this problem,

The following are the Knowledge engineering for plan,

  Methodology for solving problems with the planning approach

(1) Decide what to talk about

(2) Decide on a vocabulary of conditions, operators, and objects

(3) Encode operators for the domain

 (4) Encode a description of the specific probleminstance

(5) pose problems to the planner and get back plans

 (ex) The blocks world o

(1) what to talk about

 cubic blocks sitting on a table

 one block on top of another

  A robot arm pick up a block and moves it to another position

(2) Vocabulary

 objects:blocks and table

  On(b,x) : b is on x

 Move(b,x,y) : move b form x to y

 ¬exist x On(x,b) or x ¬On(x,b) : precondition

  clear(x)

 (3)Operators

Op(ACTION:Move(b,x,y),

PRECOND:On(b,x)  Clear(b)  Clear(y),

 EFFECT:On(b,y)  Clear(x)  ¬On(b,x)  ¬Clear(y))

 Op(ACTION:

MoveToTable(b,x),

PRECOND:On(b,x)  Clear(b),

EFFECT:On(b,Table)  Clear(x)  ¬On(b,x))

3.3 Planning Graph:-

• Planning graphs are an efficient way to create a representation of a planning

problem that can be used to o Achieve better heuristic estimates o Directly construct

plans

• Planning graphs only work for propositional problems.

• Planning graphs consists of a seq of levels that correspond to time steps in the

plan.

o Level 0 is the initial state.

o Each level consists of a set of literals and a set of actions that represent what might

be possible at that step in the plan

o Might be is the key to efficiency o Records only a restricted subset of possible

negative interactions among actions.

• Each level consists of o Literals = all those that could be true at that time step,

depending upon the actions executed at preceding time steps.

o Actions = all those actions that could have their preconditions satisfied at that time

step, depending on which of the literals actually hold.

• For Example:-

 Init(Have(Cake)) Goal(Have(Cake)  Eaten(Cake))

Action(Eat(Cake),

PRECOND: Have(Cake)

 EFFECT: ¬Have(Cake)  Eaten(Cake))

Action(Bake(Cake),

PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

• Steps to create planning graph for the example,

 o Add persistence actions (inaction = no-ops) to map all literals in state Si to state Si+1.

o Create level 0 from initial problem

o Add all applicable
o

Add all effects to the next state.

 one is the negation of the other OR

 each possible action pair that could achieve the literals is mutex (inconsistent support).

• Level S1 contains all literals that could result from picking any subset of actions in

A0 o Conflicts between literals that can not occur together (as a consequence of the

selection action) are represented by mutex links.

o Ide

ntif

mutual

exclusions

between actions and literals based on potential conflicts.

 Mutual

Exclusion:- o A mutex relation holds

between

two

actions

w

h Inconsistent

effects

 one action negates the effect of

another.

:



 Interfer

ence

: one of the effects of one action is the negation of a precondition
of the

other. 


 Competing

needs

: one of the preconditions of one action is mutually exclusive
with the precondition of the

other. o A mutex relation holds

between

two

literals

w

h

o S1 defines multiple states and the mutex links are the constraints that define this set of

states.

• PG’s provide information about the problem o PG is a relaxed problem. o A literal

that does not appear in the final level of the graph cannot be achieved by any plan.

 H(n) = ∞ o Level Cost: First level in which a goal appears

 Very low estimate, since several actions can occur

 Repeat process until graph levels off:
o two consecutive levels are identical, or
o contain the same amount of

(explanation follows

 In
o rectangle denotes
o small square denotes persistence
o straight lines denotes preconditions and effects
o curved lines denotes mutex

3 Planning Graphs for Heuristic :

• Improvement: restrict to one action per level using serial PG (add mutex links

between every pair of actions, except persistence actions).

• Cost of a conjunction of goals o Max-level: maximum first level of any of the goals o

Sum-level: sum of first levels of all the goals

o Set-level: First level in which all goals appear without being mutex

• The following is the GraphPlan Algorithm, Extract a solution directly from the

PG

function GRAPHPLAN(problem) return solution or failure graph  INITIAL-PLANNING-

GRAPH(problem)

goals  GOALS[problem]

loop do if goals all non-mutex in last level of graph then do

solution  EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

if solution failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph  EXPAND-GRAPH(graph, problem)

• Initially the plan consist of 5 literals from the initial state and the CWA literals

(S0).

• Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)

• Also add persistence actions and mutex relations.

• Add the effects at level S1

• Repeat until goal is in level Si

• EXPAND-GRAPH also looks for mutex relations

o Inconsistent effects

• E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not

At(Spare, Ground)

o Interference

• E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not

At(Flat,Axle) as EFFECT

o Competing needs

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not

At(Flat, Axle)

o Inconsistent support

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

• In S2, the goal literals exist and are not mutex with any other

o Solution might exist and EXTRACT-SOLUTION will try to find it

• EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search

process:

o Initial state = last level of PG and goal goals of planning problem

o Actions = select any set of non-conflicting actions that cover the goals in the state

 o Goal = reach level S0 such that all goals are satisfied

o Cost = 1 for each action.

3.3.2 Termination of GraphPlan:-

• Termination? YES

• PG are monotonically increasing or decreasing:

o Literals increase monotonically: - Once a literal appears at a given level, it will

appear at all subsequent levels. This is because of the persistence actions; Once a

literal shows up, persistence actions cause it to say forever.

o Actions increase monotonically:- Once a literal appears at a given level, it will

appear at all subsequent levels. This is a consequence of literals increasing; if

the preconditions of an action appear at one level, they will appear at subsequent levels,

and thus will the action

o Mutexes decrease monotonically:- If two actions are mutex at a given level Ai, then

they will also be mutex for all previous levels at which they both appear.

• Because of these properties and because there is a finite number of actions and

literals, every PG will eventually level off

3.4 Planning and Acting in the Real World:

• In which we see how more expressive representation and more interactive agent

architectures lead to planners that are useful in the real world.

• Planners that are used in the real world for tasks such as scheduling, o Hubble

Space Telescope Observations o Operating factories

o handling the logistics for military campaigns

3.4.1 Time, Schedules and Resources:

• Time is the essence in the general family of applications called Job Shop

Scheduling.

• Such a tasks require completing a set of jobs, each of which consists of a sequence

of actions, where each action has a given duration and might require some resources.

• The problem is to determine a schedule that minimizes the total time required to

complete all the jobs, while respecting the resource constraints.

• For Example:- The following problem is a job shop scheduling.

 Init (chassis(C1)  chassis(C2)

 Engine (E1,C1,30)  Engine (E2,C2,60) Wheels (W1,C1,30) Wheels

(W2,C2,15))

 Goal (Done(C1)  Done(C2))

 Action (AddEngine(e,c,m),

 PRECOND: Engine(e,c,d) chassis(c)  EngineIn(c),

 EFFECT: EngineIn(c)  Duration (d))

 Action (AddWheels(w,c),

 PRECOND: Wheels(w,c,d)  chassis(c),

 EFFECT: WheelsOn(c) Duration (d))

 Action (Inspect(c),

 PRECOND: EngineIn(c)  WheelsOn (c)  chassis (c),

 EFFECT: Done (c) Duration(10))

 The above table shows the Job Shop scheduling problem for assembling two cars.

  The notat ion Duration (d) means that an action takes d minutes to execute.

Engine(E1,C1,30) means that E1 is an Engine that fits into chassis C1 and takes 30

minutes to Install

 The problem can be solved by POP (Partial order planning).

  We must now determine when each action should begin and end.

 The following diagram shows the solution for the above problem

 To find the start and end times of each action apply the Critical Path Method CPM.

The critical path is the one that is the longest and upon which the other parts of the

process cannot be shorterthan.

• At the top, the solution is given as a partial order plan.

• The duration of each action is given at the bottom of each rectangle, with the

earliest and latest start time listed as [ES, LS] in the upper left.

• The difference between these two numbers is the slack of an action

• Action with zero slack are on the critical path, shown with bold arrows.

• At the bottom of the figure the same solution is shown as timeline.

• Grey rectangles represent time intervals during which an action may be executed,

provided that the ordering constraints are respected.

• The unoccupied portion of a grey rectangle indicates the slack.

• The following formula serve as a definition for ES and LS and also as the

outline of a dynamic programming algorithm to compute them:

ES (Start)  0 ES (B)  max A BES (A) Duration(A) LS (Finish) ES (Finish) LS (A) 

min A BLS (B) Duration(A)

• The complexity of the critical path algorithm is just O(Nb).

• where N is the number of actions and b is the branching factor.

Scheduling with resource constraints:

• Real scheduling problems are complicated by the presence of constraints on

resources.

• Consider the above example with some resources.

• The following table shows the job shop scheduling problem for assembling two

cars, with resources.

Init (chassis(C1) chassis(C2)

 Engine (E1,C1,30)

 Engine (E2,C2,60)

 Wheels (W1,C1,30)  Wheels (W2,C2,15) EngineHoists (1) WheelStations

(1) Inspectors (2))

Goal (Done(C1)  Done(C2))

Action (AddEngine(e,c,m),

PRECOND: Engine(e,c,d) chassis(c)  EngineIn(c),

EFFECT: EngineIn(c)  Duration (d)

RESOURCE: EngineHoists (1))

Action (AddWheels(w,c),

PRECOND: Wheels(w,c,d) chassis(c),

EFFECT: WheelsOn(c)  Duration (d),

RESOURCE: WheelStations (1))

Action (Inspect(c),

 PRECOND: EngineIn(c)  WheelsOn (c)  chassis (c),

EFFECT: Done (c) Duration(10),

RESOURCE: Inspectors (1))

• The available resources are on engine assembly station, one wheel assembly

station, and two inspectors.

• The notation RESOURCE: means that the resource r is used during execution of an

action, but becomes free again when the action is complete. The following diagram

shows the solution to the job shop scheduling with resources.

• The left hand margin lists the three resources

• Actions are shown aligned horizontally with the resources they consume.

• There are two possible schedules, depending on which assembly uses the engine

station first.

• One simple but popular heuristic is the minimum slack algorithm.

• it schedules actions in a greedy fashion.

• On each iteration, it considers the unscheduled actions that have had all their

predecessors scheduled and schedules the one with the least slack for the earliest

possible start.

• It then updates the ES and LS times for each affected action and repeats.

• The heuristics is based on the same principle as the most-constrained variable

heuristic in constraint satisfaction.

3.4.2 Hierarchical Task Network Planning:

• One of the most pervasive ideas for dealing with complexit y is Hierarchical

Decomposition.

• The key benefit of hierarchical structure structure is that, at each level of the

hierarchy is reduced to a small number of activities at the next lower level

• So that the computational cost of finding the correct way to arrange those

activities for the current problem is small.

• A planning method based on Hierarchical Task Networks or HTNs.

• This approach we take combines ideas from both partial-order planning and the area known as “HTN planning”.
• In HTN planning, the initial plan, which describes the problem, is viewed as very

high-level description of what is to be done. For Example: - Building a House.

• Plans are refined by applying a action decompositions.

• Each action decompositions reduces a high-level action to a partially ordered set

of lower- level actions

3.4.2.1 Representing action decompositions:

• The following diagram shows the decomposition of a Building a house action.

• In pure HTN planning, plans are generated only by successive action

decompositions.

• Therefore the HTN views planning as a process of making an activity

description more concrete, rather than a process of constructing an activity description,

starting from the empty activity.

• The action decompositions are represented as, action decompositions methods

are stored in a plan library

• From which they are extracted and instantiated to fit the needs of the plan being

constructed.

• Each method is an expression of the form Decompose (a, d).

• It means that an action a can be decomposed into the plan d, which is represented

as a partial ordered plan.

• The following table shows the action descriptions for the house-building

problem and a detailed decomposition for the BuildHouse action.

• The start action of the decomposition supplies all those preconditions of actions in

the plan that are not supplied by other actions, such a things called external

preconditions.

• In our example external preconditions are land and money.

• Similarly, the external effects, which are the preconditions of Finish, are all those

effects of actions in the plan that are not negated by other actions.

Action (BuyLand, PRECOND: Money, EFFECT: Land  Money)

Action (GetLoan, PRECOND: GoodCredit, EFFECT:Money  Mortgage)

Action (BuildHouse, PRECOND: Land, EFFECT: House)

 Action (GetPermit, PRECOND: Land, EFFECT: Permit)

 Action (HireBuilder, EFFECT: Contract)

Action (Construction, PRECOND: Permit Contract, EFFECT: HouseBuilt  Permit)

Action (PayBuilder, PRECOND: Money  HouseBuilt, EFFECT:  Money  House 

Contract)

 Decompose (BuildHouse, Plan (Steps :

{S1: GetPermit, S2: HireBuilder, S3: Construction, S4: PayBuilder} ORDERINGS: {Start 

S1  S3  S4 Finish, Start  S2  S3}, Links: {Start LandS1, Start MoneyS4, S1permitS3, S2

ContractS3, S3 HouseBuilt S4, S4 HouseFinish, S4 MoneyFinish}))

• Decomposition should be a correct implementation of the action.

• A plan library could contain several decompositions for any given high-level

action.

• Decomposition should be a correct plan, but it could have additional

preconditions and effects beyond those stated in the high-level action description.

• The precondition of the high-level action should be the intersection of the

external preconditions of its decomposition.

• In which two other forms of information hiding should be noted as,

• First the high-level description completely ignores all internal effects of the

decompositions

• Second the high-level description does not specify the intervals “inside” the
activity during which the high-level preconditions are effects must hold. Information

hiding of this kind is essential if hierarchical planning is to reduce complexity.

3.4.2.2 Modifying the planner for decomposition:

• In this we will see how to modify the Partial Order Planning to incorporate HTN

planning.

• We can do that by modifying the POP successor function to allow decomposition

methods to be applied to the current partial plan P.

• The new successor plans are formed by first selecting some non-primitive action a’ in P and then, for any Decompose (a, d) method from the plan library such that a and a’ unify with substitution θ, replacing a’ with d’ = SUBST (θ, d)
• The following diagram shows the decomposition of a high-level action within an

existing plan.

• Where The BuildHouse action is replaced by the decomposition from the above

example.

• The external precondition land is supplied by the existing causal link from

BuyLand.

• The external precondition Money remains open after the decomposition step, so

we add a new action, GetLoan.

• To be more precise follow the below steps, o First the action a’ is removed from P.Then for each step S in the decomposition d’ o Second step is to hook up the ordering constraints for a’ in the original plan to the steps in d’.
o Third and final step is to hook up casual links.

• This completes the additions required for generating decompositions in the

context of the POP Planner.

 3.4.3 Planning and Acting in Non-deterministic domains:

• So far we have considered only classical planning domains that are fully

observable, static and deterministic.

• Furthermore we have assumed that the action descriptions are correct and

complete.

• Agents have to deal with both incomplete and incorrect information.

• Incompleteness arises because the world is partially observable, non-

deterministic or both.

• Incorrectness arises because the world does not necessarily match my model of

the world.

• The possibility of having complete or correct knowledge depends on

how much indeterminacy there in the world.

• Bounded indeterminacy actions can have unpredictable effects, but the possible

effects can be listed in the action description axioms.

• Unbounded indeterminacy the set of possible preconditions or effects either is

unknown or is too large to be enumerated completely.

• Unbounded indeterminacy is closely related to the qualification problem.

• There are four planning methods for handling indeterminacy.

• The following planning methods are suitable for bounded indeterminacy, o

Sensorleses Planning:-

 Also called as Confront Planning

 This method constructs standard, sequential plans that are to be executed without

perception.

 This algorithm must ensure that the plan achieves the goal in all possible

circumstances, regardless of the true initial state and the actual action outcomes.

 It relies on coercion – the idea that the world can be forced into a given state even when

the agent has only partial information about the current state. Coercion is not always

possible.

o Conditional Planning:-

 Also called as Contingency planning

 This method constructing a conditional plan with different branches for the

different contingencies that could arise.

 The agent plans first and then executes the plan was produced.

 The agents find out which part of the plan to execute by including sensing actions

in the plan to test for the appropriate conditions.

• The following planning methods are suitable for Unbounded indeterminacy, o

Execution Monitoring and Replanning:-

 In this, the agent can use any of the preceding planning techniques to construct a

plan.

 It also uses Execution Monitoring to judge whether the plan has a provision for

the actual current situation or need to be revised.

 Replanning occurs when something goes wrong.

 In this the agent can handle unbounded indeterminacy.

o Continuous Planning:-

o It is designed to persist over a lifetime.

o It can handle unexpected circumstances in the environment, even if these

occur while the agent is in the middle of constructing a plan.

It can also handle the abandonment of goals and the creation of additional goals by goal

formulation.

3.4.4 Conditional Planning:

-Conditional planning is a way to deal with uncertainty by checking what is actually

happening in the environment at predetermined points in the plan.

 Conditional planning is simplest to explain for fully observable environments

 The partially observable case is more difficult to explain in this conditional planning.

3.4.4.1 Conditional planning in fully observable environments:

 Full observability means that the agent always knows the current state.

 CP in fully observable environments (FOE) o initial state : the robot in the right square

of a clean world;o the environment is fully observable:

 AtR ∧CleanL∧CleanR.o

The goal state :

 the robot in the left square of a clean world.

 Vacuum world with actions Left, Right, and Suck

 Disjunctive effects:

Action (Left,

 PRECOND : AtR,

EFFECT : AtL AtR)

  Modified Disjunctive effects :

Action (Left,

 PRECOND : AtR,

EFFECT : AtL v AtR)

Conditional effects:

Action(Suck,

Precond: ,

Effect: (when AtL: CleanL) ^ (when AtR: CleanR)

Action (Left,

Precond: AtR,

 Effect: AtL v (AtL ^ when CleanL: !ClearnL)

 o Conditional steps for creating conditional plans:

if test then planA else planB e.g., if AtL ^ CleanL then Right else Suck

o The search tree for the vacuum world is shown in the following figure

The first two levels of the search tree for the double Murphy vaccum world.

o State nodes are OR nodes where some action must be chosen.

 o Chance nodes,

shown as

circles, are

AND nodes

wher

e

outcome

must be handled, as indicated by the arc linking the

outgoing branches. o The solution is

shown as

bo

ld

in

the The following table shows the recursive depth first algorithm for

AND-OR graph search.

 The following figure shows the part of

the search graph, c t a n l any solutio AND-OR-GRAPH-SEARCH

would r

e

w

i

failur

e,

i

s

how

ever

cyclic

solution,

i

s

kee

p

L

e

u

n

i

tw

o

 The first level of the search graph for the triple Murphy vacuum world,

where we have shown cycles

explicitly All solutions for this problem

are cyclic plans.

• The cyclic solution is as follows,

Conditional Planning in partially observable environments

• In the initial state of a partially observable planning problem, the agent knows

only a certain amount about the actual state.

• Sets of full state descriptions o { (AtR ⋀ CleanR ⋀ CleanL), (AtR ⋀ CleianR ⋀

¬CleanL) }

• Logical sentences that capture exactly the set of possible worlds in the belief state.

o AtR ⋀ CleanR

 The simplest way to model this situation is to say that the initial state belongs to sta

te!

 The state set is a way of describing the agents initial belief

 “ both squares are

clean
” with local dirt

sensing o the vacuum agent is AtR and knows about R, how about

L? The following

graph

shows part of the AND-OR

graph

f

o

the alternate

double

Mu

rphvaccum

world, In which Dirt can sometimes be left behind when the agent leaves a clean

 The agent cannot sense dirt in other

• Knowledge propositions describing the agent's knowledge

• closed-world assumption - if a knowledge proposition does not appear in the

list, it is assumed false.

• Now we need to decide how sensing works.

 There are two choices here,

 o Automatic sensing:- Which means that at every time step the agent gets all the

variable percepts

Active sensing:- Which means the percepts are obtained only by executing specific

sensory actions such as

CheckDirt

CheckLocation

Action(Left, PRECOND: AtR,

EFFECT: K(AtL) ⋀¬K (AtR) ⋀ when CleanR: ¬K(CleanR) ⋀ when CleanL: K (CleanL) ⋀

when ¬ CleanL: K(¬ CleanL)) .

Action(CheckDirt, EFFECT:

when AtL⋀CleanL: K(CleanL) ⋀

 when AtL ⋀ ¬CleanL: K (¬CleanL) ⋀ when AtR ⋀ CleanR: K(CleanR) ⋀ when AtR ⋀

¬CleanR: K(¬CleanR))

3.4.4.2 Execution Monitoring and Replanning:

 An execution monitoring agent checks its percepts to see whether everything is

going to according plan.

• Murphy’s law tells us that even the best-laid plans of mice, men and conditional

planning agents frequently fail.

• The problem is unbounded indeterminacy – some unanticipated circumstances

will always arise for which the agents action description are incorrect.

• Therefore, execution monitoring is a necessity in realistic environments.

• we will consider two kinds of execution monitoring, o Simple, but weak form

called action monitoring – whereby the agent checks the environment to verify that the

next action will work. o more complex, but more effective form called plan monitoring –

in which the agent verifies the entire remaining plan.

• A replanning agent knows what to do when something unexpected happens, call a

planner again to come up with a new plan to reach the goal.

• To avoid spending too much time planning, this is usually done by trying to repair

the old plan – to find a way from the current unexpected state back onto the plan

• Together Execution Monitoring and replanning form a general strategy that can

be applied to both fully and partially observable environments

• It can be applied to a variety of planning representations as state-space, partial-

order and conditional plans.

• The following table shows a simple approach to state-space planning.

• The planning agent starts with a goal and creates an initial plan to achieve it.

• The agent then starts executing actions one by one.

• The replanning agent keeps track of both the remaining unexpected plan segment

plan and the complete original plan whole-plan

• It uses action monitoring: before carrying out the next action of plan, the agent

examines its percepts to see whether any preconditions of the plan have unexpectedly

become unsatisfied.

 If they have, the agent will try to get back on track by replanning a
should take it back to some point in

 The has an agent that does action

monitoring and replanning

 It uses a complete state-space planning algorithm called PLANNER
 If the preconditions of the next action are not met, the agent loops through

p in whole-plan, trying to find one that PLANNER can

 This path is
 If PLANNER succeeds in finding a repair, the agent appends repair and the

after p, to create the

 The agent then returns the first

Fu

nc

REPLANNING- r

e

an
S

t

KB, a Knowledge base (includes action
Plan, a plan,
Whole-plan, a plan,
Goal,

TELL(KB,MAKE-PERCEPT-
C STATE-
I

f

pla t

h

whol

I PRECONDITIONS(FIRST(plan)) not currently t
Can SORT(whole-plan, ordered by
Find state s in

Failure
Contin the tail of whole-plan
Who p APPEND(repair,

R PO

 The following diagram shows the schematic illustration

 The illustration of process is also called as
 The replanner notices that the preconditions of the first action in plan are

curre
 It then calls the planner to come up with a new subplan called repair that

current situation to some state s on

• The agents PLANNER should come up with the following plan as,

• If: the agent constructs a plan to solve the painting problem by painting the chair

and table red. only enough paint for the chair

• Plan monitoring o Detect failure by checking the preconditions for success of the

entire remaining plan o Useful when a goal is serendipitously achieved

 While you’re painting the chair, someone comes painting the table with the same
color

o Cut off execution of a doomed plan and don’t continue until the failure actually
occurs

 While you’re painting the chair, someone comes painting the table with a

different color

• If one insists on checking every precondition, it might never get around to

actually doing anything

• RP - monitors during execution

3.4.4.3 Continuous Planning

• Continuous planning agent o execute some steps ready to be executed o refine

the plan to resolve standard deficiencies o refine the plan with additional information o

fix the plan according to unexpected changes

 recover from execution errors

 remove steps that have been made redundant

• Goal ->Partial Plan->Some actions-> Monitoring the world -> New Goal

• The continuous planning agent monitors the world continuously, updating its

world model from new percepts even if its deliberations are still continuing.

• For example:- o use the blocks world domain problem

o The action we will need is Move(x, y), which moves block x onto block y, provided

that both are clear.

o The following is the action schema,

o Action (Move(x, y),PRECOND: Clear(x) Clear(y) On(x ,z),EFFECT: On(x, y

Clear(z) Clear(y) On(x, z))

o Goal: On(C, D)On(D ,B)

o Start is used as the label for the current state

o The following seven diagram shows the continuous planning agent approach

towards the goal

o Plan and execution o Steps in execution:

 Ordering - Move(D,B), then Move(C,D)

 Another agent did Move(D,B) - change the plan

 Remove the redundant step

 M

ake a

mistake,

so

On(C,A)

• St

ill one

open

conditio

n

 Pl

anning

one more

time -

Move(C,D

)

 Fi

nal state:

start ->

finish

 The sequences of states as the continuous planning agent tries to O

D On(D ,B) as
 The start
 At (b), another agent has interfered,

 At (c), the agent has executed Move(C, D) but has failed,
 It retries Move(C, D), reaching the

 The initial plan constructed by the continuous
 The plan is indistinguishable, so far, from that produced

 After someone else moves D onto B, the unsupported links supplying
are dropped,

 The link Move(D, B) has been one from Start, and

redundant step Move(D, B) has

• It is a continuous partial-order planning agent.

 After Move(C, D) is executed and removed from the plan, the effects of the Start step

reflect the fact that C ended up on A instead of the

intended D. The goal precondition On(C, D) is still

open.

 The open condition is resolved by adding Move(C, D)

back in.

 After Move(C, D) is executed

and

dropped

from

the plan, the remaining open

condition On(C, D) is resolved by adding a causal link from the new start

step. Now the plan is

completed. From this example, we can see that continuous planning is quite similar to

POP. On each iteration, the algorithm finds something about the plan that needs fixing a so-

called plan

-

and

fixes The POP algorithm can be seen as a flaw-removal algorithm where the two flaws are

open preconditions and causal

conflicts. On the other hand, the continuous planning agent addresses a much broader range of

flaws as foll

owo Missing

goals o Open

precondition

o Causal

conflicts

o Unsupporte

d links

o Redundant

actions

o Unexecuted

actions

o Unnecessary

historical goal

 The following table shows the continuous-POP-

Agent

algo

rith
Fun

ctio

CONTINUOUS-POP-AGENT

(percept)

re

tu

an

actiS

t

plan, a plan, initially with just Start,

Finish
Ac

ti
 NoOp (the

default) EFFECTS [Start] = UPDATE(EFFECTS [Start],

percept) REMOVE-FLAW (plan) // possibly updating

action R

et

a

c

 It has a

cycle of
“ perceive, remove

flaw act
”

 It keeps a persistent plan in its KB, and on each turn it removes one ,flaw from

the plan. It then takes an action and repeats

the loop.

• After receiving a percept the agent removes flaw from its constantly updated plan

and then returns an action.

• Often it will take many steps of flaw-removal planning, during which it returns

NoOp, before it is ready to take a real action.

3.4.4.4 Multiagent Planning

• The ball can be returned if exactly one player is in the right place.

 Cooperation: Joint goals and plans

 So far we have

dealt with

single-agent

environments

 Multiagent

environments can be

coop

erati

o

r

com

petiti

 For

example:- o the problem is team planning in

double tennis. Plans can be constructed that specify actions for both

players on the team Our objective is to construct plans

efficiently. To do this we need requires some

form of

coordin

ation,

possibly

achieved by commun

ication.

 The following table shows the double

tennis problem,

In the above table, Two agents are playing together and can be in one of four

locations as
fo

lloo [Left,

Baselineo [Right,

Baseline

]
o

[Le

ft,

]
o [Rig

ht,

]

• An agent (A, B) declares that there are two agents, A and B who are participating

in the plan.

• Each action explicitly mentions the agent as a parameter, because we need to keep

track of which agent does what.

• A solution to a multiagent planning problem is a joint plan consisting of actions

for each agent

• A joint plan is a solution if the goal will be achieved when each agent performs its

assigned actions.

• The following plan is a solution to the tennis problem

PLAN 1 :

A : [Go(A,[Right, Baseline]),Hit(A, Ball)]

B : [NoOp(B),NoOp(B)].

If both agents have the same KB, and if this is the only solution, then everything would

be fine; the agents could each determine the solution and then jointly execute it.

• Unfortunately for the agents, there is another plan that satisfies the goal just as

well as the first

PLAN 2:

 A : [Go(A, [Left, Net]), NoOp(A)]

 B : [Go (B,[Right,baseline]),H it(23, Ball)]

• If A chooses plan 2 and B chooses plan 1, then nobody will return the ball.

• Conversely, if A chooses 1 and B chooses 2, then they will probably collide with

each other; no one returns the ball and the net may remain uncovered.

• So the agents need a mechanism for coordination to reach the same joint plan

 Multibody Planning:

 concentrates on the construction of correct joint plans, deferring the coordination issue

for the time being, we call this Multibody planning

• Our approach to multibody planning will be based on partial-order planning

• we will assume full observability, to keep things simple

• There is one additional issue that doesn’t arise in the single-agent case; the

environment is no longer truly static.

• Because other agents could act while any particular agent is deliberating.

• Therefore we need synchronization

• We will assume that each action takes the same amount of time and that actions at

each point in the joint plan are simultaneous.

• At any point in time, each agent is executing exactly one action.

• This set of concurrent actions is called a joint action.

• For example, Plan 2 for the tennis problem can be represented as this sequence

of joint actlons:

 Coordination Mechanisms:

 The simplest method by which a group of agents can ensure agreement on a joint plan is

to adopt a convention prior to engaging in joint activity.

• A convention is any constraint on the selection of joint plans, beyond the basic

constraint that the joint plan must work if all agents adopt it

• For example

o the convention "stick to your side of the court" would cause the doubles partners to

select plan 2 the convention "one player always stays at the net" would lead them to

plan 1

• In the absence of an applicable convention, agents can use communication to

achieve common knowledge of a feasible join plan

 For example:

o a doubles tennis player could shout "Mine!" or "Yours!" to indicate a preferred

joint plan.

Competition:

 Not all multiagent environments involve cooperative agents

 Agents with conflicting utility functions are in competition with each other

 One example: chess-playing. So an agent must

(a) recognize that there are other agents

 (b) compute some of the other agent's possible plans

 (c) compute how the other agent's plans interact with its own plans

(d) decide on the best action in view of these interactions

UNIT-IV

PLANNING AND MACHINE LEARNING

Basic plan generation systems – Strips - Advanced plan generation systems - K

strips

- Strategic explanations - Why, Why not and how explanations. Learning - Machine

learning, adaptive learning.

4.1 Uncertainty

• Agents almost never have access to the whole truth about the environment (i.e)Agent

must therefore act under uncertainity.

• Uncertainity can also arise because of incompleteness and incorrectness in the agent’s understanding of the properties of the environment.

4.1.1 Handling of Uncertainty:-

• Identifying uncertainity in dental diagnosis system.

• For all P Symptom(P,toothache) → Diagnosis(P,Cavity)
• This rule is logically wrong.Not all patients with toothache have cavities,some of them

may have gum disease or impacted wisdom teeth or one of several other problems.

• For all P symptom(P,toothache) → Disease(P,cavity) ᴠ Disease(P-Gumdisease) ᴠ Disease(P,Impacted Wisdom)….
(i.e)unlimited set of possibilities are exists for toothache symptom.

Change into casual rule as:

• For all P disease(P,cavity) → Symptom(P,toothache),but this rule is not right

either,not all cavities cause pain.

• Trying to FOL in medical diagnosis thus fails for three main reasons.

I. LAZINES: Too much work to list the complete set of antecedents and consequents

needed.

II. THEORETICAL IGNORANCE: Medical science has no complete theory for domain.

III. PRACTICAL IGNORANCE: Even if we know all the rules,uncertainit y arises because

some tests cannot be run on the patients body.

• CONCLUSION:

 o Agents knowledge can at best provide only a degree of belief in the relevant

sentences.the total used to deal with degree of belief will be probability theory,which

assigns or numerical degree of belief between 0 to 1 to sentences.

• PRIOR (or) UNCONDITIONAL PROBABILITY:Before the evidence is obtained.

• POSTERIOR (or) CONDITIONAL PROBABILITY:After the evidence is obtained.

• UTILITY THEORY:To represent and reasons with preference(i.e)utility-quality of

being useful.

Decision theory=probability theory + Utility theory

• The fundamentals idea of decision theory is that an agent is rational if and only if it

chooses the action that yields the highest expected utility,averaged overall the possible

outcomes of the action-maximium expected utility.(i.e)Weighting the utility of a

particular outcome by the probability that it occurs.

• The following shows a decision theoretic agent

Function DT-Agent (percept)returns an action Static: belief_state,probabilistic beliefs about the current state of world action, the Agent’s
action

Update: belief_state based on action and percept

Calculate outcomes probabilities for actions, given action description and current Belief_state

Select action with highest expected utility given probabilities of outcomes and Utility

information

Return action

 4.2 Review of Probability

 AXIOMS OF PROBABILITY:

 All probabilities are between 0 and 1. 0 ≤ P(A) ≤ 1
I. Necessarily true (i.e. valid) proposition have probability 1 an necessarily

false (i.e. unsatisfiable)proposition have probability 0 P(True) = 1 P(False) = 0

II. The probability of a disjunction is given by P(A ᴠ B) = P(A) + P(B)-P(A ᴧ B)

III. Let B = ⌐A in the axiom (III)
IV. P(True) = P(A) + P(⌐A) – P(False) (by logical equivalence)

V. 1 = P(A) + P(⌐A) (by step 2) VII. P(⌐A) = 1-P(A) (by algebra)

• Joint probability distribution: An agent’s probability assignments to all propositions in the domain (both
simple and complex)

Ex: Trivial medical domain with two Boolean variables.

 Toothache ⌐Toothache
 Cavity 0.04 0.06

 ⌐Cavity 0.01 0.89

I. Adding across a row or column gives the unconditional probability of a variable.

 P(Cavity) = 0.06 + 0.04 = 0.1

SVCET

P(Cavity + Toothache) = 0.04 +0.01 + 0.06 = 0.11

 Conditional Probability

P(Cavity / Toothache) =

 = = 0.80

 Bayes’Rule:

1. Recall two forms of the product rule P(A ᴧ B) = P(A/B) P(B)

P(A ᴧ B) = P(B/A) P(A)

Equating the two righthand sides and dividing by P(A),i.e.

P(A/B)=

 Is called as Baye’s rule (or) Baye’s law (or) Baye’s theorem
2. From the above equation the general law of multivalued variables can be written using

the P notation:

P(Y / X) =

3. From the above equation on some background evidence E:

 P(Y / X,E) =

4. Disadvantage

It requires three terms to compute one conditional probability (P(B/A))

- One conditional probability P(A/B)

- Two unconditional probability P(B) and P(A)

5. Advantage If three values are known,then the unknown fourth value → P(B/A) is computed easily.
6. Example:

Given: P(S/M) = 0.5 , P(M) = 1/5000 , P(S) = 1/20

S – the proposition that the patient has a stiff nect

M – the proposition that the patient has meningitis

P(S/M) – only one in 5000 patients with a stiff neck to have meningitis

P(M/S) = = 0.0002

7. Normalization

a) Consider again the equation for calculating the probability of meningitis given a stiff

neck.

P(M/S) =

b) Consider the patient is suffering from whiplash W given a stiff neck.

P(W/S) =

c) To perform relative likelihood between a and b,we need P(S/W) = 0.8 and P(W) =

1/1000 and P(S) is nit required since it is already defined

 =

i.e.whiplash is 80 times more likely than meningitis,given a stiff neck.

d) Disadvantages: consider the folloeing equations: P(M/S) = ………. (1)
P(⌐M/S) = ………….. (2)
Adding (1) and (2) using the fact that P(M/S) + P(⌐M/S) = 1,we obtain P(S) = P(S/M) P(M) + P(S/⌐M) P(⌐M)
Substituting into the equation for P(M/S),we have

P(M/S) =

 = =

This process is called normalization ,because it treats 1/P(S) as a normalizing constant

that allows the conditional terms to sum to 1

The general multivalued normalization equation is

P() = αP(P(Y) α – normalization constant 8. Baye’s Rule and evidence
a) Two conditional probability relating to cavities:

P(Cavity / Toothache) = 0.8 P(Cavity /Catch) =0.95 Using Baye’s Rule:

P(Cavity/Toothache ᴧ Catch) =

b) Bayesian updating is done (i.e) evidence one piece at a time.

 P(Cavity/Toothache) = P(Cavity) ………..(1)

c) When catch is observed apply Bayes Rule with constant conditioning context

P(Cavity/Toothache ᴧ Catch) = …………(2)
From (1) and (2)

= P(Cavity)

d) Mathematically the equation are rewritten as:

P(Catch/Cavity ᴧ Toothache) = P(Catch/Cavity)

P(Toothache/Cavity ᴧ Catch) = P(Toothache/cavity)

These equations express the conditional independence of Toothache and catch on given

Cavity.

e) Using conditional independences,simplify the equation of Bayes updating

P(Cavity/Toothache ᴧ Catch) = P(Cavity)

f) Using normalization,it is further reduced as

P(Cavity/Toothache ᴧ Catch) → P(X/Y,Z) = P(X/Z)
P(Z/X,Y) = α P(Z) P(X/Z) P(Y/Z) (i.e.) P(Z/X,Y)sum to 1

4.3 Bayesian Network:-

4.3.1 Syntax:

• A data structure used to represent knowledge in an uncertain domain (i.e) to represent

the dependence between variables and to give a whole specification of the joint

probability distribution.

• A belief network is a graph in which the following holds.

I. A set of random variables makes up the nodes of the network.

II. A set of directed links or arrows connects pairs of nodes x→y,x has a direct influence on
y.

III. Each node has a conditional probability tale that quantifies the effects that the parents

have on the node.The parents of a node are all nodes that have arrows pointing to it.

IV. Graph has no directed cycles(DAG)

• The other names of Belief network are Bayesian network ,probabilistic network, casual

network and knowledge map.

• Example:

A new burglar alarm has been installed at home.

• It is fairly reliable at detecting a burglary but also responds on occasion to minor

earthquakes.

• You also have two neighbours,John and Mary,who have promised to call you at work

when they hear the alarm.

• John always calls when he hears the alarm but sometimes confuses the telephone ringing

with the alarm and calls then too.

• Mary on the otherhand likes rather loud music and sometimes misses the alarm

together.

• Given the evidence of who has or has not called estimate the probability of a burglary

Uncertainty:

I. Mary currently listening to loud music

II. John confuses telephone ring with alarm → laziness and ignorance in the operation
III. Alarm may fail off → power failure, dead battery, cut wires etc.

Burglar

y

Earthquak

e

P(Alarm/Burglary,Earthquak

e)

True False

T

T

F

F

T

F

T

F

0.950

0.950

0.290

0.001

0.050

0.050

0.710

0.999

Belief network

Burglary

Earthquake

eeee

Alarm

John calls
Mary calls

Conditional probability table for the random variable Alarm:

Each row in a table must sum to 1,because the entry represents set of cases for the

variable. A table with n Boolean variables contain 2n independently specifiable

probabilities.

4

.3.

2

Se

ma

nti

cs

There are two ways in which one can understand the semantics of Belief networks

1. Network as a representation of the joint probabilit y distribution-used to know how to

construct networks.

2. Encoding of a collection of conditional independence statements-designing inference

procedure.

• Joint probability distribution: How to construct network’s? A belief network provides a
complete description of the domain.Every entry in the joint probability distribution can

be calculated from the information in the network.A entry in the joint is the probability

of a conjunction of particular assignment to each variable(i.e) P(X1 = x,ᴧ….ᴧxn = xn)

P(B)

.001

• We use the notation P(x1…..xn)as an abbreviation for this.The value of this entry is given

by the following formula:

P(x1……xn) =

 i|Paren

ts(Xi))

• Thus each entry in the joint is represented by the product of the appreciate elements of the CPT in the belief network.The CPT’s therefore provide a decomposed representation

of the joint.

• The probability of the event that alarm has sounded but neither a burglary nor an

earthquake has occurred,and both John and Mary call.We use single letter names for the

variables.

P(JᴧMᴧA⌐Bᴧ⌐E)

= P(J/A) P(M/A) P(A|⌐Bᴧ⌐E) P(⌐B) P(⌐E)
= 0.90 * 0.70 * 0.001 * 0.999 * 0.998

= 0.00062

Noisy OR: It is the logical relationship of uncertaint y.In proposition logic we might say

fever is true, If and only if cold, flu or malaria is true. The Noisy OR made adds some

uncertainity to this strict logical approach. The model makes three assumptions.

I. It assumes the each cause has an independent chance of causing the effect. II. It

assumes that all possible causes are listed.

III. It assumes that whatever inhibits Flu from causing a fever.These inhibits are not responded as nodes but rather are summarized as “noise parameters”
Example

P(Fever/cold) = 0.4

P(Fever/Flu)=0.8 Noise parameters are 0.6,0.2 and 0.1

P(Fever/Malaria)=0.9

• Conclusion:

I. If no parent node is true then the output is false with 100% certainity.

II. If exactly one parent is true,then the output is false with probability equal to the noise

parameter for that node.

III. The probability that the output node is false is just the product of the noise parameters

for all the input nodes that are true.

 Conditional independent relations in belief networks:

• From the given network is it possible to read off whether a set of nodes X is independent

of another set Y,given a set of evidence nodes E? the answer is yes,and the method is

provided by the notion of direction dependent separation or de-seperation.

• If every undirected path from a node in X to a node in Y is de-seperated by E then X and

Y are conditionally independent given E.

A path from X to Y can be blocked given evidence E

 Three paths in which a path from x to y can be blocked,given a evidence E.If every path

from x to Y is blocked,then we say E deseperates x and y(i.e)

I. Z is in E and z has one arrow on the path leading in and one arrow out. II. Z is in E

and Z has both arrows leading out.

III. Neither Z nor any descendents of Z is in E and both arrows lead into Z.

Example belief network for d-seperation:Car’s electrical system and engine

X E Y

Z

Z

Z

1. Whether there is a Gas in the car and whether the car Radio plays are independent given

evidence about whether the Spark plugs fire

2. Gas and Radio are independent if battery works.

3. Gas and Radio are independent given no evidence at all. 4. Gas and Radio are dependent

on evidence start.

4.5. Inference in Temporal models

The generic temporal model has the following set of inference tasks:

1. Monitoring (or) filtering

Filtering (Monitoring):computing the conditional distribution over the current state,

given all evidence to data, P(Xt|e1:t)

• In the umbrella example, monitoring would mean computing the probability of rain

today,

given all the observation of the umbrella so far, including today

Battery

Radio Ignition
Gas

Starts

Moves

Prediction:computing the conditional distribution over the future state,given all

evidence to date,P(Xt+k|e1:t),for k>0.

In the umbrella example,prediction would mean computing the probability of rain

tomarrow(k=1),or the day after tomarrow(k=2),etc.,given all the observations of the

umbrella so far Xt+1

X0

X1

Xk

Et+1

Monitoring(filtering)

• Filtering(monitoring):computing the conditional distribution over the current

state,given all evidence to data,corresponds to computing the distribution P(Xt|e1:t),or

P(Xt+1|e1:t+1):

P(Xt+1|e1:t+1) = P(Xt+1|e1:t,et+1) = P(Xt+1|et+1,e1:t)

X 0

X 1

X k X t

E 1

E k E t

2 .Prediction

E 1
 E t

E t

• General form of Baye’s rule conditional also on evidence e

P(Y|X,e) = = αP(X|Y,e) P(Y|e)

• In temporal Markov process,it reads: P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t)
• Since evidence et depends only on the current state Xt P(Xt+1|et+1,e1:t) = αP(et+1|Xt+1,e1:t) P(Xt+1|e1:t)

• Then we can simplify
 P(Xt+1|e1:t+1) = αP(et+1|Xt+1) P(Xt+1|e1:t)

• The second term P(Xt+1|e1:t),corresponds to a one-step prediction of the

nextstate,given evidence up to time t,and the first term updates this new state with the

new evidence at time t+1his updating is called filtering.

• Let us now obtain the one-step prediction:

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t)

• The first term is the (Markov) transition model and the second term is a current state

distribution given evidence up to date

P(Xt+1|e1:t) = (Xt+1|Xt) P(Xt|e1:t)

• The recursive formula for monitoring/filtering then reads P(Xt+1|e1:t+1) = αP(et+1|Xt+1) (Xt+1|Xt) P(Xt|e1:t) We can

write the same set of equations for P(Xt|e1:t),where we replace t+1 ← t and t ← t-1

prediction to the far future

• What happens when we want to predict further into future given only the evidence up to

this date?

• It can be shown that predicted distribution for state vector converges towards one

constant vector,the so called fixed point (for every t > mixing time):

P(Xt|e1:t) = P(Xt+1|e1:t+1)

• This is called a stationary distribution of the Markov process,and the time required to

reach this stationary state is called the mixing time.

• Stationary distribution of the Markov process dooms to failure any attempt to predict

the actual state for a number of steps ahead that is more than a small fraction of the

mixing time.

3. Most likely sequence

• Given all evidence to date,we want to find the sequence of states that is most likely to

have generated all the evidence,i.e. argmax X1:t P(X1:t|e1:t)

• In the umbrella example,if the umbrella appears on each of the first three days and is

absent on the fourth,then the most likely explanation is that it rained on the first three

days and it did not rain on the fourth.

• Algorithms for this task are useful in many applications,including speech recognition,i.e.

to find the most likely sequence of words, given series sounds,or the construction of bit

strings transmitted over a noisy channel(cell phone),etc.

Rt-

1

P(Rt)

T

F

0.7

0.3

observes first five days on the job.

Rain t-1
 Rain t

Rain t+1

R t P(U t)
T

f

0.9

0.2

Umbrella t-1

Umbrella t

Umbrella

t+1

 Suppose that [true,true,false,true,true]is the umbrella sequence,which the security guard

• What is the weather sequence most likely to explain this out of 25=32 possible

sequences,i.e.

argmax X1:t P(X1:t|e1:t)?

• For each state,the bold arrow indicates its best predecessor as measured by the product

of the preceding sequence probability m1:t and the transition probability P(Xt|Xt-1)

• To derive the recursive formula,let us focus on paths that reach the state Rain5 = true.the

most likely path consists of the most likely path to some state at t=4 followed by the

transition to Rain5 = true.

• The state at t=4,which will become part of the path to Rain5 = true is whichever

maximizes the likelihood of that path.

• There is a recursive relationship between most likely paths to each state Xt+1 and most

likely paths to each state Xt.

Rain1 Rain2 Rain3 Rain4 Rain5

 true true true true true

 m1:1 m1:2 m1:3 m1:4 m1:5

false false false false false

true true true true

 .8182 .5155 .0361 .0334 .0210

.1818 .0491
 .1237

 .0173
 .0024

Viterbi algorithm:

• Let us denoted by m1:t the probability of the best sequence reaching each state at time t.

M1:t = 1,…….,Xt-1,Xt|e1:t)

• Then the recursive relationship between most likely paths to each state Xt+1 and most

likely paths to each state Xt, reads 1,…….,Xt,Xt+1|e1:t+1)
 =αP(et+1|Xt+1) X1,….,Xt-1,Xt|e1:t))

This is the viterbi formula

4.6 Hidden Markov model

• An HMM is a temporal probabilistic model in which the state of the process is described

by a single discrete random variable.

• The possible values of the variable are the possible states of the world.

• The umbrella example described in the HMM,since it has just one state variable Raint.

Additional state variables can be added to a temporal model while staying within the

HMM framenetwork,but only by combining all the state variable into a single “megavariable” whose values are all possible tuples of values of the individual state

variables.

• Simplified matrix algorithms:

• With a single,discrete state variable Xt,we can give concrete form to the representations

of the transition model,and the forward and backward messages.

• Let the state variable Xt have values denoted by integers 1,….,S,where S is the number of
possible states.

m 1: t+1 =

P(X t+1 |X t)

• The transition model P(Xt|Xt-1) becomes an S x S matrix T,where

Tij = P(Xt = j|Xt-1 = i) Tij – probability of a transition from

state I to state j.

• For example,the transition matrix for the umbrella world is

T = P(Xt|Xt-1) =

• We also put the sensor model in matrix form.In this case,because the value of the

evidence variable Et is known to be say et,we needuse only that part of the model

specifying the probability that et appears.

• For each time step t,we construct a diagonal matrix Ot whose diagonal entries are given

by the values P(et|Xt = i) and whose entries are 0.

O1 =

• We use column vectors to represent the forward and backward messages,the

computations become simple matrix-vector operations.

The forward equation becomes F1:t+1 = α Ot+1 TT f1:t …………(1) and the backward equation becomes
bk+1:t = TOk+1 bk+2:t …………(2)

• From these equations,we can see that the time complexity of the forward and backward

algorithm applied to a sequence of length t is O(S2t).The space complexity is O(St).

• Besides providing an elegant description of the filtering and smoothing algorithms

for HMMs,the matrix formulation reveals opportunities for improved algorithms.

• The first is a simple variation on the forward-backward algorithm that allows smoothing

to be carried out in constant space,independently of the length of the sequence.

• The idea is that smoothing for any particular time slice k requires the

simultaneous presence of both forward and backward messages,f1:k and bk+1:t.

• The forward-backward algorithms achieves this by storing the fs computed on the

forward pass so that they are available during the backward pass. f1:t = α’ (TT)-1 Ot+1-1 f1:t+1

• The modified smoothing algorithm works by first running the standard forward pass

to compute ft:t and then running the backward pass for both b and f together,using them

to compute the smoothed estimate at each step.

• A second area in which the matrix formulation reveals an improvement is in

online smoothing with a fixed lag.

• Let us suppose that the lag is d; that is,we are smoothing at time slice t-d,where the

current time is t.By equation. αf1:t-dbt-d+1:t

for slice t-d.Then,when a new observation arrives,we need to compute αf1:t-d+1bt-d+2:t+1

for slice t-d+1.First,we can compute f1:t-d+1 from f1:t-d, using the standard filtering process.

• Computing the backward message incrementally is more trickly,because there is no

simple relationship between the old backward message bt-d+1:t and the new backward

message

bt-d+2:t+1.

• Instead ,we will examine the relationship between the old backward message bt-d+1:t and

the backward message at the front of the sequence,bt+1:t.To do this,we apply

equation(2) d times to get

bt-d+1:t = bt+1:t = Bt-d+1:t 1. ………….(3) Where the matrix Bt-

d+1:t is the product of the sequence of T and O matrices.

• B can be thought of as a “transformation operator” that transforms a later
backward message into an earlier one.

bt-d+2:t+1 = bt+2:t+1 = Bt-d+2:t+1 1. …………(4)
• Examining the product expressions in the above two equations(3) & (4),we see that they have a simple relationship:to get the second product,”divide” the first product by the

first element TOt-d+1, and multiply by the new last element TOt+1.

• In matrix language,then there is a simple relationship between the old and new B

matrices:

Bt-d+2:t+1 = Ot-d+1-1 T-1 Bt-d+1:t TOt+1. …………….(5)
• This equation provides an incremental update for the B matrix,which in turn(eqn

(4))

allows us to compute the backward message bt-d+2:t+1.

UNIT-V

EXPERT SYSTEMS

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge

Acquisition – Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON,

Expert systems shells.

5.1 Learning from Observation:

• The idea behind learning is that percepts should be used not only for acting, but also for improving the agent’s ability to act in the future.
• Learning takes place as the agent observes its interactions with the world and its

own decision making process.

• Learning can range from trivial memorization of experience to the creation of a

entire scientific theory, as exhibited like Albert Einstein.

5.1.1 Forms of Learning:

• Learning agent is a performance element that decides what actions to take and a

learning element that modifies the performance element so that better decisions can be

taken in the future.

• There are large variety of learning elements

• The design of a learning element is affected by following three major issues, o Which

components of performance element are to be learned. o What feedback is available to

make these components learn o What representation is used for the component.

• The components of these agents includes the following, o A direct mapping from

conditions on current state to actions

o A means to infer relevant properties of the world from the percept sequence o

Information about the way the world evolves and about the results of possible action the

agent can take

o Utility information indicating the desirability of world states o Action-value information

indicating the desirability of action

o Goals that describe classes of states whose achievement maximizes the agent utilty

• Each of the component can be learned from appropriate feedback o For Example: - An

agent is training to become a taxi driver. o The various components in the learning are as

follows,

 Everytime when the instructor shouts “Brake” the agent learn a condition – action rule

for when to brake.

 By trying actions and observing the results, agent can learn the effect of actions

(i.e.) braking on a wet road – agent can experience sliding

 The utility information can be learnt from desirability of world states,

(i.e.) if the vehicle is thoroughly shaken during a trip, then customer will not give tip to

the agent, which plans to become a taxi driver The type of feedback available for

learning is also important.

• The learning can be classified into following three types.

o Supervised learning o Unsupervised learning o Reinforcement learning

• Supervised Learning:- o It is a learning pattern, in which

 Correct answers for each example or instance is available

 Learning is done from known sample input and output

 For example: - The agent (taxi driver) learns condition – action rule for braking –

this is a function from states to a Boolean output (to brake or not to brake). Here the

learning is aided by teacher who provides correct output value for the examples.

• Unsupervised Learning:- o It is learning pattern, in which

 Correct answers are not given for the input.

 It is mainly used in probabilistic learning system.

• Reinforcement Learning:- o Here learning pattern is rather than being told by a

teacher. o It learns from reinforcement (i.e.) by occasional rewards

o For example:- The agent (taxi driver), if he does not get a trip at end of journey, it gives

him a indication that his behavior is undesirable.

5.2 Inductive Learning

• Learn a function from example,

• For example:- f is target function

An example is a pair (x, f(x)) where x = input and f(x) = output of the function is applied

to x

• The pure inductive inference or induction is “given a training set of example of f, return a

function h that approximates f.

• Where the function h is called hypothesis

• This is a simplified model of real learning, because it o Ignores prior knowledge o Assumes a deterministic, observable “environment”.
• A good hypothesis will generalize well, i.e., able to predict based on unseen examples

5.2.1 Inductive learning method:-

• Goal is to estimate real underlying functional relationship from example observations

• Construct / adjust h to agree with f on training set (h is consistent if it agrees with f on all

example)

• For example:- Curve fitti ng example

• Given

 Linear hypothesis:

 Curve fitting with various polynomial hypothesis for the same data

• Ockham’s razor : prefer simplest hypothesis consistent with the data
• Not-exactly-consistent may be preferable over exactly consistent

• Nondeterministic behavior

• Consistency even not always possible

• Nondeterministic functions : trade-off complexity of hypothesis / degree of fit

 5.3 Decision Trees

Decision tree is one of the simplest learning algorithms.

• A decision tree is a graph or model of decisions and their possible consequences,

including chance event outcomes, resource costs, and utility.

• It can be used to create a plan to reach a goal.

• Decision trees are constructed to help with making decisions. It is a predictive model.

5.3.1 Decision trees as performance elements:-

• Each interior node corresponds to a variable; an arc to a child represents a possible

value of that variable.

• A leaf represents a possible value of target variable given the values of the variables

represented by the path from the root.

• The decision tree takes object or situation described by set of attributes as input and

decides or predicts output value.

• The output value can be Boolean, discrete or continuous.

• Learning a discrete valued function is called classification learning.

• Learning a continuous valued function is called regression.

• In Boolean classification it is classified as true (positive) or false (negative).

• A decision tree reaches its destination by performing a sequence of tests.

• Each interior or internal node corresponds to a test of the variable; an arc to a child

represents possible values of that test variable.

• The decision tree seems to be very for humans.

• For Example:- o A decision tree for deciding whether to wait for a table at a restaurant. o

The aim here is to learn a definition for the goal predicate.

o we will see how to automate the task the following attributes are decided.

 Alternate: is there an alternative restaurant nearby?

 Bar: is there a comfortable bar area to wait in?

 Fri/Sat : is today Friday or Saturday?

 Hungry: are we hungry?

 Patrons : number of people in the restaurant [the values are None, Some, Full]

Price : price range [$, $$, $$$] Raining: is it raining outside?

 Reservation: have we made a reservation?

 Type : kind of restaurant [French, Italian, Thai, Burger]

 WaitEstimate : estimated waiting time by the host [0-10, 10-30, 30-60, >60]

 The following table described the example by attribute values (Boolean, Discrete, Continuous) situations where I will / won’t wait for a table.

The following diagram shows the decision tree for deciding whether to wait for a table

The above decision tree does not use price and type as irrelevant.

For example:- if the Patrons = full and the Wait Estimate = 0-10 minutes, it will be

classified as positive(yes) and the person will wait for the table

Classification of example is positive (T) or negative (F) shown in both table and in

decision tree.

 The following diagram shows the splitting the examples by testing on

attributes

 The above diagram Splitting on Type brings us no nearer to distinguishing between

and negative
 The below diagram Splitting on Patrons does a good job of separating positive and

exa

 The following table shows the Decision Tree Learning

 The following tree shows the decision tree induced from the training data

set as follows,

• substantially simpler solution than ‘true’ tree
• More complex hypothesis isn’t justified by small amount of data

5.3.4 Using Information theory:

• Information content [entropy] :

• I(P(v), … , P(v)) = Σ -P(v) log2 P(v)

1 n i=1 i i

• For a training set containing p positive examples and n negative examples

• Specifies the minimum number of bits of information needed to encode the classification

of an arbitrary member

 Information Gain:

5.3.5 Assessing the performance of the learning Algorithm:

• A learning algorithm is good if it produces hypothesis that do a good job of predicting the

classification of unseen examples.

• Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a

hypothesis by checking its predictions against the correct classification once we know it.

 We do this on a set of examples known as the test set.

• The following are the steps to assess the performance,

1. Collect a large set of examples

2. Divide it into two disjoint sets: the training set and the test set

3. Apply the learning algorithm to the training set, generating a hypothesis h.

4. Measure the percentage of examples in the test set that are correctly classified h.

5. Repeat steps 1 to 4 for different sizes of training sets and different randomly selected

training sets of each size.

• The result of this procedure is a set of data that can be processed to give the

average prediction quality as a function of the size of the training set.

• This function can be plotted on a graph, giving what is called the learning curve for the

algorithm on the particular domain.

• The following diagram shows the learning curve for DECISION-TREE-LEARNING with the

above attribute table example.

• In the graph the training set grows, the prediction quality increases. Such a curves

are called happy graphs.

5.4 Explanation Based Learning:

• Explanation-based learning is a method for extracting general rules from

individual observations

• Human appear to learn quite a lot from example

• Basic idea: Use results from one examples problem solving effort next time around.

• when an agent can utilize a worked example of a problem as a problem-solving method,

the agent is said to have the capability of explanation-based learning (EBL).

• This is a type of analytic learning.

• The advantage of explanation-based learning is that, as a deductive mechanism, it

requires only a single training example (inductive learning methods often require many

training examples)

• To utilize just a single example most EBL algorithms require all of the following, o The

training example o A Goal concept o An Operationality Criteria o A Domain theory

• An EBL accepts four kinds of input as follows, o A training example:- what the learning

sees in the world

o A goal concept:- a high level description of what the program is supposed to learn o An

operational criteria:- a description of which concepts are usable

o A domain theory:- a set of rules that describe relationships between objects and

actions in a domain

 The domain theory has two types as,

• Explanation: - the domain theory is used to prune away all unimportant

aspects of the training example with respect to the goal concept.

• Generalisation: - the explanation is generalized as far possible while still describing the

goal concept

• For Example:- o Cary Larson once drew a cartoon in which a bespectacled caveman,

Zog, is roasting a lizard on the end of a pointed stick.

o He is watched by an amazed crowd of less intellectual contemporaries.

o In this case, the caveman generalize by explaining the success of the pointed stick which

supports the lizard and keeps the hand away from the fire.

o This explanation can infer a general rule: that any long, rigid, sharp object can be used to

toast small, soft bodies.

o This kind of generalization process is said to be Explanation based Learning.

o The EBL procedure is very much domain theory driven with the training example

helping to focus the learning.

o Entailment constraints satisfied by EBL is

 Hypothesis Descriptions |= Classification

 Background |= Hypothesis

5.4.1 Extracting rules from examples:

• EBL is a method for extracting general rules from individual observations.

• The basic idea is first to construct an explanation of the observation using prior

knowledge.

• Consider the problem of differentiating and simplifying the algebraic expressions.

• If we differentiate the expression X2 with respect to X, we obtain 2X.

• The proof tree for Derivative(X2, X) = 2X is too large to use, so we will use a simpler

problem to illustrate the generalization method. Suppose our problem is to simplify

1 x (0 + X).

• The knowledge base includes the following rules

 EBL Process Working

• The EBL work as follows

1. Construct a proof that the goal predicate applies to the example using the available

background knowledge

2. In parallel, construct a generalized proof tree for the variabilized goal using the same

inference steps as in the original proof.

3. Construct a new rule whose left hand side consists of leaves of the proof tree and RHS is

the variabilized goal.

4. Drop any conditions that are true regardless of the values of the variables in the goal.

• In the diagram, the first tree shows the proof of original problem instance, from which

we can derive o ArithmeticUnknown(z) = Simplify(1 x (0 + z), z)

• The second tree shows the problem where the constants are replaced by variables

as generalized proof tree.

5.4.2 Improving efficiency:

• The generalized proof tree mentioned above gives or yields more than one generalized

rule.

Simplify(1x(0+X),w)

Rewrite(1x(0+X),v) Simplify(0+X),w)

(v/

0
Rewrite(0+X,v') Simplify(X,

W)
v'/x

{w/x}
Primitive(

X)

Arithmetic Unknown(X)

 Simplify(x×(y+z),w)

Rewrite(x×(y+z),v) Simplify(y+z,w)

x/1 ,

v/y+z

Rewrite(y+z,v') Simplify(z,w)

y/0,v'/z

w/z

Primitiv

e(z)

Arithmetic unknouwn(z)

• For example if we terminate, or PRUNE, the growth of the right hand branch in the tree

when it reached the primitive step, we get the rule as, o Primitive(z) Simplify(1 X (0 +

z), z)

• This rule is a valid as, but more general than, the rule using ArithmeticUnknow, because

it covers cases where z is a number.

• After pruning the step, o Simplify (y + z, w), yielding the rule o Simplify (y + z, w)

Simplify (1 X(y + z), w) The problem is to choose which of these rules.

• The choice of which rule to generate comes down to the question of efficiency.

• There are three factors involved in the analysis of efficiency gains from EBL as, o Adding

large number of rules can slow down the reasoning process, because the inference

mechanism must still check those rules even in case where they not a solution. It

increases the branching factor in the search space.

o To compensate the slowdown in reasoning, the derived rules must offer significant

increase in speed for the cases that they do not cover. This increase occurs because the

derived rules avoid dead ends but also because they short proof also.

o Derived rule is as general as possible, so that they apply to the largest possible set of

cases.

5.5 Statistical Learning Methods:

• Agents can handle uncertainty by using the methods of probability and decision theory.

• But they must learn their probabilistic theories of the world from experience.

• The learning task itself can be formulated as a process of probabilistic inference.

• A Bayesian view of learning is extremely powerful, providing general solutions to

the problem of noise, overfitting and optimal prediction.

• It also takes into account the fact that a less than omniscient agent can never be certain

about which theory of the world is correct, yet must still make decisions by using some

theory of the world.

5.5.1 Statistical Learning

• The key concepts of statistical learning are Data and Hypotheses.

• Data are evidence (i.e.) instantiations of some or all of the random variables describing

the domain.

• Hypotheses are probabilistic theories of how the domain works, including logical

theories as a special case.

• For Example:- o The favorite surprise candy comes in two flavors as Cherry and Lime

o The manufacturer has a peculiar sense of humor and wraps each piece of candy in the

same opaque wrapper, regardless of flavor.

o The candy is sold in very large bags of which there are known to be five kinds-again,

indistinguishable from the outside:

h1: 100% cherry candies

h2: 75% cherry candies + 25% lime candies h3: 50% cherry candies + 50% lime candies

h4: 25% cherry candies + 75% lime candies h5: 100% lime candies

o Given a new bag of candy the random variable H (for hypotheses) denotes the type of tile

bag, with possible values h1 through h5. H is not directly observable.

o As the pieces of candy are opened and inspected, data are revealed as D1, D2…Dn in
which each D is a random variable with possible values Cherry and Lime.

 The basic task faced by the agent is to

predict the flavor of the next piece of candy

5.5.1.1 Bayesian Learning:

• Bayesian Learning calculates the probability of each hypothesis, given the data and

makes predictions by using all the hypotheses, weighted by their probabilities.

• In this way learning is reduced to probabilistic inference.

• Let D be all data, with observed value d, then probability of a hypothesis hi, using Bayes

rule P(h |d) = a P(d | h)P(h)

i i i

• For prediction about quantity X : P(X|d)= ∑ P(X|d,h)P(h |d)= ∑ P(X|h)P(h |d)
i i i i

• Where it is assumed that each hypothesis determines a probability distribution over X.

• This equation shows that predictions were weighted averages over the predictions of

the individual hypothesis

• The key quantities in the Bayesian approach are the o Hypothesis Prior, P(hi)

o Likelihood of the data under each hypothesis, P(d | h)

i

• For candy example, assume the time being that the prior distribution over h1,….h5 is
given by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer.

• The likelihood of the data is calculated under the assumption that the observations are

i..i..d, that is i= independently, i= identically and d= distributed So that

P(d | hi) P(dj | hi)

j

• The following figure shows how the posterior probabilities of the five hypotheses change

as the sequence of 10 Lime is observed.

• Notice that the probabilities start out at their prior values. So h1 is initially the most

likely choice and remains so after 1 Lime candy is unwrapped.

• After 2 Lime candies are unwrapped, h1 is most likely; after 3 or more, h5 is the most

likely.

The following figure shows the predicted probability that the next candy is Lime as

expected, it increases monotonically toward 1

 5.1.2 Characteristics of Bayesian Learning:

o The true hypothesis eventually dominates the Bayesian prediction. For any fixed prior

that does not rule out the true hypothesis, the posterior probability of any false

hypothesis will vanish, because the probability of generating uncharacteristic data

indefinitely is vanishingly small.

o More importantly, the Bayesian prediction is optimal, whether the data set is small or

large.

• For real learning problems, the hypothesis space is usually very large or infinite. In

most cases choose the approximation or simplified methods.

5.5.1.2.1 Approximation

• Make predictions based on a single most probable hypothesis hi that maximizes P(hi|d).

• This is often called a maximum a posteriori or MAP hypothesis.

• Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to

the extent that P(X|d) P(X| hMAP).

• In candy example, hMAP = h5 after three lime candies in a row, so the MAP learner then

predicts that the fourth candy is lime with probability 1.0 a much more dangerous

prediction than the Bayesian prediction of 0.8 shown in the above graphs.

• As more data arrive, the MAP and Bayesian predictions become closer, because

the competitors to the MAP hypothesis become less and less probable. Finding MAP

hypothesis is much easier than Bayesian Learning is more advantage.

5.5.2 Learning with Complete Data:

• The statistical learning method begins with parameter learning with complete data.

• A parameter learning task involves finding the numerical parameter for the

probabilit y model.

• The structure of the model is fixed.

• Data are complete when each data point contains values for every variable in the

probabilit y model. Complete data simplify the problem of learning the parameters of

complex model.

5.5.1.1 Maximum Likelihood Parameter Learning: Discrete Models

• Suppose we buy a bag of lime and cherry candy from a manufacturer whose lime-cherry

proportion are completely unknown.

• The fraction can be anywhere between 0 and 1.

• The parameter in this case is , which is the proportion of cherry candies, and the

hypothesis is h .

• The proportion of lime is (1-).

• We assume all the proportions are known a priori then Maximum Likelihood approach

can be applied.

• If we model the situation in Bayesian network, we need just one random variable

called Flavor it has values cherry and lime.

• The probability of cherry is `.

• If we unwrap N candies, of which C are cherries and L=N-C are limes.

• The likelihood of the particular set is,

• P(d / h) P(dj \ h) c .(1)LJ 1

• The maximum-likelihood hypothesis is given by the value of e` that maximizes the

expression.

• It can be obtained by maximizing the log likelihood.

NL1(d | h) P(d | h) log(P(dj \ h) clogL log(1)J 1

• To find the ML value of differentiate wrt and then equate resulting to zero

The

standard method for maximum likelihood parameter learning is given by

o Write down an expression for the likelihood of the data as a function of the

parameters

o Write down the derivative of the log likelihood with respect to each parameter.

o Find the parameter values such that the derivatives are zero

• The most important fact is that, with complete data, the maximum-likelihood

parameter learning problem for a Bayesian network

5.5.1.2 Maximum Likelihood Parameter Learning: Continuous Models

• Continuous variables are ubiquitous (everywhere) in real world applications.

• Example of Continuous probability model is linear-Gaussian model.

• The principles for maximum likelihood learning are identical to discrete model.

• Let us take a simple case of learning the parameters of a Gaussian density function on a

single variable.

• The data are generated as follows

• Parameters of this model µ = mean and σ = Standard deviation.
• Let the observed values be x1, x2,………xN

• Then the log likelihood is given as

Setting the derivatives to zero as usual, we obtain

• Maximum likelihood value of the mean is the simple average.

• Maximum likelihood value of the standard deviation is the square root of the

simple variance.

5.5.3 Learning with Hidden Variables:

1. Many real world problems have hidden variables (or) latent variables which are not

observable in the data that are available for learning.

 2. For Example:- Medical record often include the observed symptoms, treatment

applied and outcome of the treatment, but seldom contain a direct observation of

disease itself.

Assumed the diagnostic model for heart disease. There are three observable

predisposing factors and 3 observable symptoms. Each variable has 3 possible values

(none, moderateand severe)

If hidden is removed the total number of parameters increases from 78 (54 + 2 + 2 + 2 +

6 + 6 + 6) to 708

 It is done by counting how many were (true, true) and how may (false, false) and divide

by the total number of cases to get maximum likelihood estimate.

 The above data set has some data missing (denoted on “H”). There’s no real wayto guess
the value during our estimation problem.

 The missing data items can be independent of the value it would have had. The data can

be missed if there is a fault in the instrument used to measure.

 For Example:- Blood pressure instrument fault, so blood pressure data can be missing)

9. We can ignore missing values and estimate parameters

 Pr(B / A,0)  Pr(A, B / 0) / Pr(A / 0)

= 0.25/0.50.5

H = 0 probabili ty is 0.5

H = 1 probabili ty is 0.

A B

1 1

1 1

0 0

0 0

0 0

0 0,0.5

1,0.5

0 1

1 0

Now maximum likelihood estimation using expected counts. So expected parameter is

 0

A

1 A 0

A

1 A

0

B

3.5/

8

1/

8

0

B

0.437

5

0.12

5

1

B

1.5/

8

2/

8

1

B

0.187

5

0.25

New estimate is

Pr(H / D, Q1) Pr(, B / Q1) / Pr(A / Q1)

0.1875

=

0.625

So the new table is = 0.3

A B

1 1

1 1

0 0

0 0

theta2 is 2 is

Pr(H / D,2)  Pr(Ar, B / 2) / Pr(A / 2) = 0.1625 0.260.625log

likelihood is increasing

 log Pr(0 /0) 10.3972 log Pr(D /1) 9.4760log Pr(D /2) 9.4524

Since all values are negative it is in increasing order. We have to choose the best value

12. The above iterative process is called EM algorithm.

a. The basic idea in EM algorithm is to pretend that we know the parameters of the

model and then to infer the probability ty that each data point belongs to each

component.

 b. After that we refit the components of the data, where each component is fitted to the

entire data set with each point weighted by probability that it belongs to the component.

c. This process is iterated until it converges. d. We are completing the data by inferring

probability ty distributions over the hidden variable.

 holding P fixed and optimizing

 and repeat the procedure over and again d. g has some local and global

optima as PR(D/ )

e. Example:-

i. Pick initial 0

ii. Probability of hidden variables given the observed data and the current model.

Loop until it converges

Pt  1(H)  Pr(H / D,t)arg max

Pt  1 ErPt 1 log Pr(D, H / ) We find the maximum likelihood model for the “expected data” using the distribution
over H to generate expected counts for different case.

iii. Increasing likelihood.

iv. Convergence is determined (but difficult)

v. Process with local optima i.e., sometimes it converges quite effectively to the maximum model that’s near the one it started with, but there’s
much better model somewhere else in the space.

Local minima optimum Value

EM for Bayesian Network:

Let us try to apply EM for Bayesian Networks.

1. Our data is a set of cases of observations of some observable variables i.e. D =

Observable Variables

2. Our hidden variables will actually be the values of the hidden node in each case. H =

Values of hidden variable in each case

For Example:- If we have 10 data case and a network with one hidden node, then we

have 10 hidden variables on missing pieces of data.

3. Assume structure is known

4. Find maximum likelihood estimation of CPTSs that maximize the probability of the

observed data D.

5. Initialize CPT’s to anything (with no 0’s) Filling the data

1. Fill in the data set with distribution over values for hidden variables

2. Estimate Conditional probability using expected counts.

We will compute the probability distribution over H given D and theta (), we have ‘m’
different hidden variables, one for the value of node H in each of the m data cases.

Pt  1(H) Pr(H / D,t)Pr(H / D ,t) m

3. Compute a distribution over each individual hidden variable

4. Each factor is a call to bayes net inference

5.5.4 Instance Based Learning:-

 A parametric learning method is simple and effective.

 In parametric learning method when we have little data or data set grows larger then

the hypothesis is fixed.

 Instance based model represents a distribution using the collection of training

instances.

 Thus the number of parameter grows with the training set.

 Non Parametric learning methods allows the hypothesis complexity to grow with the

data.

Instance based Learning or Memory based learning is a non-parametric model because

they construct hypothesis directly from the training set.

  The simplest form of learning is memorization.

 When an object is observed or the solution to a problem is found, it is stored in memory

for future use.

• Memory can be thought of as a lookup table.

• When a new problem is encountered, memory is searched to find if the same problem

has been solved before.

• If an exact match for the search is required, learning is slow and consumes very

large amounts of memory.

• However, approximate matching allows a degree of generalization that both speeds

learning and saves memory.

• For Example:- “ If we are shown an object and we want to know if it is a chair, then we compare the description of this new object with descriptions of “typical” chairs that we
have encountered before.

• If the description of the new object is “close” to the description of one of the stored
instances then we may call it a chair.

• Obviously, we must defined what we mean by “typical” and “close”.
• |To better understand the issues involved in learning prototypes, we will briefly

describe three experiments in Instance based learning (IBL) by Aha, Kibler and Albert

(1991).

• IBL learns to classify objects by being shown examples of objects, described by an

attribute/value list, along with the class to which each example belongs.

• Experiment 1:- o In the first experiment (IB1), to learn a concept simply required the

program to store every example. o When an unclassified object was presented for

classification by the program, it used a simple Euclidean distance measure to

determine the nearest neighbor of the object and the class given to it was the class of

the neighbor.

o The simple scheme works well, and is tolerant to some noise in the data.

o Its major disadvantage is that it requires a large amount of storage capacity.

• Experiment 2:- o The second experiment (IB2) attempted to improve the space

performance of IB1.

o In this case, when new instances of classes were presented to the program, the

program attempted to classify them. o Instances that were correctly classified were

ignored and only incorrectly classified instances were stored to become part of the

concept.

o This scheme reduced storage dramatically, it was less noise tolerant than the first.

• Experiment 3:- o The third experiment (IB3) used a more sophisticated method for

evaluating instances to decide if they should be kept or not.

o IB3 is similar to IB2 with the following additions. o IB3 maintains a record of the number

of correct and incorrect classification attempts for each saved instance.

o This record summarized an instances classification performance.

o IB3 uses a significance test to determine which instances are good classifiers and

which ones are believed to be noisy.

o The latter are discarded from the concept description.

o This method strengthens noise tolerance, while keeping storage requirements down.

5.5.5 Neural Network:-

• A neural network is an interconnected group of neurons.

• The prime examples are biological neural networks, especially the human brain.

• In modern usage the term most often refers to ANN (Artificial Neural Networks) or

neural nets for short.

• An Artificial Neural Network is a mathematical or computational model for

information processing based on a connections approach to computation.

• It involves a network of relatively simple processing elements, where the global

behavior is determined by the connections between the processing elements and

element parameters.

• In a neural network model, simple nodes (neurons or units) are connected together to form a network of nodes and hence the term “Neural Network”
 The biological neuron Vs Artificial neuron:- Biological Neuron:-

• The brain is a collection of about 10 million interconnected neurons shown in

following figure.

• Each neuron is a cell that uses biochemical reactions to receive, process and

transmit information.

• A neurons dendrites tree is connected to a thousand neighboring neurons.

• When one of those neurons fire, a positive or negative charge is received by one of the

dendrites.

• The strengths of all the received charges are added together through the processes of

spatial and temporal summation.

• Spatial summation occurs when several weak signals are converted into a single large

one, while temporal summation converts a rapid series of weak pulses from one source

into one large signal.

• The aggregate input is then passed to the soma (cell body).

• The soma and the enclosed nucleus don’t play a significant role in the processing of
incoming and outgoing data.

Artificial Neuron (Simulated neuron):-

Artificial Neurons are composed of nodes or units connected by directed links as shown

in following figure.

 Inputs Weights (+ve/-ve)

o A link from unit j to unit i serve to propagate the activation aj from j to i.

o Each link also has a numeric weight Wj, i associated with it, which determines the

strength and sign of the connection.

o Each unit i first computes a weighted sum of its inputs

ini Wj, iajj 0

o Then it applies an activation function g to this sum to derive the output.

a0 W

0

Summa

tion W1

Output a

i
a1

 g

i

n

i

W2

 Activation

function a

i

=

g

i)

a

2 W

n

a

j

n

ai g (ini) g (Wj, iaj)

o A simulated neuron which takes the weighted sum as its input and sends the output 1, if

the sum is greater than some adjustable threshold value otherwise it sends 0.

o The activation function g is designed to meet two desires,

 The unit needs to be “active” (near +1) when the “right” inputs are given and “inactive” (near 0) when the “wrong” inputs are given.
 The activation needs to be non linear, otherwise the entire neural network collapses

into a simple linear function.

o There are two activation functions,

 Threshold function

 Sigmoid function

Comparison between Real neuron and Artificial neuron (or) Simulated neuron:-

 Computers

(Artificial neuron)

Human brain (Real

neuron)

Computational

Units

1 CPU, 105 gates 1011 neurons

Storage Units 109 bits RAM, 1011

bits disk

1011 neurons, 1014

Synapses

Cycle time 10-8 sec 10-3 sec

Bandwidth 109 bits/sec 1014 bits/sec

Neuron

updates/Sec

105 1014

• The above table shows the comparison based on raw computational sources

available to computer and human brain.

• The following table shows the comparison based on structure and working method.

Real neuron Simulated neuron (Artificial

neuron)

The character of real neuron is

not modeled

The properties are derived by

simply adding up the weighted

sum as its input

Simulation of dendrites is done using electro

chemical reaction

A process output is derived using

logical circuits

Billion times faster in decision

making process

Million times faster in decision

making process

More fault tolerant Less fault tolerant

Autonomous learning is possible Autonomous learning is not

possible

 Abstract properties of neural networks:-

• They have the ability to perform distributed computation They have the ability to

learn.

• They have the ability to tolerate noisy inputs

Neural network Structures:-

• The arrangement of neurons into layers and the connection patterns within and

between layers is called the network structures.

• They are classified into two categories depends on the connection established in the

network and the number of layers.

o Acyclic (or) Feed-forward network

 Single layer feed-forward network

 Multilayer feed-forward network o Cyclic (or) Recurrent networks

• The following table shows the difference between Feed-forward network and

Recurrent network,

Feed-Forward network Recurrent network

Unidirectional Connection Bidirectional Connection

Cycles not exist Cycles exist

A layered network, backtracking

is not possible

Not a layered network,

backtracking is not possible

Computes a function of the input

values that depends on the weight

settings, no internal state

other than the weight settings

Internal state stored in the

activation levels of the units.

Example:- Simple layering Models Example:- Brain

A model used for simple reflex

agent

A model used for complex agent

design

 Feed-Forward network:-

• A feed-forward network represents a function of its current input; thereby it has no

internal state other than the weights themselves.

• Consider the following network, which has two hidden input units and an output unit.

• Given an input vector x = (x1, x2), the activations of the input units are set to (a1,a2) =

(x1,x2) and the network computes

a5 g (W 3, 5a3 W 4, 5a 4) g (W 3, 5 g (W 1, 3a1 W 2, 3a 2) W 4, 5 g (W 1, 4 a1

W 2, 4a 2))

1
W

1

W

2

W

1

W

3

3

5

2

W

2

W

44

Single Layer feed-forward network:-

• A single layer network has one layer of connection weights.

• The following figure shows the single layer feed forward network.

• The units can be distinguished as input units, which receive signals from the outside

world, and output units, from which the response of the network can be read.

• The input units are fully connected to output units but are not connected to other input

units. They are generally used for pattern classification.

Multi Layer feed-forward network:-

• A multi layer network with one or more layers of nodes called hidden nodes.

• Hidden nodes connected between the input units and the output units.

• The below figure shows the multilayer feed-forward network.

• Typically there is a layer of weights between two adjacent levels of units.

• The network structure has 3 input layer, 4 hidden layer and 2 output layer.

• Multilayer network can solve more complicated problems than single layer networks.

• In this network training may be more difficult.

 Recurrent network:-

• Each node is a processing element or unit, it may be in one of the two states (Black-

Active, White-Inactive) units are connected to each other with weighted symmetric

connection.

• A positive weighted connection indicates that the two units tend to activate each other.

• A negative connection allows an active unit to deactive neighboring unit.

• The following diagram shows the simple recurrent network which is a Hopfield network,

• Working method:- o A random unit is chosen.

o If any of its neighbors are active, the unit computes the sum of the weights on the

connections to those active neighbors.

o If the sum is positive, the unit becomes active, otherwise it become inactive.

-

1

+

1

 -1

+3 -

1

+ 2 + 1 -2

+3

+

1

-1

• Fault tolerance:- If a new processing element fails completely, the network will

still function properly.

Learning Neural network structures:-

• It is necessary to understand how to find the best network structure.

• If a network is too big is chosen, it will be able to memorize all the examples by forming

a large lookup table, but will not generalize well to inputs that have not been seen

before.

• There are two kinds of networks must be considered namely,

 Fully connected network

 Not Fully connected network

Fully Connected networks:-

o If fully connected networks are considered, the only choices to be made concern the

number of hidden layers and their sizes.

o The usual approach is to try several and keep the best.

o The cross validation techniques are needed to avoid peeking at the test set.

• Not Fully Connected network:- o If not fully connected networks are considered,

then find some effective search method through the very large space of possible

connection topologies.

• Optimal Brain damage Algorithm:- o The following are the steps involved in brain

damage algorithm, 1. Begin with a fully connected network

2. Remove connections from it.

3. After the network is trained for the first time, an information theoretic approach

identifies an optimal selection of connections that can be dropped.

4. Then the network is trained.

5. If its performance has not decreased then the process is repeated.

6. In addition to removing connections, it is also possible to remove units that are not

contributing much to the result.

• Tiling Algorithm:- o It is an algorithm, which is proposed for growing a larger network

from a smaller one. o it resembles decision-list learning.

o The following are the steps involved in tiling algorithm,

1. Start with a single unit that does its best to produce the correct output on as many of the

training examples as possible.

2. Subsequent units are added to take care of the examples that the first unit got wrong.

3. The algorithm adds only as many units as are needed to cover all the examples.

Advantages of Neural Networks:-

• The neural network learns well, because the data were generated from a simple decision

tree in the first place.

• Neural networks are capable of far more complex learning tasks of course. There are

literally tens of thousands of published applications of neural networks

5.6. Reinforcement Learning

 5.6.1 Reinforcement:

 Reinforcement is a feedback from which the agent comes to know that something good

has happened when it wins and that something bad has happened when it loses. This is

also called as reward.

• For Examples:- o In chess game, the reinforcement is received only at the end of the

game.

o In ping-pong, each point scored can be considered a reward; when learning to crawl, any

forward motion is an achievement.

• The framework for agents regards the reward as part of the input percept, but the agent

must be hardwired to recognize that part as a reward rather than as just another

sensory input.

• Rewards served to define optimal policies in Markov decision processes.

• An optimal policy is a policy that maximizes the expected total reward.

• The task of reinforcement learning is to use observed rewards to learn an optimal policy

for the environment.

• Learning from these inforcements or rewards is known as reinforcement learning

• In reinforcement learning an agent is placed in an environment, the following are the

agents o Utility-based agent o Q-Learning agent o Reflex agent

• The following are the Types of Reinforcement Learning, o Passive Reinforcement

Learning o Active Reinforcement Learning

5.6.2 Passive Reinforcement Learning

• In this learning, the agent’s policy is fixed and the task is to learn the utilities of states.
• It could also involve learning a model of the environment.

• In passive learning, the agent’s policy is fixed (i.e.) in state s, it always executes the

action

 (s).

• Its goal is simply to learn the utility function U (s). For example: - Consider the 4 x 3

world.

• The following figure shows the policy for that world.

+1

 -1

The following figure shows the corresponding utilities

0.812

0.868

0.918

+1

0.762

0.560

 -1

0.705

0.655

0.611

0.388

• Clearly, the passive learning task is similar to the policy evaluation task.

The main difference is that the passive learning agent does not know

 o Neither the transition model T(s, a,s’), which specifies the probabilit y of reaching state’s from state s after doing action a;
 o Nor does it know the reward function R(s), which specifies the reward for each state

• The agent executes a set of trials in the environment using its policy .

• In each trial, the agent starts in state (1,1) and experiences a sequence of state

transitions until it reaches one of the terminal states, (4,2) or (4,3).

• Its percepts supply both the current state and the reward received in that state.

• Typical trials might look like this:

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (1,2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (4,3)+1

(1 ,1)-0.4 (1, 2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (3,2)-0.4 (3,3)-0.4 (4,3)+1

(1 ,1)-0.4 (2, 1)-0.4 (3,1)-0.4 (3,2)-0.4 (4,2)-1

• Note that each state percept is subscripted with the reward received.

• The object is to use the information about rewards to learn the expected utility U

 (s) associated with each nonterminal state s.

• The utility is defined to be the expected sum of (discounted) rewards obtained if policy

is followed, the utility function is written as

U (s) E tR(st) | , s0 s

For the 4 x 3 world set = 1

5.6.2.1 Direct utility estimation:-

• A simple method for direct utility estimation is in the area of adaptive control theory

by Widrow and Hoff(1960).

• The idea is that the utility of a state is the expected total reward from that state onward,

and each trial provides a sample of this value for each state visited.

• Example:- The first trial in the set of three given earlier provides a sample total reward

of 0.72 for state (1,1), two samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and

0.88 for (1,3) and so on.

• Thus at the end of each sequence, the algorithm calculates the observed reward- to-go

for each state and updates the estimated utility for that state accordingly.

• In the limit of infinitely many trails, the sample average will come together to the

true expectations in the utility function.

• It is clear that direct utility estimation is just an instance of supervised learning.

• This means that reinforcement learning have been reduced to a standard inductive

learning problem.

• Advantage:- Direct utility estimation succeeds in reducing the reinforcement

learning problem to an inductive learning problem.

• Disadvantage:- o It misses a very important source of information, namely, the fact that

the utilities of states are not independent

Reason:- The utility of each state equals its own reward plus the expected utility of its

successor states. That-is, the utility values obey the Bellman equations for a fixed

policy

U(s) R(s) T(s,(s), s`)U (s`)s`

o It misses opportunities for learning

Reason:- It ignores the connections between states o The algorithm often

converges very slowly.

Reason:- More broadly, direct utility estimation can be viewed as searching in a hypothesis

space for U that is much larger that it needs to be, in that it includes many functions that

violate the Bellman equations.

5.6.2.2 Adaptive Dynamic programming:-

• Agent must learn how states are connected.

• Adaptive Dynamic Programming agent works by learning the transition model of

the environment as it goes along and solving the corresponding Markov Decision

process using a dynamic programming method.

• For passive learning agent, the transition model T (s, (s), s`) and the observed rewards

R(S) into Bellman equation to calculate the utilities of the states.

• The process of learning the model itself is easy, because the environment is fully

observable i.e. we have a supervised learning task where the input is a state-action pair

and the output is the resulting state.

• We can also represent the transition model as a table of probabilities.

• The following algorithm shows the passive ADP agent,

Function PASSIVE-ADP-AGENT(percept) returns an action

Inputs: percept,a percept indicating the current state s’ and reward signal r’
Static: π a,fixed policy Mdb,an MDP with model T,rewards R,discount γ
U,a table of utilities,initially empty

Nsa,a table of frequencies for state-action pairs,initially zero

Nsa s
’,a table of frequencies for state-action-state triples,initially zero S,a,the previous

state and action,initially null

If s’ is new then do U[s’]←r’ ; R[s’]←r’
If s is not null then do

Increment Nsa[s,a]andNsas’[s,a,s’]

For each t such that Nsas’[s,a,t]is nonzero do T[s,a,t]←Nsas’[s,a,t]/Nsa[s,a] U←VALUE-DETERMINATION(π,U,mdb)

If TERMINALS?[s’]then s,a←null else s,a←s’,π[s’] return a

• Its performance on the 4 * 3 world is shown in the following figure.

• The following figure shows the root-mean square error in the estimate for U(1,1),

averaged over 20 runs of 100 trials each.

• Advantages:- o It can converges quite quickly

Reason:- The model usually changes only slightly with each observation, the value iteration

process can use the previous utility estimates as initial values.

o The process of learning the model itself is easy

 Reason:- The environment is fully observable. This means that a supervised learning

task exist where the input is a state-action pair and the output is the resulting state.

o It provides a standard against which other reinforcement learning algorithms can be

measured.

• Disadvantage:- o It is intractable for large state spaces

5.6.2.3 Temporal Difference Learning:-

• In order to approximate the constraint equation U(S), use the observed transitions to

adjust the values of the observed states, so that they agree with the constraint equation.

• When the transition occurs from S to S1 , we apply the following update to U(S)

U (S) U (S) (R(S) U (S1) U (S))

• Where = learning rate parameter.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0
0 20 40 60 80 100 120

Number of

trials

• The above equation is called Temporal difference or TD equation.

• The following algorithm shows the passive reinforcement learning agent using

temporal differences,

Function PASSIVE-TD-AGENT(precept)returns an action

Inputs:percept,a percept indicating the current state s’ and reward signal r’
Static:π,a fixed policy
U,a table of utilities,initially empty

Ns,a table of frequencies for states,initially zero

S,a,r,the previous state,action,and reward,initially null

If s’ is new then U[s’]←r’
If s is not null then do Increment Ns[s] U[s]←U[s] + α(Ns[s])(r + γU[s’] - U[s])

If TERMINAL?[s’]then s,a,r←null else s,a,r←s’,π[s’],r’ return a

• Advantages:- o It is much simpler

o It requires much less computation per observation

• Disadvantages:- o It does not learn quite as fast as the ADP agent o It shows much

higher variability

• The following table shows the difference between ADP and TD approach,

ADP Approach TD Approach

ADP adjusts the state to agree

with all of the successors that

might occur, weighted by their

probabilities

TD adjusts a state to agree with

its observed successor

ADP makes as many adjustments

as it needs to restore consistency

between the utility estimates U

and the environment model T

TD makes a single adjustment

per observed transition

• The following points shows the relationship between ADP and TD approach, o Both try to make local adjustments to the utility estimates in order to make each state “agree”
with its successors. o Each adjustment made by ADP could be seen, from the TD point of view, as a result of a “pseudo-experience” generated by simulating the current
environment model.

o It is possible to extend the TD approach to use an environment model to generate several “pseudo-experiences-transitions that the TD agent can imagine might happen,

given its current model. o For each observed transition, the TD agent can generate a

large number of imaginar y transitions. In this way the resulting utility estimates will

approximate more and more closely those of ADP- of course, at the expense of increased

computation time.

5.6.3. Active Reinforcement learning:-

• A passive learning agent has a fixed policy that determines its behavior.

• “An active agent must decide what actions to do”

• An ADP agent can be taken an considered how it must be modified to handle this new

freedom.

• The following are the required modifications:- o First the agent will need to learn a

complete model with outcome probabilities for all actions. The simple learning

mechanism used by PASSIVE-ADP-AGENT will do just fine for this.

o Next, take into account the fact that the agent has a choice of actions. The utilities it

needs to learn are those defined by the optimal policy.

U(s) R(s) max T(s,a, s`)U (s`)s `

o These equations can be solved to obtain the utility function U using he value iteration or

policy iteration algorithms. o Having obtained a utility function U that is optimal for the

learned model, the agent can extract an optimal action by one-step look ahead to

maximize the expected utility;

o Alternatively, if it uses policy iteration, the optimal policy is already available, so it

should simply execute the action the optimal policy recommends.

5.6.3.1 Exploration:-

• Greedy agent is an agent that executes an action recommended by the optimal policy for

the learned model.

• The following figure shows the suboptimal policy to which this agent converges in

this particular sequence of trials.

+1

 -1

• The agent does not learn the true utilities or the true optimal policy! what happens is

that, in the 39th trial, it finds a policy that reaches +1 reward along the lower

route via (2,1),

(3,1),(3,2), and (3,3).

• After experimenting with minor variations from the 276th trial onward it sticks to that

policy, never learning the utilities of the other states and never finding the optimal

route via (1,2),(1.3) and (2,3).

• Choosing the optimal action cannot lead to suboptimal results.

• The fact is that the learned model is not the same as the true environment; what is

optimal in the learned model can therefore be suboptimal in the true environment.

• Unfortunately, the agent does not know what the true environment is, so it cannot

compute the optimal action for the true environment.

• Hence this can be done by the means of Exploitation.

• The greedy agent can overlook that actions do more than provide rewards according to

the current learned model; they also contribute to learning the true model by

affecting the percepts that are received.

• An agent therefore must make a trade-off between exploitation to maximize its reward

and exploration to maximize its long-term well being.

• Pure exploitation risks getting stuck in a rut.

• Pure exploitation to improve ones knowledge id of no use if one never puts that

knowledge into practice.

5.6.3.2 GLIE Scheme:-

• To come up with a reasonable scheme that will eventually lead to optimal behavior by

the agent a GLIE Scheme can be used.

• A GLIE Scheme must try each action in each state an unbounded number of times to

avoid having a finite probability that an optimal action is missed because of an unusually

bad series of outcomes.

• An ADP agent using such a scheme will eventually learn the true environment model.

• A GLIE Scheme must also eventually become greedy, so that the agents actions become

optimal with respect to the learned (and hence the true) model.

• There are several GLIE Scheme as follows, o The agent can choose a random action a

fraction 1/t of the time and to follow the greedy policy otherwise.

 Advantage:- This method eventually converges to an optimal policy

 Disadvantage:- It can be extremely slow o Another approach is to give some

weight to actions that the agent has not tried very often, while tending to avoid actions

that are believed to be of low utility. This can be implemented by altering the constraint

equation, so that it assigns a higher utilit y estimate to relatively UP explored state-

action pairs.

• Essentially, this amounts to an optimistic prior over the possible environments and

causes the agent to behave initially as if there were wonderful rewards scattered all over

the place.

5.6.3.3 Exploration function:-

• Let U+ denotes the optimistic estimate of the utility of the state s, and let N(a,s) be the

number of times action a has been tried in state s.

• Suppose that value iteration is used in an ADP learning agent; then rewrite the

update equation to incorporate the optimistic estimate.

• The following equation does this,

• U (s) R(s) max f [T (s, a, s`)U (s`), N(a, s)]

• Here f(u ,n) is called the exploration function.

• It determines how greed is trade off against curiosity.

• The function f(u, n) should be increasing in u and decreasing in n.

• The simple definition is f(u, n) = R+ in n<Nc u otherwise where R+ = optimistic estimate

of the best possible reward obtainable in any state and Nc is a fixed parameter.

• The fact that U+ rather than U appears on the right hand side of the above equation is

very important.

• If U is used, the more pessimistic utility estimate, then the agent would soon

become unwilling to explore further a field.

• The use of U+ means that benefits of exploration are propagated back from the edges of

unexplored regions, so that actions that lead toward unexplored regions are weighted

more highly, rather than just actions that are themselves unfamiliar.

5.6.3.4 Learning an action value function:-

• To construct an active temporal difference learning agent, it needs a change in the

passive TD approach.

• The most obvious change that can be made in the passive case is that the agent is no

longer equipped with a fixed policy, so if it learns a utility function U, it will need to learn

a model in order to be able to choose an action based on U via one step look ahead.

• The update rule of passive TD remains unchanged. This might seem old.

• Reason:- o Suppose the agent takes a step that normally leads to a good destination, but

because of non determinism in the environment the agent ends up in a disastrous state.

o The TD update rule will take this as seriously as if the outcome had been the normal

result of the action, where the agent should not worry about it too much since the

outcome was a fluke. o It can be shown that the TD algorithm will converge to the same

values as ADP as the number of training sequences tends to infinity.

5.6.3.5 Q-Learning:-

• An alternative TD method called Q-Learning.

• It can be used that learns an action value representation instead of learning utilities.

• The notation Q(a, s) can be used to denote the value of doing action “a” in state “s”.
• Q values are directly related to utility values as follows,

U (s)  max Q(a, sa

• Q Learning is called a model free method.

• Reason:- o It has a very important property: a TD that learns a Q-function does not need

a model for either learning or action selection.

o As with utilities, a constraint equation can be written that must hold at equilibrium

when the Q-Values are correct,

Q(a, s) R(s) T(s, a, s`) max Q(a`, s`)

o As in the ADP learning agent, this equation can be used directly as an update equation

for an iteration process that calculates exact Q-values, given an estimated model.

o This does, however, require that a model also be learned because the equation uses T(s,

a, Sf).

o The temporal difference approach, on the other hand, requires no model.

o The update equation for TD Q-Learning is

Q(a, s) Q(a, s) [R(s) max Q(a`, s`) Q(a, s)

o Which is calculated whenever action a is executed in state s leading to state Sf.

o The following algorithm shows the Q-Learning agent program

Function Q-LEARNING_AGENT(percept)returns an action

Inputs: percept,a percept indicating the current state s’ and reward signal r’
Static: q, a table of action values index by state and action Nsa,a table of frequencies for state-

action pairs

S,a,r,the previous state,action,and reward,initially null

If s is not null then do

Increment Nsa[s,a]

 Q[a,s]←q[a,s] + α(Nsa[s,a])(r + γ maxa’ Q[a’,s’] – Q[a,s]) If TERMINAL?[s’]then s,a,r←null Else s,a,r←s’,argmaxa’ f(Q[a’,s’],Nsa[a’,s’]),r’
Return a

o Some researchers have claimed that the availability of model free methods such as

Q- Learning means that the knowledge based approach is unnecessary.

o But there is some suspicion i.e. as the environment becomes more complex.

5.6.4 Generalization in Reinforcement Learning:-

• The utility function and Q-functions learned by the agents are represented in tabular

form with one output value for each input tuple.

• This approach works well for small set spaces.

• Example:- The game of chess where the state spaces are of the order 1050 states. Visiting

all the states to learn the game is tedious.

• One way to handle such problems is to use FUNCTION APPROXIMATION.

• Function approximation is nothing but using any sort of representation for the

function other than the table.

• For Example:- The evaluation function for chess is represented as a weighted linear

function of set of features or basic functions f1,….fn

• U(S) 1 f1 (S) 2 f2 (S)  nfn (S

• The reinforcement learning can learn value for the parameters 1.........n.

• Such that the evaluation function U approximates the true utility function.

• As in all inductive learning, there is a tradeoff between the size of the hypothesis space

and the time it takes to learn the function.

• For reinforcement learning, it makes more sense to use an online learning algorithm

that updates the parameter after each trial.

• Suppose we run a trial and the total reward obtained starting at (1, 1) is 0.4.

• This suggests that U(1,1 , currently 0.8 is too large and must be reduced.

• The parameter should be adjusted to achieve this. This is done similar to neural

network learning where we have an error function which computes the gradient with

respect to the parameters.

• If Uj(S) is the observed total reward for state S onward in the jth trial then the error is

defined as half the squared difference of the predicted total and the actual total.

E j (S)  (U (S) U (S))2 / 2

• The rate of change of error with respect to each parameter i is parameter in the

direction of the decreasing error.

 i i (E j (S) / Cj) i (U j (S) U(S))(U(S) / i)

• This is called Widrow-Hoff Rule or Delta Rule.

• Advantages:- o It requires less space. o Function approximation can also be very

helpful for learning a model of the environment.

o It allows for inductive generalization over input states.

• Disadvantages:- o The convergence is likely to be displayed. o It could fail to be any

function in the chosen hypothesis space that approximates the true utility function

sufficiently well.

o Consider the simplest case, which is direct utility estimation. With function

approximation, this is an instance of supervised learning.

