Dr. N. Penchalaiah, Associate Professor, AI&ML, Annamacharya University

Advance Computer Architecture
UNIT-1

FUNDAMENTALS OF COMPUTER DESIGN: Introduction; Classes of computers;
Defining computer architecture; Trends in Technology, power in Integrated Circuits
and cost; Dependability; Measuring, reporting and summarizing Performance;

Quantitative Principles of computer design.

UNIT - 2

PIPELINING: Introduction; Pipeline hazards; Implementation of pipeline; What
make pipelining hard to implement?
INSTRUCTION -LEVEL PARALLELISM - 1: ILP: Concepts and challenges; Basic
Compiler Techniques for exposing ILP; Reducing Branch costs with prediction;

Overcoming Data hazards with Dynamic scheduling; Hardware-based speculation.

UNIT - 3
INSTRUCTION -LEVEL PARALLELISM - 2: Exploiting ILP using multiple issue
and static scheduling; Exploiting ILP using dynamic scheduling, multiple issue and
speculation; Advanced Techniques for instruction delivery and Speculation; The
Intel Pentium 4 as example.

UNIT - 4
MULTIPROCESSORS AND THREAD -LEVEL PARALLELISM: Introduction;
Symmetric shared-memory architectures; Performance of symmetric shared-
memory multiprocessors; Distributed shared memory and directory-based

coherence; Basics of synchronization; Models of Memory Consistency.

UNIT -5
REVIEW OF MEMORY HIERARCHY: Introduction; Cache performance; Cache
Optimizations, Virtual memory
MEMORY HIERARCHY DESIGN: Introduction; Advanced optimizations of Cache
performance; Memory technology and optimizations; Protection: Virtual memory

and virtual machines

TEXT BOOK:

1. Computer Architecture, A Quantitative Approach - John L. Hennessey and

David A. Patterson:, 4th Edition, Elsevier, 2007.

REFERENCE BOOKS:
1. Advanced Computer Architecture Parallelism, Scalability - Kai

Hwang:, Programability, Tata Mc Grawhill, 2003.
2. Parallel Computer Architecture, A Hardware / Software Approach - David

E. Culler, Jaswinder Pal Singh, Anoop Gupta:, Morgan Kaufman, 1999.

UNIT-1

FUNDAMENTALS OF COMPUTER DESIGN:

Introduction; Classes of computers

Defining computer architecture

Trends in Technology, power in Integrated Circuits and cost

Dependability

Measuring reporting and summarizing Performance

Quantitative Principles of computer design.

UNIT I

FUNDAMENTALS OF COMPUTER DESIGN

Introduction

Today’ s desktop computers (less than $500 cost) are having more
performance, larger memory and storage than a computer bought in 1085
for 1 million dollar. Highest performance microprocessors of today
outperform Supercomputers of less than 10 years ago. The rapid improvement
has come both from advances in the technology used to build computers and
innovations made inthe computer design or in other words, the improvement
made in the computers can be attributed to innovations of technology and

architecture design.

During the first 25 years of electronic computers, both forces made
a major contribution, delivering performance improvement of about 25% per
year. Microprocessors were evolved during late 1970s and their ability along
with improvements made in the Integrated Circuit (IC) technology y contributed

to 35% performance growth per year.

The virtual elimination of assembly language programming reduced the n
eed for object-code compatibility. The creation of standardized vendor-
independent operating system lowered the cost and risk of bringing out a new

architecture.

In the yearly 1980s, the Reduced Instruction Set Computer (RISC) based
machines focused the attention of designers on two critical performance
techniques, the exploitation Instruction Level Parallelism (ILP) and the use of
caches. The figure 1.1 shows the growth in processor performance since the
mid 1980s. The graph plots performance relative to the VAX-11/780 as
measured b y the SPECint benchmarks. From the figure it is clear that
architectural and organizational enhancements led to 16 years of sustained growth
in performance at an annual rate of over 50%. Since 2002, processor performance

improvement has dropped to about 20% per year due to the following hurdles:

eMaximum power dissipation of air-cooled chips
oLittle ILP left to exploit efficiently

eLimitations laid by memory latency

The hurdles signals historic switch from relying solely on ILP to Thread Level

Parallelism (TLP) and Data Level Parallelism (DLP).

Figure 1.1 The evolution of various classes of computers:

e Intel Xeon, 3.6 GHz_64-bit Intel X%ggéae GHz
5
AMD Opteron, 2.2 GH'z_ et
1000-Frmmcsopssmsmmnsis bt ity S DN R IE08, 0i0 Oz o< ok LR
5
o«
&
7 Alpha 21064A, 0.3 GHz ¢*
% d 483 ~20%
> PowerPC 604, 0.1GHz g,71 17
w 10 | oy Seauvasswaes B O
3 = Alpha 21064, 0.2 GHz 8"
3 7,80
8 51
£ v
5
Q(r, 52%lyear
10
VAX-11/780 =2
/ ,-"‘

0 e’ A I A A A i A A
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
©2007 Elsavier, Inc. All rights resarved.

Classes of Computers

1960: Large Main frames (Millions of $)

(Applications: Business Data processing, large Scientific computin g)

1970: Minicomputers (Scientific laboratories, Time sharing concepts)

1980: Desktop Computers (uPs) in the form of Personal computers and workstations.
(Larger Memory, more computing power, Replaced Time sharing g systems)

1990: Emergence of Internet and WWW, PDAs, emergence of high

performance digital consumer electronics

2000: Cell phones

These changes in computer use have led to three different computing classes
each characterized by different applications, requirements and computing

technologies.owth in processor performance since 1980s

Desktop computing

The first and still the largest market in dollar terms is desktop computing.
Desktop computing system cost range from $ 500 (low end) to $ 5000
(high-end configuration). Throughout this range in price, the desktop market
tends to drive to optimize price- performance. The performance concerned is
compute performance and graphics performance. The combination of
performance and price are the driving factors to the customers and the
computer designer. Hence, the newest, high performance and cost effective

processor often appears first in desktop computers.

Servers:
Servers provide large-scale and reliable computing and file services and
are mainly used in the large-scale en terprise computing and web based

services. The three important

characteristics of servers are:

eDependability: Severs must operate 24x7 hours a week. Failure of server
system is far more catastrophic than a failure of desktop. Enterprise will lose

revenue if the server is unavailable.

eScalability: as the business grows, the server may have to provide more
functionality/ services. Thus ability to scale up the computin g capacity,

memory, storage and I/0 bandwidth is crucial.

eThroughput: transactions completed per minute or web pages served per

second are crucial for servers.

Embedded Computers

Simple embedded microprocessors are seen in washing machines,
printers, network switches, handheld devices such as cell phones, smart cards
video game devices etc. embedded computers have the widest spread of
processing power and cost. The primary goal is often meeting the performance
need at a minimum price rather than achieving higher performance at a higher
price. The other two characteristic requirements are to minimize the memory and

power.

In many embedded applications, the memory can be substantial portion of
the systems cost and it is very important to optimize the memory size in
such cases. The application is expected to fit totally in the memory on the
processor chip or off chip memory. The importance of memory size translates to
an emphasis on code size which is dictated by the application. Larger memory
consumes more power. All these aspects are considered while choosing or

designing processor for the embedded applications.

Defining Computer Architecture

The computer designer has to ascertain the attributes that are important
for a new computer and design the system to maximize the performance
while staying within cost, power and availability constraints. The task has few
important aspects such as Instruction Set design, Functional organization, Logic

design and implementation.

Instruction Set Architecture (ISA)

ISA refers to the actual programmer visible Instruction set. The ISA serves

as boundary between the software and hardware. Th e seven dimensions of the

ISA are:

i)Class of ISA: Nearly all ISAs today ar e classified as General-
Purpose- Register architectures. The operands are either Registers or
Memory locations. The two popular versions of this class are:
Register-Memory ISAs : ISA of 80x86, can access memory as part of
many instructions.

Load -Store ISA Eg. ISA of MIPS, can access memory only with Load or

Store instructions.

ii)Memory addressing: Byte addressing scheme is most widely used in
all desktop and server computers. Both 80x86 and MIPS use byte
addressing. Incase of MIPS the object must be aligned. An access to an
object of s b yte at byte address A is aligned if A mods =0. 80x86 does

not require alignment. Accesses are faster if operands are aligned.

iii) Addressing modes:Specify the address of a M object apart from register and
constant operands.
MIPS Addressing modes:
eRegister mode addressing
eImmediate mode addressing
eDisplacement mode addressing
80x86 in addition to the above addressing modes supports the
additional modes of addressing:
i. Register
Indirect ii.
Indexed

iii,Based with Scaled index

iv)Types and sizes of operands:
MIPS and x86 support:
8 bit (ASCII character), 16 bit(Unicode character)
*32 bit (Integer/word)
*64 bit (long integer/ Double word)
32 bit (IEEE-754 floating point)

*64 bit (Double precision floating point)

*80x86 also supports 80 bit floating point operand.(extended double Precision)

v)Operations:The general category o f operations
are:

oData Transfer

oArithmetic

operations oLogic

operations oControl

operations

oMIPS ISA: simple & easy to implement

0x86 ISA: richer & larger set of

operations

vi) Control flow instructions:All ISAs

support: Conditional & Unconditional

Branches

Procedure C alls & Returns MIPS 80x86

e (Conditional Branches tests content of Register Condition code
bits

e Procedure C all JAL CALLF

e Return Address in a R Stack in

M

vii) Encoding an

ISA
Fixed Length ISA Variable Length ISA
MIPS 32 Bit long 80x86 (1-18 bytes)

Simplifies decoding Takes less space

Number of Registers and number of Addressing modes hav e

significant

impact on the length of instruction as the register field and addressing mode
field can appear many times in a single instruction.
Trends in Technology

The designer must be aware of the following rapid changes in implementation

technology

eIntegrated C ircuit (IC) Logic technology
eMemory technology (semiconductor DRAM technology)
eStorage o r magnetic disk technology

eNetwork technology

IC Logic technology:

Transistor density increases by about 35%per year. Increase in die size

corresponds to about 10 % to 20% per year. The combined effect is a growth
rate in transistor count on a chip of about 40% to 55% per year.
Semiconductor DRAM technology:cap acity increases by about 40% per year.
Storage
Technology:
Before 1990: the storage density increased by about 30% per
year. After 1990: the storage density increased by about 60 %
per year. Disks are still 50 to 100 times cheaper per bit than
DRAM.

Network Technology:

Network performance depends both on the per formance of the
switches and on the performance of the transmission system. Although the
technology improves continuously, the impact of these improvements can be in

discrete leaps.

Performance trends: Bandwidth or throughputis the total amount of work

done in given time.

Latency or response time is the time between the start and the completion

of an event. (for eg. Millisecond for disk access)

10000

Processor

CPU high,

Memory low

[“Memo% Wall”
1000 -

Netw ork
Relative Disk
BW s
FEE Sl reasse sas e
Improve
ment
T s ol gl :_._____,:': _________________

= “ (Latency improvement
= Bandwidith improvement)
T

1 10 100
Relative Latency Improvement

A simple rule of thumb is that bandwidth gro ws by at least the square of
the improvement in latency. Computer designers should make plans
accordingly.
«IC Processes are characterizes by the f ature sizes.
eFeature sizes decreased from 10 microns(1971) to 0.09 microns(2006)
eFeature sizes shrink, devices shrink quadr atically.
eShrink in vertical direction makes the operating v oltage of the transistor to
reduce.
eTransistor performance improves linearly with decreasing

feature size

eTransistor count improves quadratically with a linear improvement in
Transistor

performance.
«!!l Wire delay scales poo rly comp ared to Transistor performance.
eFeature sizes shrink, wires get shorter.
«Signal delay fo r a wire increases in proportion to the product of Resistance
and

Capacitance.

Trends in Power in Integrated Circuits

For CMOS chips, the dominant source of energy consumption is due to
switching transistor, also called as Dynamic power and is given b y the

following equation.

Power = (1/2)*Capacitive load* Voltage

* Frequency switched dynamic

eFor mobile devices, energy is the better metric

Energy dynamic = Capacitive load x Voltage 2

eFor a fix ed task, slowing clock rate (frequency switched) reduces power, but not
energy

eCapacitive load a function of number of transistors connected to output and
technology,

which determines capacitance of wires and transistors

eDropping voltage helps both, so went from 5V down to 1V
*To save energy & dynamic power, most CPUs now turn off clock of inactive modules
eDistributing the power, removing the heat and preventing hot spots have become

increasingly difficult challenges.

 The leakage current flows even when a transistor is off. Therefore static

power is equally important.

Power static= Current static * Voltage

eLeakage current increases in processors with smaller transistor sizes

eIncreasing the number of transistors increases power even if they are turned off

In 2006, goal for leakage is 25% of total power consumption; high performance
designs

at 40%

*Very low power systems even gate voltage to inactive modules to control loss due to

leakage

Trends in Cost

e The underlying principle that drives the cost down is the learning
curvemanufacturing
costs decrease over time.
 Volume is a second key factor in determining cost. Volume decreases cost since it
increases purchasing manufacturing efficiency. As a rule of thumb, the cost decreases
about 10% for each doubling of volume.
* Cost of an Integrated Circuit
Although the cost of ICs have dropped exponentially, the basic process of
silicon manufacture is unchanged. A wafer is still tested and chopped into

dies that are packaged.

Cost of IC = Cost of [die+ testing die+ Packaging and final test] / (Final test
yoeld) Cost of die = Cost of wafer/ (Die per wafer x Die yield)
The number of dies per wafer is approximately the area of the wafer divided by

the area of the die.

Die per wafer = [_* (Wafer Dia/2)2/Die area]-[_* wafer dia/_(2*Die area)]

The first term is the ratio of wafer area to die area and the second term
compensates for the rectangular dies near the periphery of round wafers(as

shown in figure).

ane KU 3% 175 1L PP
2 Lo e o7 U T O i s ='Jﬁ=: 9 PR
|] S
2 .:c.??J.F?.’E.I':‘: " 4-..-ﬁﬁaj'-n'.'\;'. 1
L w3 SV G4 RN ERI '--I'nZI\.'l'r\?.'X

s ARNEE

]«] < :

ssoe sabks [~ &35 ¢ eslevaladyals

"SRRI o e
caEETme ll

Figure 1.2 Close view of 300 mm wafer

Dependability:

The Infrastructure providers offer Service Level Agreement (SLA) or Service
Level Objectives (SLO) to guarantee that their networking or power services
would be dependable.

 Systems alternate between 2 states of service with respect to an SLA:

1. Service accomplishment, where the service is delivered as specified in SLA
2. Service interruption, where the delivered service is different from the SLA
e Failure = transition from state 1 to state 2

e Restoration = transition from state 2 to state 1

The two main measures of Dependability are Module Reliability and Module
Availability. Module reliability is a measure of continuous service accomplishment
(or time to failure) from a reference initial instant.

1. Mean Time To Failure (MTTF) measures Reliability

2. Failures In Time (FIT) = 1/MTTF, the rate of failures

e Traditionally reported as failures per billion hours of operation

e Mean Time To Repair (MTTR) measures Service Interruption

- Mean Time Between Failures (MTBF) = MTTF+MTTR

» Module availability measures service as alternate between the 2
states of accomplishment and interruption (number between 0 and 1, e.g.
0.9)

e Module availability = MTTF / (MTTF + MTTR)
Performance:
The Execution time or Response time is defined as the time between the start and
completion of an event. The total amount of work done in a given time is defined as
the

Throughput.

The Administrator of a data center may be interested in increasing the

Throughput. The computer user may be interested in reducing the Response time.

Computer user says that computer is faster when a program runs in less time.

Performance = -—-—-——————— -
Execution Time (X)

The phrase "X is faster than Y™ is used to mean that the response time or execution time
is lower on X than Y for the given task. “X is n times faster than Y means

Execution Timey = n* Execution timey

Performance, = n* Perfromancey

The routinely executed programs are the best candidates for evaluating the
performance of the new computers. To evaluate new system the user would

simply compare the execution time of their workloads.

Benchmarks
The real applications are the best choice of benchmarks to evaluate the
performance. However, for many of the cases, the workloads will not be known at
the time of evaluation. Hence, the benchmark program which resemble the real
applications are chosen. The three types of benchmarks are:
e KERNELS, which are small, key pieces of real applications;
e Toy Programs: which are 100 line programs from beginning programming
assignments, such Quicksort etc.,
 Synthetic Benchmarks: Fake programs invented to try to match the profile
and
behavior of real applications such as Dhrystone.
To make the process of evaluation a fair justice, the following points are to be
followed.
e Source code modifications are not allowed.
* Source code modifications are allowed, but are essentially impossible.
* Source code modifications are allowed, as long as the modified version
produces
the same output.
 To increase predictability, collections of benchmark applications, called
benchmark suites, are popular
* SPECCPU: popular desktop benchmark suite given by Standard Performance
Evaluation committee (SPEC)
- CPU only, split between integer and floating point programs
- SPECint2000 has 12 integer, SPECfp2000 has 14 integer programs
- SPECCPU2006 announced in Spring 2006.
SPECSFS (NFS file server) and SPECWeb (WebServer) added as

server benchmarks

 Transaction Processing Council measures server performance and

costperformance for databases

- TPC-C Complex query for Online Transaction Processing
- TPC-H models ad hoc decision support

- TPC-W a transactional web benchmark

- TPC-App application server and web services benchmark
o SPEC Ratio: Normalize execution times to reference computer, yielding a
ratio proportional to performance = time on reference computer/time on computer

being rated

e [f program SPECRatio on Computer A is 1.25 times bigger than Computer B, then

ExecutionTime

'r.,:_r'.-'rn'm'.,'
5_ SPECRatio, ExecutionTime,
" SPECRatio, ExecutionTime, .
ExecutionTime,

_ ExecutionTimey; _ Performance,

ExecutionTime, Performance,

» Note : when comparing 2 computers as a ratio, execution times on the

reference computer drop out, so choice of reference computer is irrelevant.

Quantitative Principles of Computer Design

While designing the computer, the advantage of the following points

can be exploited to enhance the performance.

* Parallelism: is one of most important methods for improving performance.
- One of the simplest ways to do this is through pipelining ie, to over lap the
instruction Execution to reduce the total time to complete an

instruction sequence.

- Parallelism can also be exploited at the level of detailed digital

design.

- Set- associative caches use multiple banks of memory that are typically
searched n parallel. Carry look ahead which uses parallelism to speed

the process of computing.

* Principle of locality: program tends to reuse data and instructions they have
used recently. The rule of thumb is that program spends 90 % of its execution
time in only

10% of the code. With reasonable good accuracy, prediction can be made to find
what instruction and data the program will use in the near future based on its

accesses in the recent past.

* Focus on the common case while making a design trade off, favor the frequent
case over the infrequent case. This principle applies when determining how
to spend resources, since the impact of the improvement is higher if the occurrence

is frequent.

Amdahl’s Law: Amdahl’s law is used to find the performance gain that can be
obtained by improving some portion or a functional unit of a computer Amdahl’s
law defines the speedup that can be gained by using a particular feature.

Speedup is the ratio of performance for entire task without using the
enhancement when possible to the performance for entire task without using the
enhancement. Execution time is the reciprocal of performance. Alternatively,
speedup is defined as thee ratio of execution time for entire task without using
the enhancement to the execution time for entair task using the enhancement when
possible.

Speedup from some enhancement depends an two factors:

i. The fraction of the computation time in the original computer that can be
converted to take advantage of the enhancement. Fraction enhanced is always less
than or equal to

Example: If 15 seconds of the execution time of a program that

takes 50 seconds in total can use an enhancement, the fraction is

15/50 or 0.3
ii. The improvement gained by the enhanced execution mode; ie how much
faster the task would run if the enhanced mode were used for the entire program.
Speedup enhanced is the time of the original mode over the time of the enhanced

mode and is always greater then 1.

Execution time pew = Execution time g4 X[(1- Fraction eppancedy + Fraction enhanced]
SP"-TEI UP enhanced

Speedup weran= Execution time g4
Execution time

The Processor performance Equation:

Processor is connected with a clock running at constant rate. These discrete time
events are called clock ticks or clock cycle. CPU time for a program can be

evaluated:

CPU time = CPU clock cycles for a program X clock cycle time

CPL time = CPLU Clock ecveles for a program
Clock rate

Using the number of clock cycle and the Instruction count (IC), it is possible to determine
the average number of clock cycles per instruction (CPI). The reciprocal of CPI gives
Instruction per clock (ITPC)

CPI= CPU clock cvcle for a program
Instruction count

CPU time = IC X CPI X Clock cycle time
CPU time = Seconds
pProgramnm

= Instructions X Clock cyvcles X Seconds
Program Instruction clock cycle

Processor perforrmance depends on IC, CPI and clock rate or clock coycle. There 3
paramcters arce dependent on the following basic technologics.

Clock Cycle time — HYW technology and organization

CPI- organization and ISA

IC- ISA and compiler — technologzy

Example:

A System contains Floating point (FP) and Floating Point Square Root (FPSQR)
unit.

FPSQR is responsible for 20% of the execution time. One proposal is to enhance the
FPSQR hardware and speedup this operation by a factor of 15 second alternate is
just to try to make all FP instructions run faster by a factor of 1.6 times faster
with the same effort as required for the fast FPSQR, compare the two design

alternative

Option 1

Sp{xfdup}'psqk = 1 = 1.2295

(1-0.2) + (0.2/15)
Option 2

Speedup = 1 = 1.2307
(1-0.5) + (0.5/1.6)

Option 2 is relatively better.

UNIT - 2

PIPELINING:
Introduction
Pipeline hazards

Implementation of pipeline

What makes pipelining hard to implement?

UNIT II

Pipelining: Basic and Intermediate concepts

Pipeline is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. Pipeline allows to overlapping
the execution of multiple instructions. A Pipeline is like an assembly line each step
or pipeline stage completes a part of an instructions. Each stage of the pipeline will
be operating an a separate instruction. Instructions enter at one end progress
through the stage and exit at the other end. If the stages are perfectly
balance(assuming ideal conditions), then the time per instruction on the pipeline

processor is given by the ratio:

Time per instruction on unpipelined machine/ Number of Pipeline stages

Under these conditions, the speedup from pipelining is equal to the number of stage
pipeline. In practice, the pipeline stages are not perfectly balanced and pipeline does
involve some overhead. Therefore, the speedup will be always then practically less
than the number of stages of the pipeline. Pipeline yields a reduction in the average

execution time per instruction. If the processor is assumed to take one (long) clock

cycle per instruction, then pipelining decrease the clock cycle time. If the processor

is assumed to take multiple CP], then pipelining will aid to reduce the CPI.

A Simple implementation of a RISC instruction
set
Instruction set of implementation in RISC takes at most 5 cycles without
pipelining.
The 5 clock cycles
are:
1. Instruction fetch (IF) cycle:
Send the content of program count (PC) to memory and fetch the
current

instruction from memory to update the PC.

New PC +—[PC] + 4; Since each instruction is 4 bytes

2. Instruction decode / Register fetch cycle (ID):

Decode the instruction and access the register file. Decoding is done in
parallel with reading registers, which is possible because the register specifies are at
a fixed location in a RISC architecture. This corresponds to fixed field decoding. In
addition it involves:

- Perform equality test on the register as they are read for a possible branch.

- Sign-extend the offset field of the instruction in case it is needed.

- Compute the possible branch target address.

3. Execution / Effective address Cycle (EXE)

The ALU operates on the operands prepared in the previous cycle and

performs one of the following function defending on the instruction type.

* Memory reference: Effective address «— [Base Register] + offset

* Register- Register ALU instruction: ALU performs the operation specified in
the instruction using the values read from the register file.

* Register- Immediate ALU instruction: ALU performs the operation specified in the
instruction using the first value read from the register file and that sign extended

immediate.

4. Memory access (MEM)
For a load instruction, using effective address the memory is read. For a store
instruction memory writes the data from the 2nd register read using effective

address.

5. Write back cycle (WB)
Write the result in to the register file, whether it comes from memory system
(for

a LOAD instruction) or from the

ALU.

Five stage Pipeline for a RISC processor

Each instruction taken at most 5 clock cycles for the
execution

* Instruction fetch cycle

(IF)

* Instruction decode / register fetch cycle

(ID)

* Execution / Effective address cycle

(EX)

* Memory access (MEM)

* Write back cycle (WB)

The execution of the instruction comprising of the above subtask can be pipelined.

Each of the clock cycles from the previous section becomes a pipe stage - a cycle in

the pipeline. A new instruction can be started on each clock cycle which results in
the execution pattern shown figure 2.1. Though each instruction takes 5 clock cycles
to complete, during each clock cycle the hardware will initiate a new instruction and
will be executing some part of the five different instructions as illustrated in figure

2.1.

Instruction Clock number
#

1 2 3 4 5 6 7 8 9
Instruction i IF ID EXE MEM WB
Instruction [+1 IF D EXE MEM WB
Instruction I+2 IF ID EXE MEM WB
Instruction I+3 IF ID EXE MEM WB
Instruction [+4 IF ID EXE MEM WB

Figure 2.1 Simple RISC Pipeline. On each clock cycle another instruction fetched

Each stage of the pipeline must be independent of the other stages. Also, two
different
operations can’t be performed with the same data path resource on the same clock.
For example, a single ALU cannot be used to compute the effective address and
perform a subtract operation during the same clock cycle. An adder is to be
provided in the stage 1 to compute new PC value and an ALU in the stage 3 to
perform the arithmetic indicatedin the instruction (See figure 2.2). Conflict should
not arise out of overlap of instructions using pipeline. In other words, functional unit
of each stage need to be independent of other functional unit. There are three
observations due to which the risk of conflict is reduced.

e Separate Instruction and data memories at the level of L1 cache

eliminates a conflict for a single memory that would arise between

instruction fetch and data access.

» Register file is accessed during two stages namely ID stage WB.

Hardware

should allow to perform maximum two reads one write every clock cycle.

 To start a new instruction every cycle, it is necessary to increment and store

the

PC every cycle.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch Addr, Cale Access | Back

Mext PC

Next SEQ PC

| —_— |
: |
.
— —
IR <= mem[FC]:
PC <= PC + 4

WE Data
Reg[IR,,] <= Reg[IR.] bp, Reg[IR_]

Figure 2.2 Diagram indicating the cycle and functional unit of each stage.

Buffers or registers are introduced between successive stages of the pipeline
so that at the

end of a clock cycle the results from one stage are stored into a register (see
figure 2.3). During the next clock cycle, the next stage will use the content of

these buffers as input. Figure 2.4 visualizes the pipeline activity.

H 1

Instruction : Instr. Decode i Execute
i
i

1
Memory i Write
Acecess | Back

Fetch

Reg. Fetech | Addr. Cale

MNext PC
Text SEQ PC

WB Data

Figure 2.3 Functional units of 5 stage Pipeline. IF/ID is a buffer between IF and ID stage.

Basic Performance issues in Pipelining

Pipelining increases the CPU instruction throughput but, it does
not reduce the executiontime of an individual instruction. In fact, the

pipelining increases the execution time of each instruction due to

overhead in the control of the pipeline. Pipeline overhead arises from
the combination of register delays and clock skew. Imbalance among
the pipe stages reduces the performance since the clock can run no

faster than the time needed for the slowest pipeline stage.

Time (clock cycles)
]] i 1
Cycle 1{Cycle 2 {Cycle 3] Cycle 4{Cycle 5 |Cycle 6]Cycle 7
I
n
5
t
r.
o
” Lfetch 3 [E T L]
d
2 i
” E { 44 3 [Ln8hem
i
i 1 1 1
i | i i
i 1 i i

Figure 2.4 Pipeline activity

Pipeline Hazards

Hazards may cause the pipeline to stall. When an instruction is stalled, all the
instructions issued later than the stalled instructions are also stalled. Instructions
issued earlier than the stalled instructions will continue in a normal way. No new
instructions are fetched during the stall. Hazard is situation that prevents the next
instruction in the instruction stream fromk executing during its designated clock

cycle. Hazards will reduce the pipeline performance.

Performance with Pipeline stall
A stall causes the pipeline performance to degrade from ideal performance.

Performance improvement from pipelining is obtained from:

Speedup = Average instruction time un-pipelined
Average instruction time pipelined

Speedup CPI unpipelined * Clock cycle unpipelined

CPI pipelined * Clock cycle pipelined

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction

CPI pipelined

1 + Pipeline stall clock cycles per instruction

Assume that,
i) cycle time overhead of pipeline is
ignored ii) stages are balanced
With theses assumptions
Clock cyclé unpipelined = clock cycle pipelined

Therefore, Speedup = CPI unpipelined
CPI pipelined

Speedup = (CPI unpipelined
1+Pipeline stall cycles per instruction

If all the instructions take the same number of cycles and is equal to the

number of pipeline stages or depth of the pipeline, then,

CPI unpipelined = Pipeline depth

Speedup = Pipeline depth
1+Pipeline stall cycles per instruction

If there are no pipeline stalls,
Pipeline stall cycles per instruction = zero
Therefore,

Speedup = Depth of the pipeline.

Types of hazard
Three types hazards are:
1. Structural hazard
2. Data Hazard
3. Control Hazard

Structural hazard

Structural hazard arise from resource conflicts, when the hardware cannot support all
possible combination of instructions simultaneously in overlapped execution. If

some combination of instructions cannot be accommodated because of resource
conflicts, the processor is said to have structural hazard. Structural hazard will
arise when some functional unit is not fully pipelined or when some resource
has not been duplicated enough to allow all combination of instructions in the
pipeline to execute. For example, if memory is shared for data and instruction as a
result, when an instruction contains data memory reference, it will conflict with the
instruction reference for a later instruction (as shown in figure 2.5a). This will cause

hazard and pipeline stalls for 1 clock cycle.

Time (clock cycles)

| Cycle 1:Cycle 2 i Cycle 3 Cycle 4:Cycle 5 &
T | Load
n
& | Instr
f
48 Instx
o
o Instr 3 I
o i
o | Instxr 4 l_lﬂ l-ﬁ | = ey |

Figure 2.5a Load Instruction and instruction 3 are accessing memory in clock
cycled

Titne (clock cycles)

Lead

In=str 1

T owlon M

Instxr 2

Stall

Instr 3

T hH Y0

Instruction #

1
Load Instruction IF
Instruction I+1
Instruction 1+2

Instruction 1+3
Instruction I+4

1D
IF

| Cycle 1iCycle 2 i Cycle 3} Cycle 4] Cycle 5§ Cycle 6iCycla 7

3
EXE

ID
IF

Clock number
4 5 6 7 8 9
MEM WB

EXE MEM WB
1D EXE MEM WB

Stall [F ID EXE MEM WB
IF ID EXE MEM

Figure 2.5b A Bubble is inserted in clock cycle 4

Pipeline stall is commonly called Pipeline bubble or just simply bubble

Data Hazard

Consider the pipelined execution of the following instruction sequence (Timing

diagram shown in figure 2.6)

DADD R1. R2, R3

DSUB R4.R1.R5
AND R6.R1,R5
OR RS, R1L.RY
XOR R10,R1.R11

DADD instruction produces the value of R1 in WB stage (Clock cycle 5) but the DSUB
instruction reads the value during its ID stage (clock cycle 3). This problem is called
Data Hazard. DSUB may read the wrong value if precautions are not taken. AND
instruction will read the register during clock cycle 4 and will receive the wrong
results. The XOR instruction operates properly, because its register read occurs in
clock cycle 6 after DADD writes in clock cycle 5. The OR instruction also operates
without incurring a hazard because the register file reads are performed in the
second half of the cycle whereas the writes are performed in the first half of the

cycle.

Minimizing data hazard by Forwarding

The DADD instruction will produce the value of R! at the end of clock cycle 3. DSUB
instruction requires this value only during the clock cycle 4. If the result can be
moved from the pipeline register where the DADD store it to the point (input of
LAU) where DSUB needs it, then the need for a stall can be avoided. Using a simple
hardware technique called Data Forwarding or Bypassing or short circuiting, data
can be made available from the output of the ALU to the point where it is required
(input of LAU) at the beginning of immediate next clock cycle.

Forwarding works as follows:

i) The output of ALU from EX/MEM and MEM /WB pipeline register is

always feedback to the ALU inputs.
ii) If the Forwarding hardware detects that the previous ALU output serves
as the source for the current ALU operations, control logic selects the

forwarded result

as the input rather than the value read from the register file. Forwarded results are
required not only from the immediate previous instruction, but also from an
instruction that started 2 cycles earlier. The result of ith instruction Is required to
be forwarded to (i+2)th instruction also. Forwarding can be generalized to include

passing a result directly to the functional unit that requires it.

Data Hazard requiring stalls

LD R1, O(R2)
DADD R3, R1, R4
AND RS5,R1,R6
OR R7,R1,R8

The pipelined data path for these instructions is shown in the timing diagram (figure
2.7)

Instruction Clock number
1 2 3 4 5 6 7 8 9
LD RI, 0(R2) IF ID EXE | MEM WB
DADD R3,R1.R4 IF D EXE | MEM WB
AND RS, R1. R6 IF D EXE MEM WB
OR R7, R1, R8 IF ID EXE MEM WB
LD R1, O(R2) IF ID EXE MEM WB
DADD R3.R1.R4 IF ID Stall EXE MEM WB
AND RS, R1. R6 IF Stall ID EXE MEM WB
OR R7,RI.R8 Stall IF ID EXE MEM WB

Figure 2.7 In the top half, we can see why stall is needed. In the second half, stall
created to solve the problem.

The LD instruction gets the data from the memory at the end of cycle 4. even

with forwarding technique, the data from LD instruction can be made available

earliest during clock cycle 5. DADD instruction requires the result of LD instruction
at the beginning of clock cycle 5. DADD instruction requires the result of LD
instruction at the beginning of clock cycle 4. This demands data forwarding of
clock cycle 4. This demands data forwarding in negative time which is not
possible. Hence, the situation calls for a pipeline stall.Result from the LD instruction
can be forwarded from the pipeline register to the and instruction which begins
at 2 clock cycles later after the LD instruction. The load instruction has a delay
or latency that cannot be eliminated by forwarding alone. It is necessary to stall
pipeline by 1 clock cycle. A hardware called Pipeline interlock detects a hazard and
stalls the pipeline until the hazard is cleared. The pipeline interlock helps to
preserve the correct execution pattern by introducing a stall or bubble. The CPI
for the stalled instruction increases by the length of the stall. Figure 2.7 shows
the pipeline before and after the stall. Stall causes the DADD to move 1 clock
cycle later in time. Forwarding to the AND instruction now goes through the
register file or forwarding is not required for the OR instruction. No instruction is

started during the clock cycle 4.

Control Hazard

When a branch is executed, it may or may not change the content of PC. If a branch
is taken, the content of PC is changed to target address. If a branch is taken, the

content of PC is not changed

The simple way of dealing with the branches is to redo the fetch of the instruction
following a branch. The first IF cycle is essentially a stall, because, it never performs
useful work. One stall cycle for every branch will yield a performance loss 10% to

30% depending on the branch frequency

Reducing the Brach Penalties

There are many methods for dealing with the pipeline stalls caused by

branch delay

1. Freeze or Flush the pipeline, holding or deleting any instructions after

the ranch until the branch destination is known. It is a simple scheme and branch

penalty is fixed and cannot be reduced by software

2. Treat every branch as not taken, simply allowing the hardware to continue

as if the branch were not to executed. Care must be taken not to change the

processor

state until the branch outcome is known.

Instructions were fetched as if the branch were a normal instruction. If the

branch is taken, it is necessary to turn the fetched instruction in to a no-of

instruction and restart the fetch at the target address. Figure 2.8 shows the timing

diagram of both the situations.

Instruction

Untaken Branch

Instruction I+1
Instruction 1+2

Instruction [+3
Instruction I+4

Taken Branch
Instruction I+1
Branch Target
Branch Target+1
Branch Target+2

IF

IF

Clock number
2 3 4 5 6 7
1D EXE MEM WB
IF D EXE MEM WB
IF ID EXE MEM WB
IF 1D EXE MEM
IF ID EXE
1D EXE MEM WB
IF Idle Idle Idle Idle Idle
IF ID EXE MEM WB
IF 1D EXE MEM
IF ID EXE

WB
MEM

WB
MEM

WB

WB

Figure 2.8 The predicted-not-taken scheme and the pipeline sequence when the

branch is untaken (top) and taken (bottom).

3. Treat every branch as taken: As soon as the branch is decoded and

target Address is computed, begin fetching and executing at the target if the

branch target is known before branch outcome, then this scheme gets

advantage.

For both predicated taken or predicated not taken scheme, the

compiler can improve performance by organizing the code so that the

most frequent path matches the hardware choice.

4. Delayed branch technique is commonly used in early RISC

processors.

In a delayed branch, the execution cycle with a branch delay of one is

Branch instruction

Sequential successor-1

Branch target if taken

The sequential successor is in the branch delay slot and it is executed irrespective of
whether or not the branch is taken. The pipeline behavior with a branch delay is
shown in Figure 2.9. Processor with delayed branch, normally have a single
instruction delay. Compiler has to make the successor instructions valid and useful

there are three ways in which the to delay slot can be filled by the compiler.

[nstruction Clock number
1 2 3 4 5 6 7 8 9
Untaken Branch IF ID EXE MEM WB
Branch delay IF ID EXE MEM WB
Instruction (i+1)
Instruction (i+2) IF ID EXE MEM WB
Instruction (i+3) IF ID EXE MEM WB
Instruction (i+4) IF 1D EXE MEM WB
Taken Branch IF ID EXE MEM WB
Branch delay IF ID EXE MEM WB
Instruction (i+1})
Branch Target IF D EXE MEM WB
Branch Target+1 IF 1D EXE MEM WB
Branch Target+2 IF D EXE MEM WB

Figure 2.9 Timing diagram of the pipeline to show the behavior of a delayed branch
is the same whether or not the branch is taken.
The limitations on delayed branch arise from
i) Restrictions on the instructions that are scheduled in to delay slots.
ii) Ability to predict at compiler time whether a branch is likely to be
taken or not taken.
The delay slot can be filled from choosing an
instruction a) From before the branch
instruction
b) From the target
address c) From fall-
through path.
The principle of scheduling the branch delay is shown in fig 2.10

. From before branch

B. From branch target

C. From fall through

add £1,382,83
if $2=0 then

clelay slot

sub $4,8%5,96

add #%1,%52,%3
if $1=0 then

delay slot

add 81,882,853
if $1=0 then

delay slot

sub $4,%5,%6

becomes 1

if $2=0 then
add $1,%2,%3

bscomes 1

becomes 1

add $1,%2,%3
if $1=0 then

sub $4,%5,%6

add §1,%52,%3 \
if $1=0 then

sub $4,%5,%6

Figure 2.10 Scheduling the Branch delay

What makes pipelining hard to implements?

Dealing with exceptions: Overlapping of instructions makes it more
difficult to know whether an instruction can safely change the state of the CPU. In a
pipelined CPU, an instruction execution extends over several clock cycles. When this
instruction is in execution, the other instruction may raise exception that may force

the CPU to abort the instruction in the pipeline before they complete

Types of exceptions:

The term exception is used to cover the terms interrupt, fault and exception.
[/0 device request, page fault, Invoking an OS service from a user program, Integer
arithmetic overflow, memory protection overflow, Hardware malfunctions, Power
failure etc. are the different classes of exception. Individual events have important
characteristics that determine what action is needed corresponding to that

exception.

i) Synchronous versus

Asynchronous

If the event occurs at the same place every time the program is executed with
the same data and memory allocation, the event is asynchronous. Asynchronous
events are caused by devices external to the CPU and memory such events are

handled after the completion of the current instruction.

ii) User requested versus

coerced:

User requested exceptions are predictable and can always be handled
after the

current instruction has completed. Coerced exceptions are caused by some
hardware event that is not under the control of the user program. Coerced

exceptions are harder to implement because they are not predictable

ili) User maskable versus user non

maskable :

If an event can be masked by a user task, it is user maskable. Otherwise it is

user non maskable.

iv) Within versus between
instructions:
Exception that occur within instruction are usually synchronous, since
the
instruction triggers the exception. It is harder to implement exceptions that
occur withininstructions than those between instructions, since the
instruction must be

stopped and restarted. Asynchronous exceptions that occurs within instructions

arise from catastrophic situations and always causes program termination.

v) Resume versus
terminate:
If the program’s execution continues after the interrupt, it is a resuming

event

otherwise if is terminating event. It is easier implement exceptions that
terminate execution.
Stopping and restarting execution:

The most difficult exception have 2 properties:

1. Exception that occur within instructions

2. They must be restartable
For example, a page fault must be restartable and requires the intervention of OS.
Thus pipeline must be safely shutdown, so that the instruction can be restarted in
the correct state. If the restarted instruction is not a branch, then we will continue to
fetch the sequential successors and begin their execution in the normal fashion. 11)
Restarting is usually implemented by saving the PC of the instruction at which to
restart. Pipeline control can take the following steps to save the pipeline state safely.

i) Force a trap instruction in to the pipeline on the next I[F

ii) Until the trap is taken, turn off all writes for the faulting instruction and
for all instructions that follow in pipeline. This prevents any state changes for
instructions that will not be completed before the exception is handled.

iii) After the exception - handling routine receives control, it immediately
saves the PC of the faulting instruction. This value will be used to return from the

exception later.

NOTE:
1. with pipelining multiple exceptions may occur in the same clock cycle
because there are multiple instructions in execution.
2 Handling the exception becomes still more complicated when the
instructions are allowed to execute in out of order fashion.

Pipeline implementation

Every MIPS instruction can be implemented in 5 clock cycle

1. Instruction fetch cycles.(IF)
IR +—— Mem [PC]

NPC +— PC+4

Operation: send out the [PC] and fetch the instruction from memory in to the

Instruction

Register (IR). Increment PC by 4 to address the next sequential

instruction.

2. Instruction decode / Register fetch cycle

(ID)
A - Regs [rs]
B - Regs [rt]

Imm <— sign - extended immediate field of IR:
Operation: decode the instruction and access that register file to read the
registers (rs and rt). File to read the register (rs and rt). A & B are the
temporary registers. Operands are kept ready for use in the next cycle.
Decoding is done in concurrent with reading register. MIPS ISA has fixed length

Instructions. Hence, these fields are at fixed locations.
3. Execution/ Effective address cycle (EX)
One of the following operations are performed depending on the

instruction type.

* Memory reference:

ALU output «+— A+ Imm;

Operation: ALU adds the operands to compute the effective address and
places the result in to the register ALU output.

Register - Register ALU instruction:

ALU output «—— A func B:

Operation: The ALU performs the operation specified by the function code on the

value taken from content of register A and register B.

*. Register- Immediate ALU instruction:

ALU output +— A Op Imm ;

Operation: the content of register A and register Imm are operated (function
Op) and result is placed in temporary register ALU output.

*, Branch:

ALU output «+—— NPC + (Imm << 2)
Cond <«— (A=0)

INSTRUCTION -LEVEL PARALLELISM - 1: ILP Concepts and
challenges
Basic Compiler Techniques for exposing ILP
Reducing Branch costs with prediction
Overcoming Data hazards with Dynamic scheduling

Hardware-based speculation.

Instruction Level Parallelism

The potential overlap among instruction execution is called Instruction Level Parallelism
(ILP) since instructions can be executed in parallel. There are mainly two approaches to

exploit ILP.

i) Hardware based approach: An approach that relies on hardware to help
discover and exploit the parallelism dynamically. Intel Pentium series which

has dominated in the market) uses this approach.

ii) Software based approach: An approach that relies on software technology
to find parallelism statically at compile time. This approach has limited use in
scientific or application specific environment. Static approach of exploiting

ILP is found in Intel Itanium.

Factors of both programs and processors limit the amount of parallelism that can be
exploited among instructions and these limit the performance achievable. The

performance of the pipelined processors is given by:

Pipeline CPI=Ideal Pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

By reducing each of the terms on the right hand side, it is possible to minimize the

overall pipeline CPI.

To exploit the ILP, the primary focus is on Basic Block (BB). The BB is a straight line
code sequence with no branches in except the entry and no branches out except at the
exit. The average size of the BB is very small i.e., about 4 to 6 instructions. The flow
diagram segment of a program is shown below (Figure 3.1). BB1, BB2 and BB3 are the

Basic Blocks.

Figure 3.1 Flow diagram segment

BEI

BB3 BB2

.
TERVAN

The amount of overlap that can be exploited within a Basic Block is likely to be less than
the average size of BB. To further enhance ILP, it is possible to look at ILP across
multiple BB. The simplest and most common way to increase the ILP is to exploit the
parallelism among iterations of a loop (Loop level parallelism). Each iteration of a loop

can overlap with any other iteration.

Data Dependency and Hazard

If two instructions are parallel, they can execute simultaneously in a pipeline of
arbitrary length without causing any stalls, assuming the pipeline has sufficient
resources. If two instructions are dependent, they are not parallel and must be executed
in sequential order.

There are three different types dependences.

» Data Dependences (True Data Dependency)
* Name Dependences

« Control Dependences

Data Dependences
An instruction j is data dependant on instruction i if either of the following holds:
i) Instruction i produces a result that may be used by instruction j

Egl: i:L.DFO, O(R1)

j: ADD.D F4, FO, F2
ith instruction is loading the data into the FO and jth instruction use FO as one
the operand. Hence, jth instruction is data dependant on ith instruction.
Eg2: DADD R1,R2,R3
DSUB R4, R1, R5

ii) Instruction j is data dependant on instruction k and instruction k data dependant
on instruction i

Eg: L.D F4, 0(R1)

MUL.D FO, F4, F6

ADD.D F5, FO, F7

Dependences are the property of the programs. A Data value may flow between
instructions either through registers or through memory locations. Detecting the data
flow and dependence that occurs through registers is quite straight forward.
Dependences that flow through the memory locations are more difficult to detect. A data
dependence

convey three things.

a) The possibility of the Hazard.

b) The order in which results must be calculated and

c) An upper bound on how much parallelism can possibly exploited.

Name Dependences

A Name Dependence occurs when two instructions use the same Register or Memory

location, but there is no flow of data between the instructions associated with that name.

Two types of Name dependences:

i) Antidependence: between instruction i and instruction j occurs when instruction j
writes a register or memory location that instruction i reads. he original ordering must
be preserved to ensure that i reads the correct value.

Eg: L.D FO, O(R1)

DADDUIR1, R1, R3

ii) Output dependence: Output Dependence occurs when instructions i and j write to
the same register or memory location.

Ex: ADD.D F4, FO, F2

SUB.D F4, F3, F5

The ordering between the instructions must be preserved to ensure that the value finally
written corresponds to instruction j.The above instruction can be reordered or can
be executed simultaneously if the name of the register is changed. The renaming can

be easily done either statically by a compiler or dynamically by the hardware.

Data hazard: Hazards are named by the ordering in the program that must be

preserved by the pipeline

RAW (Read After Write): j tries to read a source before i writes it, so j in correctly gets

old value, this hazard is due to true data dependence.

WAW (Write After Write): j tries to write an operand before it is written by i. WAW

hazard arises from output dependence.

WAR (Write After Read): j tries to write a destination before it is read by i, so that I
incorrectly gets the new value. WAR hazard arises from an antidependence and normally

cannot occur in static issue pipeline.

CONTROL DEPENDENCE:
A control dependence determines the ordering of an instruction i with respect to a branch

instruction,

Ex:if P1 {S1;

}

if P2 { S2;

}
S1 is Control dependent on P1 and
S2 is control dependent on P2 but not on P1.
a)An instruction that is control dependent on a branch cannot be moved before the
branch
,0 that its execution is no longer controlled by the branch.
b)An instruction that is not control dependent on a branch cannot be moved after

the branch so that its execution is controlled by the branch.

BASIC PIPELINE SCHEDULE AND LOOP UNROLLING

To keep a pipe line full, parallelism among instructions must be exploited by
finding sequence of unrelated instructions that can be overlapped in the pipeline.
To avoid a pipeline stallla dependent instruction must be separated from the
source instruction by the distance in clock cycles equal to the pipeline latency of that
source instruction. A compiler’s ability to perform this scheduling depends both on the
amount of ILP available in the program and on the latencies of the functional units

in the pipeline.

The compiler can increase the amount of available ILP by transferring loops.
for(i=1000; i>0 ;i=i-1)
X[i] =X[i] +s;

We see that this loop is parallel by the noticing that body of the each iteration is

independent.

The first step is to translate the above segment to MIPS assembly language
Loop: L.D FO, 0(R1) : FO=array element
ADD.D F4, F0O, F2 : add scalar in F2
S.D F4, 0(R1) : store result
DADDUI R1, R1, #-8 : decrement pointer

: 8 Bytes (per DW)
BNE R1, R2, Loop : branch R1! =R2

Without any Scheduling the loop will execute as follows and takes 9 cycles for each
iteration.

1 Loop: L.D FO, O(R1) ;FO=vector element

2 stall

3 ADD.D F4, FO, F2 ;add scalar in F2

4 stall

5 stall

6 S.D F4, O(R1) ;store result

7 DADDUI R1, R1,# -8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ R1, Loop ;branch R1!=zero

We can schedule the loop to obtain only two stalls and reduce the time to 7 cycles:

L.D FO, O(R1)

DADDUIR1, R1, #-8
ADD.D F4, FO, F2
Stall

Stall

S.D F4, 0(R1)

BNE R1, R2, Loop
Loop Unrolling can be used to minimize the number of stalls. Unrolling the body of the
loop by our times, the execution of four iteration can be done in 27 clock cycles or 6.75

clock cycles per iteration.

1 Loop: L.D FO,0(R1)

3 ADD.D F4,F0,F2

6 S.D O(R1),F4 ;drop DSUBUI & BNEZ

7 L.D F6,-8(R1)

9 ADD.D F8,F6,F2

12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ

13 L.D F10,-16(R1)

15 ADD.D F12,F10,F2

18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ

19 L.D F14,-24(R1)

21 ADD.D F16,F14,F2

24 S.D -24(R1),F16

25 DADDUI R1,R1,#-32 :alter to 4*8

26 BNEZ R1,LOOP

Unrolled loop that minimizes the stalls to 14 clock cycles for four iterations is given
below:

1 Loop: L.D FO, 0(R1)

2 L.D F6, -8(R1)

3 L.D F10,-16(R1)

4 L.D F14, -24(R1)
5 ADD.D F4, FO, F2

6 ADD.D F8, F6, F2

7 ADD.D F12, F10, F2

8 ADD.D F16, F14, F2

9S.D O(R1), F4

10 S.D -8(R1), F8

11S.D -16(R1), F12

12 DSUBUI R1, R1,#32

13 S.D 8(R1), F16;8-32 =-24

14 BNEZ R1, LOOP

Summary of Loop unrolling and scheduling

The loop unrolling requires understanding how one instruction depends on another

and how the instructions can be changed or reordered given the dependences:

1. Determine loop unrolling useful by finding that loop iterations were independent

(except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by using same

registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop termination

and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by observing

that loads and stores from different iterations are independent

e Transformation requires analyzing memory addresses and finding that they do

not refer to the same address

5. Schedule the code, preserving any dependences needed to yield the same result as
the original code

To reduce the Branch cost, prediction of the outcome of the branch may be done.
The prediction may be done statically at compile time using compiler support or
dynamically using hardware support. Schemes to reduce the impact of control hazard

are discussed below:

Static Branch Prediction

Assume that the branch will not be taken and continue execution down the
sequential instruction stream. If the branch is taken, the instruction that are being
fetched and decoded must be discarded. Execution continues at the branch target.
Discarding instructions means we must be able to flush instructions in the IF, ID and EXE
stages. Alternately, it is possible that the branch can be predicted as taken. As soon
as the instruction decoded is found as branch, at the earliest, start fetching the

instruction from the target address.

- Average misprediction = untaken branch frequency = 34% for SPEC

pgms.

2504, _ P —

£ 20% - 7] 18% o _
= m 15%
S 15% 1oy o - e S—
T 11% o
2 i 109%
8 10% 15} . 9%
69%
& 4%
= 5% 44 i |_| i
Oq’fﬂ T T T T T |_| T T T T 1
=] '\{‘:F. .51,0 'CP w» QP "é ‘rb-b {)Q o
é’ & Qf: G 66) L) &0 (:b\:\ ﬁr—g)
& & g & 5
& e’

The graph shows the misprediction rate for set of SPEC benchmark
programs

Dynamic Branch Prediction

With deeper pipelines the branch penalty increases when measured in clock
cycles. Similarly, with multiple issue, the branch penalty increases in terms of
instructions lost. Hence, a simple static prediction scheme is inefficient or may not be
efficient in most of the situations. One approach is to look up the address of the
instruction to see if a branch was taken the last time this instruction was executed, and if
so, to begin fetching new instruction from the target address.

This technique is called Dynamic branch prediction.

* Why does prediction work?

- Underlying algorithm has regularities
- Data that is being operated on has regularities
- Instruction sequence has redundancies that are artifacts of way
that humans/compilers think about problems.
- There are a small number of important branches in programs which have
dynamic behavior for which dynamic branch prediction performance will be definitely

better compared to static branch prediction.

 Performance = f(accuracy, cost of misprediction)

e Branch History Table (BHT) is used to dynamically predict the outcome of the
current branch instruction. Lower bits of PC address index table of 1-bit values
- Says whether or not branch taken last time

o - No address check

e Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations
before exit):
- End of loop case, when it exits instead of looping as before
- First time through loop on next time through code, when it predicts exit instead

of looping

e Simple two bit history table will give better performance. The four different states of

2
bit predictor is shown in the state transition diagram.
T
NT
Predict Taken T Predict Taken
T NT NT
Predict Not Predict Not
Taken T Taken

NT

Brown: go, taken
Blue: stop, not taken

The states in a 2-bit prediction scheme

Correlating Branch Predictor

It may be possible to improve the prediction accuracy by considering the recent
behavior of other branches rather than just the branch under consideration. Correlating
predictors are two-level predictors. Existing correlating predictors add information

about the behavior of the most recent branches to decide how to predict a given branch.

e Idea: record m most recently executed branches as taken or not taken, and use

that pattern to select the proper n-bit branch history table (BHT)

e In general, (m,n) predictor means record last m branches to select between 2m

history tables, each with n-bit counters

- Thus, old 2-bit BHT is a (0,2) predictor
Global Branch History: m-bit shift register keeping T/NT status of last m
branches
e Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of
recent branches selects between four predictions of next branch, updating just that

prediction. The scheme of the table is shown:

Comparisons of different schemes are shown in the graph.
m -

15 + 4096 Entries 2-bit BH'T
e Unlimited Entries Z2-bhit BH'T
1484 - 1024 Entries (2.2) BHT

ia%
1084 -

NS

|| 4,086 entries: 2 bits per entry @ Taliseted entres T bite/entry @ 102 entnes [2.2) |

C(}]!Ipﬂl’i\‘iﬂﬂ of 2 bit prcdlctnrs iy-axis: % frequency of mispredictions, x-axis: SPECS9 programs)

Tournament predictor is a multi level branch predictor and uses n bit saturating
counter to chose between predictors. The predictors used are global predictor and

local predictor.

- Advantage of tournament predictor is ability to select the right predictor

for a particular branch which is particularly crucial for integer benchmarks.

- A typical tournament predictor will select the global predictor almost 40% of
the time for the SPEC integer benchmarks and less than 15% of the time for the
SPEC FP benchmarks

- Existing tournament predictors use a 2-bit saturating counter per branch to
choose among two different predictors based on which predictor was most

effective oin recent prediction.

o It - - I — —— .

Use praedictor 1 :’ Use predictor 2

g . o e oo

JJ ", - .
| Use predictor 1 { Use predictor 2
b 1/0 S
A \ i
LY Y, ,’I
.00, 11/ _ 0/, 11,/

Dynamic Branch Prediction Summary

e Prediction is becoming important part of execution as it improves the performance

of the pipeline.

e Branch History Table: 2 bits for loop accuracy

« Correlation: Recently executed branches correlated with next branch
- Either different branches (GA)
- Or different executions of same branches (PA)
e Tournament predictors take insight to next level, by using multiple predictors
- usually one based on global information and one based on local information,

and combining them with a selector

- In 2006, tournament predictors using » 30K bits are in processors like the
Power and Pentium 4

Tomasulu algorithm and Reorder Buffer

Tomasulu idea:
1. Have reservation stations where register renaming is possible
2. Results are directly forwarded to the reservation station along with the

final registers. This is also called short circuiting or bypassing.

ROB:

1.The instructions are stored sequentially but we have indicators to say if it is speculative

or completed execution.

2. If completed execution and not speculative and reached head of the queue then

we commit it.

Reorder buffer
From instruction unit

Rag # ¢ + Data
Instruction 3

queLe
FP registers
Load-store i

operations

¥ .) Operand
Floating-point buses

operations

Load buffers

9

Operation bus

3 L
Store < Bl FI|_ T =
address 2 [T | Reservation [1
- i
Store 1 stations
data Address
Memory unit FP adders EFP multiplisrs
Sy Common data bus (CDB
data {)

Speculating on Branch Outcomes

 To optimally exploit ILP (instruction-level parallelism) - e.g. with pipelining,
Tomasulo,etc. - it is critical to efficiently maintain control dependencies (=branch

dependencies)

» Key idea: Speculate on the outcome of branches(=predict) and execute instructions as if

the predictions are correct

« of course, we must proceed in such a manner as to be able to recover if our

speculation turns out wrong

Three components of hardware-based speculation

1. dynamic branch prediction to pick branch outcome

2. speculation to allow instructions to execute before control dependencies are
resolved, i.e., before branch outcomes become known - with ability to undo in case
of incorrect speculation

3. dynamic scheduling

Speculating with Tomasulo
Key ideas:
1. separate execution from completion: instructions to execute speculatively but no

instructions update registers or memory until no more speculative

2. therefore, add a final step - after an instruction is no longer speculative, called

instruction commit- when it is allowed to make register and memory updates

3. allow instructions to execute and complete out of order but force them to commit in

order

4. Add hardware called the reorder buffer (ROB), with registers to hold the result of

an instruction between completion and commit

Tomasulo’s Algorithm with Speculation: Four Stages

1. Issue: get instruction from Instruction Queue
_ifreservation station and ROB slot free (no structural hazard),
control issues instruction to reservation station and ROB, and sends to
reservation station operand values (or reservation station source for values)

as well as allocated ROB slot number

2. Execution: operate on operands (EX)

when both operands ready then execute;if not ready, watch CDB for result

3. Write result: finish execution (WB)

_write on CDB to all awaiting units and ROB; mark reservation station available

4. Commit: update register or memory with ROB result
_when instruction reaches head of ROB and results present, update register
with result or store to memory and remove instruction from ROB
_ifan incorrectly predicted branch reaches the head of ROB, flush the ROB, and

restart at correct successor of branch

ROB Data Structure

ROB entry fields

« Instruction type: branch, store, register operation (i.e., ALU or load)

« State: indicates if instruction has completed and value is ready

 Destination: where result is to be written - register number for register operation
(i.e. ALU or load), memory address for store

e branch has no destination result

Value: holds the value of instruction result till time to commit

Additional reservation station field

* Destination: Corresponding ROB entry number
Example

1. L.D F6, 34(R2)

2.L.DF2,45(R3

3. MUL.D FO, F2, F4

4.SUB.D F8, F2, F6

5.DIV.D F10, FO, F6

6. ADD.D F6, F8, F2

The position of Reservation stations, ROB and FP registers are indicated below:

Assume latencies load 1 clock, add 2 clocks, multiply 10 clocks, divide 40 clocks

Show data structures just before MUL.D goes to commit...

Reservation Stations

Name

Load1

Load2

Addl

Add2

Add3

Mult1

Mult2

Busy
no
no
no
ne
no
yes

yes

Op Vj Vk Qj Qk Dest A
MUL Mem[45+Regs[R3]] Regs[F4] #3
DIV Mem|34+Regs[R2]] #3 #5

At the time MULL.D is ready to commit only the two L.D instructions have already

committed,though others have completed execution

Actually, the MUL.D is at the head of the ROB - the L.D instructions are shown only for

understanding purposes #X represents value field of ROB entry number X

Floating point registers

Field K F1 E2 F3 F4 F> Fo FJ F8 FI10D
Reorder? 3 f 4 3
BUS}' YEs no no no no no YEs YEs YES
Buffer
Entry Busy Instruction State Destination Value
1 no L.D F6, 34(R2) Commit Fé Mem|34+Regs[R2]]
2 no L.D F2, 45(R3) Commit F2 Mem[45+Reas[R3]]
3 yes MULD F0, F2,F4 Write result FO #2 x Regs|[F4]
4 yes SUB.D F3, F6, F2 Write result F8 #1 - #2
| yes DIV.D F10, FO, F6 Execute F10
6 yes ADD.D F6, F8, F2 Write result Fe #1 +#2
Example
Loop: LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

Assume instructions in the loop have been issued twice

Assume L.D and MUL.D from the first iteration have committed and all other

instructions have completed

Assume effective address for store is computed prior to its issue

Show data structures

Reorder Buffer

Reorder

Entry Busy Instruction State Destination Value
1 no LD FO, O(R1) Commit FO
Mem[0+Regs[R1]]
2 no MUL.D F4, FO, F2 Commit F4 #1 x Regs|F2]
3 yes S5.D F4, O(R1) Write result 0+ Regs[R1] #2
4 yes DADDUI Rl R1,%#-8 Write result R1 Regs[R1] -8
3 yes BNE R1,R2, Loop Write result
5] yes LD F, O(R1) Write result FO Mem|#4]
7 yes MUL.D F4, FO, F2 Write result F4 #6 = Regs[F2]
8 yes S.D F4, O{(R1) Write result 0+ #4 #7
9 yes DADDUI RI,RI, #8 Write result Rl #4 -8
10 yes BNE R1. R2, Loop Write result

Notes
e [f a branch is mispredicted, recovery is done by flushing the ROB of all entries that
appear after the mispredicted branch
» entries before the branch are allowed to continue
« restart the fetch at the correct branch successor
e When an instruction commits or is flushed from the ROB then the corresponding

slots become available for subsequent instructions

Advantages of hardware-based speculation:
-able to disambiguate memory references;
-better when hardware-based branch prediction is better than software-
based branch
prediction done at compile time; - maintains a completely precise exception model
even for speculated instructions;
does not require compensation or bookkeeping code;
main disadvantage:

complex and requires substantial hardware resources;

UNIT - I1I

INSTRUCTION -LEVEL PARALLELISM - 2: Exploiting ILP
using multiple issue and static scheduling Exploiting ILP using
dynamic scheduling

Multiple issue and speculation

Advanced Techniques for instruction delivery and Speculation
The Intel Pentium 4 as example

UNIT III

INSTRUCTION -LEVEL PARALLELISM - 2

Whatis ILP?
* Instruction Level Parallelism
- Number of operations (instructions) that can be performed in parallel
e Formally, two instructions are parallel if they can execute simultaneously in a
pipeline of arbitrary depth without causing any stalls assuming that the pipeline
has sufficient
resources
- Primary techniques used to exploit ILP
e Deep pipelines
e Multiple issue machines
» Basic program blocks tend to have 4-8 instructions between branches
- Little ILP within these blocks

- Must find ILP between groups of blocks

Example Instruction Sequences

e Independent instruction sequence:

Iw $10,12($1) sub $11, $2,
$3 and $12, $4, $5 or $13,
$6,$7 add $14, $8, $9

» Dependent instruction sequence:

Iw $10, 12($1) sub $11, $2,
$10 and $12, $11, $10 or $13,
$6,$7

add $14, $8, $13

Finding ILP:
e Must deal with groups of basic code blocks
e Common approach: loop-level parallelism
- Example:

- In MIPS (assume $s0 initialized properly):

for (i=1000; i > 0; i--)

x[i] = x[i] +s;

Loop: Iw $t0, 0($s1) # t0 = array
element addu $t0, $t0, $s2 # add
scalar in $s2

sw $t0, 0($s1) # store result
addi $s1, $s1, -4 # decrement
pointer bne $s1, $0, Loop #
branch $s1!=0

Loop Unrolling:
e Technique used to help scheduling (and performance)
e Copy the loop body and schedule instructions from different iterations

of the loop gether

e MIPS example (from prev. slide):

Loop: Iw $t0, 0($s1) # t0 = array
element addu $t0, $t0, $s2 # add
scalar in $s2
sw $t0, 0($s1) # store
result Iw $t1, -4($s1)
addu $t1, $t1,
$s2 sw $t1, -
4($s1)
addi $s1, $s1, -8 # decrement
pointer bne $s1, $0, Loop #
branch $s1!=0

Note the new register & counter adjustment!
* Previous example, we unrolled the loop once
- This gave us a second copy
e Why introduce a new register ($t1)?
- Antidependence (name dependence)
* Loop iterations would reuse register $t0
» No data overlap between loop iterations!
e Compiler RENAMED the register to prevent a “dependence”
- Allows for better instruction scheduling and identification of true
dependencies
e In general, you can unroll the loop as much as you want
- A factor of the loop counter is generally used
- Limited advantages to unrolling more than a few times
Loop Unrolling: Performance:
 Performance (dis)advantage of unrolling
- Assume basic 5-stage
pipeline
 Recall lw requires a bubble if value used immediately after

e For original loop

- 10 cycles to execute first iteration
- 16 cycles to execute two iterations
» Assuming perfect prediction
e For unrolled loop
- 14 cycles to execute first iteration -- without reordering
e Gain from skipping addi, bne
- 12 cycles to execute first iteration -- with reordering

 Put lw together, avoid bubbles after ea

Loop Unrolling: Limitations
e Overhead amortization decreases as loop is unrolled more
e Increase in code size

- Could be bad if ICache miss rate increases
 Register pressure

- Run out of registers that can be used in renaming process

Exploiting ILP: Deep Pipelines
Deep Pipelines
e Increase pipeline depth beyond 5 stages
- Generally allows for higher clock rates
- UltraSparc III -- 14 stages
- Pentium III -- 12 stages
- Pentium IV -- 22 stages
» Some versions have almost 30 stages
- Core 2 Duo -- 14 stages
- AMD Athlon -- 9 stages
- AMD Opteron -- 12 stages
- Motorola G4e -- 7 stages
- IBM PowerPC 970 (G5) -- 14 stages
e Increases the number of instructions executing at the same time

» Most of the CPUs listed above also issue multiple instructions per cycle

Issues with Deep Pipelines
 Branch (Mis-)prediction
- Speculation: Guess the outcome of an instruction to remove it as a
dependence to other instructions
- Tens to hundreds of instructions “in flight”
- Have to flush some/all if a branch is mispredicted
* Memory latencies/configurations
- To keep latencies reasonable at high clock rates, need fast caches
- Generally smaller caches are faster
- Smaller caches have lower hit rates

e Techniques like way prediction and prefetching can help lower latencies

Optimal Pipelining Depths
« Several papers published on this topic
- Esp. the 29th International Symposium on Computer Architecture (ISCA)
- Intel had one pushing the depth to 50 stages
- Others have shown ranges between 15 and 40
- Most of the variation is due to the intended workload

Exploiting ILP: Multiple Issue Computers

Multiple Issue Computers

* Benefit
- CPIs go below one, use IPC instead (instructions/cycle)
- Example: Issue width = 3 instructions, Clock = 3GHz
e Peak rate: 9 billion instructions/second, IPC = 3
» For our 5 stage pipeline, 15 instructions “in flight” at any given time
e Multiple Issue types
- Static
e Most instruction scheduling is done by the compiler
- Dynamic (superscalar)
e CPU makes most of the scheduling decisions

e Challenge: overcoming instruction dependencies

- Increased latency for loads
- Control hazards become worse
e Requires a more ambitious design
- Compiler techniques for scheduling

- Complex instruction decoding logic

Exploiting ILP:Multiple Issue Computers Static Scheduling

Instruction Issuing

» Have to decide which instruction types can issue in a cycle

- Issue packet: instructions issued in a single clock cycle

- Issue slot: portion of an issue

packet

» Compiler assumes a large responsibility for hazard checking, scheduling, etc.

Static Multiple Issue

For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with:

- One slot is an ALU or branch instruction

One slot is a load/store instruction

Instruction Type Pipeline Stages
ALT or Branch instruction IF | ID | EX | MEM WB
Load or Store instruction IF | ID | EX | MEM WB
ALY or Branch instruction IF j1y EX MEM WB
Load or Store instruction IF m EX MEM WB
ALU or Branch instruction IF D EX MEM | WE
Load eor Store instruction IF I EX MEM | WE

Static Multiple Issue

— [

d—-—/ r _I_" —

]
weZ 1 wez
¥
=
]

TIN| | " Ragisiers
0000185 4| u fe pel. | INstruction —e g

memory | - e
) L ! pemsm— Y | - = == Writa
L —={ - o | data
ooy Data
—) 1 AL - — - ——
| Sign- o e L ory

pAdiaE

FIGURE 4.69 A static two-issue
datapath. The additions needed for
double issue are highlighted:
another 32 bits from instruction | .
memaory, two more read ports and -
one more write port on the register — - - —= - | -J-
file, and another ALU. Aszume the
bottom ALU handles address
calculations for data transfers and
the top ALU handles everything
else. Copyright © 2009 Elsevier,
Inc. All ights reserved.

Static Multiple Issue Scheduling

add $1, $2, $3
add $5, $2, $2
load $4, $3(100) Becomes
load $3, $2(100)
sub $2, $5, %3

add $2, $2, $4 \/

Cycle | ALU/Branch Instruction Load/Store Instruction

1

2

|

Static Mult. Issue w/Loop Unrolling
Original loop schedule for a 2-issue MIPS

ALU/Branch Load/Store Cycle
Loop: lw StD, 0(§s1l)
addu §tO, §t0, §s2 Loop: !
sw $t0, 0($s1) 9
addi &s1, $s1, -4
bne §sl, $0, Loop 3
4

Unrolled (once) loop schedule for a 2-issue MIPS

ALU/Branch Load/Store Cycle
Loop: lw §t0, O(ssl) Lou !
addu §t0, $to, §s2 2
swW sto, 0(ss1) 3
Iw 5t1, -4(5s1)
addu $tl, $tl, §s2 4
sw 5tl, -4(§sl)
addi ss1, 581, -8 ;
bne $81, 50, Loop [
7
Static Mult. Issue w/Loop Unrolling
Loop: 1w $t0, 0($5=s1) - -
P addu $to, §to, ss2 Unroll loop 3x, (4 iterations total) and schedule
sw $t0, 0($s1) for a 2-issue MIPS
addi $s1, $s1, -4
bne $81, $0, Loop ALU/Branch Load/Store Cycle
Loop: Loop: 1
3
4
3
6
2
9
10
11
12

Exploiting ILP:Multiple Issue Computers Dynamic Scheduling

Dynamic Multiple Issue Computers
 Superscalar computers
e CPU generally manages instruction issuing and ordering
- Compiler helps, but CPU dominates
* Process
- Instructions issue in-order
- Instructions can execute out-of-order
» Execute once all operands are ready
- Instructions commit in-order
e Commit refers to when the architectural register file is updated (current
completed state of program
Aside: Data Hazard Refresher
e Two instructions (i and j), j follows i in program order
» Read after Read (RAR)
* Read after Write (RAW)
- Type:
- Problem:
e Write after Read (WAR)
- Type:
- Problem:
e Write after Write (WAW)
- Type: Problem:
Superscalar
Processors
» Register Renaming
- Use more registers than are defined by the architecture
e Architectural registers: defined by ISA
 Physical registers: total registers
- Help with name dependencies
e Antidependence
- Write after Read hazard
e Qutput dependence
- Write after Write hazard

Tomasulo’s Superscalar Computers

e R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”,
IBM J. of Research and Development, Jan. 1967

e See also: D. W. Anderson, F.]. Sparacio, and R. M. Tomasulo, “The IBM
System/360 model 91: Machine philosophy and instruction-handling,” IBM J. of
Research and evelopment, Jan. 1967

» Allows out-of-order execution

 Tracks when operands are available

- Minimizes RAW hazards

e Introduced renaming for WAW and WAR

hazards

Tomasulo’s Superscalar Computers

IO IMESTLEGIRDT LT

This shows only FP L
and load/store parts o FP registers | ‘
FELFES
of machine
Load-store 1l ==
operations 1T 1
g : Ciperand
Address unil | Flonting point buses
Store buffers - . opamiians
¥ ¥ % Load buffers
1
Cperation bus
':-' 5 L L L
I 2 ﬂes&n.faﬁol‘-} | I 1- 1
LR — = Slations = -
v Data v Address ¥ v Y ¥
Memory unit | [FF adders]g FP muttipliers
. t Common data bus (COB) 4

Instruction Execution Process

e Three parts, arbitrary number of cycles/part

» Above does not allow for speculative execution

« [ssue (aka Dispatch)

- If empty reservation station (RS) that matches instruction, send to RS with

operands rom register file and/or know which functional unit will send operand
- If no empty RS, stall until one is

available

Rename registers as appropriate

Instruction Execution Process

e Execute

- All branches before instruction must be resolved

* Preserves exception behavior

- When all operands available for an instruction, send it to functional unit
e Monitor common data bus (CDB) to see if result is needed by RS entry

- For non-load/store reservation stations

e [f multiple instructions ready, have to pick one to send to functional unit
- For load/store

e Compute address, then place in buffer

» Loads can execute once memory is free

e Stores must wait for value to be stored, then execute

Write Back

- Functional unit places on CDB

* Goes to both register file and reservation stations
- Use of CDB enables forwarding for RAW hazards

- Also introduces a latency between result and use of a value

Reservation Stations
e Require 7 fields

- Operation to perform on operands (2 operands)

- Tags showing which RS/Func. Unit will be producing operand (or zero if
operand available/unnecessary)

- Two source operand values

- A field for holding memory address calculation data

» [nitially, immediate field of instruction

e Later, effective address

- Busy

e Indicates that RS and its functional unit are busy

« Register file support

- Each entry contains a field that identifies which RS/func. unit will be writing into
this entry (or blank/zero if noone will be writing to it) Limitation of Current

Machine

Instruction execution requires branches to be resolved

» For wide-issue machines, may issue one branch per clock cycle!
e Desire:
- Predict branch direction to get more ILP
- Eliminate control dependencies
e Approach:
- Predict branches, utilize speculative instruction execution
- Requires mechanisms for “fixing” machine when speculation is incorrect

Tomasulo’s w/Hardware Speculation

E .
This shows Fiaorder BT
ﬂ]]_ly FP aﬂd From |||F:I'!||‘.I|-.’:n'| et
load/store :
parts of i ;
= e f Data
machine gl '
FP registars
Load-stara
opearations T
- *‘ - Dperand
Aﬂdm&&lulﬂi Floating-podnt buses
oparations i
'.i. Load bafters [
Dperation bus

[FP adden P mudtiphe
1 Common data bus (CDB)

Y i, . 8 g vt

Tomasulo’s w/HW Speculation

 Key aspects of this design

- Separate forwarding (result bypassing) from actual instruction completion

e Assuming instructions are executing speculatively

» Can pass results to later instructions, but prevents instruction from performing
updates

that can’t be “undone”

- Once instruction is no longer speculative it can update register file/memory

e New step in execution sequence: instruction commit

» Requires instructions to wait until they can commit Commits still happen in order

Reorder Buffer (ROB)

Instructions hang out here before committing

* Provides extra registers for RS/RegFile

- Is a source for operands

* Four fields/entry

- Instruction type

e Branch, store, or register operation (ALU & load)
- Destination field

» Register number or store address

- Value field

 Holds value to write to register or data for store
- Ready field

 Has instruction finished executing?

 Note: store buffers from previous version now in ROB
Instruction Execution Sequence

e [ssue

- Issue instruction if opening in RS & ROB

- Send operands to RS from RegFile and/or ROB

» Execute

- Essentially the same as before

e Write Result

- Similar to before, but put result into ROB

e Commit (next slide)

Committing Instructions

Look at head of ROB

 Three types of instructions

- Incorrectly predicted branch

* Indicates speculation was wrong
e Flush ROB

e Execution restarts at proper location - Store
e Update memory

e Remove store from ROB

- Everything else

e Update registers

e Remove instruction from ROB

RUU Superscalar Computers

Instruction Fetch Unit :
Register
4 File
Decode and Issue Unit [*

h

| Register l;pdate Unit [* — |
; —»{ Load Registers |

Func| |Func| |Func Func Func
Unit Unit | | Unit Unit Unit
1 Data
Memory
3 ¥ y 3 ¥ 3
Rezult Bus (CDE)

Modeling tool Simple Scalar implements an RUU style processor
- You will be using this tool after Spring Break

e Architecture similar to speculative Tomasulo’s

 Register Update Unit (RUU)

- Controls instructions scheduling and dispatching to functional units
- Stores intermediate source values for instructions

- Ensures instruction commit occurs in order!

- Needs to be of appropriate size

e Minimum of issue width * number of pipeline stages

e Too small of an RUU can be a structural hazard!

e Result bus could be a structural hazard

A Real Computer:Intel Pentium 4

Pentium 4 Die Photo

" “iop
Schedulers:

S R

et
¥ :

- kW

L

Buffer Allocation
& Register Renameg
i u

Overview of P4

Front-End ETE | Instruction —
4K Entries TLB! Pratetcher z 1 s
= 5
| Instruction Decoder | e {u
e N ROM
Trace Cache BETE Execution Trace Cache Bus
2K Enfries + ™ pop Oueus o

(12K yops) = Interface

Unit

GQuad
s Pumpead
1 6.4 GB/s

I. ; r T
MY

L2 Cache

AGU AGU 2x ALURY 2x ALU || | Show ALY (1M Byte

Load Store Simple Simple Complex) B-way)

Address! | Address Instr. Instr, Instr.
] L |
l L 10B8GEB/s
| L1 Data Cache (16Kbyte 8-way)

Boggs et al, “The Microarchitecture of the Intel Pentium 4 Processor
on ¥nm Technology,” Intel Tech. J, Vol. 8, Num. 1, 2004

Pentium 4 Pipeline

 See handout for overview of major steps
e Prescott (90nm version of P4) had 31 pipeline stages

- Not sure how pipeline is divided up

Basic Pentium lll Processor Misprediction Pipeline

1 2 3 4 5 6 7 8 9 10
Fuotch Fetch Decode Decode Decode Rename ROB Rd RdyiSch Dispatch Exec

Basic Pentium 4 Processor Misprediction Pipeline

1 2 3 4 5 € 7 3 % 10 11 12 13 14 15 16 17 138 "W
TCNet P TC Fotchl DeivelAlloc Rename Ose Sch Soh Sch Disp Omp RF RF Ex 'lgsi Dviva

Drive stages - Move data; limited/no useful work

P4: Trace Cache

Non-traditional instruction cache

 Recall x86 ISA

- CISC/VLIW: ugly assembly instructions of varying lengths

- Hard for HW to decode

- Ended up translating code into RISC-like microoperations to execute
* Trace Cache holds sequences of RISC-like micro-ops

- Less time decoding, more time executing

- Sequence storage similar to “normal” instruction cache

P4: Branch Handling

BTBs (Branch Target Buffers)

- Keep both branch history and branch target addresses

e Target address is instruction immediately after branch

- Predict if no entry in BTB for branch

e Static prediction

e [f a backwards branch, see how far target is from current; if within a threshold,
predict taken, else predict not taken

e If a forward branch, predict not taken

» Also some other rules

e Front-end BTB is L2 (like) for the trace cache BTB (L1 like)

P4: Execution Core

e Tomasulo’s algorithm-like

 Can have up to 126 instructions in-flight

- Max of 3 micro-ops sent to core/cycle

- Max of 48 loads, 32 stores

» Send up to 6 instructions to functional units per cycle via 4 ports

- Port 0: Shared between first fast ALU and FP/Media move scheduler

- Port 1: Shared between second fast ALU and Complex integer and FP/Media

scheduler

- Port 2: Load
Port 3: Store

P4: Rapid Execution Engine

Execute 6 micro-ops/cycle

- Simple ALUs run at 2x machine clock rate

- Can generate 4 simple ALU results/cycle

- Do one load and one store per cycle

* Loads involve data speculation

- Assume that most loads hit L1 and Data Translation Look-aside Buffer (DTLB)
- Get data into execution, while doing address check

e Fix if L1 miss occurred

P4: Memory Tricks

» Store-to-Load Forwarding

- Stores must wait to write until non-speculative

- Loads occasionally want data from store location

- Check both cache and Store Forwarding Buffer

» SFB is where stores are waiting to be written

- If hit when comparing load address to SFB address, use SFB data, not cache data
e Done on a partial address

e Memory Ordering Buffer

- Ensures that store-to-load forwarding was correct

e [f not, must re-execute load

- Force forwarding

e Mechanism for forwarding in case addresses are misaligned
* MOB can tell SFB to forward or not

- False forwarding

» Fixes partial address match between load and SFB

P4: Specs for Rest of Slides

e For one running at 3.2 GHz

- From grad arch book

L1 Cache

- Int: Load to use - 4 cycles

- FP: Load to use - 12 cycles

- Can handle up to 8 outstanding load misses
e L2 Cache (2 MB)

18 cycle access time

P4: Branch Prediction
* Graph results from subset of SPEC 2000 Benchmarks
— Integer: gzip, vpr, gcc, mcf, crafty
* 168 branches/1000 instructions
— FP: wupwise, swim, mgrid, applu, mesa
* 48 branches/1000 instructions

0zip

crafty
SWUDWISE
swim
mgrid
apglu

masa

¥ 1 2 a 4 5 B 7 a 4 10 11 12 13 14
Branch mispredictions per 1000 instructions

P4: Misspeculation Percentages

* For micro-ops

goo
mcf
crafty
wupwise
awim
magrid
applu

mesa

i

0.0000 00500 01000 01500 02000 02500

0.3000

Misspeculation percentage

2007 Elanied, e A) rigiis rasved

P4: Data Cache Miss Rates

g7p
wpr

[+{EH

mf
crafty
WG
Emim
megria

applu

Mizss

0 20 40 &0 B0 100 120 140 180 180 200
L1 dafa cachg mizzes per 1000 nstuctions

0.3500 04000 0.4500

* This L2 is 2MB, not 1MB (as in paper you read)
» Note scale is 10x for L1 as compared to L2

gzip

Ve

goe

mck
crafty
WUDREE
Ewim:
mgnd
Epplu

mesd

£ 2007 Elaevier, Ine. All ightts resenesd.

P4: CPI

2 4 G a 10 2 14 16
-2 gafa cache misgse per 1000 nstnichong

18

* Read values from lines, not sure why X-axis is scaled like itis
* 1.29 micro-ops per IA-32 instruction

gzip

vpr

gce

mf
crafty
wupwise
SWim
rmgrd

appliu

measa

0.0000 3.0500 0.1000 Q.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500

CPI
P4 vs. AMD Opteron

* Architecturally similar

— Opteron pipeline much shorter (12 stages)
— P4 seems to have a larger cache

* CPI comparison below (Opteron at 2.6GHz)
— Opteron CPI lower by factor of 1.27

el
crafty
wupwise

SWim

Pantium 4
mgrid W AnMD Opteron

appiu

MaEea

000 100 200 300 400 5O BDD 700 B00 900 1000 11.00 12.00 130 14,04

P4 vs. Opteron: Real Performance

* Clock rates (2005 comparison)
— P4: 3.8 GHz
— Opteron: 2.8 GHz

= Opteron performance advantage of about 1.08
.-
gzip

wpr

gcc

mick

crafty

WURWISE
swime
mgrid

applu

measa

. Penlium 4
B Opteron

0.00 S00 1000 1500 2000
SPECRatio

5 ST B, bz AR rights remmeed

2500

3500

UNIT -1V

MULTIPROCESSORS AND THREAD -LEVEL PARALLELISM:
Introduction

Symmetric shared-memory architectures

Performance of symmetric shared-memory multiprocessors
Distributed shared memory and directory-based coherence Basics
of synchronization

Models of Memory Consistency.

UNITIV

Multiprocessors and Thread-Level Parallelism

We have seen the renewed interest in developing multiprocessors in early 2000:
- The slowdown in uniprocessor performance due to the diminishing returns in
exploring instruction-level parallelism.

- Difficulty to dissipate the heat generated by uniprocessors with high clock rates.
- Demand for high-performance servers where thread-level parallelism is natural.

For all these reasons multiprocessor architectures has become increasingly attractive.

A Taxonomy of Parallel Architectures

The idea of using multiple processors both to increase performance
and to improve availability dates back to the earliest electronic computers. About
30 years ago, Flynn proposed a simple model of categorizing all computers that is
still useful today. He looked at the parallelism in the instruction and data streams
called for by the instructions at the most constrained component of the

multiprocessor, and placed all computers in one of four categories:

1.Single instruction stream, single data stream

(SISD)—This category is the uniprocessor.

SIsSD Instruction Pool |

PU — Processing Unit

Data Poal

Uniprocessors

2.Single instruction stream, multiple data streams

(SIMD)—The same instruction is executed by multiple processors using different
data streams. Each processor has its own data memory (hence multiple data), but
there is a single instruction memory and control processor, which fetches and

dispatches instructions. Vector architectures are the largest class of processors of

this type.

SIMD Instruction Pool
+ | PU |+
E » | PU |~
2
A * | PU [+
> PU -

3.Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but may be in the future. Some
special purpose stream processors approximate a limited form of this (there is

only a single data stream that is operated on by successive functional units).

MISD Instruction Pool
s
o
p Lpod Ll
=
0

4. Multiple instruction streams, multiple data streams (MIMD)—Each
processor fetches its own instructions and operates on its own data. The
processors are often off- the-shelf microprocessors. This is a coarse model, as some
multiprocessors are hybrids of these categories. Nonetheless, it is useful to put a

framework on the design space.

MIMD Instruction Pool

—[Pul— L[Pu|

—|PUl— =|PU|

Data Pool

—|PUl— L|PU|

1. MIMDs offer flexibility. With the correct hardware and software support, MIMDs
can function as single-user multiprocessors focusing on high performance for one
application, as multiprogrammed multiprocessors running many tasks

simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost/performance advantages of off-the-shelf
microprocessors. In fact, nearly all multiprocessors built today use the same

microprocessors found in workstations and single-processor servers.

With an MIMD, each processor is executing its own instruction stream. In many
cases, each processor executes a different process. Recall from the last chapter, that
a process is an segment of code that may be run independently, and that the
state of the process contains all the information necessary to execute that
program on a processor. In a multiprogrammed environment, where the
processors may be running independent tasks, each process is typically
independent of the processes on other processors. It is also useful to be able to
have multiple processors executing a single program and sharing the code and
most of their address space. When multiple processes share code and data in this

way, they are often called threads

. Today, the term thread is often used in a casual way to refer to multiple
loci of execution that may run on different processors, even when they do not share
an address space. To take advantage of an MIMD multiprocessor with n processors,
we must usually have at least n threads or processes to execute. The independent
threads are typically identified by the programmer or created by the compiler. Since
the parallelism in this situation is contained in the threads, it is called thread-Ilevel

parallelism.

Threads may vary from large-scale, independent processes-for
example, independent programs running in a multiprogrammed fashion on
different processors- to parallel iterations of a loop, automatically generated by a
compiler and each executing for perhaps less than a thousand instructions. Although

the size of a thread is important in considering how to exploit thread-level

parallelism efficiently, the important qualitative distinction is that such parallelism
is identified at a high-level by the software system and that the threads consist of
hundreds to millions of instructions that may be executed in parallel. In contrast,
instruction level parallelism is identified by primarily by the hardware, though with

software help in some cases, and is found and exploited one instruction at a time.

Existing MIMD multiprocessors fall into two classes, depending on the number
of processors involved, which in turn dictate a memory organization and
interconnect strategy. We refer to the multiprocessors by their memory
organization, because what constitutes a small or large number of processors is
likely to change over time.

The first group, which we call

centralized shared-memory architectures

PI‘GCE&HUI‘ Processor | Processor I Procassor

One or One or
more levels more levels

of cache of cache

l Main memory ‘ /O system

Centralized shared memory architectures have at most a few dozen
processors in
2000. For multiprocessors with small processor counts, it is possible for the

processors to share a single centralized memory and to interconnect the

processors and memory by a bus. With large caches, the bus and the single memory,
possibly with multiple banks, can satisfy the memory demands of a small number of
processors. By replacing a single bus with multiple buses, or even a switch, a
centralized shared memory design can be scaled

to a few dozen processors. Although scaling beyond that is technically conceivable,
sharing a centralized memory, even organized as multiple banks, becomes less

attractive as the number of processors sharing it increases.

Because there is a single main memory that has a symmetric relationship to
all processos and a uniform access time from any processor, these multiprocessors
are often called symmetric (shared-memory) multiprocessors (SMPs), and this style of
architecture is sometimes called UMA for uniform memory access. This type of
centralized sharedmemory architecture is currently by far the most popular
organization.

The second group consists of multiprocessors with physically distributed
memory. To support larger processor counts, memory must be distributed among
the processors rather than centralized; otherwise the memory system would not be
able to support the bandwidth demands of a larger number of processors without
incurring excessively long access latency. With the rapid increase in processor
performance and the associated increase in a processor’s memory bandwidth
requirements, the scale of multiprocessor for which distributed memory is preferred
over a single, centralized memory continues to decrease in number (which is
another reason not to use small and large scale). Of course, the larger number of

processors raises the need for a high bandwidth interconnect.

Frocessar |400€$SDI Processor I-'chssm
Qﬂchﬁ Q;r:he + cache l\-aiachg-

Mearmory '——[ﬂ Memory —|r o ' Mamory I——r (s] ' Memm'——[B

[Interconnection network

| Memory '—jm| Memaory I——|’B | Memory —£B| Memeory '__LB

(Processar éoessor ﬁcessm -é:a;essor
\ + cache \ +cache + cache + cache

Distributed-memory multiprocessor

Distributing the memory among the nodes has two major benefits. First, it
is a costeffective way to scale the memory bandwidth, if most of the accesses are to
the local memory in the node. Second, it reduces the latency for accesses to the
local memory. These two advantages make distributed memory attractive at
smaller processor counts as processors get ever faster and require more
memory bandwidth and lower memory latency. The key disadvantage for a
distributed memory architecture is that communicating data between
processors becomes somewhat more complex and has higher latency, at least
when there is no contention, because the processors no longer share a single
centralized memory. As we will see shortly, the use of distributed memory leads to
two different paradigms for interprocessor communication. Typically, [/O as well as
memory is distributed among the nodes of the multiprocessor, and the nodes may
be small SMPs (2-8 processors). Although the use of multiple processors in a node
together with a memory and a network interface is quite useful from the cost-

efficiency viewpoint.

Challenges for Parallel Processing

e Limited parallelism available in programs

- Need new algorithms that can have better parallel performance

 Suppose you want to achieve a speedup of 80 with 100 processors. What fraction

of the original computation can be sequential?

Speedup = -
i POverall Fraction
enhanced

(1 — Fraction) + =
enhanced Speedup
enhanced

1
80 =——-
Fraction,,

vl + (1— Fraction,,
100

arailel)

Fraction =0.9975

Parallel

Data Communication Models for Multiprocessors
- shared memory: access shared address space implicitly via load and
store
operations.
- message-passing: done by explicitly passing messages among
the processors
e can invoke software with Remote Procedure Call (RPC)
» often via library, such as MPI: Message Passing Interface
« also called "Synchronous communication" since
communication causes synchronization between 2

processes

Message-Passing Multiprocessor

- The address space can consist of multiple private address spaces

that are logically disjoint and cannot be addressed by a remote

processor

- The same physical address on two different processors refers to

two different locations in two different memories.

Multicomputer (cluster):

- can even consist of completely separate computers connected on a LAN.

- cost-effective for applications that require little or no communication

Symmetric Shared-Memory Architectures

Multilevel caches can substantially reduce the memory bandwidth

demands of a processor.

This is extremely
- Cost-effective
- This can work as plug in play by placing the processor and
cache sub- system on a board into the bus backplane.
Developed by
 [BM - One chip multiprocessor
e AMD and INTEL- Two -Processor
e SUN - 8 processor multi core
Symmetric shared - memory support caching of
e Shared Data

¢ Private Data

Private data: used by a single processor
When a private item is cached, its location is migrated to the cache
Since no other processor uses the data, the program behavior is identical to

that in a uniprocessor.

Shared data: used by multiple processor

When shared data are cached, the shared value may be replicated in multiple

e
s
advantages: reduce access latency and memory contention induces a new

problem: cache coherence.

Cache
Coherence
Unfortunately, caching shared data introduces a new problem because the

view of

memory held by two different processors is through their individual
caches, which, without any additional precautions, could end up seeing two
different values. lLe, If two different processors have two different values for
the same location, this difficulty is generally referred to as cache coherence

problem

Memory
Cache contents Cache contents contents for
Time Event for CPUA for CPUB location X
()

| CPU A reads X]
CPU B reads X |
CPU A stores 0 into X ()

o

Cache coherence problem for a single memory location

e Informally:

- “Any read must return the most recent write”

- Too strict and too difficult to implement

e Better:

“Any write must eventually be seen by a read”

All writes are seen in proper order (“serialization”)

e Two rules to ensure this:

- “If P writes x and then P1 reads it, P’s write will be seen by P1 if the
read and write are sufficiently far apart”
- Writes to a single location are serialized: seen in one order

« Latest write will be seen

e Otherwise could see writes in illogical order (could see older

value after a newer value)

The definition contains two different aspects of memory system:
e Coherence
e Consistency
A memory system is coherent if,
» Program order is preserved.
* Processor should not continuously read the old data value.

e Write to the same location are serialized.

The above three properties are sufficient to ensure coherence,When a written value
will
be seen is also important. This issue is defined by memory consistency model.

Coherence and consistency are complementary.

Basic schemes for enforcing coherence

Coherence cache provides:

e migration: a data item can be moved to a local cache and used there in a

transparent fashion.

« replication for shared data that are being simultaneously read.

* both are critical to performance in accessing shared data.

To over come these problems, adopt a hardware solution by
introducing a protocol tomaintain coherent caches named as Cache Coherence
Protocols
These protocols are implemented for tracking the state of any sharing of a data
block. Two classes of Protocols

e Directory based

» Snooping based

Directory based
» Sharing status of a block of physical memory is kept in one location called the

directory.

« Directory-based coherence has slightly higher implementation overhead
than snooping.

* It can scale to larger processor count.

Snooping
* Every cache that has a copy of data also has a copy of the sharing status of the
block.
» No centralized state is kept.
e Caches are also accessible via some broadcast medium (bus or switch)
e Cache controller monitor or snoop on the medium to determine whether or
not

they have a copy of a block that is represented on a bus or switch access.

Snooping protocols are popular with multiprocessor and caches attached to
single shared memory as they can use the existing physical connection- bus to
memory, to interrogate the status of the caches. Snoop based cache coherence
scheme is implemented on a shared bus. Any communication medium that

broadcasts cache misses to all the processors.

Basic Snoopy Protocols

e Write strategies
- Write-through: memory is always up-to-date
- Write-back: snoop in caches to find most recent copy

e Write Invalidate Protocol
- Multiple readers, single writer
- Write to shared data: an invalidate is sent to all caches which snoop
and
invalidate any copies

» Read miss: further read will miss in the cache and fetch a new
copy of the data.

» Write Broadcast/Update Protocol (typically write through)
- Write to shared data: broadcast on bus, processors snoop, and

update

any copies
- Read miss: memory/cache is always up-to-date.
» Write serialization: bus serializes requests!
- Bus s single point of
arbitration Examples of Basic

Snooping Protocols Write Invalidate

Contents of
Contentsof Contentsof memory
Processor activity Bus activity CPU A’'s cache CPU B’s cache location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writesa | to X Invalidation for X 1 0

CPU B reads X Cache miss for X | | |

An example of an invalidation protocol workina on a snoopina bus for a
single cache block (X) with write-back caches.

Write Update
' Contents of
Contentsof Contents of memory
Processor activity Bus activity CPU A’s cache CPU B’s cache location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes a Write broadcast of X |] 1
lto X

CPU B reads X] | |

An example of a write update or broadcast protocol workina on a snoop-
ing bus for a single cache block (X) with write-back caches.

Assume neither cache initially holds X and the value of X in memory is 0

Example Protocol

e Snooping coherence protocol is usually implemented by incorporating
a

finitestate controller in each node

» Logically, think of a separate controller associated with each cache block
- That is, snooping operations or cache requests for different blocks
can proceed independently

e [n implementations, a single controller allows multiple operations to distinct
blocks to proceed in interleaved fashion
- that is, one operation may be initiated before another is completed,
even through only one cache access or one bus access is allowed at

time

Example Write Back Snoopy Protocol

« Invalidation protocol, write-back cache
- Snoops every address on bus
- If it has a dirty copy of requested block, provides that block in
response to the read request and aborts the memory access
e Each memory block is in one state:
- Clean in all caches and up-to-date in memory (Shared)
- OR Dirty in exactly one cache (Exclusive)
- OR Not in any caches
e Each cache block is in one state (track these):
- Shared : block can be read
- OR Exclusive : cache has only copy, its writeable, and dirty
- OR Invalid : block contains no data (in uniprocessor cache too)
» Read misses: cause all caches to snoop bus

e Writes to clean blocks are treated as misses

Write-Back State Machine - CPU

State Transitions for Each Cache Block is as shown

below
(/_\' CPU read nit
\' darnd / Wi missfor /
(read only) | Invald '%{ Sheradd
\ (read only)

\ \

CPU wrie

{ : | read
(e ¥ \ / miss
.‘l*,', Place read &&‘ ~7
A miss on bus

q’* ‘lzf Writo miss
/ for the dlock

Cache state ransitions

Place write
miss on bus

%
%
Write-back block

Read miss
for this block

Cache state transiices basec

/
(besed on reques!s from CPU (Exclusve on reques's from the hus
| { (read/write)
\
P CPL wrie miss
/ .
Write-back cache block
(Nezf
\) Place write miss on bus
X
CPU write nit
CPU reac hit

¢ CPU may read/write hit/miss to the block
e May place write/read miss on bus

e May receive read/write miss from bus

Request Source State of block Function and explanation

Read hit processor shared or Read data in cache
exclusive
Read miss processor invalid Place read miss on bus

Read miss processor shared Address conflict miss: place read miss on bus.

?\’\‘;M miss processor exclusive Address conflict miss: write back block, then place read miss on bus

Write hit processor exclusive Write data in cache.

Write hit processor shared Place write miss on bus

Write miss processor invalid Place write miss on bus

Write miss processor shared Address conflict miss: place write miss on bus.

Write miss processor exclusive Address conflict miss: write back block, then place write miss on
bus

Read miss bus shared No action: allow memory to service read miss.

Read miss bus exclusive Attempt to share data: place cache block on bus and change state 1o
shared

Write miss bus shared Attempt to write shared block:; invalidate the block.

Write miss bus exclusive Attempt to write block that is exclusive elsewhere: write back the

cache block and make its state invalid.

Conclusion
» “End” of uniprocessors speedup => Multiprocessors
« Parallelism challenges: % parallalizable, long latency to remote memory
e Centralized vs. distributed memory
- Small MP vs. lower latency, larger BW for Larger MP
e Message Passing vs. Shared Address
- Uniform access time vs. Non-uniform access time
e Snooping cache over shared medium for smaller MP by invalidating
other
cached copies on write
e Sharing cached data _ Coherence (values returned by a read), Consistency
(when a written value will be returned by a read)

e Shared medium serializes writes _ Write consistency

Implementation Complications
e Write Races:
- Cannot update cache until bus is obtained
e Otherwise, another processor may get bus first,

and then write the same cache block!

- Two step process:
e Arbitrate for bus
e Place miss on bus and complete
operation

- If miss occurs to block while waiting for bus, handle miss

(invalidate may be needed) and then restart.

- Split transaction bus:
* Bus transaction is not atomic: can have multiple outstanding transactions for
a block
e Multiple misses can interleave, allowing two caches to grab block in
the
Exclusive state
e Must track and prevent multiple misses for one block

e Must support interventions and invalidations

Performance Measurement

e Overall cache performance is a combination of
- Uniprocessor cache miss traffic
- Traffic caused by communication - invalidation and subsequent
cache misses

» Changing the processor count, cache size, and block size can affect these
two components of miss rate

» Uniprocessor miss rate: compulsory, capacity, conflict

e Communication miss rate: coherence misses

- True sharing misses + false sharing misses

True and False Sharing Miss
e True sharing miss
— The first write by a PE to a shared cache block causes an
invalidation to establish ownership of that block
- When another PE attempts to read a modified word in that cache
block, a miss occurs and the resultant block is transferred

« False sharing miss

- Occur when a block a block is invalidate (and a subsequent
reference causes a miss) because some word in the block, other
than the one being read, is written to
- The block is shared, but no word in the cache is actually shared,
and this miss would not occur if the block size were a single word
e Assume that words x1 and x2 are in the same cache block, which is in the
shared
state in the caches of P1 and P2. Assuming the following sequence of

events, identify each miss as a true sharing miss or a false sharing miss.

Time [P1 [P2

1 W rite x 1

2 |[Read x2
3 W rite x 1

u W rite x2
5 Fead x2

Example Result

e True sharing miss (invalidate P2)
e 2: False sharing miss
- X2 was invalidated by the write of P1, but that value of x1 is not used
in
P2
« 3: False sharing miss
—- The block containing x1 is marked shared due to the read in P2,
but P2 did not read x1. A write miss is required to obtain exclusive access to
the block
* 4: False sharing miss

¢ 5: True sharing miss

Distributed Shared-Memory Architectures

Distributed shared-memory architectures

 Separate memory per processor
- Local or remote access via memory controller
- The physical address space is statically distributed
Coherence
Problems

 Simple approach: uncacheable
- shared data are marked as uncacheable and only private
data are kept in caches
- very long latency to access memory for shared data

e Alternative: directory for memory blocks
The directory per memory tracks state of every block in every

cache

» which caches have a copies of the memory block, dirty vs.

clean,

Two additional complications

e The interconnect cannot be used as a single point of arbitration like the

bus
» Because the interconnect is message oriented, many messages must

have explicit responses

To prevent directory becoming the bottleneck, we distribute
directory entries with memory, each keeping track of which processors have copies of

their memory blocks

Directory Protocols

e Similar to Snoopy Protocol: Three states
- Shared: 1 or more processors have the block cached, and the
value in memory is up-to-date (as well as in all the caches)
- Uncached: no processor has a copy of the cache block (not valid in
any cache)
- Exclusive: Exactly one processor has a copy of the cache block, and
it has written the block, so the memory copy is out of datae The
processor is called the owner of the block
e In addition to tracking the state of each cache block, we must track
the processors that have copies of the block when it is shared (usually a bit
vector for each memory block: 1 if processor has copy)
. Keep it
simple(r):
- Writes to non-exclusive data => write miss
- Processor blocks until access completes

- Assume messages received and acted upon in order sent

Messages for Directory Protocols

Message
Message type Source Destination contents Function of this message
Read miss local cache home directory P A Processor P has a read miss at address A
data and make P a read share
Write miss local cache ome directory * A Processor P has a write miss at address A
1 I P the ve owr
Invalidate 1wome directo remote cache A Invalidate a shared copy of data at address A
Fetcl home directory remote cache A Fetch the block at address A and send it 1o its
e direct hange the state of A in the
ote cache to shared
Fetch/invalidate home directory remote cache \ Fetch the block at address A and send it 1o its
home directory; invalidate the block in the cache
Data value reply home directory local cache D Return a data value from the home memory
Data write back remote cache 1wme directory A D Write back a dawa value for address A

* local node: the node where a request originates
e home node: the node where the memory location and directory entry of an address
reside

e remote node: the node that has a copy of a cache block (exclusive or shared)

State Transition Diagram for Individual Cache Block

PLI read hit

Send read miss message _

= &
< |\/\)

0 be

Data write back
Write miss

e Comparing to snooping protocols:
- identical states
- stimulus is almost identical
- write a shared cache block is treated as a write miss (without
fetch the block)
- cache block must be in exclusive state when it is written
- any shared block must be up to date in memory
 write miss: data fetch and selective invalidate operations sent by the directory

controller (broadcast in snooping protocols)

Directory Operations: Requests and Actions
» Message sent to directory causes two actions:
- Update the
directory
- More messages to satisfy
request
e Block is in Uncached state: the copy in memory is the current value;
only
possible requests for that block are:
- Read miss: requesting processor sent data from memory

&requestor made only sharing node; state of block made Shared.

- Write miss: requesting processor is sent the value & becomes
the Sharing node. The block is made Exclusive to indicate that the only valid
copy is cached. Sharers indicates the identity of the owner.
¢ Block is Shared => the memory value is up-to-date:

- Read miss: requesting processor is sent back the data from

memory &

requesting processor is added to the sharing

set.

- Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to

identity of requesting processor. The state of the block is made

Exclusive.

e Block is Exclusive: current value of the block is held in the cache of
the
processor identified by the set Sharers (the owner) => three possible directory
requests:

- Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.

Identity of requesting processor is added to set Sharers, which still contains
the identity of the processor that was the owner (since it still has a readable copy).
State is shared.

- Data write-back: owner processor is replacing the block and hence

must write it back, making memory copy up-to-date (the home

directory
essentially becomes the owner), the block is now Uncached, and the Sharer
set is empty.

- Write miss: block has a new owner. A message is sent to old owner

causing the cache to send the value of the block to the directory from which it is
sent to the requesting processor, which becomes the new owner. Sharers is set to

identity of new owner, and state of block is made Exclusive.

Synchronization: The Basics

Synchronization mechanisms are typically built with user-level software

routines that rely on hardware -supplied synchronization instructions.

e Why Synchronize?
Need to know when it is safe for different processes to use shared data
e [ssues for Synchronization:
- Uninterruptable instruction to fetch and update memory
(atomic operation);
- User level synchronization operation using this primitive;
- For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of synchronization

Uninterruptable Instruction to Fetch and Update Memory
e Atomic exchange: interchange a value in a register for a value in memory
0 _synchronization variable is free
1 _synchronization variable is locked and unavailable
- Setregister to 1 & swap
- New value in register determines success in getting lock
0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access
- Key is that exchange operation is indivisible
 Test-and-set: tests a value and sets it if the value passes the test
e Fetch-and-increment: it returns the value of a memory location and
atomically increments it
- 0 _synchronization variable is free
e Hard to have read & write in 1 instruction: use 2 instead
* Load linked (or load locked) + store conditional
- Load linked returns the initial value
- Store conditional returns 1 if it succeeds (no other store to same

memory location since preceding load) and 0 otherwise

» Example doing atomic swap with LL & SC:

try: mov R3,R4; mov exchange value
11 R2,0(R1); load linked
SC R3,0(R1) ; store conditional

beqz R3,try; branch store fails (R3 = 0)

mov R4,RZ; putload value in R4

e Example doing fetch & increment with LL & SC:

try: R2,0(R1); load linked
addi R2,R2,#1; increment (OK if reg-
sC R2,0(R1); store conditional
beqz R2try; branch store fails (R2 =

User Level Synchronization—Operation Using this Primitive

e Spin locks: processor continuously tries to acquire, spinning around a
loop
trying to get the
lockli R2,#1
lockit: exch R2,0(R1); atomic
exchange bnez R2,lockit;
already locked?
e What about MP with cache coherency?
- Want to spin on cache copy to avoid full memory latency
- Likely to get cache hits for such variables
e Problem: exchange includes a write, which invalidates all other copies;
this generates considerable bus traffic
e Solution: start by simply repeatedly reading the variable; when it changes,
then
try exchange (“test and test&set”):
try: i R2,#1
lockit: 1w R3,0(R1) :load var

bnez R3,lockit; _0_notfree _spin
exch R2,0(R1); atomic exchange
bnez R2,try; already locked?

Memory Consistency Models
e What is consistency? When must a processor see the new value?
e.g,
seems that P1: A=0; P2: B=0;
A=1;B=1;
L1:if (B==0)..L2:if (A==0)..
 Impossible for both if statements L1 & L2 to be true?
- What if write invalidate is delayed & processor continues?
e Memory consistency models:
what are the rules for such cases?
 Sequential consistency: result of any execution is the same as if the accesses
of each processor were kept in order and the accesses among
different
processors were interleaved _ assignments before ifs above
- SC: delay all memory accesses until all invalidates done
» Schemes faster execution to sequential consistency
» Not an issue for most programs; they are synchronized
- A program is synchronized if all access to shared data are
ordered by synchronization operations

write (x)

release (s) {unlock}

acquire (s) {lock}

read(x

)

 Only those programs willing to be nondeterministic are not synchronized:
“data race”: outcome f(proc. speed)

» Several Relaxed Models for Memory Consistency since most programs are
synchronized; characterized by their attitude towards: RAR, WAR, RAW, WAW

to different addresses

Relaxed Consistency Models : The Basics

e Key idea: allow reads and writes to complete out of order, but to use
synchronization operations to enforce ordering, so that a synchronized program
behaves as if the processor were sequentially consistent

- By relaxing orderings, may obtain performance advantages

- Also specifies range of legal compiler optimizations on shared data

- Unless synchronization points are clearly defined and programs are
synchronized, compiler could not interchange read and write of 2 shared data
items because might affect the semantics of the program

3 major sets of relaxed orderings:

1. W_R ordering (all writes completed before next read)

 Because retains ordering among writes, many programs that operate
under sequential consistency operate under this model, without additional
synchronization. Called processor consistency
2. W _W ordering (all writes completed before next write)
3.R_Wand R _R orderings, a variety of models depending on
ordering restrictions and how synchronization operations enforce
ordering
* Many complexities in relaxed consistency models; defining precisely what it
means for a write to complete; deciding when processors can see values that it has

written

UNIT -V

REVIEW OF MEMORY HIERARCHY:

Introduction

Cache performance

Cache Optimizations

Virtual memory.

UNITV
REVIEW OF MEMORY HIERARCHY

e Unlimited amount of fast memory
- Economical solution is memory hierarchy
- Locality
- Cost performance
Principle of locality
- most programs do not access all code or data uniformly.
e Locality occurs
- Time (Temporal locality)
- Space (spatial locality)
Guidelines - Smaller hardware can be made faster

- Different speed and sizes

CPU I/0 bus

Memory I/O devices
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

©2007 Esaver, he. All rights resarved.

Goal is provide a memory system with cost per byte than the next lower level
 Each level maps addresses from a slower, larger memory to a smaller but
faster

memory higher in the hierarchy.
- Address mapping
- Address checking.
e Hence protection scheme for address for scrutinizing addresses are also

part of the memory hierarchy.

Why More on Memory Hierarchy?

100,000

10,000

1,000

100

Performance

1980 1985 1990 1995 2000 2005 2010
Year

e The importance of memory hierarchy has increased with advances in performance

of processors.

e Prototype
"~ When a word is not found in cache
* Fetched from memory and placed in cache with the address tag.
e Multiple words(block) is fetched for moved for efficiency reasons.
- key design
e Set associative
- Set is a group of block in the cache.
- Block is first mapped on to set.
» Find mapping
» Searching the
set
Chosen by the address of the data:
(Block address) MOD(Number of sets in cache)
e n-block in a set
- Cache replacement is called n-way set associative.
Cache data
- Cache read.
- Cache write.
Write through: update cache and writes through to update
memory. Both strategies
- Use write buffer.
this allows the cache to proceed as soon as the data is placed in
the buffer rather than wait the full latency to write the data into
memory.
Metric

used to measure the benefits is miss rate

No of access that miss

No of accesses
Write back: updates the copy in the cache.

» Causes of high miss rates

- Three Cs model sorts all misses into three categories
e Compulsory: every first access cannot be in cache
- Compulsory misses are those that occur if there is an infinite cache
« Capacity: cache cannot contain all that blocks that are needed for
the program.
- As blocks are being discarded and later retrieved.
« Conflict: block placement strategy is not fully associative

- Block miss if blocks map to its set.

| Virtual address 54> |

l

| Virtua! page number <51 | Fage oteat <13 I
[
! |
|TLB lag compare address <43 \ TLB index <& | | L1 cache indax <7> |Blmkoﬁse1 <z |

Ta CPU

TLE tag «43- ‘ TLB data <27 L1 data <5105

L1 cache tag <43~

'
| L1 tag compare address <27

@

| Physical adoress =41 |

| l |

| L2 tag compare adchess <19- | L2 cache index <18= | Block offset <G> |

ToCFU

L2 cache 1ag <10~ L2 data <512

. 4.{;5} —=}

2007 Elsevie, Iic: Sl iighis reserved

To L1 cache ar CPU

Miss rate can be a misleading measure for several reasons

So, misses per instruction can be used per memory reference

Misses = Miss rate X Memory accesses
Instruction Instruction count
— Miss rate X Mem accesses

Instruction

Cache Optimizations
Six basic cache optimizations
1. Larger block size to reduce miss rate:
- To reduce miss rate through spatial locality.
- Increase block size.
- Larger block size reduce compulsory misses.
- But they increase the miss penalty.
2. Bigger caches to reduce miss rate:
- capacity misses can be reduced by increasing the cache capacity.
- Increases larger hit time for larger cache memory and higher cost and power.
3. Higher associativity to reduce miss rate:
- Increase in associativity reduces conflict misses.
4. Multilevel caches to reduce penalty:
- Introduces additional level cache
- Between original cache and memory.
- L1- original cache
L2- added cache.
L1 cache: - small enough
- speed matches with clock cycle
time. L2 cache: - large enough
- capture many access that would go to main
memory. Average access time can be redefined as
Hit timeL1+ Miss rate L1 X (Hit time L2 + Miss rate L2 X Miss penalty L2)

5. Giving priority to read misses over writes to reduce miss penalty:

- write buffer is a good place to implement this optimization.
- write buffer creates hazards: read after write hazard.

6. Avoiding address translation during indexing of the cache to reduce hit time:
- Caches must cope with the translation of a virtual address from the processor
to
a physical address to access memory.

- common optimization is to use the page offset.
- part that is identical in both virtual and physical addresses- to index the

cache.

Advanced Cache Optimizations
e Reducing hit time
- Small and simple caches
- Way prediction
- Trace caches
e Increasing cache bandwidth
- Pipelined caches
- Multibanked caches
- Nonblocking caches
» Reducing Miss Penalty
- Critical word first
- Merging write buffers
» Reducing Miss Rate
- Compiler optimizations
* Reducing miss penalty or miss rate via parallelism
- Hardware prefetching
- Compiler prefetching
First Optimization : Small and Simple
Caches
e Index tag memory and then compare takes time

e _Small cache can help hit time since smaller memory takes less time to index

- E.g.,, L1 caches same size for 3 generations of AMD
microprocessors: K6, Athlon, and Opteron
- Also L2 cache small enough to fit on chip with the processor
avoids time penalty of going off chip
e Simple _ direct mapping
- Can overlap tag check with data transmission since no choice
» Access time estimate for 90 nm using CACTI model 4.0
- Median ratios of access time relative to the direct-mapped caches are 1.32,
1.39, and 1.43 for 2-way, 4-way, and 8-

way caches

250
200
1.50

““““ el

16 KB 32 KB B4 KE 128 KB 256 KB 512KB 1ME
Cache size

1.00
050

Accesstime (ns)

Second Optimization: Way Prediction

» How to combine fast hit time of Direct Mapped and have the lower conflict

misses of 2-way SA cache?

» Way prediction: keep extra bits in cache to predict the “way,” or block within

the set, of next cache access.

Hit Time
p—-

Way-Miss Hit Time Miss Penalty

v

- Multiplexer is set early to select desired block, only 1 tag comparison performed

that clock cycle in parallel with reading the cache data

- Miss _ 1st check other blocks for matches in next clock cycle
e Accuracy » 85%
e Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

- Used for instruction caches vs. data caches

Third optimization: Trace Cache

e Find more instruction level parallelism?
How to avoid translation from x86 to microops?
e Trace cache in Pentium 4
1. Dynamic traces of the executed instructions vs. static sequences of
instructions as determined by layout in memory
- Built-in branch predictor
2. Cache the micro-ops vs. x86 instructions
- Decode/translate from x86 to micro-ops on trace cache miss
+ 1. _better utilize long blocks (don’t exit in middle of block, don’t enter
at label in middle of block)
- 1. _complicated address mapping since addresses no longer
aligned to powerof-
2 multiples of word size
- 1. _instructions may appear multiple times in multiple dynamic

traces due to different branch outcomes

Fourth optimization: pipelined cache access to increase bandwidth
e Pipeline cache access to maintain bandwidth, but higher latency
« Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III
4: Pentium 4
- _greater penalty on mispredicted branches
- _more clock cycles between the issue of the load and the use of the

data

Fifth optimization: Increasing Cache Bandwidth Non-Blocking Caches

» Non-blocking cache or lockup-free cache allow data cache to continue to
supply cache hits during a miss
- requires F/E bits on registers or out-of-order execution
- requires multi-bank memories
* “hit under miss” reduces the effective miss penalty by working during miss vs.
ignoring CPU requests
e “hit under multiple miss” or “miss under miss” may further lower the effective
miss penalty by overlapping multiple misses
- Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses
- Requires multiple memory banks (otherwise cannot support)

- Pentium Pro allows 4 outstanding memory misses

Value of Hit Under Miss for SPEC

Hit Under i Misses

O ga1
[| [-=2
W o5

M Basze

wlisp
aar

doduc
ora

£ @
c il
g

mdljsp2
fpppp
tomecaty
wmzhe
su2cor
wavaeh
mdljdp2
hydro2d
alvinn
nasa7
spicedg &

COMPprass

Integer Floating Point

e FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

e Int programs on average: AMAT=0.24 -> 0.20 -> 0.19 -> 0.19

» 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

_ Hitunder 1 miss

Percentage

of the average
memory

stall time

Benchmarks

Sixth optimization: Increasing Cache Bandwidth via Multiple Banks
» Rather than treat the cache as a single monolithic block, divide into
independent banks that can support simultaneous accesses

- E.g,T1 (“Niagara”) L2 has 4 banks

e Banking works best when accesses naturally spread themselves across banks

mapping of addresses to banks affects behavior of memory system
» Simple mapping that works well is “sequential interleaving”
- Spread block addresses sequentially across banks
- E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 is
0;

bank 1 has all blocks whose address modulo 4 is 1; ...

Block Bank 0O Block Bank 1 Block Bank 2 Block Bank 3

address address address address
0 1 2 3
4 5 6 7
8 9 10 11
12 13 4 15

Seventh optimization :Reduce Miss Penalty: Early Restart and Critical
Word First
e Don’t wait for full block before restarting CPU
e Early restart—As soon as the requested word of the block arrives,
send it to the CPU and let the CPU continue execution
- Spatial locality _ tend to want next sequential word, so not clear

size of benefit of just early restart

e Critical Word First—Request the missed word first from memory
and send it to the CPU as soon as it arrives; let the CPU continue execution
while filling the rest of the words in the block

- Long blocks more popular today _ Critical Word 1st Widely used

block

Eight optimization: Merging Write Buffer to Reduce Miss Penalty-

» Write buffer to allow processor to continue while waiting to write to memory
e If buffer contains modified blocks, the addresses can be checked to see
if

address of new data matches the address of a valid write buffer entry
e If so, new data are combined with that entry
e Increases block size of write for write-through cache of writes to

sequential words, bytes since multiword writes more efficient to memory

e The Sun T1 (Niagara) processor, among many others, uses write merging

Write address v v A4 v
100 1 |Mem[100] | 0 0 0
108 1 [Mem[108] | 0 0 0
116 1 |Mem[116] | O 0 0
124 1 |Mem[124] | o 0 0

Write address A" vV A" v

100 1 |Mem[100] | 1 |Mem[108]| 1 [Mem[116]| 1 | Mem[124]

Ninth optimization: Reducing Misses by Compiler Optimizations

e McFarling [1989] reduced caches misses by 75% on 8KB direct mapped

cache,

4 byte blocks in software

e Instructions
- Reorder procedures in memory so as to reduce conflict misses
- Profiling to look at conflicts (using tools they developed)

e Data
- Merging Arrays: improve spatial locality by single array of
compound elements vs. 2 arrays
- Loop Interchange: change nesting of loops to access data in order
stored in memory
- Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap
- Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

Merging Arrays
Example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];
/* After: 1 array of stuctures */
struct merge {
int val;
int key;
b
struct merge merged_array[SIZE];

Reducing conflicts between val & key; improve spatial locality

0.1 7
0.05 + Direct Mapped Cache
Fully Associative Cache
0 ; , :
0 50 100 150

Blocking Factor

* Conflict misses in caches not FA vs. Blocking size
- Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.
48 despite both fit in cache

Tenth optimization Reducing Misses by Hardware Prefetching of
Instructions & Data
» Prefetching relies on having extra memory bandwidth that can be used
without
penalty
e Instruction Prefetching
- Typically, CPU fetches 2 blocks on a miss: the requested block and
the next consecutive block.
- Requested block is placed in instruction cache when it returns,
and prefetched block is placed into instruction stream buffer
e Data Prefetching
- Pentium 4 can prefetch data into L2 cache from up to 8 streams
from 8 different 4 KB pages
- Prefetching invoked if 2 successive L2 cache misses to a page,

if distance between those cache blocks is < 256 bytes

e
£ 220
: ! 197
R B A S R s
A T, YO RS S e R B S e S .
= 1
& Wreseean o e :2'9:“1“3&“'1#[}"1-'-43-- ;
g 140 ‘“{{g“ﬂ f i e e e ——H—— -
Ty T EER
B i H I | |
=
ﬂJ |
a. : & & & = & & @
g~ 4;(9 .. a L 3 P g o
ki ‘&r'g? ‘ﬁ}qﬁ & e % ™ W "\"\q 42-0‘"}
SPECint2000 i SPECfp2000

Eleventh optimization: Reducing Misses by Software Prefetching Data
e Data Prefetch
- Load data into register (HP PA-RISC loads)
- Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARCv. 9)
- Special prefetching instructions cannot cause faults;
a form of speculative execution

e [ssuing Prefetch Instructions takes time

- Is cost of prefetch issues < savings in reduced misses?

- Higher superscalar reduces difficulty of issue bandwidth
The techniques to improve hit time, bandwidth, miss penalty and miss rate
generally affect the other components of the average memory access equation

as well as the complexity of the memory hierarchy.

UNIT - VII

MEMORY HIERARCHY DESIGN:

Introduction

Advanced optimizations of Cache performance
Memory technology and optimizations Protection

Virtual memory and virtual machines.

UNIT VII

MEMORY HIERARCHY DESIGN

AMAT and Processor Performance
¢AMAT = Average Memory Access Time
eMiss-oriented Approach to Memory Access
-CPIExec includes ALU and Memory instructions
eSeparating out Memory component entirely

-CPIALUOps does not include memory instructions

Summary: Caches
*The Principle of Locality:
-Program access a relatively small portion of the address space at any instant of
time.
eTemporal Locality OR Spatial Locality:
eThree Major Categories of Cache Misses:
-Compulsory Misses: sad facts of life. Example: cold start misses.
-Capacity Misses: increase cache size

-Conflict Misses: increase cache size and/or associativity

Where Misses Come From?
¢Classifying Misses: 3 Cs
—-Compulsory — The first access to a block is not in the cache,
Also called cold start misses or first reference misses.
(Misses in even an Infinite Cache)
-Capacity — If the cache cannot contain all the blocks needed during execution of
a program,
-Conflict — If block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory & capacity misses) will occur because a
block can be discarded and later retrieved if too many blocks map to its set.
(Misses in N-way Associative, Size X Cache)
More recent, 4th “C”:

-Coherence — Misses caused by cache coherence

3Cs Absolute Miss Rate

0.14
0.12

0.1
0.08
0.06
0.04
0.02

- o < o ©
-

o™
“

Cache Size (KB)

*Write Policy:
-Write Through: needs a write buffer.

-Write Back: control can be complex

Summary:

The Cache Design Space
-Several interacting dimensions
—cache size
-block size
—associativity
-replacement policy
-write-through vs write-back
-The optimal choice is a compromise

-Simplicity often wins

Compulsor

Cache Organization?

eAssume total cache size not changed

«What happens if: Which of 3Cs is obviously affected?
-Change Block Size
-Change Cache Size
-Change Cache Internal Organization
-Change Associativity

-Change Compiler

Cache Optimization Summary

How to Improve Cache Performance?
eCache optimizations
-1. Reduce the miss rate
-2. Reduce the miss penalty

-3. Reduce the time to hit in the cache

Cache Optimisation

Why improve Cache performance:

100,000
_._H
-
j0.000 T //,.-l
@ 4,000 femasenssnsamsertan et maem e o eh e o s £ o s 2 £ 58 i e £ S 1 e e e 2 £ e s
€
L)
E Processar
=
-
‘_*—-"—0*’_’_" *
> .‘._H-‘v &
t'- " ‘.-‘-—H
| gl : ; ; ;
1980 1085 1940 1905 2000 2008 2010

Performance improvement of CPU vs Memory- CPU fabrication has
advanced much more than memory- hence need to use cache
optimization techniques.
Review: 6 Basic Cache Optimizations
» Reducing hit time
1.Address Translation during Cache Indexing
» Reducing Miss Penalty
2. Multilevel Caches
3. Giving priority to read misses over write misses
» Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)

6. Higher Associativity (Conflict misses)

11 Advanced Cache Optimizations

* Reducing hit time
1. Small and simple caches
2. Way prediction
3. Trace caches

e Increasing cache bandwidth
4. Pipelined caches
5. Multibanked caches
6. Nonblocking caches

e Reducing Miss Penalty
7. Critical word first
8. Merging write buffers

* Reducing Miss Rate
9.Compiler optimizations

* Reducing miss penalty or miss rate via parallelism
10.Hardware prefetching
11.Compiler prefetching

1. Fast Hit times via Small and Simple Caches
Index tag memory and then compare takes time
e Small cache can help hit time since smaller memory takes less time to index
- E.g.,, L1 caches same size for 3 generations of AMD
icroprocessors: K6, Athlon, and Opteron
- Also L2 cache small enough to fit on chip with the processor
avoids time penalty of going off chip
e Simple direct mapping
Can overlap tag check with data transmission since no choice
2. Fast Hit times via Way Prediction
e How to combine fast hit time of Direct Mapped and have the lower
conflict
misses of 2-way SA cache?
e Way prediction: keep extra bits in cache to predict the “way,” or block
within
the set, ofnext cache access.
- Multiplexer is set early to select desired block, only 1 tag comparison

performed that clock cycle in parallel with reading the cache data

- Miss - 1st check other blocks for matches in next clock cycle

3. Fast Hit times via Trace Cache

Find more instruction level parallelism?

How avoid translation from x86 to microops?- Trace cache in Pentium 4

1. Dynamic traces of the executed instructions vs. static sequence of
instructions as determined by layout in memory

- Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions - Decode/translate from
x86 to micro-ops on trace cache miss
+ 1.1 better utilize long blocks (don’t exit in middle of block, don’t enter at label in

middle of block)

- 1.1 complicated address mapping since addresses no longer aligned to
power-of-2 multiples of word size

- 1. 1instructions may appear multiple times in multiple dynamic traces due to
different

branch outcomes

4: Increasing Cache Bandwidth by Pipelining
-Pipeline cache access to maintain bandwidth, but higher latency
« Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III
4: Pentium 4
- greater penalty on mispredicted branches

- more clock cycles between the issue of the load and the use of the data

5. Increasing Cache Bandwidth:
Non-Blocking Caches- Reduce Misses/Penalty
» Non-blocking cache or lockup-free cache allow data cache to continue to
supply cache hits during a m iss
- requires F/E bits on registers or out-of-order execution
- requires multi-bank memories
* “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests
e “hit under multiple miss” or “miss under miss” may further lower the
effective
miss penalty by overlapping multiple misses
- Significantly increases the complexity of the cache controller as
there can be multiple outstanding memory accesses
- Requires muliple memory banks (otherwise cannot support)

- Penium Pro allows 4 outstanding memory misses

6: Increasing Cache Bandwidth via Multiple Banks

Rather than treat the cache as a single monolithic block, divide into independent
banks

that can support simultaneous accesses

- E.g,T1 (“Niagara”) L2 has 4 banks

» Banking works best when accesses naturally spread themselves across banks 1

mapping of addresses to banks affects behavior of memory system

Block Bank 0 Block Bank 1 Block Bank 2 Block Bank 2
address address address addrass
0 1 2 3
B Q 10 11
12 13 14 15

Figure 5.6 Four-way Interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

Simple mapping that works well is “sequential
interleaving”
- Spread block addresses sequentially across banks
- E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4
is

0; bank 1 has all blocks whose address modulo 4is 1;

7. Reduce Miss
Penalty:
Early Restart and Critical Word First
Don’t wait for full block before restarting CPU
Early restart—As soon as the requested word of the block arrives, send it to the
CPU
and let the CPU continue
execution
- Spatial locality - tend to want next sequential word, so not clear size of benefit of

just early restart

Critical Word First—Request the missed word first from memory and send it
to the CPU as soon as it arrives; let the CPU continue execution while filling the

rest of the words in the block

| block

100%
PO% | A
80% | Hit under 1 miss - - 8_-'-'&.
0"' NS
70% | R Y
Percentage
of the average GO% |~ .l

mumaory
50%

atall timo
bty Hit under 2 misses

40% i ——
A

80% I o o ! S Hit under 64 missons
20%

a"’"
10% | - i

0% . " A - k A .
GP fﬁ. # &U 65{\9 yp‘ 4\;} 66’&8 b“ &‘ l}%‘ d‘h ; {_(6-" d"

Benchmarks

s‘

w 2002 ¢ IM\vmr wclenae (LISA). All rights reserved
~ Long blocks more popular today = Critical Word st Widely nsed

8. Merging Write Buffer to Reduce Miss Penalty
*Write buffer to allow processor to continue while waiting to write to
memory
oIf buffer contains modified blocks, the addresses can be checked to see if
address of new data matches the address of a valid write buffer entry -If so,
new data are combined with that entry
eIncreases block size of write for write-through cache of writes to sequential
words, bytes since multiword writes more efficient to memory
eThe Sun T1 (Niagara) processor, among many others, uses write

merging

To illustrate write

merging

Write addrass v v W
100 1 (Mem[100] | O 0 Q
108 1 [Mem[108] | 0 0 0
116 1 [Mem[118] | 0 0 0
124 1 (Mem[124] | o 0 0

Write addrass v v v
100 1 |Mem[100] | 1 |Mem[108]| 1 |Mem[116]| 1 |Mem[124]

9. Reducing Misses by Compiler Optimizations

eMcFarling [1989] reduced caches misses by 75% on 8KB direct mapped cache, 4 byte
blocks in software

e Instructions

- Reorder procedures in memory so as to reduce conflict misses

- Profiling to look at conflicts (using tools they developed)

e Data

- Merging Arrays: improve spatial locality by single array of compound elements vs. 2
arrays

- Loop Interchange: change nesting of loops to access data in

order stored in memory

- Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

- Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

Compiler Optimizations- Reduction comes from software (no Hw ch.)

Loop Interchange

eMotivation: some programs have nested loops that access data in nonsequential
order

eSolution: Simply exchanging the nesting of the loops can make the code access the
data

in the order it is stored =>

reduce misses by improving spatial locality; reordering maximizes use of data in a
cache block before it is discarded

Loop Interchange Example

/* Before */

for (j = 0;j <100;j =j+1)

for (i=0;i<5000;i=i+1)

x[i][j] = 2 *x[i] j];

/* After */

for (i=0;i<5000;i=i+1)

for (j=0;j<100;j=j+1)

x[i][j] = 2 *x[i] (1;

Blocking

eMotivation: multiple arrays, some accessed by rows and some by columns
oStoring the arrays row by row (row major order) or column by column (column
major order) does not help: both rows and columns are used in every iteration of
the loop (Loop Interchange cannot help)

eSolution: instead of operating on entire rows and columns of an array, blocked
algorithms operate on submatrices or blocks => maximize accesses to the data

loaded into the cache before the data is replaced

Blocking Example

/* Before */

for (i=0;i<N;i=i+1)
for(j=0;j<N;j=j+1)
{r=0;

for (k=0; k < N; k=k+1){
r=r+y[i][K]*z[K][j];};

x[i][j]=1;
b
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i=0;i<N;i=i+1)

for (j =jj; j < min(jj+B,N); j = j+1)
{r=0;

for (k = kk; k < min(kk+B,N); k=k + 1)
r=r + y[i] [K]*z[K][j];

x[i][j] = x[i][] + x;

b

Snapshot of x, y, z

when i=1

White:

i} 1 g 3 4] [+ 1 & a 4 s o 1 2
o o o
1 1 1
? 2 2
1 1)
3 3 3
< a4 4
5 5 L]

White: not yet touched
Light: older access
Dark: newer access Before....

The Age of Accesses to X, y, Z

o 1 2 2 4 5] 1 2 < | 4 b+] 1 2 3 4]
<]] 0
F 2 2
I k
a3 3 3
4 4 4
- 3 5

Note in contrast to previous Figure, the smaller number of elements accessed

Merging Arrays

eMotivation: some programs reference multiple arrays in the same dimension with
the

same indices at the same time =>

these accesses can interfere with each other,leading to conflict misses

eSolution: combine these independent matrices into a single compound array, so
that a single cache block can contain the desired elements

Merging Arrays Example

Loop Fusion

» Some programs have separate sections of code that access with the same
loops, performing different computations on the common data

« Solution:

“Fuse” the code into a single loop =>

the data that are fetched into the cache can be used repeatedly before

being swapped out => reducing misses via improved temporal locality

Loop Fusion Example

Summary of Compiler Optimizations- to Reduce Cache Misses (by hand)

10. Reducing Misses by Hardware Prefetching of Instructions & Data
Prefetching relies on having extra memory bandwidth that can be used
without penalty

e Instruction Prefetching

- Typically, CPU fetches 2 blocks on a miss: the requested block and the
next consecutive block.

- Requested block is placed in instruction cache when it returns, and

prefetched block is placed into instruction stream buffer

Data Prefetching

- Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different
4 KB pages

- Prefetching invoked if 2 successive L2 cache misses to a page,if

distance between those cache blocks is < 256 bytes

11. Reducing Misses by Software Prefetching Data
eData Prefetch

- Load data into register (HP PA-RISC loads)

o— Cache Prefetch: load into cache

¢(MIPS IV, PowerPC, SPARC v. 9)

- Special prefetching instructions cannot cause faults;
ea form of speculative execution

ee [ssuing Prefetch Instructions takes time

o— Is cost of prefetch issues < savings in reduced misses?

- Higher superscalar reduces difficulty of issue bandwi

Compiler Optimization vs. Memory Hierarchy Search
Compiler tries to figure out memory hierarchy optimizations
e New approach: “Auto-tuners” 1st run variations of program on computer to
find best combinations of optimizations (blocking, padding, ...) and algorithms, then
produce C code to be compiled for that computer
e “Auto-tuner” targeted to numerical

method

- E.g., PHiPAC (BLAS), Atlas (BLAS), Sparsity (Sparse linear algebra), Spiral

(DSP), FFT-W

Cache Optimization Summary

Comparison of the 11 techniques

Hit Band-

Fectage Time width

Small and simple caches +
Way-predicting caches

Troce caches +
Fipelined cache access - +
Monblocking caches +

Banked caches

Critical word first and
earty restart

Merging write buffer

Compiler techniques to
redure cache misses

Hardware prefetching of
instructions and data

Compiler-controlied
prefetching

Main Memory Background
Performance of Main
Memory: Latency: Cache Miss

Penalty

Mi
ss
pe
na
I+

Mis

rat

HW
cost/
complexi

Ty

WO W= O

Q

£ InsTr.,
3 data

=

Comment

Trivial: widely used
Used in Pentium 4
Uzed in Pentium 4
Widely used
Widely used

Used in L2 of Opteron
and Miagara

Widely used

Widely used with write
Through

Software is a challenge;
some computers have
compiler oprion

Many prefefch
INSTrucTions. AMD
Opteron prefetches data
Meeds nonblocking cache;
in many CPUs

¢ Access Time: time between request and word arrives

e Cycle Time: time between requests

Bandwidth: /0 & Large Block Miss Penalty (L2)

Main Memory is DRAM: Dynamic Random Access

Memory

Dynamic since needs to be refreshed periodically (8 ms, 1% time)
Addresses divided into 2 halves (Memory as a 2D matrix):
e RAS or Row Access Strobe

e CAS or Column Access Strobe

Cache uses SRAM: Static Random Access
Memory
No refresh (6 transistors/bit vs. 1 transistor
» Size: DRAM/SRAM - 4-8,
* Cost/Cycle time: SRAM/DRAM - 8-16

Main Memory Deep
Background
*“Out-of-Core”, “In-Core,” “Core Dump”?
e “Core memory”?
» Non-volatile, magnetic
e Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
e Access time 750 ns, cycle time 1500-3000 ns
DRAM logical organization (4 Mbit)
Quest for DRAM Performance
1. Fast Page mode
- Add timing signals that allow repeated accesses to row buffer
without nother row access time
- Such a buffer comes naturally, as each array will buffer 1024 to
2048 bits for each access
2. Synchronous DRAM (SDRAM)
- Add a clock signal to DRAM interface, so that the repeated
transfers would not bear overhead to synchronize with DRAM controller
3. Double Data Rate (DDR SDRAM)
- Transfer data on both the rising edge and falling edge of the
DRAM
clock signal I doubling the peak data rate

- DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts
+offers higher clock rates: up to 400 MHz
- DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz
4.Improved Bandwidth, not Latency
DRAM name based on Peak Chip Transfers /
Sec
DIMM name based on Peak DIMM MBytes / Sec
Need for Error Correction!
e Motivation:
- Failures/time proportional to number of bits!
— As DRAM cells shrink, more vulnerable
e Went through period in which failure rate was low enough without
error
correction that people didn’t do correction
- DRAM banks too large now
- Servers always corrected memory systems
* Basic idea: add redundancy through parity bits
- Common configuration: Random error correction
» SEC-DED (single error correct, double error detect)
* One example: 64 data bits + 8 parity bits (11% overhead)
- Really want to handle failures of physical components as well
e Organization is multiple DRAMs/DIMM, multiple DIMMs
e Want to recover from failed DRAM and failed DIMM!
« “Chip kill” handle failures width of single DRAM chip

DRAM Technology

e Semiconductor Dynamic Random Access Memory

» Emphasize on cost per bit and capacity

e Multiplex address lines 1 cutting # of address pins in half

- Row access strobe (RAS) first, then column access strobe (CAS)
- Memory as a 2D matrix — rows go to a buffer

- Subsequent CAS selects subrow

 Use only a single transistor to store a bit

- Reading that bit can destroy the information

- Refresh each bit periodically (ex. 8 milliseconds) by writing back
» Keep refreshing time less than 5% of the total time

* DRAM capacity is 4 to 8 times that of SRAM

e DIMM: Dual inline memory module

- DRAM chips are commonly sold on small boards called DIMMs

- DIMMs typically contain 4 to 16 DRAMs

e Slowing down in DRAM capacity growth

- Four times the capacity every three years, for more than 20 years
- New chips only double capacity every two year, since 1998

e DRAM performance is growing at a slower rate

- RAS (related to latency): 5% per year

- CAS (related to bandwidth): 10%+ per year

RAS improvement

SRAM Technology

e Cache uses SRAM: Static Random Access Memory

e SRAM uses six transistors per bit to prevent the information from being disturbed
when read

_no need to refresh

- SRAM needs only minimal power to retain the charge

in the standby mode _ good for embedded applications

- No difference between access time and cycle time for

SRAM

* Emphasize on speed and capacity

- SRAM address lines are not multiplexed

* SRAM speed is 8 to 16x that of DRAM

Improving Memory Performance

in a Standard DRAM Chip

 Fast page mode: time signals that allow repeated accesses to buffer without another
row

access time

e Synchronous RAM (SDRAM): add a clock signal to DRAM interface, so that

the repeated transfer would not bear overhead to synchronize with the

controller

- Asynchronous DRAM involves overhead to sync with controller

- Peak speed per memory module 800—1200MB/sec in 2001

* Double data rate (DDR): transfer data on both the rising edge and falling edge of
DRAM clock signal

- Peak speed per memory module 1600—2400MB/sec in 2001

_| Column Decoder =
11 Sense Amps & /O 5 D
& =
= L &
A0...A10 (0 § Memory Array - g —Q
W— (| (2,048 x 2.048) 2
- b ‘
S I:Cé Storag
< Word Line Cell
Protection:

Virtual Memory and Virtual Machines
Slide Sources: Based on “Computer Architecture” by Hennessy/Patterson.
Supplemented from various freely downloadable sources
Security and Privacy
eInnovations in Computer Architecture and System software
eProtection through Virtual Memory
eProtection from Virtual Machines
-Architectural requirements
Performance
Protection via Virtual Memory

eProcesses

-Running program
-Environment (state) needed to continue running it
eProtect Processes from each other
-Page based virtual memory including TLB which caches page
table entries ~-Example: Segmentation and paging in 80x86
Processes share hardware without interfering with each other
eProvide User Process and Kernel Process
eReadable portion of Processor state:
-User supervisor mode bit
-Exception enable/disable bit
-Memory protection information
eSystem call to transfer to supervisor mode
-Return like normal subroutine to user mode
eMechanism to limit memory access
Memory protection
eVirtual Memory
-Restriction on each page entry in page table
-Read, write, execute privileges
-Only OS can update page table
-TLB entries also have protection field
eBugs in OS
-Lead to compromising security
-Bugs likely due to huge size of OS
code Protection via Virtual Machines
Virtualization
e Goal:
- Run multiple instances of different OS on the same hardware
- Present a transparent view of one or more environments (M-to-N mapping of M
“real”
resources, N “virtual”
resources) Protection via
Virtual Machines

Virtualization- cont.

e Challenges:
- Have to split all resources (processor, memory, hard drive, graphics card,
networking card etc.) among the different OS -> virtualize the resources

- The OS can not be aware that it is using virtual resources

instead of real resources

Problems with virtualization
e Two components when using virtualization:
- Virtual Machine Monitor (VMM)
- Virtual Machine(s) (VM)
e Para-virtualization:
- Operating System has been modified in order to run as a VM
o ‘Fully’ Virtualized:
- No modification required of an OS to run as a VM
Virtual Machine Monitor-‘hypervisor’
« [solates the state of each guest OS from each other
e Protects itself from guest software
e Determines how to map virtual resources to physical resources
- Access to privileged state
- Address translation
-1/0
- Exceptions and interrupts
« Relatively small code (compared to an OS)
e VMM must run in a higher privilege mode than guest OS
Managing Virtual Memory
» Virtual memory offers many of the features required for hardware virtualization
- Separates the physical memory onto multiple processes
- Each process ‘thinks’ it has a linear address space of full size
- Processor holds a page table translating virtual addresses used by a process
and the according physical memory
- Additional information restricts processes from

» Reading a page of on another process or

* Allow reading but not modifying a memory page or

e Do not allow to interpret data in the memory page as instructions and do not try to
execute them

e Virtual Memory management thus requires

- Mechanisms to limit memory access to protected memory

- At least two modes of execution for instructions

* Privileged mode: an instruction is allowed to do what it whatever it wants ->
kernel mode for OS

» Non-privileged mode: user-level processes

« Intel x86 Architecture: processor supports four levels

- Level 0 used by OS

- Level 3 used by regular applications

eProvide mechanisms to go from non-privileged mode to privileged mode -> system
call

*Provide a portion of processor state that a user process can read but not modify
e E.g. memory protection information

 Each guest OS maintains its page tables to do the mapping from virtual

address to physical address

e Most simple solution: VMM holds an additional table which maps the physical
address of a guest OS onto the ‘machine address’

- Introduces a third level of redirection for every memory access

e Alternative solution: VMM maintains a shadow page table of each guest OS

- Copy of the page table of the OS

- Page tables still works with regular physical addresses

- Only modifications to the page table are intercepted by the VMM

Protection via Virtual Machines

-some definitions

* VMs include all emulation methods to provide a standard software interface
« Different ISAs can be used (emulated) on the native machine

e When the ISAs match the hardware we call it (operating) system

virtual machines

e Multiple OSes all share the native hardware

Cost of Processor Virtualisation

*VM is much smaller than traditional OS

eIsolation portion is only about 10000 lines for a VMM

eProcessor bound programs have very little virtualisation overhead
I/0 bound jobs have more overhead

*ISA emulation is costly

Other benefits of VMs

e Managing software

-Complete software stack

-0ld Oses like DOS

—Current stable OS

-Next OS release

e Managing Hardware

—-Multiple servers avoided

-VMs enable hardware sharing

-Migration of a running VM to another m/c

eFor balancing load or evacuate from failing HW
Requirements of a VMM

*Guest s/w should behave exactly on VM as if on native h/w
*Guest s/w should not be able to change allocation of RT resources directly
eTimer interrupts should be virtualized

*Two processor modes- system and user

ePrivileged subset of instruction available only in system mode
More issues on VM usage

*ISA support for virtual machine

-IBM360 support

-80x86 do no support

eUse of virtual memory

-Concept of virtual- real- physical memories

-Instead of extra indirection use shadow page table

Virtualizing 1/0s

-Morei/o
-More diversity

-Physical disks to partitioned virtual disks

