Dr. N. Penchalaiah, Associate Professor, AI&ML, Annamacharya University

Artificial Intelligence

UNIT I INTRODUCTION
Introduction-Definition - Future of Artificial Intelligence - Characteristics of Intelligent

Agents- Typical Intelligent Agents — Problem Solving Approach to Typical Al problems.

UNIT I PROBLEM SOLVING METHODS
Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics - Local

Search Algorithms and Optimization Problems - Searching with Partial Observations -
Constraint Satisfaction Problems - Constraint Propagation - Backtracking Search - Game

Playing - Optimal Decisions in Games - Alpha - Beta Pruning - Stochastic Games.

UNIT III KNOWLEDGE INFERENCE
Knowledge Representation - Production based System, Frame based System. Inference -
Backward Chaining, Forward Chaining, Rule value approach, Fuzzy Reasoning - Certainity

factors, Bayesian Theory - Bayesian Network - Dempster Shafer Theory.

UNIT-IV PLANNING AND MACHINE LEARNING
Basic plan generation systems - Strips - Advanced plan generation systems - K strips -
Strategic explanations - Why, Why not and how explanations. Learning - Machine learning,
adaptive learning.
UNIT-V EXPERT SYSTEMS
Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge
Acquisition - Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON, Expert
systems shells.
TEXT BOOKS:
1 S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach||, Prentice Hall, Third
Edition, 2009.
2 1. Bratko, —Prolog: Programming for Artificial Intelligence||, Fourth edition, Addison-
Wesley Educational Publishers Inc., 2011.
REFERENCES:
1. M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science)||, Jones

and Bartlett Publishers, Inc.; First Edition, 2008

2. Nils]. Nilsson, —The Quest for Artificial Intelligence||, Cambridge University Press, 2009.
3. William F. Clocksin and Christopher S. Mellish, || Programming in Prolog: Using the ISO
Standard||, Fifth Edition, Springer, 2003.

4. Gerhard Weiss, —Multi Agent Systems||, Second Edition, MIT Press, 2013.

5. David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of

Computational Agents||, Cambridge University Press, 2010

UNIT I INTRODUCTION

Introduction-Definition - Future of Artificial Intelligence - Characteristics of
Intelligent Agents-Typical Intelligent Agents - Problem Solving Approach to
Typical Al problems.

Artificial Intelligence - An Introduction

What is AI?

Artificial intelligence is the study of how to make computers do things which, at the

moment people do better.

Some definitions of artificial intelligence, organized into four categories

I. Systems that think like humans

1. "The exciting new effort to make computers think machines with minds, in the full

and literal sense." (Haugeland, 1985)

2. "The automation of activities that we associate with human thinking, activities

such as decision-making, problem solving, learning" (Bellman, 1978)

I1. Systems that act like humans

3. "The art of creating machines that performs functions that require intelligence

when performed by people." (Kurzweil, 1990)

4. "The study of how to make computers do things at which, at the moment, people

are better." (Rich and Knight, 1991)

I11. Systems that think rationally

5. "The study of mental faculties through the use of computational models."

(Chamiak and McDermott, 1985)

6. "The study of the computations that make it possible to perceive, reason, and act."

(Winston, 1992)

IV. Systems that act rationally

7. "Computational Intelligence is the study of the design of intelligent agents." (Poole
etal., 1998)
8. "Alis concerned with intelligent behavior in artifacts.” (Nilsson, 1998)

The definitions on the 1, 2, 3, 4 measure success in terms of human performance,

whereas the ones on the 5, 6, 7, 8 measure against an ideal concept of intelligence.

A system is rational if it does the "right thing," given what it knows.

The term Al is defined by each author in its own perceive, leads to four important

categories

i. Acting humanly: The Turing Test approach
il. Thinking humanly: The cognitive modeling approach
iii. Thinking rationally: The "laws of thought" approach

iv. Acting rationally: The rational agent approach

(i) Acting humanly: The Turing Test approach

To conduct this test, we need two people and the machine to be evaluated.

One person plays the role of the interrogator, who is in a separate room from the

computer and the other person. The interrogator can ask questions of either the person
or the computer but typing questions and receiving typed responses. However, the

interrogator knows them only as A and B and aims to determine which the person is and

53~
f
?;"

The goal of the machine is to fool the interrogator into believing that is the person. If

which is the machine.

HUMAN
INTERROGATOR

the machine succeeds at this, then we will conclude that the machine is acting humanly.
But programming a computer to pass the test provides plenty to work on, to possess the

following capabilities.

% Natural language processing to enable it to communicate successfully in English.
» Knowledge representation to store what it knows or hears;
% Automated reasoning to use the stored information to answer questions and to draw

new conclusions

>

K/
*

Machine learning to adapt to new circumstances and to detect and extrapolate

)

patterns.

Total Turing Test: the test which includes a video so that the interrogator can test the
perceptual abilities of the machine. To undergo the total Turing test, the computer will
need

> computer vision to perceive objects, and

» robotics to manipulate objects and move about

(ii) Thinking humanly: The cognitive modeling approach

To construct a machines program to think like a human, first it requires the knowledge
about the actual workings of human mind. After completing the study about human
mind it is possible to express the theory as a computer program.

If the program’s inputs/output and timing behavior matched with the human behavior

then we can say that the program’s mechanism is working like a human mind.

Example: General Problem Solver (GPS) - A problem solvers always keeps track of
human mind regardless of right answers. The problem solver is contrast to other
researchers, because they are concentrating on getting the right answers regardless of

the human mind.

An Interdisciplinary field of cognitive science uses computer models from
Al and experimental techniques from psychology to construct the theory of the
working of the human mind.

(iii) Thinking rationally: The "laws of thought" approach

Laws of thought were supposed to govern the operation of the mind and their study

initiated the field called logic

Example 1:"Socrates is a man; All men are mortal; therefore, Socrates is mortal."

Example 2:“Ram is a student of Il year CSE; All students are good in IIl year CSE;

therefore, Ram is a good student”

Syllogisms : A form of deductive reasoning consisting of a major premise, a minor

premise, and a conclusion

Syllogisms provided patterns for argument structures that always yielded correct

conclusions when given correct premises

http://grammar.about.com/od/d/g/deductionterm.htm
http://grammar.about.com/od/d/g/deductionterm.htm
http://grammar.about.com/od/pq/g/premiseterm.htm

There are two main obstacles to this approach.

1. It is not easy to take informal knowledge and state it in the formal terms required by

logical notation, particularly when the knowledge is less.

2. There is a big difference between being able to solve a problem "in principle" and doing

So in practice

(iv) Acting rationally: The rational agent approach

An agent is just something that acts. A rational agent is one that acts so as to achieve the
best outcome or, when there is uncertainty, the best expected outcome. The study of

rational agent has two advantages.

1. Correct inference is selected and applied

2. It concentrates on scientific development rather than other methods.

Foundation of Artificial Intelligence

Al derives the features from Philosophy, Mathematics, Psychology, Computer

Engineering, Linguistics topics.

Philosophy(428 B.C. - present)

Aristotle (384-322 B.C.) was the first to formulate a precise set of laws governing the
rational part of the mind. He developed an informal system of syllogisms for proper
reasoning, which allowed one to generate conclusions mechanically, given initial

premises.

Mathematics (c. 800-present)

0 What are the formal rules to draw valid conclusions?

O What can be computed?

O How do we reason with uncertain information?

Philosophers staked out most of the important ideas of k1, but the leap to a formal
science required a level of mathematical formalization in three fundamental areas: logic,

computation, and probability

Economics (1776-present)

e How should we make decisions so as to maximize payoff?

e How should we do this when others may not go along?

The science of economics got its start in 1776, when Scottish philosopher Adam

Smith (1723-1790) published An Inquiry into the Nature and Causes of the Wealth of
Nations. While the ancient Greeks and others had made contributions to economic
thought, Smith was the first to treat it as a science, using the idea that economies can be

thought of as consisting of individual agents maximizing their own economic well-being

Neuroscience (1861-present)

o How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. The exact way in
which the brain enables thought is one of the great mysteries of science. It has been
appreciated for thousands of years that the brain is somehow involved in thought,

because of the evidence that strong blows to the head can lead to mental incapacitation

Computer Human Brain

Computational 1 CPU,108 gates 101 neurons

units 1010 bits RAM 1011 neurons

Storage units 1011 bits disk 1014 synapses
109 sec 10-3 sec

Cycle time 1010 bits/sec 1014 bits/sec

Bandwidth 109 1014

Memory

updates/sec

Comparison of the raw computational resources and brain.

Psychology (1879 - present)

The origin of scientific psychology are traced back to the wok if German physiologist
Hermann von Helmholtz(1821-1894) and his student Wilhelm Wundt(1832 - 1920). In
1879, Wundt opened the first laboratory of experimental psychology at the University of
Leipzig. In US,the development of computer modeling led to the creation of the field of
cognitive science. The field can be said to have started at the workshop in September

1956 at MIT.

Computer engineering (1940-present)

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been the artifact of choice.A1 also owes a debt to the software side of
computer science, which has supplied the operating systems, programming languages,
and tools needed to write modern programs

Control theory and Cybernetics (1948-present)

Ktesibios of Alexandria (c. 250 B.c.) built the first self-controlling machine: a water clock

with a regulator that kept the flow of water running through it at a constant, predictable

pace. Modern control theory, especially the branch known as stochastic optimal control,

has as its goal the design of systems that maximize an objective function over time.

Linguistics (1957-present)

Modem linguistics and Al, then, were "born" at about the same time, and grew up
together, intersecting in a hybrid field called computational linguistics or natural

language processing.

History of Artificial Intelligence

The gestation of artificial intelligence (1943-1955)

There were a number of early examples of work that can be characterized as Al, but it
was Alan Turing who first articulated a complete vision of Al in his 1950 article

"Computing Machinery and Intelligence." Therein, he introduced the Turing test,

machine learning, genetic algorithms, and reinforcement learning.

The birth of artificial intelligence (1956)

McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring
together U.S. researchers interested in automata theory, neural nets, and the study of
intelligence. They organized a two-month workshop at Dartmouth in the summer of
1956. Perhaps the longest-lasting thing to come out of the workshop was an agreement

to adopt McCarthy's new name for the field: artificial intelligence.

Early enthusiasm, great expectations (1952-1969)

The early years of A1 were full of successes-in a limited way. General Problem Solver

(GPS) was a computer program created in 1957 by Herbert Simon and Allen Newell to

build a universal problem solver machine. The order in which the program considered

subgoals and possible actions was similar to that in which humans approached the same
problems. Thus, GPS was probably the first program to embody the "thinking humanly"
approach. At IBM, Nathaniel Rochester and his colleagues produced some of the first A1
programs. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which

was able to prove theorems that many students of mathematics would find quite tricky.

Lisp was invented by John McCarthy in 1958 while he was at the Massachusetts Institute
of Technology (MIT). In 1963, McCarthy started the Al lab at Stanford. Tom Evans's
ANALOGY program (1968) solved geometric analogy problems that appear in IQ tests,

such as the one in Figure

A B A) @ -

Olr @A ’

2 3 4 §

Fig: The Tom Evan’s ANALOGY program could solve geometric analogy problems

as shown.

A dose of reality (1966-1973)

From the beginning, Al researchers were not shy about making predictions of their

coming successes. The following statement by Herbert Simon in 1957 is often quoted:

“It is not my aim to surprise or shock you-but the simplest way [can summarize is to say
that there are now in the world machines that think, that learn and that create.
Moreover, their ability to do these things is going to increase rapidly until-in a visible
future-the range of problems they can handle will be coextensive with the range to

which the human mind has been applied.

Knowledge-based systems: The key to power? (1969-1979)

Dendral was an influential pioneer project in artificial intelligence (AI) of the 1960s, and
the computer software expert system that it produced. Its primary aim was to help
organic chemists in identifying unknown organic molecules, by analyzing their mass
spectra and using knowledge of chemistry. It was done at Stanford University by Edward

Feigenbaum, Bruce Buchanan, Joshua Lederberg, and Carl Djerassi.

Al becomes an industry (1980-present)

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build
intelligent computers running Prolog. Overall, the Al industry boomed from a few
million dollars in 1980 to billions of dollars in 1988.

The return of neural networks (1986-present)

Psychologists including David Rumelhart and Geoff Hinton continued the study of
neural-net models of memory.

Al becomes a science (1987-present)

In recent years, approaches based on hidden Markov models (HMMs) have come to
dominate the area. Speech technology and the related field of handwritten character
recognition are already making the transition to widespread industrial and consumer

applications.

The Bayesian network formalism was invented to allow efficient representation of, and

rigorous reasoning with, uncertain knowledge.

The emergence of intelligent agents (1995-present)

One of the most important environments for intelligent agents is the Internet.

Sample Applications

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's
Remote Agent program became the first on-board autonomous planning program to
control the scheduling of operations for a spacecraft. Remote Agent generated plans
from high-level goals specified from the ground, and it monitored the operation of the
spacecraft as the plans were executed-detecting, diagnosing, and recovering from

problems as they occurred.

Game playing: IBM's Deep Blue became the first computer program to defeat the world
champion (Garry Kasparov) in a chess match. The value of IBM's stock increased by $18

billion.

Autonomous control: The ALVINN computer vision system was trained to steer a car to
keep it following a lane. The computer-controlled minivan used to navigate across the
United States-for 2850 miles and it was in control of steering the vehicle 98% of the

time. A human took over the other 2%, mostly at exit ramps.

Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able

to perform at the level of an expert physician in several areas of medicine

Logistics Planning: During the Gulf crisis of 1991, U.S. forces deployed a Dynamic
Analysis and Replanning Tool, DART to do automated logistics planning and scheduling
for transportation. This involved up to 50,000 vehicles, cargo, and people at a time, and

had to account for starting points, destinations, routes, and conflict resolution

Robotics: Many surgeons now use robot assistants in microsurgery

Language understanding and problem solving: PROVERB is a computer program that
solves crossword puzzles better than most humans, using constraints on possible word
fillers, a large database of past puzzles, and a variety of information sources including
dictionaries and online databases such as a list of movies and the actors that appear in

them.

Typical problems to which Al methods are applied

Pattern recognition, Optical character recognition , Handwriting recognition , Speech
recognition , Face recognition, Computer vision, Virtual reality and Image processing ,
Diagnosis , Game theory and Strategic planning , Natural language processing,
Translation and Chatterboxes , Nonlinear control and Robotics, Artificial life, Automated
reasoning , Automation , Biologically inspired computing ,Concept mining, Data mining,
Knowledge representation , Semantic Web , E-mail spam filtering, Robotics, ,Cognitive ,

Cybernetics , Hybrid intelligent system, Intelligent agent ,Intelligent control.

INTELLIGENT AGENTS

Introduction - Agents and Environments

An agent is anything that can be viewed as perceiving its environment through sensors

andacting upon that environment through actuators.

Different types of agents

1. A human agent has eyes, ears, and other organs for sensors and hands, legs,

mouth, and other body parts for actuators.

2. A robotic agent might have cameras and infrared range finders for sensors and

various motors for actuators.

http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Optical_character_recognition
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Handwriting_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Virtual_reality
http://en.wikipedia.org/wiki/Virtual_reality
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)
http://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Strategic_planning
http://en.wikipedia.org/wiki/Strategic_planning
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Translation
http://en.wikipedia.org/wiki/Translation
http://en.wikipedia.org/wiki/Chatterbot
http://en.wikipedia.org/wiki/Chatterbot
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Biologically_inspired_computing
http://en.wikipedia.org/wiki/Concept_mining
http://en.wikipedia.org/wiki/Concept_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/E-mail_spam
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Cybernetics
http://en.wikipedia.org/wiki/Cybernetics
http://en.wikipedia.org/wiki/Hybrid_intelligent_system
http://en.wikipedia.org/wiki/Hybrid_intelligent_system
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Intelligent_control
http://en.wikipedia.org/wiki/Intelligent_control

3. A software agent receives keystrokes, file contents, and network packets as
sensory inputs and acts on the environment by displaying on the screen, writing files,

and sending network packets.

4, Generic agent - A general structure of an agent who interacts with the

environment.

sensors

percepts

actions

actuators

Fig : Agents interact with environments through sensors and effectors (accuators)

The term percept is to refer to the agent's perceptual inputs at any given instant.

PERCEPT SEQUENCE: Agent's percept sequence is the complete history of everything

the agent has ever perceived.

An agent's behavior is described by the agent function that maps any given percept

sequence to an action.

AGENT PROGRAM : The agent function for an artificial agent will be implemented by an

agent program.

Example : The vacuum-cleaner world has just two locations: squares A and B. The
vacuum agent perceives which square it is in and whether there is dirt in the square. It

can choose to move left, move right, suck up the dirt, or do nothing. One very simple

agent function is the following: if the current square is dirty, then suck, otherwise move

to the other square.

Fig : A vacuum-cleaner world with just two locations

Partial tabulation of a simple agent function for the vacuum-cleaner world
* Percepts: location and status, e.g., [A,Dirty]
» Actions: Left, Right, Suck, NoOp

Percept Action
sequence

(A, Right
Clean]

[A, Dirty] Suck
[B, Left
Clean]

h W=

[B, Dirty] Suck

The agent program for a simple agent in the two-state vacuum environment for

above tabulation

function VACUUM-AGENT (([location,status]) if status = Dirty then return Suck else
if location = A then return Right else if location = B then return Left Concept of

Rationality

A rational agent is one that does the right thing. The right action is the one that will

cause the agent to be most successful.

Performance measures

A performance measure embodies the criterion for success of an agent's behavior. When
an agent is plunked down in an environment, it generates a sequence of actions
according to the percepts it receives. This sequence of actions causes the environment to
go through a sequence of states. If the sequence is desirable, then the agent has

performed well.

Rationality

Rational at any given time depends on four things:

The performance measure that defines the criterion of success.

The agent's prior knowledge of the environment.

The actions that the agent can perform.

The agent's percept sequence to date.

Definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is
expected to maximize its performance measure, given the evidence provided by the
percept sequence and whatever built-in knowledge the agent has. A rational agent

should be autonomous

Definition of an omniscient agent:

An omniscient agent knows the actual outcome of its actions and can act accordingly;

but omniscience is impossible in reality.

Autonomy

A rational agent should be autonomous-it should learn what it can to compensate for

partial or incorrect prior knowledge.

Information Gathering

Doing actions in order to modify future percepts is called as information gathering.

Specifying the task environment

In the discussion of the rationality of any agent, we had to specify the performance
measure, the environment, and the agent's actuators and sensors. We group all these
together under the heading of the task environment and we call this as PEAS
(Performance, Environment, Actuators, Sensors) or PAGE (Percept, Action, Goal,
Environment) description. In designing an agent, the first step must always be to

specify the task environment.

Example : PEAS description of the task environment for agents

Agent Performa Environ Actuato Sensors
Type nce ment rs
Measure
Automa Safe, fast, Roads, Steering Cameras,
ted legal, traffic, accelera sonar,
Taxi comfortab pedestria tor speedome
Driver le trip, n , ter, GPS,
maximize customers brake, odometer,
profits signal, accelerom
horn, eter
display engine
Sensors,
keyboard
Medical Healthy Patient, Screen Keyboard
diagnos patient, hospital, display (entry of
is minimize staff (questio symptoms
system costs, n tests, , findings,
lawsuits diagnos patient's
es answers)
treatme
nt
referral
s)
Part- Percentag Conveyor Jointed Camera,
Picking e of parts belt with arm and joint angle
Robot in correct parts, bins hand sensors

bin

Interac Maximize Set of Screen Keyboard
tive student’s students display
English score on (exercis
tutor test es)
robot amount of soccer legs cameras,
soccer goals match sonar or
player scored field infrared
Satellit Correct Downlink Display Color
e Image from categori pixel
Image Categoriza satellite zati on arrays
Analysi tion of scene
S
Refiner Maximum Refinery Valves, Temperat
y purity, operators pumps, ure,
controll safety heaters, pressure,
er chemical
sensors
displays

Vacuu minimize two Left, Sensors to
m energy squares Right, identify
Agent consumpti Suck, the dirt

on, NoOp

maximize

dirt pick

up

Properties of task environments (Environment Types)

Fully observable vs. partially observable

If an agent's sensors give it access to the complete state of the environment at each point
in time, then we say that the task environment is fully observable. A chess playing

system is an example of a system that operates in a fully observable environment.

An environment might be partially observable because of noisy and inaccurate sensors
or because parts of the state are simply missing from the sensor data. A bridge playing
program is an example of a system operating in a partially observable environment.
Deterministic vs. stochastic

If the next state of the environment is completely determined by the current state and
the action executed by the agent, then we say the environment is deterministic;

otherwise, it is stochastic

Image analysis systems are examples of deterministic. The processed image is

determined completely by the current image and the processing operations.

Taxi driving is clearly stochastic in this sense, because one can never predict the

behavior of traffic exactly;

Episodic vs. sequential

An episodic environment means that subsequent episodes do not depend on what

actions occurred in previous episodes.
In a sequential environment, the agent engages in a series of connected episodes. In
sequential environments, on the other hand, the current decision could affect all future

decisions. Chess and taxi driving are sequential.

Static vs. dynamic

If the environment can change while an agent is deliberating, then we say the
environment is dynamic for that agent; otherwise, it is static. Taxi driving is clearly

dynamic. Crossword puzzles are static.

Discrete vs. continuous

If the number of distinct percepts and actions is limited, the environment is discrete,
otherwise it is continuous. Taxi driving is a continuous state and continuous-time

problem. Chess game has a finite number of distinct states.

Single agent vs. Multi agent

The distinction between single-agent and multi agent environments may seem simple
enough. For example, an agent solving a crossword puzzle by itself is clearly in a single-
agent environment, whereas an agent playing chess is in a two-agent environment.
Chess is a competitive multi agent environment. Taxi-driving environment is a partially

cooperative multi agent environment.

Environment Characteristics

Examples of task environments and their characteristics

Tas Ob Dete Ep S Di A
k ser rmin is t scr g
Envi va istic od a et

ron ble ic ti e n
men C t
t

Cros Full Dete Se S Dis S
SWo y rmin qu t cre 1
rd istic en a te n
puzz tia ti g

le 1 C
Ches Full Stoc Se S Dis
S y hasti qu e cre
with c en m te
a tia i
cloc 1
k
Poke Par Stoc Se S Dis
r tial hasti qu t cre
ly C en a te
tia ti
1 C
Back Full Stoc Se S Dis
gam y hasti qu t cre
mon c en a te
tia ti
1 C
Taxi Par Stoc Se D Co
dnvi tial hasti qu y nti
ng ly C en nu
tia a ou
1 m S
ic
Medi Par Stoc Se D Co
cal tial hasti qu nti
diag ly C en nu

nosi tia a ou
S 1 m S
ic
Imag Full Dete Ep S Co
e- y rmin is e nti
anal istic od m nu
ysis ic i ou
S
Part- Par Stoc Ep D Co
picki tial hasti is y nti
ng ly C od nu
robo ic a ou
t m S
ic
Refi Par Stoc Se D Co
nery tial hasti qu y nti
cont ly C en n nu
rolle tia a ou
r 1 m S
ic
Inter Par Stoc Se D Dis
activ tial hasti qu y cre
e ly C en te
Engl tia a
ish 1 m
tuto ic

The simplest environment is
Fully observable, deterministic, episodic, static, discrete and singleagent.
Most real situations are:

Partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

Structure of the Agents

The job of Al is to design the agent program that implements the agent function mapping

percepts to actions.

Intelligent agent = Architecture + Agent program

Agent programs

Agent programs take the current percept as input from the sensors and return an

action to the actuators

The agent program takes the current percept as input, and the agent function takes the

entire percept history

Architecture is a computing device used to run the agent program.

The agent programs will use some internal data structures that will be updated as new
percepts arrive. The data structures are operated by the agents decision making
procedures to generated an action choice, which is then passed to the architecture to be

executed. Two types of agent programs are

1. A Skeleton Agent 2. A Table Lookup Agent

Skeleton Agent

The agent program receives only a single percept as its input.

If the percept is a new input then the agent updates the memory with the new percept

function SKELETON-AGENT(percept) returns action static: memory, the agent’s

memory of the world memory <- UPDATE-MEMORY(memory, percept) action <-

CHOOSE-BEST-ACTION (memory) memory <- UPDATE-MEMORY(memory, action)
return action

Table-lookup agent

A table which consists of indexed percept sequences with its corresponding action

The input percept checks the table for the same

function TABLE-DRIVEN-AGENT (percept) returns an action

static: percepts, a sequence initially empty table, a table of actions,
indexed by percept sequence
append percept to the end of percepts action @ LOOKUP(percepts,

table) return action

Drawbacks of table lookup agent

* Huge table
» Take a long time to build the table
* No autonomy

* Even with learning, need a long time to learn the table entries

Four basic types in order of increasing generality

Simple reflex agents
Model-based reflex agents
Goal-based agents
Utility-based agents

Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the

basis of the current percept, ignoring the rest of the percept history.

This agent describes about how the condition - action rules allow the agent to make the

connection from percept to action

It acts according to a rule whose condition matches the current state, as defined by the

percept.

Condition - action rule : if condition then action

Example : condition-action rule: if car-in-front-is-braking then initiatebraking

AGENT
percepts

Sensors -

What is the
world like now

ENVIRONMENT

Condition-action Action to
(if-then) rules be done

Actuators

actions

Fig : Schematic diagram of a simple reflex agent.
Rectangles - to denote the current internal state of the agent's decision process

Ovals - to represent the background information used in the process.

function SIMPLE-REFLEX-AGENT (percept) returns action static : rules, a set of

condition-action rules

state<- INTERPRET-1 NPUT (percept)

rule<- RULE-MAT CH (state, rules),
action<- RULE-ACTION [rule]

return action

* INTERPRET-INPUT function generates an abstracted description of the current state
from the percept

* RULE-MATCH function returns the first rule in the set of rules that matches the given
state description

* RULE - ACTION - the selected rule is executed as action of the given percept

Example : Medical Diagnosis System

If the patient has reddish brown spots then start the treatment for measles.

Model based Reflex Agents

An agent which combines the current percept with the old internal state to generate

updated

function REFLEX-AGENT-WITH-STATE(percept)returns action
static: state, a description of the current world state rules, a set
of condition-action rules action, the most recent action, initially
none

state <- UPDATE-STATE(state, action, percept) rule <- RULE -
MATCH (state, rules) action <- RULE-ACTION [rule]

description of the current state.

UPD ATE-

STATE - is responsible for creating the new internal state description

Example: Medical Diagnosis system

If the Patient has spots then check the internal state (i. e) any change in the
environment may lead to cause spots on the patient. From this internal state the current
state is updated and the corresponding action is executed.

Goal based Agents

J

= Cstate v
WwWhat the world
@OW the world evol‘? is like now

{ What my actions do

JUBWUOJIAUT

-1 - What action |
(Condmon—acilon ruIes)—-——l EE AL A o

KAge nt Effectors

L

An Agent knows the description of current state as well as goal state. The action matches

with the current state is selected depends on the goal state.

)

4 A".,,.

Q—low the world evolves

Sensors —=

What the world
is like now

: What it will be like
@hai my actions do it | do action A

JUSWUOJIAUT

- ol What action |
should do now

kAge nt Effectors

4

Example : Medical diagnosis system

If the name of disease is identified for the patient then the treatment is given to the
patient to recover from him from the disease and make the patient healthy is the goal to

be achieved

Utility base agents

An agent which generates a goal state with high - quality behavior (i.e) if more than one
sequence exists to reach the goal state then the sequence with more reliable, safer,

quicker and cheaper than others to be selected.

Utility is a function that maps a state onto a real number, which describes the associated

degree of happiness

The utility function can be used for two different cases :

1. When there are conflicting goals, only some of which can be achieved (for example,

speed and safety)

2. When there are several goals that the agent can aim for, none of which can be achieved
with certainty, utility provides a way in which the likelihood of success can be weighed

up against the importance of the goal

/ P—
Sensors -

What the world
Q—Iow the world evolves e The ot

m
What it will be like 3
@hat my actions do it 'de action A =-
% (=]
.-- How happy | will be =
Utility in such a state CSD
¥ 3
=

What action |
should do now

Y

KAge nt Effectors

:

Example : Medical diagnosis System

If the patient disease is identified then the sequence of treatment which leads to recover

the patient with all utility measure is selected and applied

Learning agent

All agents can improve their performance through Learning

The learning task allows the agent to operate in unknown environments initially and

then become more competent than its initial knowledge.

A learning agent can be divided into four conceptual components:

Critic

A =

Problem gene

Learning element

performance element

rator

Performance standard

J

-

n

)

KAgent

Critic et Sensors -
feedback
changes ;
Learning ™ Performance
element e e element
nowledge
learning
goals
Problem
generator

JUBWIUOJIAUT

Actuators 7

The learning element uses feedback from the critic on how the agent is doing and

determines how the performance element should be modified to do better in the future.

Learning element is also responsible for making improvements

B 4

Performance element is to select external action and it is equivalent to agent

The critic tells the learning element how well the agent is doing with respect to a fixed

performance standard

The last component of the learning agent is the problem generator. It is responsible for

suggesting actions that will lead to new and informative experiences.

Problem solving - Introduction

Search is one of the operational tasks that characterize Al programs best. Almost every
Al program depends on a search procedure to perform its prescribed functions.

Problems are typically defined in terms of state, and solution corresponds to goal states.

Problem solving using search technique performs two sequence of steps:

(i) Define the problem - Given problem is identified with its required initial and goal state.
(ii) Analyze the problem - The best search technique for the given: problem is chosen from
different an Al search technique which derives one or more goal state in minimum

number of states.

Types of problem

In general the problem can be classified under anyone of the following four types which

depends on two important properties. They are

(i) Amount of knowledge, of the agent on the state and action description. (ii) How the

agent is connected to its environment through its percepts and actions?

The four different types of problems are:

(i) Single state problem
(i) Multiple state problem
(iii) Contingency problem

(iv) Exploration problem

Problem solving Agents
Problem solving agent is one kind of goal based agent, where the agent decides what to

do by finding sequence of actions that lead to desirable states. The complexity arises

here is the knowledge about the formulation process, (from current state to outcome
action) of the agent.

If the agent understood the definition of problem, it is relatively straight forward to
construct a search process for finding solutions, which implies that problem solving

agent should be an intelligent agent to maximize the performance measure.

The sequence of steps done by the intelligent agent to maximize the performance
measure:

i) Goal formulation - based on current situation is the first step in problem solving.
Actions that result to a failure case can be rejected without further consideration.
(ii)Problem formulation - is the process of deciding what actions and states to
consider and follows goal formulation.

(iii) Search - is the process of finding different possible sequence of actions that lead to
state of known value, and choosing the best one from the states. (iv) Solution - a search
algorithm takes a problem as input and returns a solution in the form of action sequence.

(v) Execution phase - if the solution exists, the action it recommends can be carried out.

A simple problem solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an
action input: p, a percept

static: s, an action sequence, initially empty state, some

description of the current world state g, a goal initially null

problem, a problem formulation state <- UPDATE-STATE((state,

p) if s is empty then g <- FORMULATE-GOAL (state) problem <-
FORMULATE-PROBLEM(state,g) s <- SEARCH(problem)

action <- RECOMMENDATION(s, state) s <- REMAINDER(s,

state) return action

Note:

RECOMMENDATION - first action in the sequence

REMAINDER - returns the rest

SEARCH - choosing the best one from the sequence of actions
FORMULATE-PROBLEM - sequence of actions and states that lead to goal state.
UPDATE-STATE - initial state is forced to next state to reach the goal state
Well-defined problems and solutions

A problem can be defined formally by four components:

1. initial state 2. successor function 3. goal test 4. path cost

The initial state that the agent starts in.

Successor function (S) - Given a particular state x, S(x) returns a set of states reachable

from x by any single action.
The goal test, which determines whether a given state is a goal state. Sometimes there is
an explicit set of possible goal states, and the test simply checks whether the given state

is one of them.

A path cost function that assigns a numeric cost to each path. The problemsolving agent

chooses a cost function that reflects its own performance measure.

A solution to a problem is a path from the initial state to a goal state

Operator - The set of possible actions available to the agent.

State space (or) state set space - The set of all possible states reachable from the initial

state by any sequence of actions.

Path (state space) - The sequence of action leading from one state to another

The effectiveness of a search can be measured using three factors. They are:

1 Solution is identified or not?
2. Isitagood solution? If yes, then path cost to be minimum.
3. Search cost of the problem that is associated with time and memory required to

find a solution.

For Example

Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. Now, suppose
the agent has a nonrefundable ticket to fly out of Bucharest the following day. In that
case, it makes sense for the agent to adopt the goal of getting to Bucharest. The agent's

task is to find out which sequence of actions will get it to a goal state.

This process of looking for such a sequence is called search.

A search algorithm takes a problem as input and returns a solution in the form of an
action sequence. Once a solution is found, the actions it recommends can be carried out.

This is called the execution phase.

Formulating problems

Initial state : the initial state for our agent in Romania might be described as In(Arad)

Successor function : Given a particular state x, SUCCESSOR-FN(x) returns a set of
(action, successor) ordered pairs, where each action is one of the legal actions in state x
and each successor is a state that can be reached from x by applying the action. For
example, from the state In(Arad), the successor function for the Romania problem would
return

{(Go(Sibzu),In(Sibiu)), (Go(Timisoara), In(Tzmisoara)), (Go(Zerznd),In(Zerind)))

Goal test : The agent's goal in Romania is the singleton set {In(Bucharest)).

Path cost : The step cost of taking action a to go from state x to state y is denoted by c(x,

a,y).

118

= Timisoara
o Lugoj
] Mehadia

Drobeta £ 120

l".l'ie
Example Problems
The problem-solving approach has been applied to a vast array of task environments.
A toy problem is intended to illustrate or exercise various problem-solving methods. It
can be given a concise, exact description. It can be used easily by different researchers to
compare the performance of algorithms
A real-world problem is one whose solutions people actually care about.
Some list of best known toy and real-world problems
Toy Problems
i) Vacuum world Problem
States: The agent is in one of two locations, each of which might or might not contain

dirt. Thus there are 2 * 22 = 8 possible world states.

Initial state: Any state can be designated as the initial state.

Successor function: three actions (Left, Right, and Suck).
Goal test: This checks whether all the squares are clean.

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

1 dQ d@ R L dg 3 éfg R
oFR : 7R FR | BR
- s s -
R
\4.—4’@ dﬂ/\R
- 5 el 2

Fig : The complete state space for Vacuum World

ii) 8-puzzle Problem
The 8-puzzle problem consists of a 3 x 3 board with eight numbered tiles and a blank
space. A tile adjacent to the blank space can slide into the space. The object is to reach a

specified goal state

States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

Initial state: Any state can be designated as the initial state.

Successor function: This generates the legal states that result from trying the four
actions (blank moves Left, Right, Up, or Down).

Goal test: This checks whether the state matches the goal configuration (Other goal
configurations are possible.)

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

110116 || 4 31114l 5
7 5 617I|ll8
Initial State Goal State

iii) 8-queens problem
The goal of the 8-queens problem is to place eight queens on a chessboard such that no
queen attacks any other. (A queen attacks any piece in the same row, column or

diagonal.

States: Any arrangement of 0 to 8 queens on the board is a state.
Initial state: No queens on the board.

Successor function: Add a queen to any empty square.

Goal test: 8 queens are on the board, none attacked.

Path cost : Zero (search cost only exists)

solution to the 8-queens problem.

iv) Crypt arithmetic Problem
In crypt arithmetic problems letters stand for digits and the aim is to find a substitution
of digits for letters such that the resulting sum is arithmetically correct, each letter stand

for a different digit

http://images.google.co.in/imgres?imgurl=http://www.8puzzle.com/images/8_puzzle_goal_state_b.png&imgrefurl=http://www.8puzzle.com/8_puzzle_problem.html&usg=__IKJqUZwK-CI3JOWlUUTg6G-WuhM=&h=211&w=211&sz=9&hl=en&start=13&um=1&tbnid=DPhNvdeWgxIUwM:&tbnh=106&tbnw=106&prev=/images%3Fq%3D8-puzzle%2Bproblem%2Bfinal%2Bstate%26hl%3Den%26sa%3DG%26um%3D1
http://images.google.co.in/imgres?imgurl=http://brainwagon.org/images/8q.png&imgrefurl=http://brainwagon.org/2007/03/29/92-ways-to-place-8-queens-on-a-chessboard/&usg=__nh8yCi8GaT12RF8hyn2Jsk215gA=&h=400&w=400&sz=8&hl=en&start=22&um=1&tbnid=sv_RpwAiEmdwHM:&tbnh=124&tbnw=124&prev=/images%3Fq%3Dsolution%2Bto%2Bthe%2B8-queens%2Bproblem.%26ndsp%3D20%26hl%3Den%26sa%3DN%26start%3D20%26um%3D1

Rules

There should be no more than 10 distinct characters

The summation should be the longest word

The summation can not be too long

There must be a one-to-one mapping between letters and digits The leftmost letter can't

be zero in any word.

States: A crypt arithmetic puzzle with some letters replaced by digits

Initial state: No digits is assigned to the letters

Successor function: Replace all occurrences of a letter with a digit not already
appearing in the puzzle

Goal test: Puzzle contains only digits and represents a correct sum

Path cost: Zero

Example 1:

SEND

+MORE

Solution:S=9,E=5,N=6,D=7,M=1,0=0,R=8,Y=2

Example 2:

FORTY
+TEN

LA A

Solution : F=2, 0=9, R=7, T=8, Y=6, E=5, N=0

v) Missionaries and cannibals problem
Three missionaries and three cannibals are on one side of a river, along with a oat that
can hold one or two people. Find a way to get everyone to the other side, without ever

leaving a group of missionaries in one place out numbers by the cannibals in that place

Assumptions :

Number of trips is not restricted

Both the missionary and cannibal can row the boat

States: A state consists of an ordered sequence of two numbers representing the

number of missionaries and cannibals

Example : (i,j) = (3,3) three missionaries and three cannibals
Initial state: (i,j) = (3,3) in one side of the river

Successor function: The possible move across the river are:
One Missionary and One Cannibal

Two Missionaries

Two Cannibals

One Missionary

One Cannibal

Rule No. Explanation

(1)

(i,j) : One missionary and one
cannibal can cross the river
only when ((i-1) >= (j-1)) in one
side of the river and ((i+1) >=
(j+ 1)) in the other side of the

river.

(ii)

(i,j) : Two missionaries can
cross the river only when ((i-
2)>=j) in one side of the river
and ((i+2)>=j) in the other side

of the river.

(iii)

(i,j) : Two cannibals can cross
the river only when ((j-2)<=1)
in one side of the river and

((j*+2)<=1i) in the other side of

the river.

(iv)

(i,j) : One missionary can cross
the river only when ((i-1)>=j))
in one side of the river and ((i-
1)>=j)) in the other side of the

river.

v)

(i,j) : One cannibal can cross the
river only when (((j-1)<=i) in
one side of the river and
(((j+D<=i)in the other side of

the river.

Initial state : (i.j) = (3,3) in one side of the river.

Goal test: (i,j) = (3,3) in the other side of the river.

Path cost : Number of crossings between the two sides of the river.

Solution:
Bank B Bank Rule
1 0 2 App
at - lied
(j)=(> > (iLj)=(
3,3) 0,0)
(3,1) < (0) (0,2) (iif)
- P -
)
(3,2) (0 (0,1) (v)
> >
1
)
< <
(3,0)] (0) (0,3) (iii)
,2
)
(31) > (0 > (0,2) v)
,1
<) <
(1,1 - (2 - (2,2) (ii)
,0
)
(2,2) g (1 g (11) (1)
,1
<) <
(0,2)) (2 i (3,1) (ii)

(0,3) g (0 g (3,0)

(0,1) (0 (3,2)

(iii)

(0,2) (0 (3.1)

(v)

(0,0) (0 (3,3)

(iii)

Real-world problems

Airline travel problem

States: Each is represented by a location (e.g., an airport) and the current time. Initial
state: This is specified by the problem.

Successor function: This returns the states resulting from taking any scheduled flight
(perhaps further specified by seat class and location), leaving later than the current time
plus the within-airport transit time, from the current airport to another.

Goal test: Are we at the destination by some pre specified time?

Path cost: This depends on monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane, frequentflyer mileage

awards, and so on.

Route-finding problem is defined in terms of specified locations and transitions along

links between them. Route-finding algorithms are used in a variety of applications, such

as routing in computer networks, military operations planning, and airline travel

planning systems

The traveling salesperson problem (TSP) is a touring problem in which each city must

be visited exactly once. The aim is to find the shortest tour.

A VLSI layout problem requires positioning millions of components and connections on
a chip to minimize area, minimize circuit delays, minimize stray capacitances, and
maximize manufacturing yield. The layout problem comes after the logical design phase,
and is usually split into two parts: cell layout and channel routing. In cell layout, the
primitive components of the circuit are grouped into cells, each of which performs some
recognized function. Each cell has a fixed footprint (size and shape) and requires a
certain number of connections to each of the other cells. The aim is to place the cells on
the chip so that they do not overlap and so that there is room for the connecting wires to
be placed between the cells. Channel routing finds a specific route for each wire through

the gaps between the cells.

Robot navigation is a generalization of the route-finding problem described earlier.
Rather than a discrete set of routes, a robot can move in a continuous space with (in
principle) an infinite set of possible actions and states. For a circular robot moving on a
flat surface, the space is essentially two-dimensional. When the robot has arms and legs
or wheels that must also be controlled, the search space becomes many-dimensional.
Advanced techniques are required just to make the search space finite. In addition to the
complexity of the problem, real robots must also deal with errors in their sensor

readings and motor controls.

Automatic assembly sequencing of complex objects by a robot was first demonstrated
by FREDDY (Michie, 1972). In assembly problems, the aim is to find an order in which to
assemble the parts of some object. If the wrong order is chosen, there will be no way to
add some part later in the sequence without undoing some of the work already done.
Checking a step in the sequence for feasibility is a difficult geometrical search problem

closely related to robot navigation.

UNITII- PROBLEM SOLVING METHODS

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics -
Local Search Algorithms and Optimization Problems - Searching with Partial
Observations - Constraint Satisfaction Problems - Constraint Propagation -
Backtracking Search - Game Playing - Optimal Decisions in Games - Alpha - Beta

Pruning - Stochastic Games.

Searching for Solutions

Search techniques use an explicit search tree that is generated by the initial state and
the successor function that together define the state space. In general, we may have a
search graph rather than a search tree, when the same state can be reached from

multiple paths

Example Route finding problem

f= Timisoara

& Hirsova
(] Mehadia

75
Drobeta £

E(ie
The root of the search tree is a search node corresponding to the initial state, In(Arad).
The first step is to test whether this is a goal state.

Apply the successor function to the current state, and generate a new set of states

In this case, we get three new states: In(Sibiu),In(Timisoara), and In(Zerind). Now we

must choose which of these three possibilities to consider further.

Continue choosing, testing, and expanding until either a solution is found or there are no

more states to be expanded.

The choice of which state to expand is determined by the search strategy

Tree Search algorithm

Task : Find a path to reach F from A

1. Start the sequence with the initial state and check whether it is a goal state or not.

a, If it is a goal state return success.

b. Otherwise perform the following sequence of steps

From the initial state (current state) generate and expand the new set of states. The
collection of nodes that have been generated but not expanded is called as fringe. Each

element of the fringe is a leaf node, a node with no successors in the tree.

Expanding A

Expanding B

Expanding C

(A)
(B) O
O® ©®

Sequence of steps to reach the goal state F from (A=A -C-F)

2. Search strategy: In the above example we did the sequence of choosing, testing
and expanding until a solution is found or until there are no more states to be expanded.
The choice of which state to expand first is determined by search strategy.

3. Search tree: The tree which is constructed for the search process over the state
space.

4. Search node: The root of the search tree that is the initial state of the problem.

The general tree search algorithm

function TREE-SEARCH(problem. strategy) returns a solution or failure

initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy if the node contains a goal state
then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

There are many ways to represent nodes, but we will assume that a node is a data

structure with five components:

STATE: the state in the state space to which the node corresponds

PARENT-NODE: the node in the search tree that generated this node; ACTION (RULE):
the action that was applied to the parent to generate the node;

PATH-COST: the cost, traditionally denoted by g(n) , of the path from the initial state to
the node

DEPTH: the number of steps along the path from the initial state.

The collection of nodes represented in the search tree is defined using set or queue

representation.

Set : The search strategy would be a function that selects the next node to be expanded

from the set

Queue: Collection of nodes are represented, using queue. The queue operations are

defined as:

MAKE-QUEUE(elements) - creates a queue with the given elements
EMPTY(queue)-returns true only if there are no more elements in the queue. REMOVE-
FIRST(queue) - removes the element at the front of the queue and returns it

INSERT ALL (elements, queue) - inserts set of elements into the queue and returns the
resulting queue.

FIRST (queue) - returns the first element of the queue.

INSERT (element, queue) - inserts an element into the queue and returns the resulting

queue

The general tree search algorithm with queue representation

function TREE-SEARCH(problem,fringe) returns a solution, or
failure

fringe <- INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if EMPTY?(fringe) then return failure node <- REMOVE-
FIRST(fringe)

ifGOAL-TEST/problenl]applied to STATE[node] succeeds then
return SOLUTION(node) fringe <- INSERT-ALL(EXPAND(node,
problem), fringe)

function EXPAND(node, problem) returns a set of nodes successors <-
the empty set

for each <action, result> in SUCCESSOR-FN
[problem](STATE[node])do

S <-anew NODE

STATE][s] <- result

PARENT-NODE[s] <- node

ACTION[s] <- action

PATH-COST][s] <- PATH-COST[node]+STEP-COST (node,action,s)

DEPTH][s] <- DEPTH[node] + 1 add s to successors return successors

Example: Route finding problem

Task. : Find a path to reach E using Queuing function in general tree search algorithm

Nodes Quene

A

@00 0066
5 6 5

Goal state, Succeeded

Measuring problem solving performance

The search strategy algorithms are evaluated depends on four important criteria’s. They

are:

(i) Completeness: The strategy guaranteed to find a solution when there is one.

(if) Time complexity : Time taken to run a solution

(iii) Space complexity : Memory needed to perform the search.

(iv) Optimality : If more than one way exists to derive the solution then the best one is

Selected

Definition of branching factor (b): The number of nodes which is connected to each of
the node in the search tree. Branching factor is used to find space and time complexity of

the search strategy

~ Level O b= 1 node
Level 1 b = 2 node
Level 2 b =4 node

Solving Problems by Searching

The searching algorithms are divided into two categories

1. Uninformed Search Algorithms (Blind Search) 2. Informed Search Algorithms

(Heuristic Search)

There are six Uninformed Search Algorithms

1. Breadth First Search 2. Uniform-cost search 3. Depth-first search 4. Depth-

limited search 5. Iterative deepening depth-first search 6. Bidirectional Search

There are three Informed Search Algorithms

1. Best First Search 2. Greedy Search 3. A* Search Blind search Vs Heuristic search .

Blind search Heuristic search

No information about the The path cost from the current
number of steps (or) path cost state to the goal state is
from current state to goal state calculated, to select the

minimum path cost as the next

state.
Less effective in search method More effective in search method
Problem to be solved with the Additional information can be
given information added as assumption to solve
the problem

Breadth-first search

Breadth-first search is a simple strategy in which the root node is expanded first, then
all the successors of the root node are expanded next, then their successors, and so on. In
general, all the nodes are expanded at a given depth in the search tree before any nodes

at the next level are expanded.

Breadth-first search can be implemented by calling TREE-SEARCH with an empty fringe
that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will

be expanded first.

In other words, calling TREE-SEARCH(Problem, FIFO-QUEUE())results in a breadth-
first search. The FIFO queue puts all newly generated successors at the end of the queue,

which means that shallow nodes are expanded before deeper nodes

Breadth first search trees after node expansions

Example: Route finding problem

&
2 5
@ @ ©
3 3
3 &
3

Task: Find a ,path from. S to G using BFS

(1) (i1)
))
2/ 1
D B ©
(111) (1v)

The path in the 2nd depth level is selected, (i.e) SBG{or) SCG.

Algorithm :

function BREADTH-FIRST-SEARCH (problem)
returns a solution, or failure node «a node with
STATE = problem.INITIAL-STATE, PATH-COST = 0 if
problem.GOAL-TEST(node.STATE) then return
SOLUTION(node) frontier «a FIFO queue with node
as the only element explored «an empty set loop
do

if EMPTY?(frontier) then return failure
node<—POP(frontier) /* chooses the shallowest
node in frontier */ add node.STATE to explored

for each action in problem.ACTIONS(node.STATE)
do child «<CHILD-NODE(problem, node, action) if
child.STATE is not in explored or frontier then

if problem.GOAL-TEST(child.STATE) then return
SOLUTION(child) frontier «INSERT(child, frontier)

Time and space complexity:

Example:

Time complexity

=1+b+b2+....... +bd

-0(b%)

Level O b = 1 node

Level 1 b = 2 nodes

: Level 2 b'= 4 nodes

The space complexity is same as time complexity because all the leaf nodes of the tree

must be maintained in memory at the same time = O(b 9)

Completeness: Yes

Optimality: Yes, provided the path cost is a non decreasing function of the depth of the

node

Advantage: Guaranteed to find the single solution at the shallowest depth level

Disadvantage: Suitable for only smallest instances problem (i.e.) (number of levels to

be minimum (or) branching factor to be minimum) ')

Uniform-cost search

function UNIFORM-COST-SEARCH (problem) returns a solution, or
failure node <a node with STATE = problem.INITIAL-STATE, PATH-
COST = 0 frontier «a priority queue ordered by PATH-COST, with node
as the only element explored <an empty set

loop do

if EMPTY?(frontier) then return failure node<POP(frontier) /*
chooses the lowest-cost node in frontier */ if problem.GOAL-

TEST(node.STATE) then return SOLUTION(node) add node.STATE to

explored for each action in problem.ACTIONS(node.STATE) do child
«—CHILD-NODE(problem, node, action) if child.STATE is not in explored
or frontier then frontier < INSERT(child, frontier) else if child.STATE is
in frontier with higher PATH-COST then replace that frontier node with
child

Breadth-first search is optimal when all step costs are equal, because it always expands
the shallowest unexpanded node. By a simple extension, we can find an algorithm that is
optimal with any step cost function. Instead of expanding the shallowest node, uniform-
cost search expands the node n with the lowest path cost. Note that if all step costs are

equal, this is identical to breadth-first search.

Uniform-cost search does not care about the number of steps a path has, but only about
their total cost.

Example: Route finding problem

(D
1 10
o‘a}e
12 S
©
Task : Find a minimum path cost from S to G
ti)@ i) (8) (ii) (8)
®»® © ®» ® ©
I 3§ 10 s W
(©)

13

Since the

value of A is less it is expanded first, but it is not optimal.

B to be expanded next

O,
oJo
© ©
13 8
SBG is the path with minimum path cost.

No need to expand the next path SC, because its path cost is high to reach C from S, as

well as goal state is reached in the previous path with minimum cost.
Time and space complexity:

Time complexity is same as breadth first search because instead of depth level the

minimum path cost is considered.

Time complexity: O(b4) Space complexity: O(b 9)
Completeness: Yes Optimality: Yes

Advantage: Guaranteed to find the single solution at minimum path cost.
Disadvantage: Suitable for only smallest instances problem.

Depth-first search

Depth-first search always expands the deepest node in the current fringe of the search

tree

The search proceeds immediately to the deepest level of the search tree, where the
nodes have no successors. As those nodes are expanded, they are dropped from the
fringe, so then the search "backs up" to the next shallowest node that still has
unexplored successors. This strategy can be implemented by TREESEARCH with a last-

in-first-out (LIFO) queue, also known as a stack.

Depth first search tree with 3 level expansion

Example: Route finding problem

Task: Find a path from S to G using DFS

The path in the 3rd depth level is selected. (i.e. S-A-D-G

Algorithm:

function DFS(problem) return a solution or failure

TREE-SEARCH(problem, LIFO-QUEUE())

Time and space complexity:

In the worst case depth first search has to expand all the nodes

Time complexity : O(b™).

The nodes are expanded towards one particular direction requires memory for only that

nodes.

Space complexity : O(bm)

= wevel 0

Level 1

b o Level 2

b=2
m=2:bm=4

Completeness: No

Optimality: No

Advantage: If more than one solution exists (or) number of levels is high then DFS is

best because exploration is done only in a small portion of the whole space.
Disadvantage: Not guaranteed to find a solution

Depth - limited search

1. Definition: A cut off (maximum level of the depth) is introduced in this search
technique to overcome the disadvantage of depth first search. The cutoff value depends

on the number of states.

Example: Route finding problem

The number of states in the given map is 5. So, it is possible to get the goal state at a

maximum depth of 4. Therefore the cutoff value is 4

Task : Find a path from A to E.

(i) ® (i) ™)
(B) ©

(iii) (iv) ®
® ©

©

Path = ABDE Depth =73 ®)

A recursive implementation of depth-limited search

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE [problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or
failure/cutoff cutoff-occurred? <- false

if GOAL-TEST|[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node] =limit then return cutoff else for each successor in
EXPAND(node, problem) do result <- RECURSIVE-DLS(successor,
problem, limit) if result = cutoff then cutoff-occurred?<- true else if
result Ofailure then return result if cutoff-occurred? then return cutoff

else return failure

Time and space complexity:

The worst case time complexity is equivalent to BFS and worst case DFS.

Time complexity : O(b!)

The nodes which is expanded in one particular direction above to be stored.

Space complexity : O(bl)

Optimality: No, because not guaranteed to find the shortest solution first in the search

technique.

Completeness : Yes, guaranteed to find the solution if it exists.

Advantage: Cut off level is introduced in the DFS technique

Disadvantage : Not guaranteed to find the optimal solution.

Iterative deepening search

Iterative deepening search

Definition: Iterative deepening search is a strategy that sidesteps the issue of choosing

the best depth limit by trying all possible depth limits.

Example: Route finding problem

Task: Find a path from A to G
Limit=0

Limit=1

®
® © @

Limit=2

M @ i)y @ i) @
® ©® ® © ® ® O ®
®)) ©

Solution: The goal state G can be reached from A in four ways. They are:

1.A-B-D-E-G------- Limit42.A-B-D-E-G ------- Limit43.A-C-E-G-------
Limit34.A-F-G------ Limit2

Since it is a iterative deepening search it selects lowest depth limit (i.e.) A-F-G is selected

as the solution path.

The iterative deepening search algorithm :

function ITERATIVE-DEEPENING-SEARCH (problem) returns a
solution, or failure inputs : problem for depth <- 0 to @ do
result <-DEPTH-LIMITED-SEARCH (problem, depth) if result Bcutoff then

return result

Time and space complexity :

Iterative deepening combines the advantage of breadth first search and depth first
search (i.e) expansion of states is done as BFS and memory requirement is equivalent to
DFS.

Time complexity : O(bd)

Space Complexity : O(bd)

Optimality: Yes, because the order of expansion of states is similar to breadth first

search.

Completeness: yes, guaranteed to find the solution if it exists.
Advantage: This method is preferred for large state space and the depth of the search is

not known.

Disadvantage : Many states are expanded multiple times

Example : The state D is expanded twice in limit 2
Bidirectional search
Definition : Bidirectional search is a strategy that simultaneously search both the

directions (i.e.) forward from the initial state and backward from the goal, and stops

when the two searches meet in the middle.

Example: Route finding problem

()
® @
0O—®

Task : Find a path from A to E.

Search from forward (A) :

T

Search from backward (E) :

N
(D) ©

Time and space complexity:

The forward and backward searches done at the same time will lead to the solution in

0(2b4/2) = O(bd/2)step, because search is done to go only halfway If the two searches

meet at all, the nodes of at least one of them must all be retained in memory requires

0(b4d/2) space.

Optimality: Yes, because the order of expansion of states is done in both the directions.

Completeness: Yes, guaranteed to find the solution if it exists.

Advantage : Time and space complexity is reduced.

Disadvantage: If two searches (forward, backward) does not meet at all, complexity

arises in the search technique. In backward search calculating predecessor is difficult

task. If more than one goal state 'exists then explicit, multiple state search is required

Comparing uninformed search strategies

Cri Br Un D D Iter Bi
teri ea ifo e ep ativ dir
on dt r p th e ect
h m t Li Dee ion
Fi Co h m peni
rs st F it ng
t i ed
r
S
t
Co Ye Ye N N Yes Yes
mp S S o o
let
e
Ti o(o(o o(o(b o(
me bd bd (b! d) bd/
)) b) %)
m
)
Spa o(o(o o(o(b o(
ce bd bd (bl d) bd/
)) b) %)
m
)

Opt Ye Ye N N Yes
im S S))
al

Yes

Avoiding Repeated States

The most important complication of search strategy is expanding states that have

already been encountered and expanded before on some other path

A state space and its exponentially larger search tree

D

The repeated states can be avoided using three different ways. They are:

1. Do not return to the state you just came from (i.e) avoid any successor that is the
same state as the node's parent.

2. Do not create path with cycles (i.e) avoid any successor of a node that is the same
as any of the node's ancestors.

3. Do not generate any state that was ever generated before.

The general TREE-SEARCH algorithm is modified with additional data structure, such as

Closed list - which stores every expanded node.

Open list - fringe of unexpanded nodes.

If the current node matches a node on the closed list, then it is discarded and it is not
considered for expansion. This is done with GRAPH-SEARCH algorithm. This algorithm is

efficient for problems with many repeated states

function GRAPH-SEARCH (problem, fringe) returns a solution, or
failure closed <- an empty set

fringe <- INSERT (MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if EMPTv?(fringe) then return failure node <- REMOVE-FIKST (fringe)
if GOAL-TEST [problem |(STATE[node]) then return SOLUTION
(node)

if STATE [node] is not in closed then add STATE [node] to closed
fringe <- INSERT-ALL(EXPAND(node, problem), fringe)

The worst-case time and space requirements are proportional to the size of the state

space, this may be much smaller than O(bd)

Informed search and exploration

Uninformed search strategies can find solutions to problems by systematically
generating new states and testing them against the goal. These strategies are inefficient

in most cases.

An informed search Strategy uses problem-specific knowledge and it can find solutions

more efficiently.

Informed Heuristic Search Strategies

An informed search strategy uses problem-specific knowledge beyond the definition of

the problem itself and it can find solutions more efficiently than an uninformed strategy.

The general approach is best first search that uses an evaluation function in TREE-

SEARCH or GRAPH-SEARCH.

Best-first search is an instance of the general TREE-SEARCH or GRAPH-SEARCH

algorithm in which a node is selected for expansion based on an evaluation function,

f(n)

The node with the lowest evaluation is selected for expansion, because the evaluation

measures distance to the goal.

Best-first search can be implemented within our general search framework via a priority
queue, a data structure that will maintain the fringe in ascending order of f -values

Implementation of Best-first search using general search algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence inputs:
problem, a problem EVAL-FN, an evaluation function

QUEUEING -FN<- a function that orders nodes by EVAL-FN return TREE-
SEARCH(problem, QUEUEING-FN)

The key component of these algorithms is a heuristic functions denoted h(n)

h(n) = estimated cost of the cheapest path from node n to a goal node.

One constraint: if n is a goal node, then h(n) =0

The two types of evaluation functions are:

(i) Expand the node closest to the goal state using estimated cost as the evaluation is
called greedy best first search.

(i) Expand the node on the least cost solution path using estimated cost and actual

cost as the evaluation function is called A*search

Greedy best first search (Minimize estimated cost to reach a goal)

Definition : A best first search that uses h(n) to select next node to expand is called
greedy search

Evaluation function : The estimated cost to reach the goal state, denoted by the letter
h(n)

h(n)= estimated cost of the cheapest path from the state at node n to a goal state

Algorithm :
Function GREEDY-BEST-FIRST SEARCH (problem) returns a solution or failure
return BEST-FIRST-SEARCH (problem, h)

Example 1 : Route Finding Problem

75

Arad g

118 . Vaslui

Timisoara

-

& Hirsova
Urziceni

[} Mehadia

86

Drobeta [

Craiova Eforie

Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is Straight-

Line Distance to the goal and it is denoted as hs.p(n).

hsip(n) = Straight-Line distance between n and the goal locatation

Note : The values of hsip(n) cannot be computed from the problem description itself.

Moreover, it takes a certain amount of experience

Values of hsip-straight-line distances to Bucharest

Arad 366 Mehadia 24

Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Solution :

From the given graph and estimated cost, the goal state isidentifiedasBucharest
from Arad. Apply the evaluation function h (n) to find a path from Arad to Burcharest
from Ato B

(a) The initial state

oty

(b) After expanding Arad

253 3129 174

(<) After expanding Sibiu

The first node to be expanded from Arad will be Sibiu, because it is closer to Bucharest

than either Zerind or Timisoara.

The next node to be expanded will be Fagaras, because it is closest. Fagaras in turn

generates Bucharest, which is the goal.

For this particular problem, greedy best-first search using hs.p finds a solution without
ever expanding a node that is not on the solution path; hence, its search cost is minimal.
It is not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers
longer than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is

called "greedy'-at each step it tries to get as close to the goal as it can.

Minimizing h(n) is susceptible to false starts. Consider the problem of getting from lasi
to Fagaras. The heuristic suggests that Neamt be expanded first, because it is closest to
Fagaras, but it is a dead end. The solution is to go first to Vaslui-a step that is actually
farther from the goal according to the heuristic-and then to continue to Urziceni,

Bucharest, and Fagaras.

Time and space complexity : Greedy search resembles depth first search, since it
follows one path to the goal state, backtracking occurs when it finds a dead end. The
worst case time complexity is equivalent to depth first search, that is O(b™), where m is
the maximum depth of the search space. The greedy search retains all nodes in memory,
therefore the space complexity is also O(bm) The time and space complexity can be

reduced with good heuristic function.

Optimality : It is not optimal, because the next level node for expansion is selected only

depends on the estimated cost and not the actual cost.

Completeness : No, because it can start down with an infinite path and never return to

try other possibilities.

Example 2 : Finding the path from one node to another node

Straight - line distance to B from A:

A - 366
B-0

F-178
' . 08
-193
-253
- 329
-374

-

MN=-em

Solution :

From the given graph and estimated cost, the goal state IS identified as B from A.

Apply the evaluation function h(n) to find a path from A to B

(1) (1)

® ()
G) () (@D n=a74

h=253 h=329

h

(iii) S is selected for next level of expansion, since ifn) 1s minimum from S, when
comparing to T and Z

&)
h=253(8) (1) (Dn =374
h = 329

®» ®

h=366 h=193 h=178

(iv) F is selected for next level of expansion, since h(n) is minimum from F

h=253 h=0

From F, goal state B is reached. Therefore the path from A to Busing greedy search is A -
S-F-B=450 (i.e) (140 + 99 + 211)

A* search (Minimizing the total estimated solution cost)
The most widely-known form of best-first search is called A* search (pronounced "A-
star search"). A* search is both complete and optimal.

It evaluates nodes by combining g(n), the cost to reach the node, and h(n.),the cost to get

from the node to the goal

f(n) =g(n) + h(n)

g(n) - path cost from the start node to node n h(n) - estimated cost of the cheapest path

from n to the goal f (n) - estimated cost of the cheapest solution through n

A* Algorithm

function A* SEARCH(problem) returns a solution or failure return BEST-FIRST-SEARCH
(problem, g+h)

Example 1 : Route Finding Problem

Z] Oradea

= Hirsova
[Mehadia

120

Craiova r4 Eforie

Problem : Route finding Problem from Arad to Burcharest

Heuristic function : A good heuristic function for route-finding problems is Straight-

Line Distance to the goal and it is denoted as hs.p(n).

hsip(n) = Straight-Line distance between n and the goal locatation

Values of hsip-straight-line distances to Bucharest

Arad 366 Mehadia 241
Bucharest 4] Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 17 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199

Lugoj 244 Zerind 374

Stages in an A* search for Bucharest. Nodes are labeled with f (n) = g (n) + h(n)

(a) The initial state

(b) After expanding Arad

393=1404253 447=1 184329 449=754374

(c) After expanding Sibiu

5263664160 417=3 [T+ 100 553=300:253

(e) After expanding Fagaras

43075+ 774

591=338+251 uo-w»o 526=366+160 41T=1]17+100 5533004253

(f) After expanding Pitesti

41841840 G15=4554160 07=414-193

Example 2 : Finding the path from one node to another node

Heraigfar - fimes o Fivtarace oo I fear e A -

M - GG
B - o
F - 178
P - 98
B - 193
S - 253

T - 329
- 374

Solution:

From the given graph and estimated cost, the goal state is identified as B from A Apply

the evaluation function f(n) = g(n) +h(n) to find a path from Ato B

(1 @ (u) o
®» @O @

{=140+253 §-1184+5320 f=754374

(iii) S is selected for next level of expansion, since f(S) is minimum from S. when
comparing to T and £

(iv) R is selected for next level of expansion, since f{R) is minimum when companng
o A and F

=300 & 253 =553 1=317T+l=415

{v} Pas selected for next level of expansion. since ((P)is minimuom.

(‘_n 1=418+0=418
=T+ 10O =R10

From P, goal state B is reached. Therefore the path from A to B using A* searchis A - S -
R-P-B :418 (ie) {140 + 80 + 97 + 101), that the path cost is less than Greedy search
path cost.

Time and space complexity: Time complexity depends on the heuristic function and

the admissible heuristic value. Space complexity remains in the exponential order.

The behavior of A* search

Monotonicity (Consistency)

In search tree any path from the root, the f- cost never decreases. This condition is true
for almost all admissible heuristics. A heuristic which satisfies this property is called
monotonicity(consistency).

A heuristic h(n) is consistent if, for every node n and every successor n' of n generated

by any action a, the estimated cost of reaching the goal from n is no greater than the step

cost of getting to n' plus the estimated cost of reaching the goal from n'":

If the heuristic is non-monotonic, then we have to make a minor correction that restores

monotonicity.

Example for monotonic

Let us consider two nodes n and n’, where n is the parent of n’

For example

g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7. g(n’) = 54 and h(n’) = 3. then f(n’) =
gn’) +h(n’) =8
Example for Non-monotonic

Let us consider two nodes n and n’, where n is the parent of n’. For example

g(n) = 3 and h(n) = 4. then f(n) = g(n) + h(n) = 7. g(n") =4 and h(n’) = 2. then f(n") = g(n")
+h(n’) = 6.

To reach the node n the cost value is 7, from there to reach the node n' the value of cost
has to increase as per monotonic property. But the above example does not satisfy this
property. So, it is called as non-monotonic heuristic.

How to avoid non-monotonic heuristic?

We have to check each time when we generate anew node, to see if its f-cost is less that

its parent’s f-cost; if it is we have to use the parent’s f- cost instead.

Non-monotonic heuristic can be avoided using path-max equation.

f(n’) = max (f{n), g(n’) + h(n'))

Optimality

A* search is complete, optimal, and optimally efficient among all algorithms

A* using GRAPH-SEARCH is optimal if h(n) is consistent.

Completeness

A* is complete on locally finite graphs (graphs with a finite branching factor) provided

there is some constant d such that every operator costs at least d.

Drawback

A* usually runs out of space because it keeps all generated nodes in memory

Memory bounded heuristic search

The simplest way to reduce memory requirements for A* is to adapt the idea of iterative

deepening to the heuristic search context, resulting in the iterativedeepening A" (IDA*)

algorithm.

The memory requirements of A* is reduced by combining the heuristic function with

iterative deepening resulting an IDA* algorithm.

Iterative Deepening A* search (IDA*)

Depth first search is modified to use an f-cost limit rather than a depth limit for IDA*

algorithm.

Each iteration in the search expands all the nodes inside the contour for the current f-

cost and moves to the next contour with new f - cost.

Space complexity is proportional to the longest path of exploration that is bd is a good

estimate of storage requirements

Time complexity depends on the number of different values that the heuristic function

can take on

Optimality: yes, because it implies A* search.

Completeness: yes, because it implies A* search.

Disadvantage: It will require more storage space in complex domains (i.e) Each contour
will include only one state with the previous contour. To avoid this, we increase the f-
cost

limit by a fixed amount @ on each iteration, so that the total number of iteration is
proportional to 1/E. Such an algorithm is called @ admissible.

The two recent memory bounded algorithms are:

* Recursive Best First Search (RBfS)
* Memory bounded A* search (MA¥)

Recursive Best First Search (RBFS)
A recursive algorithm with best first search technique uses only linear space. It is
similar to recursive depth first search with an inclusion (i.e.) keeps track of the f-value of

the best alternative path available from any ancestor of the current node.

If the current node exceeds this limit, the recursion unwinds back to the alternative path

and replaces the f-value of each node along the path with the best f-value of its children.

The main idea lies in to keep track of the second best alternate node (forgotten node)
and decides whether it's worth to reexpand the subtree at some later time.

Algortihm For Recursive Best-First Search

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution,
or failure

RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), &)

function, RBFS(problem, node, f_limit) returns a

solution, or failure and a new f-cost limit if GOAL-TEST[problem](state)
then return node successors <- EXPAND(node, problem) if successors is
empty then return failure, @ for each s in successors do f[s]<-max(g(s) +
h(s)f[node]) repeat

best <- the lowest f-value node in successors if f[best] > {_limit then return
failure,f[best] alternative <- the second-lowest f-value among successors
result,f[best]<-

RBFS(problem,best,min(f_limit,alternative)) if result I failure then return

result

Stages in an RBFS search for the shortest route to Bucharest.

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

Al

(b) After unwinding back to Sibiu
and expanding Fagaras

(c) After switching back to Rimnicu Vilcea 1
and expanding Pitesti A L

Example:
After expanding A, S, and R, the current best leaf(P) has a value that is worse than the

best alternative path (F)

f-limit value of each recursive call is shown on top of each current node. After expanding

R, the condition f[best] >f-limit (417 > 415) is true and returns f[best] to that node.

a) After unwinding back to and expanding F

Here the f[best] is 450 and which is greater than the f-limit of 417. Therefore if returns

and unwinds with f[best] value to that node.

b) After switching back to Rand expanding P.

The best alternative path through T costs at least 447, therefore the path through R and

P is considered as the best one.

Time and space complexity : RBFS is an optimal algorithm if the heuristic function h(n)
is admissible. Its time complexity depends both on the accuracy of the heuristic function
and on how often the best path changes as nodes are expanded. Its space complexity is

0O(bd), even though more is available.

A search techniques (algorithms) which uses all available memory are:

a. MA* (Memory - bounded A*)
b. SMA* (Simplified MA¥*)

Simplified Memory - bounded A* search (SMA*)

SMA* algorithm can make use of all available memory to carry out the search.

Properties of SMA* algorithm:

(a) It will utilize whatever memory is made available to it.

(b) It avoids repeated states as far as its memory allows.

It is complete if the available memory is sufficient to store the deepest solution path.

It is optimal if enough memory is available to store the deepest solution path. Otherwise,
it returns the best solution that can be reached with the available memory.

Advantage: SMA* uses only the available memory.

Disadvantage: If enough memory is not available it leads to unoptimal solution.

Space and Time complexity: depends on the available number of node.

The SMA* Algorithm

function SMA*(problem) returns a solution sequence inputs: problem, a problem

local variables: Queue, a queue of nodes ordered by
f-cost

Queue<-MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])}) loop do

if Queue is empty then return failure n<-deepest least-f-cost node in Queue if GOAL-
TEST(n) then return success s<-NEXT-SUCCESSOR(n)

if sis not a goal and is at maximum depth then f{s)<- @ else

fs)<- MAX(f(n), g(s)+h(s))

if all of n’s successors have been generated then update n’s f-cost and those of its ancestors
if necessary if SUCCESSORS(n) all in the memory then remove n from Queue

if memory is full then

delete shallowest, highest-f-cost node in Queue remove it from its parent's successor list

insert its parent on Queue if necessary insert s on Queue end

Example:

The values at the nodes are given as per the A* function i.e. g+h=f

From the Figure we identified that the goal states are D,F,],I because the h value of these

nodes are zero (marked as a square)

Available memory - 3 nodes of storage space.

Task: Find a optimal path from A to anyone of the goal state.

Solution:

(i) @ Initial state

12
(i1) 2 One successor to be added at each stage, therefore B is added to A.
(8)15
@
(1i1) Now, all the children of A is expanded, update the f — cost of root
e @ node to the minimum of its children, that is f(A) is 13, the memory
: 1s now full.

15 3

{iv) o 13{15)

(v)

(vi) Q 15

15 24
{vii)
(viii)
24(=) (B)
®
20
HEURISTIC FUNCTIONS

Now, expand the node G to its next successor, but already the
memory is full. B is discarded from the queue and it is added as
a forgotten descendent of A, which 1s shown in the parenthesis.
The node H 1s added to G, with /{H)=18 but H is not a goal state
and it uses all the available memory. Hence there is no way to
find a solution through H, make f{iH) = =»

G 1s expanded again. We drop H and add 1 (i.e) f{iI}) = 24. The
value of G is updated with minimum of H and I and the forgotien
value in the parenthesis (i.e) AG) = 24 (=) Again the valuc of A
is also updated with mimimum of fiB) = 15 and AG) = 24 and
the forgotten value in the parenthesis (i.e) f{A) = 15(15). Notice
that I is a goal node, but it might not be the best solution because
A's f~cost is only 15. 1t leads a path in another direction.

The path from the root (A) leads to B because f{A) = 15 in the
previous step. Therefore B is generated for the second time.

From B, C is generated, which is a non goal state (i.e) f{iC) ==

Drop C, add the another successor (D) 1o B (i.¢) fAD) = 20, and this
value 1s inherited by B and A.

Now, the deepest, lowest f - cost nade is D and it is a goal state also, the
search terminates with D as the goal state path=A-B-D.

The 8-puzzle was one of the earliest heuristic search problems.

Given:

ann

Jﬂm\l‘iﬁ!"’x{l.;. ‘
BT

SF
G

e e

g : E
eyAd hoeersarseacs | ==
éng!! im!g

Start State Goal State

Task : Find the shortest solution using heuristic function that never over estimates the

number of steps to the goal.

Solution : To perform the given task two candidates are required, which are named as

hi and h»

h; = the number of misplaced tiles.

All of the eight tiles are out of position in the above figure, so the start state would have
h; = 8. hy is an admissible heuristic, because it is clear that any tile that is out of place
must be moved at least once.

hz = the sum of the distances of the tiles from their goal positions. Because tiles cannot
move along diagonals, the distance we will count is the sum of the horizontal and
vertical distances. This is called as the city block distance or Manhattan distance. h; is
also admissible, because any move can do is move one tile one step closer to the goal.
Tiles 1 to 8 in the start state give a Manhattan distance of

hy=3+1+2+2+2+3+3+2=18.

True solution costis hl + h2 = 26

Example :

o

KN
-
N
(%}

6 1 8 8 4
7 3 2 7T 6 5
Initial state Goal state

h1=7

hy)=2+3+3+2+4+2+0+2=18

True Solution Costis h1 + hy, =25

Effective branching factor(b*)

In the search tree, if the total number of nodes expanded by A* for a particular problem
is N, and the solution depth is d, then b* is the branching factor that a uniform tree of
depth d, would have N nodes. Thus:

N=I+b* + (b*)2 + (b*)3 + +(b*)d

Example:

For example, if A* finds a solution at depth 5 using 52 nodes, then the effective

branching factor is 1.92.

Depth =5
N =52

Effective branching factor is 1.92.

Relaxed problem

A problem with less restriction on the operators is called a relaxed problem. If the given
problem is a relaxed problem then it is possible to produce good heuristic function.

Example: 8 puzzle problem, with minimum number of operators.

Local Search Algorithms And Optimization Problems

In many optimization problems, the path to the goal is irrelevant; the goal state itself is
the solution.

The best state is identified from the objective function or heuristic cost function. In such
cases, we can use local search algorithms (ie) keep only a single current state, try to

improve it instead of the whole search space explored so far

For example, in the 8-queens problem, what matters is the final configuration of queens,

not the order in which they are added.

Local search algorithms operate a single current state (rather than multiple paths) and
generally move only to neighbors of that state. Typically, the paths followed by the
search are not retained.

They have two key advantages:

(1) They use very little memory-usually a constant amount; (2) They can often find
reasonable solutions in large or infinite (continuous) state spaces for which systematic
algorithms are unsuitable.

The local search problem is explained with the state space land scape. A landscape has:

Location - defined by the state

Elevation - defined by the value of the heuristic cost function or objective function, if

elevation corresponds to cost then the lowest valley (global minimum) is achieved. If

elevation corresponds to an objective function, then the highest peak (global maximum)

is achieved.

A complete local search algorithm always finds a goal if one exists, an optimal algorithm

always finds a global minimum/maximum.

A one-dimensional state space landscape in which elevation corresponds to the
objective function.

objective function tobal —
| _—8 obal maximum

shoulder

N

__ local maximum

S

“flat” local maximum

- state space
cutrent
state

Applications

Integrated - circuit design

Factory - floor layout

Job-shop scheduling

Automatic programming

Vehicle routing

Telecommunications network Optimization

Advantages

Constant search space. It is suitable for online and offline search
The search cost is less when compare to informed search
Reasonable solutions are derived in large or continuous state space for which systematic

algorithms are unsuitable.

Some of the local search algorithms are:

Hill climbing search (Greedy Local Search)
Simulated annealing
. Local beam search

Genetic Algorithm (GA)

WD

Hill Climbing Search (Greedy Local Search)

The hill-climbing search algorithm is simply a loop that continually moves in the
direction of increasing value. It terminates when it reaches a "peak" where no neighbor
has a higher value. The algorithm does not maintain a search tree, so the current node
data structure need only record the state and its objective function value. At each step

the current node is replaced by the best neighbor;

Hill-climbing search algorithm

function HILL-CLIMBING(problem) returns a state that is a local
maximum

inputs: problem, a problem

local variables:current, a node and neighbor, a node current <- MAKE-
NODE(INITIAL-STATE[problem]) loop do

neighbor <- a highest-valued successor of current if VALUE[neighbor]

<= VALUE|[current] then return STATE[current] current <- neighbor

To illustrate hill-climbing, we will use the 8-queens, where each state has 8 queens on
the board, one per column. The successor function returns all possible states generated
by moving a single queen to another square in the same column (so each state has 8 x 7

= 56 successors).

Hill-climbing algorithms typically choose randomly among the set of best successors, if

there is more than one.

The heuristic cost function h is the number of pairs of queens that are attacking each

other, either directly or indirectly.

The global minimum of this function is zero, which occurs only at perfect solutions.

K- l |
T T =t
— [L1

An 8-queens state with heuristic cost estimate h = 17, showing the value of h for each possible

successor obtained by moving a queen within its column. The best moves are marked.

18 () 14 R 13 || 14

16 15 || 14 (BB 16
14 | K| 15 [N 15 (| 14

14 16 16
17

W
"B
15 B W
14 17 |H | 14 |§B| 18

Alocal minimum in the 8-queens state space; the state has h = 1 but every successor has

a higher cost.

Hill climbing often gets stuck for the following reasons:

Local maxima or foot hills : a local maximum is a peak that is higher than each of its

neighboring states, but lower than the global maximum

Example :

O
oo

2
The evaluation function value is maximum at C and from their there is no path exist for
expansion. Therefore C is called as local maxima. To avoid this state, random node is

selected using back tracking to the previous node.

Plateau or shoulder: a plateau is an area of the state space landscape where the

evaluation function is flat. It can be a flat local maximum.

Example :

Cand

The evaluation function value of B C D are same, this is a state space of plateau. To avoid

this state, random node is selected or skip the level (i.e) select the node in the next level

Ridges: Ridges result in a sequence of local maxima that is very difficult for greedy

algorithms to navigate. But the disadvantage is more calculations to be done function

Structure of hill climbing drawbacks

Local
maxima

Goal state

Variants of hill-climbing

Stochastic hill climbing - Stochastic hill climbing chooses at random from among the

uphill moves; the probability of selection can vary with the steepness of the uphill move.

First-choice hill climbing - First-choice hill climbing implements stochastic hill
climbing by generating successors randomly until one is generated that is better than

the current state

Random-restart hill climbing - Random-restart hill climbing adopts the well known
adage, "If at first you don't succeed, try, try again." It conducts a series of hill-climbing
searches from randomly generated initial state, stopping when a goal is found.

Simulated annealing search

An algorithm which combines hill climbing with random walk to yield both efficiency

and completeness

In metallurgy, annealing is the process used to temper or harden metals and glass by

heating them to a high temperature and then gradually cooling them

When the search stops at the local maxima, we will allow the search to take some down
Hill steps to escape the local maxima by allowing some "bad" moves but gradually
decrease their size and frequency. The node is selected randomly and it checks whether
it is a best move or not. If the move improves the situation, it is executed. BE variable is
introduced to calculate the probability of worsened. A Second parameter T is introduced

to determine the probability.

The simulated annealing search algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a
solution state

inputs: problem, a problem schedule, a mapping from time to
"temperature" local variables: current, a node

next, a node

T, a "variable" controlling the probability of downward steps

current <- MAKE-NODE(INITIAL-STATE[problem]) for t<-1to2 do T
<- schedule[t]

if T = 0 then return current next <- a randomly selected successor of
current

BE <- VALUE[next] - VALUE[current] if ZE > 0 then current <- next else

current <- next only with probability e2E/T

Property of simulated annealing search

T decreases slowly enough then simulated annealing search will find a global optimum

with probability approaching one

Applications

VLSI layout

Airline scheduling

Local beam search

Local beam search is a variation of beam search which is a path based algorithm. It uses
K states and generates successors for K states in parallel instead of one state and its

successors in sequence. The useful information is passed among the K parallel threads.

The sequence of steps to perform local beam search is given below:

Keep track of K states rather than just one.

Start with K randomly generated states.

At each iteration, all the successors of all K states are generated.

If anyone is a goal state stop; else select the K best successors from the complete list and

repeat.

This search will suffer from lack of diversity among K states.

Therefore a variant named as stochastic beam search selects K successors at random,
with the probability of choosing a given successor being an increasing function of its
value.

Genetic Algorithms (GA)

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor
states are generated by combining two parent states, rather than by modifying a single

state

GA begins with a set of k randomly generated states, called the population. Each state,

or individual, is represented as a string over a finite alphabet.

For Example an 8 queen’s state could be represented as 8 digits, each in the range from 1

to 8.
Initial population: K randomly generated states of 8 queen problem

Individual (or) state: Each string in the initial population is individual (or) state. In one
state, the position of the queen of each column is represented.

Example: The state with the value 24748552 is derived as follows:

2 4 7 4 8 5 6 2 = 24748562

The Initial Population (Four randomly selected States) are:

|2a7a8ss2}

| 327524111

{Z2ea1s5124a]

|32s5a3=213]

Evaluation function (or) Fitness function: A function that returns higher values for

better State. For 8 queens problem the number of non attacking pairs of queens is

defined as fitness function

Minimum fitness value is 0

Maximum fitness value is : 8*7/2 = 28 for a solution
The values of the four states are 24, 23, 20, and 11.

The probability of being chosen for reproduction is directly proportional to the fitness

score, which is denoted as percentage.

24 / (24+23+20+11) =31%
23/ (24+23+20+11) =29%
20 / (24+23+20+11) = 26%
11/ (24+23+20+11) = 14%

Selection : A random choice of two pairs is selected for reproduction, by considering
the probability of fitness function of each state. In the example one state is chosen twice

probability of 29%) and the another one state is not chosen (Probability of 14%)

20 e 32752¥¢

24415124

[32543213],, ,.¥[24418[124]
Initial Fitness Selaction

population function

Cross over: Each pair to be mated, a crossover point is randomly chosen. For the first

pair the crossover point is chosen after 3 digits and after 5 digits for the second pair.

First pair Second pair
[327552411] [32752411

[24748552] [24415124]

offspring : Offspring is created by crossing over the parent strings in the crossover
point. That is, the first child of the first pair gets the first 3 digits from the first parent
and the remaining digits from the second parent. Similarly the second child of the first
pair gets the first 3 digits from the second parent and the remaining digits from the first

parent.

(32705241 1 32748552
[24748552%75241 1}
(32752011 32752124}
2441512%41 5411]

The 8-queens states corresponding to the first two parents

Mutation : Each location is subject to random mutation with a small independent

probability. One digit was mutated in the first, third, and fourth offspring

Mutation

Production of Next Generation of States

24748552_;—31{ "‘v»{—. :

24415124 | 20 {g""? T55a11]

32543213 | 11 14% 24415124
(a) ih) (c) (dx e}
Imnal Population Fimess Functon Selaction Crossover Mutstion

The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for

mating in (c). They produce offspring in (d), which are subject to mutation in(e).

function GENETIC-ALGORITHM ((population, FITNESS-FN) returns an individual
inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual repeat
new-population <- empty set

loop for i from 1 to SIZE(population) do x <- RANDOM-SELECTION(Population,FITNESS-FN) y
<- RANDOM-SELECTION(Population,FITNESS-FN) child <- REPRODUCE(yX),

if (small random probability) then child MUTATE(child) add child to new-population
population <- new-population

until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN

function REPRODUCE(x,y), returns an individual inputs: x, y, parent individuals n <-
LENGTH(x)

¢ <-random number from 1 to n

return APPEND(SUBSTRING(x,1,c),SUBSTRING(y, c + 1,n))

The sequence of steps to perform GA is summarized below:

* Asuccessor state is generated by combining two parent states.

» Start with K randomly generated states population

* Each state or individual is represented as a string over a finite alphabet (often a string of
O'sand 1's)

* Evaluation function (fitness function) is applied to find better states with higher values.

* Produce the next generation of states by selection, crossover and mutation

Local Search In Continuous Spaces

Local Search in continuous space is the one that deals with the real world problems.

* One way to solve continuous problems is to discretize the neighborhood of each state.

Stochastic hill climbing and simulated annealing are applied directly in the continuous
space

Steepest - ascent hill climbing is applied by updating the formula of current state

X <- X + 2 Ef(x)

@- small constant

2f(x) - magnitude & direction of the steepest slope.
Empirical gradient, line search, Newton-Raphson method can be applied in this domain
to find the successor state.
Local search methods in continuous space may also lead to local maxima, ridges and

plateau. This situation is avoided by using random restart method.

Online Search Agents and Unknown Environments

Online search agent operates by interleaving computation and action, that is first it takes

an action, then it observes the environment and computes the next action, whereas ,the

offline search computes complete solution (problem solving agent) before executing the

problem solution.

online search agents suits well for the following domains.

¢ Dynamic or Semi dynamic domain

+» Stochastic domain

Online search is a necessary idea for an exploration problem, where the states and

actions are unknown to the agent. For example, consider a newborn baby for

exploration problem and the baby's gradual discovery of how the world works is an

online search process

Online search problems

An online search problem can be solved by an agent executing actions rather than by a
computational process. The agent knows the following terms to do the search in the

given environment

ACTIONS(S) - which returns a list of actions allowed in state s ;
c(s, a,s") - The step-cost function known to the agent when it reaches s’

GOAL-TEST(S).

Searching With Partial Information

When the knowledge of the states or actions is incomplete about the environment, then
only partial information is known to the agent. This incompleteness lead to three distinct
problem types. They are:

(i) Sensorless problems (conformant problems) : If the agent has no sensors at all,
then it could be in one of several possible initial states, and each action might therefore

lead to one of possible successor states.

(i) Contigency problems: If the environment is partially observable or if actions are
uncertain, then the agent's percepts provide new information after each action. A
problem is called adversarial if the uncertainty is caused by the actions of another agent.

To handle the situation of unknown circumstances the agent needs a contigency plan.

(iii) Exploration problem: It is an extreme case of contigency problems, where the
states and actions of the environment are unknown and the agent must act to discover

them.
CONSTRAINT SATISFACTION PROBLEMS(CSP)
Constraint satisfaction problems (CSP) are mathematical problems where one must find

states or objects that satisfy a number of constraints or criteria. A constraint is a

restriction of the feasible solutions in an optimization problem.

Some examples for CSP's are:

The n-queens problem

A crossword puzzle

A map coloring problem

The Boolean satisfiability problem

A cryptarithmetic problem

All these examples and other real life problems like time table scheduling, transport

scheduling, floor planning etc. are instances of the same pattern,

A Constraint Satisfaction Problem(or CSP) is defined by a set of variables {X{,Xz,...Xn)}
and a set of constraints {C1,Cz,...,.Cm}. Each variable X has a nonempty domain D, of
possible values. Each constraint C; involves some subset of variables and specifies the

allowable combinations of values for that subset.

A State of the problem is defined by an assignment of values to some or all of the
variables,{Xi = vj, Xj = vj,...}. An assignment that does not violate any constraints is called a
consistent or legal assignment.

A complete assignment is one in which every variable is mentioned, and a solution to a
CSP is a complete assignment that satisfies all the constraints. Some CSPs also require a
solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

The map coloring problem. The task of coloring each region red, green or blue in such a

way that no neighboring regions have the same color.

Map of Australia showing each of its states and territories

Northern
Territory

* Westemn
(Australia
\ South
"\ Australia
A\ o~ & New South Walgs
\\ N /
' I & VA
e \ Victoria
o TR
: % S 0 e e . Tasmania
Variables WA, NT', Q, NSW, V, SA, T o
Domains 1), = |red, green, blue)

Constraints: adjacent regions must have different colors
eg., WA= NT (if the language allows this), or
(WA NT) = | (red, green). (red.blue). (green, red), (green. blue). . . .|

We are given the task of coloring each region either red, green, or blue in such a way that
the neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA,
and T.

The domain of each variable is the set {red, green, blue}.

The constraints require neighboring regions to have distinct colors: for example, the

allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

(The constraint can also be represented as the inequality WA [NT)

There are many possible solutions, such as

{ WA =red, NT = green, Q =red, NSW = green, V =red ,SA = blue,T = red}.

Constraint Graph : A CSP is usually represented as an undirected graph, called constraint

graph where the nodes are the variables and the edges are the binary constraints.

The map-coloring problem represented as a constraint graph.

Constraint graph: nodes are variables, arcs show constraints

@

e —
&

CSP can be viewed as a standard search problem as follows :

» Initial state : the empty assignment {},in which all variables are unassigned.

» Successor function : a value can be assigned to any unassigned variable, provided that
it does not conflict with previously assigned variables.

» Goal test : the current assignment is complete.

» Path cost : a constant cost(E.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there

are n variables. So Depth first search algorithms are popular for CSPs.

Varieties of CSPs

Discrete variables

Discrete variables can have

+ Finite Domains

¢ Infinite domains
Finite domains

The simplest kind of CSP involves variables that are discrete and have finite domains.

Map coloring problems are of this kind. The 8-queens problem can also be viewed as
finite-domain CSP, where the variables Q1,Q>,.....Qs are the positions each queen in
columns 1,....8 and each variable has the domain

{1,2,3,4,5,6,7,8}.

If the maximum domain size of any variable in a CSP is d, then the number of possible

complete assignments is O(dn) - that is, exponential in the number of variables.

Finite domain CSPs include Boolean CSPs, whose variables can be either true or false.

Infinite domains

Discrete variables can also have infinite domains - for example, the set of integers or
the set of strings. With infinite domains, it is no longer possible to describe constraints
by enumerating all allowed combination of values. For example, if Jobl, which takes five
days, must precede Jobs, then we would need a constraint language of algebraic

inequalities such as

Startjob1 + 5 <= Startjobs.

Continuous domains

CSPs with continuous domains are very common in real world. For example, in
operation research field, the scheduling of experiments on the Hubble Telescope
requires very precise timing of observations; the start and finish of each observation and
maneuver are continuous-valued variables that must obey a variety of astronomical,

precedence and power constraints.

The best known category of continuous-domain CSPs is that of linear programming
problems, where the constraints must be linear inequalities forming a convex region.
Linear programming problems can be solved in time polynomial in the number of

variables.

Varieties of constraints :

Unary constraints - Which restricts a single variable.

Example : SA * green

Binary constraints - relates pairs of variables.

Example : SA * WA

Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles. Each letter stands for a distinct digit

The aim is to find a substitution of digits for letters such that the resulting sum is

arithmetically correct, with the added restriction that no leading zeros are allowed.

Constraint graph for the cryptarithmetic Problem

m|+
o= -
Clz =
A10 O

Variabless FTU W RO X, X5 X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F,\T,U,W,R,O)
O+0=R+10- X4, etc.

Alldiff constraint can be broken down into binary constraints - F@ T, F& U, and so on.
The addition constraints on the four columns of the puzzle also involve several variables

and can be written as

0+0=R+10.X1X1+W+W=U+10.X;
X1+T+T=0+10.X3
X3=F

Where X, X2, and X3 are auxiliary variables representing the digit (0 or 1) carried over

into the next column.

Real World CSP's : Real world problems involve read-valued variables,

* Assignment problems Example : who teaches what class.
Timetabling Problems Example : Which class is offered when & where?
Transportation Scheduling

Factory Scheduling

Backtracking Search for CSPs
The term backtracking search is used for depth-first search that chooses values for

one variable at a time and backtracks when a variable has no legal values left to assign.

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-DACKTRACKING(] |, esp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignmeni is complete then return assignment
var+— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp), assigrment, esp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if valae is consistent with assignment given CONSTRAINTS[esp] then

add | ear value} to assigniment

result — RECURSIVE-BACKTRACKING(assigrment, esp)

if resuli = faidare then return resall

remove | e value} from assigrimert

veturn fadlure

Part of search tree generated by simple backtracking for the map coloring

problem

[Wd=red | [WA=green WA=blue |

WA=red WA=red
NT=green NT=blue
|
WA=red WA=red
NT=green NT=green
O=red O=blue
= 1

Improving backtracking efficiency is done with general purpose methods, which can

give huge gains in speed.

* Which variable should be assigned next and what order should be tried?
* What are the implications of the current variable assignments for the other unassigned
variables?

* (Can we detect inevitable failure early?

Variable & value ordering: In the backtracking algorithm each unassigned variable is

chosen from minimum Remaining Values (MRV) heuristic, that is choosing the variable
with the fewest legal values. It also has been called the "most constrained variable" or

"fail-first" heuristic.

If the tie occurs among most constrained variables then most constraining variable is
chosen (i.e.) choose the variable with the most constraints on remaining variable. Once a
variable has been selected, choose the least constraining value that is the one that rules

out the fewest values in the remaining variables.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that

the variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the

constraints earlier in the search, or even before the search has started, we can drastically

reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking.
Whenever a variable X is assigned, the forward checking process looks at each
unassigned variable Y that is connected to X by a constraint and deletes from Y ’s domain

any value that is inconsistent with the value chosen for X.

The progress of a map-coloring search with forward checking.

WA NT 0 NSW v Y T

Initial domains [R 6 B|RG B|[RG B|RG B|[RGB|RGB|RG B
After Wa=red |® G B|[RGB|[RGB|[RGB| GB|RGB
After Q=green |R) B R B[RGB B|RG B
After V=biue |B) Bl @ |[R RG B

In forward checking WA = red is assigned first; then forward checking deletes red from
the domains of the neighboring variables NT and SA. After Q = green, green is deleted
from the domains of NT, SA, and NSW. After V = blue, blue is deleted from the domains of
NSW and SA, leaving SA with no legal values. NT and SA cannot be blue

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them.

Constraint propagation is the general term for propagating the implications of a

constraint on one variable onto other variables.

Constraint propagation repeatedly enforces constraints locally to detect
inconsistencies. This propagation can be done with different types of consistency

techniques. They are:

Node consistency (one consistency)
Arc consistency (two consistency)

Path consistency (K-consistency)

Node consistency

* Simplest consistency technique

* The node representing a variable V in constraint graph is node consistent if for every
value X in the current domain of V, each unary constraint on V is satisfied.

* The node inconsistency can be eliminated by simply removing those values from the

domain D of each variable V that do not satisfy unary constraint on V.

Arc Consistency

The idea of arc consistency provides a fast method of constraint propagation that is
substantially stronger than forward checking. Here, 'arc’ refers to a directed arc in the
constraint graph, such as the arc from SA to NSW. Given the current domains of SA and
NSW, the arc is consistent if, for every value x of SA, there is some value y of NSW that is

consistent with x.

@

Figure: Australian Territories
In the constraint graph, binary constraint corresponds to arc. Therefore this type of

consistency is called arc consistency.

Arc (vi, vj) is arc consistent if for every value X the current domain of v; there is some
value Y in the domain of vj such vi =X and v;=Y is permitted by the binary constraint

between v; and v;j

Arc-consistency is directional ie if an arc (vi vj) is consistent than it does not

automatically mean that (vj, vi) is also consistent.

An arc (vi, vj) can be made consistent by simply deleting those values from the domain of
D; for which there is no corresponding value in the domain of Dj such that the binary
constraint between Vi and v; is satisfied - It is an earlier detection of inconstency that is

not detected by forward checking method.

The different versions of Arc consistency algorithms are exist such as AC-I, AC2,AC-3,

AC-4, AC-S; AC-6 & AC-7, but frequently used are AC-3 or AC-4.
AC - 3 Algorithm

In this algorithm, queue is used to cheek the inconsistent arcs.
When the queue is not empty do the following steps:

P Remove the first arc from the queue and check for consistency.

P If it is inconsistent remove the variable from the domain and add a new arc to the queue

P Repeat the same process until queue is empty

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, Xz, .. ., Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi, Xj) <- REMOVE-FIRST(queue) if REMOVE-INCONSISTENT-
VALUEXS(xi,Xj) then for each X in NEIGHBORS[X;) do add (Xx, Xi)to

queue

function REMOVE-INCONSISTENT-VALUEXS(x;,xj) returns true iff we
remove a value removed <-false

for each x in DOMAIN|[x;] do

if no value y in DOMAIN[xj] allows (x, y) to satisfy the constraint
between X; and X;

then delete x from DOMAIN|[XiJremoved <- true return removed

k-Consistency (path Consistency)

A CSP is k-consistent if, for any set of k - 1 variables and for any consistent assignment to

those variables, a consistent value can always be assigned to any kth variable

w+ 1-consistency means that each individual variable by itself is consistent; this is also called
node consistency.
¥ 2-consistency is the same as arc consistency.
3-consistency means that any pair of adjacent variables can always be extended to

a third neighboring variable; this is also called path consistency.
Handling special constraints
Alldiff constraint - All the variables involved must have distinct values.
Example: Crypt arithmetic problem
The inconsistency arises in Alldiff constraint when m>n (i.e.) m variables are involved in
the constraint and n possible distinct values are there. It can be avoided by selecting the
variable in the constraint that has a singleton. domain and delete the variable's value

from the domain of remaining variables, until the singleton variables are-exist. This

simple algorithm will resolve the inconsistency of the problem.

Resource constraint (Atmost Constraint) - Higher order constraint or atmost
constraint, in which consistency is achieved by deleting the maximum value of any

domain if it is not consistent with minimum values; of the other domains.
Intelligent backtracking

Chronological backtracking : When a branch of the search fails, back up to the
preceding variable and try a different value for it (i.e.) the most recent decision point is
revisited. This will lead to inconsistency in real world problems (map coloring problem)
that can't be resolved. To overcome the disadvantage of chronological backtracking, an

intelligence backtracking method is proposed.

Conflict directed backtracking: When a branch of the search fails, backtrack to one of
the set of variables that caused the failure-conflict set. The conflict set for variable X is
the set of previously assigned variables that are connected to X

by constraints. A backtracking algorithm that was conflict sets defined in this way

is called conflict directed backtracking
Local Search for CSPs

4 Local search method is effective in solving CSP's, because complete state formulation is
defined.
¥ Initial state - assigns a value to every variable.

Successor function - works by changing the value of each variable

Advantage : useful for online searching when the problem changes.

Ex : Scheduling problems

The MIN-CONFLICTS algorithm for solving CSPs by local search.

function MIN-CONFLICTS (CSP, max-steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem max-steps, the number of
steps allowed before giving up current <- an initial complete assignment
for csp for i = 1 to max-steps do

if current is a solution for csp then return current var <- a randomly
chosen, conflicted variable from VARIABLES[CSP]

value <- the value v for var that minimizes

CONFLICTS(var, v, current, csp) set var = value in current return failure

A two-step solution for an &-queens problem using min-conflicts. At each stage, a queen
is chosen for reassignment in its column. The number of conflicts (in this case, the

number of attacking queens) is shown in each square.

The structure of problems

The complexity of solving a CSP-is strongly related to the structure of its constraint
graph. If CSP can be divided into independent sub problems, then each sub problem is
solved independently then the solutions are combined. When the n variables are divided
as n/c subproblems, each will take dcwork to solve. Hence the total work is O(d¢ n/c). If

n=I0, c=2 then 5 problems are reduced and solved in less time.

Completely independent sub problems are rare, in most cases sub problems of a CSP are

connected

The way how to convert the constraint graph of a tree structure CSP into linear ordering
of the variables consistent with the tree is shown in Figure. Any two variables are

connected by atmost one path in the tree structure

Tree-Structured CSP

Linear ordering

If the constraint graph of a CSP forms a tree structure then it can be solved in linear time
number of variables). The algorithm has the following steps.

1. Choose any variable as the root of the tree and order the variables from the root to
the leaves in such a way that every node's parent in the tree preceeds it in the ordering
label the variables X; Xn in order, every variable except the root has exactly one parent

variable.

2. For j from n down 2, apply arc consistency to the arc (Xi, Xj), where X; is the parent

of X; removing values from Domain [Xi] as necessary.

3. For j from 1 to n, assign any value for Xj consistent with the value assigned for X;,

where X is the parent of Xj Keypoints of this algorithm are as follows:

Step-(2), CSP is arc consistent so the assignment of values in step (3) requires no
backtracking.
Step-(2), the arc consistency is applied in reverse order to ensure the consistency of

arcs that are processed already.

General constraint graphs can be reduced to trees on two ways. They are:

(a) Removing nodes - Cutset conditioning

(b) Collapsing nodes together - Tree decomposition.
(a) Removing nodes - Cutset conditioning
% Assign values to some variables so that the remaining variables form a tree.

¢ Delete the value assigned variable from the list and from the domains of the other

variables any values that are inconsistent with the value chosen for the variable.
% This works for binary CSP's and not suitable for higher order constraints.
¢ The remaining problem (tree structure) is solved in linear order time variables.
Example: In the constraint graph of map coloring problem, the region SA is assigned
with a value and it is removed to make the problem in the form of tree structure, then it
is solvable in linear time
The original constraint graph

The constraint graph after the removal of SA

(&)

€ If the value chosen for the variable to be deleted for tree structure is wrong, then the

()

following algorithm is executed.

(i) Choose a subset S from VARIABLES[CSP] such that the constraint graph becomes a

tree after removal of S-cycle cutset.

(ii) For each variable on S with assignment satisfies all constraints on S.
* Remove from the deomains of the remaining variables any values that are
inconsistent with the assignment for S.

* If the remaining CSP has a solution, return it with the assignment for S.

(b) Collapsing nodes together-Tree decomposition

@ Construction of tree decomposition the constraint graph is divided into a set of

subproblems, solved independently and the resulting solutions are combined.
€ Works well, when the subproblem is small.
€ Requirements of this method are:
* Everyvariable in the base problem should appear in atleast one of the subproblem.

» If the binary constraint is exist, then the same constraint must appear in atleast one of

the subproblem. .

» If the variable appears in two subproblems in the tree, it must appear in every
subproblem along the path connecting those subproblems, that is the variable should be

assigned with same value and constraint in every subproblem.

A tree decompositon of the constraint graph

Solution

» If any subproblem has no solution then the entire problem has no solution.

» If all the sub problems are solvable then a global solution is achieved.

Adversarial Search

Competitive environments, in which the agent's goals are in conflict, give rise to

adversarial search problems-often known as games.

In our terminology, games means deterministic, fully observable environments in which
there are two agents whose actions must alternate and in which the utility values at the
end of the game are always equal and opposite. For example, if one player wins a game

of chess (+1), the other player necessarily loses (-1).

There are two types of games

1. Perfect Information (Example : chess, checkers) 2. Imperfect Information (

Example : Bridge, Backgammon)

In game playing to select the next state, search technique is required. Game playing itself
is considered as a type of search problems. But, how to reduce the search time to make

on a move from one state to another state.

The pruning technique allows us to ignore positions of the search tree that make no

difference to the final choice.

Heuristic evaluation function allows us to find the utility (win, loss, and draw) of a

state without doing a complete search.

Optimal Decisions in Games

A Game with two players - Max and Min.

Max, makes a move first by choosing a high value and take turns moving until the game
is over
Min, makes a move as a opponent and tries to minimize the max player score, until the

game is over.

At the end of the game (goal state or time), points are awarded to the winner.

The components of game playing are :

Initial state - Which includes the board position and an indication of whose move and
identifies the player to the move.

Successor function - which returns a list of (move, state) pairs, each indicating a legal

move and the resulting state.

Terminal test - Which determines the end state of the game. States where the game has

ended are called terminal states.

Utility function (also called an objective function or payoff function), - which gives a
numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, with
values +1, -1, or 0. Some games have a wider, variety of possible outcomes; the payoffs
in backgammon range from +192 to -192.

The initial state and the legal moves for each side define the game tree for the game
Example : Tic - Tac - Toe (Noughts and Crosses)

From the initial state, MAX has nine possible moves. Play alternates between MAX'S
placing an X and MIN'S placing an O until we reach leaf nodes corresponding to

ter.minal states such that one player has three in a row or all the squares are filled.

Initial State : Initial Board Position

Successor Function : Max placing X’s in the empty square
Min placing O’s in the empty square

Goal State : We have three different types of goal state, any one to be reached.

i) If the O’s are placed in one column, one row (or) in the diagonal continuously then, it is a
goal state of min player. (Won by Min Player)

i) If the X’s are placed in one column, one row (or) in the diagonal continuously then, it is a
goal state of min player. (Won by Max Player) iii) If the all the nine squares are filled by
either X or O and there is no win condition by Max and Min player then it is a state of
Draw between two players.

Some terminal states

Won by Min Players

X 0
0
0
Won by Max Players
X 0
X
X 0
Draw between two Players
X 0
0 0
X 0

Utility function

Win =1 Draw =0 Loss=-1

A (partial) search tree for the game of tic-tac-toe

MAX ix)

e BETTEWE] I O D B T
e Bd 5d B EEEC‘E’EPi R ke B B
s=sfi==sj=s 1 a
wox o] FEF] BT
| =T -
] 5
MIN <o) :on.xl' %j(_f*:ﬂ r‘{‘:"!_
._Aﬂ.*___fb_:::._ A
| T i
" | I
X[olx| (x[olx] [X[ojx] -
TERMINAT olx Ogjr)q x| |
ol [xlols]
Unhity -1 o +1

Optimal strategies

In a normal search problem, the optimal solution would be a sequence of moves leading
to a goal state-a terminal state that is a win. In a game, an optimal strategy leads to
outcomes at least as good as any other strategy when one is playing an infallible

opponent

Given a game tree, the optimal strategy can be determined by examining the minimax

value of each node, which we write as MINIMAX- VALUE(n).

MINIMAX- VALUE(n) =

UTILITY(n) if n is a terminal state
Maxs<€ successorsin) MAX-VALUE(s) if nis a MAX node
Minse successorsin) MAX-VALUE(s) if nis a MIN node

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree.

The possible moves for MAX at the root node are labeled a, az, and as. The possible

replies to ai for MIN are b1, bz, bz, and so on.

A Two Ply Game Tree

MAX

Max

Player
- Moves
by
Min
Player
The terminal nodes show the utility values for MAX; @ The other nodes are labeled with
their minimax values.
MAX'S best move at the root is aj, because it leads to the successor with the highest
minimax value
MIN'S best reply is by, because it leads to the successor with the lowest minimax value.
The root node is a MAX node; its successors have minimax values 3, 2, and 2; so it has a
minimax value of 3.
The first MIN node, labeled B, has three successors with values 3, 12, and 8, so its

minimax value is 33

The minimax algorithm

The minimax algorithm computes the minimax decision from the current state. It uses
a simple recursive computation of the minimax values of each successor state, directly

implementing the defining equations. The recursion proceeds all the way down to the

leaves of the tree, and then the minimax values are backed up through the tree as the

recursion unwinds.

For Example

MAX

MIN 3

> Y 4

,/L
A A

The algorithm first recurses down to the three bottom left nodes, and uses the UTILITY
function on them to discover that their values are 3, 12, and 8 respectively. Then it takes
the minimum of these values, 3, and returns it as the backed-up value of node B. A
similar process gives the backed up values of 2 for C and 2 for D. Finally, we take the
maximum of 3,2, and 2 to get the backed-up value of 3 for the root node.

An algorithm for minimax decision

function MINIMAX-DECISION (state) returns an action inputs: state, current state in
game v <- MAX-VALUE((state) return the action in SUCCESSORS(state) with

value v

An algorithm for minimax decision

function MINIMAX-DECISION (state) returns an action
inputs: state, current state in gam

v <— MAX-VALUE (state)

return the action in SUCCESSORS (state) with wvalue v

m

ue
te)

H

function MAX-VALUE (state) returns a utilit
if TERMINAL-TEST (state}) then return UTILIT
Vea— —o0

for a, s in SUCCESSORS{(state) do

v <- MAX (v, MIN-VALUE(s))

return w

Yy va
Y (sta

function MIN-VALUE (state) returns a utility wvalue
if TERMINAL-TEST (state) then return UTILITY (state)
V <- w

for a, 5 in SUCCESSORS (state)do’

v <— MIN({(wv, MAX- PLU (s5))

return v

Generate the whole game tree, all the way down to the terminal state.

Apply the utility function to each terminal state to get its value.

Use utility functions of the terminal state one level higher than the current value to
determine Max or Min value.

Minimax decision maximizes the utility under the assumption that the opponent will

play perfectly to minimize the max player score.

Complexity : If the maximum depth of the tree is m, and there are b legal moves at each

point then the time complexity of the minimax algorithm is O(b™). This algorithm is a

depth first search, therefore the space requirements are linear in m and b. For real
games the calculation of time complexity is impossible, however this algorithm will be a
good basis for game playing.

Completeness : It the tree is finite, then it is complete.

Optimality : It is optimal when played against an optimal opponent

ALPHA - BETA PRUNING

Pruning - The process of eliminating a branch of the search tree from consideration

without examining is called pruning.

The two parameters of pruning technique are:

Alpha (%) : Best choice for the value of MAX along the path (or) lower bound on the

value that on maximizing node may be ultimately assigned.

Beta (©) : Best choice for the value of MIN along the path (or) upper bound on the value

that a minimizing node may be ultimately assigned.

Alpha - Beta pruning : The 2 and © values are applied to a minimax tree, it returns the
same move as minimax, but prunes away branches that cannot possibly influence the
final decision is called Alpha - Beta pruning (or) Cutoff Consider again the two-ply

game tree from

MAX

MIN

Let the two unevaluated successors of node C have values x and y and let z be the

minimum of x and y. The value of the root node is given by

MINIMAX-VALUE(ROOT)=max((min(3,12,8),min(2,x,y),min(14,5,2))

= max(3, min(2, x,y), 2) = max(3, z, 2) where z<=2= 3.

In other words, the value of the root and hence the minimax decision are independent of

the values of the pruned leaves x and y.

Stages in the calculation of the optimal decision for the game tree

(@) The first leaf below B has the value 3. Hence, B, which is a MIN node, has a value of

at most 3

3
(b) The second leaf below B has a value of 12; MIN would avoid this move, so the

value of B is still at most 3

c) The third leaf below B has a value of 8; we have seen all B's successors, so the value of
B is exactly 3. Now, we can infer that the value of the root is at least 3, because MAX has a

choice worth 3 at the root.

(<)

(d) The first leaf below C has the value 2. Hence, C, which is a MIN node, has a value of
at most 2. But we know that B is worth 3, so MAX would never choose C. Therefore, there
is no point in looking at the other successors of C. This is an example of alpha-beta

pruning.

)

(e) The first leaf below D has the value 14, so D is worth atmost 14. This is still higher
than MAX'S best alternative (i.e., 3), so we need to keep exploring D's successors. Notice
also that we now have bounds on all of the successors of the root, so the root's value is

also at most 14.

(f) The second successor of D is worth 5, so again we need to keep exploring. The third
successor is worth 2, so now D is worth exactly 2. MAX'S decision at the root is to move

to B, giving a value of 3.

The alpha-beta search algorithm

function ALPHA-BETA-SEARCH (returns zn) action
inputs: state, current state in game

vse- MA X -VA L UE (State,- &, +a)

return the acticn in SUCCESSORS (state) with walue v

fFunction MAXM — VALUE { state, @ . 7)) returns o wutility
walue

inmputs: state, ocurrent state in game

& , the wvalue of the best alternative for MAX along the
prath to state

F ., the wvalue of the best alternatiwve for MIN along the
path to state

if TERMINAIL-—-TEST (state) then returmn) UTILITY { s t a t e
1

e — o — o0

for o, S5 dn S O e B S S''@ RS (state) d4do

w < MAX (v, MIN—-VALUE (S, o, &))

if v = 4 then return v

o <— MAX (o, W)

returm W

funetion MIN - VALUE (state, cr,ﬁ} returns o utility

value
inputs: state, current state in game
& , the wvalue of the best alternative for MAX along the

path to state

B+ the value of the best alternative for MIN along the
path to state

if TEBMINAL-TEST (state) then return) UTILITY(s £t a £t e
)

va— +oo

for ¢, S in S UCCESSORS (state) do

v <- MIN(v,MAX-VALUE(S, a, £))

if v <= g then return v

B <- MIN(B, v)

return v

Effectiveness of Alpha - Beta Prunin

Alpha - Beta pruning algorithm needs to examine only O(b4/2) nodes to pick the best
move, ir\l/sfead of O(bd) with minimax algorithm, that is effective branching factor is 2
instead of b.

Imperfect Real Time Decisions

The minimax algorithm generates the entire game search space, whereas the alpha-beta
algorithm allows us to prune large parts of it. However, alpha-beta still has to search all
the way to terminal states for at least a portion of the search space. This depth is usually
not practical, because moves must be made in a reasonable amount of time-typically a

few minutes at most.

Shannon'’s proposed instead that programs should cut off the search earlier and apply a

heuristic evaluation function to states in the search, effectively turning non terminal

nodes into terminal leaves.

* The utility function is replaced by an Evaluation function

* The terminal test is replaced by a Cut-off test

1. Evaluation function

Example: Chess Problem

In chess problem each material (Queen, Pawn, etc) has its own value that is called as

material value. From this depends on the move the evaluation function is calculated and

it is applied to the search tree.

This suggests that the evaluation function should be specified by the rules of probability.

For example If player A has a 100% chance of winning then its evaluation function is 1.0
and if player A has a 50% chance of winning, 25% of losing and 25% of being a draw

then the probability is calculated as; 1x0.50 -1x0.25 + 0x0.25 = 0.25.

As per this example is concerned player A is rated higher than player B. The material
value, of each piece can be calculated independently with-out considering other pieces in
the board is also called as one kind of evaluation function and it is named as weighted

linear function. It can be expressed as

Eval(s) = wifi(s) + wafz(s) + wzf3(s)..... + wafn (s) w - Weights of the pieces (1 for Pawn, 3
for Bishop etc) f - A numeric value which represents the numbers of each kind of piece
on the

board.

2. Cut - off test

To perform a cut-off test, an evaluation function, should be applied to positions that are
quiescent, that is a position that will not swing in bad value for long time in the search

tree is known as waiting for quiescence.

Quiescence search - A search which is restricted to consider only certain types of

moves, such as capture moves, that will quickly resolve the uncertainties in the position.

Horizon problem - When the program is facing a move by the opponent that causes

serious damage and is ultimately unavoidable

Example:

1. Beginning of the search - one ply

(&)
® © ©

2. This diagram shows the situation of horizon problem that is when one level is

generated from B, it causes bad value for B

3. When one more successor level is generated from E and F and situation comes
down and the value of B is retained as a good move. The time B is waited for this

situation is called waiting for quiescence.

Games That Include An Element Of Chance

Backgammon Game

Backgammon is a typical game that combines luck and skill. Dice are rolled at the

beginning of a player's turn to determine the legal moves.

°e

°e

°e

L X4

0 0 11 2
I SS . NS PR, T .

Goal State
The goal of the game is to move all one's pieces off the board. White moves clockwise

toward 25, and black moves counterclockwise toward 0

Successor Function or Operator

Move to any position except where two or more of the opponent pieces. If it moves to a

position with one opponent piece it is captured and again it has to start from Beginning

Task : In the position shown, White has rolled 6-5. So Find out the legal moves for the

set of the dice thrown as 6 and 5.
Solution :

There are Four legal moves. They are
(5-11,5-10)

(5-11, 19-24)

(10-16,5-10)
(5-11,11-16)

A game tree in backgammon must include chance nodes in addition to MAX and MIN
nodes. Chance nodes are shown as circles. The branches leading from each chance node
denote the possible dice rolls, and each is labeled with the roll and the chance that it will
occur. There are 36 ways to roll two dice, each equally likely; but because a 6-5 is the
same as a 5-6, there are only 21 distinct rolls. The six doubles (1-1 through 6-6) have a

1/36 chance of coming up, the other 15 distinct rolls a 1/18 chance each.

MAX Ag
B R - opo e
. - // \\‘\ S— i’ ‘~-“‘__
CHANCE @ gﬁ @ i Q @
AN . - ___E ,’ o < Q_‘\- —_ T Ao 8
19— JRe~ e 0 e SSRY ¢ 3
e2 b ~ -
MIN) 4 : == 3 SZ
e / B T
CHANCE (ﬁ) 6‘22 i gig Q
S > o A
e — 12 G\, @
sl U G
AN AN : ,/4;.'/’,', o.‘\: T
= / N e
TERMINAIL 2 1 1 -1 1

The resulting positions do not have definite minimax values. Instead, we have to only
calculate the expected value, where the expectation is taken over all the possible dice

rolls that could occur.

Terminal nodes and MAX and MIN nodes (for which the dice roll is known) work exactly
the same way as before; chance nodes are evaluated by taking the weighted average of

the values resulting from all possible dice rolls, that is,

EXPECTIMINIMAX(n)=

UTILITY(n) if n is a terminal state
Max s@ successors(n) EXPECTIMINIMAX(S) if n is a MAX node

Min s successors(n) EXPECTIMINIMAX(S) if nis a MIN node

s successors(n) P(s).EXPECTIMINIMAX(S) if n is a chance node

where the successor function for a chance node n simply augments the state of n with
each possible dice roll to produce each successor s and P(s) is the probability that that

dice roll occurs.
Card games
Card games are interesting for many reasons besides their connection with gambling.

Imagine two players, MAX and MIN, playing some practice hands of four-card two

handed bridge with all the cards showing.
The hands are as follows, with MAX to play first:
MaX: V6, *6, d g

ANV 2, %2 Ro 5

Suppose that MAX » leads wiht 9. MIN must now follow suit, playing either with
% 10 or % 5. MIN plays with 10 and wins the trick.

MIN goes next turn leads the with # 2. MAX has no spades (and so cannot win the trick)

and therefore must throw away some card. The obvious choice is the

'S . .
¥'6 because the other two remaining cards are winners.

Now, whichever card MIN leads for the next trick, MAX will win both remaining tricks

and the game will be tied at two tricks each.

UNIT-III

KNOWLEDGE INFERENCE

Knowledge Representation - Production based System, Frame based System.
Inference - Backward Chaining, Forward Chaining, Rule value approach, Fuzzy
Reasoning - Certainity factors, Bayesian Theory - Bayesian Network - Dempster

Shafer Theory

3.0 Knowledge representation: -

. The task of coming up with a sequence of actions that will achieve a goal is called
Planning.

. “Deciding in ADVANCE what is to be done”

. A problem solving methodology

. Generating a set of action that are likely to lead to achieving a goal

. Deciding on a course of actions before acting

Representation for states and Goals:-

o In the STRIPS language, states are represented by conjunctions of function-free ground
literals, that is, predicates applied to constant symbols, possibly negated.

o For example,

At(Home)” - Have(Milk)” - Have(Bananas)” - Have(Drill)"....

o Goals are also described by conjunctions of literals.

o For example,

At(Home)"*Have(Milk)* Have(Bananas)” Have(Drill)

o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

. Representation for actions:- o Our STRIPS operators consist of three
components:
o the action description is what an agent actually returns to the environment in

order to do something.

O

the precondition is a conjunction of atoms (positive literals) that says what must

be true before the operator can be applied.

O

the effect of an operator is a conjunction of literals (positive or negative) that

describes how the situation changes when the operator is applied.

o

Here’s an example for the operator for going from one place to another:
Op(Action:Go(there),

Precond:At(here)”*Path(here, there),

Effect:At(there)” ~At(here))

Representation of Plans:- o Consider a simple problem: o Putting on a pair of

shoes o Goal

RightShoeOn * LeftShoeOn

Four operators:

Op(Action:RightShoe,PreCond:RightSockOn,Effect:RightShoeON)
Op(Action:RightSock , Effect: RightSockOn)
Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn)
Op(Action:LeftSock,Effect: LeftSockOn)
Given:-
* A description of an initial state
* A set of actions
A (partial) description of a goal state
Problem:-
» Find a sequence of actions (plan) which transforms the initial state mnto the goal state.

Apphcatmn areas:-
Systems design
» Budgeting
» Manufacturing product
* Robot programming and control
» Military activities
Benefits of Planning:-
» Reducing search
» Resolving goal conflicts
» Providing basis for error recovery

3.1 Planning with State Space Search:

Planning with state space search approach 1s used fo construct a planning algorithm.
This 1s most straightforward approach.
The description of actions m a planmng problem specifies both precondstions and effects.
It 1s possible to search i esther direction.
Either from forward from the mitial state or backward from the goal
The following are the two types of state space sgarch.,
o Forward state-space search
o Backward state-space search
g The following diagram shows the Forward state-space search

e s [e e [

At(PLEB)
FyPLAE) AEA

Fly(P2.A.B)

3.1.1 Forward state-space search:-

. Planning with forward state-space search is similar to the problem solving using
Searching.

. It is sometimes called as progression Planning.

. It moves in the forward direction.

. we start in the problems initial state, considering sequence of actions until we find

a sequence that reaches a goal state.

. The formulation of planning problems as state-space search problems is as
follows, o The Initial state of the search is the initial state from the planning problem. o
In general, each state will be a set of positive ground literals; literals not appearing are
false. o The actions that are applicable to a state are all those whose preconditions

are satisfied.

o The successor state resulting from an action is generated by adding the positive
effect literals and deleting the negative effect literals. o The goal test checks whether the
state satisfies the goal of the planning problem.

o The step cost of each action is typically 1.

. This method was too inefficient.

. It does not address the irrelevant action problem, (i.e.) all applicable actions are
considered from each state.

. This approach quickly bogs down without a good heuristics.

. For Example:- o Consider an air cargo problem with 10 airports, where each
airport has 5 planes and 20 pieces of cargo.

o The Goal is to move the entire cargo form airport A to airport B. o There is a
simple solution to the Problem,

o Load the 20 pieces of cargo into one of the planes at A, then fly the plane to B, and
unload the cargo.

o But finding the solution can be difficult because the average branching factor is

huge.

3.1.2 Backward state- space search:-

. Backward search is similar to bidirectional search.

. It can be difficult to implement when the goal states are described by a set of
constraints rather than being listed explicitly.

. It is not always obvious how to generate a description of the possible predecessors
of the set of goal states.

. The main advantage of this search is that it allows us to consider only relevant
actions.

. An action is relevant to a conjunctive goal if it achieves one of the conjuncts of the
goal.

. The following diagram shows the Backward state-space search

At(P1.A)

At(P2, B) Fly(P1.A.B)

At(P1.B)

At(P2, B)

Fly(P2.A.B)

At(P1.B)

At(P2. A)

For example:- o The goal in our 10-airport cargo problem is to have 20 pieces of cargo
at airport B, or more precisely,

At(C1,B) A At(C2,B) A.....A At(C20,B)
o Now consider the conjunct At(C1,B). working backwards, we can seek actions that
have this as an effect. There is only one unload(C1,p,B), where plane p is unspecified. o In
this search restriction to relevant actions means that backward search often has a much
lower branching factor than forward search.
. Searching backwards is sometimes called regression planning.
. The principal question is:- what are the states from which applying a given action

leads to the goal?

. Computing the description of these states is called regressing the goal through the
action.
. consider the air cargo example;- we have the goal as,

At(C1,B) AAt(C2,B) A.....AAE(C20,B)
and the relevant action Unload(C1,p,B), which achieves the first conjunct.
. The action will work only if its preconditions are satisfied.
. Therefore , any predecessor state must include these preconditions :
In(C1,p) AAt(p,B), Moreover the subgoal At(C1,B) should not be true in the predecessor
state.
. The predecessor description is

In(C1,p) A At(p,B) A At(C2,B) A......A At(C20,B)

In addition to insisting that actions achieve some desired literal, we must insist that
the actions not undo any desired literals.

. An action that satisfies this restriction is called consistent.

. From definitions of relevance and consistency, we can describe the general
process of constructing predecessors for backward search.

. Given a goal description G, let A be an action that is relevant and consistent.
The corresponding predecessor is as follows o any positive effects of A that appear in G
are deleted o Each precondition literal of A is added, unless it already appears

. Termination occurs when a predecessor description is generated that is satisfied

by the initial state of the planning problem.

3.1.3 Heuristics for State-space search:-

Heuristic Estimate:-

. The value of a state is a measure of how close it is to a goal state.

. This cannot be determined exactly (too hard), but can be approximated.
. One way of approximating is to use the relaxed problem.

. Relaxation is achieved by ignoring the negative effects of the actions.

. The relaxed action set, A’, is defined by:

A’ ={<pre(a),add(a),0> | ain A}
Relaxed Distance Estimate

= Current: In(A). Closed Goal: In(B)

= Layers correspond to successive time points,

= # layers indicate minimum time to achieve goals.

Building the relaxed plan graph:-
g Start at the initial state
g Repeatedly apply all relaxed actions whose preconditions are satisfied.
o~ Their (positive) effects are asserted at the next layer.

g If all actions applied and the goals are not
all present in the final graph layer
Then the problem iz unsolvable.

Extracting Relaxed solution

= When a layer containing all of the goals 1s reached FF searches backhwards for a plan.

The earliest possible achiever is always used for any goal.

. This maximizes the possibility for exploiting actions in the relaxed plan.

. The relaxed plan might contain many actions happening concurrently at a layer.
The number of actions in the relaxed plan is an estimate of the true cost of achieving the

goals.

How FF uses the Heuristics:-

. FF uses the heuristic to estimate how close each state is to a goal state

. any state satisfying the goal propositions.

The actions in the relaxed plan are used as a guide to which actions to explore when

extending the plan.

All actions in the relaxed plan at layer i that achieve at least one of the goals required at
layer i+1 are considered helpful.

. FF restricts attention to the helpful actions when searching forward from a state.

Properties of the Heuristics:-

. The relaxed plan that is extracted is not guaranteed to be the optimal relaxed plan.
the heuristic is not admissible.

. FF can produce non-optimal solutions.

. Focusing only on helpful actions is not completeness preserving. @ Enforced hill-

climbing is not completeness preserving.

3.2 Partial Order Planning:-

Formally a planning algorithm has three inputs:
o A description of the world in some formal language, o A description of the agent’s
goal in some formal language, and o A description of the possible actions that can be
performed.
. The planner’s o/p is a sequence of actions which when executed in any world
satisfying the initial state description will achieve the goal.

Representation for states and Goals:-
o In the STRIPS language, states are represented by conjunctions of function-free
ground literals, that is, predicates applied to constant symbols, possibly negated.
o For example,

At(Home)” ~ Have(Milk)”* - Have(Bananas)” -~ Have(Drill)"....

o Goals are also described by conjunctions of literals.
o For example,
At(Home)"*Have(Milk)* Have(Bananas)” Have(Drill)
o Goals can also contain variables. For example, the goal of being at a store that sells

milk would be represented as

. Representation for actions:- o Our STRIPS operators consist of three
components:
o the action description is what an agent actually returns to the environment in

order to do something.

o the precondition is a conjunction of atoms (positive literals) that says what must
be true before the operator can be applied.

o the effect of an operator is a conjunction of literals (positive or negative) that
describes how the situation changes when the operator is applied.

o Here’s an example for the operator for going from one place to another:

. Op(Action:Go(there),

. Precond:At(here)”Path(here, there),

. Effect:At(there)” ~At(here))

. Representation of Plans:-

|

o Consider a simple problem:
o Putting on a pair of shoes o Goal
RightShoeOn * LeftShoeOn

o Four operators:

Op(Action:RightShoe,PreCond:RightSockOn, Effect:Right
Op(Action:RightSock , Effect:
Op(Action:LeftShoe, Precond:LeftSockOn,
Op(Action:LeftSock, Effect:Left
Least The general strategy of delaying a choice during search is
commit
Partial-order Any planning algorithm that can place two actions
without specifying which come first is called a partial order
Lineari - The partial-order solution corresi)onds to six possible total order
of these is called a linearization of the partia
Total order -Planner in which plans consist of a simple lists
A plan is defined as a data
A set of plan
A set of step
A set of variable binding
A setof causal i = g
"5 achieves j”
Initial plan before any
Start <

(@]

O OO0

Refine and manipulate until a plan that is a

Plan(STEPS:{ S;: Op(ACTION:Start),
S>2: Op(ACTION:Finish,
PRECOND:RightShoeOn A LeftShoeOn)},
ORDERINGS: {S] <S>},
BINDINGS: { },
LINKS: {})

Start Start

Initial | State

Goal ¢ State LeftShoeOn, | RightShoeOn

Finish Finish

(a) (b)

Figure 114 (a) Problems are defined by partial plans containing only Start and Finish steps.
The initial state is entered as the effects of the Start step, and the goal state is the precondition of
the Finish step. Ordering constraints are shown as arrows between boxes. (b) The initial plan for
the shoes-and-socks problem.

. The following diagram shows the partial order plan for putting on shoes and

socks, and the six corresponding linearization into total order plans.

Partial Order Plans: Total Order Plans:

Start

Start Start Start Start Start Start

. v v v v '
Right Right Left Left Right Left
Sock S_Qck _ Sock Sock Sock | Sc_nf:k

;)
L T N I T

i Left Left Right | Right Right | Left
Laft Sqekcon EightSocgon Sock | Sock Sock | Sock Shoe | Shoe

Lt S S S S R S

Shoe

L Right Left Right Left Left Right

Shoe Sock | Shoe | Shoe Sock | Sock

Left Shoeon et Shoeon ; S [o l P AR T
Left Right || Left | Right | Left | Right

Finish Shoe Shoe || Shoe || Shoe [Shoe | Shoe

Finish Finish | Finish | Finish | Finish | Finish

0 Solutions

o~ 5olution ; a plan that an agent guarantees achievement of the goal

~ asolution s a complete and consistent plan

~ acomplete plan : every precondition of every step 1s achieved by some other step

~ aconsistent plan ;: no contradictions in the ordering or binding constraints. When we
meet g inconsistent plan we backtrack and try another branch

3.2.1 Partial order planning Algorithm :-

The following 1s the Partial order planmng algorithm,

function pop(initial-state, conjunctive-goal, operators)
{/ non-deterministic algorithm

plan = make-initial-plan(initial-state, conjunctive-goal);

loop: begin

if solution?(plan) then return plan;

(S-need, c) = select-subgoal(plan) ; // choose an unsolved goal choose-operator(plan,
operators, S-need, c);

// select an operator to solve that goal and revise plan resolve-threats(plan); // fix any
threats created

end

end

function solution?(plan)

if causal-links-establishing-all-preconditions-of-all-steps(plan)

and all-threats-resolved(plan)

and all-temporal-ordering-constraints-consistent(plan) and all-variable-bindings-
consistent(plan)

then return true; else return false; end

function select-subgoal(plan) pick a plan step S-need from steps(plan) with a
precondition ¢

that has not been achieved;

return (S-need, c);

end

procedure choose-operator(plan, operators, S-need, c)

// solve "open precondition" of some step

choose a step S-add by either

Step Addition: adding a new step from operators that has c in its Add-list
or Simple Establishment: picking an existing step in Steps(plan)

that has c in its Add-list;

if no such step then return fail;

add causal link "S-add --->c S-need" to Links(plan); add temporal ordering constraint "S-
add < S-need" to Orderings(plan); if S-add is a newly added step then
begin

add S-add to Steps(plan);

add "Start < S-add" and "S-add < Finish" to Orderings(plan); end

end

procedure resolve-threats(plan) foreach S-threat that threatens link "Si --->c §j" in
Links(plan)

begin //"declobber" threat

choose either

Demotion: add "S-threat < Si" to Orderings(plan) or Promotion: add "Sj < S-threat" to
Orderings(plan);

if not(consistent(plan)) then return fail;

end

end

. Partial Order Planning Example:- o Shopping problem: “get milk, banana, drill
and bring them back home” o assumption
1)Go action “can travel the two locations”

2)no need money

o initial state : operator start
Op(ACTION:Start EFFECT:At(Home) A SellstcHWS.Dnll) A Sells(SM.Milk),
Sells(SM.Banana))
o goal state : Finish
Op(ACTION:Finish, PRECOND:Have(Dnill) A Have(Milk) A Have(Banana)
A At(Home))
o actions:
Op(ACTION:Go(there),PRECOND:At(here), EFFECT:At(there) n ~At(here))
Op(ACTION:Buy(x),PRECOND:At(store) » Sells(store.x) EFFECT Have(x))

o There are many possible ways in which the initial plan elaborated
o one choice : three Buy actions for three preconditions of Finish action
o second choice:sells precondition of Buy
* Bold arrows:causal links, protection of precondifion
* Light arrows:ordermg constraints

Start |

At(Home) Sells(SM,Banana) | Sells(SM,Milk) Sells(HWS,Drill)

Have(Drill) Have(Milk) ¢ Have(Banana) At(Home)

\
Finish

Figure 11.6 The initial plan for the shopping problem.

The following diagram shows the, partial plan that achieves three of four preconditions

of finish

The following diagram shows the, partial plan that achieves three of four preconditions
of finish Refining the partial plan by adding casual links to achieve the sells

preconditions of the buy steps.

Start

L \\
At(s).Sells(M]’}/ At{s).Sells(s Milk) AN Sells(s Banauas)
Buy(Drill) Buy(Milk) Buy(bananas)

Have{Dnili},

AHHWS)S

VS, Drill) AF(SM).Sellg SM.MilK) AHSINSells(SM Bananas)

BuyDrill) || Buy(Milk) Buy(bananas)

ot Home)

. The following diagram shows the partial plan that achieves At Precondition of the

three buy conditions

S3
7 =
Sy Sy Sy
c e c c
S2 Sz S2
\ \ &
-c
(a) (b) ()
Figure 11.10 Protecting causal links. In (a), the step S; threatens a condition ¢ that is established
by S and protected by the causal link from S to S>. In (b), S3 has been demoted to come before
81, and in (c) it has been promoted to come after Ss.

g The following diagram shows the solution of this problem,

Start

At(Hpme)

Go(HWS) \

AHHWE).Sells(HWS. Drill)
r

Buyv(Drill)

At{Hi’r’S)
Go(SM)

AL(SM).Sells(SM.MJIK

\.&@‘Sdls{Shl.Banmms’}

Buy(M lil*) i Buy(bananas)

At(PM)

Finish

The following are the Knowledge engineering for plan,
e Methodology for solving problems with the planning approach
(1) Decide what to talk about
(2) Decide on a vocabulary of conditions, operators, and objects
(3) Encode operators for the domain
(4) Encode a description of the specific probleminstance
(5) pose problems to the planner and get back plans
¢ (ex) The blocks world o
(1) what to talk about
& cubic blocks sitting on a table
% one block on top of another
& A robot arm pick up a block and moves it to another position
(2) Vocabulary
& objects:blocks and table
& On(b,x) : bisonx
& Move(b,x,y) : move b form x to y
& —exist x On(x,b) or Vx =0On(x,b) : precondition
& clear(x)
(3)Operators
Op(ACTION:Move(b,x,y),
PRECOND:On(b,x) A Clear(b) A Clear(y),
EFFECT:On(b,y) A Clear(x) A 7On(b,x) A ~Clear(y))
Op(ACTION:
MoveToTable(b,x),
PRECOND:On(b,x) A Clear(b),
EFFECT:On(b,Table) A Clear(x) A =On(b,x))
3.3 Planning Graph:-
. Planning graphs are an efficient way to create a representation of a planning
problem that can be used to o Achieve better heuristic estimates o Directly construct

plans

. Planning graphs only work for propositional problems.

. Planning graphs consists of a seq of levels that correspond to time steps in the
plan.

o Level 0 is the initial state.

o Each level consists of a set of literals and a set of actions that represent what might

be possible at that step in the plan
o Might be is the key to efficiency o Records only a restricted subset of possible
negative interactions among actions.
. Each level consists of o Literals = all those that could be true at that time step,
depending upon the actions executed at preceding time steps.
o Actions = all those actions that could have their preconditions satisfied at that time
step, depending on which of the literals actually hold.
. For Example:-
Init(Have(Cake)) Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake),
PRECOND: Have(Cake)
EFFECT: -Have(Cake) A Eaten(Cake))
Action(Bake(Cake),
PRECOND: ~ Have(Cake)
EFFECT: Have(Cake))

. Steps to create planning graph for the example,

~ Create level 0 from initial problem
So AO

Have(Cake)

—i1 Eaten(Cake

)
Add all effects to the next state.
~ AAdA all annlicrahla

~

SO AO

Have(Cake)

—i Eaten(Cake)

\ Eat(Cake) I<

S

—i1Have(Cake)

Eaten(Cake)

o Add persistence actions (inaction = no-ops) to map all literals in state S;to state Si+1.

SO AO S1

Have(Cake) = Have(Cake)
—Have(Cake)
Eat(Cake)
Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)
o Ide mutual between actions and literals based on potential conflicts.

SO AO S1

Have(Cake) = Have(Cake)
—l1Have(Cake)
Eat(Cake)
Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)
o Mutual
o A mutex relation holds two w

= Jnconsistent :one action negates the effect of
» Interfer :one of the effects of one action is the negation of a precondition
of the
= Competing :one of the preconditions of one action is mutually exclusive
with the precondition of the
o A mutex relation holds two w

e one is the negation of the other OR

e each possible action pair that could achieve the literals is mutex (inconsistent support).
. Level S1 contains all literals that could result from picking any subset of actions in
Ao o Conflicts between literals that can not occur together (as a consequence of the

selection action) are represented by mutex links.

o S1 defines multiple states and the mutex links are the constraints that define this set of

states.
S 0 A 0 S 1
Have(Cake) = Have(Cake)
—1Have(Cake)
Eat(Cake)
Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)

n Repeat process until graph levels off:
o two consecutive levels are identical, or
o contain the same amount of
(explanation follows

S0 A 0 81 A 1 S,
Bake(Cake)
Have(Cake) — Have(Cake) {4 Have(Cake)
— Have(Cake) = — Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) - Eaten{Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)
n In

rectangle denotes _

small square denotes persistence

straight lines denotes preconditions and effects
curved lines denotes mutex

O O0OO0O0

3 Planning Graphs for Heuristic

. PG’s provide information about the problem o PG is a relaxed problem. o A literal
that does not appear in the final level of the graph cannot be achieved by any plan.
. H(n) = o o Level Cost: First level in which a goal appears

] Very low estimate, since several actions can occur

. Improvement: restrict to one action per level using serial PG (add mutex links
between every pair of actions, except persistence actions).

. Cost of a conjunction of goals o0 Max-level: maximum first level of any of the goals o
Sum-level: sum of first levels of all the goals

o Set-level: First level in which all goals appear without being mutex

. The following is the GraphPlan Algorithm, Extract a solution directly from the
PG

function GRAPHPLAN (problem) return solution or failure graph <— INITIAL-PLANNING-
GRAPH(problem)
goals <~ GOALS[problem|
loop do if goals all non-mutex in last level of graph then do
solution <~ EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution #failure then return solution
else if NO-SOLUTION-POSSIBLE (graph) then return failure
graph < EXPAND-GRAPH(graph, problem)
. Initially the plan consist of 5 literals from the initial state and the CWA literals
(S0).
. Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
. Also add persistence actions and mutex relations.
. Add the effects at level S1
. Repeat until goal is in level Si
. EXPAND-GRAPH also looks for mutex relations
o Inconsistent effects
. E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not
At(Spare, Ground)
o Interference
. E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not
At(Flat,Axle) as EFFECT

o Competing needs

At{Spare, Trunk)

At{Fiat Axle)

At(Spare,Axle)

1 At{Flat, Ground)

—At(Spare, Ground)

. E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not
At(Flat, Axle)
o Inconsistent support

. E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

. In S2, the goal literals exist and are not mutex with any other
o Solution might exist and EXTRACT-SOLUTION will try to find it
. EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search

process:
o Initial state = last level of PG and goal goals of planning problem
o Actions = select any set of non-conflicting actions that cover the goals in the state

o Goal = reach level SO such that all goals are satisfied

o Cost =1 for each action.

S, S, S,
At(Spare, Trunk) At(Spare, Trunk)
—At(Spare, Trunk) — At{Spare, Trunk)
At(Flat Axle) AifFlat Axle)
—At(Flat Axle) —At{Flat, Axle)
| PutOn(Spare Axle) | \‘ At{Spare Axle)
—At(Flat Ground) —At{Flat, Ground)
\Q At(Flat Ground) // 9 \\\\ At(Flat, Ground)
{1 —At(Spare, Ground) / { \—1At(3pare,Ground)
\ At(Spare, Ground) d At{Spare, Ground)

3.3.2 Termination of GraphPlan:-

. Termination? YES

. PG are monotonically increasing or decreasing:

o Literals increase monotonically: - Once a literal appears at a given level, it will
appear at all subsequent levels. This is because of the persistence actions; Once a
literal shows up, persistence actions cause it to say forever.

o Actions increase monotonically:- Once a literal appears at a given level, it will
appear at all subsequent levels. This is a consequence of literals increasing; if
the preconditions of an action appear at one level, they will appear at subsequent levels,
and thus will the action

o Mutexes decrease monotonically:- If two actions are mutex at a given level A;, then
they will also be mutex for all previous levels at which they both appear.

. Because of these properties and because there is a finite number of actions and

literals, every PG will eventually level off

3.4 Planning and Acting in the Real World:

. In which we see how more expressive representation and more interactive agent
architectures lead to planners that are useful in the real world.

. Planners that are used in the real world for tasks such as scheduling, o Hubble
Space Telescope Observations o Operating factories

o handling the logistics for military campaigns

3.4.1 Time, Schedules and Resources:

. Time is the essence in the general family of applications called Job Shop
Scheduling.
. Such a tasks require completing a set of jobs, each of which consists of a sequence

of actions, where each action has a given duration and might require some resources.
. The problem is to determine a schedule that minimizes the total time required to
complete all the jobs, while respecting the resource constraints.

. For Example:- The following problem is a job shop scheduling.

Init (chassis(C1) A chassis(C2)
A Engine (E1,C1,30) A Engine (E2,C2,60) AWheels (W1,C1,30) AWheels
(W2,C2,15))
Goal (Done(C1) A Done(C2))
Action (AddEngine(e,c,m),
PRECOND: Engine(e,c,d) Achassis(c) A— Engineln(c),
EFFECT: Engineln(c) A Duration (d))
Action (AddWheels(w,c),
PRECOND: Wheels(w,c,d) A chassis(c),
EFFECT: WheelsOn(c) ADuration (d))
Action (Inspect(c),
PRECOND: Engineln(c) A WheelsOn (c) A chassis (c),
EFFECT: Done (c) ADuration(10))

The above table shows the Job Shop scheduling problem for assembling two cars.
e The notat ion Duration (d) means that an action takes d minutes to execute.
¢ Engine(E1,C1,30) means that E1 is an Engine that fits into chassis C1 and takes 30

minutes to Install

¢ The problem can be solved by POP (Partial order planning).

e We must now determine when each action should begin and end.

¢ The following diagram shows the solution for the above problem

e To find the start and end times of each action apply the Critical Path Method CPM.

e The critical path is the one that is the longest and upon which the other parts of the

process cannot be shorterthan.

o AddWheeis I |

' Y
) r>
..... - ———" R (——1"
AddEnginel '? 4‘ ™ Inspectr |]
AddEngine2 fTw

. At the top, the solution is given as a partial order plan.

. The duration of each action is given at the bottom of each rectangle, with the

earliest and latest start time listed as [ES, LS] in the upper left.

. The difference between these two numbers is the slack of an action

. Action with zero slack are on the critical path, shown with bold arrows.

. At the bottom of the figure the same solution is shown as timeline.

. Grey rectangles represent time intervals during which an action may be executed,

provided that the ordering constraints are respected.
. The unoccupied portion of a grey rectangle indicates the slack.
. The following formula serve as a definition for ES and LS and also as the

outline of a dynamic programming algorithm to compute them:

ES (Start) = 0 ES (B) = max A nBES (A) +Duration(A) LS (Finish) =ES (Finish) LS (A) =
min A nBLS (B) —Duration(A)
. The complexity of the critical path algorithm is just O(Nb).

. where N is the number of actions and b is the branching factor.

Scheduling with resource constraints:

. Real scheduling problems are complicated by the presence of constraints on
resources.

. Consider the above example with some resources.

. The following table shows the job shop scheduling problem for assembling two

cars, with resources.
Init (chassis(C1) Achassis(C2)
A Engine (E1,C1,30)
A Engine (E2,C2,60)
A Wheels (W1,C1,30) A Wheels (W2,C2,15) AEngineHoists (1) AWheelStations
(1) Alnspectors (2))
Goal (Done(C1) A Done(C2))

Action (AddEngine(e,c,m),
PRECOND: Engine(e,c,d) Achassis(c) A— Engineln(c),
EFFECT: Engineln(c) A Duration (d)
RESOURCE: EngineHoists (1))

Action (AddWheels(w,c),
PRECOND: Wheels(w,c,d) Achassis(c),
EFFECT: WheelsOn(c) A Duration (d),
RESOURCE: WheelStations (1))

Action (Inspect(c),

PRECOND: Engineln(c) A WheelsOn (c) A chassis (c),

EFFECT: Done (c) ADuration(10),

RESOURCE: Inspectors (1))

. The available resources are on engine assembly station, one wheel assembly
station, and two inspectors.

. The notation RESOURCE: means that the resource r is used during execution of an
action, but becomes free again when the action is complete. The following diagram

shows the solution to the job shop scheduling with resources.

— ——
Enghetonts(l) | RidEnghet Ill‘ =i SRSy, _,.
{ poum t SR
Whee! Statons(1) 1 m_‘ rI:l l:—j I
—_ 1
.1‘ Ingpectt ‘] ;
Inspectors(2| ((Jrm—
™ [nepect? |
C—
0 10 ;J 0 0 50 80 0 80 @ 100 10 120
. The left hand margin lists the three resources
. Actions are shown aligned horizontally with the resources they consume.
. There are two possible schedules, depending on which assembly uses the engine

station first.

. One simple but popular heuristic is the minimum slack algorithm.

. it schedules actions in a greedy fashion.

. On each iteration, it considers the unscheduled actions that have had all their
predecessors scheduled and schedules the one with the least slack for the earliest
possible start.

. It then updates the ES and LS times for each affected action and repeats.

. The heuristics is based on the same principle as the most-constrained variable

heuristic in constraint satisfaction.

3.4.2 Hierarchical Task Network Planning:

. One of the most pervasive ideas for dealing with complexit y is Hierarchical
Decomposition.
. The key benefit of hierarchical structure structure is that, at each level of the

hierarchy is reduced to a small number of activities at the next lower level

. So that the computational cost of finding the correct way to arrange those
activities for the current problem is small.

. A planning method based on Hierarchical Task Networks or HTNs.

. This approach we take combines ideas from both partial-order planning and the
area known as “HTN planning”.

. In HTN planning, the initial plan, which describes the problem, is viewed as very
high-level description of what is to be done. For Example: - Building a House.

. Plans are refined by applying a action decompositions.

. Each action decompositions reduces a high-level action to a partially ordered set

of lower- level actions

3.4.2.1 Representing action decompositions:

. The following diagram shows the decomposition of a Building a house action.

Ty Build House oy

ﬂ decomposes to
e [
Permit T o P House .
Start Construction il | “Hikiih
Builder
— Money

. In pure HTN planning, plans are generated only by successive action
decompositions.

. Therefore the HTN views planning as a process of making an activity

description more concrete, rather than a process of constructing an activity description,
starting from the empty activity.
. The action decompositions are represented as, action decompositions methods

are stored in a plan library

. From which they are extracted and instantiated to fit the needs of the plan being
constructed.

. Each method is an expression of the form Decompose (a, d).

. It means that an action a can be decomposed into the plan d, which is represented

as a partial ordered plan.

. The following table shows the action descriptions for the house-building
problem and a detailed decomposition for the BuildHouse action.

. The start action of the decomposition supplies all those preconditions of actions in

the plan that are not supplied by other actions, such a things called external

preconditions.
. In our example external preconditions are land and money.
. Similarly, the external effects, which are the preconditions of Finish, are all those

effects of actions in the plan that are not negated by other actions.

Action (BuyLand, PRECOND: Money, EFFECT: Land A— Money)

Action (GetLoan, PRECOND: GoodCredit, EFFECT:Money A Mortgage)

Action (BuildHouse, PRECOND: Land, EFFECT: House)

Action (GetPermit, PRECOND: Land, EFFECT: Permit)

Action (HireBuilder, EFFECT: Contract)

Action (Construction, PRECOND: Permit AContract, EFFECT: HouseBuilt A— Permit)
Action (PayBuilder, PRECOND: Money A HouseBuilt, EFFECT: — Money A House A—
Contract)

Decompose (BuildHouse, Plan (Steps :

{S1: GetPermit, S2: HireBuilder, S3: Construction, S4: PayBuilder} ORDERINGS: {Start ©
S1 = S3 = S4 Finish, Start © S2 = S3}, Links: {Start LandS1, Start MoneyS4, S1permitS3, S2
ContractS3, S3 HouseBuilt S4, S4 HouseFinish, S4 —MoneyFinish}))

. Decomposition should be a correct implementation of the action.

. A plan library could contain several decompositions for any given high-level
action.

. Decomposition should be a correct plan, but it could have additional

preconditions and effects beyond those stated in the high-level action description.
. The precondition of the high-level action should be the intersection of the

external preconditions of its decomposition.

. In which two other forms of information hiding should be noted as,

. First the high-level description completely ignores all internal effects of the
decompositions

. Second the high-level description does not specify the intervals “inside” the

activity during which the high-level preconditions are effects must hold. Information

hiding of this kind is essential if hierarchical planning is to reduce complexity.

3.4.2.2 Modifying the planner for decomposition:

. In this we will see how to modify the Partial Order Planning to incorporate HTN
planning.

. We can do that by modifying the POP successor function to allow decomposition
methods to be applied to the current partial plan P.

. The new successor plans are formed by first selecting some non-primitive action a’
in P and then, for any Decompose (a, d) method from the plan library such that a and a’
unify with substitution 6, replacing a’ with d’ = SUBST (6, d)

. The following diagram shows the decomposition of a high-level action within an
existing plan.

. Where The BuildHouse action is replaced by the decomposition from the above
example.

. The external precondition land is supplied by the existing causal link from
BuyLand.

. The external precondition Money remains open after the decomposition step, so
we add a new action, GetLoan.

. To be more precise follow the below steps, o First the action a’ is removed from
P.Then for each step S in the decomposition d’ o Second step is to hook up the ordering
constraints for a’ in the original plan to the stepsind’.

o Third and final step is to hook up casual links.

Start

Land House

Build House > Finish

r

Buy Land

Land ﬂ

F

Money Buy Land |—%| Get Permit \‘ House
. . Pay -
Start Construction : Finish
/ Builder
; Get Loan Hide Builder
GoodCredit
. This completes the additions required for generating decompositions in the

context of the POP Planner.

3.4.3 Planning and Acting in Non-deterministic domains:

. So far we have considered only classical planning domains that are fully

observable, static and deterministic.

. Furthermore we have assumed that the action descriptions are correct and
complete.

. Agents have to deal with both incomplete and incorrect information.

. Incompleteness arises because the world is partially observable, non-

deterministic or both.

. Incorrectness arises because the world does not necessarily match my model of
the world.
. The possibility of having complete or correct knowledge depends on

how much indeterminacy there in the world.

. Bounded indeterminacy actions can have unpredictable effects, but the possible
effects can be listed in the action description axioms.

. Unbounded indeterminacy the set of possible preconditions or effects either is

unknown or is too large to be enumerated completely.

. Unbounded indeterminacy is closely related to the qualification problem.
. There are four planning methods for handling indeterminacy.
. The following planning methods are suitable for bounded indeterminacy, o

Sensorleses Planning:-

Also called as Confront Planning
This method constructs standard, sequential plans that are to be executed without
perception.

This algorithm must ensure that the plan achieves the goal in all possible
circumstances, regardless of the true initial state and the actual action outcomes.
It relies on coercion - the idea that the world can be forced into a given state even when
the agent has only partial information about the current state. Coercion is not always

possible.

o Conditional Planning:-

. Also called as Contingency planning

. This method constructing a conditional plan with different branches for the
different contingencies that could arise.

. The agent plans first and then executes the plan was produced.

. The agents find out which part of the plan to execute by including sensing actions
in the plan to test for the appropriate conditions.

. The following planning methods are suitable for Unbounded indeterminacy, o

Execution Monitoring and Replanning:-

. In this, the agent can use any of the preceding planning techniques to construct a
plan.
. It also uses Execution Monitoring to judge whether the plan has a provision for

the actual current situation or need to be revised.

. Replanning occurs when something goes wrong.

. In this the agent can handle unbounded indeterminacy.

o Continuous Planning:-

o It is designed to persist over a lifetime.

o It can handle unexpected circumstances in the environment, even if these

occur while the agent is in the middle of constructing a plan.

It can also handle the abandonment of goals and the creation of additional goals by goal
formulation.

3.4.4 Conditional Planning:

-e Conditional planning is a way to deal with uncertainty by checking what is actually
happening in the environment at predetermined points in the plan.

¢ Conditional planning is simplest to explain for fully observable environments

e The partially observable case is more difficult to explain in this conditional planning.
3.4.4.1 Conditional planning in fully observable environments:

e Full observability means that the agent always knows the current state.

e CP in fully observable environments (FOE) o initial state : the robot in the right square
of a clean world;o the environment is fully observable:

AtR ACleanLACleanR.o

The goal state :

the robot in the left square of a clean world.
& Vacuum world with actions Left, Right, and Suck
% Disjunctive effects:
Action (Left,
PRECOND : AtR,

EFFECT : AtLA— AtR)
& Modified Disjunctive effects :
Action (Left,

PRECOND : AtR,

EFFECT : AtL v AtR)
& Conditional effects:
Action(Suck,

Precond:,

Effect: (when AtL: CleanL) * (when AtR: CleanR)
Action (Left,

Precond: AtR,

Effect: AtL v (AtL * when CleanL: !ClearnL)

o Conditional steps for creating conditional plans:
if test then planA else planB e.g., if AtL * CleanL then Right else Suck
o The search tree for the vacuum world is shown in the following figure
The first two levels of the search tree for the double Murphy vaccum world.

o State nodes are OR nodes where some action must be chosen.

‘ : :;‘A

| [l |l
l |

604L R !'\I:)l \4 ok Loop ¥)

o Chance nodes, circles, are wher outcome
handled, as indicated by the arc linking the
o The solutionis bo in

- Tha followinatable chows the recurcive de
LILELA™] I\JIIUVVIIIH CUUDITC J1TTUVVO UTe TUCuUrairve UG

gerithm for

OR-SEARCH(INITIAL-STATE[problem], problem, [])

function OR-SEARCH(state, problem, path) veturns a conditional plan, or failure
if GOAL-TEST[problem|(state) then return the empty plan
if stare 1s on parh then return failure
for each action, state-set in SUCCESSORS| problem|(state) do
plan < AND-SEARCH(state-set, problem, [state| path])
if plan # failure then return [action| plan]
return failure

function AND-SEARCH(stale_set, problem, path) veturns a conditional plan, or failure
for each s; in state-set do
plan; <= OR-SEARCH(s;, problem, path)
if plan =failure then return failure
return [if s, then plan, elseif s, then plan, else ...if s, then plan,-, else plan,]

r The following figure shows the part of
nc t anl any solutio AND-OR-GRAPH-SEARCH
r w failur i how cyclic i kee L u i
W
ol |
Left Suck
- - -
1"‘1 33“ § ‘,f
GOAL

0 The; first level of the search graph for the triple Murphy vacuum world,
cycles
r All solutions for this problem

. The cyclic solution is as follows,

(L1 : Left, if AR then L else if Cleanl then [] else Suck]

Conditional Planning in partially observable environments

. In the initial state of a partially observable planning problem, the agent knows

only a certain amount about the actual state.

The simplest way to model this situation is to say that the initial state belongs to
The state set is a way of describing the agents initial belief
M “both squares are ” with local dirt
o the vacuum agent is AtR and knows about R, how about
n The following shows part of the AND-OR f the alternate Mu
vaccum
rn In which Dirt can sometimes be left behind when the agent leaves a clean

R |

— Cleanl.

Cleanl.

CleanR

n The agent cannot sense dirt in other

. Sets of full state descriptions o { (AtR A CleanR A CleanL), (AtR A CleianR N\
=CleanL) }
. Logical sentences that capture exactly the set of possible worlds in the belief state.

o AtR A CleanR

. Knowledge propositions describing the agent's knowledge
K(AtR) A K(CleanR)

. closed-world assumption - if a knowledge proposition does not appear in the
list, it is assumed false.

. Now we need to decide how sensing works.

There are two choices here,

o Automatic sensing:- Which means that at every time step the agent gets all the
variable percepts

Active sensing:- Which means the percepts are obtained only by executing specific
sensory actions such as

CheckDirt

CheckLocation

Action(Left, PRECOND: AtR,
EFFECT: K(AtL) \-K (AtR) \ when CleanR: -K(CleanR) \ when CleanL: K (CleanL) /\
when = CleanL: K(- Cleanl)) .

Action(CheckDirt, EFFECT:

when AtL/\CleanL: K(CleanL))\

when AtL N\ -CleanL: K (-CleanL) /\ when AtR N\ CleanR: K(CleanR) /\ when AtR N\
=CleanR: K(-CleanR))

3.4.4.2 Execution Monitoring and Replanning:

An execution monitoring agent checks its percepts to see whether everything is
going to according plan.

. Murphy’s law tells us that even the best-laid plans of mice, men and conditional
planning agents frequently fail.

. The problem is unbounded indeterminacy - some unanticipated circumstances
will always arise for which the agents action description are incorrect.

. Therefore, execution monitoring is a necessity in realistic environments.

. we will consider two kinds of execution monitoring, o Simple, but weak form
called action monitoring - whereby the agent checks the environment to verify that the
next action will work. o more complex, but more effective form called plan monitoring -
in which the agent verifies the entire remaining plan.

. A replanning agent knows what to do when something unexpected happens, call a
planner again to come up with a new plan to reach the goal.

. To avoid spending too much time planning, this is usually done by trying to repair
the old plan - to find a way from the current unexpected state back onto the plan

. Together Execution Monitoring and replanning form a general strategy that can
be applied to both fully and partially observable environments

. It can be applied to a variety of planning representations as state-space, partial-

order and conditional plans.

. The following table shows a simple approach to state-space planning.

. The planning agent starts with a goal and creates an initial plan to achieve it.

. The agent then starts executing actions one by one.

. The replanning agent keeps track of both the remaining unexpected plan segment

plan and the complete original plan whole-plan
. It uses action monitoring: before carrying out the next action of plan, the agent
examines its percepts to see whether any preconditions of the plan have unexpectedly

become unsatisfied.

n If they have, the agent will try to get back on track by replanning a
should take it back to some point in

r The has an agent that does action

r It uses a complete state-space planning algorithm called PLANNER

n If the Ereconditions of the next action are not met, the agent loops through
p in whole-plan, trying to find one that PLANNER can

r This path is

n If PLANNER succeeds in finding a repair, the agent appends repair and the
after p, to create the

r The agent then returns the first

Fu REPLANNING- r an

S KB, a Knowledge base (includes action
Plan, a plan,
Whole-plan, a plan,
Goal,

TELL(KB,MAKE-PERCEPT-

C n STATE-

Ipla t

whol M
I PRECONDITIONS(FIRST(plan)) not cutrently
Can SORT(whole-plan, ordered by
Find state s in
Failure
Contin g the tail of whole-plan
Wh8 n P 1 APPEND(repair,
R P

r The following diagram shows the schematic illustration
r The illustration of process is also called as
rn The replanner notices that the preconditions of the first action in plan are

curre
n It then calls the planner to come up with a new subplan called repair that

current situation to some state s on

whole-plan

A
v

plan

Continuation

repair

e Before execution, the planner comes up with a plan, here called whole-plan, to get from S to
G.

e The agent executes the plan until the point Marked E.

e Before executing the remaining plan, it checks preconditions as usual and finds that it is
actually in state O rather than state E.

e [t then calls its planning algorithm to come up with repair, which is a plan to get from O to
some point P on the original whole-plan.

e The new plan now becomes the concatenation of repair and continuation.

e For example:-

o Problem of achieving a chair and table of matching color

Init(Color(Chair, Blue) A Color(Table, Green)
A ContainsColor(BC, Blue) A PaintCan(BC'))
A ContainsColor(RC, Red) A PaintCan(RC)
Goal (Color(Chair,x) 4 Color(Table,x))
Action (Paint(object,color),
PRECOND: HavePaint(color)
EFrFecT: Color(obgect, color))
Action (Open(can),
PRECOND: PaintCan(can) 4 ContainsColor(can,color)
EFFECT: HavePaint(color)

. The agents PLANNER should come up with the following plan as,

[Start Open(BC);, Paint(Table, Blue), Finish]

. If: the agent constructs a plan to solve the painting problem by painting the chair
and table red. only enough paint for the chair

. Plan monitoring o Detect failure by checking the preconditions for success of the
entire remaining plan o Useful when a goal is serendipitously achieved

While you're painting the chair, someone comes painting the table with the same
color

o Cut off execution of a doomed plan and don’t continue until the failure actually
occurs

While you're painting the chair, someone comes painting the table with a

different color

. If one insists on checking every precondition, it might never get around to
actually doing anything
. RP - monitors during execution

3.4.4.3 Continuous Planning

. Continuous planning agent o execute some steps ready to be executed o refine
the plan to resolve standard deficiencies o refine the plan with additional information o

fix the plan according to unexpected changes

. recover from execution errors

. remove steps that have been made redundant

. Goal ->Partial Plan->Some actions-> Monitoring the world -> New Goal

. The continuous planning agent monitors the world continuously, updating its

world model from new percepts even if its deliberations are still continuing.

. For example:- o use the blocks world domain problem

o The action we will need is Move(x, y), which moves block x onto block y, provided
that both are clear.

o The following is the action schema,

o Action (Move(x, y),PRECOND: Clear(x) AClear(y) AOn(x ,z),EFFECT: On(x, y
AClear(z) A—Clear(y) A—0On(x, z))

o Goal: On(C, D)AOn(D ,B)

o Start is used as the label for the current state

o The following seven diagram shows the continuous planning agent approach
towards the goal

o Plan and execution o Steps in execution:

. Ordering - Move(D,B), then Move(C,D)

. Another agent did Move(D,B) - change the plan

. Remove the redundant step
] M
ake a
E mistake,
(8||c||[o] a SO
a]le][F][c niogln
(4) (b) () (d) On(C'A)
n The sequences of states as the continuous planning agent tries to * St
Dnon(D,B) as ill
r The start 1 one
r At (b), another agent has interfered, open
r At (c), the agent has executed Move(C, D) but has failed,
r It retries Move(C, D), reaching the conditio
n
858 N
anning
e ey . one more
r The initial plan constructed by the continuous
r The plan is indistinguishable, so far, from that produced time -
/%cﬁg: Move[ClD
OB, 4 :
zes // 263 [rimish_|)
) . Fi
nal state:
r After someone else moves D onto B, the unsupported links supplying
are dropped, start ->
oncA) finish
mh/fj,,o; Move(C.0) \
R ,
Start |00 —=055) | Finish
ClmD)
Cwar(G)
n The link Move(D, Bg has been one from Start, and
redundant step Move(D, B) has
g:az_m)
A On(C,0)
Start me,) on0® | Finish
Cloar(C)

g After Move(C, D) is executed and removed from the plan, the effects of the Start step
the fact that C ended up on A instead of the
r The goal precondition On(C, D) is still

On(C.A)

Clear(C)]
Oniable(A) Clear(D) i
OnB.E)
On(CA) on(c.0)

On(D.8) Oy)
Start A o008 | Finish

Ciear(C)
Ciear(D)
Clean(G)

r The open condition is resolved by adding Move(C, D)

Onlable(A)
(D) 0(C0) f
OnD.B))
Start b » 008 | Finish
Cor(C)
CloarA
Cloar(G)
r After Move(C, D) is executhdpped the plan, the remaining open
On(C, D) is resolved by adding a causal link from the new start
r Now the plan is
r From this example, we can see that continuous planning is quite similar to
r On each iteration, the algorithm finds something about the plan that needs fixing a so-
plan and
o The POP algorithm can be seen as a flaw-removal algorithm where the two flaws are

preconditions and causal
?n the other hand, the continuous planning agent addresses a much broader range of
oll

O

Missing
Open
Causal
Unsupporte
Redundant
Unexecuted
Unnecessary

O OO OO0 OO0

pP-

Fun CONTINUOUS-POP-AGENT re an
S plan, a plan, initially with just Start,

Ac g NoOp (the
EFFECTS [Start] = UPDATE(EFFECTS [Start],
REMOVE-FLAW (plan) // possibly updating

R a
r Ithasa “perceive, remove ”

r It keeps a persistent plan in its KB, and on each turn it removes one ,flawtfrom
r It then takes an action and repeats

It is a continuous partial-order planning agent.

. After receiving a percept the agent removes flaw from its constantly updated plan
and then returns an action.
. Often it will take many steps of flaw-removal planning, during which it returns

NoOp, before it is ready to take a real action.

3.4.4.4 Multiagent Planning

[So far we have single-agent
C Multiagent coop ocom
r For
o the problem is team planning in
r Plans can be constructed that specify actions for both
[Our objective is to construct plans
[To do this we need requires ceomrdin possibly
commun
C The following table shows the double

declares that there are two agents

Agents(A, B)
Init(At(A, [Left,Baseline])/\ At(B, [Right,Net])A
~ Approaching(Ball, [Right, Baseline]))A Partner(A,B) 4 Partner(B, A)
Goal(Returned(Ball) A At(agent, [x,Net]))
Action(Hit (agent, Ball),
PRECOND: Approaching(Ball, [x,y]) 4 At(agent, [x,y]) 4
Partner(agent, parmer) A 1 At (partner, [xy])
EFFECT: Returned (Ball)) -

Action(Go(agent, [x,y]), . ¥
PRECOND: At(agent, [a,b]), 1)
EFrECT: At(agent, [xy)) A = At(agent, [a,b])) /|

In the above table, Two agents are playing together and can be in one of four
a

fo
o [Left,
olle]
o [Rig]
. The ball can be returned if exactly one player is in the right place.

Cooperation: Joint goals and plans

. An agent (A, B) declares that there are two agents, A and B who are participating
in the plan.

. Each action explicitly mentions the agent as a parameter, because we need to keep
track of which agent does what.

. A solution to a multiagent planning problem is a joint plan consisting of actions
for each agent

. A joint plan is a solution if the goal will be achieved when each agent performs its
assigned actions.

. The following plan is a solution to the tennis problem

PLAN 1:

& A : [Go(A,[Right, Baseline]),Hit(A, Ball)]

%B : [NoOp(B),NoOp(B)].

If both agents have the same KB, and if this is the only solution, then everything would
be fine; the agents could each determine the solution and then jointly execute it.

. Unfortunately for the agents, there is another plan that satisfies the goal just as
well as the first

PLAN 2:

. A : [Go(A, [Left, Net]), NoOp(A)]

. B: [Go (B, [Right,baseline]),H it(23, Ball)]

. If A chooses plan 2 and B chooses plan 1, then nobody will return the ball.

. Conversely, if A chooses 1 and B chooses 2, then they will probably collide with
each other; no one returns the ball and the net may remain uncovered.

. So the agents need a mechanism for coordination to reach the same joint plan
Multibody Planning:

concentrates on the construction of correct joint plans, deferring the coordination issue

for the time being, we call this Multibody planning

. Our approach to multibody planning will be based on partial-order planning
. we will assume full observability, to keep things simple
. There is one additional issue that doesn’t arise in the single-agent case; the

environment is no longer truly static.

. Because other agents could act while any particular agent is deliberating.

. Therefore we need synchronization
. We will assume that each action takes the same amount of time and that actions at

each point in the joint plan are simultaneous.

. At any point in time, each agent is executing exactly one action.
. This set of concurrent actions is called a joint action.
. For example, Plan 2 for the tennis problem can be represented as this sequence

of joint actlons:
Coordination Mechanisms:
The simplest method by which a group of agents can ensure agreement on a joint plan is
to adopt a convention prior to engaging in joint activity.
. A convention is any constraint on the selection of joint plans, beyond the basic
constraint that the joint plan must work if all agents adopt it
. For example
o the convention "stick to your side of the court” would cause the doubles partners to
select plan 2 the convention "one player always stays at the net" would lead them to
plan 1
. In the absence of an applicable convention, agents can use communication to
achieve common knowledge of a feasible join plan
For example:
o a doubles tennis player could shout "Mine!" or "Yours!" to indicate a preferred
joint plan.
Competition:
¢ Not all multiagent environments involve cooperative agents
e Agents with conflicting utility functions are in competition with each other
¢ One example: chess-playing. So an agent must
(a) recognize that there are other agents
(b) compute some of the other agent's possible plans
(c) compute how the other agent's plans interact with its own plans

(d) decide on the best action in view of these interactions

UNIT-IV

PLANNING AND MACHINE LEARNING

Basic plan generation systems - Strips - Advanced plan generation systems - K
strips
- Strategic explanations - Why, Why not and how explanations. Learning - Machine

learning, adaptive learning.

4.1 Uncertainty

Agents almost never have access to the whole truth about the environment (i.e)Agent
must therefore act under uncertainity.

Uncertainity can also arise because of incompleteness and incorrectness in the

agent’s understanding of the properties of the environment.

4.1.1 Handling of Uncertainty:-

Identifying uncertainity in dental diagnosis system.

For all P Symptom(P,toothache) — Diagnosis(P,Cavity)

This rule is logically wrong.Not all patients with toothache have cavities,some of them
may have gum disease or impacted wisdom teeth or one of several other problems.

For all P symptom(P,toothache) — Disease(P,cavity) v Disease(P-Gumdisease)
v Disease(P,Impacted Wisdom)....

(i.e)unlimited set of possibilities are exists for toothache symptom.

Change into casual rule as:

For all P disease(P,cavity) — Symptom(P,toothache),but this rule is not right
either,not all cavities cause pain.

Trying to FOL in medical diagnosis thus fails for three main reasons.

LAZINES: Too much work to list the complete set of antecedents and consequents

needed.

II. THEORETICAL IGNORANCE: Medical science has no complete theory for domain.
1. PRACTICAL IGNORANCE: Even if we know all the rules,uncertainit y arises because

some tests cannot be run on the patients body.

+ CONCLUSION:
o Agents knowledge can at best provide only a degree of belief in the relevant
sentences.the total used to deal with degree of belief will be probability theory,which

assigns or numerical degree of belief between 0 to 1 to sentences.

* PRIOR (or) UNCONDITIONAL PROBABILITY:Before the evidence is obtained.

+ POSTERIOR (or) CONDITIONAL PROBABILITY:After the evidence is obtained.

« UTILITY THEORY:To represent and reasons with preference(i.e)utility-quality of
being useful.

Decision theory=probability theory + Utility theory

* The fundamentals idea of decision theory is that an agent is rational if and only if it
chooses the action that yields the highest expected utility,averaged overall the possible
outcomes of the action-maximium expected utility.(i.e)Weighting the utility of a
particular outcome by the probability that it occurs.

» The following shows a decision theoretic agent

Function DT-Agent (percept)returns an action
Static: belief_state,probabilistic beliefs about the current state of world action, the Agent’s
action
Update: belief_state based on action and percept
Calculate outcomes probabilities for actions, given action description and current Belief_state
Select action with highest expected utility given probabilities of outcomes and Utility
information
Return action
4.2 Review of Probability
AXIOMS OF PROBABILITY:

All probabilities are between 0 and 1.0 < P(A) <1

L Necessarily true (i.e. valid) proposition have probability 1 an necessarily
false (i.e.unsatisfiable)proposition have probability 0 P(True) =1 P(False) =0

II. The probability of a disjunction is given by P(A v B) = P(A) + P(B)-P(A A B)

. LetB=rAin the axiom (III)

IV. P(True) =P(A) + P(-A) - P(False) (by logical equivalence)

V. 1=P(A) +P(-A) (by step 2) VII. P(~A) =1-P(A) (by algebra)

. Joint probability distribution:
An agent's probability assignments to all propositions in the domain (both

simple and complex)

Ex: Trivial medical domain with two Boolean variables.

Toothache ~Toothache
Cavity 0.04 0.06
~Cavity 0.01 0.89

Adding across a row or column gives the unconditional probability of a variable.

P(Cavity) = 0.06 + 0.04 = 0.1

SVCET

P(Cavity + Toothache) = 0.04 +0.01 + 0.06 = 0.11
Conditional Probability

B{Covity Toothache)
P(Topthache)

P(Cavity / Toothache) =

=0.80
0.04
Bayes'Rule: n.pa+0.01

Recall two forms of the product rule P(A A B) = P(A/B) P(B)
P(A A B)=P(B/A) P(A)
Equating the two righthand sides and dividing by P(A),i.e.

(5)ee

P(A/B)= sia)

[s called as Baye’s rule (or) Baye’s law (or) Baye’s theorem
From the above equation the general law of multivalued variables can be written using

the P notation:
P(Y /X) =
From the above equation on some background evidence E:

P(Y/XE) =
Disadvantage
It requires three terms to compute one conditional probability (P(B/A))
One conditional probability P(A/B)
Two unconditional probability P(B) and P(A)
Advantage
If three values are known,then the unknown fourth value — P(B/A) is computed easily.
Example:
Given: P(S/M)=0.5 , P(M)=1/5000 , P(S)=1/20
S - the proposition that the patient has a stiff nect
M - the proposition that the patient has meningitis
P(S/M) - only one in 5000 patients with a stiff neck to have meningitis

P(M/S) = =0.0002

7. Normalization

a) Consider again the equation for calculating the probability of meningitis given a stiff

neck.
P{i}? (af)
P(M/S) = P(S)

b) Consider the patient is suffering from whiplash W given a stiff neck.

Pi5)PO)
P(W/S) = P(5)

c) To perform relative likelihood between a and b,we need P(S/W) = 0.8 and P(W) =
1/1000 and P(S) is nit required since it is already defined

M 5 g
P(S) P(g,.P(MJJ 0.5+1/50000 1

W ER
P p(EJP{W' _ 0.8+1/1000 _ 8¢

i.e.whiplash is 80 times more likely than meningitis,given a stiff neck.

d) Disadvantages: consider the folloeing equations:

p(Z o)
P(M/S) = e
(2)pean)
P(-M/S) = LS (2)

Adding (1) and (2) using the fact that

P(M/S) + P(-M/S) = 1,we obtain

P(S) =P(S/M) P(M) + P(S/~M) P(~M)

Substituting into the equation for P(M/S),we have
P)Pan)

P(M/S) = pI= e+ P ()

a)

b)

c)

d)

e)

This process is called normalization ,because it treats 1/P(S) as a normalizing constant

that allows the conditional terms to sum to 1

;‘he general multivalued normalization equation is

P()= aP(i)P(Y) a}—: normalization constant
8. Baye’s Rule and evidence
Two conditional probability relating to cavities:
P(Cavity / Toothache) = 0.8
P(Cavity /Catch) =0.95 Using Baye’s Rule:
alm er __y_ Catch Vo oce
P\Tosthache __—— P{Cavity)

P(Cavity/Toothache a Catch) = P(Toothache Caich)

Bayesian updating is done (i.e) evidence one piece at a time.

Toothache.

P(Cavity/Toothache) = P(Cavity) F_{Tz':::zh—ﬂ3(1)

When catch is observed apply Bayes Rule with constant conditioning context

catch

{m Cavity)
P(Cavity/Toothache a Catch) = *Toothache’ (2)
From (1) and (2)
CR S ety
= P(Cavity) P{Toothachsa) P{%&

Mathematically the equation are rewritten as:

P(Catch/Cavity A Toothache) = P(Catch/Cavity)
P(Toothache/Cavity a Catch) = P(Toothache/cavity)

These equations express the conditional independence of Toothache and catch on given

Cavity.

Using conditional independences,simplify the equation of Bayes updating

IL.

III.

IV.

Tﬂﬂt.’lach&] (catch
cavity cavity-

culvh

P(Cavity/Toothache a Catch) = P(Cavity) ®T@otheche) P (om0
Using normalization,it is further reduced as

P(Cavity/Toothache a Catch) - P(X/Y,Z) = P(X/Z)

P(Z/X)Y) =a P(Z) P(X/Z) P(Y/Z) (i.e.) P(Z/X,Y)sumto 1

4.3 Bayesian Network:-
4.3.1 Syntax:

A data structure used to represent knowledge in an uncertain domain (i.e) to represent
the dependence between variables and to give a whole specification of the joint
probability distribution.

A belief network is a graph in which the following holds.

A set of random variables makes up the nodes of the network.

A set of directed links or arrows connects pairs of nodes x—y,x has a direct influence on
y.

Each node has a conditional probability tale that quantifies the effects that the parents
have on the node.The parents of a node are all nodes that have arrows pointing to it.
Graph has no directed cycles(DAG)

The other names of Belief network are Bayesian network ,probabilistic network, casual

network and knowledge map.
Example:
A new burglar alarm has been installed at home.

It is fairly reliable at detecting a burglary but also responds on occasion to minor
earthquakes.
You also have two neighbours,John and Mary,who have promised to call you at work

when they hear the alarm.

IL.

III.

John always calls when he hears the alarm but sometimes confuses the telephone ringing

with the alarm and calls then too.

Mary on the otherhand likes rather loud music and sometimes misses the alarm

together.

Given the evidence of who has or has not called estimate the probability of a burglary

Uncertainty:

Mary currently listening to loud music

John confuses telephone ring with alarm — laziness and ignorance in the operation

Alarm may fail off = power failure, dead battery, cut wires etc.

Burglary

ohn calls

Belief network

Earthquake

Burglar Earthquak P(Alarm/Burglary,Earthquak
y e e)
True False
T T 0.950 0.050
T F 0.950 0.050
F T 0.290 0.710
F F 0.001 0.999

Each row in a table must sum to 1,because the entry represents set of cases for the

variable. A table with n Boolean variables contain 2" independently specifiable

probabilities.
P(B)
.001
Burglary P(E)
quake 002
B |E |P(A)
TI|T 95
T |F 94 3.
F T 29
F | F .001 2
Se
John calls Mary calls ma

/A/P(J)
/T 90 A P(M) | nti
T 70

CS
Belief network with conditional pr F Ol

There are two ways in which one can understand the semantics of Belief networks

1. Network as a representation of the joint probabilit y distribution-used to know how to

construct networks.

2. Encoding of a collection of conditional independence statements-designing inference

procedure.

* Joint probability distribution: How to construct network’s? A belief network provides a
complete description of the domain.Every entry in the joint probability distribution can
be calculated from the information in the network.A entry in the joint is the probability

of a conjunction of particular assignment to each variable(i.e) P(X1 = x,A....AXn = Xn)

I11.

IL

We use the notation P(x1....xn)as an abbreviation for this.The value of this entry is given
by the following formula:

P(X1......Xn) = =y P(x

i|Paren

ts(Xi))

Thus each entry in the joint is represented by the product of the appreciate elements of
the CPT in the belief network.The CPT’s therefore provide a decomposed representation
of the joint.

The probability of the event that alarm has sounded but neither a burglary nor an
earthquake has occurred,and both John and Mary call. We use single letter names for the
variables.

P(JAMAArBArE)

=P(J/A) P(M/A) P(A|~BarE) P(~B) P(~E)

=0.90*0.70 * 0.001 * 0.999 * 0.998

=0.00062

Noisy OR: It is the logical relationship of uncertaint y.In proposition logic we might say
fever is true, If and only if cold, flu or malaria is true. The Noisy OR made adds some
uncertainity to this strict logical approach. The model makes three assumptions.

[. It assumes the each cause has an independent chance of causing the effect. II. It
assumes that all possible causes are listed.

It assumes that whatever inhibits Flu from causing a fever.These inhibits are not

responded as nodes but rather are summarized as “noise parameters”

Example
P(Fever/cold) = 0.4
P(Fever/Flu)=0.8 Noise parameters are 0.6,0.2 and 0.1

P(Fever/Malaria)=0.9

Conclusion:

If no parent node is true then the output is false with 100% certainity.
If exactly one parent is true,then the output is false with probability equal to the noise

parameter for that node.

II. The probability that the output node is false is just the product of the noise parameters
for all the input nodes that are true.

Conditional independent relations in belief networks:

« From the given network is it possible to read off whether a set of nodes X is independent
of another set Y,given a set of evidence nodes E? the answer is yes,and the method is
provided by the notion of direction dependent separation or de-seperation.

« If every undirected path from a node in X to a node in Y is de-seperated by E then X and

Y are conditionally independent given E.

____QY
__ﬁ@
2

E
-

>

Q0O
000
3O

A path from X to Y can be blocked given evidence E

Three paths in which a path from x to y can be blocked,given a evidence E.If every path
from x to Y is blocked,then we say E deseperates x and y(i.e)
[. ZisinE and z has one arrow on the path leading in and one arrow out. IIl. ZisinE
and Z has both arrows leading out.

[II. Neither Z nor any descendents of Z is in E and both arrows lead into Z.

Example belief network for d-seperation:Car’s electrical system and engine

Whether there is a Gas in the car and whether the car Radio plays are independent given
evidence about whether the Spark plugs fire

Gas and Radio are independent if battery works.

Gas and Radio are independent given no evidence at all. 4. Gas and Radio are dependent

on evidence start.

4.5. Inference in Temporal models

The generic temporal model has the following set of inference tasks:

1. Monitoring (or) filtering

Filtering (Monitoring):computing the conditional distribution over the current state,

given all evidence to data, P(X¢|el:t)

In the umbrella example, monitoring would mean computing the probability of rain
today,

given all the observation of the umbrella so far, including today

2.Predictior

Prediction:computing the conditional distribution over the future state,given all
evidence to date,P(Xi+k|el:t),for k>0.

In the umbrella example,prediction would mean computing the probability of rain
tomarrow(k=1),or the day after tomarrow(k=2),etc.,given all the observations of the

umbrella so far X¢+1

X0

Q x1

Xk
y Et+1

Monitoring(filtering)

+ Filtering(monitoring):computing the conditional distribution over the current
state,given all evidence to data,corresponds to computing the distribution P(X|e1.),or
P(Xi+1]|et:e+1):

P(Xt+1|el:t+1) = P(Xt+1|el:tet+1) = P(Xt+1|et+1,e1:t)

General form of Baye’s rule conditional also on evidence e

P(X]Y,@)P(Y €]
PO T =5 ey

= aP(X]|Y,e) P(Y]e)
In temporal Markov process,it reads:

P(Xt+1|et+1,el:t) = aP(et+1|Xt+1,el:t) P(Xt+1|el:t)
Since evidence e;depends only on the current state X;

P(Xt+1|et+1,el:t) = aP(et+1|Xt+1,el:t) P(Xt+1|el:t)
Then we can simplify

P(Xt+1|el:t+1) = aP(et+1|Xt+1) P(Xt+1|el:t)
The second term P(Xw1|ert),corresponds to a one-step prediction of the
nextstate,given evidence up to time t,and the first term updates this new state with the
new evidence at time t+1his updating is called filtering.
Let us now obtain the one-step prediction:
P(Xt+1|el:t) = Zxe P (Xt+1|Xt) P(Xt|el:t)
The first term is the (Markov) transition model and the second term is a current state
distribution given evidence up to date
P(Xt+1|el:t) = Zxe P (Xe+1|Xt) P(Xt|e1:t)

The recursive formula for monitoring/filtering then reads

P(Xt+1|el:t+1) = aP(et+1|Xt+1) E‘Y:P(Xt+1|Xt) P(Xt|el:t) We can
write the same set of equations for P(Xt|e1.),where we replace t+1 «tand t « t-1
prediction to the far future
What happens when we want to predict further into future given only the evidence up to
this date?
It can be shown that predicted distribution for state vector converges towards one
constant vector,the so called fixed point (for every t > mixing time):

P(Xt|el:t) = P(Xt+1|el:t+1)

This is called a stationary distribution of the Markov process,and the time required to

reach this stationary state is called the mixing time.

Stationary distribution of the Markov process dooms to failure any attempt to predict

the actual state for a number of steps ahead that is more than a small fraction of the

mixing time.

3. Most likely sequence

Given all evidence to date,we want to find the sequence of states that is most likely to

have generated all the evidence,i.e. argmax X1.: P(X1:t|e1:t)

In the umbrella example,if the umbrella appears on each of the first three days and is

absent on the fourth,then the most likely explanation is that it rained on the first three

days and it did not rain on the fourth.

Algorithms for this task are useful in many applications,including speech recognition,i.e.

to find the most likely sequence of words, given series sounds,or the construction of bit

strings transmitted over a noisy channel(cell phone),etc.

Rt- P(Ry)
1

T 0.7
F 0.3

R
T

Umbrgua t-1

Y

Umb;

Yl

observes first five days on the job.

alNt+1
O

f

0.9
0.2

gllat

Y

Umb;;ella t+1

0 Suppose that [true,true,fM the umbrell@h the security guatr

What is the weather sequence most likely to explain this out of 25=32 possible
sequences,i.e.

argmax X1:t P(X1:t|el:t)?

For each state,the bold arrow indicates its best predecessor as measured by the product
of the preceding sequence probability mi.rand the transition probability P(X¢|X:t1)

To derive the recursive formula,let us focus on paths that reach the state Rains = true.the
most likely path consists of the most likely path to some state at t=4 followed by the
transition to Rains = true.

The state at t=4,which will become part of the path to Rains = true is whichever
maximizes the likelihood of that path.

There is a recursive relationship between most likely paths to each state X1 and most

likely paths to each state X:.

Rain1l Rain2 Rain3 Rain4 Rain5

true true true true true
false false false false false
true ue tr true
.8182 .5155 .0361 .0334 .0210
.1818 [.0491 > 1237 > .0173 r % .0024

ml:1 m1:2 m1:3 m1l:4 m1:5

Viterbi algorithm:

Let us denoted by m1.: the probability of the best sequence reaching each state at time t.

M1:t= M8%x1.xe-1 00Xy w1 Xejetl:n
Then the recursive relationship between most likely paths to each state Xt+1 and most

likely paths to each state X;, reads

1 XCXt#1[elit+1) Muter = MKy xe P(X _
MaXy; (P(Xt+1|)Q)maxx1 xt—1 B
=aP(et+1|Xt+1) X1,....Xt-1,Xt|el:t))

This is the viterbi formula

4.6 Hidden Markov model

An HMM is a temporal probabilistic model in which the state of the process is described
by a single discrete random variable.

The possible values of the variable are the possible states of the world.

The umbrella example described in the HMM,since it has just one state variable Rain..
Additional state variables can be added to a temporal model while staying within the
HMM framenetwork,but only by combining all the state variable into a single
“megavariable” whose values are all possible tuples of values of the individual state

variables.
Simplified matrix algorithms:

With a single,discrete state variable X;,we can give concrete form to the representations
of the transition model,and the forward and backward messages.
Let the state variable X have values denoted by integers 1,.....S,where S is the number of

possible states.

The transition model P(X¢|X:-1) becomes an S x S matrix T,where

Tij = P(Xt = j|Xt-1 = i) Tj - probability of a transition from
state | to state j.
For example,the transition matrix for the umbrella world is

/07 0.3
T = P(Xt|Xt-1) = 07 07

We also put the sensor model in matrix form.In this case,because the value of the
evidence variable E; is known to be say e,we needuse only that part of the model
specifying the probability that e;appears.

For each time step t,we construct a diagonal matrix Or whose diagonal entries are given

by the values P(e¢|X:= i) and whose entries are 0.

lf{].g 0)

01 0 D2

We use column vectors to represent the forward and backward messages,the
computations become simple matrix-vector operations.
The forward equation becomes

Fl:it+1=a Ot+1 TTf1:t ... (1) and the backward equation becomes
bk+1:t = TOk+1 bk+2:t ... (2)
From these equations,we can see that the time complexity of the forward and backward

algorithm applied to a sequence of length t is O(S?%t).The space complexity is O(St).

Besides providing an elegant description of the filtering and smoothing algorithms
for HMMs,the matrix formulation reveals opportunities for improved algorithms.

The first is a simple variation on the forward-backward algorithm that allows smoothing
to be carried out in constant space,independently of the length of the sequence.

The idea is that smoothing for any particular time slice k requires the

simultaneous presence of both forward and backward messages,f1.x and bi+1:.

The forward-backward algorithms achieves this by storing the fs computed on the
forward pass so that they are available during the backward pass.

fl:t =o' (TT)-1 Ot+1-1 f1:t+1
The modified smoothing algorithm works by first running the standard forward pass
to compute fi.¢ and then running the backward pass for both b and f together,using them
to compute the smoothed estimate at each step.
A second area in which the matrix formulation reveals an improvement is in
online smoothing with a fixed lag.
Let us suppose that the lag is d; that is,we are smoothing at time slice t-d,where the

current time is t.By equation.

afl:t-dbt-d+1:t
for slice t-d.Then,when a new observation arrives,we need to compute
afl:t-d+1bt-d+2:t+1
for slice t-d+1.First,we can compute f1.t.q+1 from f1.t.q, using the standard filtering process.
Computing the backward message incrementally is more trickly,because there is no
simple relationship between the old backward message bt.g4+1:t and the new backward

message

bt-d+2:t+1.
Instead ,we will examine the relationship between the old backward message bt.4+1:t and
the backward message at the front of the sequencebw1..To do this,we apply

equation(2) d times to get

braae= Tlicr 41700 brre=Braaal. e (3) Where the matrix B

d+1:tis the product of the sequence of T and O matrices.

B can be thought of as a “transformation operator” that transforms a later

backward message into an earlier one.

(T o TG 2:641 = Be-d42:t41 1. oo (4)

bt-d+2:t+1 =
Examining the product expressions in the above two equations(3) & (4),we see that they
have a simple relationship:to get the second product,”’divide” the first product by the

first element TOt.q4+1, and multiply by the new last element TO¢+1.

In matrix language,then there is a simple relationship between the old and new B

matrices:
Bt-d+2:t+1 = Ot-d+1-1 T-1 Bt-d+1:t TOt+1. (5)

This equation provides an incremental update for the B matrix,which in turn(eqn

(4))

allows us to compute the backward message bt.d+2:t+1.

UNIT-V

EXPERT SYSTEMS

Expert systems - Architecture of expert systems, Roles of expert systems - Knowledge
Acquisition - Meta knowledge, Heuristics. Typical expert systems - MYCIN, DART, XOON,

Expert systems shells.

5.1 Learning from Observation:

O

The idea behind learning is that percepts should be used not only for acting, but also for
improving the agent’s ability to act in the future.

Learning takes place as the agent observes its interactions with the world and its
own decision making process.

Learning can range from trivial memorization of experience to the creation of a

entire scientific theory, as exhibited like Albert Einstein.

5.1.1 Forms of Learning:

Learning agent is a performance element that decides what actions to take and a
learning element that modifies the performance element so that better decisions can be
taken in the future.

There are large variety of learning elements

The design of a learning element is affected by following three major issues, o Which
components of performance element are to be learned. o What feedback is available to
make these components learn o What representation is used for the component.

The components of these agents includes the following, o A direct mapping from
conditions on current state to actions

A means to infer relevant properties of the world from the percept sequence o
Information about the way the world evolves and about the results of possible action the
agent can take

Utility information indicating the desirability of world states o Action-value information
indicating the desirability of action

Goals that describe classes of states whose achievement maximizes the agent utilty

Each of the component can be learned from appropriate feedback o For Example: - An
agent is training to become a taxi driver. o The various components in the learning are as

follows,

Everytime when the instructor shouts “Brake” the agent learn a condition - action rule

for when to brake.

By trying actions and observing the results, agent can learn the effect of actions

(i.e.) braking on a wet road - agent can experience sliding

The utility information can be learnt from desirability of world states,
(i.e.) if the vehicle is thoroughly shaken during a trip, then customer will not give tip to
the agent, which plans to become a taxi driver The type of feedback available for
learning is also important.
The learning can be classified into following three types.
o Supervised learning o Unsupervised learning o Reinforcement learning
Supervised Learning:- o It is a learning pattern, in which
Correct answers for each example or instance is available

Learning is done from known sample input and output

For example: - The agent (taxi driver) learns condition - action rule for braking -

this is a function from states to a Boolean output (to brake or not to brake). Here the
learning is aided by teacher who provides correct output value for the examples.
Unsupervised Learning:- o It is learning pattern, in which

Correct answers are not given for the input.

It is mainly used in probabilistic learning system.

Reinforcement Learning:- o Here learning pattern is rather than being told by a

teacher. o It learns from reinforcement (i.e.) by occasional rewards

o For example:- The agent (taxi driver), if he does not get a trip at end of journey, it gives

him a indication that his behavior is undesirable.

5.2 Inductive Learning

Learn a function from example,

For example:- fis target function

An example is a pair (X, f{x)) where x = input and f{x) = output of the function is applied
tox

The pure inductive inference or induction is “given a training set of example of f, return a
function h that approximates f.

Where the function h is called hypothesis

« This is a simplified model of real learning, because it o Ignores prior knowledge o
Assumes a deterministic, observable “environment”.

* A good hypothesis will generalize well, i.e., able to predict based on unseen examples

5.2.1 Inductive learning method:-

» Goal is to estimate real underlying functional relationship from example observations

+ Construct / adjust h to agree with f on training set (h is consistent if it agrees with f on all
example)

» For example:- Curve fitti ng example

« (Given

fix)
I

e Linear hypo x

fix) -
[|

=X

e Curve fitting with various polynomial hypothesis for the same data

f (x) fix) fix)

. Ockham’s razor : prefer simplest hypothesis consistent with the data
Not-exactly-consistent may be preferable over exactly consistent
Nondeterministic behavior

Consistency even not always possible

Nondeterministic functions : trade-off complexity of hypothesis / degree of fit

5.3 Decision Trees
Decision tree is one of the simplest learning algorithms.
A decision tree is a graph or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
It can be used to create a plan to reach a goal.

Decision trees are constructed to help with making decisions. It is a predictive model.

5.3.1 Decision trees as performance elements:-

Each interior node corresponds to a variable; an arc to a child represents a possible
value of that variable.

A leaf represents a possible value of target variable given the values of the variables
represented by the path from the root.

The decision tree takes object or situation described by set of attributes as input and
decides or predicts output value.

The output value can be Boolean, discrete or continuous.

Learning a discrete valued function is called classification learning.

Learning a continuous valued function is called regression.

In Boolean classification it is classified as true (positive) or false (negative).

A decision tree reaches its destination by performing a sequence of tests.

Each interior or internal node corresponds to a test of the variable; an arc to a child
represents possible values of that test variable.

The decision tree seems to be very for humans.

For Example:- o A decision tree for deciding whether to wait for a table at a restaurant. o

The aim here is to learn a definition for the goal predicate.

o we will see how to automate the task the following attributes are decided.

Alternate: is there an alternative restaurant nearby?

. Bar: is there a comfortable bar area to wait in?

. Hungry: are we hungry?

. Patrons : number of people in the restaurant [the values are None, Some, Full]

Fri/Sat : is today Friday or Saturday?

Price : price range [$, $$, $$$] @ Raining;: is it raining outside?

. Reservation: have we made a reservation?

. WaitEstimate : estimated waiting time by the host [0-10, 10-30, 30-60, >60]

The following table described the example by attribute values (Boolean, Discrete,

Type : kind of restaurant [French, Italian, Thai, Burger]|

Continuous) situations where I will / won’t wait for a table.

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price| Rain | Res| Type | Est | Wait
X; T F'lE T |Some| $$$ F T | French| 0-10 i i
Xy T F F 2, Full $ F F Thai |30-60 F
X3 F| T|F F |Some| § F F | Burger | 0-10 T
X4 T FE|T T | Full $ E F | Thai (10-30| T
X; | EF|T F Full | $$$ F T |French| >60 F
X F| T |F T |Some| $$ T T | ltalian | 0-10 T
X7 F| T |F F | None| § T; F | Burger | 0-10 F
Xz F| F F T |Some| $$ T T | Thai | 0-10 T
Xy A e Tl I F Full $ T F |Burger| >60 F
X0 T| T | T | T | Ful | $$% F T | ltalian [10-30 F
X1 F| F F F |[None| $ F F | Thai | 0-10 F
X9 T T T T Full $ F F | Burger | 30-60 T

The following diagram shows the decision tree for deciding whether to wait for a table

The above decision tree does not use price and type as irrelevant.

& For example:- if the Patrons = full and the Wait Estimate = 0-10 minutes, it will be

classified as positive(yes) and the person will wait for the table

& Classification of example is positive (T) or negative (F) shown in both table and in

decision tree.

The following diagram shows the splitting the examples by testing on

MHrilhiitac

n The ahnve diaaram Snlittina on Tvne hrinas 118 no nearer to distinailiishina hetween
and neaative

n The helow diaaram Snlittina on Patrons does a anod inh of senaratina nositive and
exa

Patrons?

None Full

r The followina table shows the Decision Tree | earnina

function DTL(ezamples, attributes, default) returns a decision tree
if ezamples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best «+— CHOOSE- ATTRIBUTE(attributes, examples)
tree < a new decision tree with root test best
for each value v; of best do
examples; +— {elements of examples with best = v;}
subtree «— D'TL(exzamples;, attributes — best, MODE(ezamples))

add a branch to tree with label v; and subtree subtree
return free

The following tree shows the decision tree induced from the training data

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est Wait
X, T F F T |Some| $%% F T | French| 0-10 T
Xo T F F T Full $ F F Thai | 30-60 F
X3 F T F F Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
Xs T F T F Full $$% F T | French| =60 F
X6 F T F T |Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
Xz F F F T | Some $3 T T Thai | 0-10 T
X F T T F Full $ T F | Burger| =60 F
X0 T T T T Full $$% F T | Italian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
X2 T T T T Full $ F F | Burger | 30-60 T

substantially simpler solution than ‘true’ tree

More complex hypothesis isn’t justified by small amount of data

I Patrons ?]

None m

5.3.4 Using Information theory:

Information content [entropy] :

I(P(v),..,P(v))=ZX -P(v)log2 P(v)

1
[

1 n [[i

For a training set containing p positive examples and

n negative examples

II[_P_ L):_ 3 log, S log, "

p+ﬂ‘p+ﬂ p+n “p+n p+n p+n

» Specifies the minimum number of bits of information needed to encode the classification

of an arbitrary member

A

Information Gain:

s Chosen attribute 4 divides training set E into subsets E1, ... , Ev according to their values for
A, where A has v distinct values

remainder(A) = zp-m’l(5 .. 0)
S p+n p,+n p +n

n

s Information gain [IG] : expected reduction in entropy caused by partitioning the examples

1G(4) = I(—2— . —"—) — remainder(4)
p +n p +n

+ Information gain [IG] : expected reduction in entropy caused by partitioning the examples

IG(A4) = I() remainder(A)
+n p+
+ Choose the attribute with the 13_1 gest IG
» For Example:- For the training set : p=n=06, I(6/12, 6/12) = 1 bit
+ Consider Patrons? and Type? [an.d others]

IG(Patrons) =1— [_ I(0, l]+_ I(L.0)+ %

24
(6

2 .11 1 4 22 22
f6Tpe) =1 [121(2 2) 12 (2"_) PR (4 4)] obis

» Patrons has the highest IG of all attributes and so 1s chosen as the root

)] =.0541bits

T

5.3.5 Assessing the performance of the learning Algorithm:

A learning algorithm is good if it produces hypothesis that do a good job of predicting the
classification of unseen examples.

Obviously, a prediction is good if it turns out to be true, so we can assess the quality of a
hypothesis by checking its predictions against the correct classification once we know it.
We do this on a set of examples known as the test set.

The following are the steps to assess the performance,

Collect a large set of examples

Divide it into two disjoint sets: the training set and the test set

Apply the learning algorithm to the training set, generating a hypothesis h.

Measure the percentage of examples in the test set that are correctly classified h.

Repeat steps 1 to 4 for different sizes of training sets and different randomly selected
training sets of each size.

The result of this procedure is a set of data that can be processed to give the

average prediction quality as a function of the size of the training set.

This function can be plotted on a graph, giving what is called the learning curve for the
algorithm on the particular domain.
The following diagram shows the learning curve for DECISION-TREE-LEARNING with the

above attribute table example.

* R ,"3," \/
% o e Y T
AR o[W8T 0¥ g e
0.9 B ﬁ‘?.:,wﬁf VY Il
faosf .
e { - \i’
7 08 F W _
D ‘i'|
= Y
S I\
S 07t I q
Q 5
S 06 | q
R |
0.5 ps |
0.4 . 1 ' ,
2 20 40 60 80 100

Training set size

In the graph the training set grows, the prediction quality increases. Such a curves

are called happy graphs.

5.4 Explanation Based Learning:

Explanation-based learning is a method for extracting general rules from
individual observations

Human appear to learn quite a lot from example

Basic idea: Use results from one examples problem solving effort next time around.
when an agent can utilize a worked example of a problem as a problem-solving method,
the agent is said to have the capability of explanation-based learning (EBL).

This is a type of analytic learning.

The advantage of explanation-based learning is that, as a deductive mechanism, it
requires only a single training example (inductive learning methods often require many

training examples)

To utilize just a single example most EBL algorithms require all of the following, o The
training example o A Goal concept o An Operationality Criteria o A Domain theory

An EBL accepts four kinds of input as follows, o A training example:- what the learning
sees in the world

A goal concept:- a high level description of what the program is supposed to learn o An
operational criteria:- a description of which concepts are usable

A domain theory:- a set of rules that describe relationships between objects and

actions in a domain

The domain theory has two types as,

Explanation: - the domain theory is used to prune away all unimportant
aspects of the training example with respect to the goal concept.

Generalisation: - the explanation is generalized as far possible while still describing the

goal concept

For Example:- o Cary Larson once drew a cartoon in which a bespectacled caveman,
Zog, is roasting a lizard on the end of a pointed stick.

He is watched by an amazed crowd of less intellectual contemporaries.

In this case, the caveman generalize by explaining the success of the pointed stick which
supports the lizard and keeps the hand away from the fire.

This explanation can infer a general rule: that any long, rigid, sharp object can be used to
toast small, soft bodies.

This kind of generalization process is said to be Explanation based Learning.

The EBL procedure is very much domain theory driven with the training example
helping to focus the learning.

Entailment constraints satisfied by EBL is

Hypothesis ADescriptions |= Classification

Background |= Hypothesis

5.4.1 Extracting rules from examples:

EBL is a method for extracting general rules from individual observations.

The basic idea is first to construct an explanation of the observation using prior
knowledge.

Consider the problem of differentiating and simplifying the algebraic expressions.

If we differentiate the expression X2 with respect to X, we obtain 2X.

The proof tree for Derivative(X?, X) = 2X is too large to use, so we will use a simpler
problem to illustrate the generalization method. Suppose our problem is to simplify
1x (0 +X).
. The knowledge base includes the following rules

Rewrite(u, v) ~Simplify(v, w) = Simplify(u, w)

Primitive(u) = Simplify(u, u)

ArithmeticUnknown(u) = Primitive(u)

Number(u) = Primitive(u)

Rewrite(] x u, u)
Rewrite(0 x u, u)

Do o o0 00

EBL Process Working

The EBL work as follows

. Construct a proof that the goal predicate applies to the example using the available
background knowledge

. In parallel, construct a generalized proof tree for the variabilized goal using the same
inference steps as in the original proof.

. Construct a new rule whose left hand side consists of leaves of the proof tree and RHS is
the variabilized goal.

. Drop any conditions that are true regardless of the values of the variables in the goal.

In the diagram, the first tree shows the proof of original problem instance, from which

we can derive o ArithmeticUnknown(z) = Simplify(1 x (0 + z), z)

+ The second tree shows the problem where the constants are replaced by variables

as generalized proof tree.

Simplify(1x(0+X),w)

Rewrite(1x(0+X),v) Simplify(0+X),w)
v/ / \
Rewrite(0+X,v') Simplify(X,
V'/x
v
Primitive(

Arithmetic Unknown(X)

Simplify(xx(y+z),w)

Rewrite(xx(y+z),v) Stplifydyrzw)
X/l , /-W\

Rewrite(y+z,v') Simplify(z,w)
y/0,V'/z v
Primitiv

Arithmetic unknouwn(z)

5.4.2 Improving efficiency:

+ The generalized proof tree mentioned above gives or yields more than one generalized

rule.

For example if we terminate, or PRUNE, the growth of the right hand branch in the tree

when it reached the primitive step, we get the rule as, o Primitive(z) @ Simplify(1 X (0 +

z),2)

This rule is a valid as, but more general than, the rule using ArithmeticUnknow, because
it covers cases where z is a number.

After pruning the step, o Simplify (y + z w), yielding the rule o Simplify (y + z w)
Simplify (1X(y +z), w) The problem is to choose which of these rules.

The choice of which rule to generate comes down to the question of efficiency.

There are three factors involved in the analysis of efficiency gains from EBL as, o Adding
large number of rules can slow down the reasoning process, because the inference
mechanism must still check those rules even in case where they not a solution. It
increases the branching factor in the search space.

To compensate the slowdown in reasoning, the derived rules must offer significant
increase in speed for the cases that they do not cover. This increase occurs because the
derived rules avoid dead ends but also because they short proof also.

Derived rule is as general as possible, so that they apply to the largest possible set of

cases.

5.5 Statistical Learning Methods:

Agents can handle uncertainty by using the methods of probability and decision theory.
But they must learn their probabilistic theories of the world from experience.

The learning task itself can be formulated as a process of probabilistic inference.

A Bayesian view of learning is extremely powerful, providing general solutions to
the problem of noise, overfitting and optimal prediction.

It also takes into account the fact that a less than omniscient agent can never be certain
about which theory of the world is correct, yet must still make decisions by using some

theory of the world.

O

5.5.1 Statistical Learning

The key concepts of statistical learning are Data and Hypotheses.

Data are evidence (i.e.) instantiations of some or all of the random variables describing
the domain.

Hypotheses are probabilistic theories of how the domain works, including logical
theories as a special case.

For Example:- o The favorite surprise candy comes in two flavors as Cherry and Lime
The manufacturer has a peculiar sense of humor and wraps each piece of candy in the
same opaque wrapper, regardless of flavor.

The candy is sold in very large bags of which there are known to be five kinds-again,
indistinguishable from the outside:

h1: 100% cherry candies

h2: 75% cherry candies + 25% lime candies h3: 50% cherry candies + 50% lime candies

h4: 25% cherry candies + 75% lime candies h5: 100% lime candies
S®

Given a new bag of candy the random variable H (for hypotheses) denotes the type of tile
bag, with possible values h1 through h5. H is not directly observable.
As the pieces of candy are opened and inspected, data are revealed as D1, D2...Dn in
which each D is a random variable with possible values Cherry and Lime.

The basic task faced by the agent is to

predict ' . the flavor of the next piece of candy

5.5.1.1 Bayesian Learning:

Bayesian Learning calculates the probability of each hypothesis, given the data and
makes predictions by using all the hypotheses, weighted by their probabilities.
In this way learning is reduced to probabilistic inference.
Let D be all data, with observed value d, then probability of a hypothesis h;, using Bayes
rule P(h|d)=aP(d | h)P(h)

i i i
For prediction about quantity X :
P(X|d)= X P(X|d,h)P(h |d)= X P(X|h)P(h |d)
i i i i
Where it is assumed that each hypothesis determines a probability distribution over X.
This equation shows that predictions were weighted averages over the predictions of
the individual hypothesis
The key quantities in the Bayesian approach are the o Hypothesis Prior, P(h;)
o Likelihood of the data under each hypothesis, P(d | h)

i

For candy example, assume the time being that the prior distribution over h1,...h5 is
given by (0.1,0.2,0.4,0.2,0.1), as advertised by the manufacturer.
The likelihood of the data is calculated under the assumption that the observations are

i..i.d, thatis i= independently, i= identically and d= distributed So that

P(d | hi) B & P(dj | hi)
J

The following figure shows how the posterior probabilities of the five hypotheses change
as the sequence of 10 Lime is observed.

Notice that the probabilities start out at their prior values. So h1 is initially the most
likely choice and remains so after 1 Lime candy is unwrapped.

After 2 Lime candies are unwrapped, h1 is most likely; after 3 or more, h5 is the most

likely.

Posterior probability of hypothesis

P(h, | d) —e—
P(hy | d) e %mmnmn
P(h, | d) o s
08 1 P(h, |d) i
0.6
0.4 g:eeeeee
lw- """"""""""""""" o,
o e T ...,
0.2 %, i e,
T e =000 L - T -
0 _ %:- — a e ot o, o N
0 2 4 6 8 10

Number of samples in d

The following figure shows the predicted probability that the next candy is Lime as

expected, it increases monotonically toward 1

Probability that next candy is Lime

Y-Values

1.2

08 F

0.6

0.4

0.2 |

0 2 4 6 8 10 12

Number of Samples in d

5.1.2 Characteristics of Bayesian Learning:

The true hypothesis eventually dominates the Bayesian prediction. For any fixed prior
that does not rule out the true hypothesis, the posterior probability of any false
hypothesis will vanish, because the probability of generating uncharacteristic data
indefinitely is vanishingly small.

More importantly, the Bayesian prediction is optimal, whether the data set is small or

large.

For real learning problems, the hypothesis space is usually very large or infinite. In

most cases choose the approximation or simplified methods.

5.5.1.2.1 Approximation

Make predictions based on a single most probable hypothesis hi that maximizes P(hi|d).
This is often called a maximum a posteriori or MAP hypothesis.

Predictions made according to an MAP hypothesis hmap are approximately Bayesian to
the extent that P(X|d) @ P(X| hmar).

In candy example, hmap = hs after three lime candies in a row, so the MAP learner then
predicts that the fourth candy is lime with probability 1.0 a much more dangerous
prediction than the Bayesian prediction of 0.8 shown in the above graphs.

As more data arrive, the MAP and Bayesian predictions become closer, because
the competitors to the MAP hypothesis become less and less probable. Finding MAP

hypothesis is much easier than Bayesian Learning is more advantage.

5.5.2 Learning with Complete Data:

The statistical learning method begins with parameter learning with complete data.
A parameter learning task involves finding the numerical parameter for the
probabilit y model.

The structure of the model is fixed.

Data are complete when each data point contains values for every variable in the
probability model. @ Complete data simplify the problem of learning the parameters of

complex model.

5.5.1.1 Maximum Likelihood Parameter Learning: Discrete Models

Suppose we buy a bag of lime and cherry candy from a manufacturer whose lime-cherry
proportion are completely unknown.

The fraction can be anywhere between 0 and 1.

The parameter in this case is @, which is the proportion of cherry candies, and the
hypothesis is h{@ .

The proportion of lime is (1- &).

We assume all the proportions are known a priori then Maximum Likelihood approach
can be applied.

If we model the situation in Bayesian network, we need just one random variable
called Flavor it has values cherry and lime.

The probability of cherry is [@ .

If we unwrap N candies, of which C are cherries and L=N-C are limes.

The likelihood of the particular set is,

P(d / h6) =[1P(dj \ h6) =6c .(1-0)L] =1

The maximum-likelihood hypothesis is given by the value of e* that maximizes the
expression.

It can be obtained by maximizing the log likelihood.

NL1(d | h6) =P(d | h6) =Xlog(P(dj \ h6) =clogb+L log(1-6)] =1

To find the ML value of 6differentiate wrt 6and then equate resulting to zero

L(d\h8" C L C
L:—-— ; 8 —— wherectl=N
dﬂ 9 ‘__9 |_"."|'.EI L‘H‘

b

(L

p e Lf-
The

standard method for maximum likelihood parameter learning is given by

o Write down an expression for the likelihood of the data as a function of the

parameters

Write down the derivative of the log likelihood with respect to each parameter.
Find the parameter values such that the derivatives are zero
The most important fact is that, with complete data, the maximum-likelihood

parameter learning problem for a Bayesian network

5.5.1.2 Maximum Likelihood Parameter Learning: Continuous Models

Continuous variables are ubiquitous (everywhere) in real world applications.

Example of Continuous probability model is linear-Gaussian model.

The principles for maximum likelihood learning are identical to discrete model.

Let us take a simple case of learning the parameters of a Gaussian density function on a
single variable.

The data are generated as follows

(=
PLx,l = — g 20¢
A 2T

Parameters of this model pu = mean and ¢ = Standard deviation.
Let the observed values be x1, X2,......... XN

Then the log likelihood is given as

N (=’ - i)
L=D log 20’ = 4'V={—1ﬂg«f1f—lagﬂf)—z££'—_‘%l
=l N 2mo = 20

Setting the derivatives to zero as usual, we obtain

¥

B 1w .
= (x —u)=0 =gt
éu o 2 m N
dal. N 1 N

8L N 1 N 2
= G L) =0 —Sg=

. Maximum likelihood value of the mean is the simple average.
. Maximum likelihood value of the standard deviation is the square root of the

simple variance.

5.5.3 Learning with Hidden Variables:

1. Many real world problems have hidden variables (or) latent variables which are not
observable in the data that are available for learning.

2. For Example:- Medical record often include the observed symptoms, treatment
applied and outcome of the treatment, but seldom contain a direct observation of
disease itself.

Assumed the diagnostic model for heart disease. There are three observable
predisposing factors and 3 observable symptoms. Each variable has 3 possible values

(none, moderateand severe)

2 2
Diet
Comoking 2

Exercise

Heart Diseases —*Hidden Variable

Symptoms3

Symptoms2

If hidden is removed the total number of parameters increases from 78 (54 + 2 + 2 + 2 +

6+6+6)to 708

Smoking Exercise

54

Hidden wvariables can dramatically reduce the number of parameters required to specify the
Bayesian network, there by reduce the amount of data needed to learn the parameters.

It also ineludes estimating probabilities when some of the data are missing.

The reason we learn Bayesian network with hidden variable is that it reveals interesting
structures in our data.

Consider a situation in which you can observe a whole bunch of different evidence variables,
Er through En. They are all different symptoms that a patient might have.

The model can be made simpler by introducing an additional “cause™ node. It represents the
underlying disease state that was causing the patient symptoms.

This will have O(n) parameters. because the evident variables are conditionally independent
given the causes.
Missing data
> Imagine that we have 2 binary wvariables A and B that are not independent. We try to
estimate the Joint distribution.

Different systems:

If the wvariables are conditionally dependent on one another. we will get a highly connected
graph that representing the entire joint distribution between the wvariables.

A B
1 1
1 1
(1] 0
(1] 0
(1] 1]
(1] H
(1] 1
1 0

It is done by counting how many were (true, true) and how may (false, false) and divide
by the total number of cases to get maximum likelihood estimate.

The above data set has some data missing (denoted on “H”). There’s no real wayto guess
the value during our estimation problem.

The missing data items can be independent of the value it would have had. The data can
be missed if there is a fault in the instrument used to measure.

For Example:- Blood pressure instrument fault, so blood pressure data can be missing)

9. We can ignore missing values and estimate parameters

Estimate Parameters

0 1 0 1

A A A A
0B 3/7 1/7 0F 0.429 | 0.143
1B 1/7 2/7 1B 0.143 0.285

We can consider H=0 (or) H=1

S logPr(D/ M)=log(Pr/ D.H=0/M)+Pr(D.H =1/ M))
=3 log 0.429 +2 log 0.143 + 2 log 0.285 + log (0.429 + 0.143)
= -9.498 Maximum likelihood score

10. We also try to fit 1t with best value.

For the above cause consider H=0, Estimated parameters as follows,

0 1 0 1

Z A A A
0B 4/8 1/8 0B 0.5 0.125
1B 1/8 2/8 1B 0.125 0.25

s 1ogPr(D/ M) =log(Pr/ D,H =0/ M)+Pr(D.H =1/ M))
=3 log0.5+2]og 0.125 + 2 log 0.25 + log (0.5 + 0.125)
= -0.481

11. We will employ some soft assignment technique. we fill the value of the missing variable by
using our knowledge of the joint distribution over A, B and compute a distribution over H.

0 1

A4 A
0B 0.25 0.25
1B 0.25 025

Initial guess Uniform distribution.
Compute probability distribution over H
Pr(H /D.8,)=Pr(H 18, 6,) because it refers to 6™ case in the observed data in the table.
=Pr(H / D%.6,)
=Pr(B/—-4,6,)
because missing variable is B and the observed one is not A, we need the probability of B
given not A.

Pr(B / —A,00) =Pr(—A, B/ 00) / Pr(—A/00)

=0.25/0.50.5
H = 0 probabili ty is 0.5

H =1 probabili ty is 0.

A B
1 1
1 1
0 0
0 0
0 0
0 0,0.5
1,0.5
0 1
1 0

Now maximum likelihood estimation using expected counts. So expected parameter is

0 14 0 14
A A

0 3.5/ 1/ 0 0.437 0.12

B 8 8 B 5 5

1 15/ 2/ 1 0.187 0.25

B 8 8 B 5

New estimate is
Pr(H/D,Q1) 0@ Pr(@, B/ Q1) /Pr(ZA / Q1)
0.1875

0.625
So the new table is = 0.3

A B

| O = =

| O = =

c.theta2 is 02 is

Pr(H /D,02) =Pr(—Ar,B /02) / Pr(—A / 62) = 0.1625= 0.260.625log

likelihood is increasing

log Pr(0 /60) =—10.3972 log Pr(D /61) =—9.4760log Pr(D /02) =—9.4524

Since all values are negative it is in increasing order. .. We have to choose the best value

0,0.7
1,03
1
0
0 1 0 1
I A A A
0B 3.7/8 1/8 0B 0.4625 |0.125
1B 1.3/8 2/8 1B 0.1625 |0.25

12. The above iterative process is called EM algorithm.

a. The basic idea in EM algorithm is to pretend that we know the parameters of the

model and then to infer the probability ty that each data point belongs to each

component.

ii.

iii.

1v.

b. After that we refit the components of the data, where each component is fitted to the

entire data set with each point weighted by probability that it belongs to the component.

c. This process is iterated until it converges. d. We are completing the data by inferring

probability ty distributions over the hidden variable.

13. EM Algorithm
a. want to find @ to maximize PR(D/ &)
To find theta (&) that maximizes the probability of data for given theta (&)
b. Instead find @. P to maximize, where P = P tilde
g(6.P)="5" B(H)log(Px(D.H / 8)/ B(H))
B

= Eplog Pr(D.H / 6)—log P(H)
Where, IB(H) = Probability distribution over hidden variables, H= Hidden Variables
c. Find optimum value for g
v holding @ fixed and optimizing P

v holding P@ fixed and optimizing
v and repeat the procedure over and again d. g has some local and global
optima as PR(D/ 0)
e. Example:-
Pick initial @ 0
Probability of hidden variables given the observed data and the current model.

Loop until it converges

P%t+ 1(H) =Pr(H / D,0t)arg max

P%t+1=0 ErP%t +1log Pr(D,H / 0)

We find the maximum likelihood model for the “expected data” using the distribution
over H to generate expected counts for different case.

Increasing likelihood.

Convergence is determined (but difficult)

Process with local optima i.e., sometimes it converges quite effectively to the maximum
model that’s near the one it started with, but there’s

much better model somewhere else in the space.

N

Local minima optimum Value

EM for Bayesian Network:

Let us try to apply EM for Bayesian Networks.

1. Our data is a set of cases of observations of some observable variables i.e. D

Observable Variables

2. Our hidden variables will actually be the values of the hidden node in each case. H
Values of hidden variable in each case
For Example:- If we have 10 data case and a network with one hidden node, then we
have 10 hidden variables on missing pieces of data.

3. Assume structure is known

4. Find maximum likelihood estimation of CPTSs that maximize the probability of the
observed data D.

5. Initialize CPT’s to anything (with no 0’s) Filling the data

1. Fill in the data set with distribution over values for hidden variables
2. Estimate Conditional probability using expected counts.

We will compute the probability distribution over H given D and theta (@), we have ‘m

different hidden variables, one for the value of node H in each of the m data cases.
P%t+ 1(H) =Pr(H / D,6t)=[IPr(H /D ,6t) m

3. Compute a distribution over each individual hidden variable

4. Each factor is a call to bayes net inference

3. For Example:-
a. Consider a simple case with one hidden node

All nodes are binary

b | O |cssas D, | Po(H™ /D™, 8)
I | X | 0 0.9
(T r— 0 0.2
0 | | aeeeeennn 1 0.1
U | A | 1 0.2
T 1 0.5

Pr(H™/D™,6,) = Bayes net inference

b. We use bayes net inference to compute for each case in our data set, the probability
that H would be true, given the values of the observed variables.

c. To compute expected count ie., the expected number of times H is true, we will add
up the probability of H.
E(H)=Y Pr(H™/D".6)

=1.9(09+02+0.1+0.2+0.5)
d. To get the expected number of times that H and D2 are true, we find all the cases in
which D2 is true. and add up their probabilities of H being true.

E(H)=Y Pr(H™/D".6)

-19
E(H AD2)= Y Pe(H™ / D",6)I(D}")

=09+02+02+05
=1.8

1.8 i :
P(D2/H)= E Probability of D2 given H
=0.9473

5.5.4 Instance Based Learning:-

¢ A parametric learning method is simple and effective.

e In parametric learning method when we have little data or data set grows larger then
the hypothesis is fixed.

e Instance based model represents a distribution using the collection of training
instances.

¢ Thus the number of parameter grows with the training set.

eNon Parametric learning methods allows the hypothesis complexity to grow with the
data.

¢ Instance based Learning or Memory based learning is a non-parametric model because
they construct hypothesis directly from the training set.

¢ The simplest form of learning is memorization.

When an object is observed or the solution to a problem is found, it is stored in memory
for future use.

Memory can be thought of as a lookup table.

When a new problem is encountered, memory is searched to find if the same problem
has been solved before.

If an exact match for the search is required, learning is slow and consumes very
large amounts of memory.

However, approximate matching allows a degree of generalization that both speeds
learning and saves memory.

For Example:- “ If we are shown an object and we want to know if it is a chair, then we
compare the description of this new object with descriptions of “typical” chairs that we
have encountered before.

If the description of the new object is “close” to the description of one of the stored
instances then we may call it a chair.

Obviously, we must defined what we mean by “typical” and “close”.

|To better understand the issues involved in learning prototypes, we will briefly
describe three experiments in Instance based learning (IBL) by Aha, Kibler and Albert

(1991).

IBL learns to classify objects by being shown examples of objects, described by an
attribute/value list, along with the class to which each example belongs.

Experiment 1:- o In the first experiment (IB1), to learn a concept simply required the
program to store every example. o When an unclassified object was presented for
classification by the program, it used a simple Euclidean distance measure to
determine the nearest neighbor of the object and the class given to it was the class of
the neighbor.

The simple scheme works well, and is tolerant to some noise in the data.

Its major disadvantage is that it requires a large amount of storage capacity.
Experiment 2:- o The second experiment (IB2) attempted to improve the space
performance of IB1.

In this case, when new instances of classes were presented to the program, the
program attempted to classify them. o Instances that were correctly classified were
ignored and only incorrectly classified instances were stored to become part of the
concept.

This scheme reduced storage dramatically, it was less noise tolerant than the first.
Experiment 3:- o The third experiment (IB3) used a more sophisticated method for
evaluating instances to decide if they should be kept or not.

IB3 is similar to IB2 with the following additions. o IB3 maintains a record of the number
of correct and incorrect classification attempts for each saved instance.

This record summarized an instances classification performance.

IB3 uses a significance test to determine which instances are good classifiers and
which ones are believed to be noisy.

The latter are discarded from the concept description.

This method strengthens noise tolerance, while keeping storage requirements down.

5.5.5 Neural Network:-

. A neural network is an interconnected group of neurons.

The prime examples are biological neural networks, especially the human brain.

In modern usage the term most often refers to ANN (Artificial Neural Networks) or
neural nets for short.

An Artificial Neural Network is a mathematical or computational model for
information processing based on a connections approach to computation.

It involves a network of relatively simple processing elements, where the global
behavior is determined by the connections between the processing elements and
element parameters.

In a neural network model, simple nodes (neurons or units) are connected together to
form a network of nodes and hence the term “Neural Network”

The biological neuron Vs Artificial neuron:- Biological Neuron:-

The brain is a collection of about 10 million interconnected neurons shown in

following figure.

—
Cell body

Nucleus O

& Axon
Dendrites

Each neuron is a cell that uses biochemical reactions to receive, process and
transmit information.

A neurons dendrites tree is connected to a thousand neighboring neurons.

When one of those neurons fire, a positive or negative charge is received by one of the
dendrites.

The strengths of all the received charges are added together through the processes of

spatial and temporal summation.

+ Spatial summation occurs when several weak signals are converted into a single large
one, while temporal summation converts a rapid series of weak pulses from one source
into one large signal.

» The aggregate input is then passed to the soma (cell body).

« The soma and the enclosed nucleus don’t play a significant role in the processing of

incoming and outgoing data.

Artificial Neuron (Simulated neuron):-

Artificial Neurons are composed of nodes or units connected by directed links as shown

in following figure.

Inputs Weights (+ve/-ve)
a0 W
Summa
W1 [
al O e >
/i
W2 0 Activation i= i)
d :
: W
a

o Alink from unit j to unit i serve to propagate the activation aj from j to i.
o Each link also has a numeric weight Wj, i associated with it, which determines the
strength and sign of the connection.

o Each uniti first computes a weighted sum of its inputs

ini =>Wj, iajj =0

o Then it applies an activation function g to this sum to derive the output.

n

ai =g (ini) =g (ZWj, iaj)

A simulated neuron which takes the weighted sum as its input and sends the output 1, if

the sum is greater than some adjustable threshold value otherwise it sends 0.

The activation function g is designed to meet two desires,

The unit needs to be “active” (near +1) when the “right” inputs are given and “inactive”

(near 0) when the “wrong” inputs are given.

The activation needs to be non linear, otherwise the entire neural network collapses

into a simple linear function.

o There are two activation functions,

Threshold function

Sigmoid function

Comparison between Real neuron and Artificial neuron (or) Simulated neuron:-

Computers Human brain (Real
(Artificial neuron) neuron)
Computational 1 CPU, 105 gates 1011 neurons
Units

Storage Units

10°bits RAM, 1011

101 pneurons, 1014

bits disk Synapses
Cycle time 10-8sec 10-3sec
Bandwidth 10° bits/sec 1014 bits/sec
Neuron 105 1014
updates/Sec

The above table shows the comparison based on raw computational

available to computer and human brain.

sources

The following table shows the comparison based on structure and working method.

Real neuron

Simulated neuron (Artificial

neuron)

The character of real neuron is

not modeled

The properties are derived by
simply adding up the weighted

sum as its input

nulation of dendrites is done using electro

chemical reaction

A process output is derived using

logical circuits

Billion times faster in decision

making process

Million times faster in decision

making process

More fault tolerant

Less fault tolerant

Autonomous learning is possible

Autonomous learning is not

possible

Abstract properties of neural networks:-
* They have the ability to perform distributed computation They have the ability to
learn.
* They have the ability to tolerate noisy inputs
Neural network Structures:-
« The arrangement of neurons into layers and the connection patterns within and
between layers is called the network structures.
« They are classified into two categories depends on the connection established in the
network and the number of layers.
o Acyclic (or) Feed-forward network
. Single layer feed-forward network
. Multilayer feed-forward network o Cyclic (or) Recurrent networks
« The following table shows the difference between Feed-forward network and

Recurrent network,

Feed-Forward network Recurrent network

Unidirectional Connection Bidirectional Connection

Cycles not exist Cycles exist

Alayered network, backtracking

is not possible

Not a layered network,

backtracking is not possible

Computes a function of the input
values that depends on the weight
settings, no internal state

other than the weight settings

Internal state stored in the

activation levels of the units.

Example:- Simple layering Models

Example:- Brain

A model used for simple reflex

agent

A model used for complex agent

design

Feed-Forward network:-

A feed-forward network represents a function of its current input; thereby it has no

internal state other than the weights themselves.

Consider the following network, which has two hidden input units and an output unit.

Given an input vector x = (x1, x2), the activations of the input units are set to (al,a2) =

(x1,x2) and the network computes

aSlg(W3,5a38W4,5a4)dg (W3,59g(W1,3a1@8W2,3a2)@BW4,5g(W1,4al

W2, 4a 2))

Single Layer feed-forward network:-

» Asingle layer network has one layer of connection weights.

» The following figure shows the single layer feed forward network.

Input layer Output layer
of of
source nodes neurons

* The units can be distinguished as input units, which receive signals from the outside
world, and output units, from which the response of the network can be read.
* The input units are fully connected to output units but are not connected to other input

units. They are generally used for pattern classification.

Multi Layer feed-forward network:-
« A multi layer network with one or more layers of nodes called hidden nodes.
+ Hidden nodes connected between the input units and the output units.
* The below figure shows the multilayer feed-forward network.
« Typically there is a layer of weights between two adjacent levels of units.
* The network structure has 3 input layer, 4 hidden layer and 2 output layer.
* Multilayer network can solve more complicated problems than single layer networks.

* In this network training may be more difficult.

3-4-2 Network

Input Output

layer layer
Hidden Layer

Recurrent network:-

Each node is a processing element or unit, it may be in one of the two states (Black-
Active, White-Inactive) units are connected to each other with weighted symmetric
connection.

A positive weighted connection indicates that the two units tend to activate each other.
A negative connection allows an active unit to deactive neighboring unit.

The following diagram shows the simple recurrent network which is a Hopfield network,

Working method:- o A random unit is chosen.
If any of its neighbors are active, the unit computes the sum of the weights on the
connections to those active neighbors.

If the sum is positive, the unit becomes active, otherwise it become inactive.

Fault tolerance:- If a new processing element fails completely, the network will

still function properly.

Learning Neural network structures:-

It is necessary to understand how to find the best network structure.

If a network is too big is chosen, it will be able to memorize all the examples by forming
a large lookup table, but will not generalize well to inputs that have not been seen
before.

There are two kinds of networks must be considered namely,

Fully connected network

Not Fully connected network

Fully Connected networks:-

If fully connected networks are considered, the only choices to be made concern the
number of hidden layers and their sizes.

The usual approach is to try several and keep the best.

The cross validation techniques are needed to avoid peeking at the test set.

Not Fully Connected network:- o If not fully connected networks are considered,
then find some effective search method through the very large space of possible
connection topologies.

Optimal Brain damage Algorithm:- o The following are the steps involved in brain
damage algorithm, 1. Begin with a fully connected network

Remove connections from it.

After the network is trained for the first time, an information theoretic approach
identifies an optimal selection of connections that can be dropped.

Then the network is trained.

If its performance has not decreased then the process is repeated.

In addition to removing connections, it is also possible to remove units that are not

contributing much to the result.

+ Tiling Algorithm:- o It is an algorithm, which is proposed for growing a larger network
from a smaller one. o it resembles decision-list learning.
o The following are the steps involved in tiling algorithm,

1. Start with a single unit that does its best to produce the correct output on as many of the
training examples as possible.

2. Subsequent units are added to take care of the examples that the first unit got wrong.

3. The algorithm adds only as many units as are needed to cover all the examples.

Advantages of Neural Networks:-

* The neural network learns well, because the data were generated from a simple decision
tree in the first place.

* Neural networks are capable of far more complex learning tasks of course. There are

literally tens of thousands of published applications of neural networks

5.6. Reinforcement Learning

5.6.1 Reinforcement:

Reinforcement is a feedback from which the agent comes to know that something good
has happened when it wins and that something bad has happened when it loses. This is
also called as reward.

* For Examples:- o In chess game, the reinforcement is received only at the end of the
game.

o In ping-pong, each point scored can be considered a reward; when learning to crawl, any
forward motion is an achievement.

» The framework for agents regards the reward as part of the input percept, but the agent
must be hardwired to recognize that part as a reward rather than as just another
sensory input.

+ Rewards served to define optimal policies in Markov decision processes.

* An optimal policy is a policy that maximizes the expected total reward.

» The task of reinforcement learning is to use observed rewards to learn an optimal policy
for the environment.

* Learning from these inforcements or rewards is known as reinforcement learning

In reinforcement learning an agent is placed in an environment, the following are the
agents o Utility-based agent o Q-Learning agent o Reflex agent
The following are the Types of Reinforcement Learning, o Passive Reinforcement

Learning o Active Reinforcement Learning

5.6.2 Passive Reinforcement Learning

In this learning, the agent’s policy is fixed and the task is to learn the utilities of states.

It could also involve learning a model of the environment.

In passive learning, the agent’s policy [is fixed (i.e.) in state s, it always executes the
action

(s).

Its goal is simply to learn the utility function U @ (s). @ For example: - Consider the 4 x 3
world.

The following figure shows the policy for that world.

The following figure shows the corresponding utilities

0.812 0.868 0.918 +1

0.762 0.560

0.705 0.655 0.611 0.388

Clearly, the passive learning task is similar to the policy evaluation task.

The main difference is that the passive learning agent does not know

o Neither the transition model T(s, a,s’), which specifies the probabilit y of reaching
state’s from state s after doing action a;

o Nor does it know the reward function R(s), which specifies the reward for each state

The agent executes a set of trials in the environment using its policy @ .

In each trial, the agent starts in state (1,1) and experiences a sequence of state
transitions until it reaches one of the terminal states, (4,2) or (4,3).

Its percepts supply both the current state and the reward received in that state.

Typical trials might look like this:

(1,1)-0.4%1, 2)-0.4 (1,3)-0.4 (1,2)-0.4 (1,3)-0.4 (2,3)-0.4 (3,3)-0.4 (4,3)+1

—-»> - - - —- > >
(1,1)-0.441, 2)-0.4 {%,3)-0.4 (28)-0.4 (38)-0.4 (3;2-0.4 (3,30.4 (4,3)7*1
(1,1)-0.4 (2,1)-0.4 E§,1)-0.4 (3_,5)-0.4 (AI,»Z)-l

Note that each state percept is subscripted with the reward received.
The object is to use the information about rewards to learn the expected utility U
(s) associated with each nonterminal state s.
The utility is defined to be the expected sum of (discounted) rewards obtained if policy
is [@ followed, the utility function is written as

UTI(s) =E | XytR(st) | 1, s0 =s
For the 4 x 3 world sety=1

5.6.2.1 Direct utility estimation:-

* A simple method for direct utility estimation is in the area of adaptive control theory
by Widrow and Hoff(1960).

« The idea is that the utility of a state is the expected total reward from that state onward,
and each trial provides a sample of this value for each state visited.

« Example:- The first trial in the set of three given earlier provides a sample total reward
of 0.72 for state (1,1), two samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and
0.88 for (1,3) and so on.

« Thus at the end of each sequence, the algorithm calculates the observed reward- to-go
for each state and updates the estimated utility for that state accordingly.

* In the limit of infinitely many trails, the sample average will come together to the
true expectations in the utility function.

« Itis clear that direct utility estimation is just an instance of supervised learning.

« This means that reinforcement learning have been reduced to a standard inductive
learning problem.

+ Advantage:- Direct utility estimation succeeds in reducing the reinforcement
learning problem to an inductive learning problem.

+ Disadvantage:- o It misses a very important source of information, namely, the fact that
the utilities of states are not independent

Reason:- The utility of each state equals its own reward plus the expected utility of its
successor states. That-is, the utility values obey the Bellman equations for a fixed
policy
Un(s) =R(s) +AXT(s,n(s), s)U n(s’)s
o It misses opportunities for learning

Reason:- It ignores the connections between states o The algorithm often

converges very slowly.

Reason:- More broadly, direct utility estimation can be viewed as searching in a hypothesis
space for U that is much larger that it needs to be, in that it includes many functions that
violate the Bellman equations.
5.6.2.2 Adaptive Dynamic programming:-

* Agent must learn how states are connected.

+ Adaptive Dynamic Programming agent works by learning the transition model of
the environment as it goes along and solving the corresponding Markov Decision
process using a dynamic programming method.

» For passive learning agent, the transition model T (s, @ (s), s') and the observed rewards
R(S) into Bellman equation to calculate the utilities of the states.

* The process of learning the model itself is easy, because the environment is fully
observable i.e. we have a supervised learning task where the input is a state-action pair
and the output is the resulting state.

* We can also represent the transition model as a table of probabilities.

« The following algorithm shows the passive ADP agent,

Function PASSIVE-ADP-AGENT (percept) returns an action

Inputs: percept,a percept indicating the current state s'and reward signal r
Static: 1 a,fixed policy

Mdb,an MDP with model T,rewards R,discount y

U,a table of utilities,initially empty

Nsa,a table of frequencies for state-action pairs,initially zero

Nsas ,a table of frequencies for state-action-state triples,initially zero S,a,the previous
state and action,initially null

If s'is new then do U[s]«r1’; R[s]«r

If s is not null then do

Increment Nsa[s,a]landNsas[s,a,5']

For each t such that Nsas'[s,a,t]is nonzero do

T[s,a,t]«<Nsas’[s,a,t] /Nsa[s,a]

U«<VALUE-DETERMINATION(m,U,mdb)

If TERMINALS?[s']then s,a<null else s,a<s,[s’] return a

+ Its performance on the 4 * 3 world is shown in the following figure.
+ The following figure shows the root-mean square error in the estimate for U(1,1),

averaged over 20 runs of 100 trials each.

0
0

o

o

o

o

o

RM er o in utiity

o

L

0 20 40 60 80 100 120
Number of

* Advantages:- o It can converges quite quickly

Reason:- The model usually changes only slightly with each observation, the value iteration
process can use the previous utility estimates as initial values.

o The process of learning the model itself is easy

Reason:- The environment is fully observable. This means that a supervised learning
task exist where the input is a state-action pair and the output is the resulting state.

o It provides a standard against which other reinforcement learning algorithms can be
measured.

+ Disadvantage:- o It is intractable for large state spaces
5.6.2.3 Temporal Difference Learning:-

» In order to approximate the constraint equation Uxn(S), use the observed transitions to
adjust the values of the observed states, so that they agree with the constraint equation.

» When the transition occurs from S to S, we apply the following update to Uzn(S)

U n(S) «Un(S) +a R(S) +aU (S1) —U n(S))

* Where @ = learning rate parameter.

+ The above equation is called Temporal difference or TD equation.

+ The following algorithm shows the passive reinforcement learning agent using
temporal differences,
Function PASSIVE-TD-AGENT (precept)returns an action
Inputs:percept,a percept indicating the current state s’and reward signal r
Static:m,a fixed policy
U,a table of utilities,initially empty
N;s,a table of frequencies for states,initially zero
S,a,r,the previous state,action,and reward,initially null
If s"is new then U[s'] <1’

If s is not null then do Increment Ns|s]

U[s]«U[s] + a(Ns[s])(r + yU[s] - U[s])

If TERMINAL?[s’]then s,a,r<null else s,a,r<s’,n[s’],r' return a

* Advantages:- o It is much simpler
o Itrequires much less computation per observation

+ Disadvantages:- o It does not learn quite as fast as the ADP agent o It shows much

higher variability
» The following table shows the difference between ADP and TD approach,
ADP Approach TD Approach
ADP adjusts the state to agree TD adjusts a state to agree with
with all of the successors that its observed successor

might occur, weighted by their

probabilities
ADP makes as many adjustments TD makes a single adjustment
as it needs to restore consistency per observed transition

between the utility estimates U

and the environment model T

The following points shows the relationship between ADP and TD approach, o Both try
to make local adjustments to the utility estimates in order to make each state “agree”
with its successors. o Each adjustment made by ADP could be seen, from the TD point of
view, as a result of a “pseudo-experience” generated by simulating the current
environment model.

It is possible to extend the TD approach to use an environment model to generate
several “pseudo-experiences-transitions that the TD agent can imagine might happen,
given its current model. o For each observed transition, the TD agent can generate a
large number of imaginar y transitions. In this way the resulting utility estimates will
approximate more and more closely those of ADP- of course, at the expense of increased

computation time.

5.6.3. Active Reinforcement learning:-

A passive learning agent has a fixed policy that determines its behavior.

“An active agent must decide what actions to do”

An ADP agent can be taken an considered how it must be modified to handle this new
freedom.

The following are the required modifications:- o First the agent will need to learn a
complete model with outcome probabilities for all actions. The simple learning
mechanism used by PASSIVE-ADP-AGENT will do just fine for this.

Next, take into account the fact that the agent has a choice of actions. The utilities it

needs to learn are those defined by the optimal policy.
U(s) =R(s) +ymax 2.T(s,a, s)U (s)s "

These equations can be solved to obtain the utility function U using he value iteration or
policy iteration algorithms. o Having obtained a utility function U that is optimal for the
learned model, the agent can extract an optimal action by one-step look ahead to
maximize the expected utility;

Alternatively, if it uses policy iteration, the optimal policy is already available, so it

should simply execute the action the optimal policy recommends.

5.6.3.1 Exploration:-

Greedy agent is an agent that executes an action recommended by the optimal policy for
the learned model.

The following figure shows the suboptimal policy to which this agent converges in

this particular sequence of trials.

T i

The agent does not learn the true utilities or the true optimal policy! what happens is

that, in the 39t trial, it finds a policy that reaches +1 reward along the lower
route via (2,1),

(3,1),(3,2), and (3,3).

After experimenting with minor variations from the 276t trial onward it sticks to that
policy, never learning the utilities of the other states and never finding the optimal
route via (1,2),(1.3) and (2,3).

Choosing the optimal action cannot lead to suboptimal results.

The fact is that the learned model is not the same as the true environment; what is
optimal in the learned model can therefore be suboptimal in the true environment.
Unfortunately, the agent does not know what the true environment is, so it cannot
compute the optimal action for the true environment.

Hence this can be done by the means of Exploitation.

The greedy agent can overlook that actions do more than provide rewards according to
the current learned model; they also contribute to learning the true model by
affecting the percepts that are received.

An agent therefore must make a trade-off between exploitation to maximize its reward
and exploration to maximize its long-term well being.

Pure exploitation risks getting stuck in a rut.

Pure exploitation to improve ones knowledge id of no use if one never puts that

knowledge into practice.

5.6.3.2 GLIE Scheme:-
To come up with a reasonable scheme that will eventually lead to optimal behavior by
the agent a GLIE Scheme can be used.
A GLIE Scheme must try each action in each state an unbounded number of times to
avoid having a finite probability that an optimal action is missed because of an unusually
bad series of outcomes.
An ADP agent using such a scheme will eventually learn the true environment model.
A GLIE Scheme must also eventually become greedy, so that the agents actions become
optimal with respect to the learned (and hence the true) model.
There are several GLIE Scheme as follows, o The agent can choose a random action a
fraction 1/t of the time and to follow the greedy policy otherwise.

. Advantage:- This method eventually converges to an optimal policy

. Disadvantage:- It can be extremely slow o Another approach is to give some
weight to actions that the agent has not tried very often, while tending to avoid actions
that are believed to be of low utility. This can be implemented by altering the constraint
equation, so that it assigns a higher utilit y estimate to relatively UP explored state-
action pairs.
Essentially, this amounts to an optimistic prior over the possible environments and
causes the agent to behave initially as if there were wonderful rewards scattered all over

the place.

5.6.3.3 Exploration function:-

Let U* denotes the optimistic estimate of the utility of the state s, and let N(a,s) be the
number of times action a has been tried in state s.

Suppose that value iteration is used in an ADP learning agent; then rewrite the
update equation to incorporate the optimistic estimate.

The following equation does this,

U +(s) «<R(s) +ymax f[[2T (s, a, s")U +(s"), N(a, s)]

Here f(u ,n) is called the exploration function.

. It determines how greed is trade off against curiosity.

The function f(u, n) should be increasing in u and decreasing in n.

The simple definition is f(u, n) = R*in n<Nc.u otherwise where R* = optimistic estimate
of the best possible reward obtainable in any state and Ncis a fixed parameter.

The fact that U+ rather than U appears on the right hand side of the above equation is
very important.

If U is used, the more pessimistic utility estimate, then the agent would soon
become unwilling to explore further a field.

The use of U* means that benefits of exploration are propagated back from the edges of
unexplored regions, so that actions that lead toward unexplored regions are weighted
more highly, rather than just actions that are themselves unfamiliar.

5.6.3.4 Learning an action value function:-

To construct an active temporal difference learning agent, it needs a change in the
passive TD approach.

The most obvious change that can be made in the passive case is that the agent is no
longer equipped with a fixed policy, so if it learns a utility function U, it will need to learn
amodel in order to be able to choose an action based on U via one step look ahead.

The update rule of passive TD remains unchanged. This might seem old.

Reason:- o Suppose the agent takes a step that normally leads to a good destination, but
because of non determinism in the environment the agent ends up in a disastrous state.
o The TD update rule will take this as seriously as if the outcome had been the normal

result of the action, where the agent should not worry about it too much since the

Static:

outcome was a fluke. o It can be shown that the TD algorithm will converge to the same
values as ADP as the number of training sequences tends to infinity.

5.6.3.5 Q-Learning:-

An alternative TD method called Q-Learning.

It can be used that learns an action value representation instead of learning utilities.

The notation Q(a, s) can be used to denote the value of doing action “a” in state “s”.

Q values are directly related to utility values as follows,

U (s) =max Q(a, sa

Q Learning is called a model free method.

Reason:- o It has a very important property: a TD that learns a Q-function does not need
a model for either learning or action selection.

As with utilities, a constraint equation can be written that must hold at equilibrium

when the Q-Values are correct,

Q(a, s) =R(s) +yXT(s,a, s’) max Q(a’, s")

As in the ADP learning agent, this equation can be used directly as an update equation
for an iteration process that calculates exact Q-values, given an estimated model.

This does, however, require that a model also be learned because the equation uses T(s,
a, Sf).

The temporal difference approach, on the other hand, requires no model.

The update equation for TD Q-Learning is

Q(a, s) «-Q(a, s) +a[R(s) +ymax Q(a’, s’) -Q(a, s)
Which is calculated whenever action a is executed in state s leading to state Sf.

The following algorithm shows the Q-Learning agent program

Function Q-LEARNING_AGENT(percept)returns an action
Inputs: percept,a percept indicating the current state s’ and reward signal r’

g, a table of action values index by state and action Ns,,a table of frequencies for state-
action pairs

S,a,r,the previous state,action,and reward,initially null

If s is not null then do

Increment Nsa[s,a]

Q[a,s]«qa,s] + a(Nsa[s,a])(r + y maxa’ Q[a’s’] - Q[a,s])
If TERMINAL?[s’|then s,a,r<null

Else s,a,r<s’,argmaxa’ f(Q[a’,s’],Nsa[a’,s']),r’

Return a

©)

Some researchers have claimed that the availability of model free methods such as
Q- Learning means that the knowledge based approach is unnecessary.

But there is some suspicion i.e. as the environment becomes more complex.

5.6.4 Generalization in Reinforcement Learning:-

The utility function and Q-functions learned by the agents are represented in tabular
form with one output value for each input tuple.

This approach works well for small set spaces.

Example:- The game of chess where the state spaces are of the order 1050 states. Visiting
all the states to learn the game is tedious.

One way to handle such problems is to use FUNCTION APPROXIMATION.

Function approximation is nothing but using any sort of representation for the
function other than the table.

For Example:- The evaluation function for chess is represented as a weighted linear
function of set of features or basic functions f1,....fn

U6(S) =061 f1 (S) +62 £2 (S) + .covvvene. +6nfn (S
The reinforcement learning can learn value for the parameters 6=01......... On.
Such that the evaluation function Uy approximates the true utility function.

As in all inductive learning, there is a tradeoff between the size of the hypothesis space
and the time it takes to learn the function.

For reinforcement learning, it makes more sense to use an online learning algorithm
that updates the parameter after each trial.

Suppose we run a trial and the total reward obtained starting at (1, 1) is 0.4.

This suggests that U6(1,1, currently 0.8 is too large and must be reduced.

+ The parameter should be adjusted to achieve this. This is done similar to neural
network learning where we have an error function which computes the gradient with
respect to the parameters.

« If Uj(S) is the observed total reward for state S onward in the jth trial then the error is

defined as half the squared difference of the predicted total and the actual total.

Ej(S)=(U(S)-U(S))2/2

« The rate of change of error with respect to each parameter 6i is parameter in the
direction of the decreasing error.

01«61 —0(3Ej(S)/COj)=06i+a(Uj(S)-UB(S))(SUOB(S) / 56i)

« This is called Widrow-Hoff Rule or Delta Rule.

+ Advantages:- o It requires less space. o Function approximation can also be very
helpful for learning a model of the environment.

o It allows for inductive generalization over input states.

» Disadvantages:- o The convergence is likely to be displayed. o It could fail to be any
function in the chosen hypothesis space that approximates the true utility function
sufficiently well.

o Consider the simplest case, which is direct utility estimation. With function

approximation, this is an instance of supervised learning.

