
R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

1 

 

 Bias and Variance: 
 Bias refers to the errors which occur when we try to fit a statistical model on real-world data 

which does not fit perfectly well on some mathematical model. If we use a way too simplistic 

a model to fit the data then we are more probably face the situation of High 

Bias (underfitting) refers to the case when the model is unable to learn the patterns in the 

data at hand and perform poorly. 

 Variance shows the error value that occurs when we try to make predictions by using data 

that is not previously seen by the model. There is a situation known as high 

variance (overfitting) that occurs when the model learns noise that is present in the data. 

Finding a proper balance between the two is also known as the Bias-Variance Tradeoff which 

helps us to design an accurate model. 

Bias Variance tradeoff 

The Bias-Variance Tradeoff refers to the balance between bias and variance which affect 

predictive model performance. Finding the right tradeoff is important for creating models that 

generalize well to new data. 

 The bias-variance tradeoff shows the inverse relationship between bias and variance. When 

one decreases, the other tends to increase and vice versa. 

 Finding the right balance is important. An overly simple model with high bias won't capture 

the underlying patterns while an overly complex model with high variance will fit the noise 

in the data. 

 
Overfitting and Underfitting: 
Overfitting and underfitting are terms used to describe the performance of machine learning 

models in relation to their ability to generalize from the training data to unseen data. 

Dr. J. krishna, Associate Professor, AI&ML, Annamacharya University

https://www.geeksforgeeks.org/ml-bias-variance-trade-off/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

2 

 

 
Overfitting happens when a machine learning model learns the training data too well including 

the noise and random details. This makes the model to perform poorly on new, unseen data 

because it memorizes the training data instead of understanding the general patterns. 

For example, if we only study last week’s weather to predict tomorrow’s i.e our model might 

focus on one-time events like a sudden rainstorm which won’t help for future predictions. 

 

Underfitting is the opposite problem which happens when the model is too simple to learn even 

the basic patterns in the data. An underfitted model performs poorly on both training and new 

data. To fix this we need to make the model more complex or add more features. 

For example if we use only the average temperature of the year to predict tomorrow’s weather 

hence the model misses important details like seasonal changes which results in bad predictions. 

 

 

  

https://www.geeksforgeeks.org/how-to-handle-overfitting-in-tensorflow-models/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

3 

 

Ensemble Learning 
Ensemble learning is a method where we use many small models instead of just one. Each of 

these models may not be very strong on its own, but when we put their results together, we get a 

better and more accurate answer. It's like asking a group of people for advice instead of just one 

person—each one might be a little wrong, but together, they usually give a better answer. 

Types of Ensembles Learning in Machine Learning 

There are three main types of ensemble methods: 

1. Bagging (Bootstrap Aggregating): 
Models are trained independently on different random subsets of the training data. Their 

results are then combined—usually by averaging (for regression) or voting (for 

classification). This helps reduce variance and prevents overfitting. 

2. Boosting: 
Models are trained one after another. Each new model focuses on fixing the errors made by 

the previous ones. The final prediction is a weighted combination of all models, which helps 

reduce bias and improve accuracy. 

3. Stacking (Stacked Generalization): 
Multiple different models (often of different types) are trained, and their predictions are used 

as inputs to a final model, called a meta-model. The meta-model learns how to best combine 

the predictions of the base models, aiming for better performance than any individual model. 

1. Bagging Algorithm 

Bagging classifier can be used for both regression and classification tasks. Here is an overview 

of Bagging classifier algorithm: 

 Bootstrap Sampling: Divides the original training data into ‘N’ subsets and randomly 

selects a subset with replacement in some rows from other subsets. This step ensures that the 

base models are trained on diverse subsets of the data and there is no class imbalance. 

 Base Model Training: For each bootstrapped sample we train a base model independently on 

that subset of data. These weak models are trained in parallel to increase computational 

efficiency and reduce time consumption. We can use different base learners i.e. different ML 

models as base learners to bring variety and robustness. 

 Prediction Aggregation: To make a prediction on testing data combine the predictions of all 

base models. For classification tasks it can include majority voting or weighted majority 

while for regression it involves averaging the predictions. 

 Out-of-Bag (OOB) Evaluation: Some samples are excluded from the training subset of 

particular base models during the bootstrapping method. These “out-of-bag” samples can be 

used to estimate the model’s performance without the need for cross-validation. 

 Final Prediction: After aggregating the predictions from all the base models, Bagging 

produces a final prediction for each instance. 

Python pseudo code for Bagging Estimator implementing libraries: 

1. Importing Libraries and Loading Data 

 BaggingClassifier: for creating an ensemble of classifiers trained on different subsets of 

data. 

 DecisionTreeClassifier: the base classifier used in the bagging ensemble. 

 load_iris: to load the Iris dataset for classification. 

 train_test_split: to split the dataset into training and testing subsets. 

 accuracy_score: to evaluate the model’s prediction accuracy. 

https://www.geeksforgeeks.org/ml-bagging-classifier/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

4 

 

 

from sklearn.ensemble import BaggingClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

2. Loading and Splitting the Iris Dataset 

 data = load_iris(): loads the Iris dataset, which includes features and target labels. 

 X = data.data: extracts the feature matrix (input variables). 

 y = data.target: extracts the target vector (class labels). 

 train_test_split(...): splits the data into training (80%) and testing (20%) sets, with 

random_state=42 to ensure reproducibility. 

 

data = load_iris() 

X = data.data 

y = data.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

3. Creating a Base Classifier 

Decision tree is chosen as the base model. They are prone to overfitting when trained on 

small datasets making them good candidates for bagging. 
 base_classifier = DecisionTreeClassifier(): initializes a Decision Tree classifier, which will 

serve as the base estimator in the Bagging ensemble. 

 base_classifier = DecisionTreeClassifier() 

4. Creating and Training the Bagging Classifier 

 A BaggingClassifier is created using the decision tree as the base classifier. 

 n_estimators = 10 specifies that 10 decision trees will be trained on different bootstrapped 

subsets of the training data. 

 

 bagging_classifier = BaggingClassifier(base_classifier, n_estimators=10, random_state=42) 

bagging_classifier.fit(X_train, y_train) 

5. Making Predictions and Evaluating Accuracy 

 The trained bagging model predicts labels for test data. 

 The accuracy of the predictions is calculated by comparing the predicted labels (y_pred) to 

the actual labels (y_test). 

 

 y_pred = bagging_classifier.predict(X_test) 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

Output: 
Accuracy: 1.0 

 

2. Boosting Algorithm 

Boosting is an ensemble technique that combines multiple weak learners to create a strong 

learner. Weak models are trained in series such that each next model tries to correct errors of the 

previous model until the entire training dataset is predicted correctly. One of the most well-

https://www.geeksforgeeks.org/boosting-in-machine-learning-boosting-and-adaboost/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

5 

 

known boosting algorithms is AdaBoost (Adaptive Boosting). Here is an overview of Boosting 

algorithm: 

 Initialize Model Weights: Begin with a single weak learner and assign equal weights to all 

training examples. 

 Train Weak Learner: Train weak learners on these dataset. 

 Sequential Learning: Boosting works by training models sequentially where each model 

focuses on correcting the errors of its predecessor. Boosting typically uses a single type of 

weak learner like decision trees. 

 Weight Adjustment: Boosting assigns weights to training datapoints. Misclassified 

examples receive higher weights in the next iteration so that next models pay more attention 

to them. 

Python pseudo code for boosting Estimator implementing libraries: 

1. Importing Libraries and Modules 

 AdaBoostClassifier from sklearn.ensemble: for building the AdaBoost ensemble model. 

 DecisionTreeClassifier from sklearn.tree: as the base weak learner for AdaBoost. 

 load_iris from sklearn.datasets: to load the Iris dataset. 

 train_test_split from sklearn.model_selection: to split the dataset into training and testing 

sets. 

 accuracy_score from sklearn.metrics: to evaluate the model’s accuracy. 

 

 from sklearn.ensemble import AdaBoostClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

2. Loading and Splitting the Dataset 

 data = load_iris(): loads the Iris dataset, which includes features and target labels. 

 X = data.data: extracts the feature matrix (input variables). 

 y = data.target: extracts the target vector (class labels). 

 train_test_split(...): splits the data into training (80%) and testing (20%) sets, with 

random_state=42 to ensure reproducibility. 
 

data = load_iris() 

X = data.data 

y = data.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

3. Defining the Weak Learner 

We are creating the base classifier as a decision tree with maximum depth 1 (a decision stump). 

This simple tree will act as a weak learner for the AdaBoost algorithm, which iteratively 

improves by combining many such weak learners. 

  

base_classifier = DecisionTreeClassifier(max_depth=1) 

 

4. Creating and Training the AdaBoost Classifier 

https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

6 

 

 base_classifier: The weak learner used in boosting. 

 n_estimators = 50: Number of weak learners to train sequentially. 

 learning_rate = 1.0: Controls the contribution of each weak learner to the final model. 

 random_state = 42: Ensures reproducibility. 
 

adaboost_classifier = AdaBoostClassifier( 

    base_classifier, n_estimators=50, learning_rate=1.0, random_state=42 

) 

adaboost_classifier.fit(X_train, y_train) 

 

5. Making Predictions and Calculating Accuracy 

We are calculating the accuracy of the model by comparing the true labels y_test with the 

predicted labels y_pred. The accuracy_score function returns the proportion of correctly 

predicted samples. Then, we print the accuracy value. 

 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

Output: 
Accuracy: 1.0 

 

Benefits of Ensemble Learning in Machine Learning 

Ensemble learning is a versatile approach that can be applied to machine learning model for: - 

 Reduction in Overfitting: By aggregating predictions of multiple model's ensembles can 

reduce overfitting that individual complex models might exhibit. 

 Improved Generalization: It generalizes better to unseen data by minimizing variance and 

bias. 

 Increased Accuracy: Combining multiple models gives higher predictive accuracy. 

 Robustness to Noise: It mitigates the effect of noisy or incorrect data points by averaging 

out predictions from diverse models. 

 Flexibility: It can work with diverse models including decision trees, neural networks and 

support vector machines making them highly adaptable. 

 Bias-Variance Tradeoff: Techniques like bagging reduce variance, while boosting reduces 

bias leading to better overall performance. 

There are various ensemble learning techniques we can use as each one of them has their own 

pros and cons. 

Ensemble Learning Techniques 

Technique Category Description 

Random Forest Bagging 

Random forest constructs multiple decision trees on 

bootstrapped subsets of the data and aggregates their 

predictions for final output, reducing overfitting and variance. 

https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

7 

 

Technique Category Description 

Random 

Subspace Method 
Bagging 

Trains models on random subsets of input features to enhance 

diversity and improve generalization while reducing 

overfitting. 

Gradient Boosting 

Machines (GBM) 
Boosting 

Gradient Boosting Machines sequentially builds decision 

trees, with each tree correcting errors of the previous ones, 

enhancing predictive accuracy iteratively. 

Extreme Gradient 

Boosting 

(XGBoost) 

Boosting 

XGBoost do optimizations like tree pruning, regularization, 

and parallel processing for robust and efficient predictive 

models. 

AdaBoost 

(Adaptive 

Boosting) 

Boosting 

AdaBoost focuses on challenging examples by assigning 

weights to data points. Combines weak classifiers with 

weighted voting for final predictions. 

CatBoost Boosting 

CatBoost specialize in handling categorical features natively 

without extensive preprocessing with high predictive accuracy 

and automatic overfitting handling. 

 

  

https://www.geeksforgeeks.org/ml-gradient-boosting/
https://www.geeksforgeeks.org/xgboost/
https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/
https://www.geeksforgeeks.org/catboost-ml/


R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

8 

 

Bagging 
 

Bagging (Bootstrap Aggregating) is an ensemble learning technique in machine learning that 

improves the accuracy and stability of models by reducing variance and avoiding overfitting, 

especially in high-variance models like decision trees. 

 

Definition: 

Bagging stands for Bootstrap Aggregating. It involves: 

 Generating multiple versions of a training dataset using bootstrap sampling (random 

sampling with replacement). 

 Training separate models (often the same type, like decision trees) on each of these 

datasets. 

 Aggregating their predictions (averaging for regression, majority vote for 

classification). 

Workflow of Bagging Algorithm (Step-by-Step): 

 
1. Bootstrap Sampling: Create multiple datasets (say, 𝑘 datasets) from the original training 

data using sampling with replacement. 

2. Model Training: Train a base learner (e.g., decision tree) on each dataset independently. 

3. Aggregation: 

o Classification: Use majority voting to decide the final output. 

o Regression: Use averaging of all predictions to give the final output. 

 

Uses of Bagging: 

 Reduces overfitting by averaging out predictions. 

 Decreases model variance (good for unstable models). 

 Improves generalization. 

 

Common Algorithms That Use Bagging: 

 Random Forest is a prime example: it’s a bagging method using decision trees with 
added randomness in feature selection. 

 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

9 

 

 

Advantages of Bagging: 

 Reduces variance, thus improving model stability. 

 Works well with high-variance, low-bias models. 

 Easy to implement and parallelize. 

 

Limitations: 

 Doesn’t help much if the base model is already low in variance (like linear regression). 
 May not reduce bias. 

 Can be computationally expensive. 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

10 

 

Boosting 
 

Boosting is an ensemble learning method that combines multiple weak learners to form a 

strong learner. It builds models sequentially, where each model learns from the errors of the 

previous ones, improving overall performance. 

 

Definition: 

Boosting refers to a family of algorithms that convert weak models (like shallow decision 

trees) into a strong model by focusing more on misclassified data points during each iteration. 

 
Working Steps of Boosting: 

 
1. Initialize the model by training a weak learner on the original dataset. 

2. Compute Errors: Measure the performance of the model. 

3. Update Weights: Increase weights of incorrectly predicted samples. 

4. Train Next Learner: The next model focuses more on the harder examples. 

5. Combine Models: Final prediction is a weighted sum of all weak learners. 

 

Key Concepts: 

 Sequential training 

 Focus on difficult samples 

 Reduces both bias and variance 

 Final prediction is based on the weighted majority vote (classification) or weighted 

average (regression) 

 

Popular Boosting Algorithms: 

Algorithm Key Feature 

AdaBoost Adjusts weights of samples 

Gradient Boosting Optimizes loss function via gradients 

XGBoost Optimized, fast version of gradient boosting 

LightGBM Faster training, uses histogram-based techniques 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

11 

 

Algorithm Key Feature 

CatBoost Handles categorical features efficiently 

 

Advantages of Boosting: 

 High accuracy 

 Handles both bias and variance 

 Performs well on imbalanced data 

 

Limitations: 

 Prone to overfitting if not regularized 

 Sequential → difficult to parallelize 

 Slower than bagging 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

12 

 

Random Forest Algorithm 
 

 Random Forest is a supervised ensemble learning algorithm. 

 It is used for both classification and regression tasks. 

 It builds multiple decision trees and merges them together to get a more accurate and 

stable prediction. 

A Random Forest is a collection (ensemble) of Decision Trees where: 

 Each tree is trained on a different subset of the data using bootstrap sampling (bagging). 

 At each node, only a random subset of features is considered for splitting. 

 Final output is based on majority voting (classification) or averaging (regression). 

Workflow of Random Forest (Step-by-Step) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Bootstrap Sampling 

 Create N different subsets (with replacement) from the training data. 

 Each subset is used to train one decision tree. 

Step 2: Build Decision Trees 

 For each tree: 

o Choose a random subset of features at each split (feature bagging). 

o Grow trees fully without pruning. 

Step 3: Aggregate Results 

 For Classification: Each tree votes → final class = majority vote. 

 For Regression: Average the outputs from all trees. 

Key Terms  

Term Description 

Bootstrap Sampling Sampling with replacement from the dataset 

Feature Bagging Randomly selecting a subset of features at each split 

Ensemble Learning Combining multiple models for better performance 

Majority Voting Used in classification 

Averaging Used in regression 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

13 

 

Advantages 

 Reduces overfitting compared to individual decision trees. 

 Works well with both categorical and numerical features. 

 Can handle missing values and maintain accuracy. 

 Robust to outliers and noise. 

 Can give feature importance scores. 

Disadvantages 

 Computationally intensive (training many trees). 

 Less interpretable than a single decision tree. 

 Slower in real-time predictions (due to ensemble size). 

Applications of Ramdom Forest: 

 Medical diagnosis (e.g., cancer prediction) 

 Financial risk analysis 

 Credit scoring 

 Image classification 

 Fraud detection 

 

Python Code Example 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

 

# Load data 

X, y = load_iris(return_X_y=True) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) 

 

# Build model 

model = RandomForestClassifier(n_estimators=100, random_state=42) 

model.fit(X_train, y_train) 

 

# Predictions 

y_pred = model.predict(X_test) 

 

# Accuracy 

from sklearn.metrics import accuracy_score 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

 

Parameters of Random Forest (Sklearn) 

Parameter Description 

n_estimators Number of trees 

max_features Number of features to consider at each split 

max_depth Maximum depth of the tree 

min_samples_split Minimum samples required to split an internal node 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

14 

 

Parameter Description 

bootstrap Whether bootstrap samples are used 

 

 

Comparison with Other Algorithms 

Feature Decision Tree Bagging Random Forest Boosting 

Overfitting Risk High Low Low Medium 

Interpretability High Low Medium Low 

Accuracy Medium High High Very High 

Training Speed Fast Moderate Slow Slow 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

15 

 

AdaBoost Algorithm 
 

AdaBoost (Adaptive Boosting) is a Boosting ensemble technique that combines multiple weak 

learners (usually decision stumps — trees with one split) to form a strong classifier. 

 It focuses on instances that were previously misclassified. 

 Learners are added sequentially, and each one tries to correct the mistakes of the 

previous ones. 

Key Idea: 

Increase the weights of incorrectly classified data points so that subsequent models focus more 

on those “hard” cases. 

Workflow of AdaBoost: 

 
Step-by-Step: 

1. Initialize Weights: 

o Assign equal weights to all training samples. 

2. Train a Weak Learner: 

o Train a classifier (e.g., a decision stump) on the weighted data. 

3. Calculate Error: 

o Compute the weighted error of the learner: 

 
o where I is an indicator function. 

4. Compute Learner's Weight: 

o A classifier with lower error gets higher importance: 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

16 

 

 
5. Update Weights of Samples: 

o Increase weights of misclassified samples. 

o Decrease weights of correctly classified samples: 

 
o Normalize weights. 

6. Repeat: 

o Train next learner on updated weights. 

o Repeat steps for T rounds (number of estimators). 

7. Final Prediction: 

o Combine all classifiers using their weights: 

  
Key Notations: 

 
AdaBoost Code Example (Python) 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

 

# Load data 

X, y = load_iris(return_X_y=True) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) 

 

# Base weak learner: Decision stump 

base = DecisionTreeClassifier(max_depth=1) 

 

# AdaBoost model 

model = AdaBoostClassifier(base_estimator=base, n_estimators=50, learning_rate=1.0) 

model.fit(X_train, y_train) 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

17 

 

# Accuracy 

print("Accuracy:", model.score(X_test, y_test)) 

Advantages of AdaBoost 

Feature Benefit 

Improves weak learners Combines simple models to perform well 

Versatile Works for binary and multi-class classification 

Feature importance Can give feature significance 

No need for data pre-processing Robust to outliers and noise 

 

Disadvantages 

 Sensitive to noisy data and outliers 

 Not suitable for large datasets with many irrelevant features 

 Harder to interpret compared to individual trees 

 

Applications 

 Face detection (e.g., Viola-Jones algorithm) 

 Fraud detection 

 Text classification 

 Bioinformatics 

 

Comparison: AdaBoost vs Bagging vs Random Forest 

Feature AdaBoost Bagging Random Forest 

Base Learners Sequential Parallel Parallel 

Focus Hard samples Variance reduction Random features & samples 

Output Weighted vote Majority vote Majority vote 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

18 

 

Gradient Boosting Algorithm 
 

Gradient Boosting is an ensemble learning technique that builds a strong predictive model by 

combining multiple weak learners (typically decision trees), trained sequentially to correct the 

errors made by previous models. 

It uses the idea of minimizing a loss function by applying gradient descent. 

Key Idea: 

Each new learner is trained to predict the residuals (errors) of the previous learners, thereby 

improving the model step by step. 

Workflow of Gradient Boosting (Step-by-Step): 

 
Step 1: Initialize the Model 

 Use a constant value that minimizes the loss function. 

 For regression with MSE: 

 
Step 2: Iterate for T steps (number of trees) 

 
These are the pseudo-residuals. 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

19 

 

 
Key Terms 

Term Description 

Weak Learner Typically a decision tree (shallow) 

Loss Function Measures error (MSE, Log Loss, etc.) 

Learning Rate η\etaη Shrinks the contribution of each tree 

Residuals Errors the model tries to fix 

Additive Model Combines learners in a stage-wise manner 

Loss Functions 

 Regression: 

 
 Classification: 

 
Gradient Boosting Code in Python 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

 

# Load data 

X, y = load_iris(return_X_y=True) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) 

 

# Model 

gb_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3) 

gb_model.fit(X_train, y_train) 

 

# Accuracy 

print("Accuracy:", gb_model.score(X_test, y_test)) 

Advantages of Gradient Boosting 

 High prediction accuracy 

 Handles both regression and classification 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

20 

 

 Works with many types of loss functions 

 Feature importance ranking 

Disadvantages 

 Can overfit if not tuned properly 

 Training is slower due to sequential nature 

 Requires careful parameter tuning (learning rate, depth, etc.) 

Comparison: AdaBoost and Gradient Boosting 

Feature AdaBoost Gradient Boosting 

Loss Optimization Based on exponential loss Any differentiable loss 

Weighting Adjusts sample weights Fits to residuals 

Robustness to Outliers Lower Higher 

Tuning Needed Less More (learning rate, depth) 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

21 

 

XGBoost Algorithm 
 

XGBoost (Extreme Gradient Boosting) is an advanced implementation of the Gradient 

Boosting algorithm. It is designed to be highly efficient, flexible, and portable, with state-of-

the-art performance. 

 

XGBoost = Gradient Boosting + Regularization + Speed + Flexibility 
 

It is robust, scalable, and tunable, and often outperforms other models in structured/tabular data 

tasks. 

 

The uses of XGBoost: 

 Fast and parallelizable 

 Handles missing values 

 Includes regularization (to prevent overfitting) 

 Excellent performance in Kaggle competitions 

 Scales well to large datasets 

Core Idea 

Like Gradient Boosting, XGBoost builds trees sequentially, where each new tree corrects the 

errors of the previous ensemble by minimizing a loss function using gradient descent. 

XGBoost enhances this process with: 

 Second-order optimization (using both gradient and hessian) 

 Regularization 

 Tree pruning 

 Cache-aware computing 

 

Workflow of XGBoost (Step-by-Step) 

 
Step 1: Objective Function 

XGBoost minimizes a regularized objective function: 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

22 

 

Step 2: Second-Order Taylor Approximation 

The loss is approximated with gradients and hessians: 

 
Step 3: Structure Score for Splits 

For a split node with instances III: 

 
Choose the split with the highest score. 

Step 4: Tree Building 

 Add trees greedily to minimize loss. 

 Trees are built depth-wise or loss-wise, not leaf-wise like LightGBM. 

 Stop growing when score improvement < threshold. 

Step 5: Prediction Update 

Update prediction: 

 
 η: Learning rate 

Advantages of XGBoost 

Advantage Description 

Speed Parallel and fast due to efficient CPU use 

Accuracy Often better than other ML models 

Regularization Controls overfitting via λ,γ\lambda, \gammaλ,γ 

Handles Missing Values Smart split-finding for missing data 

Built-in Cross-Validation Available in API 

 

Disadvantages 

 Complex to tune (many hyperparameters) 

 Can overfit on small data if not regularized 

 Not ideal for image or sequential data (use CNNs or RNNs instead) 

 

XGBoost Code Example (Python) 

import xgboost as xgb 

from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

23 

 

# Load data 

X, y = load_breast_cancer(return_X_y=True) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Train model 

model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.1, max_depth=3) 

model.fit(X_train, y_train) 

 

# Predict and evaluate 

y_pred = model.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

Common Parameters 

Parameter Meaning 

n_estimators Number of boosting rounds 

max_depth Maximum tree depth 

learning_rate Shrinks contribution of each tree 

subsample Fraction of training data per tree 

colsample_bytree Feature sampling per tree 

lambda L2 regularization 

gamma Minimum loss reduction to make a split 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

24 

 

Stacking 

 

Stacking (Stacked Generalization) is an ensemble learning technique that combines multiple 

different models (called base learners) and trains a meta-model to make the final prediction. 

 

Unlike bagging or boosting (which use the same type of learners), stacking uses diverse models 

(e.g., decision trees, SVMs, neural networks). 

 

Workflow of Stacking: 

 

Step-by-Step Process: 

1. Train Base Learners 
o Train several different machine learning models on the training dataset. 

o These models can be of different types (e.g., logistic regression, random forest, 

SVM). 

2. Generate Base Predictions 
o Each base learner makes predictions on: 

 Either the validation set (during cross-validation), 

 Or directly on the test set. 

3. Train Meta-Learner 
o A new model (called a meta-model or blender) is trained using the predictions 

of base models as features. 

o Its goal is to learn how to best combine the outputs of base models. 

4. Final Prediction 
o The meta-model takes the predictions from base learners and makes the final 

decision. 

 

Illustration (Simple Example) 

Assume you have 3 base learners: 

 Model 1: Logistic Regression 

 Model 2: Decision Tree 

 Model 3: K-Nearest Neighbors 

Let the predictions from these models for a data point be: 

Model 1: 0.6   

Model 2: 0.8   

Model 3: 0.7 

These become the features for the meta-model, which might output a final prediction of 0.75. 

 

Use of Stacking: 

 Combines strengths of multiple models 

 Can reduce generalization error 

 Works well when base models are diverse and not highly correlated 

 

 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

25 

 

 

Mathematically: 

 
Example in Python (with scikit-learn) 

from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import StackingClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score 

 

# Load data 

X, y = load_breast_cancer(return_X_y=True) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) 

 

# Define base learners 

base_learners = [ 

    ('dt', DecisionTreeClassifier()), 

    ('svc', SVC(probability=True)) 

] 

 

# Define meta-learner 

meta_model = LogisticRegression() 

 

# Build stacking model 

stacked_model = StackingClassifier(estimators=base_learners, final_estimator=meta_model) 

stacked_model.fit(X_train, y_train) 

 

# Predict and evaluate 

y_pred = stacked_model.predict(X_test) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

26 

 

Advantages of Stacking 

Benefit Description 

Combines model strengths Leverages diversity to improve performance 

Reduces generalization error Less likely to overfit than a single model 

Flexible Works with any combination of models 

Disadvantages 

Limitation Description 

More complex Requires training multiple models 

Risk of overfitting If meta-model is too complex or base models are similar 

Slower to train Compared to single-model methods 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

27 

 

Blending in Machine Learning 

 

Blending is an ensemble technique used to combine the predictions of multiple machine learning 

models using a validation dataset and a meta-model (usually a simple one like logistic 

regression or linear regression). 

 It’s very similar to stacking, but with a few key differences in how data is split and how the 

meta-model is trained. 

 
How Does Blending Work? 

 Steps: 

1. Split the dataset into 3 parts: 

o Training set: For training base models 

o Validation set: For generating predictions from base models 

o Test set: For final evaluation 

2. Train Base Models: 

o Use the training set to train multiple models (e.g., SVM, Random Forest, 

XGBoost) 

3. Predict on Validation Set: 

o Use base models to make predictions on the validation set 

o These predictions become input features for the meta-model 

4. Train Meta-Model: 

o Train a simple model (e.g., logistic regression) using: 

 Inputs: Predictions of base models on the validation set 

 Targets: True values from the validation set 

5. Final Prediction: 

o Use base models to predict on the test set 

o Meta-model uses these to make final predictions 

 
How It Differs from Stacking 

Feature Blending Stacking 

Data Split Train/Validation/Test split Usually uses cross-validation 

Meta-model trained 

on 
Validation set predictions 

Out-of-fold predictions from cross-

validation 

Simplicity Easier to implement More robust but complex 

Risk of Overfitting 
Higher (due to smaller validation 

set) 
Lower (thanks to cross-validation) 

 
Why Use Blending? 

 Simpler implementation 
 Useful when you're in a time crunch (e.g., in competitions) 

 Easy to apply when you want to combine different models quickly 

 
Blending Illustration Example 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

28 

 

 
 

Advantages of Blending 

Benefit Description 

Simple to implement No need for complex cross-validation setups 

Fast to train Meta-model trained on small dataset 

Good for competitions Useful in last-minute model improvement 

 

Disadvantages 

Drawback Description 

High risk of overfitting Meta-model trained on small validation set 

Not as robust Compared to stacking with cross-validation 

Wastes data Validation data not used in base model training 

 

 Small Python Example (Pseudo-code Style) 

# Step 1: Split data 

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2) 

 

# Step 2: Train base models 

model1 = LogisticRegression().fit(X_train, y_train) 

model2 = RandomForestClassifier().fit(X_train, y_train) 

 

# Step 3: Predict on validation set 

pred1 = model1.predict_proba(X_valid)[:, 1] 

pred2 = model2.predict_proba(X_valid)[:, 1] 

 

# Step 4: Stack predictions and train meta-model 

meta_X = np.column_stack((pred1, pred2)) 

meta_model = LogisticRegression().fit(meta_X, y_valid) 

 

# Step 5: Predict on test set 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

29 

 

final_pred = meta_model.predict(np.column_stack(( 

    model1.predict_proba(X_test)[:, 1], 

    model2.predict_proba(X_test)[:, 1] 

))) 

 

Mathematical Formulation of Blending 

 

 

 

 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

30 

 

 
Example with 3 Models 

 
 
  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

31 

 

Regularization Methods in Machine Learning 

 

Regularization is a technique used to reduce overfitting by adding a penalty term to the loss 

function of a machine learning model. This discourages the model from becoming too complex 

or sensitive to noise in the training data. 

 

Need to  Use Regularization: 

 Prevents overfitting 

 Improves generalization to unseen data 

 Controls the complexity of the model 

 

Benefits of Regularization 

Now, let’s see various benefits of regularization which are as follows: 

1. Prevents Overfitting: Regularization helps models focus on underlying patterns instead of 

memorizing noise in the training data. 

2. Improves Interpretability: L1 (Lasso) regularization simplifies models by reducing less 

important feature coefficients to zero. 

3. Enhances Performance: Prevents excessive weighting of outliers or irrelevant features 

helps in improving overall model accuracy. 

4. Stabilizes Models: Reduces sensitivity to minor data changes which ensures consistency 

across different data subsets. 

5. Prevents Complexity: Keeps model from becoming too complex which is important for 

limited or noisy data. 

6. Handles Multicollinearity: Reduces the magnitudes of correlated coefficients helps in 

improving model stability. 

7. Allows Fine-Tuning: Hyperparameters like alpha and lambda control regularization strength 

helps in balancing bias and variance. 

8. Promotes Consistency: Ensures reliable performance across different datasets which 

reduces the risk of large performance shifts. 

 

Common Regularization Methods 

1. L1 Regularization (Lasso) 

 Adds the absolute value of coefficients to the loss function. 

 Encourages sparsity (sets some weights to zero), leading to feature selection. 

 
2. L2 Regularization (Ridge) 

 Adds the square of coefficients to the loss function. 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

32 

 

 Keeps all features but shrinks weights. 

 
3. Elastic Net Regularization 

 Combines both L1 and L2 penalties. 

 Useful when there are many correlated features. 

 
4. Dropout (in Neural Networks) 

 Randomly sets a fraction of neurons to 0 during training. 

 Reduces co-adaptation of neurons. 

     Intuition: 

        During each training iteration: 

 Drop units with a probability p 

 Forces the network to not rely too much on specific paths 

5. Early Stopping 

 Stop training when the model’s performance on the validation set starts to degrade. 

 Prevents overfitting without modifying the loss function. 

6. Data Augmentation & Noise Injection 

 Add noise to input data or intermediate layers to make the model more robust. 

 

 

  



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

33 

 

Cross-Validation Strategies  

 
Cross-validation (CV) is a statistical method used to estimate the performance of machine 

learning models. It helps detect overfitting and ensures that the model generalizes well to unseen 

data. 

 

Use of Cross-Validation: 

 To assess model stability and robustness 

 To detect overfitting or underfitting 

 To choose the best model hyperparameters 

 

Common Cross-Validation Strategies 

1. Hold-Out Validation 

 Split dataset into: 

o Training set: to train the model 

o Test set: to evaluate the model 

     Limitation: 

 High variance depending on how data is split 

2. K-Fold Cross-Validation 

 Divide data into K equal parts (folds) 

 Train the model on K−1 folds, validate on the remaining fold 

 Repeat K times, each fold used once as validation 

 Final performance = mean of K results 

Example: 

For K=5 

Fold Train On Validate On 

1 2,3,4,5 1 

2 1,3,4,5 2 

3 1,2,4,5 3 

4 1,2,3,5 4 

5 1,2,3,4 5 

3. Stratified K-Fold Cross-Validation 

 Like K-Fold but preserves the percentage of samples for each class in every fold. 

 Useful for imbalanced datasets. 

4. Leave-One-Out Cross-Validation (LOOCV) 

 Special case of K-Fold with K=n (number of samples) 

 Train on all data except one sample, test on that one 

 Repeat for all samples 

 Limitation: 

 Computationally expensive for large datasets 

5. Repeated K-Fold Cross-Validation 

 Repeats K-Fold CV multiple times with different random splits 

 Reduces variance in performance estimation 



R23                                                                                                                III B.Tech I Semester  

Department of Artificial Intelligence and Machine Learning  

Subject: Advanced Machine Learning 23A03351T 

Unit-I 

34 

 

6. Group K-Fold Cross-Validation 

 Ensures that the same group (e.g., from the same patient or user) does not appear in 

both training and validation sets. 

 Ideal for grouped or clustered data 

7. Time Series Split (Rolling Forecast Origin) 

 For time series data where order matters 

 Avoids data leakage by ensuring that future data is not used to predict the past 

Example: 

Fold Train On Validate On 

1 1, 2 3 

2 1, 2, 3 4 

3 1, 2, 3, 4 5 

 

Advantages and Disadvantages of Cross-Validation Strategies 

Strategy Best For  Advantages Disadvantages 

Hold-Out Quick checks Simple and fast High variance 

K-Fold General-purpose Balanced, less bias Can be slow for large K 

Stratified K-Fold 
Imbalanced 

classification 

Maintains class 

distribution 
More complex 

LOOCV Small datasets 
Uses almost all data to 

train 

Very slow for large 

datasets 

Repeated K-Fold Stability checking Reduces random bias 
Slower than standard  

K-Fold 

Group K-Fold 
Grouped data (e.g., 

patients) 
Prevents data leakage Requires group identifiers 

Time Series Split Time-based data Respects time order Needs careful setup 

 

 



Linear and Non-linear Classification in Machine Learning 
Classification in machine learning involves assigning input data to predefined categories. 

Based on the nature of the decision boundary, classification models are generally categorized 
into two types: 

Linear Classification 

Definition: 
Linear classification uses a linear decision boundary (hyperplane) to separate different classes 

in the feature space. 
Key Characteristics: 

 Assumes that classes can be separated by a straight line (in 2D), a plane ( in 3D), or a 
hyperplane (in higher dimensions).  

 Fast and computationally efficient.  

 Works well when data is linearly separable.  
Common Algorithms: 

 Logistic Regression 
 Linear Support Vector Machine (SVM) 
 Perceptron 

Mathematical Representation: 

A linear classifier makes predictions using: 

 
Advantages: 

 Simpler and faster to train. 
 Less prone to overfitting when the dataset is small or simple.  

Limitations: 

 Cannot handle complex patterns or non- linear data distributions. 

 

 Non-linear Classification 
Definition: 

Non-linear classification uses complex decision boundaries (curves, irregular shapes) to 
separate classes that are not linearly separable.  

Key Characteristics: 
 Suitable for data where linear boundaries are insufficient.  
 Capable of modeling intricate relationships between features and output.  

Common Algorithms: 

 Kernel SVM (e.g., RBF kernel) 

 Decision Trees 
 Random Forest 
 K-Nearest Neighbors (KNN) 

 Neural Networks 
Mathematical Approach (Example: Kernel Trick in SVM): 

Transforms data into higher-dimensional space to find a linear separator in that space: 

Dr. J. Krishna, Associate Professor, AI&ML, Annamacharay University

Unit-II



 
Advantages: 

 Flexible and powerful for complex datasets.  

 Can model data with curves, clusters, or multiple class regions.  
Limitations: 

 More computationally expensive. 

 Higher risk of overfitting without proper regularization.  
Comparison Table 

Feature Linear Classification Non-linear Classification 

Decision Boundary  Straight line / hyperplane Curved or complex boundaries 

Speed Faster Slower (depends on algorithm) 

Interpretability  High Often lower 

Use Case Linearly separable data Complex, real-world data 

Risk of Overfitting  Low High (if not regularized) 

 

Usages of linear and non-linear models 

 Use linear models when data is simple and fast performance is required.  

 Use non-linear models when the data exhibits complex patterns or clusters.  



Kernel Trick  
 

The kernel trick  allows algorithms (like SVM) to operate in high-dimensional feature 

spaces without explicitly transforming the data. 

It computes the inner product of two vectors in a transformed feature space  using a kernel 

function: 

 
Uses of Kernel Trick  

 To handle non-linear classification problems. 
 Avoids high computational cost of explicitly mapping data to a higher-dimensional 

space. 
 

 
1. Polynomial Kernel 

Formula: 

 
Interpretation: 

 Allows SVM to learn polynomial decision boundaries.  
 d=2: quadratic kernel 
 d=3: cubic kernel, etc. 

Use Case: 

 When the relationship between features and labels is polynomial (e.g., circular or 

parabolic boundaries). 



Example: 

 
2. RBF (Radial Basis Function) Kernel / Gaussian Kernel 

 Formula: 

 
Interpretation: 

 Projects data into infinite-dimensional space. 
 Measures similarity: closer vectors = higher similarity (near 1), far = near 0.  

Use Case: 
 Excellent for complex, non- linear problems. 

 Default kernel in many SVM implementations.  
 
 Polynomial vs. RBF Kernel: Comparison 

Feature Polynomial Kernel RBF Kernel 

Decision 

Boundary 
Curved, polynomial-shaped Flexible, can model complex shapes 

Control 

Parameter 
Degree d, constant c Gamma γ 

Feature Space 
Finite-dimensional (depends on 

d) 
Infinite-dimensional 

Speed Slower for high degree Often faster for large datasets 

Overfitting Risk  High with large d High with large γ 

Usage 
When relationship is 
polynomial 

When complex non- linear boundaries 
exist 

 
  



Custom Kernels 
In machine learning, particularly Support Vector Machines (SVMs), a custom kernel is a 

user-defined function that computes the similarity between two data points, enabling SVM to 
operate in an implicitly transformed feature space suited to specific data characteristics.  

 
What is a Kernel? (Quick Recap) 

 
 

Custom Kernel: Definition 

A custom kernel is any user-defined function K(x,x′) that: 

1. Measures similarity between inputs.  
2. Must satisfy Mercer's condition (i.e., the kernel matrix must be positive semi-

definite). 

 
Steps to Define a Custom Kernel 

1. Understand your data's structure : Determine what kind of similarity works best.  
2. Design a kernel function: Create a function K(x,x′) that models similarity. 
3. Ensure positive semi-definiteness: The kernel matrix K formed by K(xi,xj) should be 

symmetric and positive semi-definite. 
4. Plug into SVM : Use it via a machine learning library (like scikit-learn). 

 
Examples of Custom Kernels 

1. String Kernel (for text data) 

Measures similarity based on the number of common substrings.  

 
Used in bioinformatics and text classification. 

 
2. Histogram Intersection Kernel (for image histograms) 



 
Used in image retrieval and object recognition. 
 

3. Custom Combination Kernel 
You can combine kernels like: 

 
This approach is called Multiple Kernel Learning (MKL). 
 

Python Example: Custom Kernel with scikit-learn 

from sklearn.svm import SVC 
from sklearn.metrics.pairwise import pairwise_kernels 

import numpy as np 
 
# Define custom kernel (e.g., sigmoid + RBF hybrid) 

def custom_kernel(X, Y): 
    return np.tanh(X @ Y.T + 1) + np.exp(-0.5 * np.linalg.norm(X[:, None] - Y, axis=2)**2) 
 

# Example training 
X = [[1, 2], [2, 3], [3, 4]] 

y = [0, 1, 0] 
 
# Train SVM with custom kernel 

clf = SVC(kernel=custom_kernel) 
clf.fit(X, y) 

 
Benefits of Custom Kernels 

 Tailored to domain-specific data 

 Enables use of non-vector data (strings, graphs, trees) 
 Often improves performance for complex or structured data 

 
Challenges 

 Must ensure validity (positive semi-definiteness) 

 May require domain expertise 
 Slower for large datasets unless optimized 

  



Soft Margin SVMs (Support Vector Machines) 
 

Soft Margin SVMs are an extension of hard margin SVMs that allow some misclassification 
in the training data. They are crucial when the data is not linearly separable. 

 
Why Soft Margin? 
In real-world data: 

 Classes may overlap 
 Outliers may exist 

 Perfect separation is often impossible 
A Hard Margin SVM requires perfect separation → not practical.  
Soft Margin SVM introduces flexibility by allowing some errors (slack).  

 
The idea is to balance two goals: 

1. Maximize the margin 
2. Minimize the classification error (misclassified or inside-margin points) 

 

 

This diagram shows 

 Two classes of points (+1 and -1) 

 The decision boundary (solid black line) 
 The margin boundaries (dashed lines) 

 The support vectors (highlighted with black borders) 

 



Mathematical Formulation 
Objective Function: 

 
Explanation of Terms 

 

 
 
Interpretation of Parameters 

 
Advantages 

 Works well for non-separable data 
 Balances accuracy and generalization 

 Less sensitive to noise/outliers  
 

  



Dual Form (for Kernel Trick) 
The dual form (used with kernels) is: 

 
 Soft Margin vs. Hard Margin 

Feature Hard Margin SVM Soft Margin SVM 

Assumes data Perfectly separable Overlapping/Noisy allowed 

Slack variable ξ Not used Used 

Regularization C Not needed Critical for performance 



Dual Form and Optimization of Support Vector Machines (SVM) 

 
1. Primal Form of SVM (Soft Margin) 
We want to find the hyperplane that best separates the classes, allowing some margin of 

error. 

 
2. Dual Formulation 

Instead of directly solving the primal form, we derive the dual form using Lagrange 

multipliers. This lets us: 

 
3. Optimization Algorithm 

After deriving the dual, we solve it using Quadratic Programming (QP). For large datasets, 
we use iterative optimization algorithms: 
Common Methods: 

 Sequential Minimal Optimization (SMO) 
 Stochastic Gradient Descent (SGD) (for linear SVMs) 



 LibSVM (widely used library for kernel SVMs) 
 

4. Reconstructing the Classifier 
Once we solve for α\alphaα, the decision function becomes: 

 
Advantages of Dual Form 

 Allows use of kernel functions to handle non- linear data 
 Efficient when the number of features > number of samples 

 Helps identify support vectors clearly 



Support Vector Regression (SVR): Formulation, Optimization & Practical 
Tips 
 
Support Vector Regression extends the maximum-margin principle of SVM classification 

to regression tasks, using a ε-insensitive loss to tolerate small errors while maintaining model 
sparsity. 

 

1. Understanding the ε-Insensitive Tube 
SVR trains a function: 

 
that stays within an ε-tube around true targets yi . Deviations less than ε are ignored: 

 
This loss ensures only points that lie outside the tube affect the model (support vectors). 

Smaller ε → more SVs → more complexity; l 
arger ε → fewer SVs → smoother fit  
2. Primal Optimization (with Slack Variables) 

To allow some predictions outside the tube, we add slack variables  

 
Subject to: 

 

 
 3. Dual Formulation — Enabling Kernelization 
The dual problem introduces two sets of Lagrange multipliers  αᵢ and αᵢ*, and transforms 
into: 

 

 
The regression function becomes: 

 
Note only support vectors (with non-zero α differences) contribute to the prediction.  

4. Kernel Trick & Non-Linear SVR 
SVR allows non- linear regression by using kernel functions in place of the inner product: 



 
 

This enables mapping to high-dimensional (even infinite-dimensional) feature spaces without 

explicit transformation. 
5. Practical Hyperparameters & Effects 

Parameter Function Effect on model 

C Regularization strength 
High C → fits training error 
tightly (risk overfitting); 
 low C → smoother function 

ε (epsilon) Width of the insensitive tube 

Large ε → few support vectors & 
high bias;  
small ε → more SVs & high 
variance 

Kernel type  

(and γ, degree, 
coef0) 

Determines geometry of decision 

surface 

Critical for capturing non- linear 

trends 

shrinking, tol, 
cache_size 

Optimization details affecting 
runtime and convergence  

In scikit-learn’s SVR implementation: 
 Defaults: kernel='rbf', C=1.0, ε=0.1, gamma='scale'  
 Complexity: more than quadratic in #samples → consider LinearSVR for very large 

datasets. 
 Default behavior: ε- insensitive loss, standard RBF kernel setting, based on libsvm  

6. Key Advantages & Limitations 
Advantages 

 Sparse representation: only support vectors matter (efficient inference).  
 Built- in regularization → robust generalization.  
 Works naturally with non-vector data using custom kernels (e.g., string, histogram-

based). 
 Non-parametric: the model adapts complexity to the data.  

Limitations 
 Computationally expensive  for n ≫ 10,000, especially with non- linear kernels. 

 Tree/trend coverage depends heavily on kernel and hyperparameters.  
 Less interpretable than linear methods in regression settings.  

7. Example: Training an SVR in Python 

from sklearn.svm import SVR 
from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_squared_error 
 

param_grid = { 
    'C': [0.1, 1, 10], 
    'epsilon': [0.01, 0.1, 0.5], 

    'kernel': ['rbf', 'poly'],  
    'gamma': ['scale', 'auto'],  # for rbf and poly 
    'degree': [2, 3]             # only for poly 



} 
 

svr = SVR() 
grid = GridSearchCV(svr, param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2) 

grid.fit(X_train, y_train) 
 
best = grid.best_estimator_ 

y_pred = best.predict(X_test) 
mse = mean_squared_error(y_test, y_pred) 

print(f"Best params: {grid.best_params_}, Test MSE: {mse:.3f}") 
This grid search approach effectively tunes both C and ε parameters—crucial for getting the 
right bias-variance trade-off. 

8. Why It Works: Sparsity & Support Vectors 
Due to the ε-insensitive loss and capped multipliers (0 ≤ αᵢ, αᵢ* ≤ C), most training points 

have zero coefficients unless they lie outside the ε-tube. Only a subset—called support 
vectors—affects the resulting model. This makes SVR flexible yet interpretable in terms of 
critical examples. 

9. Common Extensions & Variants 

 Least-Squares SVR (LSSVR): uses squared ε- insensitive loss → fully dense 
solutions (all points become support vectors) → faster to solve but less sparse.  

 Adaptive ε-SVR (Aεᵢ-SVR): allows varying ε per sample for better handling of 
heteroskedasticity or irregular data distributions. 

 Twin Support Vector Regression (TSVR): separates data using two proximal 
hyperplanes → solved via smaller QPs → improved scalability in some cases.  

 
TL;DR (Too Long; Didn't Read) 

 SVR is the regression counterpart of SVM, optimizing margin while tolerating small 

errors via the ε-Tube. 
 Has both primal and dual formulations; dual enables kernelization for complex non-

linear relationships. 
 Hyperparameters C, ε, and kernel critically affect bias–variance and generalization. 
 Efficient for moderately sized datasets; less scalable for very large data unless using 

approximate methods like LinearSVR or kernel approximations.  
  



Kernel PCA (Principal Component Analysis) for Non-linear Dimensionality 

Reduction 

 
What is Kernel PCA? 

Kernel PCA is an extension of classical Principal Component Analysis (PCA) that allows 
non-linear dimensionality reduction using the kernel trick. 

 It maps input data to a high-dimensional feature space , where linear PCA is 

performed. 

 In this feature space, non-linear structures in the original data can be captured 

effectively. 
 

Usage of Kernel PCA 
 Classical PCA assumes linear correlations between variables. 

 Kernel PCA works well when: 
o Data lies on a non-linear manifold 
o There are non-linear patterns (e.g., spirals, concentric circles) 

Core Idea 

 
Kernel PCA Algorithm Steps  

Step 1: Choose a Kernel Function 
Examples: 

 
Step 2: Compute the Kernel (Gram) Matrix 

 
Step 3: Center the Kernel Matrix 
Center the matrix to ensure zero-mean data in feature space: 

 
 Where: 

 1: n×n matrix with all values = 1/n 

 This operation centers the data in the feature space without computing ϕ(x) 
 Subtract the row mean: K−1K 

 Subtract the column mean: −K1 
 Add the total mean: +1K1 

➤ Step 4: Eigen Decomposition 



Solve the eigenvalue problem: 

 

Where: 

 α: eigenvector (principal component in kernel space) 

 λ: eigenvalue (variance explained by that component) 
We find the top k eigenvectors corresponding to the largest eigenvalues. 

 
Step 5: Project Data 
Project data onto the first k principal components: 

 
Applications of Kernel PCA 

 Data visualization (in 2D or 3D) 

 Preprocessing for classification (e.g., SVM) 
 Non-linear feature extraction 
 Image and signal denoising  

Comparison: PCA vs. Kernel PCA 

Feature PCA Kernel PCA 

Type of method Linear Non-linear (via kernel trick) 

Basis computation Covariance matrix Kernel (Gram) matrix 

Captures curved manifolds Not Allowed Allowed 

Output interpretability Easy Harder 

Example (Python - scikit-learn) 

from sklearn.decomposition import KernelPCA 

import matplotlib.pyplot as plt 
 

# Sample: circular data 
from sklearn.datasets import make_circles 
X, y = make_circles(n_samples=400, factor=0.3, noise=0.05) 

 
# Apply Kernel PCA 

kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) 
X_kpca = kpca.fit_transform(X) 
 

# Plot result 
plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=y) 

plt.title("Kernel PCA with RBF Kernel") 
plt.show() 
  



Practical Issues with Kernel Methods 
Computational Complexity 

 Problem: 

 Kernel methods involve computing the Kernel (Gram) Matrix of size n×n, where n 

is the number of training samples.  
 Importance: 

 Time complexity: O(n2) 

  Memory usage: O(n2) 
  For large datasets (e.g., n>10,000), this becomes infeasible. 

Choice of Kernel Function 
Problem: 

 There is no universal kernel that works best for all problems. 

Issues: 
 Requires domain knowledge or trial-and-error. 

 Poor kernel choice ⇒ underfitting or overfitting. 
 Common kernels: RBF, polynomial, sigmoid, but: 

o RBF: may perform poorly if data has multiple scales 
o Polynomial: sensitive to degree and coefficients 

Hyperparameter Tuning 
Problem: 

 Most kernels have tunable parameters (e.g., σ in RBF, degree in polynomial).  

Impact: 

 Incorrect values can drastically reduce performance.  

 Grid search or cross-validation is computationally expensive. 
Lack of Interpretability 
Problem: 

 Kernel methods operate in high-dimensional feature spaces that are implicit and 
abstract. 

Impact: 
 Hard to understand what features are being used. 
 Difficult to interpret decision boundaries or transformed data.  

 Not ideal for explainable AI scenarios.  
No Sparse Solutions for Some Kernels 

Problem: 

 SVM with linear kernels can result in sparse models (fewer support vectors).  
 Non-linear kernels often yield dense solutions: 

o Many support vectors ⇒ slower predictions. 

Scalability to Large Datasets 

Problem: 
 Kernel methods don’t scale well with large-scale problems. 

 Batch learning setup is inefficient for streaming or real-time data. 
Numerical Stability 

Problem: 
 Kernel matrix K must be positive semi-definite (PSD). 
 In practice, due to floating-point errors or bad kernels, K can become non-PSD, 

leading to instability in algorithms (e.g., eigen decomposition in Kernel PCA).  
Pre-image Problem (in Kernel PCA) 

Problem: 

 After projecting to lower-dimensional space (e.g., with Kernel PCA), it's non-trivial 
to recover the original input from the projection. 



Importance: 
 Limits reconstruction, denoising, or generative tasks.  

Overfitting Risk 
Problem: 

 Rich kernel spaces can overfit small datasets if regularization is not properly handled.  
Implementation Complexity 

Problem: 

 More complex than linear models.  
 Requires careful coding and parameter control to avoid pitfalls.  

Summary Table 

Issue Description 

Computational Complexity Needs O(n2) memory and time 

Kernel Selection No one-size-fits-all kernel 

Parameter Tuning Sensitive to kernel parameters 

Interpretability Hard to understand inner workings 

Scalability Poor performance on big data 

Numerical Instability Kernel matrix may be non-PSD 

Pre-image Problem Can't easily go back to input space 

Overfitting Risky with small datasets 

Dense Solutions Many support vectors slow down prediction 

 
  



Applications in Text and Image Classification 
Applications in Text Classification 

1. Spam Detection 
o Classify emails as spam or not spam 

o Use TF-IDF (Term Frequency-Inverse Document Frequency) or Bag-of-

Words features 
o Kernels: Linear, Polynomial 

2. Sentiment Analysis 
o Classify movie/product reviews as positive or negative 

o Kernels handle non- linear sentiment patterns 
3. Topic Categorization 

o News articles categorized into politics, sports, etc.  

o Linear kernel often works well with high-dimensional sparse data 
4. Language Detection 

o Identify the language of text samples 
o Kernel trick helps with capturing n-gram relationships 

 

Applications in Image Classification 

1. Object Recognition 

o Classify objects like cars, animals, etc., in images 
o Use RBF kernel or Histogram Intersection Kernel 

2. Facial Recognition 

o Match a given face to identities 
o Kernel methods project face data to higher dimensions for better separation 

3. Digit Recognition (e.g., MNIST Modified National Institute of Standards and 

Technology ) 
o Classify handwritten digits 
o SVM with RBF kernel achieves high accuracy 

4. Texture Classification 
o Identify types of surfaces or materials in images 
o Uses specialized kernels (e.g., pyramid match kernels) 

 
Benefits of Kernel Methods in Text/Image: 

 Work well with high-dimensional data 
 Don't require deep architectures 
 Can be very accurate with good kernel choice and tuning  

 
 


