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UNIT I 

 

 

FUNDAMENTALS OF COMPUTER DESIGN 

 

 

Introduction 

 

Today’ s   desktop   computers   (less   than   $500   cost)   are   having   more 

performance, larger   memory and storage   than   a   computer   bought   in   1085 

for  1 million   dollar.   Highest performance microprocessors   of   today   

outperform Supercomputers  of  less than  10  years ago.  The rapid  improvement  

has  come  both from  advances  in  the  technology  used  to build  computers  and  

innovations  made  in the  computer  design  or  in  other  words,  the improvement  

made  in  the  computers can  be  attributed  to  innovations  of  technology and 

architecture design. 



 

 

 

During  the  first  25   years  of  electronic  computers,  both  forces   made  

a major contribution,  delivering performance improvement  of about  25%  per  

year. Microprocessors  were evolved  during late 1970s  and  their ability along 

with improvements  made in  the  Integrated  Circuit  (IC)  technology y contributed  

to  35% performance  growth per year. 

 

The virtual elimination  of  assembly language programming reduced  the n 

eed for object-code compatibility.   The creation  of  standardized  vendor-

independent operating system lowered the cost and risk of bringing out a new 

architecture. 

 

In  the  yearly  1980s,  the  Reduced  Instruction  Set  Computer  (RISC)  based 

machines focused  the  attention  of  designers  on  two  critical  performance  

techniques, the exploitation  Instruction  Level  Parallelism  (ILP)  and  the  use of  

caches.  The  figu re  1.1 shows  the  growth  in  processor  performance  since  the  

mid  1980s.  The  graph plots performance   relative to the VAX-11/780   as 

measured b y   the   SPECint benchmarks.   From the figure it is   clear that   

architectural and   organizational enhancements led to 16 years of sustained growth 

in performance  at an annual rate  of over 50%. Since 2002,  processor  performance 

improvement has  dropped  to about  20% per  year  due to the following hurdles: 

 •Maximum power dissipation of air-cooled  chips •Little ILP left to exploit efficiently •Limitations laid by memory latency 

 

The hurdles  signals  historic  switch  from  relying solely on  ILP  to  Thread  Level 

Parallelism (TLP) and Data Level Parallelism (DLP).



 

 

Figure 1.1 The evolution of various classes of computers: 

 

 

 

 

 

 

 

Classes of Computers 

 

1960:  Large Main frames (Millions of $ ) 

(Applications: Business Data processing, large Scientific computin g) 

1970: Minicomputers  (Scientific laboratories, Time sharing concepts) 

1980: Desktop Computers (µPs) in the form of Personal computers and workstations. 

(Larger Memory, more computing power, Replaced Time sharing g systems) 

1990: Emergence of Internet and WWW, PDAs, emergence of high 

performance digital consumer electronics 

2000: Cell phones 



 

 

These changes in computer use have led to three different computing classes 

each characterized by different applications, requirements and computing 

technologies.owth in processor performance since 1980s 

 

 

Desktop computing 

 

The first and still the largest market in dollar terms is desktop computing. 

Desktop computing   system   cost   range   from   $   500   (low   end)   to   $   5000   

(high-end configuration). Throughout  this  range in  price,  the  desktop  market  

tends  to  drive to optimize  price- performance.  The  perf ormance  concerned  is  

compute  performance and   graphics performance.   The   combination   of   

performance   and   price   are   the driving  factors  to  the customers  and  the  

computer  designer.  Hence,  the  newest, high  performance and  cost effective 

processor often  appears first in desktop computers. 

 

Servers: 

Servers  provide  large-scale  and  reliable  computing  and  file  services  and  

are mainly used in the large-scale en terprise  computing and web based 

services. The three important 

 

characteristics of servers are: 

 

•Dependability:  Severs  must operate  24x7  hours  a week.  Failure of  server  

system is  far  more  catastrophic  than  a failure of  desktop.  Enterprise will    lose 

revenue if the server is unavailable. 

 •Scalability:  as  the  business  grows,  the server  may have to  provide  more 

functionality/ services.  Thus  ability to  scale  up  the  computin g capacity,  

memory, storage and I/O bandwidth is crucial. 

 •Throughput:  transactions  completed  per  minute  or web  pages  served  per  

second are crucial for servers. 



 

 

 

Embedded Computers 

 

Simple  embedded  microprocessors  are seen  in  washing machines,  

printers, network   switches, handheld devices such   as cell phones,   smart   cards 

video   game devices etc.  embedded  computers  have  the  widest  spread  of  

processing  power  and cost.  The primary  goal  is  often  meeting  the  performance  

need  at  a  minimum  price rather  than achieving higher  performance at a  higher 

price. The other two characteristic requirements are to minimize the memory and 

power. 

 

In many embedded applications, the memory can  be  substantial  portion  of 

the systems  cost  and  it  is  very  important  to  optimize  the  memory  size  in  

such cases.  The application is expected to  fit  totally  in  the  memory  on  the  

processor chip  or  off  chip memory. The importance o f  memory size translates t o  

an emphasis on  code size which is dictated  by the   application.   Larger memory 

consumes more power. All these  aspects are considered while  choosing  or 

designing processor  for the embedded applications. 

 

Defining Computer  Architecture 

The computer designer has  to ascertain the  attributes  that are important  

for a new computer   and   design   the system to maximize the  performance   

while   staying within  cost, power and  availability constraints. The task has few 

important aspects  such as Instruction Set design, Functional organization, Logic 

design and implementation. 

 

Instruction Set Architecture (ISA) 

 

ISA  refers  to  the  actual  programmer  visible  Instruction  set.  The  ISA  serves  

as boundary between the software and hardware. Th e seven dimensions of the 

ISA are: 

 



 

 

i)Class  of  ISA:  Nearly all  ISAs  today ar e  classified  as  General-

Purpose- Register architectures. The operands are either Registers or 

Memory locations. The two popular versions of this class are: 

Register-Memory ISAs  :  ISA  of 80x86,  can  access  memory as  part  of  

many instructions. 

Load -Store  ISA  Eg.  ISA  of MIPS,  can  access  memory only with  Load  or 

Store instructions. 

 

ii)Memory  addressing:  Byte addressing scheme is  most  widely used  in  

all desktop  and  server  computers.  Both  80x86  and  MIPS  use byte  

addressing. Incase of MIPS  the  object must be  aligned. An access to  an 

object of s b yte at byte  address  A  is  aligned  if  A mod s  =0.  80x86  does  

not  require  alignment. Accesses are faster if operands are aligned. 

 

iii) Addressing modes:Specify the address of a M object apart from register and 

constant operands. 

MIPS Addressing modes: •Register mode  addressing •Immediate mode addressing •Displacement mode addressing 

80x86 in addition to the above addressing modes supports the 

additional modes of addressing: 

i.  Register 

Indirect ii.  

Indexed 

iii,Based with Scaled index 

 

iv)Types and sizes of operands: 

MIPS and x86 support: •8 bit (ASCII character), 16 bit(Unicode character) •32 bit (Integer/word ) •64 bit (long integer/ Double word) •32 bit (IEEE-754 floating point) 



 

 

•64 bit (Double precision floating point) •80x86 also supports 80 bit floating point operand.(extended double Precision) 

 

 

v)Operations:The general category o f operations 

are: 

oData Transfer 

oArithmetic 

operations oLogic 

operations oControl 

operations 

oMIPS ISA: simple & easy to implement 

ox86 ISA: richer & larger set of 

operations 

 

vi) Control flow instructions:All ISAs 

support: Conditional & Unconditional 

Branches 

Procedure C alls & Returns  MIPS                      80x86 •  Conditional Branches tests    content of Register  Condition code 

bits • Procedure C all           JAL                CALLF •    Return Address in a R  Stack in 

M 

 

vii) Encoding an 

ISA 

Fixed Length ISA       Variable Length ISA 

MIPS 32 Bit long        80x86 (1-18 bytes) 

Simplifies decoding    Takes less space 

 

Number of Registers   and number of   Addressing modes hav e 

significant 



 

 

impact on the length of instruction as the register field and addressing mode 

field can appear many times in a single instruction. 

Trends in Technology 

The designer must be aware of the following rapid changes in implementation 

technology

. •Integrated C ircuit (IC) Logic technology •Memory technology (semiconductor DRAM technology) •Storage o r magnetic disk technology •Network technology 

 

IC Logic technology: 

 

Transistor density increases by about 35%per year.  Increase in die size 

corresponds  to  about  10 %  to  20%  per  year.  The  combined  effect  is  a  growth  

rate in transistor count on a chip of about 40% to 55% per year. 

Semiconductor DRAM technology:cap acity increases by about 40% per year. 

Storage 

Technology: 

Before 1990: the storage density increased by about 30% per 

year. After  1990: the storage density increased by about 60 % 

per year. Disks are still 50 to 100 times cheaper per bit than 

DRAM. 

 

Network Technology: 

 

Network performance depends both on the per formance of the 

switches  and on the performance of the transmission system. Although the 

technology improves continuously,  the impact of these improvements  can be in 

discrete leaps. 

 

Performance trends: Bandwidth or throughput is the total amount of work 

done in given time. 



 

 

Latency or  response time is the time between the start and the completion 

of an event. (for eg. Millisecond for disk access) 

 

 

 

 

 

A simple rule of thumb is that bandwidth gro ws by at least the square of 

the improvement in latency. Computer designers should make plans 

accordingly. •IC Processes are characterizes by the f ature sizes. •Feature sizes decreased from 10 microns(1971) to 0.09 microns(2006) •Feature sizes shrink, devices shrink quadr atically. •Shrink in vertical direction makes the operating v oltage of the transistor to

reduce.  •Transistor performance improves linearly with decreasing

feature size



 

 

•Transistor count improves quadratically with a linear improvement in 

Transistor 

performance. •!!! Wire delay scales poo rly comp ared to Transistor performance. •Feature sizes shrink, wires get shorter. •Signal delay fo r a wire increases in proportion to the product of Resistance 

and 

Capacitance. 

 

Trends in Power in Integrated Circuits 

 

For CMOS chips, the dominant source of energy consumption is due to 

switching transistor, also called as Dynamic power and is given b y the 

following equation. 

 

Power = (1/2)*Capacitive load* Voltage 

 

* Frequency switched dynamic •For mobile devices, energy is the better metric 

 

Energy dynamic = Capacitive load x Voltage 2 

 •For a fix ed task, slowing clock rate (frequency switched) reduces power, but not 

energy •Capacitive load a function of number of transistors connected to output and 

technology, 

which determines capacitance of wires and transistors 

 •Dropping voltage helps both, so went from 5V down to 1V •To save energy & dynamic power, most CPUs now turn off clock of inactive modules •Distributing the power, removing the heat and preventing hot spots have become 

increasingly difficult challenges. 



 

 

• The leakage current flows even when a transistor is off. Therefore static 

power is equally important. 

 

Power static= Current static * Voltage 

 •Leakage current increases in processors with smaller transistor sizes •Increasing the number of transistors increases power even if they are turned off •In 2006, goal for leakage is 25% of total power consumption; high performance 

designs 

at 40% •Very low power systems even gate voltage to inactive modules to control loss due to 

leakage 

 

Trends in Cost 

 

 • The underlying principle that drives the cost down is the learning 

curvemanufacturing 

costs decrease over time. • Volume is a second key factor in determining cost. Volume decreases cost since it 

increases purchasing manufacturing efficiency. As a rule of thumb, the cost decreases 

about 10% for each doubling of volume. • Cost of an Integrated Circuit 

Although the cost of ICs have dropped exponentially, the basic process of 

silicon manufacture is unchanged. A wafer is still tested and chopped into 

dies that are packaged. 

 

Cost of IC = Cost of [die+ testing die+ Packaging and final test] / (Final test 

yoeld) Cost of die = Cost of wafer/ (Die per wafer x Die yield) 

The number of dies per wafer is approximately the area of the wafer divided by 

the area of the die. 

 

Die per wafer = [_ * (Wafer Dia/2)2/Die area]-[_* wafer dia/_(2*Die area)] 



 

 

 

The first term is the ratio of wafer area to die area and the second term 

compensates for the rectangular dies near the periphery of round wafers(as 

shown in figure). 

 

 

 

 

 

 

Dependability: 

The Infrastructure providers offer Service Level Agreement (SLA) or Service 

Level Objectives (SLO) to guarantee that their networking or power services 

would be dependable. • Systems alternate between 2 states of service with respect to an SLA: 

1. Service accomplishment, where the service is delivered as specified in SLA 

2. Service interruption, where the delivered service is different from the SLA • Failure = transition from state 1 to state 2 • Restoration = transition from state 2 to state 1 



 

 

 

The two main measures of Dependability are Module Reliability and Module 

Availability. Module reliability is a measure of continuous service accomplishment 

(or time to failure) from a reference initial instant. 

1. Mean Time To Failure (MTTF) measures Reliability 

2. Failures In Time (FIT) = 1/MTTF, the rate of failures • Traditionally reported as failures per billion hours of operation • Mean Time To Repair (MTTR) measures Service Interruption – Mean Time Between Failures (MTBF) = MTTF+MTTR • Module availability measures service as alternate between the 2 

states of accomplishment and interruption (number between 0 and 1, e.g. 

0.9) • Module availability = MTTF / ( MTTF + MTTR) 

Performance: 

The Execution time or Response time is defined as the time between the start and 

completion of an event. The total amount of work done in a given time is defined as 

the 

Throughput. 

 

The Administrator of a data center may be interested in increasing the 

Throughput. The computer user may be interested in reducing the Response time. 

 

Computer user says that computer is faster when a program runs in less time. 

 

 



 

 

The routinely executed programs are the best candidates for evaluating the 

performance of the new computers. To evaluate new system the user would 

simply compare the execution time of their workloads. 

 

Benchmarks 

The real applications are the best choice of benchmarks to evaluate the 

performance. However, for many of the cases, the workloads will not be known at 

the time of evaluation. Hence, the benchmark program which resemble the real 

applications are chosen. The three types of benchmarks are: • KERNELS, which are small, key pieces of real applications; • Toy Programs: which are 100 line programs from beginning programming 

assignments, such Quicksort etc., • Synthetic Benchmarks: Fake programs invented to try to match the profile 

and 

behavior of real applications such as Dhrystone. 

To make the process of evaluation a fair justice, the following points are to be 

followed. • Source code modifications are not allowed. • Source code modifications are allowed, but are essentially impossible. • Source code modifications are allowed, as long as the modified version 

produces 

the same output. • To increase predictability, collections of benchmark applications, called 

benchmark suites, are popular • SPECCPU: popular desktop benchmark suite given by Standard Performance 

Evaluation committee (SPEC) – CPU only, split between integer and floating point programs – SPECint2000 has 12 integer, SPECfp2000 has 14 integer programs – SPECCPU2006 announced in Spring 2006. 

SPECSFS (NFS file server) and SPECWeb (WebServer) added as 

server benchmarks 

 • Transaction Processing Council measures server performance and 



 

 

costperformance for databases – TPC-C Complex query for Online Transaction Processing – TPC-H models ad hoc decision support – TPC-W a transactional web benchmark –    TPC-App application server and web services benchmark 

 •  SPEC  Ratio:  Normalize  execution  times  to  reference  computer,  yielding  a  

ratio proportional to performance = time on reference computer/time on computer 

being rated 

 • If program SPECRatio on Computer A is 1.25 times bigger than Computer B, then 

 

 

 • Note : when comparing 2 computers as a ratio, execution times on the 

reference computer drop out, so choice of reference computer is irrelevant. 

 

 

Quantitative Principles of Computer Design 

While designing the computer, the advantage of the following points 

can be exploited to enhance the performance. 

* Parallelism: is one of most important methods for improving performance. 

- One of the simplest ways to do this is through pipelining ie, to over lap the 

instruction    Execution  to  reduce  the  total  time  to  complete  an  

instruction sequence. 



 

 

- Parallelism can also be exploited at the level of detailed digital 

design. 

- Set- associative caches use multiple banks of memory that are typically 

searched n  parallel.  Carry look  ahead  which  uses  parallelism  to  speed  

the  process  of computing. 

 

* Principle of locality: program tends to reuse data and instructions they have 

used recently. The rule of thumb is that program spends 90 % of its execution 

time in only 

10% of the code. With reasonable good accuracy, prediction can be made to find 

what instruction and data the program will use in the near future based on its 

accesses in the recent past. 

 

* Focus on the common case while making a design trade off, favor the frequent 

case over  the  infrequent  case.  This  principle  applies  when  determining  how  

to  spend resources, since the impact of the improvement is higher if the occurrence 

is frequent. 

 

Amdahl’s Law: Amdahl’s law is used to find the performance gain that can be 

obtained by improving some portion or a functional unit of a computer Amdahl’s 
law defines the speedup that can be gained by using a particular feature. 

Speedup is the ratio of performance for entire task without using the 

enhancement when possible to the performance for entire task without using the 

enhancement. Execution time is the reciprocal of performance. Alternatively, 

speedup is defined as thee ratio of execution time for entire task without using 

the enhancement to the execution time for entair task using the enhancement when 

possible. 

Speedup from some enhancement depends an two factors:



 

 

i. The fraction of the computation time in the original computer that can be 

converted to take advantage of the enhancement. Fraction enhanced is always less 

than or equal to 

Example: If 15 seconds of the execution time of a program that 

takes 50 seconds in total can use an enhancement, the fraction is 

15/50 or 0.3 

ii. The improvement gained by the enhanced execution mode; ie how much 

faster the task would run if the enhanced mode were used for the entire program. 

Speedup enhanced is the time of the original mode over the time of the enhanced 

mode and is always greater then 1. 

 

 

The Processor performance Equation: 

 

Processor is connected with a clock running at constant rate. These discrete time 

events are called clock ticks or clock cycle. CPU time for a program can be 

evaluated:



 

 

Example: 

A System contains Floating point (FP) and Floating Point Square Root (FPSQR) 

unit. 

FPSQR is responsible for 20% of the execution time. One proposal is to enhance the 

FPSQR hardware and speedup this operation by a factor of 15 second alternate is 

just to try to make all FP instructions run faster by a factor of 1.6 times faster 

with the same effort as required for the fast FPSQR, compare the two design 

alternative 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

UNIT - 2 

 

PIPELINING: 

Introduction 

Pipeline hazards 

Implementation of pipeline 

 

What makes pipelining hard to implement? 

 

UNIT II 

 

Pipelining: Basic and Intermediate concepts 

 

 

Pipeline is an implementation technique that exploits parallelism among the 

instructions in  a  sequential  instruction  stream.  Pipeline  allows  to  overlapping  

the  execution  of multiple instructions. A Pipeline is like an assembly line each step 

or pipeline stage completes a part of an instructions. Each stage of the pipeline will 

be operating an a separate instruction. Instructions enter at one end progress 

through the stage and exit at the other end. If the stages are perfectly 

balance(assuming ideal conditions), then the time per instruction on the pipeline 

processor is given by the ratio: 

 

Time per instruction on unpipelined machine/ Number of Pipeline stages 

 

Under these conditions, the speedup from pipelining is equal to the number of stage 

pipeline. In practice, the pipeline stages are not perfectly balanced and pipeline does 

involve some overhead. Therefore, the speedup will be always then practically less 

than the number of stages of the pipeline. Pipeline yields a reduction in the average 

execution time per instruction. If the processor is assumed to take one (long) clock 



 

 

cycle per instruction, then pipelining decrease the clock cycle time. If the processor 

is assumed to take multiple CPI, then pipelining will aid to reduce the CPI. 

 

A Simple implementation of a RISC instruction 

set 

Instruction set of implementation in RISC takes at most 5 cycles without 

pipelining. 

The 5 clock cycles 

are: 

1. Instruction fetch (IF) cycle: 

Send the content of program count (PC) to memory and fetch the 

current 

instruction from memory to update the PC. 

 

 

 

2. Instruction decode / Register fetch cycle (ID): 

 

Decode the instruction and access the register file. Decoding is done in 

parallel with reading registers, which is possible because the register specifies are at 

a fixed location in a RISC architecture. This corresponds to fixed field decoding. In 

addition it involves: 

- Perform equality test on the register as they are read for a possible branch. 

- Sign-extend the offset field of the instruction in case it is needed. 

- Compute the possible branch target address. 

 

3. Execution / Effective address Cycle (EXE) 

 

The ALU operates on the operands prepared in the previous cycle and 

performs one of the following function defending on the instruction type. 

 

 



 

 

 

*  Register-  Register  ALU  instruction:  ALU  performs  the  operation  specified  in  

the instruction using the values read from the register file. 

* Register- Immediate ALU instruction: ALU performs the operation specified in the 

instruction using the first value read from the register file and that sign extended 

immediate. 

 

4. Memory access (MEM) 

For a load instruction, using effective address the memory is read. For a store 

instruction memory writes the data from the 2nd register read using effective 

address. 

 

5. Write back cycle (WB) 

Write the result in to the register file, whether it comes from memory system 

(for 

a LOAD instruction) or from the 

ALU. 

 

Five stage Pipeline for a RISC processor 

 

Each instruction taken at most 5 clock cycles for the 

execution 

* Instruction fetch cycle 

(IF) 

* Instruction decode / register fetch cycle 

(ID) 

* Execution / Effective address cycle 

(EX) 

* Memory access (MEM) 

* Write back cycle (WB) 

 

The execution of the instruction comprising of the above subtask can be pipelined. 

Each of the clock cycles from the previous section becomes a pipe stage – a cycle in 



 

 

the pipeline. A new instruction can be started on each clock cycle which results in 

the execution pattern shown figure 2.1. Though each instruction takes 5 clock cycles 

to complete, during each clock cycle the hardware will initiate a new instruction and 

will be executing some part of the five different instructions as illustrated in figure 

2.1.



 

 

 

Each stage of the pipeline must be independent of the other stages. Also, two 

different 

operations can’t be performed with the same data path resource on the same clock. 

For example, a single ALU cannot be used to compute the effective address and 

perform a subtract operation during the same clock cycle. An adder is to be 

provided in the stage 1 to compute new PC value and an ALU in the stage 3 to 

perform the arithmetic indicatedin the instruction (See figure 2.2). Conflict should 

not arise out of overlap of instructions using pipeline. In other words, functional unit 

of each stage need to be independent of other functional unit. There are three 

observations due to which the risk of conflict is reduced. • Separate Instruction and data memories at the level of L1 cache 

eliminates a conflict for a single memory that would arise between 

instruction fetch and data access. • Register file is accessed during two stages namely ID stage WB. 

Hardware 

should allow to perform maximum two reads one write every clock cycle. • To start a new instruction every cycle, it is necessary to increment and store 

the 

PC every cycle.



 

 

 

Buffers or registers are introduced between successive stages of the pipeline 

so that at the 

end of a clock cycle the results from one stage are stored into a register (see 

figure 2.3). During the next clock cycle, the next stage will use the content of 

these buffers as input. Figure 2.4 visualizes the pipeline activity. 

 

Basic Performance issues in Pipelining 

 

Pipelining increases the CPU instruction throughput but, it does 

not reduce the executiontime of an individual instruction. In fact, the 

pipelining increases the execution time of each instruction due to 



 

 

overhead in the control of the pipeline. Pipeline overhead arises from 

the combination of register delays and clock skew. Imbalance among 

the pipe stages reduces the performance since the clock can run no 

faster than the time needed for the slowest pipeline stage. 

 

 

 

 

 

Pipeline Hazards 

 

Hazards may cause the pipeline to stall. When an instruction is stalled, all the 

instructions issued later than the stalled instructions are also stalled. Instructions 

issued earlier than the stalled instructions will continue in a normal way. No new 

instructions are fetched during the stall. Hazard is situation that prevents the next 

instruction in the instruction stream fromk executing during its designated clock 

cycle. Hazards will reduce the pipeline performance. 

 

Performance with Pipeline stall 

A stall causes the pipeline performance to degrade from ideal performance. 

Performance improvement from pipelining is obtained from: 



 

 

 

 

 

 

Assume that, 

i) cycle time overhead of pipeline is 

ignored ii) stages are balanced 

With theses assumptions 

 

 

 

 

 

 

If all the instructions take the same number of cycles and is equal to the 

number of pipeline stages or depth of the pipeline, then, 

 

 

If there are no pipeline stalls, 

Pipeline stall cycles per instruction = zero 

Therefore, 

Speedup = Depth of the pipeline. 

 

 



 

 

 

Types of hazard 

Three types hazards are: 

1. Structural hazard 

2. Data Hazard 

3. Control Hazard 

 

Structural hazard 

Structural hazard arise from resource conflicts, when the hardware cannot support all 

possible combination of instructions simultaneously in overlapped execution. If 

some combination of instructions cannot be accommodated because of resource 

conflicts, the processor  is  said  to  have  structural  hazard.  Structural  hazard  will  

arise  when  some functional unit is not fully pipelined or when some resource 

has not been duplicated enough to allow all combination of instructions in the 

pipeline to execute. For example, if memory is shared for data and instruction as a 

result, when an instruction contains data memory reference, it will conflict with the 

instruction reference for a later instruction (as shown in figure 2.5a). This will cause 

hazard and pipeline stalls for 1 clock cycle. 

 

 

 



 

 

 

 

 

 

 

Pipeline stall is commonly called Pipeline bubble or just simply bubble 

 

Data Hazard 

 

Consider the pipelined execution of the following instruction sequence (Timing 

diagram shown in figure 2.6) 

 



 

 

 

DADD instruction produces the value of R1 in WB stage (Clock cycle 5) but the DSUB 

instruction reads the value during its ID stage (clock cycle 3). This problem is called 

Data Hazard. DSUB may read the wrong value if precautions are not taken. AND 

instruction will read the register during clock cycle 4 and will receive the wrong 

results. The XOR instruction operates properly,  because its register read  occurs in  

clock cycle 6  after DADD writes in clock cycle 5. The OR instruction also operates 

without incurring a hazard because the register file reads are performed in the 

second half of the cycle whereas the writes are performed in the first half of the 

cycle. 

 

Minimizing data hazard by Forwarding 

 

 

The DADD instruction will produce the value of R! at the end of clock cycle 3. DSUB 

instruction requires this value only during the clock cycle 4. If the result can be 

moved from the pipeline register where the DADD store it to the point (input of 

LAU) where DSUB needs it, then the need for a stall can be avoided. Using a simple 

hardware technique called Data Forwarding or Bypassing or short circuiting, data 

can be made available from the output of the ALU to the point where it is required 

(input of LAU) at the beginning of immediate next clock cycle. 

Forwarding works as follows: 

i) The output of ALU from EX/MEM and MEM/WB pipeline register is 

always feedback to the ALU inputs. 

ii) If the Forwarding hardware detects that the previous ALU output serves 

as the source for the current ALU operations, control logic selects the 

forwarded result 



 

 

as the input rather than the value read from the register file. Forwarded results are 

required not only from the immediate previous instruction, but also from an 

instruction that started 2 cycles earlier. The result of ith instruction Is required to 

be forwarded to (i+2)th instruction also. Forwarding can be generalized to include 

passing a result directly to the functional unit that requires it. 

 

Data Hazard requiring stalls 

 

LD      R1,  0(R2) 

DADD R3, R1, R4 

AND    R5, R1, R6 

OR      R7, R1, R8 

The pipelined data path for these instructions is shown in the timing diagram (figure 

2.7) 

 

 

 

 

 

 

The LD instruction gets the data from the memory at the end of cycle 4. even 

with forwarding technique, the data from LD instruction can be made available 



 

 

earliest during clock cycle 5. DADD instruction requires the result of LD instruction 

at the beginning of clock cycle 5. DADD instruction requires the result of LD 

instruction at the beginning of clock  cycle  4.  This  demands  data  forwarding  of  

clock  cycle  4.  This  demands  data forwarding in negative time which is not 

possible. Hence, the situation calls for a pipeline stall.Result from the LD instruction 

can be forwarded from the pipeline register to the and instruction which begins 

at 2 clock cycles later after the LD instruction. The load instruction has a delay 

or latency that cannot be eliminated by forwarding alone. It is necessary to stall 

pipeline by 1 clock cycle. A hardware called Pipeline interlock detects a hazard and 

stalls the pipeline until the hazard is cleared. The pipeline interlock helps to 

preserve the correct execution pattern by introducing a stall or bubble. The CPI 

for the stalled instruction increases by the length of the stall. Figure 2.7 shows 

the pipeline before and after the stall. Stall  causes the DADD to move 1 clock 

cycle later in time. Forwarding to the AND instruction now goes through the 

register file or forwarding is not required for the OR instruction. No instruction is 

started during the clock cycle 4. 

 

Control Hazard 

 

When a branch is executed, it may or may not change the content of PC. If a branch 

is taken, the content of PC is changed to target address. If a branch is taken, the 

content of PC is not changed 

 

The simple way of dealing with the branches is to redo the fetch of the instruction 

following a branch. The first IF cycle is essentially a stall, because, it never performs 

useful work. One stall cycle for every branch will yield a performance loss 10% to 

30% depending on the branch frequency 

 

Reducing the Brach Penalties 

 

There are many methods for dealing with the pipeline stalls caused by 

branch delay 



 

 

1. Freeze or Flush the pipeline, holding or deleting any instructions after 

the ranch until the branch destination is known. It is a simple scheme and branch 

penalty is fixed and cannot be reduced by software 

2. Treat every branch as not taken, simply allowing the hardware to continue 

as if the branch were not to executed. Care must be taken not to change the 

processor 

state until the branch outcome is known. 

Instructions were fetched as if the branch were a normal instruction. If the 

branch is taken, it is necessary to turn the fetched instruction in to a no-of 

instruction and restart the fetch at the target address. Figure 2.8 shows the timing 

diagram of both the situations. 

 

 

 

 

 

 

 

 

 

 

 

3. Treat every branch as taken: As soon as the branch is decoded and 

target Address is computed, begin fetching and executing at the target if the 

branch target is known before branch outcome, then this scheme gets 

advantage. 

For both predicated taken or predicated not taken scheme, the 

compiler can improve performance by organizing the code so that the 

most frequent path matches the hardware choice. 

4. Delayed branch technique is commonly used in early RISC 

processors. 

In a delayed branch, the execution cycle with a branch delay of one is 

Branch instruction 



 

 

Sequential successor-1 

Branch target if taken 

 

The sequential successor is in the branch delay slot and it is executed irrespective of 

whether or not the branch is taken. The pipeline behavior with a branch delay is 

shown in Figure 2.9. Processor with delayed branch, normally have a single 

instruction delay. Compiler has to make the successor instructions valid and useful 

there are three ways in which the to delay slot can be filled by the compiler. 

 

 

 

 

 

 

 

 

 

 

 

 

The limitations on delayed branch arise from 

i) Restrictions on the instructions that are scheduled in to delay slots. 

ii) Ability to predict at compiler time whether a branch is likely to be 

taken or not taken. 

The delay slot can be filled from choosing an 

instruction a) From before the branch 

instruction 

b) From the target 

address c) From fall- 

through path. 

The principle of scheduling the branch delay is shown in fig 2.10 

 

 



 

 

 

 

 

What makes pipelining hard to implements? 

 

Dealing with exceptions: Overlapping of instructions makes it more 

difficult to know whether an instruction can safely change the state of the CPU. In a 

pipelined CPU, an instruction execution extends over several clock cycles. When this 

instruction is in execution, the other instruction may raise exception that may force 

the CPU to abort the instruction in the pipeline before they complete 

 

Types of exceptions: 

 

 

The term exception is used to cover the terms interrupt, fault and exception. 

I/O device request, page fault, Invoking an OS service from a user program, Integer 

arithmetic overflow, memory protection overflow, Hardware malfunctions, Power 

failure etc. are the different classes of exception. Individual events have important 

characteristics that determine what action is needed corresponding to that 

exception. 

 

i)         Synchronous versus 

Asynchronous 

 



 

 

If the event occurs at the same place every time the program is executed with 

the same data and memory allocation, the event is asynchronous. Asynchronous 

events are caused by devices external to the CPU and memory such events are 

handled after the completion of the current instruction. 

 

ii)        User requested versus 

coerced: 

User requested exceptions are predictable and can always be handled 

after the 

current instruction has completed. Coerced exceptions are caused by some 

hardware event that is not under the control of the user program. Coerced 

exceptions are harder to implement because they are not predictable 

 

iii)       User maskable versus user non 

maskable : 

 

If an event can be masked by a user task, it is user maskable. Otherwise it is 

user non maskable. 

 

iv)       Within versus between 

instructions: 

Exception  that  occur  within  instruction  are  usually  synchronous,  since  

the 

instruction triggers the exception. It is harder to implement exceptions that 

occur withininstructions than those between instructions, since the 

instruction must be 

stopped and restarted. Asynchronous exceptions that occurs within instructions 

arise from catastrophic situations and always causes program termination. 

 

v) Resume versus 

terminate: 

If the program’s execution continues after the interrupt, it is a resuming 

event 



 

 

otherwise  if  is  terminating  event.  It  is  easier  implement  exceptions  that  

terminate execution.  

Stopping and restarting execution: 

The most difficult exception have 2 properties: 

1. Exception that occur within instructions 

2. They must be restartable 

For example, a page fault must be restartable and requires the intervention of OS. 

Thus pipeline must be safely shutdown, so that the instruction can be restarted in 

the correct state. If the restarted instruction is not a branch, then we will continue to 

fetch the sequential successors and begin their execution in the normal fashion. 11) 

Restarting is usually implemented by saving the PC of the instruction at which to 

restart. Pipeline control can take the following steps to save the pipeline state safely. 

i) Force a trap instruction in to the pipeline on the next IF 

ii) Until the trap is taken, turn off all writes for the faulting instruction and 

for all instructions that follow in pipeline. This prevents any state changes for 

instructions that will not be completed before the exception is handled. 

iii) After the exception – handling routine receives control, it immediately 

saves the PC of the faulting instruction. This value will be used to return from the 

exception later. 

 

NOTE: 

1. with pipelining multiple exceptions may occur in the same clock cycle 

because there are multiple instructions in execution. 

2 Handling the exception becomes still more complicated when the 

instructions are allowed to execute in out of order fashion. 

 

Operation: send out the [PC] and fetch the instruction from memory in to the 

Instruction 



 

 

Register (IR). Increment PC by 4 to address the next sequential 

instruction. 

 

2. Instruction decode / Register fetch cycle 

(ID) 

 

 

 

 

Operation: decode the instruction and access that register file to read the 

registers ( rs and rt). File to read the register (rs and rt). A & B are the 

temporary registers. Operands are kept ready for use in the next cycle. 

Decoding is done in concurrent with reading register. MIPS ISA has fixed length 

Instructions. Hence, these fields are at fixed locations. 

 

3. Execution/ Effective address cycle (EX) 

 

One of the following operations are performed depending on the 

instruction type. 

* Memory reference: 

 

:  

 

Operation: ALU adds the operands to compute the effective address and 

places the result in to the register ALU output. 

Register – Register ALU instruction: 

 

 

 

 

Operation: The ALU performs the operation specified by the function code on the 

value taken from content of register A and register B. 



 

 

*. Register- Immediate ALU instruction: 

 

 

 

Operation: the content of register A and register Imm are operated (function 

Op) and result is placed in temporary register ALU output. 

*. Branch: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

INSTRUCTION –LEVEL PARALLELISM – 1: ILP Concepts and 

challenges 

Basic Compiler Techniques for exposing ILP 

Reducing Branch costs with prediction 

Overcoming Data hazards with Dynamic scheduling 

Hardware-based speculation. 

 

 

Instruction Level Parallelism



 

 

 

The potential overlap among instruction execution is called Instruction Level Parallelism 

(ILP) since instructions can be executed in parallel. There are mainly two approaches to 

exploit ILP. 

 

i) Hardware  based  approach:  An  approach  that  relies  on  hardware  to  help 

discover and exploit the parallelism dynamically. Intel Pentium series which 

has dominated in the market) uses this approach. 

 

ii) Software based approach: An approach that relies on software technology 

to find parallelism statically at compile time. This approach has limited use in 

scientific or application specific environment. Static approach of exploiting 

ILP is found in Intel Itanium. 

 

Factors of both programs and processors limit the amount of parallelism that can be 

exploited   among   instructions   and   these   limit   the   performance   achievable.   The 

performance of the pipelined processors is given by: 

 

Pipeline CPI= Ideal Pipeline CPI + Structural stalls + Data hazard stalls + Control stalls 

 

By reducing each of the terms on the right hand side, it is possible to minimize the 

overall pipeline CPI. 

 

To exploit the ILP, the primary focus is on Basic Block (BB). The BB is a straight line 

code sequence with no branches in except the entry and no branches out except at the 

exit. The average size of the BB is very small i.e., about 4 to 6 instructions. The flow 

diagram segment of a program is shown below (Figure 3.1). BB1 , BB2 and BB3 are the 

Basic Blocks. 

 

 

 

Figure 3.1 Flow diagram segment 



 

 

 

 

 

 

The amount of overlap that can be exploited within a Basic Block is likely to be less than 

the average size of BB. To further enhance ILP, it is possible to look at ILP across 

multiple BB. The simplest and most common way to increase the ILP is to exploit the 

parallelism among iterations of a loop (Loop level parallelism). Each iteration of a loop 

can overlap with any other iteration. 

 

Data Dependency and Hazard 

 

If two instructions are parallel, they can execute simultaneously in a pipeline of 

arbitrary length without causing any stalls, assuming the pipeline has sufficient 

resources. If two instructions are dependent, they are not parallel and must be executed 

in sequential order. 

There are three different types dependences. 

 • Data Dependences (True Data Dependency) • Name Dependences • Control Dependences 

 

Data Dependences 

An instruction j is data dependant on instruction i if either of the following holds: 

i) Instruction i produces a result that may be used by instruction j 

Eg1:    i: L.D F0, 0(R1) 



 

 

j: ADD.D F4, F0, F2 

ith instruction is loading the data into the F0 and jth instruction use F0 as one 

the operand. Hence, jth instruction is data dependant on ith instruction. 

Eg2:    DADD R1, R2, R3 

DSUB R4, R1, R5 

 

ii) Instruction j is data dependant on instruction k and instruction k data dependant 

on instruction i 

Eg: L.D F4, 0(R1) 

MUL.D F0, F4, F6 

ADD.D F5, F0, F7 

 

Dependences are the property of the programs. A Data value may flow between 

instructions either through registers or through memory locations. Detecting the data 

flow and dependence that occurs through registers is quite straight forward. 

Dependences that flow through the memory locations are more difficult to detect. A data 

dependence 

convey three things. 

 

a) The possibility of the Hazard. 

b) The order in which results must be calculated and 

c) An upper bound on how much parallelism can possibly exploited. 

 

Name Dependences 

 

A Name Dependence occurs when two instructions use the same Register or Memory 

location, but there is no flow of data between the instructions associated with that name. 

 

Two types of Name dependences: 

 



 

 

i) Antidependence: between instruction i and instruction j occurs when instruction j 

writes a register or memory location that instruction i reads. he original ordering must 

be preserved to ensure that i reads the correct value. 

Eg: L.D F0, 0(R1) 

DADDUI R1, R1, R3 

 

ii) Output dependence: Output Dependence occurs when instructions i and j write to 

the same register or memory location. 

Ex: ADD.D F4, F0, F2 

SUB.D F4, F3, F5 

 

The ordering between the instructions must be preserved to ensure that the value finally 

written corresponds to instruction j.The above instruction can be reordered or can 

be executed simultaneously if the name of the register is changed. The renaming can 

be easily done either statically by a compiler or dynamically by the hardware. 

 

Data hazard: Hazards are named by the ordering in the program that must be 

preserved by the pipeline 

 

RAW (Read After Write): j tries to read a source before i writes it, so j in correctly gets 

old value, this hazard is due to true data dependence. 

 

WAW (Write After Write): j tries to write an operand before it is written by i. WAW 

hazard arises from output dependence. 

 

WAR (Write After Read): j tries to write a destination before it is read by i, so that I 

incorrectly gets the new value. WAR hazard arises from an antidependence and normally 

cannot occur in static issue pipeline. 

 

 

CONTROL DEPENDENCE: 

A control dependence determines the ordering of an instruction i with respect to a branch 

instruction, 



 

 

Ex: if P1 { S1; 

} 

if P2 { S2; 

} 

S1 is Control dependent on P1 and 

S2 is control dependent on P2 but not on P1. 

a)An instruction that is control dependent on a branch cannot be moved before the 

branch 

,so that its execution is no longer controlled by the branch. 

b)An instruction that is not control dependent on a branch cannot be moved after 

the branch so that its execution is controlled by the branch. 

 

BASIC PIPELINE SCHEDULE AND LOOP UNROLLING 

 

To keep a pipe line full, parallelism among instructions must be exploited by 

finding sequence of unrelated instructions that can be overlapped in the pipeline. 

To avoid  a  pipeline  stall,a  dependent  instruction  must  be  separated  from  the  

source instruction by the distance in clock cycles equal to the pipeline latency of that 

source instruction. A compiler’s ability to perform this scheduling depends both on the 

amount of  ILP  available in  the program  and  on  the latencies  of the  functional  units  

in the pipeline. 

 

The compiler can increase the amount of available ILP by transferring loops. 

for(i=1000; i>0 ;i=i-1) 

X[i] = X[i] + s; 

We see that this loop is parallel by the noticing that body of the each iteration is 

independent. 

 

The first step is to translate the above segment to MIPS assembly language 

Loop: L.D F0, 0(R1) : F0=array element 

ADD.D F4, F0, F2 : add scalar in F2 

S.D F4, 0(R1) : store result 

DADDUI R1, R1, #-8 : decrement pointer 



 

 

: 8 Bytes (per DW) 

BNE R1, R2, Loop : branch R1! = R2 

 

Without any Scheduling the loop will execute as follows and takes 9 cycles for each 

iteration. 

1 Loop: L.D F0, 0(R1) ;F0=vector element 

2 stall 

3 ADD.D F4, F0, F2 ;add scalar in F2 

4 stall 

5 stall 

6 S.D F4, 0(R1) ;store result 

7 DADDUI R1, R1,# -8 ;decrement pointer 8B (DW) 

8 stall ;assumes can’t forward to branch 

9 BNEZ R1, Loop ;branch R1!=zero 

 

We can schedule the loop to obtain only two stalls and reduce the time to 7 cycles: 

L.D F0, 0(R1) 

 

DADDUI R1, R1, #-8 

ADD.D F4, F0, F2 

Stall 

Stall 

S.D F4, 0(R1) 

 

BNE R1, R2, Loop 

 

Loop Unrolling can be used to minimize the number of stalls. Unrolling the body of the 

loop by  our times, the execution of four iteration can be done in 27 clock cycles or 6.75 

clock cycles per iteration. 

 

1 Loop: L.D F0,0(R1) 

 



 

 

3 ADD.D F4,F0,F2 

 

6 S.D 0(R1),F4                      ;drop DSUBUI & BNEZ 

 

7 L.D F6,-8(R1) 

 

9 ADD.D F8,F6,F2 

 

12 S.D -8(R1),F8                   ;drop DSUBUI & BNEZ 

 

13 L.D F10,-16(R1) 

 

15 ADD.D F12,F10,F2 

 

18 S.D -16(R1),F12               ;drop   DSUBUI & BNEZ 

 

19 L.D F14,-24(R1) 

 

21 ADD.D F16,F14,F2 

 

24 S.D -24(R1),F16 

 

25 DADDUI R1,R1,#-32      :alter to 4*8 

 

26 BNEZ R1,LOOP 

 

Unrolled loop that minimizes the stalls to 14 clock cycles for four iterations is given 

below: 

1 Loop: L.D F0, 0(R1) 

2 L.D F6, -8(R1) 

 

3 L.D F10, -16(R1) 



 

 

 

4 L.D F14, -24(R1) 

5 ADD.D F4, F0, F2 

 

6 ADD.D F8, F6, F2 

 

7 ADD.D F12, F10, F2 

 

8 ADD.D F16, F14, F2 

 

9 S.D 0(R1), F4 

 

10 S.D -8(R1), F8 

 

11 S.D -16(R1), F12 

 

12 DSUBUI R1, R1,#32 

 

13 S.D 8(R1), F16 ;8-32 = -24 

 

14 BNEZ R1, LOOP 

 

Summary of Loop unrolling and scheduling 

 

The loop unrolling requires understanding how one instruction depends on another 

and how the instructions can be changed or reordered given the dependences: 

 

1. Determine loop unrolling useful by finding that loop iterations were independent 

(except for maintenance code) 

 

2. Use different registers to avoid unnecessary constraints forced by using same 

registers for different computations 



 

 

3. Eliminate the extra test and branch instructions and adjust the loop termination 

and iteration code 

 

4. Determine that loads and stores in unrolled loop can be interchanged by observing 

that loads and stores from different iterations are independent 

 • Transformation requires analyzing memory addresses and finding that they do 

not refer to the same address 

 

5. Schedule the code, preserving any dependences needed to yield the same result as 

the original code 

To reduce the Branch cost, prediction of the outcome of the branch may be done. 

The prediction may be done statically at compile time using compiler support or 

dynamically using hardware support. Schemes to reduce the impact of control hazard 

are discussed below: 

 

Static Branch Prediction 

 

Assume  that  the  branch  will  not  be  taken  and  continue  execution  down  the 

sequential instruction stream. If the branch is taken, the instruction that are being 

fetched and decoded must be discarded. Execution continues at the branch target. 

Discarding instructions means we must be able to flush instructions in the IF, ID and EXE 

stages. Alternately, it is possible that the branch can be predicted as taken. As soon 

as the instruction decoded is found  as branch, at the earliest, start fetching the 

instruction from the target address. 

 –   Average misprediction = untaken branch frequency = 34% for SPEC 

pgms. 

 



 

 

 

 

The  graph  shows  the  misprediction  rate  for  set  of  SPEC  benchmark 

programs 

Dynamic Branch Prediction 

 

With  deeper  pipelines  the  branch  penalty  increases  when  measured  in  clock 

cycles.  Similarly,  with  multiple  issue,  the  branch  penalty  increases  in  terms  of 

instructions lost. Hence, a simple static prediction scheme is inefficient or may not be 

efficient  in  most  of  the  situations.  One  approach  is  to  look  up  the  address  of  the 

instruction to see if a branch was taken the last time this instruction was executed, and if 

so, to begin fetching new instruction from the target address. 

This technique is called Dynamic branch prediction. • Why does prediction work? 

 – Underlying algorithm has regularities – Data that is being operated on has regularities – Instruction sequence has redundancies that are artifacts of way 

that humans/compilers think about problems. – There are a small number of important branches in programs which have 

dynamic behavior for which dynamic branch prediction performance will be definitely 

better compared to static branch prediction. 

 • Performance = ƒ(accuracy, cost of misprediction) 



 

 

• Branch History Table (BHT) is used to dynamically predict the outcome of the 

current branch instruction. Lower bits of PC address index table of 1-bit values – Says whether or not branch taken last time 

o  - No address check 

 • Problem: in a loop, 1-bit BHT will cause two mispredictions (average is 9 iterations 

before exit): – End of loop case, when it exits instead of looping as before – First time through loop on next time through code, when it predicts exit instead 

of looping 

 • Simple two bit history table will give better performance. The four different states of 

2 

bit predictor is shown in the state transition diagram.

 

 

 

Correlating Branch Predictor 

It may be possible to improve the prediction accuracy by considering the recent 

behavior of other branches rather than just the branch under consideration. Correlating 

predictors are two-level predictors. Existing correlating predictors add information 

about the behavior of the most recent branches to decide how to predict a given branch. 

 

 

 



 

 

 • Idea: record m most recently executed branches as taken or not taken, and use 

that pattern to select the proper n-bit branch history table (BHT) 

 • In general, (m,n) predictor means record last m branches to select between 2m 

history tables, each with n-bit counters 

 

 – Thus, old 2-bit BHT is a (0,2) predictor –              Global  Branch  History:  m-bit  shift  register  keeping  T/NT  status  of  last  m 

branches • Each entry in table has m n-bit predictors. In case of (2,2) predictor, behavior of 

recent branches selects between four predictions of next branch, updating just that 

prediction. The scheme of the table is shown: 

 

Comparisons of different schemes are shown in the graph. 

 

 

 

 

 

 

 

 

 

Tournament predictor is a multi level branch predictor and uses n bit saturating 

counter to chose between predictors. The predictors used are global predictor and 

local predictor. 

 – Advantage of tournament predictor is ability to select the right predictor 

for a particular branch which is particularly crucial for integer benchmarks. 

 



 

 

– A typical tournament predictor will select the global predictor almost 40% of 

the time for the SPEC integer benchmarks and less than 15% of the time for the 

SPEC FP benchmarks 

 – Existing tournament predictors use a 2-bit saturating counter per branch to 

choose among two different predictors based on which predictor was most 

effective oin recent prediction. 

 

 

 

 

Dynamic Branch Prediction Summary 

 • Prediction is becoming important part of execution as it improves the performance 

of the pipeline. 

 • Branch History Table: 2 bits for loop accuracy 

 • Correlation: Recently executed branches correlated with next branch – Either different branches (GA) – Or different executions of same branches (PA) • Tournament predictors take insight to next level, by using multiple predictors – usually one based on global information and one based on local information, 

and combining them with a selector 



 

 

– In 2006, tournament predictors using » 30K bits are in processors like the 

Power and Pentium 4 

Tomasulu algorithm and Reorder Buffer 

 

Tomasulu idea: 

1. Have reservation stations where register renaming is possible 

2. Results are directly forwarded to the reservation station along with the 

final registers. This is also called short circuiting or bypassing. 

 

ROB: 

1.The instructions are stored sequentially but we have indicators to say if it is speculative 

or completed execution. 

2. If completed execution and not speculative and reached head of the queue then 

we commit it. 

 

 

Speculating on Branch Outcomes 

 



 

 

• To optimally exploit ILP (instruction-level parallelism) – e.g. with pipelining, 

Tomasulo,etc. – it is critical to efficiently maintain control dependencies (=branch 

dependencies) 

 • Key idea: Speculate on the outcome of branches(=predict) and execute instructions as if 

the predictions are correct 

 • of course, we must proceed in such a manner as to be able to recover if our 

speculation turns out wrong 

 

Three components of hardware-based speculation 

 

1. dynamic branch prediction to pick branch outcome 

2. speculation to allow instructions to execute before control dependencies are 

resolved, i.e., before branch outcomes become known – with ability to undo in case 

of incorrect speculation 

3. dynamic scheduling 

 

Speculating with Tomasulo 

Key ideas: 

1. separate execution from completion: instructions to execute speculatively but no 

instructions update registers or memory until no more speculative 

 

2. therefore, add a final step – after an instruction is no longer speculative, called 

instruction commit– when it is allowed to make register and memory updates 

 

3. allow instructions to execute and complete out of order but force them to commit in 

order 

 

4. Add hardware called the reorder buffer (ROB), with registers to hold the result of 

an instruction between completion and commit 

 



 

 

Tomasulo’s Algorithm with Speculation: Four Stages 

 

1. Issue: get instruction from Instruction Queue 

_ if reservation station and ROB slot free (no structural hazard), 

control issues instruction to reservation station and ROB, and sends to 

reservation station  operand  values  (or  reservation  station  source  for  values)  

as  well  as allocated  ROB slot number 

 

2. Execution: operate on operands (EX) 

_           when both operands ready then execute;if not ready, watch CDB for result 

 

3. Write result: finish execution (WB) 

_ write on CDB to all awaiting units and ROB; mark reservation station available 

 

4. Commit: update register or memory with ROB result 

_ when instruction reaches head of ROB and results present, update register 

with result or store to memory and remove instruction from ROB 

_ if an incorrectly predicted branch reaches the head of ROB, flush the ROB, and 

restart at correct successor of branch 

 

ROB Data Structure 

 

ROB entry fields • Instruction type: branch, store, register operation (i.e., ALU or load) • State: indicates if instruction has completed and value is ready • Destination: where result is to be written – register number for register operation 

(i.e. ALU or load), memory address for store • branch has no destination result 

Value: holds the value of instruction result till time to commit 

Additional reservation station field • Destination: Corresponding ROB entry number 

Example 

1. L.D F6, 34(R2) 



 

 

2. L.D F2, 45(R3 

 

3. MUL.D F0, F2, F4 

 

4. SUB.D F8, F2, F6 

 

5. DIV.D F10, F0, F6 

 

6. ADD.D F6, F8, F2 

 

The position of Reservation stations, ROB and FP registers are indicated below: 

 

Assume latencies load 1 clock, add 2 clocks, multiply 10 clocks, divide 40 clocks 

Show data structures just before MUL.D goes to commit… 

 

Reservation Stations 

 

 

 

 

 

 

 

At the time MUL.D is ready to commit only the two L.D instructions have already 

committed,though others have completed execution 

Actually, the MUL.D is at the head of the ROB – the L.D instructions are shown only for 

understanding purposes #X represents value field of ROB entry number X 

 

Floating point registers 

 



 

 

Reorder 

Buffer 

 

 

 

Example 

Loop:  LD      F0        0         R1 

 

MULTD         F4       F0        F2 

 

SD                  F4       0         R1 

 

SUBI              R1        R1       #8 

 

BNEZ             R1       Loop 

 

Assume instructions in the loop have been issued twice 

Assume L.D and MUL.D from the first iteration have committed and all other 

instructions have completed 

Assume effective address for store is computed prior to its issue 

Show data structures 

 

Reorder Buffer 



 

 

 

 

 

Notes • If a branch is mispredicted, recovery is done by flushing the ROB of all entries that 

appear after the mispredicted branch • entries before the branch are allowed to continue • restart the fetch at the correct branch successor • When an instruction commits or is flushed from the ROB then the corresponding 

slots become available for subsequent instructions 

 

Advantages of hardware-based speculation: 

 -able to disambiguate memory references; 

-better when hardware-based branch prediction is better than software-

based branch 

prediction done at compile time; - maintains a completely precise exception model 

even for speculated instructions; 

does not require compensation or bookkeeping code; 

main disadvantage: 

complex and requires substantial hardware resources;



 

 

UNIT - III 

 

 

INSTRUCTION –LEVEL PARALLELISM – 2: Exploiting ILP 

using multiple issue and static scheduling Exploiting ILP using 

dynamic scheduling 

Multiple issue and speculation 

Advanced Techniques for instruction delivery and Speculation 

The Intel Pentium 4 as example 

UNIT III 

 

 

INSTRUCTION –LEVEL PARALLELISM – 2 

 

 

What is ILP? • Instruction Level Parallelism – Number of operations (instructions) that can be performed in parallel • Formally, two instructions are parallel if they can execute simultaneously in a 

pipeline of arbitrary depth without causing any stalls assuming that the pipeline 

has sufficient 

resources – Primary techniques used to exploit ILP • Deep pipelines • Multiple issue machines • Basic program blocks tend to have 4-8 instructions between branches – Little ILP within these blocks –   Must find ILP between groups of blocks 

 

Example Instruction Sequences 

 

• Independent instruction sequence: 



 

 

 

lw $10, 12($1) sub $11, $2, 

$3 and $12, $4, $5 or $13, 

$6, $7 add $14, $8, $9 

 

• Dependent instruction sequence: 

 

lw $10, 12($1) sub $11, $2, 

$10 and $12, $11, $10 or $13, 

$6, $7 

add $14, $8, $13 

 

 

Finding ILP: • Must deal with groups of basic code blocks • Common approach: loop-level parallelism – Example: –   In MIPS (assume $s0 initialized properly): 

 

for (i=1000; i > 0; i--) 

x[i] = x[i] + s; 

Loop: lw $t0, 0($s1) # t0 = array 

element addu $t0, $t0, $s2 # add 

scalar in $s2 

sw $t0, 0($s1) # store result 

addi $s1, $s1, -4 # decrement 

pointer bne $s1, $0, Loop # 

branch $s1 != 0 

 

Loop Unrolling: • Technique used to help scheduling (and performance) • Copy the loop body and schedule instructions from different iterations 

of the loop  gether 



 

 

• MIPS example (from prev. slide): 

 

Loop: lw $t0, 0($s1) # t0 = array 

element addu $t0, $t0, $s2 # add 

scalar in $s2 

sw $t0, 0($s1) # store 

result lw $t1, -4($s1) 

addu $t1, $t1, 

$s2 sw $t1, -

4($s1) 

addi $s1, $s1, -8 # decrement 

pointer bne $s1, $0, Loop # 

branch $s1 != 0 

 

Note the new register & counter adjustment! • Previous example, we unrolled the loop once – This gave us a second copy • Why introduce a new register ($t1)? – Antidependence (name dependence) • Loop iterations would reuse register $t0 • No data overlap between loop iterations! • Compiler RENAMED the register to prevent a “dependence” – Allows for better instruction scheduling and identification of true 

dependencies • In general, you can unroll the loop as much as you want – A factor of the loop counter is generally used –   Limited advantages to unrolling more than a few times 

Loop Unrolling: Performance: • Performance (dis)advantage of unrolling – Assume basic 5-stage 

pipeline • Recall lw requires a bubble if value used immediately after • For original loop 



 

 

– 10 cycles to execute first iteration – 16 cycles to execute two iterations • Assuming perfect prediction • For unrolled loop – 14 cycles to execute first iteration -- without reordering • Gain from skipping addi, bne – 12 cycles to execute first iteration -- with reordering • Put lw together, avoid bubbles after ea 

 

Loop Unrolling: Limitations • Overhead amortization decreases as loop is  unrolled more • Increase in code size – Could be bad if ICache miss rate increases • Register pressure –   Run out of registers that can be used in renaming process 

 

Exploiting ILP: Deep Pipelines 

Deep Pipelines • Increase pipeline depth beyond 5 stages – Generally allows for higher clock rates – UltraSparc III -- 14 stages – Pentium III -- 12 stages – Pentium IV -- 22 stages • Some versions have almost 30 stages – Core 2 Duo -- 14 stages – AMD Athlon -- 9 stages – AMD Opteron -- 12 stages – Motorola G4e -- 7 stages – IBM PowerPC 970 (G5) -- 14 stages • Increases the number of instructions executing at the same time • Most of the CPUs listed above also issue multiple instructions per cycle 

 

 



 

 

Issues with Deep Pipelines • Branch (Mis-)prediction – Speculation: Guess the outcome of an instruction to remove it as a 

dependence to other instructions – Tens to hundreds of instructions “in flight” – Have to flush some/all if a branch is mispredicted • Memory latencies/configurations – To keep latencies reasonable at high clock rates, need fast caches – Generally smaller caches are faster – Smaller caches have lower hit rates • Techniques like way prediction and prefetching can help lower latencies 

 

Optimal Pipelining Depths • Several papers published on this topic – Esp. the 29th International Symposium on Computer Architecture (ISCA) – Intel had one pushing the depth to 50 stages – Others have shown ranges between 15 and 40 –   Most of the variation is due to the intended workload 

Exploiting ILP: Multiple Issue Computers 

 

Multiple Issue Computers 

 

• Benefit – CPIs go below one, use IPC instead (instructions/cycle) – Example: Issue width = 3 instructions, Clock = 3GHz • Peak rate: 9 billion instructions/second, IPC = 3 • For our 5 stage pipeline, 15 instructions “in flight” at any given time • Multiple Issue types – Static • Most instruction scheduling is done by the compiler – Dynamic (superscalar) • CPU makes most of the scheduling decisions • Challenge: overcoming instruction  dependencies 



 

 

– Increased latency for loads – Control hazards become worse • Requires a more ambitious design – Compiler techniques for scheduling –   Complex instruction decoding logic 

 

Exploiting ILP:Multiple Issue Computers Static Scheduling 

 

Instruction Issuing • Have to decide which instruction types can issue in a cycle – Issue packet: instructions issued in a single clock cycle – Issue slot: portion of an issue 

packet • Compiler assumes a large responsibility for hazard checking, scheduling, etc. 

Static Multiple Issue 

For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with: – One slot is an ALU or branch instruction 

One slot is a load/store instruction 

 

 

 

Static Multiple Issue 

 



 

 

 

 

Static Multiple Issue Scheduling 

 

 

 

 

 

 



 

 

Static Mult. Issue w/Loop Unrolling 

 

 

Static Mult. Issue w/Loop Unrolling 

 

 

 

 

 

Exploiting ILP:Multiple Issue Computers Dynamic Scheduling 

 



 

 

Dynamic Multiple Issue Computers • Superscalar computers • CPU generally manages instruction issuing and ordering – Compiler helps, but CPU dominates • Process – Instructions issue in-order – Instructions can execute out-of-order • Execute once all operands are ready – Instructions commit in-order • Commit refers to when the architectural register file is updated (current 

completed state of program 

Aside: Data Hazard Refresher • Two instructions (i and j), j follows i in program order • Read after Read (RAR) • Read after Write (RAW) – Type: – Problem: • Write after Read (WAR) – Type: – Problem: • Write after Write (WAW) – Type: Problem: 

Superscalar 

Processors • Register Renaming – Use more registers than are defined by the architecture • Architectural registers: defined by ISA • Physical registers: total registers – Help with name dependencies • Antidependence – Write after Read hazard • Output dependence – Write after Write hazard 



 

 

 

Tomasulo’s Superscalar Computers • R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”, 

IBM J. of Research and Development, Jan. 1967 • See also: D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM 

System/360 model 91: Machine philosophy and instruction-handling,” IBM J. of 

Research and evelopment, Jan. 1967 • Allows out-of-order execution • Tracks when operands are available – Minimizes RAW hazards • Introduced renaming for WAW and WAR 

hazards 

Tomasulo’s Superscalar Computers 

 

 

 



 

 

Instruction Execution Process • Three parts, arbitrary number of cycles/part • Above does not allow for speculative execution • Issue (aka Dispatch) – If empty reservation station (RS) that matches instruction, send to RS with 

operands rom register file and/or know which functional unit will send operand –   If no empty RS, stall until one is 

available 

 

Rename registers as appropriate 

Instruction Execution Process • Execute – All branches before instruction must be resolved • Preserves exception behavior – When all operands available for an instruction, send it to functional unit • Monitor common data bus (CDB) to see if result is needed by RS entry – For non-load/store reservation stations • If multiple instructions ready, have to pick one to send to functional unit – For load/store • Compute address, then place in buffer • Loads can execute once memory is free • Stores must wait for value to be stored, then execute 

 

Write Back – Functional unit places on CDB • Goes to both register file and reservation stations – Use of CDB enables forwarding for RAW hazards – Also introduces a latency between result and use of a value 

 

Reservation Stations • Require 7 fields – Operation to perform on operands (2 operands) 



 

 

– Tags showing which RS/Func. Unit will be producing operand (or zero if 

operand available/unnecessary) – Two source operand values – A field for holding memory address calculation data • Initially, immediate field of instruction • Later, effective address – Busy • Indicates that RS and its functional unit are busy • Register file support – Each entry contains a field that identifies which RS/func. unit will be writing into 

this entry (or blank/zero if noone will be writing to it) Limitation of Current 

Machine 

 

Instruction execution requires branches to be resolved 

 • For wide-issue machines, may issue one branch per clock cycle! • Desire: – Predict branch direction to get more ILP – Eliminate control dependencies • Approach: – Predict branches, utilize speculative instruction execution –   Requires mechanisms for “fixing” machine when speculation is incorrect 

Tomasulo’s w/Hardware Speculation 



 

 

 

 

Tomasulo’s w/HW Speculation 

 • Key aspects of this design – Separate forwarding (result bypassing) from actual instruction completion • Assuming instructions are executing speculatively • Can pass results to later instructions, but prevents instruction from performing 

updates 

that can’t be “undone” – Once instruction is no longer speculative it can update register file/memory • New step in execution sequence: instruction commit • Requires instructions to wait until they can commit Commits still happen in order 

Reorder Buffer (ROB) 

 

Instructions hang out here before committing • Provides extra registers for RS/RegFile



 

 

– Is a source for operands • Four fields/entry – Instruction type • Branch, store, or register operation (ALU & load) – Destination field • Register number or store address – Value field • Holds value to write to register or data for store – Ready field • Has instruction finished executing? • Note: store buffers from previous version now in ROB 

Instruction Execution Sequence • Issue – Issue instruction if opening in RS & ROB – Send operands to RS from RegFile and/or ROB • Execute – Essentially the same as before • Write Result – Similar to before, but put result into ROB • Commit (next slide) 

 

Committing Instructions 

Look at head of ROB • Three types of instructions – Incorrectly predicted branch • Indicates speculation was wrong • Flush ROB • Execution restarts at proper location – Store • Update memory • Remove store from ROB – Everything else • Update registers • Remove instruction from ROB



 

 

RUU Superscalar Computers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling tool Simple Scalar implements an RUU style processor – You will be using this tool after Spring Break • Architecture similar to speculative Tomasulo’s • Register Update Unit (RUU) – Controls instructions scheduling and dispatching to functional units – Stores intermediate source values for instructions – Ensures instruction commit occurs in order! – Needs to be of appropriate size • Minimum of issue width * number of pipeline stages • Too small of an RUU can be a structural hazard! • Result bus could be a structural hazard



 

 

 

 

 

A Real Computer:Intel Pentium 4 

Pentium 4 Die Photo 

 

Overview of P4 

 



 

 

 

 

 

Pentium 4 Pipeline 

 • See handout for overview of major steps • Prescott (90nm version of P4) had 31 pipeline stages –   Not sure how pipeline is divided up – 

 

 

P4: Trace Cache 



 

 

 

 

Non-traditional instruction cache • Recall x86 ISA – CISC/VLIW: ugly assembly instructions of varying lengths – Hard for HW to decode – Ended up translating code into RISC-like microoperations to execute • Trace Cache holds sequences of RISC-like micro-ops – Less time decoding, more time executing – Sequence storage similar to “normal” instruction cache 

 

P4: Branch Handling 

 

BTBs (Branch Target Buffers) – Keep both branch history and branch target addresses • Target address is instruction immediately after branch – Predict if no entry in BTB for branch • Static prediction • If a backwards branch, see how far target is from current; if within a threshold, 

predict taken, else predict not taken • If a forward branch, predict not taken • Also some other rules • Front-end BTB is L2 (like) for the trace cache BTB (L1 like) 

 

P4: Execution Core • Tomasulo’s algorithm-like • Can have up to 126 instructions in-flight – Max of 3 micro-ops sent to core/cycle – Max of 48 loads, 32 stores • Send up to 6 instructions to functional units per cycle via 4 ports – Port 0: Shared between first fast ALU and FP/Media move scheduler – Port 1: Shared between second fast ALU and Complex integer and FP/Media 

scheduler 



 

 

– Port 2: Load 

Port 3: Store 

 

P4: Rapid Execution Engine 

Execute 6 micro-ops/cycle – Simple ALUs run at 2x machine clock rate – Can generate 4 simple ALU results/cycle – Do one load and one store per cycle • Loads involve data speculation – Assume that most loads hit L1 and Data Translation Look-aside Buffer (DTLB) – Get data into execution, while doing address check • Fix if L1 miss occurred 

 

P4: Memory Tricks 

 • Store-to-Load Forwarding – Stores must wait to write until non-speculative – Loads occasionally want data from store location – Check both cache and Store Forwarding Buffer • SFB is where stores are waiting to be written – If hit when comparing load address to SFB address, use SFB data, not cache data • Done on a partial address • Memory Ordering Buffer – Ensures that store-to-load forwarding was correct • If not, must re-execute load – Force forwarding • Mechanism for forwarding in case addresses are misaligned • MOB can tell SFB to forward or not – False forwarding • Fixes partial address match between load and SFB 

 

 

 



 

 

P4: Specs for Rest of Slides 

 • For one running at 3.2 GHz – From grad arch book • L1 Cache – Int: Load to use - 4 cycles – FP: Load to use - 12 cycles – Can handle up to 8 outstanding load misses • L2 Cache (2 MB) 

18 cycle access time 

 

P4: Branch Prediction 

 

P4: Misspeculation Percentages 

 

 

 



 

 

 

P4: Data Cache Miss Rates 

 

 

P4: CPI 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4 vs. AMD Opteron 

 

 

 

 

P4 vs. Opteron: Real Performance 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT - IV 

 

MULTIPROCESSORS AND THREAD –LEVEL PARALLELISM: 

Introduction 

Symmetric shared-memory architectures 

Performance of symmetric shared–memory multiprocessors 

Distributed shared memory and directory-based coherence Basics 

of synchronization 

Models of Memory Consistency.                       

 

UNIT IV 

 

 

Multiprocessors and Thread-Level Parallelism 

 

We have seen the renewed interest in developing multiprocessors in early 2000: 

- The slowdown in uniprocessor performance due to the diminishing returns in 

exploring instruction-level parallelism. 

- Difficulty to dissipate the heat generated by uniprocessors with high clock rates. 

- Demand for high-performance servers where thread-level parallelism is natural. 

For all these reasons multiprocessor architectures has become increasingly attractive. 

 

A Taxonomy of Parallel Architectures 

The  idea  of  using  multiple  processors  both  to  increase  performance  

and  to improve availability dates back to the earliest electronic computers. About 

30 years ago, Flynn proposed a simple model of categorizing all computers that is 

still useful today. He looked at the parallelism in the instruction and data streams 

called for by the instructions at the most constrained component of the 

multiprocessor, and placed all computers in one of four categories: 

 

1.Single instruction stream, single data stream 

 

(SISD)—This category is the uniprocessor. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

2.Single instruction stream, multiple data streams 

 

(SIMD)—The same instruction is executed by multiple processors using different 

data streams. Each processor has its own data memory (hence multiple data), but 

there is a single instruction memory and control processor, which fetches and 

dispatches instructions. Vector architectures are the largest class of processors of 

this type. 

 

 

 

 



 

 

3.Multiple instruction streams, single data stream (MISD)—No commercial 

multiprocessor of this type has been built to date, but may be in the future. Some 

special purpose stream processors approximate a limited form of this (there is 

only a single data stream that is operated on by successive functional units). 

 

 

 

4.  Multiple  instruction  streams,  multiple  data  streams  (MIMD)—Each  

processor fetches its own instructions and operates on its own data. The 

processors are often off- the-shelf microprocessors. This is a coarse model, as some 

multiprocessors are hybrids of these categories. Nonetheless, it is useful to put a 

framework on the design space. 

 

 

 



 

 

1. MIMDs offer flexibility. With the correct hardware and software support, MIMDs 

can function as single-user multiprocessors focusing on high performance for one 

application, as multiprogrammed multiprocessors running many tasks 

simultaneously, or as some combination of these functions. 

 

2.  MIMDs  can  build  on  the  cost/performance  advantages  of  off-the-shelf 

microprocessors. In fact, nearly all multiprocessors built today use the same 

microprocessors found in workstations and single-processor servers. 

 

With an MIMD, each processor is executing its own instruction stream. In many 

cases, each processor executes a different process. Recall from the last chapter, that 

a process is an segment of code that may be run independently, and that the 

state of the process contains all the information necessary to execute that 

program on a processor.  In a multiprogrammed environment, where the 

processors may be running independent tasks, each process is typically 

independent of the processes on other processors. It is also useful to be able to 

have multiple processors executing a single program and sharing the code and 

most of their address space. When multiple processes share code and data in this 

way, they are often called threads 

 

. Today, the term thread is often used in a casual way to refer to multiple 

loci of execution that may run on different processors, even when they do not share 

an address space. To take advantage of an MIMD multiprocessor with n processors, 

we must usually have at least n threads or processes to execute. The independent 

threads are typically identified by the programmer or created by the compiler. Since 

the parallelism in this situation is contained in the threads, it is called thread-level 

parallelism. 

 

Threads   may   vary   from   large-scale,   independent   processes–for   

example, independent programs running in a multiprogrammed fashion on 

different processors– to parallel iterations of a loop, automatically generated by a 

compiler and each executing for perhaps less than a thousand instructions. Although 

the size of a thread is important in considering how to exploit thread-level 



 

 

parallelism efficiently, the important qualitative distinction is that such parallelism 

is identified at a high-level by the software system and that the threads consist of 

hundreds to millions of instructions that may be executed in parallel. In contrast, 

instruction level parallelism is identified by primarily by the hardware, though with 

software help in some cases, and is found and exploited one instruction at a time. 

 

Existing MIMD multiprocessors fall into two classes, depending on the number 

of processors involved, which in turn dictate a memory organization and 

interconnect strategy. We refer to the multiprocessors by their memory 

organization, because what constitutes a small or large number of processors is 

likely to change over time. 

The first group, which we call 

 

 

 

 

 

 

 

Centralized shared memory architectures have at most a few dozen 

processors in 

2000. For multiprocessors with small processor counts, it is possible for the 

processors to share a single centralized memory and to interconnect the 



 

 

processors and memory by a bus. With large caches, the bus and the single memory, 

possibly with multiple banks, can satisfy the memory demands of a small number of 

processors. By replacing a single bus with multiple buses, or even a switch, a 

centralized shared memory design can be scaled 

to a few dozen processors. Although scaling beyond that is technically conceivable, 

sharing a centralized memory, even organized as multiple banks, becomes less 

attractive as the number of processors sharing it increases. 

 

Because there is a single main memory that has a symmetric relationship to 

all processos and a uniform access time from any processor, these multiprocessors 

are often called symmetric (shared-memory) multiprocessors ( SMPs), and this style of 

architecture is sometimes called UMA for uniform memory access. This type of 

centralized sharedmemory architecture is currently by far the most popular 

organization. 

The second group consists of multiprocessors with physically distributed 

memory. To support larger processor counts, memory must be distributed among 

the processors rather than centralized; otherwise the memory system would not be 

able to support the bandwidth demands of a larger number of processors without 

incurring excessively long access latency. With the rapid increase in processor 

performance and the associated increase in a processor’s memory bandwidth 

requirements, the scale of multiprocessor for which distributed memory is preferred 

over a single, centralized memory continues to decrease in number (which is 

another reason not to use small and large scale). Of course, the larger number of 

processors raises the need for a high bandwidth interconnect.

 



 

 

Distributing  the  memory  among  the  nodes  has  two  major  benefits.  First,  it  

is  a costeffective way to scale the memory bandwidth, if most of the accesses are to 

the local memory in the node. Second, it reduces the latency for accesses to the 

local memory. These two advantages make distributed memory attractive at 

smaller processor counts as processors  get  ever  faster  and  require  more  

memory  bandwidth  and  lower  memory latency.   The   key   disadvantage   for   a   

distributed   memory   architecture   is   that communicating  data  between  

processors  becomes  somewhat  more  complex  and  has higher latency, at least 

when there is no contention, because the processors no longer share a single 

centralized memory. As we will see shortly, the use of distributed memory leads to 

two different paradigms for interprocessor communication. Typically, I/O as well as 

memory is distributed among the nodes of the multiprocessor, and the nodes may 

be small SMPs (2–8 processors). Although the use of multiple processors in a node 

together with a memory and a network interface is quite useful from the cost-

efficiency viewpoint. 

 

Challenges for Parallel Processing • Limited parallelism available in programs 

 –    Need new algorithms that can have better parallel performance 

 • Suppose you want to achieve a speedup of 80 with 100 processors. What fraction 

of the original computation can be sequential? 

 

 

 



 

 

 

Data Communication Models for Multiprocessors –  shared  memory:  access  shared  address  space  implicitly via  load  and  

store 

operations. – message-passing: done by explicitly passing messages among 

the processors • can invoke software with Remote Procedure Call (RPC) • often via library, such as MPI: Message Passing Interface • also called "Synchronous communication" since 

communication causes synchronization between 2 

processes 

 

 

Message-Passing Multiprocessor 

 

- The address space can consist of multiple private address spaces 

that are logically disjoint and cannot be addressed by a remote 

processor 

 

- The same physical address on two different processors refers to 

two different locations in two different memories. 

 

Multicomputer (cluster): 

 

- can even consist of completely separate computers connected on a LAN. 

 

-    cost-effective for applications that require little or no communication 

 

Symmetric Shared-Memory Architectures 

 

Multilevel caches can substantially reduce the memory bandwidth 

demands of a processor. 



 

 

This is extremely 

- Cost-effective 

- This can work as plug in play by placing the processor and 

cache sub- system on a board into the bus backplane. 

Developed by • IBM – One chip multiprocessor • AMD and INTEL- Two –Processor • SUN – 8 processor multi core 

Symmetric shared – memory support caching of • Shared Data • Private Data 

 

Private data: used by a single processor 

When a private item is cached, its location is migrated to the cache 

Since no other processor uses the data, the program behavior is identical to 

that in a uniprocessor. 

 

Shared data: used by multiple processor 

When shared data are cached, the shared value may be replicated in multiple 

c

a

c

h

e

s 

advantages: reduce access latency and memory contention induces a new 

problem: cache coherence. 

 

Cache 

Coherence 

Unfortunately, caching shared data introduces a new problem because the 

view of 



 

 

memory held  by two  different  processors is  through  their  individual  

caches,  which, without any additional precautions, could end up seeing two 

different values. I.e, If two different processors have two different values for 

the same location, this difficulty is generally referred to as cache coherence 

problem 

 

 

 • Informally: 

 – “Any read must return the most recent write” –    Too strict and too difficult to implement – • Better: – “Any write must eventually be seen by a read” –    All writes are seen in proper order (“serialization”) – • Two rules to ensure this: 

 – “If P writes x and then P1 reads it, P’s write will be seen by P1 if the 

read and write are sufficiently far apart” – Writes to a single location are serialized: seen in one order • Latest write will be seen • Otherwise could see writes in illogical order (could see older 

value after a newer value) 

 



 

 

The definition contains two different aspects of memory system: • Coherence • Consistency 

A memory system is coherent if, • Program order is preserved. • Processor should not continuously read the old data value. • Write to the same location are serialized. 

 

The above three properties are sufficient to ensure coherence,When a written value 

will 

be seen is also important. This issue is defined by memory consistency model. 

Coherence and consistency are complementary. 

 

Basic schemes for enforcing coherence 

 

 

Coherence cache provides: 

 • migration: a data item can be moved to a local cache and used there in a 

transparent fashion. • replication for shared data that are being simultaneously read. • both are critical to performance in accessing shared data. 

To  over  come  these  problems,  adopt  a  hardware  solution  by  

introducing  a protocol tomaintain coherent caches named as Cache Coherence 

Protocols 

These protocols are implemented for tracking the state of any sharing of a data 

block. Two classes of Protocols • Directory based • Snooping based 

 

Directory based • Sharing status of a block of physical memory is kept in one location called the 

directory. 



 

 

• Directory-based coherence has slightly higher implementation overhead 

than snooping. • It can scale to larger processor count. 

 

Snooping • Every cache that has a copy of data also has a copy of the sharing status of the 

block. • No centralized state is kept. • Caches are also accessible via some broadcast medium (bus or switch) • Cache controller monitor or snoop on the medium to determine whether or 

not 

they have a copy of a block that is represented on a bus or switch access. 

 

Snooping protocols are popular with multiprocessor and caches attached to 

single shared memory as they can use the existing physical connection- bus to 

memory, to interrogate the status of the caches. Snoop based cache coherence 

scheme is implemented on a shared bus. Any communication medium that 

broadcasts cache misses to all the processors. 

 

Basic Snoopy Protocols • Write strategies – Write-through: memory is always up-to-date – Write-back: snoop in caches to find most recent copy • Write Invalidate Protocol – Multiple readers, single writer – Write to shared data: an invalidate is sent to all caches which snoop 

and 

invalidate any copies • Read miss: further read will miss in the cache and fetch a new 

copy of the data. • Write Broadcast/Update Protocol (typically write through) – Write to shared data: broadcast on bus, processors snoop, and 

update 



 

 

any copies – Read miss: memory/cache is always up-to-date. • Write serialization: bus serializes requests! –    Bus is single point of 

arbitration Examples of Basic 

Snooping Protocols Write Invalidate 

 

Write Update 

 

 

 

Assume neither cache initially holds X and the value of X in memory is 0 

 

Example Protocol 

 



 

 

•  Snooping  coherence  protocol  is  usually  implemented  by  incorporating  

a 

finitestate controller in each node 

 • Logically, think of a separate controller associated with each cache block – That is, snooping operations or cache requests for different blocks 

can proceed independently • In implementations, a single controller allows multiple operations to distinct 

blocks to proceed in interleaved fashion – that is, one operation may be initiated before another is completed, 

even through only one cache access or one bus access is allowed at 

time 

 

Example Write Back Snoopy Protocol 

 • Invalidation protocol, write-back cache – Snoops every address on bus – If it has a dirty copy of requested block, provides that block in 

response to the read request and aborts the memory access • Each memory block is in one state: – Clean in all caches and up-to-date in memory (Shared) – OR Dirty in exactly one cache (Exclusive) – OR Not in any caches • Each cache block is in one state (track these): – Shared : block can be read – OR Exclusive : cache has only copy, its writeable, and dirty – OR Invalid : block contains no data (in uniprocessor cache too) • Read misses: cause all caches to snoop bus • Writes to clean blocks are treated as misses 

 

Write-Back State Machine – CPU 

 



 

 

State Transitions for Each Cache Block is as shown 

below 

 

 

 

 

 • CPU may read/write hit/miss to the block • May place write/read miss on bus • May receive read/write miss from bus 



 

 

 

 

Conclusion • “End” of uniprocessors speedup => Multiprocessors • Parallelism challenges: % parallalizable, long latency to remote memory • Centralized vs. distributed memory – Small MP vs. lower latency, larger BW for Larger MP • Message Passing vs. Shared Address – Uniform access time vs. Non-uniform access time •  Snooping cache over  shared  medium  for smaller MP  by invalidating  

other 

cached copies on write • Sharing cached data _ Coherence (values returned by a read), Consistency 

(when a written value will be returned by a read) • Shared medium serializes writes _ Write consistency 

 

Implementation Complications • Write Races: – Cannot update cache until bus is obtained • Otherwise, another processor may get bus first, 

and then write the same cache block! 



 

 

– Two step process: • Arbitrate for bus • Place miss on bus and complete 

operation – If miss occurs to block while waiting for bus, handle miss 

(invalidate may be needed) and then restart. – Split transaction bus: • Bus transaction is not atomic: can have multiple outstanding transactions for 

a block •  Multiple  misses  can  interleave,  allowing  two  caches  to  grab  block  in  

the 

Exclusive state • Must track and prevent multiple misses for one block • Must support interventions and invalidations 

 

Performance Measurement • Overall cache performance is a combination of – Uniprocessor cache miss traffic – Traffic caused by communication – invalidation and subsequent 

cache misses • Changing the processor count, cache size, and block size can affect these 

two components of miss rate • Uniprocessor miss rate: compulsory, capacity, conflict • Communication miss rate: coherence misses –    True sharing misses + false sharing misses 

 

True and False Sharing Miss • True sharing miss – The first write by a PE to a shared cache block causes an 

invalidation to establish ownership of that block – When another PE attempts to read a modified word in that cache 

block, a miss occurs and the resultant block is transferred • False sharing miss 



 

 

– Occur when a block a block is invalidate (and a subsequent 

reference causes a miss) because some word in the block, other 

than the one being read, is written to – The block is shared, but no word in the cache is actually shared, 

and this miss would not occur if the block size were a single word • Assume that words x1 and x2 are in the same cache block, which is in the 

shared 

state in the caches of P1 and P2. Assuming the following sequence of 

events, identify each miss as a true sharing miss or a false sharing miss. 

 

 

 

 

 

 

 

Example Result



 

 

• True sharing miss (invalidate P2) • 2: False sharing miss – x2 was invalidated by the write of P1, but that value of x1 is not used 

in 

P2 • 3: False sharing miss –– The block containing x1 is marked shared due to the read in P2, 

but P2 did not read x1. A write miss is required to obtain exclusive access to 

the block • 4: False sharing miss • 5: True sharing miss 

 

Distributed Shared-Memory Architectures 

 

 

Distributed shared-memory architectures • Separate memory per processor – Local or remote access via memory controller – The physical address space is statically distributed 

Coherence 

Problems • Simple approach: uncacheable – shared data are marked as uncacheable and only private 

data are kept in caches – very long latency to access memory for shared data • Alternative: directory for memory blocks 

The directory per memory tracks state of every block in every 

cache • which caches have a copies of the memory block, dirty vs. 

clean, 

... 

Two additional complications • The interconnect cannot be used as a single point of arbitration like the  



 

 

bus  • Because the interconnect is message oriented, many messages must 

have  explicit responses 

 

To prevent directory becoming the bottleneck, we distribute 

directory entries with memory, each keeping track of which processors have copies of 

their memory blocks 



 

 

 

 

Directory Protocols 

 • Similar to Snoopy Protocol: Three states – Shared: 1 or more processors have the block cached, and the 

value in memory is up-to-date (as well as in all the caches) – Uncached: no processor has a copy of the cache block (not valid in 

any cache) – Exclusive: Exactly one processor has a copy of the cache block, and 

it has written the block, so the memory copy is out of data• The 

processor is called the owner of the block •  In  addition  to  tracking  the  state  of  each  cache  block,  we  must  track  

the processors that have copies of the block when it is shared (usually a bit 

vector for each memory block: 1 if processor has copy) • Keep it 

simple(r): – Writes to non-exclusive data => write miss – Processor blocks until access completes – Assume messages received and acted upon in order sent 

 

 

 

 

 

 

 

 

 • local node: the node where a request originates • home node: the node where the memory location and directory entry of an address 

reside • remote node: the node that has a copy of a cache block (exclusive or shared) 



 

 

 

 • Comparing to snooping protocols: – identical states – stimulus is almost identical – write a shared cache block is treated as a write miss (without 

fetch the block) – cache block must be in exclusive state when it is written – any shared block must be up to date in memory • write miss: data fetch and selective invalidate operations sent by the directory 

controller (broadcast in snooping protocols) 

 

Directory Operations: Requests and Actions • Message sent to directory causes two actions: – Update the 

directory – More messages to satisfy 

request • Block is in Uncached state: the copy in memory is the current value; 

only 

possible requests for that block are: – Read miss: requesting processor sent data from memory 

&requestor made only sharing node; state of block made Shared. 



 

 

–  Write  miss:  requesting  processor  is  sent  the  value  &  becomes  

the Sharing node. The block is made Exclusive to indicate that the only valid 

copy is cached. Sharers indicates the identity of the owner. • Block is Shared => the memory value is up-to-date: – Read miss: requesting processor is sent back the data from 

memory & 

requesting processor is added to the sharing 

set. – Write miss: requesting processor is sent the value. All processors in 

the set Sharers are sent invalidate messages, & Sharers is set to 

identity of requesting processor. The state of the block is made 

Exclusive. • Block is Exclusive: current value of the block is held in the cache of 

the 

processor identified by the set Sharers (the owner) => three possible directory 

requests: – Read miss: owner processor sent data fetch message, causing state of 

block in owner’s cache to transition to Shared and causes owner to send data to 

directory, where it is written to memory & sent back to requesting processor. 

Identity of requesting processor is added to set Sharers, which still contains 

the identity of the processor that was the owner (since it still has a readable copy). 

State is shared. – Data write-back: owner processor is replacing the block and hence 

must write  it  back,  making  memory  copy  up-to-date  (the  home  

directory 

essentially becomes the owner), the block is now Uncached, and the Sharer 

set is empty. – Write miss: block has a new owner. A message is sent to old owner 

causing the cache to send the value of the block to the directory from which it is 

sent to the requesting processor, which becomes the new owner. Sharers is set to 

identity of new owner, and state of block is made Exclusive. 

 

 



 

 

 

Synchronization: The Basics 

 

Synchronization mechanisms are typically built with user-level software 

routines that rely on hardware –supplied synchronization instructions. 

 • Why Synchronize? 

Need to know when it is safe for different processes to use shared data • Issues for Synchronization: – Uninterruptable instruction to fetch and update memory 

(atomic operation); – User level synchronization operation using this primitive; – For large scale MPs, synchronization can be a bottleneck; 

techniques to reduce contention and latency of synchronization 

 

Uninterruptable Instruction to Fetch and Update Memory • Atomic exchange: interchange a value in a register for a value in memory 

0 _ synchronization variable is free 

1 _ synchronization variable is locked and unavailable – Set register to 1 & swap – New value in register determines success in getting lock 

0 if you succeeded in setting the lock (you were first) 

1 if other processor had already claimed access – Key is that exchange operation is indivisible • Test-and-set: tests a value and sets it if the value passes the test • Fetch-and-increment: it returns the value of a memory location and 

atomically increments it – 0 _ synchronization variable is free • Hard to have read & write in 1 instruction: use 2 instead • Load linked (or load locked) + store conditional – Load linked returns the initial value – Store conditional returns 1 if it succeeds (no other store to same 

memory location since preceding load) and 0 otherwise 



 

 

• Example doing atomic swap with LL & SC: 

try:      mov    R3,R4 ;           mov exchange value 

ll R2,0(R1) ; load linked 

sc        R3,0(R1) ; store conditional 

 

beqz     R3,try ; branch store fails (R3 = 0) 

 

mov    R4,R2 ; put load value in R4 

 • Example doing fetch & increment with LL & SC: 

try: ll R2,0(R1) ; load linked 

 addi R2,R2,#1 ; increment (OK if reg–
reg) 

 sc R2,0(R1) ; store conditional 
 beqz R2,try ; branch store fails (R2 = 

0)  

User Level Synchronization—Operation Using this Primitive • Spin locks: processor continuously tries to acquire, spinning around a 

loop 

trying to get the 

lock li R2,#1 

lockit: exch     R2,0(R1) ;      atomic 

exchange bnez     R2,lockit ;      

already locked? • What about MP with cache coherency? – Want to spin on cache copy to avoid full memory latency – Likely to get cache hits for such variables • Problem: exchange includes a write, which invalidates all other copies; 

this generates considerable bus traffic • Solution: start by simply repeatedly reading the variable; when it changes, 

then 

try        exchange        (“test and test&set”): 

try:       li        R2,#1 

lockit: lw        R3,0(R1)         ;load var 



 

 

bnez    R3,lockit ;                   _ 0 _ not free _ spin 

exch    R2,0(R1) ;                  atomic exchange 

bnez    R2,try ;                       already locked? 

 

Memory Consistency Models • What is consistency? When must a processor see the new value? 

e.g., 

seems that P1: A = 0; P2: B = 0; 

..... ..... 

A = 1; B = 1; 

L1: if (B == 0) ... L2: if (A == 0) ... • Impossible for both if statements L1 & L2 to be true? – What if write invalidate is delayed & processor continues? • Memory consistency models: 

what are the rules for such cases? • Sequential consistency: result of any execution is the same as if the accesses 

of each  processor  were  kept  in  order  and  the  accesses  among  

different 

processors were interleaved _ assignments before ifs above – SC: delay all memory accesses until all invalidates done • Schemes faster execution to sequential consistency • Not an issue for most programs; they are synchronized – A program is synchronized if all access to shared data are 

ordered by synchronization operations 

write (x) 

... 

release (s) {unlock} 

... 

acquire (s) {lock} 

... 

read(x

) 



 

 

• Only those programs willing to be nondeterministic are not synchronized: “data race”: outcome f(proc. speed) • Several Relaxed Models for Memory Consistency since most programs are 

synchronized; characterized by their attitude towards: RAR, WAR, RAW, WAW 

to different addresses 

 

Relaxed Consistency Models : The Basics 

 • Key idea: allow reads and writes to complete out of order, but to use 

synchronization operations to enforce ordering, so that a synchronized program 

behaves as if the processor were sequentially consistent – By relaxing orderings, may obtain performance advantages – Also specifies range of legal compiler optimizations on shared data – Unless synchronization points are clearly defined and programs are 

synchronized, compiler could not interchange read and write of 2 shared  data 

items because might affect the semantics of the program • 3 major sets of relaxed orderings: 

1. W_R ordering (all writes completed before next read) • Because retains ordering among writes, many programs that operate 

under sequential consistency operate under this model, without additional 

synchronization. Called processor consistency 

2. W _ W ordering (all writes completed before next write) 

3. R _ W and R _ R orderings, a variety of models depending on 

ordering restrictions and how synchronization operations enforce 

ordering • Many complexities in relaxed consistency models; defining precisely what it 

means for a write to complete; deciding when processors can see values that it has 

written 
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REVIEW OF MEMORY HIERARCHY

 

 • Unlimited amount of fast memory 

- Economical solution is memory hierarchy 

- Locality 

- Cost performance 

Principle of locality 

- most programs do not access all code or data uniformly. • Locality occurs 

- Time (Temporal locality) 

- Space (spatial locality)• 
Guidelines 

 – Smaller hardware can be made faster – Different speed and sizes



 

 

 

 

 

 

 

Goal is provide a memory system with cost per byte than the next lower level • Each level maps addresses from a slower, larger memory to a smaller but 

faster 

memory higher in the hierarchy. – Address mapping – Address checking. • Hence protection scheme for address for scrutinizing addresses are also 

part of the memory hierarchy. 

 

Why More on Memory Hierarchy? 

 



 

 

 • The importance of memory hierarchy has increased with advances in performance 

of processors. 

 • Prototype 

`– When a word is not found in cache • Fetched from memory and placed in cache with the address tag. • Multiple words( block) is fetched for moved for efficiency reasons. – key design • Set associative – Set is a group of block in the cache. – Block is first mapped on to set. 

» Find mapping 

» Searching the 

set 

Chosen by the address of the data: 

(Block address) MOD(Number of sets in cache) • n-block in a set – Cache replacement is called n-way set associative. 

Cache data 

- Cache read. 

- Cache write. 

Write through: update cache and writes through to update 

memory. Both strategies 

- Use write buffer. 

this allows the cache to proceed as soon as the data is placed in 

the buffer rather than wait the full latency to write the data into 

memory.

Metric  

used to measure the benefits is miss rate



 

 

No of access that miss 

No of accesses 

Write back: updates the copy in the cache. • Causes of high miss rates 

 – Three Cs model sorts all misses into three categories • Compulsory: every first access cannot be in cache – Compulsory misses are those that occur if there is an infinite cache • Capacity: cache cannot contain all that blocks that are needed for 

the program. – As blocks are being discarded and later retrieved. • Conflict: block placement strategy is not fully associative –    Block miss if blocks map to its set. 

 

 



 

 

Miss rate can be a misleading measure for several reasons 

So, misses per instruction can be used per memory reference 

 

 

 

Cache Optimizations 

Six basic cache optimizations 

1. Larger block size to reduce miss rate: 

- To reduce miss rate through spatial locality. 

- Increase block size. 

- Larger block size reduce compulsory misses. 

- But they increase the miss penalty. 

2. Bigger caches to reduce miss rate: 

- capacity misses can be reduced by increasing the cache capacity. 

- Increases larger hit time for larger cache memory and higher cost and power. 

3. Higher associativity to reduce miss rate: 

- Increase in associativity reduces conflict misses. 

4. Multilevel caches to reduce penalty: 

- Introduces additional level cache 

- Between original cache and memory. 

- L1- original cache 

L2- added cache. 

L1 cache: - small enough 

- speed matches with clock cycle 

time. L2 cache: - large enough 

- capture many access that would go to main 

memory. Average access time can be redefined as 

Hit timeL1+ Miss rate L1 X ( Hit time L2 + Miss rate L2 X Miss penalty L2) 

5. Giving priority to read misses over writes to reduce miss penalty: 



 

 

- write buffer is a good place to implement this optimization. 

- write buffer creates hazards: read after write hazard. 

6. Avoiding address translation during indexing of the cache to reduce hit time: 

- Caches must cope with the translation of a virtual address from the processor 

to 

a physical address to access memory. 

- common optimization is to use the page offset. 

- part that is identical in both virtual and physical addresses- to index the 

cache. 

 

Advanced Cache Optimizations • Reducing hit time – Small and simple caches – Way prediction – Trace caches • Increasing cache bandwidth – Pipelined caches – Multibanked caches – Nonblocking caches • Reducing Miss Penalty – Critical word first – Merging write buffers • Reducing Miss Rate – Compiler optimizations • Reducing miss penalty or miss rate via parallelism – Hardware prefetching –    Compiler prefetching – 

First Optimization : Small and Simple 

Caches • Index tag memory and then compare takes time • _ Small cache can help hit time since smaller memory takes less time to index 



 

 

– E.g., L1 caches same size for 3 generations of AMD 

microprocessors: K6, Athlon, and Opteron – Also L2 cache small enough to fit on chip with the processor 

avoids time penalty of going off chip • Simple _ direct mapping – Can overlap tag check with data transmission since no choice • Access time estimate for 90 nm using CACTI model 4.0 –    Median ratios of access time relative to the direct-mapped caches are 1.32, 

1.39, and 1.43 for 2-way, 4-way, and 8-

way caches 

 

 

 

Second Optimization: Way Prediction 

 • How to combine fast hit time of Direct Mapped and have the lower conflict 

misses of 2-way SA cache? 

 • Way prediction: keep extra bits in cache to predict the “way,” or block within 

the set, of next cache access. 

 

 

 – Multiplexer is set early to select desired block, only 1 tag comparison performed 

that clock cycle in parallel with reading the cache data 



 

 

 – Miss _ 1st check other blocks for matches in next clock cycle • Accuracy » 85% • Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles 

- Used for instruction caches vs. data caches 

 

Third optimization: Trace Cache 

 • Find more instruction level parallelism? 

How to avoid translation from x86 to microops? • Trace cache in Pentium 4 

1. Dynamic traces of the executed instructions vs. static sequences of 

instructions as determined by layout in memory – Built-in branch predictor 

2. Cache the micro-ops vs. x86 instructions – Decode/translate from x86 to micro-ops on trace cache miss 

+ 1. _ better utilize long blocks (don’t exit in middle of block, don’t enter 

at label in middle of block) 

- 1. _ complicated address mapping since addresses no longer 

aligned to powerof- 

2 multiples of word size 

- 1. _ instructions may appear multiple times in multiple dynamic 

traces due to different branch outcomes 

 

Fourth optimization: pipelined cache access to increase bandwidth • Pipeline cache access to maintain bandwidth, but higher latency • Instruction cache access pipeline stages: 

1: Pentium 

2: Pentium Pro through Pentium III 

4: Pentium 4 

- _ greater penalty on mispredicted branches 

- _ more clock cycles between the issue of the load and the use of the 

data 



 

 

 

Fifth optimization: Increasing Cache Bandwidth Non-Blocking Caches 

 • Non-blocking cache or lockup-free cache allow data cache to continue to 

supply cache hits during a miss – requires F/E bits on registers or out-of-order execution – requires multi-bank memories • “hit under miss” reduces the effective miss penalty by working during miss vs. 

ignoring CPU requests • “hit under multiple miss” or “miss under miss” may further lower the effective 

miss penalty by overlapping multiple misses – Significantly increases the complexity of the cache controller as 

there can be multiple outstanding memory accesses – Requires multiple memory banks (otherwise cannot support) –    Pentium Pro allows 4 outstanding memory misses 

 

Value of Hit Under Miss for SPEC 

 

 

 



 

 

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26 

 • Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19 

 • 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92 

 

 

 

 

Sixth optimization: Increasing Cache Bandwidth via Multiple Banks • Rather than treat the cache as a single monolithic block, divide into 

independent banks that can support simultaneous accesses – E.g.,T1 (“Niagara”) L2 has 4 banks • Banking works best when accesses naturally spread themselves across banks 

_ 

mapping of addresses to banks affects behavior of memory system • Simple mapping that works well is “sequential interleaving” – Spread block addresses sequentially across banks – E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 is 

0; 

bank 1 has all blocks whose address modulo 4 is 1; … 

 

 



 

 

 

 

Seventh optimization :Reduce Miss Penalty: Early Restart and Critical 

Word First • Don’t wait for full block before restarting CPU • Early restart—As soon as the requested word of the block arrives, 

send it to the CPU and let the CPU continue execution – Spatial locality _ tend to want next sequential word, so not clear 

size of benefit of just early restart 

 • Critical Word First—Request the missed word first from memory 

and send it to the CPU as soon as it arrives; let the CPU continue execution 

while filling the rest of the words in the block – Long blocks more popular today _ Critical Word 1st Widely used 

 

 

 

Eight optimization: Merging Write Buffer to Reduce Miss Penalty- 

 • Write buffer to allow processor to continue while waiting to write to memory •  If buffer contains modified blocks, the addresses can  be checked to  see 

if 

address of new data matches the address of a valid write buffer entry • If so, new data are combined with that entry • Increases block size of write for write-through cache of writes to 

sequential words, bytes since multiword writes more efficient to memory 



 

 

• The Sun T1 (Niagara) processor, among many others, uses write merging 

 

 

Ninth optimization: Reducing Misses by Compiler Optimizations • McFarling [1989] reduced caches misses by 75% on 8KB direct mapped 

cache, 

4 byte blocks in software • Instructions – Reorder procedures in memory so as to reduce conflict misses – Profiling to look at conflicts (using tools they developed)• Data  – Merging Arrays: improve spatial locality by single array of 

compound elements vs. 2 arrays – Loop Interchange: change nesting of loops to access data in order 

stored in memory – Loop Fusion: Combine 2 independent loops that have same looping 

and some variables overlap – Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows



 

 

 

Merging Arrays 

Example 

/* Before: 2 sequential arrays */ 

int val[SIZE]; 

int key[SIZE]; 

/* After: 1 array of stuctures */ 

struct merge { 

int val; 

int key; 

}; 

struct merge merged_array[SIZE]; 

Reducing conflicts between val & key; improve spatial locality 

 

 • Conflict misses in caches not FA vs. Blocking size – Lam et al [1991] a blocking factor of 24 had a fifth the misses vs. 

48 despite both fit in cache 

 

 

 



 

 

Tenth optimization Reducing Misses by Hardware Prefetching of 

Instructions & Data • Prefetching relies on having extra memory bandwidth that can be used 

without 

penalty • Instruction Prefetching – Typically, CPU fetches 2 blocks on a miss: the requested block and 

the next consecutive block. – Requested block is placed in instruction cache when it returns, 

and prefetched block is placed into instruction stream buffer • Data Prefetching – Pentium 4 can prefetch data into L2 cache from up to 8 streams 

from 8 different 4 KB pages –  Prefetching  invoked  if  2  successive  L2  cache  misses  to  a  page,  

if distance between those cache blocks is < 256 bytes 

 

 

 

Eleventh optimization: Reducing Misses by Software Prefetching Data • Data Prefetch – Load data into register (HP PA-RISC loads) – Cache Prefetch: load into cache 

(MIPS IV, PowerPC, SPARC v. 9) – Special prefetching instructions cannot cause faults; 

a form of speculative execution • Issuing Prefetch Instructions takes time 



 

 

– Is cost of prefetch issues < savings in reduced misses? – Higher superscalar reduces difficulty of issue bandwidth 

The techniques to improve hit time, bandwidth, miss penalty and miss rate 

generally affect the other components of the average memory access equation 

as well as the complexity of the memory hierarchy. 
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UNIT VII  

 

MEMORY HIERARCHY DESIGN



 

 

AMAT and Processor Performance •AMAT = Average Memory Access Time •Miss-oriented Approach to Memory Access –CPIExec includes ALU and Memory instructions •Separating out Memory component entirely –CPIALUOps does not include memory instructions 

 

Summary: Caches •The Principle of Locality: –Program access a relatively small portion of the address space at any instant of 

time. •Temporal Locality OR Spatial Locality: •Three Major Categories of Cache Misses: –Compulsory Misses: sad facts of life. Example: cold start misses. –Capacity Misses: increase cache size –Conflict Misses: increase cache size and/or associativity 

 

Where Misses Come From? •Classifying Misses: 3 Cs –Compulsory — The first access to a block is not in the cache, 

Also called cold start misses or first reference misses. 

(Misses in even an Infinite Cache) –Capacity — If the cache cannot contain all the blocks needed during execution of 

a program, –Conflict — If block-placement strategy is set associative or direct mapped, 

conflict misses (in addition to compulsory & capacity misses) will occur because a 

block can be discarded and later retrieved if too many blocks map to its set. 

(Misses in N-way Associative, Size X Cache) 

More recent, 4th “C”: –Coherence — Misses caused by cache coherence 

 



 

 

 

 •Write Policy: –Write Through: needs a write buffer. –Write Back: control can be complex 

 

Summary: 

 

The Cache Design Space –Several interacting dimensions –cache size –block size –associativity –replacement policy –write-through vs write-back –The optimal choice is a compromise –Simplicity often wins



 

 

 

 

 

Cache Organization? •Assume total cache size not changed 

 •What happens if: Which of 3Cs is obviously affected? –Change Block Size –Change Cache Size –Change Cache Internal Organization –Change Associativity –Change Compiler 

 

Cache Optimization Summary 

 

How to Improve Cache Performance? •Cache optimizations –1. Reduce the miss rate –2. Reduce the miss penalty –3. Reduce the time to hit in the cache 

 

Cache Optimisation 

Why improve Cache performance: 

 



 

 

Performance improvement of CPU vs Memory- CPU fabrication has 

advanced much more than memory- hence need to use cache 

optimization techniques. 

Review: 6 Basic Cache Optimizations • Reducing hit time 

1.Address Translation during Cache Indexing • Reducing Miss Penalty 

2. Multilevel Caches 

3. Giving priority to read misses over write misses • Reducing Miss Rate 

4. Larger Block size (Compulsory misses) 

5. Larger Cache size (Capacity misses) 

6. Higher Associativity (Conflict misses) 

 

11 Advanced Cache Optimizations 

• Reducing hit time 

1. Small and simple caches 

2. Way prediction 

3. Trace caches 

• Increasing cache bandwidth 

4. Pipelined caches 

5. Multibanked caches 

6. Nonblocking caches 

• Reducing Miss Penalty 

7. Critical word first 

8. Merging write buffers 

• Reducing Miss Rate 

9.Compiler optimizations 

• Reducing miss penalty or miss rate via parallelism 

10.Hardware prefetching 

11.Compiler prefetching 

 

 



 

 

 

1. Fast Hit times via Small and Simple Caches 

Index tag memory and then compare takes time • Small cache can help hit time since smaller memory takes less time to index – E.g., L1 caches same size for 3 generations of AMD 

icroprocessors: K6, Athlon, and Opteron – Also L2 cache small enough to fit on chip with the processor 

avoids time penalty of going off chip • Simple direct mapping 

Can overlap tag check with data transmission since no choice 

2. Fast Hit times via Way Prediction • How to combine fast hit time of Direct Mapped and have the lower 

conflict 

misses of 2-way SA cache? • Way prediction: keep extra bits in cache to predict the “way,” or block 

within 

the set, ofnext cache access. – Multiplexer is set early to select desired block, only 1 tag comparison 

performed that clock cycle in parallel with reading the cache data 

 – Miss - 1st check other blocks for matches in next clock cycle 

 

3. Fast Hit times via Trace Cache 

Find more instruction level parallelism? 

How avoid translation from x86 to microops?- Trace cache in Pentium 4 

1. Dynamic traces of the executed instructions vs. static sequence of 

instructions as determined by layout in memory – Built-in branch predictor 

2. Cache the micro-ops vs. x86 instructions - Decode/translate from 

x86 to micro-ops on trace cache miss 

+ 1. ı better utilize long blocks (don’t exit in middle of block, don’t enter at label in 

middle of block) 



 

 

- 1. ı complicated address mapping since addresses no longer aligned to 

power-of-2 multiples of word size 

- 1. ı instructions may appear multiple times in multiple dynamic traces due to 

different 

branch outcomes 

 

4: Increasing Cache Bandwidth by Pipelining –Pipeline cache access to maintain bandwidth, but higher latency • Instruction cache access pipeline stages: 

1: Pentium 

2: Pentium Pro through Pentium III 

4: Pentium 4 

- greater penalty on mispredicted branches 

- more clock cycles between the issue of the load and the use of the data 

 

5. Increasing Cache Bandwidth: 

Non-Blocking Caches- Reduce Misses/Penalty • Non-blocking cache or lockup-free cache allow data cache to continue to 

supply cache hits during a m iss – requires F/E bits on registers or out-of-order execution – requires multi-bank memories • “hit under miss” reduces the effective miss penalty by working 

during miss vs. ignoring CPU requests • “hit under multiple miss” or “miss under miss” may further lower the 

effective 

miss penalty by overlapping multiple misses – Significantly increases the complexity of the cache controller as 

there can be multiple outstanding memory accesses – Requires muliple memory banks (otherwise cannot support) –    Penium Pro allows 4 outstanding memory misses 

 

 

 



 

 

6: Increasing Cache Bandwidth via Multiple Banks 

Rather than treat the cache as a single monolithic block, divide into independent 

banks 

that can support simultaneous accesses – E.g.,T1 (“Niagara”) L2 has 4 banks 

 • Banking works best when accesses naturally spread themselves across banks ı 
mapping of addresses to banks affects behavior of memory system 

 

 

 

Simple mapping that works well is “sequential 

interleaving” – Spread block addresses sequentially across banks –    E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 

is 

0; bank 1 has all blocks whose address modulo 4 is 1; …. 
 

7. Reduce Miss 

Penalty: 

Early Restart and Critical Word First 

Don’t wait for full block before restarting CPU 

Early restart—As soon as the requested word of the block arrives, send it to the 

CPU 

and let the CPU continue 

execution – Spatial locality - tend to want next sequential word, so not clear size of benefit of 

just early restart 



 

 

Critical Word First—Request the missed word first from memory and send it 

to the CPU as soon as it arrives; let the CPU continue execution while filling the 

rest of the words in the block 

 

 

 

 

 

 

8. Merging Write Buffer to Reduce Miss Penalty •Write buffer to allow processor to continue while waiting to write to 

memory •If buffer contains modified blocks, the addresses can be checked to see if 

address of new data matches the address of a valid write buffer entry -If so, 

new data are combined with that entry •Increases block size of write for write-through cache of writes to sequential 

words, bytes since multiword writes more efficient to memory •The Sun T1 (Niagara) processor, among many others, uses write 

merging 

 



 

 

 

 

 

 

9. Reducing Misses by Compiler Optimizations •McFarling [1989] reduced caches misses by 75% on 8KB direct mapped cache, 4 byte 

blocks in software 

• Instructions – Reorder procedures in memory so as to reduce conflict misses – Profiling to look at conflicts (using tools they developed) 

• Data – Merging Arrays: improve spatial locality by single array of compound elements vs. 2 

arrays – Loop Interchange: change nesting of loops to access data in 

order stored in memory – Loop Fusion: Combine 2 independent loops that have same looping and some 

variables overlap – Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs. 

going down whole columns or rows



 

 

Compiler Optimizations- Reduction comes from software (no Hw ch.) 

Loop Interchange •Motivation: some programs have nested loops that access data in nonsequential 

order •Solution: Simply exchanging the nesting of the loops can make the code access the 

data 

in the order it is stored => 

reduce misses by improving spatial locality; reordering maximizes use of data in a 

cache block before it is discarded 

Loop Interchange Example 

/* Before */ 

for (j = 0; j < 100; j = j+1) 

for (i = 0; i < 5000; i = i+1) 

x[i][j] = 2 * x[i][j]; 

/* After */ 

for (i = 0; i < 5000; i = i+1) 

for (j = 0; j < 100; j = j+1) 

x[i][j] = 2 * x[i][j]; 

Blocking •Motivation: multiple arrays, some accessed by rows and some by columns •Storing the arrays row by row (row major order) or column by column (column 

major order) does not help: both rows and columns are used in every iteration of 

the loop (Loop Interchange cannot help) •Solution: instead of operating on entire rows and columns of an array, blocked 

algorithms operate on submatrices or blocks => maximize accesses to the data 

loaded into the cache before the data is replaced 

 

Blocking Example 

/* Before */ 

for (i = 0; i < N; i = i+1) 

for (j = 0; j < N; j = j+1) 

{r = 0; 



 

 

for (k = 0; k < N; k = k+1){ 

r = r + y[i][k]*z[k][j];}; 

x[i][j] = r; 

}; 

/* After */ 

for (jj = 0; jj < N; jj = jj+B) 

for (kk = 0; kk < N; kk = kk+B) 

for (i = 0; i < N; i = i+1) 

for (j = jj; j < min(jj+B,N); j = j+1) 

{r = 0; 

for (k = kk; k < min(kk+B,N); k = k + 1) 

r = r + y[i][k]*z[k][j]; 

x[i][j] = x[i][j] + r; 

}; 

Snapshot of x, y, z 

when i=1 

 

White: 

 

 

 

White: not yet touched 

Light: older access 

Dark: newer access Before…. 
The Age of Accesses to x, y, Z 

 

 



 

 

 

 

 

Merging Arrays •Motivation: some programs reference multiple arrays in the same dimension with 

the 

same indices at the same time => 

these accesses can interfere with each other,leading to conflict misses •Solution: combine these independent matrices into a single compound array, so 

that a single cache block can contain the desired elements 

Merging Arrays Example 

 

Loop Fusion • Some programs have separate sections of code that access with the same 

loops, performing different computations on the common data • Solution: “Fuse” the code into a single loop => 

the data that are fetched into the cache can be used repeatedly before 

being swapped out => reducing misses via improved temporal locality 

 

Loop Fusion Example 

Summary of Compiler Optimizations- to Reduce Cache Misses (by hand) 

 



 

 

10. Reducing Misses by Hardware Prefetching of Instructions & Data 

Prefetching relies on having extra memory bandwidth that can be used 

without penalty • Instruction Prefetching – Typically, CPU fetches 2 blocks on a miss: the requested block and the 

next consecutive block. – Requested block is placed in instruction cache when it returns, and 

prefetched block is placed into instruction stream buffer 

 

Data Prefetching – Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 

4 KB pages – Prefetching invoked if 2 successive L2 cache misses to a page,if 

distance between those cache blocks is < 256 bytes 

 

11. Reducing Misses by Software Prefetching Data •Data Prefetch •– Load data into register (HP PA-RISC loads) •– Cache Prefetch: load into cache •(MIPS IV, PowerPC, SPARC v. 9) •– Special prefetching instructions cannot cause faults; •a form of speculative execution •• Issuing Prefetch Instructions takes time •– Is cost of prefetch issues < savings in reduced misses? •– Higher superscalar reduces difficulty of issue bandwi 

 

Compiler Optimization vs. Memory Hierarchy Search 

Compiler tries to figure out memory hierarchy optimizations • New approach: “Auto-tuners” 1st run variations of program on computer to 

find best combinations of optimizations (blocking, padding, …) and algorithms, then 

produce C code to be compiled for that computer • “Auto-tuner” targeted to numerical 

method



 

 

– E.g., PHiPAC (BLAS), Atlas (BLAS), Sparsity (Sparse linear algebra), Spiral 

(DSP), FFT-W 

 

Cache Optimization Summary 

Comparison of the 11 techniques 

 

 

 

 

 

Main Memory Background 

Performance of Main 

Memory: Latency: Cache Miss 

Penalty • Access Time: time between request and word arrives • Cycle Time: time between requests 

Bandwidth: I/O & Large Block Miss Penalty (L2) 

 

Main Memory is DRAM: Dynamic Random Access 

Memory 



 

 

Dynamic since needs to be refreshed periodically (8 ms, 1% time) 

Addresses divided into 2 halves (Memory as a 2D matrix): • RAS or Row Access Strobe • CAS or Column Access Strobe 

 

Cache uses SRAM: Static Random Access 

Memory 

No refresh (6 transistors/bit vs. 1 transistor • Size: DRAM/SRAM - 4-8, • Cost/Cycle time: SRAM/DRAM - 8-16 

 

Main Memory Deep 

Background •“Out-of-Core”, “In-Core,” “Core Dump”? • “Core memory”? • Non-volatile, magnetic • Lost to 4 Kbit DRAM (today using 512Mbit DRAM) • Access time 750 ns, cycle time 1500-3000 ns 

DRAM logical organization (4 Mbit) 

Quest for DRAM Performance 

1. Fast Page mode – Add timing signals that allow repeated accesses to row buffer 

without nother row access time – Such a buffer comes naturally, as each array will buffer 1024 to 

2048 bits for each access 

2. Synchronous DRAM (SDRAM) – Add a clock signal to DRAM interface, so that the repeated 

transfers would not bear overhead to synchronize with DRAM controller 

3. Double Data Rate (DDR SDRAM) – Transfer data on both the rising edge and falling edge of the 

DRAM 

clock signal I doubling the peak data rate 



 

 

– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts 

+offers higher clock rates: up to 400 MHz – DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz 

4.Improved Bandwidth, not Latency 

DRAM name based on Peak Chip Transfers / 

Sec 

DIMM name based on Peak DIMM MBytes / Sec 

Need for Error Correction! • Motivation: – Failures/time proportional to number of bits! – As DRAM cells shrink, more vulnerable •  Went  through  period  in  which  failure  rate  was  low  enough  without  

error 

correction that people didn’t do correction – DRAM banks too large now – Servers always corrected memory systems • Basic idea: add redundancy through parity bits – Common configuration: Random error correction • SEC-DED (single error correct, double error detect) • One example: 64 data bits + 8 parity bits (11% overhead) – Really want to handle failures of physical components as well • Organization is multiple DRAMs/DIMM, multiple DIMMs • Want to recover from failed DRAM and failed DIMM! • “Chip kill” handle failures width of single DRAM chip 

 

DRAM Technology • Semiconductor Dynamic Random Access Memory • Emphasize on cost per bit and capacity • Multiplex address lines ı cutting # of address pins in half – Row access strobe (RAS) first, then column access strobe (CAS) – Memory as a 2D matrix – rows go to a buffer – Subsequent CAS selects subrow • Use only a single transistor to store a bit 



 

 

– Reading that bit can destroy the information – Refresh each bit periodically (ex. 8 milliseconds) by writing back • Keep refreshing time less than 5% of the total time • DRAM capacity is 4 to 8 times that of SRAM • DIMM: Dual inline memory module – DRAM chips are commonly sold on small boards called DIMMs – DIMMs typically contain 4 to 16 DRAMs • Slowing down in DRAM capacity growth – Four times the capacity every three years, for more than 20 years – New chips only double capacity every two year, since 1998 • DRAM performance is growing at a slower rate – RAS (related to latency): 5% per year –    CAS (related to bandwidth): 10%+ per year 

RAS improvement 

SRAM Technology • Cache uses SRAM: Static Random Access Memory • SRAM uses six transistors per bit to prevent the information from being disturbed 

when read 

_no need to refresh – SRAM needs only minimal power to retain the charge 

in the standby mode _ good for embedded applications – No difference between access time and cycle time for 

SRAM • Emphasize on speed and capacity – SRAM address lines are not multiplexed • SRAM speed is 8 to 16x that of DRAM 

 

Improving Memory Performance 

in a Standard DRAM Chip • Fast page mode: time signals that allow repeated accesses to buffer without another 

row 

access time 



 

 

• Synchronous RAM (SDRAM): add a clock signal to DRAM interface, so that 

the repeated transfer would not bear overhead to synchronize with the 

controller – Asynchronous DRAM involves overhead to sync with controller – Peak speed per memory module 800—1200MB/sec in 2001 • Double data rate (DDR): transfer data on both the rising edge and falling edge of 

DRAM clock signal – Peak speed per memory module 1600—2400MB/sec in 2001 

 

 

 

Protection: 

Virtual Memory and Virtual Machines 

Slide Sources: Based on “Computer Architecture” by Hennessy/Patterson. 

Supplemented from various freely downloadable sources 

Security and Privacy •Innovations in Computer Architecture and System software •Protection through Virtual Memory •Protection from Virtual Machines –Architectural requirements –
Performance 

Protection via Virtual Memory •Processes 



 

 

–Running program –Environment (state) needed to continue running it •Protect Processes from each other –Page  based  virtual  memory  including  TLB  which  caches  page  

table entries –Example: Segmentation and paging in 80x86 

Processes share hardware without interfering with each other •Provide User Process and Kernel Process •Readable portion of Processor state: –User supervisor mode bit –Exception enable/disable bit –Memory protection information •System call to transfer to supervisor mode –Return like normal subroutine to user mode •Mechanism to limit memory access 

Memory protection •Virtual Memory –Restriction on each page entry in page table –Read, write, execute privileges –Only OS can update page table –TLB entries also have protection field •Bugs in OS –Lead to compromising security –Bugs likely due to huge size of OS 

code Protection via Virtual Machines 

Virtualization • Goal: – Run multiple instances of different OS on the same hardware – Present a transparent view of one or more environments (M-to-N mapping of M “real” 

resources, N “virtual” 
resources) Protection via 

Virtual Machines 

Virtualization- cont. 



 

 

• Challenges: – Have to split all resources (processor, memory, hard drive, graphics card, 

networking card etc.) among the different OS -> virtualize the resources – The OS can not be aware that it is using virtual resources 

instead of real resources 

 

Problems with virtualization • Two components when using virtualization: – Virtual Machine Monitor (VMM) – Virtual Machine(s) (VM) • Para-virtualization: – Operating System has been modified in order to run as a VM • ‘Fully‘ Virtualized: –    No modification required of an OS to run as a VM – 

Virtual Machine Monitor-‘hypervisor’ • Isolates the state of each guest OS from each other • Protects itself from guest software • Determines how to map virtual resources to physical resources – Access to privileged state – Address translation – I/O – Exceptions and interrupts • Relatively small code ( compared to an OS) • VMM must run in a higher privilege mode than guest OS 

Managing Virtual Memory • Virtual memory offers many of the features required for hardware virtualization – Separates the physical memory onto multiple processes – Each process ‘thinks’ it has a linear address space of full size – Processor holds a page table translating virtual addresses used by a process 

and the according physical memory – Additional information restricts processes from • Reading a page of on another process or 



 

 

• Allow reading but not modifying a memory page or • Do not allow to interpret data in the memory page as instructions and do not try to 

execute them • Virtual Memory management thus requires – Mechanisms to limit memory access to protected memory – At least two modes of execution for instructions • Privileged mode: an instruction is allowed to do what it whatever it wants -> 

kernel mode for OS • Non-privileged mode: user-level processes • Intel x86 Architecture: processor supports four levels – Level 0 used by OS – Level 3 used by regular applications •Provide mechanisms to go from non-privileged mode to privileged mode -> system 

call •Provide a portion of processor state that a user process can read but not modify • E.g. memory protection information • Each guest OS maintains its page tables to do the mapping from virtual 

address to physical address • Most simple solution: VMM holds an additional table which maps the physical 

address of a guest OS onto the ‘machine address’ – Introduces a third level of redirection for every memory access • Alternative solution: VMM maintains a shadow page table of each guest OS – Copy of the page table of the OS – Page tables still works with regular physical addresses –    Only modifications to the page table are intercepted by the VMM 

 

Protection via Virtual Machines 

-some definitions • VMs include all emulation methods to provide a standard software interface • Different ISAs can be used (emulated) on the native machine • When the ISAs match the hardware we call it (operating) system 

virtual machines • Multiple OSes all share the native hardware 



 

 

 

Cost of Processor Virtualisation •VM is much smaller than traditional OS •Isolation portion is only about 10000 lines for a VMM •Processor bound programs have very little virtualisation overhead •I/O bound jobs have more overhead •ISA emulation is costly 

 

Other benefits of VMs • Managing software –Complete software stack –Old Oses like DOS –Current stable OS –Next OS release • Managing Hardware –Multiple servers avoided –VMs enable hardware sharing –Migration of a running VM to another m/c •For balancing load or evacuate from failing HW 

Requirements of a VMM •Guest s/w should behave exactly on VM as if on native h/w •Guest s/w should not be able to change allocation of RT resources directly •Timer interrupts should be virtualized •Two processor modes- system and user •Privileged subset of instruction available only in system mode 

More issues on VM usage •ISA support for virtual machine –IBM360 support –80x86 do no support •Use of virtual memory –Concept of virtual- real- physical memories –Instead of extra indirection use shadow page table •Virtualizing I/Os 



 

 

–More i/o –More diversity –Physical disks to partitioned virtual disks 


