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Bias and Variance:

o Bias refers to the errors which occur when we try to fit a statistical model on real-world data
which does not fit perfectly well on some mathematical model. If we use a way too simplistic
a model to fit the data then we are more probably face the situation of High
Bias (underfitting) refers to the case when the model is unable to learn the patterns in the
data at hand and perform poorly.

o Variance shows the error value that occurs when we try to make predictions by using data
that is not previously seen by the model. There is a situation known as high
variance (overfitting) that occurs when the model learns noise that is present in the data.

Finding a proper balance between the two is also known as the Bias-Variance Tradeoff which

helps us to design an accurate model.

Bias Variance tradeoff

The Bias-Variance Tradeoff refers to the balance between bias and variance which affect

predictive model performance. Finding the right tradeoff is important for creating models that

generalize well to new data.

o The bias-variance tradeoff shows the inverse relationship between bias and variance. When
one decreases, the other tends to increase and vice versa.

o Finding the right balance is important. An overly simple model with high bias won't capture
the underlying patterns while an overly complex model with high variance will fit the noise
in the data.

Variance

Optimal Model Complexity

Error

- -
Model Complexity
Overfitting and Underfitting:
Overfitting and underfitting are terms used to describe the performance of machine learning
models in relation to their ability to generalize from the training data to unseen data.
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Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be true) = T

Overfitting happens when a machine learning model learns the training data too well including
the noise and random details. This makes the model to perform poorly on new, unseen data
because it memorizes the training data instead of understanding the general patterns.

For example, if we only study last week’s weather to predict tomorrow’s i.e our model might
focus on one-time events like a sudden rainstorm which won’t help for future predictions.

Underfitting is the opposite problem which happens when the model is too simple to learn even
the basic patterns in the data. An underfitted model performs poorly on both training and new
data. To fix this we need to make the model more complex or add more features.

For example if we use only the average temperature of the year to predict tomorrow’s weather
hence the model misses important details like seasonal changes which results in bad predictions.


https://www.geeksforgeeks.org/how-to-handle-overfitting-in-tensorflow-models/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
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Ensemble Learning

Ensemble learning is a method where we use many small models instead of just one. Each of

these models may not be very strong on its own, but when we put their results together, we get a

better and more accurate answer. It's like asking a group of people for advice instead of just one

person—each one might be a little wrong, but together, they usually give a better answer.

Types of Ensembles Learning in Machine Learning

There are three main types of ensemble methods:

1. Bagging (Bootstrap Aggregating):

Models are trained independently on different random subsets of the training data. Their
results are then combined—usually by averaging (for regression) or voting (for
classification). This helps reduce variance and prevents overfitting.

2. Boosting:

Models are trained one after another. Each new model focuses on fixing the errors made by
the previous ones. The final prediction is a weighted combination of all models, which helps
reduce bias and improve accuracy.

3. Stacking (Stacked Generalization):

Multiple different models (often of different types) are trained, and their predictions are used
as inputs to a final model, called a meta-model. The meta-model learns how to best combine
the predictions of the base models, aiming for better performance than any individual model.

1. Bagging Algorithm

Bagging classifier can be used for both regression and classification tasks. Here is an overview

of Bagging classifier algorithm:

o Bootstrap Sampling: Divides the original training data into ‘N’ subsets and randomly
selects a subset with replacement in some rows from other subsets. This step ensures that the
base models are trained on diverse subsets of the data and there is no class imbalance.

o Base Model Training: For each bootstrapped sample we train a base model independently on
that subset of data. These weak models are trained in parallel to increase computational
efficiency and reduce time consumption. We can use different base learners i.e. different ML
models as base learners to bring variety and robustness.

o Prediction Aggregation: To make a prediction on testing data combine the predictions of all
base models. For classification tasks it can include majority voting or weighted majority
while for regression it involves averaging the predictions.

e QOut-of-Bag (OOB) Evaluation: Some samples are excluded from the training subset of
particular base models during the bootstrapping method. These “out-of-bag” samples can be
used to estimate the model’s performance without the need for cross-validation.

o Final Prediction: After aggregating the predictions from all the base models, Bagging
produces a final prediction for each instance.

Python pseudo code for Bagging Estimator implementing libraries:

1. Importing Libraries and Loading Data

o BaggingClassifier: for creating an ensemble of classifiers trained on different subsets of
data.

o DecisionTreeClassifier: the base classifier used in the bagging ensemble.

o load_iris: to load the Iris dataset for classification.

e train_test_split: to split the dataset into training and testing subsets.

e accuracy_score: to evaluate the model’s prediction accuracy.
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from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

2. Loading and Splitting the Iris Dataset

o data =load_iris(): loads the Iris dataset, which includes features and target labels.

o X =data.data: extracts the feature matrix (input variables).

o y =data.target: extracts the target vector (class labels).

e train_test_split(...): splits the data into training (80%) and testing (20%) sets, with
random_state=42 to ensure reproducibility.

data = load_iris()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3. Creating a Base Classifier

Decision tree is chosen as the base model. They are prone to overfitting when trained on

small datasets making them good candidates for bagging.

o base_classifier = DecisionTreeClassifier(): initializes a Decision Tree classifier, which will
serve as the base estimator in the Bagging ensemble.
base_classifier = DecisionTreeClassifier()

4. Creating and Training the Bagging Classifier

o A BaggingClassifier is created using the decision tree as the base classifier.

o n_estimators = 10 specifies that 10 decision trees will be trained on different bootstrapped
subsets of the training data.

bagging_classifier = BaggingClassifier(base_classifier, n_estimators=10, random_state=42)
bagging_classifier.fit(X_train, y_train)
5. Making Predictions and Evaluating Accuracy
o The trained bagging model predicts labels for test data.
e The accuracy of the predictions is calculated by comparing the predicted labels (y_pred) to
the actual labels (y_test).

y_pred = bagging_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Output:
Accuracy: 1.0

2. Boosting Algorithm

Boosting is an ensemble technique that combines multiple weak learners to create a strong
learner. Weak models are trained in series such that each next model tries to correct errors of the
previous model until the entire training dataset is predicted correctly. One of the most well-
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known boosting algorithms is AdaBoost (Adaptive Boosting). Here is an overview of Boosting

algorithm:

o Initialize Model Weights: Begin with a single weak learner and assign equal weights to all
training examples.

e Train Weak Learner: Train weak learners on these dataset.

e Sequential Learning: Boosting works by training models sequentially where each model
focuses on correcting the errors of its predecessor. Boosting typically uses a single type of
weak learner like decision trees.

o Weight Adjustment: Boosting assigns weights to training datapoints. Misclassified
examples receive higher weights in the next iteration so that next models pay more attention
to them.

Python pseudo code for boosting Estimator implementing libraries:

1. Importing Libraries and Modules

o AdaBoostClassifier from sklearn.ensemble: for building the AdaBoost ensemble model.

o DecisionTreeClassifier from sklearn.tree: as the base weak learner for AdaBoost.

o load_iris from sklearn.datasets: to load the Iris dataset.

o train_test_split from sklearn.model_selection: to split the dataset into training and testing
sets.

e accuracy_score from sklearn.metrics: to evaluate the model’s accuracy.

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

2. Loading and Splitting the Dataset

o data = load_iris(): loads the Iris dataset, which includes features and target labels.

o X = data.data: extracts the feature matrix (input variables).

o y =data.target: extracts the target vector (class labels).

e train_test_split(...): splits the data into training (80%) and testing (20%) sets, with
random_state=42 to ensure reproducibility.

data = load_iris()

X = data.data

y = data.target

X _train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3. Defining the Weak Learner

We are creating the base classifier as a decision tree with maximum depth 1 (a decision stump).
This simple tree will act as a weak learner for the AdaBoost algorithm, which iteratively
improves by combining many such weak learners.

base_classifier = DecisionTreeClassifier(max_depth=1)

4. Creating and Training the AdaBoost Classifier
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o base_classifier: The weak learner used in boosting.
e n_estimators = 50: Number of weak learners to train sequentially.
e learning_rate = 1.0: Controls the contribution of each weak learner to the final model.
o random_state = 42: Ensures reproducibility.

adaboost_classifier = AdaBoostClassifier(
base_classifier, n_estimators=50, learning_rate=1.0, random_state=42

)

adaboost_classifier.fit(X_train, y_train)

5. Making Predictions and Calculating Accuracy

We are calculating the accuracy of the model by comparing the true labels y_test with the
predicted labels y_pred. The accuracy_score function returns the proportion of correctly
predicted samples. Then, we print the accuracy value.

accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Output:

Accuracy: 1.0

Benefits of Ensemble Learning in Machine Learning

Ensemble learning is a versatile approach that can be applied to machine learning model for: -

e Reduction in Overfitting: By aggregating predictions of multiple model's ensembles can
reduce overfitting that individual complex models might exhibit.

o Improved Generalization: It generalizes better to unseen data by minimizing variance and
bias.

e Increased Accuracy: Combining multiple models gives higher predictive accuracy.

e Robustness to Noise: It mitigates the effect of noisy or incorrect data points by averaging
out predictions from diverse models.

o Flexibility: It can work with diverse models including decision trees, neural networks and
support vector machines making them highly adaptable.

o Bias-Variance Tradeoff: Techniques like bagging reduce variance, while boosting reduces
bias leading to better overall performance.

There are various ensemble learning techniques we can use as each one of them has their own

pros and cons.

Ensemble Learning Techniques

Technique Category Description

Random forest constructs multiple decision trees on
Random Forest Bagging bootstrapped subsets of the data and aggregates their
predictions for final output, reducing overfitting and variance.
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Gradient Boosting
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(Adaptive
Boosting)

CatBoost

Category

Bagging

Boosting

Boosting

Boosting

Boosting
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Description

Trains models on random subsets of input features to enhance
diversity and improve generalization while reducing
overfitting.

Gradient Boosting Machines sequentially builds decision
trees, with each tree correcting errors of the previous ones,
enhancing predictive accuracy iteratively.

XGBoost do optimizations like tree pruning, regularization,
and parallel processing for robust and efficient predictive
models.

AdaBoost focuses on challenging examples by assigning
weights to data points. Combines weak classifiers with
weighted voting for final predictions.

CatBoost specialize in handling categorical features natively
without extensive preprocessing with high predictive accuracy
and automatic overfitting handling.


https://www.geeksforgeeks.org/ml-gradient-boosting/
https://www.geeksforgeeks.org/xgboost/
https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/
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Bagging

Bagging (Bootstrap Aggregating) is an ensemble learning technique in machine learning that
improves the accuracy and stability of models by reducing variance and avoiding overfitting,
especially in high-variance models like decision trees.

Definition:
Bagging stands for Bootstrap Aggregating. It involves:
e Generating multiple versions of a training dataset using bootstrap sampling (random
sampling with replacement).
o Training separate models (often the same type, like decision trees) on each of these
datasets.
o Aggregating their predictions (averaging for regression, majority vote for
classification).
Workflow of Bagging Algorithm (Step-by-Step):

| Training Data l
Y
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Base Base N N
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[ Final Prediction ]

1. Bootstrap Sampling: Create multiple datasets (say, k datasets) from the original training
data using sampling with replacement.
Model Training: Train a base learner (e.g., decision tree) on each dataset independently.
Aggregation:

o Classification: Use majority voting to decide the final output.

o Regression: Use averaging of all predictions to give the final output.

w

Uses of Bagging:
o Reduces overfitting by averaging out predictions.
e Decreases model variance (good for unstable models).
o Improves generalization.

Common Algorithms That Use Bagging:
e Random Forest is a prime example: it’s a bagging method using decision trees with
added randomness in feature selection.
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Advantages of Bagging:
e Reduces variance, thus improving model stability.
e Works well with high-variance, low-bias models.
o Easy to implement and parallelize.

Limitations:
e Doesn’t help much if the base model is already low in variance (like linear regression).
e May not reduce bias.
e Can be computationally expensive.
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Boosting

Boosting is an ensemble learning method that combines multiple weak learners to form a
strong learner. It builds models sequentially, where each model learns from the errors of the
previous ones, improving overall performance.

Definition:
Boosting refers to a family of algorithms that convert weak models (like shallow decision
trees) into a strong model by focusing more on misclassified data points during each iteration.

Working Steps of Boosting:

3
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Initialize the model by training a weak learner on the original dataset.
Compute Errors: Measure the performance of the model.

Update Weights: Increase weights of incorrectly predicted samples.

Train Next Learner: The next model focuses more on the harder examples.
Combine Models: Final prediction is a weighted sum of all weak learners.

M S

Key Concepts:
e Sequential training
e Focus on difficult samples
e Reduces both bias and variance
o Final prediction is based on the weighted majority vote (classification) or weighted
average (regression)

Popular Boosting Algorithms:

‘Algorithm HKey Feature ’
‘AdaBoost HAdjusts weights of samples ’
‘Gradient Boosting HOptimizes loss function via gradients ‘
‘XGBoost HOptimized, fast version of gradient boosting ‘
‘LightGBM HFaster training, uses histogram-based techniques ‘
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‘Algorithm HKey Feature
‘CatBoost HHandles categorical features efficiently

Advantages of Boosting:
e High accuracy
¢ Handles both bias and variance
o Performs well on imbalanced data

Limitations:
e Prone to overfitting if not regularized

e Sequential — difficult to parallelize
e Slower than bagging

11
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Random Forest Algorithm

o Random Forest is a supervised ensemble learning algorithm.

e It is used for both classification and regression tasks.

e It builds multiple decision trees and merges them together to get a more accurate and

stable prediction.

A Random Forest is a collection (ensemble) of Decision Trees where:

e Each tree is trained on a different subset of the data using bootstrap sampling (bagging).

e Ateach node, only a random subset of features is considered for splitting.

o Final output is based on majority voting (classification) or averaging (regression).
Workflow of Random Forest (Step-by-Step)
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Step 1: Bootstrap Sampling
e Create N different subsets (with replacement) from the training data.
o Each subset is used to train one decision tree.
Step 2: Build Decision Trees
o For each tree:
o Choose a random subset of features at each split (feature bagging).
o Grow trees fully without pruning.
Step 3: Aggregate Results
o For Classification: Each tree votes — final class = majority vote.
o For Regression: Average the outputs from all trees.

Key Terms

‘Term HDescription ’
‘Bootstrap Sampling HSampling with replacement from the dataset ‘
‘Feature Bagging HRandome selecting a subset of features at each split ‘
‘Ensemble Learning HCombining multiple models for better performance ‘
‘Majority Voting HUsed in classification ‘
‘Averaging HUsed in regression ’

12
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Advantages
e Reduces overfitting compared to individual decision trees.
o Works well with both categorical and numerical features.
e (Can handle missing values and maintain accuracy.
o Robust to outliers and noise.
e Can give feature importance scores.
Disadvantages
o Computationally intensive (training many trees).
o Less interpretable than a single decision tree.
o Slower in real-time predictions (due to ensemble size).
Applications of Ramdom Forest:
e Medical diagnosis (e.g., cancer prediction)
o Financial risk analysis
e Credit scoring
o Image classification
e Fraud detection

Python Code Example

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data
X,y =load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# Build model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Predictions
y_pred = model.predict(X_test)

# Accuracy
from sklearn.metrics import accuracy_score

print("Accuracy:", accuracy_score(y_test, y_pred))

Parameters of Random Forest (Sklearn)

‘Parameter HDescription

‘n_estimators HNumber of trees

‘max_features HNumber of features to consider at each split
‘max_depth HMaXimum depth of the tree

‘min_samples_split HMinimum samples required to split an internal node

13
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‘Parameter HDescription ‘
‘bootstrap HWhether bootstrap samples are used ‘
Comparison with Other Algorithms

‘Feature HDecision Tree HBagging HRandom Forest HBoosting ‘
‘Overfitting Risk HHigh HLOW HLow HMedium ‘
‘Interpretability HHigh HLOW HMedium “LOW |
|Accuracy [Medium |High |High |[Very High |
‘Training Speed HFast HModerate HSlow HSlow ‘
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AdaBoost Algorithm

AdaBoost (Adaptive Boosting) is a Boosting ensemble technique that combines multiple weak
learners (usually decision stumps — trees with one split) to form a strong classifier.

o It focuses on instances that were previously misclassified.

e Learners are added sequentially, and each one tries to correct the mistakes of the

previous ones.

Key Idea:
Increase the weights of incorrectly classified data points so that subsequent models focus more
on those “hard” cases.

Workflow of AdaBoost:
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Step-by-Step:
1. Initialize Weights:
o Assign equal weights to all training samples.
2. Train a Weak Learner:
o Train a classifier (e.g., a decision stump) on the weighted data.
3. Calculate Error:
o Compute the weighted error of the learner:

Error = Z w; - I(y; # h(zi))

o where I is an indicator function.
4. Compute Learner's Weight:
o A classifier with lower error gets higher importance:
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1 (1 - Errur)
a=_ log | ——

Error

-

5. Update Weights of Samples:
o Increase weights of misclassified samples.
o Decrease weights of correctly classified samples:
w; = w; - € = S

o Normalize weights.
6. Repeat:

o Train next learner on updated weights.

o Repeat steps for T rounds (number of estimators).
7. Final Prediction:

o Combine all classifiers using their weights:

o &
H(x) = sign (Z f_l,rh,-lf-.r])

=1
Key Notations:
s @y Input features of sample ¢
= ;: Label of sample 4, typically y; = {—1.,+1}
o h,(x;): Prediction of the weak learner £ on input @,
=  wy;: Weight of sample 2
= ¥ Weight assigned to weak classifier f,;

e T Total number of weak learners

AdaBoost Code Example (Python)

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data
X,y =load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# Base weak learner: Decision stump
base = DecisionTreeClassifier(max_depth=1)

# AdaBoost model

model = AdaBoostClassifier(base_estimator=base, n_estimators=50, learning_rate=1.0)
model.fit(X_train, y_train)
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# Accuracy
print("Accuracy:", model.score(X_test, y_test))
Advantages of AdaBoost

‘Feature HBeneﬁt

‘Improves weak learners HCombines simple models to perform well

‘Versatile HWorks for binary and multi-class classification

‘Feature importance HCan give feature significance

‘No need for data pre-processing HRobust to outliers and noise

Disadvantages

Sensitive to noisy data and outliers
Not suitable for large datasets with many irrelevant features
Harder to interpret compared to individual trees

Applications

Face detection (e.g., Viola-Jones algorithm)
Fraud detection

Text classification

Bioinformatics

Comparison: AdaBoost vs Bagging vs Random Forest

‘Feature HAdaBoost HBagging HRandom Forest ‘
‘Base Learners HSequential HParallel HParallel ‘
‘Focus HHard samples HVariance reduction HRandom features & samples ‘
‘Output HWeighted vote HMaj ority vote HMaj ority vote ‘
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Gradient Boosting Algorithm

Gradient Boosting is an ensemble learning technique that builds a strong predictive model by
combining multiple weak learners (typically decision trees), trained sequentially to correct the
errors made by previous models.

It uses the idea of minimizing a loss function by applying gradient descent.

Key Idea:

Each new learner is trained to predict the residuals (errors) of the previous learners, thereby
improving the model step by step.

Workflow of Gradient Boosting (Step-by-Step):

L Training Data J

Convert to
Histogram Bins

Hessians

Calculate
Gradients and

Step 1: Initialize the Model
o Use a constant value that minimizes the loss function.
o For regression with MSE:

'}_u[iEJ — arg Il]_il] E {y; — --.:]3 =]
F) .'-:1

Step 2: Iterate for T steps (number of trees)
Fort = 1to 1"
1. Compute Residuals (Negative Gradient):

NONS PL(?J.::F{IJ)}
; OF (z;) F=F 1(x)

These are the pseudo-residuals.
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2. Train a Weak Learner (e.g.. decision tree) to predict the residuals:
Fer() == ?"E“

3. Compute Step Size (learning rate multiplied by a fitting coefficient):

e — arg min > Lyis Fr_a1(x:) + vhe(x:))

=1

4. Update the Model:
Fi(x) — Froa(x) + nvyehe(x)

where 7 is the learning rate {controls how much we trust each learner’

Key Terms

‘Term HDescription |
‘Weak Learner HTypically a decision tree (shallow) |
‘Loss Function HMeasures error (MSE, Log Loss, etc.) |
‘Learning Rate n\etan HShrinks the contribution of each tree ‘
‘Residuals HErrors the model tries to fix ’
‘Additive Model HCombines learners in a stage-wise manner |

Loss Functions
e Regression:

e MSE L(y, F(z)) = (y — F(z))?

e Classification:

e logloss: L(y, F(z)) = log(1 + e~ 2¥(2))

Gradient Boosting Code in Python

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

# Load data
X,y =load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# Model
gb_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3)
gb_model.fit(X_train, y_train)

# Accuracy
print("Accuracy:", gb_model.score(X_test, y_test))
Advantages of Gradient Boosting

o High prediction accuracy

o Handles both regression and classification
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e Works with many types of loss functions

e Feature importance ranking
Disadvantages

e Can overfit if not tuned properly

o Training is slower due to sequential nature

e Requires careful parameter tuning (learning rate, depth, etc.)
Comparison: AdaBoost and Gradient Boosting

‘Feature HAdaBoost “Gradient Boosting

‘Loss Optimization HBased on exponential loss “Any differentiable loss
‘Weighting HAdjusts sample weights HFits to residuals
‘Robustness to Outliers HLower HHigher

‘Tuning Needed HLess HMore (learning rate, depth)
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XGBoost Algorithm

XGBoost (Extreme Gradient Boosting) is an advanced implementation of the Gradient
Boosting algorithm. It is designed to be highly efficient, flexible, and portable, with state-of-
the-art performance.

XGBoost = Gradient Boosting + Regularization + Speed + Flexibility

It is robust, scalable, and tunable, and often outperforms other models in structured/tabular data
tasks.

The uses of XGBoost:

o Fast and parallelizable

o Handles missing values

e Includes regularization (to prevent overfitting)

o Excellent performance in Kaggle competitions

e Scales well to large datasets
Core Idea
Like Gradient Boosting, XGBoost builds trees sequentially, where each new tree corrects the
errors of the previous ensemble by minimizing a loss function using gradient descent.
XGBoost enhances this process with:

e Second-order optimization (using both gradient and hessian)

e Regularization

e Tree pruning

e Cache-aware computing

Workflow of XGBoost (Step-by-Step)

Input First Residuals |--..| Ensemble
Data Learner Prediction

A4

Step 1: Objective Function
XGBoost minimizes a regularized objective function:

T

C(t) =D Wy, 9;7) + Z Q(fr)

i=1

= [I: Loss function {(e.g.. MSE, log loss)
e fi: Each tree in the ensemble

- () =T+ A3,

I: number of leaves, w;: leaf weights

2
]

. A regularization parameters

21



R23 III B.Tech I Semester
Department of Artificial Intelligence and Machine Learning
Subject: Advanced Machine Learning 23A03351T
Unit-I
Step 2: Second-Order Taylor Approximation
The loss is approximated with gradients and hessians:

1 ]

) 1 5 1 s =
LU= [q,-f.-{aze..-) 5hafr(wf-JJ + Q(f)

i=1

~1E—1)

s g; = E?.'f:"" ::i(y;-.'y,- } — Gradient
e h; = r'?ﬁ, ],E[’y,.._;i}f‘f 1'} — Hessian

Step 3: Structure Score for Splits
For a split node with instances III:

1 [ (v g } i

Score = —
2 | Tic b+ A

=

Choose the split with the highest score.

Step 4: Tree Building
e Add trees greedily to minimize loss.
e Trees are built depth-wise or loss-wise, not leaf-wise like Light GBM.
e Stop growing when score improvement < threshold.

Step 5: Prediction Update

Update prediction:
g; ) = gy ) A+ mfe(=:)

e 1: Learning rate
Advantages of XGBoost
‘Advantage HDescription ‘
‘Speed HParallel and fast due to efficient CPU use ‘
‘Accuracy HOften better than other ML models ‘
‘Regularization HControls overfitting via A,y\lambda, \gammaA,y ‘
‘Handles Missing Values HSmart split-finding for missing data ‘
Built-in Cross-Validation |Available in API |
Disadvantages

e Complex to tune (many hyperparameters)
e Can overfit on small data if not regularized
e Not ideal for image or sequential data (use CNNs or RNNs instead)

XGBoost Code Example (Python)

import xgboost as xgb

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
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# Load data
X, y = load_breast_cancer(return_X_y=True)
X _train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train model
model = xgb.XGBClassifier(n_estimators=100, learning_rate=0.1, max_depth=3)
model.fit(X_train, y_train)

# Predict and evaluate

y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))
Common Parameters

‘Parameter HMeaning ‘
‘n_estimators HNumber of boosting rounds ‘
‘max_depth HMaximum tree depth ‘
‘learning_rate HShrinks contribution of each tree ‘
‘subsample HFraction of training data per tree ‘
‘colsample_bytree HFeature sampling per tree ‘
‘lambda HLZ regularization ‘
‘ gamma HMinimum loss reduction to make a split ‘
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Stacking

Stacking (Stacked Generalization) is an ensemble learning technique that combines multiple
different models (called base learners) and trains a meta-model to make the final prediction.

Unlike bagging or boosting (which use the same type of learners), stacking uses diverse models
(e.g., decision trees, SVMs, neural networks).

Workflow of Stacking:

Step-by-Step Process:
1. Train Base Learners
o Train several different machine learning models on the training dataset.
o These models can be of different types (e.g., logistic regression, random forest,
SVM).
2. Generate Base Predictions
o Each base learner makes predictions on:
» Either the validation set (during cross-validation),
» Or directly on the test set.
3. Train Meta-Learner
o A new model (called a meta-model or blender) is trained using the predictions
of base models as features.
o Its goal is to learn how to best combine the outputs of base models.
4. Final Prediction
o The meta-model takes the predictions from base learners and makes the final
decision.

Ilustration (Simple Example)
Assume you have 3 base learners:
e Model 1: Logistic Regression
e Model 2: Decision Tree
e Model 3: K-Nearest Neighbors
Let the predictions from these models for a data point be:
Model 1: 0.6
Model 2: 0.8
Model 3: 0.7
These become the features for the meta-model, which might output a final prediction of 0.75.

Use of Stacking:
e Combines strengths of multiple models
e (Can reduce generalization error
e Works well when base models are diverse and not highly correlated
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Mathematically:
Suppose you have input features X and target variable y. The process is:

e Train base learners hi(x), ha(z), ..., hn(x)
e Collect predictions z; = h,.-(:c)

e  Train meta-learner H(zl, Z2,...,2n) on these predictions

Final prediction:

§ = H(hi(2), hao(z), .- Bn(x))

Example in Python (with scikit-learn)

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

# Load data
X,y =load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# Define base learners
base_learners = [
('dt', DecisionTreeClassifier()),
('svc', SVC(probability=True))
]

# Define meta-learner
meta_model = LogisticRegression()

# Build stacking model
stacked_model = StackingClassifier(estimators=base_learners, final_estimator=meta_model)
stacked_model.fit(X_train, y_train)

# Predict and evaluate

y_pred = stacked_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
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Advantages of Stacking
‘Benefit HDescription |
‘Combines model strengths HLeverages diversity to improve performance |
‘Reduces generalization error HLess likely to overfit than a single model |
‘Flexible HWorks with any combination of models ‘
Disadvantages
‘Limitation HDescription

‘More complex

HRequires training multiple models

‘Risk of overfitting

HIf meta-model is too complex or base models are similar

‘Slower to train

HCompared to single-model methods
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Blending in Machine Learning

Blending is an ensemble technique used to combine the predictions of multiple machine learning
models using a validation dataset and a meta-model (usually a simple one like logistic
regression or linear regression).
It’s very similar to stacking, but with a few key differences in how data is split and how the
meta-model is trained.

How Does Blending
Steps:

Work?

1. Split the dataset into 3 parts:

o Training set: For training base models

o Validation set: For generating predictions from base models
o Test set: For final evaluation

2. Train Base Models:
o Use the training set to train multiple models (e.g., SVM, Random Forest,
XGBoost)

3. Predicton V

alidation Set:

o Use base models to make predictions on the validation set
o These predictions become input features for the meta-model
4. Train Meta-Model:
o Train a simple model (e.g., logistic regression) using:
Inputs: Predictions of base models on the validation set
Targets: True values from the validation set
5. Final Prediction:

o Use base models to predict on the test set

o Meta-model uses these to make final predictions

How It Differs from Stacking

‘Feature

‘ ‘Blending

‘Stacking

‘Data Split

HTrain/V alidation/Test split

‘Usually uses cross-validation

Meta-model trained
on

Validation set predictions

Out-of-fold predictions from cross-
validation

‘Simplicity HEasier to implement HMore robust but complex ’
Risk of Overfitting ilgher (due to smaller validation Lower (thanks to cross-validation)
Why Use Blending?

e Simpler implementation
e Useful when you're in a time crunch (e.g., in competitions)
o Easy to apply when you want to combine different models quickly

Blending Illustration Example
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Imagine this:
* You train 3 models on your training data:
e |ogistic Regression — outputs 0.6
* Random Forest — outputs 0.7
s XGBoost — outputs 0.8

These outputs are used as features for a meta-model (e.g., linear regression), which may

combine them like:
Final prediction =0.2- LR+ 0.3- RF +0.5- XGB

Giving a final prediction = 0.2x0.6 + 0.3x0.7 + 0.5%x0.8 = 0.73

Advantages of Blending

Benefit Description

Simple to implement No need for complex cross-validation setups
Fast to train Meta-model trained on small dataset

Good for competitions Useful in last-minute model improvement
Disadvantages

Drawback Description

High risk of overfitting Meta-model trained on small validation set
Not as robust Compared to stacking with cross-validation
Wastes data Validation data not used in base model training

Small Python Example (Pseudo-code Style)
# Step 1: Split data
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)

# Step 2: Train base models
modell = LogisticRegression().fit(X_train, y_train)
model2 = RandomForestClassifier().fit(X_train, y_train)

# Step 3: Predict on validation set

pred1l = modell.predict_proba(X_valid)[:, 1]
pred2 = model2.predict_proba(X_valid)[:, 1]

# Step 4: Stack predictions and train meta-model
meta_X = np.column_stack((pred1, pred2))

meta_model = LogisticRegression().fit(meta_X, y_valid)

# Step 5: Predict on test set
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final_pred = meta_model.predict(np.column_stack((

modell.predict_proba(X_test)[:, 1],

model2.predict_proba(X_test)[:, 1]
)

Mathematical Formulation of Blending

Let's define:
- XN irain. Werain: lTraining data
- X alids Wealia: Yalidation data
- K icar: Test data
- Ny, A, . .., N, Base learmers/models
- A et a: Meta-model

Step 1: Train Base Models

Each base model M; is trained on ( Xirain s Yirain )-
gyalid = M(Xang) fori=1,2,...,n
These predictions are collected into a meta-feature matrix:

I~wvalid alid - \-alid]

Lyalid = |} Uz St (3

Step 2: Train Meta-Model

The meta-model M ,era is trained on Z 454 and Yy and:
Mpeta : Lvalid — Yvalid

Step 3: Final Prediction on Test Set

Each base model makes predictions on X .

~ Lest

; =— _.-'i,,-_f{- {Xi es,l_:]

[~ test ~test ~ test
Zne-m. —_— _ylt. yﬁk e y:f- -

The meta-model then makes the final prediction:

?}[iual — M neta f Zrest J'
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Special Case: Linear Meta-Model

If the meta-model is linear, then:

i
?:}Fll-ml _ E :'U-".-' . 1}}951. + B
i=1

Where:

w; are the learned weights from the meta-model (e.g., linear regression)

= b is the intercept term

Example with 3 Models

Let's say:

e g1 = 0.65 from Model 1
= 7 = 0.75 from Model 2
* g3 = 0.85 from Model 3

Meta-model (linear regression) gives:

gital — 0.2.4; +0.3-92+0.5-93 = 0.2-0.65+ 0.3-0.75 + 0.5- 0.85 = 0.775
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Regularization Methods in Machine Learning

Regularization is a technique used to reduce overfitting by adding a penalty term to the loss
function of a machine learning model. This discourages the model from becoming too complex
or sensitive to noise in the training data.

Need to Use Regularization:

o Prevents overfitting
o Improves generalization to unseen data
e Controls the complexity of the model

Benefits of Regularization
Now, let’s see various benefits of regularization which are as follows:

1.

2.

3.

Prevents Overfitting: Regularization helps models focus on underlying patterns instead of
memorizing noise in the training data.

Improves Interpretability: L1 (Lasso) regularization simplifies models by reducing less
important feature coefficients to zero.

Enhances Performance: Prevents excessive weighting of outliers or irrelevant features
helps in improving overall model accuracy.

Stabilizes Models: Reduces sensitivity to minor data changes which ensures consistency
across different data subsets.

Prevents Complexity: Keeps model from becoming too complex which is important for
limited or noisy data.

Handles Multicollinearity: Reduces the magnitudes of correlated coefficients helps in
improving model stability.

Allows Fine-Tuning: Hyperparameters like alpha and lambda control regularization strength
helps in balancing bias and variance.

Promotes Consistency: Ensures reliable performance across different datasets which
reduces the risk of large performance shifts.

Common Regularization Methods
1. L1 Regularization (Lasso)

e Adds the absolute value of coefficients to the loss function.
o Encourages sparsity (sets some weights to zero), leading to feature selection.

# Loss Function:
L = Loss(y, %) + A E |22
F=1

= A regularization parameter (higher = more penalty)

= w;: model weights

2. L2 Regularization (Ridge)

e Adds the square of coefficients to the loss function.
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o Keeps all features but shrinks weights.

# Loss Function:

e

L = Loss(y,3) + A E u'f-

J=1

» Less aggressive than L1; doesn't zero out weights.

3. Elastic Net Regularization
e Combines both L1 and L2 penalties.
o Useful when there are many correlated features.

+ Loss Function:

L = Loss(y,g) + A1 Z lw;| + A= Z w?
=1 =1
4. Dropout (in Neural Networks)
e Randomly sets a fraction of neurons to 0 during training.
e Reduces co-adaptation of neurons.
Intuition:
During each training iteration:
. Drop units with a probability p
. Forces the network to not rely too much on specific paths
5. Early Stopping
e Stop training when the model’s performance on the validation set starts to degrade.
e Prevents overfitting without modifying the loss function.
6. Data Augmentation & Noise Injection
e Add noise to input data or intermediate layers to make the model more robust.
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Cross-Validation Strategies

Cross-validation (CV) is a statistical method used to estimate the performance of machine
learning models. It helps detect overfitting and ensures that the model generalizes well to unseen
data.

Use of Cross-Validation:
o To assess model stability and robustness
e To detect overfitting or underfitting
e To choose the best model hyperparameters

Common Cross-Validation Strategies
1. Hold-Out Validation
e Split dataset into:
o Training set: to train the model
o Test set: to evaluate the model
Limitation:
e High variance depending on how data is split
2. K-Fold Cross-Validation
o Divide data into K equal parts (folds)
e Train the model on K—1 folds, validate on the remaining fold
o Repeat K times, each fold used once as validation
o Final performance = mean of K results

Example:

For K=5
| Fold | Train On | Validate On |
1| 2,3.4,5 | 1 |
2 | 1,3,4,5 | 2 |
HE 1,24.5 | 3 |
4 | 1,2,3,5 I 4 |
I 1,234 | 5 |

3. Stratified K-Fold Cross-Validation
o Like K-Fold but preserves the percentage of samples for each class in every fold.
e Useful for imbalanced datasets.
4. Leave-One-Out Cross-Validation (LOOCY)
e Special case of K-Fold with K=n (number of samples)
e Train on all data except one sample, test on that one
e Repeat for all samples
Limitation:
o Computationally expensive for large datasets
5. Repeated K-Fold Cross-Validation
o Repeats K-Fold CV multiple times with different random splits
e Reduces variance in performance estimation
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6. Group K-Fold Cross-Validation

e Ensures that the same group (e.g., from the same patient or user) does not appear in

both training and validation sets.

e Ideal for grouped or clustered data
7. Time Series Split (Rolling Forecast Origin)

o For time series data where order matters

e Avoids data leakage by ensuring that future data is not used to predict the past
Example:

‘ Fold H Train On H Validate On ‘
L L2 L3 |
L2 | 123 L4 |
EN 12,34 L5 |

Advantages and Disadvantages of Cross-Validation Strategies

‘Strategy HBest For H Advantages HDisadvantages ‘

‘Hold—Out HQuick checks HSimple and fast HHigh variance ‘

‘K—Fold HGeneral—purpose HBalanced, less bias HCan be slow for large K ‘

Stratified K-Fold Imba.l a.nce.d Malr}talgs class More complex
classification distribution

LOOCY Small datasets Usgs almost all data to||Very slow for large

train datasets

Repeated K-Fold ||Stability checking Reduces random bias IS(I—OF\ZT; than standard

Group K-Fold Gr(?uped data (e.g., Prevents data leakage |[Requires group identifiers
patients)

Time Series Split HTime-based data HRespects time order HNeeds careful setup
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Linear and Non-linear Classification in Machine Learning
Classification in machine learning involves assigning input data to predefined categories.
Based on the nature of the decision boundary, classification models are generally categorized
into two types:
Linear Classification
Definition:
Linear classification uses a linear decision boundary (hyperplane) to separate different classes
in the feature space.
Key Characteristics:
o Assumes that classes can be separated by a straight line (in 2D), a plane (in 3D), or a
hyperplane (in higher dimensions).
e Fast and computationally efficient.
o Works well when data is linearly separable.
Common Algorithms:
o Logistic Regression
e Linear Support Vector Machine (SVM)
e Perceptron
Mathematical Representation:
A linear classifier makes predictions using:

f@)=wlz +b
Where:
* 2w = weight vector
* x = input feature vector
= b = bias
= Decision rule: If f(:i:r) = 0, class 1; else class Q.

Advantages:

e Simpler and faster to train.

o Less prone to overfitting when the dataset is small or simple.
Limitations:

e Cannot handle complex patterns or non-linear data distributions.

Non-linear Classification
Definition:
Non-linear classification uses complex decision boundaries (curves, irregular shapes) to
separate classes that are not linearly separable.
Key Characteristics:
e Suitable for data where linear boundaries are insufficient.
e Capable of modeling intricate relationships between features and output.
Common Algorithms:
e Kernel SVM (e.g., RBF kernel)
e Decision Trees
o Random Forest
e K-Nearest Neighbors (KNN)
e Neural Networks
Mathematical Approach (Example: Kernel Trick in SVM):
Transforms data into higher-dimensional space to find a linear separator in that space:



K(z,z') = ¢(z) o(z")

Where ¢ is a non-linear transformation function.

Advantages:

e Flexible and powerful for complex datasets.

o Can model data with curves, clusters, or multiple class regions.
Limitations:

e More computationally expensive.

o Higher risk of overfitting without proper regularization.
Comparison Table

|Feature ||Linear Classification ||N0n-linear Classification |
|Dec'sion Boundary ||Straight line / hyperplane ||Curved or complex boundaries |
|Speed ||Faster ||Slower (depends on algorithm) |
|Inte rpretability ||High ||Often lower |
|Use Case ||Linearly separable data ||C0mplex, real-world data |
|Risk of Overfitting ||L0w ||High (if not regularized) |

Usages of linear and non-linear models
e Use linear models when data is simple and fast performance is required.

e Use non-linear models when the data exhibits complex patterns or clusters.




Kernel Trick

The kernel trick allows algorithms (like SVM) to operate in high-dimensional feature
spaces without explicitly transforming the data.

It computes the inner product of two vectors in a transformed feature space using a kernel
function:

K(z,z') = ¢(z)" ()
Where:
e x,x': input vectors
e ¢ non-linear mapping function (not computed explicitly)

e K(x,x"): kernel function
Uses of Kernel Trick
e To handle non-linear classification problems.
e Avoids high computational cost of explicitly mapping data to a higher-dimensional

space.
Linear SVM Polynomial Kernel RBF Kernel
X
x
x
x
X
- x

1. Polynomial Kernel
Formula:

K(z,z') = (a:T:c" } c)d

Where:
e x,x': input vectors
* ¢ = [ aconstant controlling influence of higher-order terms

» d: degree of the polynomial

Inte rpretation:
e Allows SVM to learn polynomial decision boundaries.
e d=2: quadratic kernel
e d=3: cubic kernel, etc.
Use Case:
e When the relationship between features and labels is polynomial (e.g., circular or
parabolic boundaries).



Example:
If & = [zy, x2], and d = 2, then the kernel represents:

! ! ! 2
K(x,z') = (127 + x225 + €)
This implicitly introduces terms like :Lf :I;‘%, @ T2, etc, for modeling.

2. RBF (Radial Basis Function) Kernel / Gaussian Kernel
Formula:

r2
K(m,mf):exp( ||:c2 2’| )
or

Or, more commonly with gamma (y):

K (z,2") = exp(—|lz — 2'||*)

Where:
= o o
* Y= 2=
- ||z x’||%: squared Euclidean distance between vectors

» y: controls the smoothness (spread)

Inte rpretation:
e Projects data into infinite-dimensional space.

e Measures similarity: closer vectors = higher similarity (near 1), far = near 0.

Use Case:
e Excellent for complex, non-linear problems.

e Default kernel in many SVM implementations.

Polynomial vs. RBF Kernel: Comparison

Usage polynomial exist

|Feature ||Polyn0mial Kernel ||RBF Kernel

Decision . .

Boundary Curved, polynomial-shaped Flexible, can model complex shapes

Control

Parameter Degree d, constant ¢ Gamma vy

Feature Space I;;nlte—dlmensmnal (depends on Infinite-dimensional

|Speed ||Slower for high degree ||Often faster for large datasets |

|Overfitting Risk [High with large d |High with large y |
When relationship is|{When complex non-linear boundaries




Custom Kernels

In machine learning, particularly Support Vector Machines (SVMs), a custom kernel is a
user-defined function that computes the similarity between two data points, enabling SVM to
operate in an implicitly transformed feature space suited to specific data characteristics.

What is a Kernel? (Quick Recap)

A kernel function K (z,z') computes:
K(z,z') = ¢(z)" o(z")

* ¢(z): implicit mapping of input data into a higher-dimensional space

= Kernel functions help perform classification or regression on non-linear data without explicitly mapping

it

Custom Kernel: Definition
A custom kernel is any user-defined function K(x,x") that:
1. Measures similarity between inputs.
2. Must satisfy Mercer's condition (ie., the kernel matrix must be positive semi-
definite).
Custom Kernel
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The kernel captures the implicit
similarity between the inputs.

Steps to Define a Custom Kernel
1. Understand your data's structure: Determine what kind of similarity works best.
2. Design a kernel function: Create a function K(x,x") that models similarity.
3. Ensure positive semi-definiteness: The kernel matrix K formed by K(x;,x;) should be
symmetric and positive semi-definite.
4. Plug into SVM: Use it via a machine learning library (like scikit-learn).

Examples of Custom Kernels

1. String Kernel (for text data)
Measures similarity based on the number of common substrings.

K(z,z') = Z A . count, (s) - county(s)

substrings s,z

Used in bioinformatics and text classification.

2. Histogram Inte rsection Kernel (for image histograms)



T
K(x,z') = Z min(z;, x;)
i=1

Used in image retrieval and object recognition.

3. Custom Combination Kernel
You can combine kernels like:

K(z,z') = a- Ki(z,2') + f - Ka(z,z')

Where:
e« K, Ks: predefined kernels (e.g., linear + RBF)

e @, f3: tuning parameters
This approach is called Multiple Kernel Learning (MKL).

Python Example: Custom Kernel with scikit-learn
from sklearn.svm import SVC

from sklearn. metrics.pairwise import pairwise_kernels
import numpy as np

# Define custom kernel (e.g., sigmoid + RBF hybrid)
def custom_kernel(X, Y):
return np.tanh(X @ Y. T + 1) + np.exp(-0.5 * np.linalg.norm(X[:, None] - Y, axis=2)**2)

# Example training
X=[[1,2],12,3], [3,4]]
y=10,1,0]

# Train SVM with custom kernel
clf = SVC(kernel=custom_kernel)
clf.fit(X, y)

Benefits of Custom Kernels
e Tailored to domain-specific data
o Enables use of non-vector data (strings, graphs, trees)
e Often improves performance for complex or structured data

Challenges
e Must ensure validity (positive semi-definiteness)
e May require domain expertise
o Slower for large datasets unless optimized



Soft Margin SVMs (Support Vector Machines)

Soft Margin SVMs are an extension of hard margin SVMs that allow some misclassification
in the training data. They are crucial when the data is not linearly separable.

Why Soft Margin?
In real-world data:
e Classes may overlap
e Outliers may exist
e Perfect separation is often impossible
A Hard Margin SVM requires perfect separation — not practical.
Soft Margin S VM introduces flexibility by allowing some errors (slack).

The idea is to balance two goals:

1. Maximize the margin
2. Minimize the classification error (misclassified or inside-margin points)

Soft Margin SVM

x Class-1

® Class +1 P
O Support Vectors g
— Decision Boundary -7
44 === Margin P

Feature 2

-2 -1 0 1 2 3
Feature 1

This diagram shows

e Two classes of points (+1 and -1)

e The decision boundary (solid black line)

e The margin boundaries (dashed lines)

o The support vectors (highlighted with black borders)



Mathematical Formulation
Objective Function:

min  llwl + 03
Subject to:
yi(wTa:i Fb) =1 & and & =0
Where:

e w:weight vector
= b: bias
= &;:slack variables (measure violations of the margin)
= (': penalty parameter (regularization)
e y; € {—1, +1}:class labels
Explanation of Terms

|wlf]? Margin width (smaller ||w|| = wider margin)
£; Slack variable — allows a point to be inside margin or misclassified
C Regularization parameter: trade-off between margin width and

classification error

Inte rpretation of Parameters
o Slack variable &;:

o & = 0: point is correctly classified outside margin
o (<& < 1:pointis inside margin but on correct side
o & > 1: point is misclassified
* Penalty parameter C:
* Large C: penalize misclassifications heavily (hard margin behavior)
» Small C: allow more flexibility/misclassifications (more generalization)
Advantages
e Works well for non-separable data

» Balances accuracy and generalization
e Less sensitive to noise/outliers



Dual Form (for Kernel Trick)

The dual form (used with kernels) is:

e
1 =
max E Bl g E aoyiy; K (T, xj)
t—1 i,
Subject to:
e
0 <a; = C, > _aiyi =0
i=1
Where:

* ;. Lagrange multipliers
« K (xi, x;): Kernel function (e.g., linear, RBF, polynomial)

Soft Margin vs. Hard Margin

[Feature |[Hard Margin SVM |Soft Margin SVM |
|Assumes data ||Perfectly separable ||Over1apping/N oisy allowed |
|Slack variable & ||Not used ||Used |

|

|Re gularization C ||N0t needed ||Critic al for performance




Dual Form and Optimization of Support Vector Machines (SYM)

Dual Formulation Optimization

[ Training Data ]

!

7T
min > ooy (xTx)
@ i=1

O=a;=C, D> o;y;:=0 Stochastic
i=1 Gradient Descent
(SGD)
S5 =2
Trained SVM [ Trained SVM J

1. Primal Form of SVM (Soft Margin)
We want to find the hyperplane that best separates the classes, allowing some margin of
error.

I ——_
min — [faee||= 4+ LT :
e b £ . | Z{E?

=

Subject to:

yilw 2; +b) =1 — &, & =0

2. Dual Formulation
Instead of directly solving the primal form, we derive the dual form using Lagrange
multipliers. This lets us:

= ‘Work with inner products =7 x;

=  Easily apply the kernel trick

<» Dual Problem:

ki T L
— 1 o g
II]j.l:r. 2 Ep — 2 2 2 aFla F5 TR TY e

i=1 i=1 j=1

Subject to:

G

0 < o < 7, 2_‘ iy = 0
I—1

Where:
= ;! Lagrange multiphers
= (7 regularization parameter
= 1 class labels
= ;! input vectors
3. Optimization Algorithm
After deriving the dual, we solve it using Quadratic Programming (QP). For large datasets,
we use iterative optimization algorithms:
Common Methods:

e Sequential Minimal Optimization (SMO)
e Stochastic Gradient Descent (SGD) (for linear SVMs)



o LibSVM (widely used library for kernel S VMs)

4. Reconstructing the Classifier
Once we solve for a\alphaa, the decision function becomes:

[
flx) = Z::t;ygﬁ{ur;.m] +b

i—1

Only data points with «¢; = () are support vectors.

Advantages of Dual Form
e Allows use of kernel functions to handle non-linear data
o Efficient when the number of features > number of samples
e Helps identify support vectors clearly



Support Vector Regression (SVR): Formulation, Optimization & Practical
Tips

Support Vector Regression extends the maximum-margin principle of SVM classification
to regression tasks, using a g-insensitive loss to tolerate small errors while maintaining model
sparsity.

1. Understanding the e-Insensitive Tube
SVR trains a function:

flz) =w'z+b
that stays within an g-tube around true targets y; . Deviations less than € are ignored:

L.(y, f(z)) = max(0, |y — f(z)| —¢)
This loss ensures only points that lie outside the tube affect the model (support vectors).
Smaller € — more SVs — more complexity; |

arger ¢ — fewer SVs — smoother fit
2. Primal Optimization (with Slack Variables)

W o6

To allow some predictions outside the tube, we add slack variables

Irin é'|'lu||‘3 + E e

TN S S

Subject to:
By — ey — B e &
wlix:; +b— 1w < &+ &
£: & =0

Here, (' controls the trade-off between flatness [%||LL| ) and penalties for violating the -zone

3. Dual Formulation — Enabling Kernelization
The dual problem introduces two sets of Lagrange multipliers o; and o;*, and transforms
into:

The regression function becomes:
TL
fl@) = (ai — af) K(zi, @) + b
i=1

Note only support vectors (with non-zero a differences) contribute to the prediction.
4. Kernel Trick & Non-Linear SVR
SVR allows non-linear regression by using kernel functions in place of the inner product:



- Linear: K (@, u::"} — atx’

e Polynomial: (v =¥ =" + cuefﬂ}d

= RBF:exp(—y||ld — x='||?)

This enables mapping to high-dimensional (even infinite-dimensional) feature spaces without
explicit transformation.
5. Practical Hyperparameters & Effects

|Parameter ||Functi0n ||Effect on model |

High C — fits training error
C Regularization strength tightly (risk overfitting);
low C — smoother function

Large ¢ — few support vectors &

. . . .. high bias;

¢ (epsilon) Width of the insensitive tube small & — more SVs & high
variance
Kernel type Determines geometry of decision|Critical for capturing non-linear
(and vy, degree,
surface trends

coef()
shrinking, tol, |[Optimization details affecting
cache_size runtime and convergence

In scikit-learn’s SVR implementation:
e Defaults: kernel="rbf, C=1.0, e=0.1, gamma='scale’'
e Complexity: more than quadratic in #samples — consider LinearSVR for very large
datasets.
e Default behavior: e-insensitive loss, standard RBF kernel setting, based on libsvm
6. Key Advantages & Limitations
Advantages
« Sparse representation: only support vectors matter (efficient inference).
o Built-in regularization — robust generalization.
e Works naturally with non-vector data using custom kernels (e.g., string, histogram-

based).
e Non-parametric: the model adapts complexity to the data.
Limitations

e Computationally expensive for n >> 10,000, especially with non-linear kernels.
e Tree/trend coverage depends heavily on kernel and hyperparameters.
e Less interpretable than linear methods in regression settings.

7. Example: Training an SVR in Python

from sklearn.svm import SVR

from sklearn.model_selection import GridSearchCV

from sklearn. metrics import mean_squared_error

param_grid = {
'C":[0.1, 1, 10],
‘epsilon’: [0.01, 0.1, 0.5],
'kernel': ['rbf, "poly'],
'‘samma’: ['scale’, 'auto'], # for rbf and poly
'degree': [2, 3] # only for poly



}

svr = SVR()
grid = GridSearchCV(svr, param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2)
grid. fit(X_train, y_train)

best = grid.best_estimator_

y_pred = best.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

print(f"Best params: {grid.best_params_}, Test MSE: {mse:.3f}")

This grid search approach effectively tunes both C and & parameters—crucial for getting the
right bias-variance trade-off.

8. Why It Works: Sparsity & Support Vectors

Due to the e-insensitive loss and capped multipliers (0 < o, o;* < C), most training points
have zero coefficients unless they lie outside the e-tube. Only a subset—called support
vectors—affects the resulting model. This makes SVR flexible yet interpretable in terms of
critical examples.

9. Common Extensions & Variants

Least-Squares SVR (LSSVR): uses squared e-insensitive loss — fully dense
solutions (all points become support vectors) — faster to solve but less sparse.
Adaptive &-SVR (Ag;-SVR): allows varying € per sample for better handling of
heteroskedasticity or irregular data distributions.

Twin Support Vector Regression (TSVR): separates data using two proximal
hyperplanes — solved via smaller QPs — improved scalability in some cases.

TL;DR (Too Long; Didn't Read)

SVR is the regression counterpart of SVM, optimizing margin while tolerating small
errors via the e-Tube.

Has both primal and dual formulations; dual enables ke melization for complex non-
linear relationships.

Hyperparameters C, ¢, and kernel critically affect bias—variance and generalization.
Efficient for moderately sized datasets; less scalable for very large data unless using
approximate methods like LinearSVR or kernel approximations.



Kernel PCA (Principal Component Analysis) for Non-linear Dimensionality
Reduction

What is Kernel PCA?
Kernel PCA is an extension of classical Principal Component Analysis (PCA) that allows
non-linear dimensionality reduction using the kernel trick.

e It maps input data to a high-dimensional feature space, where linear PCA is

performed.
e In this feature space, non-linear structures in the original data can be captured
effectively.
Usage of Kernel PCA

¢ Classical PCA assumes linear correlations between variables.
e Kernel PCA works well when:
o Data lies on a non-linear manifold
o There are non-linear patterns (e.g., spirals, concentric circles)
Core Idea

1. Map dataz € R" to feature space via non-linear function ¢(z)
2. Compute dot products ¢(z;)" ¢(z;) using a kernel function K (z;, z;)

3. Perform PCA in this feature space

Kernel PCA Algorithm Steps
Step 1: Choose a Kernel Function
Examples:

s RBF (Gaussian):

* Polynomial:

K(z,2') = (z'z' + c}d
Step 2: Compute the Kernel (Gram) Matrix
H;‘j — I‘E_r[:.[['-z' . :EJ;I'

Step 3: Center the Kernel Matrix
Center the matrix to ensure zero- mean data in feature space:

K.=K-1K - K1+ 1K1

Where:
e 1:nxn matrix with all values = 1/n
o This operation centers the data in the feature space without computing ¢(x)
e Subtract the row mean: K—1K
e Subtract the column mean: —K1
e Add the total mean: +1K1
> Step 4: Eigen Decomposition



Solve the eigenvalue problem:
N v — Aex
Where:
e a:eigenvector (principal component in kernel space)
e A:eigenvalue (variance explained by that component)
We find the top k eigenvectors corresponding to the largest eigenvalues.

Step 5: Project Data
Project data onto the first k principal components:

T

2l — Z a; I (2:3;)
j=1
Applications of Kernel PCA
e Data visualization (in 2D or 3D)
e Preprocessing for classification (e.g., SVM)
e Non-linear feature extraction

o Image and signal denoising
Comparison: PCA vs. Kernel PCA

[Feature [PCA [Kernel PCA |
|Type of method ||Linear ||N0n—linear (via kernel trick) |
|Basis computation ||Covariance matrix ||Kernel (Gram) matrix |
|Captures curved manifolds ||N ot Allowed ||Allowed |
|Output interpretability ||Easy ||Ha.rder |

Example (Python - scikit-learn)
from sklearn.decomposition import KernelPCA
import matplotlib.pyplot as plt

# Sample: circular data
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=400, factor=0.3, noise=0.05)

# Apply Kernel PCA
kpca = KerneIPCA(n_components=2, kernel="rbf, gamma=15)
X_kpca = kpca.fit_transform(X)

# Plot result

plt.scatter(X_kpcal:, 0], X_kpcal:, 1], c=y)
plt.title("Kernel PCA with RBF Kernel")
plt.show()




Practical Issues with Kernel Methods
Computational Complexity
Proble m:
e Kernel methods involve computing the Kernel (Gram) Matrix of size nxn, where n
is the number of training samples.
Importance:
o Time complexity: O(n%)
«  Memory usage: O(n?)
e For large datasets (e.g., n>10,000), this becomes infeasible.
Choice of Kernel Function
Proble m:
e There is no universal kernel that works best for all problems.
Issues:
e Requires domain knowledge or trial-and-error.
e Poor kernel choice = underfitting or overfitting.
e Common kernels: RBF, polynomial, sigmeid, but:
o RBF: may perform poorly if data has multiple scales
o Polynomial: sensitive to degree and coefficients
Hype rparameter Tuning
Proble m:
e Most kernels have tunable parameters (e.g., o in RBF, degree in polynomial).
Impact:
e Incorrect values can drastically reduce performance.
e (rid search or cross- validation is computationally expensive.
Lack of Inte rpretability
Proble m:
e Kernel methods operate in high-dimensional feature spaces that are implicit and
abstract.
Impact:
e Hard to understand what features are being used.
o Difficult to interpret decision boundaries or transformed data.
e Notideal for explainable Al scenarios.
No Sparse Solutions for Some Kernels
Proble m:
e SVM with linear kernels can result in sparse models (fewer support vectors).
o Non-linear kernels often yield dense solutions:
o Many support vectors = slower predictions.
Scalability to Large Datasets
Proble m:
e Kemel methods don’t scale well with large-scale problems.
e Batch learning setup is inefficient for streaming or real-time data.
Numerical Stability
Proble m:
e Kernel matrix K must be positive semi-definite (PSD).
e In practice, due to floating-point errors or bad kernels, K can become non-PSD,
leading to instability in algorithms (e.g., eigen decomposition in Kernel PCA).
Pre-image Proble m (in Kernel PCA)
Proble m:
e After projecting to lower-dimensional space (e.g., with Kernel PCA), it's non-trivial
to recover the original input from the projection.



Importance:
e Limits reconstruction, denoising, or generative tasks.
Overfitting Risk
Proble m:
e Richkernel spaces can overfit small datasets if regularization is not properly handled.
Implementation Complexity
Proble m:
e More complex than linear models.
e Requires careful coding and parameter control to avoid pitfalls.
Summary Table

[Issue [Description |
|Computational Complexity ||Needs O(n*) memory and time |
|Kernel Selection ||No one-size- fits-all kernel |
|Parameter Tuning ||Sensitive to kernel parameters |
|Interpretability ||Hard to understand inner workings |
|Scalability ||P00r performance on big data |
|Numerical Instability ||Keme1 matrix may be non-PSD |
|Pre-image Problem ||Can't easily go back to input space |
[Overfitting [Risky with small datasets |

|

|Dense Solutions ||Many support vectors slow down prediction




Applications in Text and Image Classification
Applications in Text Classification
1. Spam Detection
o Classify emails as spam or not spam
o Use TF-IDF (Term Frequency-Inverse Document Frequency) or Bag-of-
Words features
o Kernels: Linear, Polynomial
2. Sentiment Analysis
o Classify movie/product reviews as positive or negative
o Kernels handle non-linear sentiment patterns
3. Topic Categorization
o News articles categorized into politics, sports, etc.
o Linear kernel often works well with high-dimensional sparse data
4. Language Detection
o Identify the language of text samples
o Kernel trick helps with capturing n-gram relationships

Applications in Image Classification
1. Object Recognition
o Classify objects like cars, animals, etc., in images
o Use RBF kernel or Histogram Intersection Kernel
2. Facial Recognition
o Matcha given face to identities
o Kernel methods project face data to higher dimensions for better separation
3. Digit Recognition (e.g., MNIST Modified National Institute of Standards and
Technology )
o Classify handwritten digits
o SVM with RBF kernel achieves high accuracy
4. Texture Classification
o Identify types of surfaces or materials in images
o Uses specialized kernels (e.g., pyramid match kernels)

Benefits of Kernel Methods in Text/Image:
e Work well with high-dimensional data
e Don't require deep architectures
e Canbe very accurate with good kernel choice and tuning



