
ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

RAJAMPET
(Autonomous)

Department of Artificial Intelligence & Machine Learning

Lecture Notes

Name of the Faculty: Dr.T.Harikrishna Class: IVYear I Semester

Branch and Section: AIML Course code: 20A57GT

Name of the Course: Cloud Computing

 Unit-I

Unit-1

 When computing resources in distant data centers are used rather than local computing

systems, we talk about network-centric computing and network-centric content. Advancements

in networking and other areas are responsible for the acceptance of the two new computing

models and led to the grid computing movement in the early 1990s and, since 2005, to utility

computing and cloud computing.

 In utility computing the hardware and software resources are concentrated in large data centers

and users can pay as they consume computing, storage, and communication resources. Utility

computing often requires a cloud-like infrastructure, but its focus is on the business model for

providing the computing services. Cloud computing is a path to utility computing embraced by

major IT companies such as Amazon, Apple, Google, HP, IBM, Microsoft, Oracle, and others.

 Cloud computing delivery models, deployment models, defining attributes, resources, and

organization of the infrastructure discussed in this chapter are summarized in Figure 1.1. There

are three cloud delivery models: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),

and Infrastructure-as-aService (IaaS), deployed as public, private, community, and hybrid

clouds.

The defining attributes of the new philosophy for delivering computing services are as follows:

 Cloud computing uses Internet technologies to offer elastic services. The term elastic

computing refers to the ability to dynamically acquire computing resources and support a

variable workload.

A cloud service provider maintains a massive infrastructure to support elastic services.

• The resources used for these services can be metered and the users can be charged only for the

resources they use.

• Maintenance and security are ensured by service providers.

• Economy of scale allows service providers to operate more efficiently due to specialization and

centralization.

• Cloud computing is cost-effective due to resource multiplexing; lower costs for the service

provider are passed on to the cloud users.

• The application data is stored closer to the site where it is used in a device- and location-

independent.

Cloud computing is a technical and social reality and an emerging technology. At this time, one

can only speculate how the infrastructure for this new paradigm will evolve and what

applications will migrate to it. The economical, social, ethical, and legal implications of this shift

in technology, in which users rely on services provided by large data centers and store private

data and software on systems they do not control, are likely to be significant. Manner potentially,

this data storage strategy increases reliability and security and, at the same time, it lowers

communication cost.

Scientific and engineering applications, data mining, computational financing, gaming, and

social networking as well as many other computational and data-intensive activities can benefit

from cloud computing.

In early 2011 Apple announced the iCloud, a network-centric alternative for storing content such

as music, videos, movies, and personal information; this content was previously confined to

personal devices such as workstations, laptops, tablets, or smartphones. The obvious advantage

of network centric content is the accessibility of information from any site where users can

connect to the Internet.

Network-centric computing and network-centric content

The concepts and technologies for network-centric computing and content evolved through the

years and led to several large-scale distributed system developments:

The Web and the semantic Web are expected to support composition of services

The Grid, initiated in the early 1990s by National Laboratories and Universities, is used

primarily for applications in the area of science and engineering.

Computer clouds, promoted since 2005 as a form of service-oriented computing by large IT

companies, are used for enterprise computing, high-performance computing, Web hosting, and

storage for network-centric content.

The semantic Web2 is an effort to enable laypeople to more easily find, share, and combine

information available on the Web. In this vision, the information can be readily interpreted by

machines, so machines can perform more of the tedious work involved in finding, combining,

and acting upon information on the Web. Several technologies are necessary to provide a formal

description of concepts, terms, and relationships within a given knowledge domain; they include

the Resource Description Framework (RDF), a variety of data interchange formats, and notations

such as RDF Schema (RDFS) and the Web Ontology Language (OWL).

A computing grid is a distributed system consisting of a large number of loosely coupled,

heterogeneous, and geographically dispersed systems in different administrative domains. The

term computing grid is a metaphor for accessing computer power with similar ease as we access

power provided by the electric grid.

 Cloud computing is a technology largely viewed as the next big step in the development and

deployment of an increasing number of distributed applications. The companies promoting cloud

computing seem to have learned the most important lessons from the grid movement. Computer

clouds are typically homogeneous. An entire cloud shares the same security, resource

management, cost and other policies,and last but not least, it targets enterprise computing. These

are some of the reasons that several agencies of the US Government, including Health and

Human Services (HHS), the Centers for Disease Control (CDC), the National Aeronautics and

Space Administration (NASA), the Navy’s Next Generation Enterprise Network (NGEN), and

the Defense Information Systems Agency (DISA), have launched cloud computing initiatives

and conduct actual system development intended to improve the efficiency and effectiveness of

their information processing needs.

 The term content refers to any type or volume of media, be it static or dynamic, monolithic or

modular, live or stored, produced by aggregation, or mixed. Information is the result of functions

applied to content. The creation and consumption of audio and visual content are likely to

transform the Internet to support increased quality in terms of resolution, frame rate, color depth,

and stereoscopic information, and it seems reasonable to assume that the Future Internet3 will be

content-centric. Content-centric routing will allow users to fetch the desired data from the most

suitable location in terms of network latency or download time. There are also some challenges,

such as providing secure services for content manipulation, ensuring global rights management,

control over unsuitable content, and reputation management.

Network-centric computing and network-centric content share a number of

characteristics:

 Most applications are data-intensive. Computer simulation becomes a powerful tool for

scientific research in virtually all areas of science, from physics, biology, and chemistry to

archeology. Sophisticated tools for computer-aided design, such as Catia (Computer Aided

Three-dimensional Interactive Application), are widely used in the aerospace and automotive

industries.

Virtually all applications are network-intensive. Indeed, transferring large volumes of data

requires high-bandwidth networks; parallel computing, computation steering,4 and data

streaming are examples of applications that can only run efficiently on low-latency networks.

The systems are accessed using thin clients running on systems with limited resources.

The infrastructure supports some form of workflow management. Indeed, complex

computational tasks require coordination of several applications; composition of services is a

basic tenet of Web 2.0.

The advantages of network-centric computing and network-centric content paradigms are,

at the same time, sources for concern;

Computing and communication resources (CPU cycles, storage, network bandwidth) are shared

and resources can be aggregated to support data-intensive applications. Multiplexing leads to a

higher resource utilization; indeed, when multiple applications share a system, their peak

demands for resources are not synchronized and the average system utilization increases.

Data sharing facilitates collaborative activities. Indeed, many applications in science,

engineering, and industrial, financial, and governmental applications require multiple types of

analysis of shared data sets and multiple decisions carried out by groups scattered around the

globe. Open software development sites are another example of such collaborative activities.

Cost reduction. Concentration of resources creates the opportunity to pay as you go for

computing and thus eliminates the initial investment and reduces significantly the maintenance

and operation costs of the local computing infrastructure.

User convenience and elasticity that is the ability to accommodate workloads with very large

peakto-average ratios.

Peer-to-peer systems

System administrators enforce security rules and control the allocation of physical rather than

virtual resources. In all models of network-centric computing prior to utility computing, a user

maintains direct control of the software and the data residing on remote systems.

his user-centric model, in place since the early 1960s, was challenged in the 1990s by the peer-

topeer (P2P) model. P2P systems can be regarded as one of the precursors of today’s clouds.

This new model for distributed computing promoted the idea of low-cost access to storage and

central processing unit (CPU) cycles provided by participant systems; in this case, the resources

are located in different administrative domains. Often the P2P systems are self-organizing and

decentralized, whereas the servers in a cloud are in a single administrative domain and have a

central management.

P2P systems exploit the network infrastructure to provide access to distributed computing

resources. Decentralized applications developed in the 1980s, such as Simple Mail Transfer

Protocol (SMTP), a protocol for email distribution, and Network News Transfer Protocol

(NNTP), an application protocol for dissemination of news articles, are early examples of P2P

systems.

The P2P model represents a significant departure from the client-server model, the cornerstone

of distributed applications for several decades. P2P systems have several desirable properties.

They require a minimally dedicated infrastructure, since resources are contributed by the

participating systems.

• They are highly decentralized.

• They are scalable; the individual nodes are not required to be aware of the global state.

• They are resilient to faults and attacks, since few of their elements are critical for the delivery

of service and the abundance of resources can support a high degree of replication.

• Individual nodes do not require excessive network bandwidth the way servers used in case of

the client-server model do.

• Last but not least, the systems are shielded from censorship due to the dynamic and often

unstructured system architecture.

Many groups from industry and academia rushed to develop and test new ideas, taking advantage

of the fact that P2P applications do not require a dedicated infrastructure. Applications such as

Chord [334] and Credence [366] address issues critical to the effective operation of decentralized

systems. Chord is a distributed lookup protocol to identify the node where a particular data item

is stored. The routing tables are distributed and, whereas other algorithms for locating an object

require the nodes to be aware of most of the nodes of the network, Chord maps a key related to

an object to a node of the network using routing information about a few nodes only.

Credence is an object reputation and ranking scheme for large-scale P2P file-sharing systems.

Reputation is of paramount importance for systems that often include many unreliable and

malicious nodes.In the decentralized algorithm used by Credence, each client uses local

information to evaluate the reputation of other nodes and shares its own assessment with its

neighbors. The credibility of a node depends only on the votes it casts; each node computes the

reputation of another node based solely on the degree of matching with its own votes and relies

on like-minded peers. Overcite is a P2P application to aggregate documents based on a three-

tier design.

Skype has a central site to maintain user accounts; users sign in and pay for specific activities at

this site. The controller for a BOINC platform maintains membership and is involved in task

distribution to participating systems. The nodes with abundant resources in systems without any

centralized infrastructure often act as super nodes and maintain information useful to increasing

the system efficiency, such as indexes of the available content.

Regardless of the architecture, P2P systems are built around an overlay network, a virtual

network superimposed over the real network. Methods to construct such an overlay, consider a

graph G = (V, E), where V is the set of N vertices and E is the set of links between them.

Structured overlay networks use key-based routing (KBR); given a starting node v0 and a key k,

the function KBR(v0, k) returns the path in the graph from v0 to the vertex with key k.Epidemic

algorithms discussed in Section 7.12 are often used by unstructured overlays to disseminate

network topology.

Cloud computing: an old idea whose time has come

 Once the technological elements were in place, it was only a matter of time until the

economical advantages of cloud computing became apparent. Due to the economy of scale, large

data centers centers with more than 50,000 systems – are more economical to operate than

medium-sized centers that have around 1,000 systems. Large data centers equipped with

commodity computers experience a five to seven times decrease of resource consumption,

including energy, compared to medium-sized centers.

The term computer cloud is overloaded, since it covers infrastructures of different sizes, with

different management and different user populations. Several types of cloud are envisioned.

 Private cloud. The infrastructure is operated solely for an organization. It may be managed by

the organization or a third party and may exist on or off the premises of the organization.

• Community cloud. The infrastructure is shared by several organizations and supports a

specific community that has shared concerns (e.g., mission, security requirements, policy, and

compliance considerations). It may be managed by the organizations or a third party and may

exist on premises or off premises.

• Public cloud. The infrastructure is made available to the general public or a large industry

group and is owned by an organization selling cloud services.

• Hybrid cloud. The infrastructure is a composition of two or more clouds (private, community,

or public) that remain unique entities but are bound together by standardized or proprietary

technology that enables data and application portability (e.g., cloud bursting for load balancing

between clouds).

A private cloud could provide the computing resources needed for a large organization, such as a

research institution, a university, or a corporation. The argument that a private cloud does not

support utility computing is based on the observation that an organization has to invest in the

infrastructure and a user of a private cloud pays as it consumes resources.

A nonexhaustive list of reasons for the success of cloud computing includes these points:

 Cloud computing is in a better position to exploit recent advances in software, networking,

storage,and processor technologies. Cloud computing is promoted by large IT companies where

these new technological developments take place, and these companies have a vested interest in

promoting the new technologies.

• A cloud consists of a homogeneous set of hardware and software resources in a single

administrative domain. In this setup, security, resource management, fault tolerance, and quality

of service are less challenging than in a heterogeneous environment with resources in multiple

administrative domains.

Cloud computing is focused on enterprise computing; its adoption by industrial organizations,

financial institutions, healthcare organizations, and so on has a potentially huge impact on the

economy.

• A cloud provides the illusion of infinite computing resources; its elasticity frees application

designers from the confinement of a single system.

• A cloud eliminates the need for up-front financial commitment, and it is based on a pay-as-you-

go approach. This has the potential to attract new applications and new users for existing

applications,

In spite of the technological breakthroughs that have made cloud computing feasible, there are

still major obstacles for this new technology; these obstacles provide opportunity for research.

We list a few of the most obvious obstacles.

Availability of service A partial answer to this question is provided by service-level agreements

(SLAs).6 A temporary fix with negative economical implications is over provisioning, that is,

having enough resources to satisfy the largest projected demand.

Vendor lock-in. Once a customer is hooked to one provider, it is hard to move to another. The

standardization efforts at National Institute of Standards and Technology (NIST) attempt to

address this problem.

Data confidentiality and auditability. This is indeed a serious problem.

Data transfer bottlenecks. Many applications are data-intensive. A very important strategy is to

store the data as close as possible to the site where it is needed.

Performance unpredictability. This is one of the consequences of resource sharing. Strategies

for performance isolation.

Elasticity, the ability to scale up and down quickly. New algorithms for controlling resource

allocation and workload placement are necessary. Autonomic computing based on self-

organization and self-management seems to be a promising avenue.

Cloud computing delivery models and services

According to the NIST reference model in Figure 1.2 the entities involved in cloud computing

are the service consumer, the entity that maintains a business relationship with and uses service

from service providers; the service provider, the entity responsible for making a service

available to service consumers; the carrier, the intermediary that provides connectivity and

transport of cloud services between providers and consumers; the broker, an entity that manages

the use, performance, and delivery of cloud services and negotiates relationships between

providers and consumers; and the auditor, a party that can conduct independent assessment of

cloud services, information system operations, performance, and security of the cloud

implementation. An audit is a systematic evaluation of a cloud system that measures how well it

conforms to a set of established criteria.

cloud security, a privacy-impact audit evaluates cloud privacy assurance, and a performance

audit evaluates cloud performance.

Figure 1.3 presents the structure of the three delivery models, SaaS, PaaS, and IaaS, according to

the Cloud Security Alliance.

Software-as-a-Service (SaaS) gives the capability to use applications supplied by the service

provider in a cloud infrastructure. The applications are accessible from various client devices

through a thin-client. Interface such as a Web browser (e.g., Web-based email). The user does

not manage or control the underlying cloud infrastructure, including network, servers, operating

systems, storage, or even individual application capabilities, with the possible exception of

limited user-specific application configuration settings. Services offered include:

• Enterprise services such as workflow management, groupware and collaborative, supply chain,

communications, digital signature, customer relationship management (CRM), desktop software,

financial management, geo-spatial, and search.

• Web 2.0 applications such as metadata management, social networking, blogs, wiki services,

and portal services.

The SaaS is not suitable for applications that require real-time response or those for which data is

not allowed to be hosted externally. The most likely candidates for SaaS are applications for

which:

• Many competitors use the same product, such as email.

• Periodically there is a significant peak in demand, such as billing and payroll.

• There is a need for Web or mobile access, such as mobile sales management software.

• There is only a short-term need, such as collaborative software for a project.

Platform-as-a-Service (PaaS) gives the capability to deploy consumer-created or acquired

applications using programming languages and tools supported by the provider. The user does

not manage or control the underlying cloud infrastructure, including network, servers, operating

systems, or storage. The user has control over the deployed applications and, possibly, over the

application hosting environment configurations.

PaaS is not particulary useful when the application must be portable, when proprietary

programming languages are used, or when the underlaying hardware and software must be

customized to improve the performance of the application. The major PaaS application areas are

in software development where multiple developers and users collaborate and the deployment

and testing services should be automated.

Infrastructure-as-a-Service (IaaS) is the capability to provision processing, storage, networks,

and other fundamental computing resources; the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over operating systems, storage,

deployed applications, and possibly limited control of some networking components, such as

host firewalls. Services offered by this delivery model include: server hosting, Web servers,

storage, computing hardware, operating systems, virtual instances, load balancing, Internet

access, and bandwidth provisioning.

The IaaS cloud computing delivery model has a number of characteristics, such as the fact that

the resources are distributed and support dynamic scaling, it is based on a utility pricing model

and variable cost, and the hardware is shared among multiple users. This cloud computing model

is particularly useful when the demand is volatile and a new business needs computing resources

and does not want to invest in a computing infrastructure or when an organization is expanding

rapidly.

A number of activities are necessary to support the three delivery models; they include:

1. Service management and provisioning, including virtualization, service provisioning, call

center operations management, systems management, QoS management, billing and accounting,

asset management, SLA management, technical support, and backups.

2. Security management, including ID and authentication, certification and accreditation,

intrusion prevention, intrusion detection, virus protection, cryptography, physical security,

incident response, access control, audit and trails, and firewalls.

3. Customer services such as customer assistance and online help, subscriptions, business

intelligence, reporting, customer preferences, and personalization.

4. Integration services, including data management and development.

Ethical issues in cloud computing

 Cloud computing is based on a paradigm shift with profound implications for computing ethics.

The main elements of this shift are: (i) the control is relinquished to third-party services; (ii) the

data is stored on multiple sites administered by several organizations; and (iii) multiple services

interoperate across the network.

Unauthorized access, data corruption, infrastructure failure, and service unavailability are some

of the risks related to relinquishing the control to third-party services; moreover, whenever a

problem occurs, it is difficult to identify the source and the entity causing it. Systems can span

the boundaries of multiple organizations and cross security borders, a process called

deperimeterization. As a result of deperimeterization, “not only the border of the organization’s

IT infrastructure blurs, also the border of the accountability becomes less clear”.

The complex structure of cloud services can make it difficult to determine who is responsible in

case something undesirable happens.

Ubiquitous and unlimited data sharing and storage among organizations test the self-

determination of information, the right or ability of individuals to exercise personal control over

the collection, and use and disclosure of their personal data by others; this tests the confidence

and trust in today’s evolving information society.

Cloud service providers have already collected petabytes of sensitive personal information stored

in data centers around the world. The acceptance of cloud computing therefore will be

determined by privacy issues addressed by these companies and the countries where the data

centers are located.

Accountability is a necessary ingredient of cloud computing; adequate information about how

data is handled within the cloud and about allocation of responsibility are key elements for

enforcing ethics rules in cloud computing. Recorded evidence allows us to assign responsibility;

but there can be tension between privacy and accountability, and it is important to establish what

is being recorded and who has access to the records.

Unwanted dependency on a cloud service provider, the so-called vendor lock-in, is a serious

concern, and the current standardization efforts at NIST attempt to address this problem. Another

concern for users is a future with only a handful of companies that dominate the market and

dictate prices and policies.

Cloud vulnerabilities

Clouds are affected by malicious attacks and failures of the infrastructure (e.g., power failures).

Such events can affect Internet domain name servers and prevent access to a cloud or can

directly affect the clouds.

The recovery from the failure took a very long time and exposed a range of problems. For

example, one of the 10 centers failed to switch to backup generators before exhausting the power

that could be supplied by uninterruptible power supply (UPS) units. AWS uses “control planes”

to allow users to switch to resources in a different region, and this software component also

failed. The booting process was faulty and extended the time to restart EC2 (Elastic Computing)

and EBS (Elastic Block Store) services. Another critical problem was a bug in the elastic load

balancer (ELB), which is used to route traffic to servers with available capacity. A similar bug

affected the recovery process of the Relational Database Service (RDS). This event brought to

light “hidden” problems that occur only under special circumstances,

A cloud application provider, a cloud storage provider, and a network provider could implement

different policies, and the unpredictable interactions between load-balancing and other reactive

mechanisms could lead to dynamic instabilities. The unintended coupling of independent

controllers that manage the load, the power consumption, and the elements of the infrastructure

could lead to undesirable feedback and instability similar to the ones experienced by the policy-

based routing in the Internet Border Gateway Protocol (BGP).

Clustering the resources in data centers located in different geographical areas is one of the

means used today to lower the probability of catastrophic failures. This geographic dispersion of

resources could have additional positive side effects; it can reduce communication traffic and

energy costs by dispatching the computations to sites where the electric energy is cheaper, and it

can improve performance by an intelligent and efficient load-balancing strategy.

Major challenges faced by cloud computing

The most significant challenge is security gaining the trust of a large user base is critical for

the future of cloud computing. It is unrealistic to expect that a public cloud will provide a

suitable environment for all applications. Highly sensitive applications related to the

management of the critical infrastructure, healthcare applications, and others will most likely be

hosted by private clouds. Many real-time applications will probably still be confined to private

clouds.

The SaaS model faces similar challenges as other online services required to protect private

information, such as financial or healthcare services. In this case a user interacts with cloud

services through a well-defined interface; thus, in principle it is less challenging for the service

provider to close some of the attack channels. Still, such services are vulnerable to DoS attack

and the users are fearful of malicious insiders. Data in storage is most vulnerable to attack, so

special attention should be devoted to the protection of storage servers. Data replication

necessary to ensure continuity of service in case of storage system failure increases vulnerability.

Data encryption may protect data in storage, but eventually data must be decrypted for

processing, and then it is exposed to attack.

Virtualization is a critical design option for this model, but it exposes the system to new sources

of attack. The trusted computing base (TCB) of a virtual environment includes not only the

hardware and the hypervisor but also the management operating system.

It seems reasonable to expect that such a complex system can only function based on self-

management principles. But self-management and self-organization raise the bar for the

implementation of logging and auditing procedures critical to the security and trust in a provider

of cloud computing service.

The last major challenge we want to address is related to interoperability and standardization.

Vendor lock-in, the fact that a user is tied to a particular cloud service provider, is a major

concern for cloud users.

Cloud Infrastructure

Private clouds are an alternative to public clouds. Open-source cloud computing platforms such

as Eucalyptus , OpenNebula, Nimbus, and OpenStack can be used as a control infrastructure for

a private cloud.

Several other IT companies are also involved in cloud computing. IBM offers a cloud computing

platform, IBM Smart Cloud, which includes servers, storage, and virtualization components for

building private and hybrid cloud computing environments. In October 2012 it was announced

that IBM had teamed

up with AT&T to give customers access to IBM’s cloud infrastructure over AT&T’s secure

private lines.In 2011 HP announced plans to enter the cloud computing club. Oracle announced

its entry to enterprise computing in the early 2012. The Oracle Cloud is based on Java, SQL

standards, and software systems such as Exadata, Exalogic, WebLogic, and Oracle Database.

Oracle plans to offer application and platform services. Some of these services are Fusion HCM

(Human Capital Management), Fusion CRM (Customer Relation Management), and Oracle

Social Network; the platform services are based on Java and SQL

Cloud computing at Amazon

In mid-2000 Amazon introduced Amazon Web Services (AWS), based on the IaaS delivery

model. In this model the cloud service provider offers an infrastructure consisting of compute

and storage servers interconnected by high-speed networks that support a set of services to

access these resources. An application developer is responsible for installing applications on a

platform of his or her choice and managing the resources provided by Amazon.

Amazon Web Services. Amazon was the first provider of cloud computing; it announced a

limited public beta release of its Elastic Computing platform called EC2 in August 2006. Figure

3.1 shows the palette of AWS services accessible via the Management Console in late 2011.

Elastic Compute Cloud (EC2)1 is a Web service with a simple interface for launching instances

of an application under several operating systems, such as several Linux distributions, Microsoft

Windows Server 2003 and 2008, OpenSolaris, FreeBSD, and NetBSD.

An instance is created either from a predefined Amazon Machine Image (AMI) digitally signed

and stored in S3 or from a user-defined image. The image includes the operating system, the run-

time environment, the libraries, and the application desired by the user. AMI images create an

exact copy of the original image but without configuration-dependent information such as the

hostname or the MAC address. A user can: (i) Launch an instance from an existing AMI and

terminate an instance; (ii) start and stop an instance; (iii) create a new image; (iv) add tags to

identify an image; and (v) reboot an instance.

EC2 allows the import of virtual machine images from the user environment to an instance

through a facility called VM import. It also automatically distributes the incoming application

traffic among multiple instances using the elastic load-balancing facility. EC2 associates an

elastic IP address with an account; this mechanism allows a user to mask the failure of an

instance and remap a public IP address to any instance of the account without the need to interact

with the software support team.

Simple Storage System (S3) is a storage service designed to store large objects. It supports a

minimal set of functions: write, read, and delete.S3 allows an application to handle an unlimited

number of objects ranging in size from one byte to five terabytes. An object is stored in a bucket

and retrieved via a unique developer-assigned key. A bucket can be stored in a region selected by

the user. S3 maintains the name, modification time, an access control list, and up to four

kilobytes of user-defined metadata for each object. The object names are global. Authentication

mechanisms ensure that data is kept secure; objects can be made public, and rights can be

granted to other users.

S3 supports PUT, GET, and DELETE primitives to manipulate objects but does not support

primitives to copy, rename, or move an object from one bucket to another. Appending to an

object requires a read followed by a write of the entire object.

Elastic Block Store (EBS) provides persistent block-level storage volumes for use with Amazon

EC2 instances. A volume appears to an application as a raw, unformatted, and reliable physical

disk; the size of the storage volumes ranges from one gigabyte to one terabyte. The volumes are

grouped together in availability zones and are automatically replicated in each zone. An EC2

instance may mount multiple volumes, but a volume cannot be shared among multiple instances.

The EBS supports the creation of snapshots of the volumes attached to an instance and then uses

them to restart an instance. The storage strategy provided by EBS is suitable for database

applications, file systems, and applications using raw data devices.

Simple DB is a non-relational data store that allows developers to store and query data items via

Web services requests. It supports store-and-query functions traditionally provided only by

relational databases. Simple DB creates multiple geographically distributed copies of each data

item and supports high-performance Web applications; at the same time, it automatically

manages infrastructure provisioning, hardware and software maintenance, replication and

indexing of data items, and performance tuning.

Simple Queue Service (SQS) is a hosted message queue. SQS is a system for supporting

automated workflows; it allows multiple Amazon EC2 instances to coordinate their activities by

sending and receiving SQS messages. Any computer connected to the Internet can add or read

messages without any installed software or special firewall configurations.

Cloud Watch is a monitoring infrastructure used by application developers, users, and system

administrators to collect and track metrics important for optimizing the performance of

applications and for increasing the efficiency of resource utilization. Without installing any

software, a user can monitor approximately a dozen preselected metrics and then view graphs

and statistics for these metrics.

When launching an Amazon Machine Image (AMI), a user can start the CloudWatch and specify

the type of monitoring. Basic Monitoring is free of charge and collects data at five-minute

intervals for up to 10 metrics; Detailed Monitoring is subject to a charge and collects data at one-

minute intervals. This service can also be used to monitor the latency of access to EBS volumes,

the available storage space for RDS DB instances, the number of messages in SQS, and other

parameters of interest for applications.

Virtual Private Cloud (VPC) provides a bridge between the existing IT infrastructure of an

organization and the AWS cloud. The existing infrastructure is connected via a virtual private

network (VPN) to a set of isolated AWS compute resources. VPC allows existing management

capabilities such as security services, firewalls, and intrusion detection systems to operate

seamlessly within the cloud.

Auto Scaling exploits cloud elasticity and provides automatic scaling of EC2 instances. The

service supports grouping of instances, monitoring of the instances in a group, and defining

triggers and pairs of Cloud Watch alarms and policies, which allow the size of the group to be

scaled up or down. Typically, a maximum, a minimum, and a regular size for the group are

specified.

An Auto Scaling group consists of a set of instances described in a static fashion by launch

configurations. When the group scales up, new instances are started using the parameters for the

run Instances EC2 call provided by the launch configuration. When the group scales down, the

instances with older launch configurations are terminated first. The monitoring function of the

Auto Scaling service carries out health checks to enforce the specified policies; for example, a

user may specify a health check for elastic load balancing and then Auto Scaling will terminate

an instance exhibiting a low performance and start a new one.

Regions and Availability Zones. Today Amazon offers cloud services through a network of

datacenters on several continents, (see Table 3.15). In each region there are several availability

zones interconnected by high-speed networks; regions communicate through the Internet and do

not share resources.

An availability zone is a data center consisting of a large number of servers. A server may run

multiple virtual machines or instances, started by one or more users; an instance may use storage

services, S3, EBS), and Simple DB, as well as other services provided by AWS (see Figure 3.2).

A cloud interconnect allows all systems in an availability zone to communicate with one another

and with systems in other availability zones of the same region.

Storage is automatically replicated within a region; S3 buckets are replicated within an

availability zone and between the availability zones of a region, whereas EBS volumes are

replicated only within the same availability zone. Critical applications are advised to replicate

important information in multiple regions to be able to function when the servers in one region

are unavailable due to catastrophic events.

A user can request virtual servers and storage located in one of the regions. The user can also

request virtual servers in one of the availability zones of that region. The Elastic Compute Cloud

(EC2) service allows a user to interact and to manage the virtual servers.

The billing rates in each region to minimize costs, reduce communication latency, and increase

reliability and security.

An instance is a virtual server. The user chooses the region and the availability zone where this

virtual server should be placed and selects from a limited menu of instance types: the one that

provides the resources, CPU cycles, main memory, and secondary storage, communication, and

I/O bandwidth needed by the application.

When launched, an instance is provided with a DNS name. This name maps to a private IP

address for internal communication within the internal EC2 communication network and a public

IP address for communication outside the internal Amazon network, (e.g., for communication

with the user that launched the instance). Network Address Translation (NAT) maps external IP

addresses to internal ones. The public IP address is assigned for the lifetime of an instance and it

is returned to the pool of available public IP addresses when the instance is either stopped or

terminated. An instance can request an elastic IP address, rather than a public IP address. The

elastic IP address is a static public IP address allocated to an instance from the available pool of

the availability zone. An elastic IP address is not released when the instance is stopped or

terminated and must be released when no longer needed.

The Charges for Amazon Web Services. Amazon charges a fee for EC2 instances, EBS

storage, data transfer, and several other services. The charges differ from one region to another

and depend on the pricing model; see http://aws.amazon.com/ec2/pricing for the current pricing

structure.

There is three pricing models for EC2 instances: on-demand, reserved, and spot. On-demand

instances use a flat hourly rate, and the user is charged for the time an instance is running; no

reservation is required for this most popular model. For reserved instances a user pays a one-time

fee to lock in a typically lower hourly rate. This model is advantageous when a user anticipates

that the application will require a substantial number of CPU cycles and this amount is known in

advance. Additional capacity is available at the larger standard rate. In case of spot instances,

users bid on unused capacity and their instances are launched when the market price reaches a

threshold specified by the user.

 The EC2 system offers several instance types:

• Standard instances. Micro (StdM), small (StdS), large (StdL), extra large (StdXL); small is the

default.

• High memory instances. High-memory extra-large (HmXL), high-memory double extra-large

(Hm2XL), and high-memory quadruple extra-large (Hm4XL).

• High CPU instances. High-CPU extra-large (HcpuXL).

• Cluster computing. Cluster computing quadruple extra-large (Cl4XL).

Cloud computing: the Google perspective

Google’s effort is concentrated in the area of Software-as-a-Service (SaaS). It is estimated that

the number of servers used by Google was close to 1.8 million in January 2012 and was expected

to reach close to 2.4 million in early 2013.

Services such as Gmail, Google Drive, Google Calendar, Picasa, and Google Groups are free of

charge for individual users and available for a fee for organizations. These services are running

on a cloud and can be invoked from a broad spectrum of devices, including mobile ones such as

iPhones, iPads,Black-Berrys, and laptops and tablets. The data for these services is stored in data

centers on the cloud.

The Gmail service hosts emails on Google servers and, provides a Web interface to access them

and tools for migrating from Lotus Notes and Microsoft Exchange. Google Docs is Web-based

software for building text documents, spreadsheets, and presentations. It supports features such

as tables, bullet points, basic fonts, and text size; it allows multiple users to edit and update the

same document and view the history of document changes; and it provides a spell checker. The

service allows users to import and export files in several formats, including Microsoft Office,

PDF, text, and Open Office extensions.

Google Calendar is a browser-based scheduler; it supports multiple calendars for a user, the

ability to share a calendar with other users, the display of daily/weekly/monthly views, and the

ability to search events and synchronize with the Outlook Calendar. Google Calendar is

accessible from mobile devices. Event reminders can be received via SMS, desktop popups, or

emails. It is also possible to share your calendar with other Google Calendar users. Picasa is a

tool to upload, share, and edit images; it provides 1 GB of disk space per user free of charge.

Users can add tags to images and attach locations to photos using Google Maps. Google Groups

allows users to host discussion forums to create messages online or via email.

Google is also a leader in the Platform-as-a-Service (PaaS) space. AppEngine is a developer

platform hosted on the cloud. Initially it supported only Python, but support for Java was added

later and detailed documentation for Java is available. The database for code development can be

accessed with Google Query Language (GQL) with a SQL-like syntax.

The concept of structured data is important to Google’s service strategy. The change of search

Philosophy reflects the transition from unstructured Web content to structured data, data that

contains additional information, such as the place where a photograph was taken, information

about the singer of a digital recording of a song, the local services at a geographic location, and

so on.

Google Co-op allows users to create customized search engines based on a set of facets or

categories.

Google Base is a service allowing users to load structured data from different sources to a central

repository that is a very large, self-describing, semi-structured, heterogeneous database. It is self-

describing because each item follows a simple schema: (item type, attribute names). Few users

are aware of this service. Google Base is accessed in response to keyword queries posed on

Google.com, provided that there is relevant data in the database.

Google Drive is an online service for data storage that has been available since April 2012. It

gives users 5 GB of free storage and charges $4 per month for 20 GB. It is available for PCs,

Mac Books, iPhones, iPads, and Android devices and allows organizations to purchase up to 16

TB of storage.

Microsoft Windows Azure and online services

Azure and Online Services are, respectively, PaaS and SaaS cloud platforms from Microsoft.

Windows Azure is an operating system, SQL Azure is a cloud-based version of the SQL Server,

andAzure AppFabric (formerly .NET Services) is a collection of services for cloud applications.

 Windows Azure has three core components (see Figure 3.3): Compute, which provides a

computation environment; Storage for scalable storage; and Fabric Controller, which deploys,

manages, and monitors applications; it interconnects nodes consisting of servers, high-speed

connections, and switches.

The Content Delivery Network (CDN) maintains cache copies of data to speed up

computations. The Connect subsystem supports IP connections between the users and their

applications running on Windows Azure. The API interface to Windows Azure is built on REST,

HTTP, and XML. The platform includes five services: Live Services, SQL Azure, AppFabric,

SharePoint, and Dynamics CRM. A client library and tools are also provided for developing

cloud applications in Visual Studio.

The computations carried out by an application are implemented as one or more roles; an

application typically runs multiple instances of a role. We can distinguish (i) Web role instances

used to create Web applications; (ii) Worker role instances used to run Windows-based code; and

(iii) VM role instances that run a user-provided Windows Server 2008 R2 image.

Scaling, load balancing, memory management, and reliability are ensured by a fabric controller,

a distributed application replicated across a group of machines that owns all of the resources in

its environment – computers, switches, load balancers – and it is aware of every Windows Azure

application.

The fabric controller decides where new applications should run; it chooses the physical

servers to optimize utilization using configuration information uploaded with each Windows

Azure application. The configuration information is an XML-based description of how many

Web role instances, how many Worker role instances, and what other resources the application

needs. The fabric controller uses this configuration file to determine how many VMs to create.

Blobs, tables, queues, and drives are used as scalable storage. A blob contains binary data; a

container consists of one or more blobs. Blobs can be up to a terabyte and they may have

associated metadata (e.g., the information about where a JPEG photograph was taken). Blobs

allow a Windows Azure role instance to interact with persistent storage as though it were a local

NTFS6 file system. Queues enable Web role instances to communicate asynchronously with

Worker role instances.

Open-source software platforms for private clouds

Private clouds provide a cost-effective alternative for very large organizations. A private cloud

has essentially the same structural components as a commercial one: the servers, the network,

virtual machines monitors (VMMs) running on individual systems, an archive containing disk

images of virtual machines (VMs), a front end for communication with the user, and a cloud

control infrastructure. Opensource cloud computing platforms such as Eucalyptus , Open Nebula,

and Nimbus can be used as a control infrastructure for a private cloud.

Schematically, a cloud infrastructure carries out the following steps to run an application:

• Retrieves the user input from the front end.

• Retrieves the disk image of a VM from a repository.

• Locates a system and requests the VMM running on that system to set up a VM.

 Invokes the DHCP7 and the IP bridging software to set up a MAC and IP address for the VM.

We discuss briefly the three open-source software systems, Eucalyptus, OpenNebula, and

Nimbus.

Eucalyptus (www.eucalyptus.com) can be regarded as an open-source counterpart of Amazon’s

EC2,(see Figure 3.4). The systems support several operating systems including CentOS 5 and 6,

RHEL 5 and 6, Ubuntu 10.04 LTS, and 12.04 LTS.

The components of the system are:

Virtual machine. Runs under several VMMs, including Xen, KVM, and Vmware.

• Node controller. Runs on every server or node designated to host a VM and controls the

activities of the node.Reports to a cluster controller.

• Cluster controller. Controls a number of servers. Interacts with the node controller on each

server to schedule requests on that node. Cluster controllers are managed by the cloud controller.

Cloud controller.Provides the cloud access to end users, developers, and administrators. It is

accessible through command-line tools compatible withEC2 and through aWeb-based

Dashboard. Manages cloud resources, makes high-level scheduling decisions, and interacts with

cluster controllers.

• Storage controller.Provides persistent virtual hard drives to applications. It is the

correspondent of EBS. Users can create snapshots from EBS volumes. Snapshots are stored in

Walrus and made available across availability zones.

• Storage service (Walrus). Provides persistent storage and, similarly to S3, allows users to

store objects in buckets.

The system supports a strong separation between the user space and the administrator space;

users access the system via a Web interface, whereas administrators need root access. The

system supports a decentralized resource management of multiple clusters with multiple cluster

controllers, but a single head node for handling user interfaces. The procedure to construct a

virtual machine is based on the generic one described in

The euca2ools front end is used to request a VM.

• The VM disk image is transferred to a compute node.

• This disk image is modified for use by the VMM on the compute node.

• The compute node sets up network bridging to provide a virtual network interface controller

(NIC)8

with a virtual Media Access Control (MAC) address.9

• In the head node the DHCP is set up with the MAC/IP pair.

• VMM activates the VM.

• The user can now ssh10 directly into the VM.

Open-Nebula (www.opennebula.org) is a private cloud with users actually logging into the head

node to access cloud functions. The system is centralized and its default configuration uses NFS

(Network File System). The procedure to construct a virtual machine consists of several steps: (i)

the user signs into the head node using ssh; (ii) the system uses the onevm command to request a

VM; (iii) the VM template disk image is transformed to fit the correct size and configuration

within the NFS directory on the head node; (iv) the oned daemon on the head node uses ssh to

log into a compute node; (v) the compute node sets up network bridging to provide a virtual NIC

with a virtual MAC; (vi) the files needed by the VMM are transferred to the compute node via

the NFS; (vii) the VMM on the compute node starts the VM; and (viii) the user is able to ssh

directly to the VM on the compute node.

Nimbus (www.nimbusproject.org) is a cloud solution for scientific applications based on the

Globus software. The system inherits from Globus the image storage, the credentials for user

authentication, and the requirement that a running Nimbus process can ssh into all compute

nodes. Customization in this system can only be done by the system administrators.

 OpenStack is an open-source project started in 2009 at the National Aeronautics and Space

Administration (NASA) in collaboration with Rackspace (www.rackspace.com) to develop a

scalable cloud operating system for farms of servers using standard hardware. Though recently

NASA has moved its cloud infrastructure to AWS in addition to Rackspace, several other

companies, including HP, Cisco,IBM, and Red Hat, have an interest in Open Stack. The current

version of the system supports a wide range of features such as application programming

interfaces (APIs) with rate limiting and authentication; live VM management to run, reboot,

suspend, and terminate instances; role-based access control; and the ability to allocate, track, and

limit resource utilization. The administrators and the users control their resources using an

extensible Web application called the Dashboard.

Cloud storage diversity and vendor lock-in

There are several risks involved when a large organization relies solely on a single cloud

provider. As the short history of cloud computing shows, cloud services may be unavailable for a

short or even an extended period of time. Such an interruption of service is likely to negatively

impact the organization and possibly diminish or cancel completely the benefits of utility

computing for that organization. The potential for permanent data loss in case of a catastrophic

system failure poses an equally great danger.

A solution to guarding against the problems posed by the vendor lock-in is to replicate the data

to multiple cloud service providers. Straightforward replication is very costly and, at the same

time, poses technical challenges. The overhead to maintain data consistency could drastically

affect the performance of the virtual storage system consisting of multiple full replicas of the

organization’s data spread over multiple vendors. Another solution could be based on an

extension of the design principle of a RAID-5 system used for reliable data storage.

A RAID-5 system uses block-level stripping with distributed parity over a disk array, as shown

in Figure 3.5(a); the disk controller distributes the sequential blocks of data to the physical disks

and computes a parity block by bit-wise XOR-ing of the data blocks. The parity block is written

on a different disk for each file to avoid the bottleneck possible when all parity blocks are written

to a dedicated disk, as is done in the case of RAID-4 systems. This technique allows us to

recover the data after a single disk loss. For example, if Disk 2 in Figure 3.5 is lost, we still have

all the blocks of the third file, c1,c2, and c3, and we can recover the missing blocks for the others

as follows:

Obviously, we can also detect and correct errors in a single block using the same procedure. The

RAID controller also allows parallel access to data (for example, the blocks a1, a2, and a3 can be

read and written concurrently) and it can aggregate multiple write operations to improve

performance.

The system in Figure 3.5(b) strips the data across four clusters. The access to data is controlled

by a proxy that carries out some of the functions of a RAID controller, as well as authentication

and other security-related functions. The proxy ensures before-and-after atomicity as well as all-

or-nothing atomicity for data access; the proxy buffers the data, possibly converts the data

manipulation commands optimizes the data access (e.g., aggregates multiple write operations),

converts data to formats specific to each cloud, and so on.

The Redundant Array of Cloud Storage (RACS) system uses the same data model and mimics

the interface of the S3 provided by AWS.The S3 system, discussed in Section 3.1, stores the data

in buckets, each bucket being a flat namespace with keys associated with objects of arbitrary size

but less than 5 GB. The prototype implementation discussed in [5] led the authors to conclude

that the cost increases and the performance penalties of the RACS systems are relatively minor.

Cloud computing interoperability: the Intercloud

 Cloud interoperability could alleviate the concern that users could become hopelessly dependent

on a single cloud service provider, the so-called vendor lock-in.It seems natural to ask the

question whether an Intercloud – a “cloud of clouds,” a federation of clouds that cooperate to

provide a better user experience – is technically and economically feasible. The Internet is a

network of networks; hence, it appears that an Intercloud seems plausible.

Closer scrutiny shows that the extension of the concept of interoperability from networks to

clouds is far from trivial. A network offers one high-level service, the transport of digital

information from a source, a host outside a network, to a destination, another host, or another

network that can deliver the information to its final destination. This transport of information

through a network of networks is feasible because before the Internet was born, agreements on

basic questions were reached.

The situation is quite different in cloud computing. First, there are no standards for storage of

processing; second, the clouds we have seen so far are based on different delivery models: SaaS,

PaaS,and IaaS. Moreover, the set of services supported by each of these delivery models is not

only large, it is open; new services are offered every few months. For example, in October 2012

Amazon announced a new service, the AWS GovCloud (US).

The question of whether cloud service providers (CSPs) are willing to cooperate to build an Inter

cloud is open. Some CSPs may think that they have a competitive advantage due to the

uniqueness of the added value of their services. Thus, exposing how they store and process

information may adversely affect their business. Moreover, no CSP will be willing to change its

internal operation, so a first question is whether an Inter cloud could be built under these c

An Intercloud would then require the development of an ontology11 for cloud computing. Then

each cloud service provider would have to create a description of all resources and services using

this ontology. Due to the very large number of systems and services, the volume of information

provided by individual cloud service providers would be so large that a distributed database not

unlike the Domain Name Service (DNS) would have to be created and maintained.

 Each cloud would then require an interface, a so-called Intercloud exchange, to translate the

common language describing all objects and actions included in a request originating from

another cloud in terms of its internal objects and actions. To be more precise, a request originated

in one cloud would have to be translated from the internal representation in that cloud to a

common representation based on the shared ontology and then, at the destination, it would be

translated into an internal representation that can be acted on by the destination cloud.

 The Public Key Infrastructure (PKI),12 an all-or-nothing trust model, is not adequate for an

Intercloud, where the trust must be nuanced. A nuanced model for handling digital certificates

means that one cloud acting on behalf of a user may grant access to another cloud to read data in

storage, but not to start new instances.

Encryption must be used to protect the data in storage and in transit in the Intercloud. The

OASIS13 Key Management Interoperability Protocol (KMIP)14 is proposed for key

management.

Energy use and ecological impact of large-scale data centers

 We start our discussion of energy use by data centers and its economic and ecological impact

with a brief analysis of the concept of energy-proportional systems. This is a very important

concept because a strategy for resource management in a computing cloud is to concentrate the

load on a subset of servers and switching the rest of the servers to a standby mode whenever

possible.

The operating efficiency of a system is captured by an expression of “performance per Watt of

power.” It is widely reported that, during the last two decades, the performance of computing

systems has increased much faster than their operating efficiency.

Energy-proportional systems could lead to large savings in energy costs for computing clouds.

An energy-proportional system consumes no power when idle, very little power under a light

load, and gradually more power as the load increases. By definition, an ideal energy-proportional

system is always operating at 100% efficiency. Humans are a good approximation of an ideal

energy proportional system; human energy consumption is about 70 W at rest and 120 W on

average on a daily basis and can go as high as 1,000–2,000 W during a strenuous, short effort.

A number of proposals have emerged for energy-proportional networks; the energy consumed by

such networks is proportional to the communication load.

High-speed channels typically consist of multiple serial lanes with the same data rate; a physical

unit is stripped across all the active lanes. Channels commonly operate plesiochronously16 and

are always on, regardless of the load, because they must still send idle packets to maintain byte

and lane alignment across the multiple lanes.

Energy saving in large-scale storage systems is also of concern. A strategy to reduce energy

consumption is to concentrate the workload on a small number of disks and allow the others to

operate in a low-power mode. One of the techniques to accomplish this task is based on

replication. A replication strategy based on a sliding window is reported in [364]; measurement

results indicate that it performs better than LRU, MRU, and LFU17 policies for a range of file

sizes, file availability, and number of client nodes, and the power requirements are reduced by as

much as 31%.

Another technique is based on data migration. The system in [158] uses data storage in virtual

nodes managed with a distributed hash table; the migration is controlled by two algorithms, a

short-term optimization algorithm, used for gathering or spreading virtual nodes according to the

daily variation of the workload so that the number of active physical nodes is reduced to a

minimum, and a long-term optimization algorithm, used for coping with changes in the

popularity of data over a longer period.

The energy consumption of large-scale data centers and their costs for energy and for cooling are

significant now and are expected to increase substantially in the future. In 2006, the 6,000 data

centers in the United States reportedly consumed 61×109 KWh of energy, 1.5% of all electricity

consumption in the country, at a cost of $4.5 billion [364].

The effort to reduce energy use is focused on the computing, networking, and storage activities

of a data center.

Many proposals argue that dynamic resource provisioning is necessary to minimize power

consumption. Two main issues are critical for energy saving: the amount of resources allocated

to each application and the placement of individual workloads. For example, a resource

management framework combining a utility-based dynamic virtual machine provisioning

manager with a dynamic VM placement manager to minimize power consumption and reduce

SLA violations is presented in.

Service- and compliance-level agreements

A service-level agreement (SLA) is a negotiated contract between two parties, the customer and

the service provider. The agreement can be legally binding or informal and specifies the services

that the customer receives rather than how the service provider delivers the services. The

objectives of the agreement are.

Identify and define customers’ needs and constraints, including the level of resources, security,

timing, and quality of service.

• Provide a framework for understanding. A critical aspect of this framework is a clear definition

of classes of service and costs.

• Simplify complex issues; for example, clarify the boundaries between the responsibilities of the

clients and those of the provider of service in case of failures.

• Reduce areas of conflict.

• Encourage dialogue in the event of disputes.

• Eliminate unrealistic expectations

An SLA records a common understanding in several areas: (i) services, (ii) priorities, (iii)

responsibilities, (iv) guarantees, and (v) warranties. An agreement usually covers: services to be

delivered, performance, tracking and reporting, problem management, legal compliance and

resolution of disputes, customer duties and responsibilities, security, handling of confidential

information, and termination.

 Each area of service in cloud computing should define a “target level of service” or a “minimum

level of service” and specify the levels of availability, serviceability, performance, operation, or

other attributes of the service, such as billing. Penalties may also be specified in the case of

noncompliance with the SLA. It is expected that any service-oriented architecture (SOA) will

eventually include middleware supporting SLA management.

There are two well-differentiated phases in SLA management: the negotiation of the contract and

the monitoring of its fulfillment in real time. In turn, automated negotiation has three main

components: i) the object of negotiation, which defines the attributes and constraints under

negotiation; (ii) the negotiation protocols, which describe the interaction between negotiating

parties; and (iii) the decision models responsible for processing proposals and generating

counterproposals.

The selection process is subject to customizable compliance with user requirements, such as

security, deadlines, and costs. The authors propose an infrastructure called Compliant Cloud

Computing (C3) consisting of: (i) a language to express user requirements and the compliance

level agreements (CLAs) and (ii) the middleware for managing CLAs.

The Web Service Agreement Specification (WS-Agreement) [20] uses an XML-based language

to define a protocol for creating an agreement using a predefined template with some

customizable aspects. It only supports one-round negotiation without counterproposals.

Responsibility sharing between user and cloud service provider

After reviewing cloud services provided by Amazon, Google, and Microsoft, we are in a better

position to understand the differences among SaaS, IaaS, and PaaS. There is no confusion about

SaaS;the service provider supplies both the hardware and the application software, and the user

has direct access to these services through a Web interface and has no control over cloud

resources. Typical examples are Google with Gmail, Google Docs, Google Calendar, Google

Groups, and Picasa and Microsoft with the Online Services.

In the case of IaaS, the service provider supplies the hardware (servers, storage, networks) and

system software (operating systems, databases); in addition, the provider ensures system

attributes such as security, fault tolerance, and load balancing. The representative of IaaS is

Amazon AWS.

PaaS provides only a platform, including the hardware and system software, such as operating

systems and databases; the service provider is responsible for system updates, patches, and

software maintenance.

PaaS does not allow any user control of the operating system, security features, or the ability to

install applications. Typical examples are Google App Engine, Microsoft Azure, and Force.com,

provided by Salesforce.com.

The level of user control over the system in IaaS is different form PaaS. IaaS provides total

control, whereas PaaS typically provides no control. Consequently, IaaS incurs administration

costs similar to a traditional computing infrastructure, whereas the administrative costs are

virtually zero for PaaS.

The limits of responsibility between the cloud user and the cloud service provider are different

for the three service-delivery models, as we can see in Figure 3.7. In the case of SaaS the user is

partially responsible for the interface; the user responsibility increases in the case of PaaS and

includes the interface and the application. In the case of IaaS the user is responsible for all the

events occurring in the virtual machine running the application.

User experience

There have been a few studies of user experience based on a large population of cloud computing

Users. An empirical study of the experience of a small group of users of the Finish Cloud

Computing Consortium is reported in.

The security threats perceived by this group of users are: (i) abuse and villainous use of the

cloud;(ii) APIs that are not fully secure; (iii) malicious insiders; (iv) account hijacking; (iv) data

leaks; and (v) issues related to shared resources. Identity theft and privacy were major concerns

for about half of the users questioned; availability, liability, and data ownership and copyright

were raised by a third of respondents.

The suggested solutions to these problems are as follows: SLAs and tools to monitor usage

should be deployed to prevent abuse of the cloud; data encryption and security testing should

enhance the API security; an independent security layer should be added to prevent threats

caused by malicious insiders; strong authentication and authorization should be enforced to

prevent account hijacking; data decryption in a secure environment should be implemented to

prevent data leakage; and compartmentalization of components and firewalls should be deployed

to limit the negative effect of resource sharing.

A broad set of concerns identified by the NIST working group on cloud security includes:

 . Potential loss of control/ownership of data.

• Data integration, privacy enforcement, data encryption.

• Data remanence after deprovisioning.

• Multitenant data isolation.

• Data location requirements within national borders.

• Hypervisor security.

• Audit data integrity protection.

• Verification of subscriber policies through provider controls.

• Certification/accreditation requirements for a given cloud service.

Software Licensing

Software licensing for cloud computing is an enduring problem without a universally accepted

solution at this time. The license management technology is based on the old model of

computing centers with licenses given on the basis of named users or as site licenses. This

licensing technology, developed for a centrally managed environment, cannot accommodate the

distributed service infrastructure of cloud computing or of grid computing.

Only very recently IBM reached an agreement allowing some of its software products to be used

on EC2. Furthermore, MathWorks developed a business model for the use ofMATLAB in grid

environments. The Software-as-a-Service (SaaS) deployment model is gaining acceptance

because it allows users to pay only for the services they use.

There is significant pressure to change the traditional software licensing model and find non

hardware-based solutions for cloud computing. The increased negotiating power of users,

coupled with the increase in software piracy, has renewed interest in alternative schemes such as

those proposed by the SmartLM research project (www.smartlm.eu). SmartLM license

management requires a complex software infrastructure involving SLA, negotiation protocols,

authentication, and other management functions.

A commercial product based on the ideas developed by this research project is elasticLM, which

provides license and billing for Web-based services. The architecture of the elasticLM license

service has several layers: allocation, authentication, administration, management, business, and

persistency. The authentication layer authenticates communication between the license service

and the billing service as well as the individual applications; the persistence layer stores the

usage records. The main responsibility of the business layer is to provide the licensing service

with the licenses prices, and the management coordinates various components of the automated

billing service.

When a user requests a license from the license service, the terms of the license usage are

negotiated and they are part of an SLA document. The negotiation is based on application-

specific templates and the license cost becomes part of the SLA. The SLA describes all aspects

of resource usage, including the ID of application, duration, number of processors, and

guarantees, such as the maximum cost and deadlines. When multiple negotiation steps are

necessary, the WS-Agreement Negotiation protocol is used.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

RAJAMPET
(Autonomous)

Department of Artificial Intelligence & Machine Learning

Lecture Notes

Name of the Faculty: Dr.T.Harikrishna Class: IVYear I Semester

Branch and Section: AIML Course code: 20A57GT

Name of the Course: Cloud Computing

 Unit-II

Unit-II

Cloud Computing: Applications and Paradigms

 Cloud computing is very attractive to users for several economic reasons: It requires a

very low infrastructure investment because there is no need to assemble and maintain a large-

scale system and it has low utility-based computing costs because customers are only billed

for the infrastructure used. At the same time, users benefit from the potential to reduce the

execution time of compute-intensive and data-intensive applications through parallelization.

If an application can partition the workload in n segments and spawn n instances of itself, the

execution time could be reduced by a factor close to n.

 Moreover, because application developers enjoy the advantages of a just-in-time

infrastructure, they are free to design an application without being concerned with the system

where the application will run. Often, an application becomes the victim of its own success,

attracting a user population larger than the system can support. Cloud elasticity allows such

an application to absorb the additional workload without any effort from application

developers.

Challenges for cloud computing

 One of the main advantages of cloud computing, the shared infrastructure, could also have a

negative impact. Performance isolation is nearly impossible to reach in a real system,

especially when the system is heavily loaded. The performance of virtual machines fluctuates

based on the load, the infrastructure services, and the environment, including the other users.

Security isolation is also challenging on multitenant systems.

 Reliability is also a major concern; node failures are to be expected whenever a large

number of nodes cooperate for the computations. Choosing an optimal instance (interms of

performance isolation, reliability, and security) from those offered by the cloud infrastructure

is another critical factor to be considered. Of course, cost considerations also play a role in

the choice of the instance type.

 Many applications consist of multiple stages; in turn, each stage may involve multiple

instances running in parallel on the systems of the cloud and communicating among them.

Thus, efficiency, consistency, and communication scalability are major concerns for an

application developer.

 Data storage plays a critical role in the performance of any data-intensive application; the

organization of the storage, the storage location, and the storage bandwidth must be carefully

analysed to lead to optimal application performance. Clouds support many storage options to

set up a file system similar to the Hadoop file system among them are off-instance cloud

storage (e.g., S3), mountable off-instance block storage (e.g., EBS), and storage persistent for

the lifetime of the instance.

 Many data-intensive applications use metadata associated with individual data records

 Another important consideration for the application developer is logging. Performance

considerations limit the amount of data logging, whereas the ability to identify the source of

unexpected results and errors is helped by frequent logging. Logging is typically done using

instance storage preserved only for the lifetime of the instance.

Existing cloud applications and new application opportunities

 Existing cloud applications can be divided into several broad categories: (i) processing

pipelines; (ii) batch processing systems; and (iii) Web applications.

 Processing pipelines are data-intensive and sometimes compute-intensive applications and

represent a fairly large segment of applications currently running on the cloud. Several types

of data processing applications can be identified.

 Processing pipelines are data-intensive and sometimes compute-intensive applications and

represent a fairly large segment of applications currently running on the cloud. Several types

of data processing applications can be identified:

 Indexing. The processing pipeline supports indexing of large datasets created by Web

crawler engines.

Data mining. The processing pipeline supports searching very large collections of records to

locate items of interests.

Image processing .A number of companies allow users to store their images on the cloud

The image-processing pipelines support image conversion (e.g. Enlarging an image or

creating thumbnails).They can also be used to compress or encrypt images.

Video transcoding. The processing pipeline transcodes from one video format to another

(e.g.,from AVI to MPEG).

Document processing. The processing pipeline converts very large collections of documents

from one format to another (e.g. From Word to PDF),or encrypts the documents. It could also

use optical character recognition (OCR) to produce digital images of documents

 Batch processing systems also cover a broad spectrum of data-intensive applications in

enterprise computing. Such applications typically have deadlines, and the failure to meet

these deadlines could have serious economic consequences. Security is also a critical aspect

for many applications of batch processing. A non-exhaustive list of batch processing

applications includes.

Generation of daily, weekly, monthly, and annual activity reports for organizations in retail,

manufacturing, and other economic sectors.

 • Processing, aggregation, and summaries of daily transactions for financial institutions,

insurance companies, and healthcare organizations.

 • Inventory management for large corporations.

• Processing billing and payroll records.

• Management of the software development (e.g., nightly updates of software repositories).

 • Automatic testing and verification of software and hardware systems

 Finally, and of increasing importance, are cloud applications in the area of Web access.

Several categories of Web sites have a periodic or a temporary presence, such as the Web

sites for conferences or other events. There are also Web sites that are active during a

particular season. or that support a particular type of activity, such as income tax reporting

with the April 15 deadline each year. Other limited-time Web sites used for promotional

activities “sleep” during the night and auto-scale during the day.

 Architectural styles for cloud applications

The vast majority of cloud applications take advantage of request/response communication

between clients and stateless servers. A stateless server does not require a client to first

establish a connection to the server. Instead, it views a client request as an independent

transaction and responds to it.

 The advantages of stateless servers are obvious. Recovering from a server failure requires

considerable overhead for a server that maintains the state of all its connections, whereas in

the case of stateless server a client is not affected while a server goes down and then comes

back up between two consecutive requests. A stateless system is simpler, more robust, and

scalable. A client does not have to be concerned with the state of the server. If the client

receives a response to a request, that means that the server is up and running; if not, it should

resend the request later. A connection-based service must reserve spaces to maintain the state

of each connection with a client; therefore, such a system is not scalable, and the number of

clients a server could interact with at any given time is limited by the storage space available

to the server.

A critical aspect of the development of networked applications is how processes and threads

running on systems with different architectures and possibly compiled from different

programming languages can communicate structured information with one another. First, the

internal representation of the two structures at the two sites may be different. One system

may use Big-Endian and the other Little-Endian representation. The character representations

may also be different. Second, a communication channel transmits a sequence of bits and

bytes; thus, the data structure must be serialized at the sending site and reconstructed at the

receiving site.

Several other considerations must be analyzed before deciding on the architectural style of an

application. The term neutrality refers to the ability of the application protocol to use

different transport protocols such as TCP or UDP and, in general, to run on top of a different

protocol stack..

 RPC-based applications use stubs to convert the parameters involved in an RPC call. A stub

performs two functions: marshalling the data structures and serialization. A more general

concept is that of an Object Request Broker (ORB), the middleware that facilitates

communication of networked applications. The ORB at the sending site transforms the data

structures used internally by a sending process to a byte sequence and transmits this byte

sequence over the network. The ORB at the receiving site maps the byte sequence to the data

structures used internally by the receiving process.

 The Common Object Request Broker Architecture (CORBA) was developed in the early

1990s to allow networked applications developed in different programming languages and

running on systems with different architectures and system software to work with one

another. At the heart of the system is the Interface Definition Language (IDL), used to

specify the interface of an object.

 The Simple Object Access Protocol (SOAP) is an application protocol developed in 1998 for

Web applications; its message format is based on the Extensible Markup Language (XML).

SOAP uses TCP and, more recently, UDP transport protocols. It can also be stacked above

other application layer protocols such as HTTP, SMTP, or JMS. The processing model of

SOAP is based on a network consisting of senders, receivers, intermediaries, message

originators, ultimate receivers, and message paths. SOAP is an underlying layer of Web

Services.

The Web Services Description Language (WSDL) (see www.w3.org/TR/wsdl) was

introduced in 2001 as an XML-based grammar to describe communication between endpoints

of a networked application. The abstract definition of the elements involved include services,

collections of endpoints of communication; types, containers for data type definitions;

operations, descriptions of actions supported by a service; port types, operations supported by

endpoints; bindings, protocols and data formats supported by a particular port type; and port,

an endpoint as a combination of a binding and a network address.

Representational State Transfer (REST) is a style of software architecture for distributed

hypermedia systems. REST supports client communication with stateless servers. It is

platform- and languageindependent, supports data caching, and can be used in the presence of

firewalls.

REST almost always uses HTTP to support all four Create/Read/Update/Delete (CRUD)

operations. It uses GET, PUT, and DELETE to read, write, and delete the data, respectively.

REST is a much easier-to-use alternative to RPC, CORBA, or Web Services such as SOAP

or WSDL.

Workflows: Coordination of multiple activities

Many cloud applications require the completion of multiple interdependent tasks; the

description of a complex activity involving such an ensemble of tasks is known as a

workflow.

 Workflow models are abstractions revealing the most important properties of the entities

participating in a workflow management system. Task is the central concept in workflow

modeling; a task is a unit of work to be performed on the cloud, and it is characterized by

several attributes, such as.

 Name. A string of characters uniquely identifying the task.

• Description. A natural language description of the task

Actions. Modifications of the environment caused by the execution of the task.

• Preconditions. Boolean expressions that must be true before the action(s) of the task can

take place.

• Post-conditions. Boolean expressions that must be true after the action(s) of the task take

place.

• Attributes. Provide indications of the type and quantity of resources necessary for the

execution of the task, the actors in charge of the tasks, the security requirements, whether the

task is reversible, and other task characteristics.

Exceptions. Provide information on how to handle abnormal events. The exceptions

supported by a task consist of a list of <event, action> pairs. The exceptions included in the

task exception list are called anticipated exceptions, as opposed to unanticipated exceptions.

 A composite task is a structure describing a subset of tasks and the order of their execution.

A primitive task is one that cannot be decomposed into simpler tasks. A composite task

inherits some properties from workflows; it consists of tasks and has one start symbol and

possibly several end symbols. At the same time, a composite task inherits some properties

from tasks; it has a name, preconditions, and post-conditions.

A routing task is a special-purpose task connecting two tasks in a workflow description. The

task that has just completed execution is called the predecessor task; the one to be initiated

next is called the successor task. A routing task could trigger a sequential, concurrent, or

iterative execution. Several types of routing task exist.

A fork routing task triggers execution of several successor tasks. Several semantics for this

construct are possible:

• All successor tasks are enabled.

• Each successor task is associated with a condition. The conditions for all tasks are

evaluated, and only the tasks with a true condition are enabled.

• Each successor task is associated with a condition. The conditions for all tasks are

evaluated, but the conditions are mutually exclusive and only one condition may be true.

Thus, only one task is enabled.

• Nondeterministic, k out of n > k successors are selected at random to be enabled.

A join routing task waits for completion of its predecessor tasks. There are several

semantics for the join routing task:

• The successor is enabled after all predecessors end.

• The successor is enabled after k out of n > k predecessors end.

• Iterative: The tasks between the fork and the join are executed repeatedly.

 A process description, also called a workflow schema, is a structure describing the tasks or

activities to be executed and the order of their execution. A process description contains one

start symbol and one end symbol. A process description can be provided in a workflow

definition language (WFDL),supporting constructs for choice, concurrent execution, the

classical fork, join constructs, and iterative execution.

 The phases in the life cycle of a workflow are creation, definition, verification, and

enactment. There is a striking similarity between the life cycle of a workflow and that of a

traditional computer program, namely, creation, compilation, and execution (see Figure 4.1).

The workflow specification by means of a workflow description language is analogous to

writing a program. Planning is equivalent to automatic program generation. Workflow

verification corresponds to syntactic verification of a program, and workflow enactment

mirrors the execution of a compiled program.

 A case is an instance of a process description. The start and stop symbols in the workflow

description enable the creation and the termination of a case, respectively. An enactment

model describes the steps taken to process a case. When a computer executes all tasks

required by a workflow the enactment can be performed by a program called an enactment

engine.

 An alternative description of a workflow can be provided by a transition system describing

the possible paths from the current state to a goal state. Sometimes, instead of providing a

process description, we may specify only the goal state and expect the system to generate a

workflow description that could lead to that state through a set of actions. In this case, the

new workflow description is generated automatically, knowing a set of tasks and the

preconditions and post-conditions for each one of them. In artificial intelligence (AI) this

activity is known as planning.

The state space of a process includes one initial state and one goal state; a transition system

identifies all possible paths from the initial to the goal state. A case corresponds to a

particular path in the transition system. The state of a case tracks the progress made during

the enactment of that case.

 The state space of a process includes one initial state and one goal state; a transition system

identifies all possible paths from the initial to the goal state. A case corresponds to a

particular path in the transition system. The state of a case tracks the progress made during

the enactment of that case.

For example, the process description in Figure 4.2(a) violates the liveness requirement.

As long as task C is chosen after completion of B, the process will terminate. However, if D

is chosen, then F will never be instantiated, because it requires the completion of both C and

E. The process will never terminate, because G requires completion of both D and F.

 A note of caution: Although the original description of a process could be live, the actual

enactment of a case may be affected by deadlocks due to resource allocation. To illustrate this

situation, consider two tasks, A and B, running concurrently. Each of them needs exclusive

access to resources r and q for a period of time. Either of two scenarios is possible.

1. A or B acquires both resources and then releases them and allows the other task to do the

same.

2. We face the undesirable situation in Figure 4.2(b) when, at time t1, task A acquires r and

continues its execution; then at time t2 task B acquires q and continues to run. Then at time t3

task B attempts to acquire r and it blocks because r is under the control of A. Task A

continues to run and at time t4 attempts to acquire q and it blocks because q is under the

control of B.

The deadlock illustrated in Figure 4.2(b) can be avoided by requesting each task to acquire all

resources at the same time. The price to pay is underutilization of resources. Indeed, the idle

time of each resource increases under this scheme.

Workflow pattern refers to the temporal relationship among the tasks of a process. The

workflow description languages and the mechanisms to control the enactment of a case must

have provisions to support these temporal relationships. Workflow patterns are analyzed in

[1,382]. These patterns

are classified in several categories: basic, advanced branching and synchronization,

structural, statebased, cancellation, and patterns involving multiple instances. The basic

workflow patterns illustrated in Figure 4.3 are

The sequence pattern occurs when several tasks have to be scheduled one after the

completion of the other [see Figure 4.3(a)].

• The AND split pattern requires several tasks to be executed concurrently. Both tasks B

and C are activated when task A terminates [see Figure 4.3(b)]. In case of an explicit AND

split, the activity graph has a routing node and all activities connected to the routing node are

activated as soon as the flow of control reaches the routing node. In the case of an implicit

AND split, activities are connected directly and conditions can be associated with branches

linking an activity with the next ones. Only when the conditions associated with a branch are

true are the tasks activated.

The synchronization pattern requires several concurrent activities to terminate before an

activity can start. In our example, task C can only start after both tasks A and B terminate

 The XOR split requires a decision; after the completion of task A, either B or C can be

activated

In the XOR join, several alternatives are merged into one. In our example, task C is enabled

when either A or B terminates.

The OR split pattern is a construct to choose multiple alternatives out of a set. In our

example, after completion of task A, one could activate either B or C, or both.

The multiple merge construct allows multiple activations of a task and does not require

synchronization after the execution of concurrent tasks. Once A terminates, tasks B and C

execute concurrently. When the first of them, say, B, terminates, task D is activated; then

when C terminates, D is activated again.

The discriminator pattern waits for a number of incoming branches to complete before

activating the subsequent activity [see Figure 4.3(h)]; then it waits for the remaining branches

to finish without taking any action until all of them have terminated. Next, it resets itself.

The N out of M join construct provides a barrier synchronization. Assuming that M > N

tasks run concurrently, N of them have to reach the barrier before the next task is enabled. In

our example, any two out of the three tasks A, B, and C have to finish before E is enabled.

The deferred choice pattern is similar to the XOR split, but this time the choice is not made

explicitly and the run-time environment decides what branch to take

The deferred choice pattern is similar to the XOR split, but this time the choice is not made

explicitly and the run-time environment decides what branch to take.

Some workflows are static. The activity graph does not change during the enactment of a

case. Dynamic workflows are those that allow the activity graph to be modified during the

enactment of a case. Some of the more difficult questions encountered in dynamic workflow

management refer to (i) how to integrate workflow and resource management and guarantee

optimality or near optimality of cost functions for individual cases; (ii) how to guarantee

consistency after a change in a workflow; and (iii) how to create a dynamic workflow. Static

workflows can be described in WFDL.

 Strong coordination models, whereby the process group P executes under the supervision of

a coordinator process or processes. A coordinator process acts as an enactment engine and

ensures a seamless transition from one process to another in the activity graph. 2. Weak

coordination models, whereby there is no supervisory process.

There are similarities and some differences between workflows of traditional transaction-

oriented systems and cloud workflows. The similarities are mostly at the modeling level,

whereas the differences affect the mechanisms used to implement workflow management

systems. Some of the more subtle differences between the two are.

 The emphasis in a transactional model is placed on the contractual aspect of a transaction; in

a workflow the enactment of a case is sometimes based on a “best-effort” model whereby the

agents involved will do their best to attain the goal state but there is no guarantee of success.

 • A critical aspect of the transactional model in database applications is maintaining a

consistent state of the database; however, a cloud is an open system, and thus its state is

considerably more difficult to define.

• The database transactions are typically short-lived; the tasks of a cloud workflow could be

longlasting.

• A database transaction consists of a set of well-defined actions that are unlikely to be

altered during the execution of the transaction. However, the process description of a cloud

workflow may change during the lifetime of a case.

• The individual tasks of a cloud workflow may not exhibit the traditional properties of

database transactions. A task of a workflow could be either reversible or irreversible.

Sometimes, paying a penalty for reversing an action is more profitable in the long run than

continuing on a wrong path.

 Resource allocation is a critical aspect of the workflow enactment on a cloud without an

immediate correspondent for database transactions.

 Basic workflow patterns. (a) Sequence. (b) AND split. (c) Synchronization. (d) XOR split.

(e) XOR merge. (f)OR split. (g) Multiple merge. (h) Discriminator. (i) N out of M join.

 (j) Deferred choice.

Coordination based on a state machine model: The ZooKeeper

 Cloud computing elasticity requires the ability to distribute computations and data across

multiple systems. Coordination among these systems is one of the critical functions to be

exercised in a distributed environment. The coordination model depends on the specific task,

such as coordination of data storage, orchestration of multiple activities, blocking an activity

until an event occurs, reaching consensus for the next action, or recovery after an error

 The entities to be coordinated could be processes running on a set of cloud servers or even

running on multiple clouds. Servers running critical tasks are often replicated, so when one

primary server fails, a backup automatically continues the execution. This is only possible if

the backup is in a hot standby mode – in other words, the standby server shares the same state

at all times with the primary.

 A solution for the proxy coordination problem is to consider a proxy as a deterministic finite

state machine that performs the commands sent by clients in some sequence. The proxy has

thus a definite state and, when a command is received, it transitions to another state. When P

proxies are involved, all of them must be synchronized and must execute the same sequence

of state machine command

 ZooKeeper is a distributed coordination service based on this model. The high-throughput

and low-latency service is used for coordination in large-scale distributed systems. The open-

source software is written in Java and has bindings for Java and C.

 The ZooKeeper software must first be downloaded and installed on several servers; then

clients can connect to any one of these servers and access the coordination service. The

service is available as long as the majority of servers in the pack are available. The

organization of the service is shown in Figure 4.4. The servers in the pack communicate with

one another and elect a leader. A database is replicated on each one of them and the

consistency of the replicas is maintained. Figure 4.4(a) shows that the service provides a

single system image. A client can connect to any server of the pack.

 A client uses TCP to connect to a single server. Through the TCP connection a client sends

requests and receives responses and watches events. A client synchronizes its clock with the

server. If the server fails, the TCP connections of all clients connected to it time out and the

clients detect the failure of the server and connect to other servers.

 Figures 4.4(b) and (c) show that a read operation directed to any server in the pack returns

the same result, whereas the processing of a write operation is more involved; the servers

elect a leader, and any follower receiving a request from one of the clients connected to it

forwards it to the leader. The leader uses atomic broadcast to reach consensus. When the

leader fails, the servers elect a new leader.

 The system is organized as a shared hierarchical namespace similar to the organization of a

file system. A name is a sequence of path elements separated by a backslash. Every name in

Zookeper’s namespace is identified by a unique path.

 In ZooKeeper the znodes, the equivalent of the inodes of a file system, can have data

associated with them. Indeed, the system is designed to store state information.

A client can set a watch on a znode and receive a notification when the znode changes. This

organization allows coordinated updates. The data retrieved by a client also contains a

version number. Each update is stamped with a number that reflects the order of the

transition.

 The data stored in each node is read and written atomically. A read returns all the data

stored in a znode, whereas a write replaces all the data in the znode. Unlike in a file system,

Zookeeper data, the image of the state, is stored in the server memory. Updates are logged to

disk for recoverability, and writes are serialized to disk before they are applied to the in-

memory database that contains the entire tree. The ZooKeeper service guarantees:

1. Atomicity. A transaction either completes or fails.

2. Sequential consistency of updates. Updates are applied strictly in the order in which they

are received.

3. Single system image for the clients. A client receives the same response regardless of the

server it connects to.

4. Persistence of updates. Once applied, an update persists until it is overwritten by a client.

5. Reliability. The system is guaranteed to function correctly as long as the majority of

servers function correctly.

 The messaging layer is responsible for the election of a new leader when the current leader

fails. The messaging protocol uses packets (sequences of bytes sent through a FIFO channel),

proposals (units of agreement), and messages (sequences of bytes atomically broadcast to all

servers). A message is included in a proposal and it is agreed on before it is delivered

The application programming interface (API) to the ZooKeeper service is very simple and

consists of seven operations:

• create – add a node at a given location on the tree.

• delete – delete a node.

 • get data – read data from a node.

• set data – write data to a node.

 • get children – retrieve a list of the children of the node. • synch – wait for the data to

propagate.

This brief description shows that the ZooKeeper service supports the finite state machine

model of coordination. In this case a znode stores the state. The ZooKeeper service can be

used to implement higher-level operations such as group membership, synchronization, and

so on. The system is used by Yahoo!’s Message Broker and by several other applications.

The MapReduce programming model

 A main advantage of cloud computing is elasticity – the ability to use as many servers as

necessary to optimally respond to the cost and the timing constraints of an application. In the

case of transaction processing systems, typically a front-end system distributes the incoming

transactions to a number of back-end systems and attempts to balance the load among them.

 For data-intensive batch applications, partitioning the workload is not always trivial. Only in

some cases can the data be partitioned into blocks of arbitrary size and processed in parallel

by servers in the cloud. We distinguish two types of divisible workloads: • Modularly

divisible. The workload partitioning is defined a priori. • Arbitrarily divisible. The workload

can be partitioned into an arbitrarily large number of smaller workloads of equal or very close

size.

MapReduce is based on a very simple idea for parallel processing of data-intensive

applications supporting arbitrarily divisible load sharing. First, split the data into blocks,

assign each block to an instance or process, and run these instances in parallel. Once all the

instances have finished, the computations assigned to them start the second phase: Merge the

partial results produced by individual instances. The so-called same program, multiple data

(SPMD) paradigm, used since the early days of parallel computing, is based on the same idea

but assumes that a master instance partitions the data and gathers the partial results.

MapReduce is a programming model inspired by the Map and the Reduce primitives of the

LISP programming language. It was conceived for processing and generating large data sets

on computing clusters. As a result of the computation, a set of input pairs is transformed into

a set of output pairs.

The MapReduce philosophy. (1) An application starts a master instance and M worker

instances for the Map phase and, later, R worker instances for the Reduce phase. (2) The

master partitions the input data in M segments. (3) Each Map instance reads its input data

segment and processes the data. (4) The results of the processing are stored on the local disks

of the servers where the Map instances run. (5) When all Map instances have finished

processing their data, the R Reduce instances read the results of the first phase and merge the

partial results. (6) The final results are written by the Reduce instances to a shared storage

server. (7) The master instance monitors the Reduce instances and, when all of them report

task completion, the application is terminated

The following example shows the two user-defined functions for an application that counts

the number of occurrences of each word in a set of documents.

 map(String key, String value):

 //key: document name; value: document contents for each word w in value:

EmitIntermediate (w, "1");

reduce (String key, Iterator values):

 // key: a word; values: a list of counts int result = 0; for each v in values: result += ParseInt

(v); Emit (AsString (result));

Call M and R the number of Map and Reduce tasks, respectively, and N the number of

systems used by the MapReduce. When a user program invokes the MapReduce function, the

following sequence of actions take place.

1. The run-time library splits the input files into M splits of 16 to 64 MB each, identifies

a number N of systems to run, and starts multiple copies of the program, one of the

system being a master and the others workers. The master assigns to each idle system

either a Map or a Reduce task

2. A worker being assigned a Map task reads the corresponding input split, parses pairs,

and passes each pair to a user-defined Map function. The intermediate pairs produced

by the Map function are buffered in memory before being written to a local disk and

partitioned into R regions by the partitioning function.

3. The locations of these buffered pairs on the local disk are passed back to the master,

who is responsible for forwarding these locations to the Reduce workers. A Reduce

worker uses remote procedure calls to read the buffered data from the local disks of

the Map workers; after reading all the intermediate data, it sorts it by the intermediate

keys.

4. When all Map and Reduce tasks have been completed, the master wakes up the user

program.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

RAJAMPET
(Autonomous)

Department of Artificial Intelligence & Machine Learning

Lecture Notes

Name of the Faculty: Dr.T.Harikrishna Class: IVYear I Semester

Branch and Section: AIML Course code: 20A57GT

Name of the Course: Cloud Computing

 Unit-III

Unit-3

 Three classes of fundamental abstractions – interpreters, memory, and

communications links – are necessary to describe the operation of a computing

system. The physical realization of each one of these abstractions, such as

processors that transform information, primary and secondary memory for storing

information, and communication channels that allow different systems to

communicate with one another, can vary in terms of bandwidth,1 latency,2

reliability, and other physical characteristics. Software systems such as operating

systems are responsible for the management of the system resources –the physical

implementations of the three abstractions.

 The traditional solution for a data center is to install standard operating systems on

individual systems and rely on conventional OS techniques to ensure resource

sharing, application protection, and performance isolation. System administration,

accounting, security, and resource management are very challenging for the

providers of service in this setup; application development and performance

Optimization are equally challenging for the users.

The alternative is resource virtualization, a technique analyzed in this chapter.

Virtualization is a basic tenet of cloud computing – that simplifies some of the

resource management tasks. For example,the state of a virtual machine (VM)

running under a virtual machine monitor (VMM) can be saved

and migrated to another server to balance the load. At the same time, virtualization

allows users to operate in environments with which they are familiar rather than

forcing them to work in idiosyncratic environments.

 Resource sharing in a virtual machine environment requires not only ample

hardware support and, in particular, powerful processors but also architectural

support for multilevel control. Indeed, resources such as CPU cycles, memory,

secondary storage, and I/O and communication bandwidth are shared among

several virtual machines; for each VM, resources must be shared among multiple

instances of an application.

Traditional processor architectures were conceived for one level of control because

they support two execution modes, the kernel and the user mode. In a virtualized

environment all resources are under the control of a VMM and a second level of

control is exercised by the guest operating system. Although two-level scheduling

for sharing CPU cycles can be easily implemented, sharing of resources such as

cache, memory, and I/O bandwidth is more intricate.

Virtualization

Virtualization simulates the interface to a physical object by any one of four

means:

1.Multiplexing. Create multiple virtual objects from one instance of a physical

object. For example, a processor is multiplexed among a number of processes or

threads.

2. Aggregation. Create one virtual object from multiple physical objects. For

example, a number of physical disks are aggregated into a RAID disk.

3. Emulation. Construct a virtual object from a different type of physical object.

For example, a physical disk emulates a random access memory.

4.Multiplexing and emulation. Examples: Virtual memory with paging

multiplexes real memory and disk, and a Virtual address emulates a real address;

TCP emulates a reliable bit pipe and multiplexes a physical communication

channel and a processor.

Virtualization abstracts the underlying resources and simplifies their use, isolates

users from one another, and supports replication, which, in turn, increases the

elasticity of the system. Virtualization is a critical aspect of cloud computing,

equally important to the providers and consumers of cloud services, and plays an

important role in:

• System security because it allows isolation of services running on the same

hardware.

• Performance and reliability because it allows applications to migrate from one

platform to another.

• The development and management of services offered by a provider.

• Performance isolation.

 User convenience is a necessary condition for the success of the utility computing

paradigms. One of the multiple facets of user convenience is the ability to run

remotely using the system software and libraries required by the application. User

convenience is a major advantage of a VM architecture over a traditional operating

system. For example, a user of the Amazon Web Services (AWS) could submit an

Amazon Machine Image (AMI) containing the applications, libraries, data, and

associated configuration settings. The user could choose the operating system for

the application, then start, terminate, and monitor as many instances of the AMI as

needed, using the Web Service APIs and the performance monitoring and

management tools provided by the AWS.

Layering and virtualization

A common approach to managing system complexity is to identify a set of layers

with well-defined interfaces among them. The interfaces separate different levels

of abstraction. Layering minimizes the interactions among the subsystems and

simplifies the description of the subsystems. Each subsystem is abstracted through

its interfaces with the other subsystems. Thus, we are able to design, implement,

and modify the individual subsystems independently.

The instruction set architecture (ISA) defines a processor’s set of instructions. For

example, the Intel architecture is represented by the x86-32 and x86-64 instruction

sets for systems supporting 32-bit addressing and 64-bit addressing, respectively.

The hardware supports two execution modes, a privileged, or kernel, mode and a

user mode. The instruction set consists of two sets of instructions, privileged

instructions that can only be executed in kernel mode and non-privileged

instructions that can be executed in user mode. There are also sensitive instructions

that can be executed in kernel and in user mode but that behave differently.

computer systems are fairly complex, and their operation is best understood when

we consider a model similar to the one in Figure 5.1, which shows the interfaces

among the software components and the hardware .The hardware consists of one or

more multicore processors, a system interconnect (e.g., one or more buses), a

memory translation unit, the main memory, and I/O devices, including one or more

networking interfaces. Applications written mostly in high-level languages (HLL)

often call library modules and are compiled into object code. Privileged operations,

such as I/O requests, cannot be executed in user mode; instead, application and

library modules issue system calls and the operating system determines whether

the privileged operations required by the application do not violate system security

or integrity and, if they don’t, executes them on behalf of the user. The binaries

resulting from the translation of HLL programs are targeted to a specific hardware

architecture.

The first interface we discuss is the instruction set architecture (ISA) at the

boundary of the hardware and the software. The next interface is the application

binary interface (ABI), which allows the ensemble consisting of the application

and the library modules to access the hardware. The ABI does not include

privileged system instructions; instead it invokes system calls. Finally, the

application program interface.

(API) defines the set of instructions the hardware was designed to execute and

gives the application access to the ISA. It includes HLL library calls, which often

invoke system calls. A process is the abstraction for the code of an application at

execution time; a thread is a lightweight process. The ABI is the projection of the

computer system seen by the process, and the API is the projection of the system

from the perspective of the HLL program.

Clearly, the binaries created by a compiler for a specific ISA and a specific

operating system are not portable. Such code cannot run on a computer with a

different ISA or on computers with the same ISA but different operating systems.

However, it is possible to compile an HLL program for a VM environment, as

shown in Figure 5.2, where portable code is produced and distributed and then

converted by binary translators to the ISA of the host system. A dynamic binary

translation converts blocks of guest instructions from the portable code to the host

instruction and leads to a significant performance improvement as such blocks are

cached and reused.

FIGURE 5.2

High-level language (HLL) code can be translated for a specific architecture and operating system. HLL code can also be

compiled into portable code and then the portable code translated for systems with different ISAs. The code that is

shared/distributed is the object code in the first case and the portable code in the second case

Virtual machine monitors

A virtual machine monitor (VMM), also called a hypervisor, is the software that

securely partitions the resources of a computer system into one or more virtual

machines. A guest operating system is an operating system that runs under the

control of a VMM rather than directly on the hardware. The VMM runs in kernel

mode, whereas a guest OS runs in user mode. Sometimes the hardware supports a

third mode of execution for the guest OS.

VMMs allow several operating systems to run concurrently on a single hardware

platform; at the same time, VMMs enforce isolation among these systems, thus

enhancing security. A VMM controls how the guest operating system uses the

hardware resources. The events occurring in one VM do not affect any other VM

running under the same VMM. At the same time, the VMM enables:

•Multiple services to share the same platform.

•The movement of a server from one platform to another, the so-called live

migration.

•System modification while maintaining backward compatibility with the original

system.

When a guest OS attempts to execute a privileged instruction, the VMM traps the

operation and enforces the correctness and safety of the operation. The VMM

guarantees the isolation of the individual VMs, and thus ensures security and

encapsulation, a major concern in cloud computing. At the same time, the VMM

monitors system performance and takes corrective action to avoid performance

degradation; for example, the VMM may swap out a VM (copies all pages of that

VM from real memory to disk and makes the real memory frames available for

paging by other VMs) to avoid thrashing.

A VMM virtualizes the CPU and memory. For example, the VMM traps interrupts

and dispatches them to the individual guest operating systems. If a guest OS

disables interrupts, the VMM buffers such interrupts until the guest OS enables

them. The VMM maintains a shadow page table for each guest OS and replicates

any modification made by the guest OS in its own shadow page table. This shadow

page table points to the actual page frame and is used by the hardware component

called the memory management unit (MMU) for dynamic address translation.

Virtual machines

A virtual machine (VM) is an isolated environment that appears to be a whole

computer but actually only has access to a portion of the computer resources. Each

VM appears to be running on the bare hardware, giving the appearance of multiple

instances of the same computer, though all are supported by a single physical

system. Virtual machines have been around since the early 1970s, when IBM

released its VM/370 operating system.

(a) (b)

 (c) (d)

 FIGURE 5.3

(a) A taxonomy of process and system VMs for the same and for different ISAs. Traditional, hybrid, and hosted are three

classes of VM for systems with the same ISA. (b) Traditional VMs. The VMM supports multiple VMs and runs directly on

the hardware. (c) A hybrid VM. The VMM shares the hardware with a host operating system and supports multiple virtual

machines. (d) A hosted VM. The VMM runs under a host operating system.

 We distinguish two types of VM: process and system VMs [see Figure 5.3(a)].

A process VM is a virtual platform created for an individual process and

A
p

p
li
c
a

ti
o

n

A
p

p
li
c
a

ti
o

n

A
p

p
li
c
a

ti
o

n

destroyed once the process terminates. Virtually all operating systems provide a

process VM for each one of the applications running, but the more interesting

process VMs are those that support binaries compiled on a different instruction

set. A system VM supports an operating system together with many user

processes. When the VM runs under the control of a normal OS and provides a

platform-independent host for a single application, we have an application

virtual machine (e.g., Java Virtual Machine [JVM]).

Table 5.1 A nonexhaustive inventory of system virtual machines. The host ISA refers to the instruction set of the

hardware; the guest ISA refers to the instruction set supported by the virtual machine. The VM could run under a host

OS, directly on the hardware, or under a VMM. The guest OS is the operating system running under the control of a VM,

which in turn may run under the control of the VMM.

Name Host ISA Guest ISA Host OS Guest OS Company

Integrity VM x86-64 x 86-64 HP-Unix Linux, Windows HP

Unix

Linux, AIX

Linux on z-ISA

Linux, Windows

Windows

Linux, Windows

Linux, Windows

Linux, Windows

Linux, Windows,

Solaris, FreeBSD

Linux, Windows,

Solaris, FreeBSD

Linux, Windows,

Solaris, FreeBSD

Linux, Windows,

Solaris, FreeBSD

Linux, Windows,

Solaris, FreeBSD

ILVACO, NetBSD

Linux, Solaris

NetBSD

HP

IBM IBM

LinuxWorks Microsoft

Oracle Real Time Systems

SUN

VMware VMware

VMware VMware

VMware

University of Washington

University of

Cambridge

Power VM

z/VM

Lynx Secure

Hyper-V Server

Oracle VM

RTS Hypervisor

Power

z-ISA

x86

x86-64

x86, x86-64

x86

Power

z-ISA

x86

x86-64

x86, x86-64

x86

No host OS

No host OS

No host OS

Windows No

host OS No

host OS

SUN xVM

VMware EX

Server

VMware Fusion

x86, SPARC

x86, x86-64

x86, x86-64

same as host

x86, x86-64

x86, x86-64

No host OS

No host OS

Mac OS x86

VMware Server

VMware

Workstation

VMware Player

Denali

x86, x86-64

x86, x86-64

x86, x86-64

x86

x86, x86-64

x86, x86-64

x86, x86-64

x86

Linux,

Windows

Linux,

Windows

Linux,

Windows

Denali

Xen x86, x86-64 x86, x86-64 Linux Solaris

 A literature search reveals the existence of some 60 different virtual machines,

many created by the large software companies; Table 5.1 lists a subset of them.

A system virtual machine provides a complete system; each VM can run its

own OS, which in turn can run multiple applications. Systems such as Linux

Vserver], OpenVZ (Open VirtualiZation)], FreeBSD Jails [124], and Solaris

Zones [296], based on Linux, FreeBSD, and Solaris, respectively, implement

operating system-level virtualization technologies.

Operating system-level virtualization allows a physical server to run multiple

isolated operating system instances, subject to several constraints; the instances

are known as containers, virtual private servers (VPSs), or virtual environments

(VEs). For example, OpenVZ requires both the host and the guest OS to be

Linux distributions. These systems claim performance advantages over the

systems based on a VMM such as Xen or VMware; according to [274], there is

only a 1% to 3% performance penalty for OpenVZ compared to a stand-alone

Linux server. OpenVZ is licensed under the GPL version 2.

Recall that a VMM allows several virtual machines to share a system. Several

organizations of the software stack are possible:

•Traditional. VM also called a “bare metal” VMM. A thin software layer that

runs directly on the host machine hardware; its main advantage is performance

[see Figure 5.3(b)]. Examples: VMWare ESX, ESXi Servers, Xen, OS370, and

Denali.

•Hybrid. The VMM shares the hardware with the existing OS [see Figure

5.3(c)]. Example: VMWare Workstation.

•Hosted. The VM runs on top of an existing OS [see Figure 5.3(d)]. The main

advantage of this approach is that the VM is easier to build and install. Another

advantage of this solution is that the VMM could use several components of the

host OS, such as the scheduler, the pager, and the I/O drivers, rather than

providing its own. A price to pay for this simplicity is the increased overhead

and associated performance penalty; indeed, the I/O operations, page faults, and

scheduling requests from a guest OS are not handled directly by the VMM.

Instead, they are passed to the host OS. Performance as well as the challenges

to support complete isolation of VMs make this solution less attractive for

servers in a cloud computing environment. Example: User-mode Linux.

Performance and security isolation

Performance isolation is a critical condition for quality-of-service (QoS)

guarantees in shared computing environments. Indeed, if the run-time behavior

of an application is affected by other applications running concurrently and,

thus, is competing for CPU cycles, cache, main memory, and disk and network

access, it is rather difficult to predict the completion time. Moreover, it is

equally difficult to optimize the application. Several operating systems,

including Linux/RK , QLinux and SILK , support some performance isolation,

but problems still exist because one has to account for all resources used and to

distribute the overhead for different system activities, including context

switching and paging, to individual users – a problem often described as QoS

crosstalk .

Processor virtualization presents multiple copies of the same processor or core

on multicore systems. The code is executed directly by the hardware, whereas

processor emulation presents a model of another hardware system in which

instructions are “emulated” in software more slowly than virtualization. An

example is Microsoft’s Virtual PC, which could run on chip sets other than the

x 86 families. It was used on Mac hardware until Apple adopted Intel chips.

Traditional operating systems multiplex multiple processes or threads, whereas

a virtualization sup- ported by a VMM multiplexes full operating systems.

Obviously, there is a performance penalty because an OS is considerably more

heavy weight than a process and the overhead of context switching is larger. A

VMM executes directly on the hardware a subset of frequently used machine

instructions generated.

by the application and emulates privileged instructions, including device I/O

requests. The subset of the instructions executed directly by the hardware

includes arithmetic instructions, memory access, and branching instructions.

Operating systems use process abstraction not only for resource sharing but also

to support isolation. Unfortunately, this is not sufficient from a security

perspective. Once a process is compromised, it is rather easy for an attacker to

penetrate the entire system. On the other hand, the software running on a virtual

machine has the constraints of its own dedicated hardware; it can only access

virtual devices emulated by the software. This layer of software has the

potential to provide a level of isolation nearly equivalent to the isolation

presented by two different physical systems. Thus, the virtualization can be

used to improve security in a cloud computing environment.

Full virtualization and paravirtualization

In 1974 Gerald J. Popek and Robert P. Goldberg gave a set of sufficient

conditions for a computer architecture to support virtualization and allow a

VMM to operate efficiently [293]:

•A program running under the VMM should exhibit a behavior essentially

identical to that demon- strated when the program runs directly on an equivalent

machine.

•The VMM should be in complete control of the virtualized resources.

•A statistically significant fraction of machine instructions must be executed

without the intervention of the VMM.

Another way to identify architecture suitable for a virtual machine is to

distinguish two classes of machine instructions: sensitive instructions, which

require special precautions at execution time, and innocuous instructions, which

are not sensitive. In turn, sensitive instructions can be:

•Control sensitive, which are instructions that attempt to change either the

memory allocation or the privileged mode.

•Mode sensitive, which are instructions whose behavior is different in the

privileged mode.

An equivalent formulation of the conditions for efficient virtualization can be

based on this classifi- cation of machine instructions. A VMM for a third-

generation (or later) computer can be constructed if the set of sensitive

instructions is a subset of the privileged instructions of that machine. To handle

non virtualizable instructions, one could resort to two strategies:

•Binary translation. The VMM monitors the execution of guest operating

systems; non virtualizable instructions executed by a guest operating system are

replaced with other instructions.

•Paravirtualization.The guest operating system is modified to use only

instructions that can be virtualized.

There are two basic approaches to processor virtualization: full virtualization, in

which each virtual machine runs on an exact copy of the actual hardware, and

paravirtualization, in which each virtual machine runs on a slightly modified

copy of the actual hardware (see Figure 5.4). The reasons that paravirtualization

is often adopted are (i) some aspects of the hardware cannot be virtualized; (ii)

to improve performance; and (iii) to present a simpler interface

Full virtualization requires a virtualizable architecture; the hardware is fully

exposed to the guest OS, which runs unchanged, and this ensures that this direct

execution mode is efficient. On the other hand, paravirtualization is done

because some architectures such as x86 are not easily virtualizable.

Paravirtualization demands that the guest OS be modified to run under the

VMM; furthermore, the guest OS code must be ported for individual hardware

platforms.

Systems such as VMware EX Server support full virtualization on x86

architecture. The virtualization of the memory management unit (MMU) and

the fact that privileged instructions executed by a guest OS fail silently pose

some challenges

Application performance under a virtual machine is critical; generally,

virtualization adds some level of overhead that negatively affects the

performance. In some cases an application running under a VM performs better

than one running under a classical OS. This is the case of a policy called cache

isolation. The cache is generally not partitioned equally among processes

running under a classical OS, since one process may use the cache space better

than the other

(a) (b)

FIGURE 5.4

(a) Full virtualization requires the hardware abstraction layer of the guest OS to have some

knowledge about the hardware. (b) Paravirtualization avoids this requirement and

allows full compatibility at the application binary interface (ABI).

Hardware support for virtualization

In early 2000 it became obvious that hardware support for virtualization was

necessary, and Intel and AMD started work on the first-generation virtualization

extensions of the x86 3 architecture. In 2005 Intel released two Pentium 4 models

supporting VT-x, and in 2006 AMD announced Pacifica and then several Athlon

64 models.

The challenges to virtualizing Intel architectures and then presents VT-x and VT-i

virtualization architectures for x86 and Itanium architectures, respectively.

Software solutions at that time addressed some of the challenges, but hardware

solutions could improve not only performance but also security and, at the same

time, simplify the software systems. We first examine the problems faced by

virtualization of the x86 architecture.

•Ring deprivileging.This means that a VMM forces the guest software, the

operating system, and the applications to run at a privilege level greater than 0.

Recall that the x86 architecture provides four protection rings at levels 0–3. Two

solutions are then possible: (a) The (0/1/3) mode, in which the VMM, the OS, and

the application run at privilege levels 0, 1, and 3, respectively; or (b) the (0,3,3)

mode, in which the VMM, a guest OS, and applications run at privilege levels 0, 3,

and 3, respectively. The first mode is not feasible for x86 processors in 64-bit

mode, as we shall see shortly.

•Ring aliasing. Problems created when a guest OS is forced to run at a privilege

level other than that it was originally designed for. For example, when the CR

register4 is PUSHed, the current privilege level is also stored on the stack.

•Address space compression. A VMM uses parts of the guest address space to

store several system data structures, such as the interrupt-descriptor table and the

global-descriptor table. Such data structures must be protected, but the guest

software must have access to them.

•Non faulting access to privileged state. Several instructions, LGDT, SIDT,

SLDT, and LTR that load the registers GDTR, IDTR, LDTR, and TR, can only be

executed by software running at privilege level 0, because these instructions point

to data structures that control the CPU operation Nevertheless, instructions that

store from these registers fail silently when executed at a privilege level other than

0. This implies that a guest OS executing one of these instructions does not realize

that the instruction has failed.

•Guest system calls. Two instructions, SYSENTER and SYSEXIT, support low-

latency system calls. The first causes a transition to privilege level 0, whereas the

second causes a transition from privilege level 0 and fails if executed at a level

higher than 0. The VMM must then emulate every guest execution of either of

these instructions, which has a negative impact on performance.

•Interrupt virtualization. In response to a physical interrupt, the VMM generates

a “virtual interrupt” and delivers it later to the target guest OS. But every OS has

the ability to mask interrupts5; thus the vir- tual interrupt could only be delivered

to the guest OS when the interrupt is not masked. Keeping track of all guest OS

attempts to mask interrupts greatly complicates the VMM and increases the

overhead.

•Access to hidden state. Elements of the system state (e.g., descriptor caches for

segment registers) are hidden; there is no mechanism for saving and restoring the

hidden components when there is a context switch from one VM to another.

•Ring compression. Paging and segmentation are the two mechanisms to protect

VMM code from being overwritten by a guest OS and applications. Systems

running in 64-bit mode can only use paging, but paging does not distinguish

among privilege levels 0, 1, and 2, so the guest OS must run at privilege level 3,

the so-called (0/3/3) mode. Privilege levels 1 and 2 cannot be used; thus the name

ring compression.

•Frequent access to privileged resources increases VMM overhead. The task-

priority register (TPR) is frequently used by a guest OS. The VMM must protect

the access to this register and trap all attempts to access it. This can cause a

significant performance degradation.

A major architectural enhancement provided by the VT-x is the support for two

modes of operations and a new data structure called the virtual machine control

structure (VMCS), including host-state and guest-state areas (see Figure 5.5):

•VMX root. Intended for VMM operations and very close to the x86 without VT-

x.

•VMX nonroot. Intended to support a VM

When executing a VM entry operation, the processor state is loaded from the

guest-state of the VM scheduled to run; then the control is transferred from the

VMM to the VM. A VM exit saves the processor state in the guest-state area of the

running VM; then it loads the processor state from the host-state area and finally

transfers control to the VMM. Note that all VM exit operations use a common

entry point to the VMM.

Each VM exit operation saves the reason for the exit and, eventually, some

qualifications in VMCS. Some of this information is stored as bitmaps. For

example, the exception bitmap specifies which one of 32 possible exceptions

caused the exit. The I/O bitmap contains one entry for each port in a 16-bit I/O

space.

The VMCS area is referenced with a physical address and its layout is not fixed by

the architecture but can be optimized by a particular implementation. The VMCS

includes control bits that facilitate the implementation of virtual interrupts.

Processors based on two new virtualization architectures, VT-d 6 and VT-c, have

been developed.The first supports the I/O memory management unit (I/O MMU)

virtualization and the second supports network virtualization.

Also known as PCI pass-through, I/O MMU virtualization gives VMs direct access

to peripheral devices. VT-d supports:

•DMA address remapping, which is address translation for device DMA

transfers.

•Interrupt remapping, which is isolation of device interrupts and VM routing.

•I/O device assignment, in which an administrator can assign the devices to a VM

in any configuration.

•Reliability features, which report and record DMA and interrupt errors that may

otherwise corrupt memory and impact VM isolation.

 VM entry

 VM exit (B)

(a)

FIGURE 5.5

(a) The two modes of operation of VT-x, and the two operations to transit from

one to another. (b) The VMCS includes host-state and guest-state areas that

control the VM entry and VM exit transitions.

Case study: Xen, a VMM based on Para virtualization

 Xen is a VMM or hypervisor developed by the Computing Laboratory at the

University of Cambridge, United Kingdom, in 2003. Since 2010 Xen has been free

software, developed by the community of users and licensed under the GNU

General Public License (GPLv2). Several operating systems, including Linux,

Minix, NetBSD, FreeBSD, NetWare, and OZONE, can operate as paravirtualized

Xen guest operating systems running on x86, x86-64, Itanium, and ARM

architectures

A VMM capable of scaling to about 100 VMs running standard applications and

services without any modifications to the application binary interface (ABI). Fully

aware that the x86 architecture does not support efficiently full virtualization, the

designers of Xen opted for para virtualization.

FIGURE 5.6

Xen for the x86 architecture. In the original Xen implementation [41] a guest OS

could be XenoLinix, XenoBSD, or XenoXP. The management OS dedicated to the

execution of Xen control functions and privileged instructions resides in Dom0;

guest operating systems and applications reside in DomU.

x86 hardware

guest OS and address spaces for applications running under this guest OS. Each

domain runs on a virtual x86 CPU. Dom0 is dedicated to the execution of Xen

control functions and privileged instructions, and DomU is a user domain (see

Figure 5.6).

The most important aspects of the Xen para virtualization for virtual memory

management, CPU multiplexing, and I/O device management are summarized in

Table 5.2 [41]. Efficient management of the translation look-aside buffer (TLB), a

cache for page table entries, requires either the ability to identify the OS and the

address space of every entry or to allow software management of the TLB.

Unfortunately, the x86 architecture does not support either the tagging of TLB

entries or the software management of the TLB. As a result, address space

switching, when the VMM activates a different OS, requires a complete TLB flush.

This has a negative impact on performance.

The solution that was adopted was to load Xen in a 64 MB segment at the top of

each address space and delegate the management of hardware page tables to the

guest OS with minimal intervention from Xen. The 64 MB region occupied by Xen

at the top of every address space is not accessible or not remappable by the guest

OS. When a new address space is created, the guest OS allocates and initializes a

page from its own memory, registers it with Xen, and relinquishes control of the

write operations to the VMM. Thus, a guest OS could only map pages it owns. On

the other hand, it has the ability to batch multiple page-update requests to improve

performance. A similar strategy is used for segmentation.

Applications make system calls using the so-called hypercalls processed by Xen.

Privileged instruc- tions issued by a guest OS are paravirtualized and must be

validated by Xen. When a guest OS attempts to execute a privileged instruction

directly, the instruction fails silently.

Memory is statically partitioned between domains to provide strong isolation. To

adjust domain memory, XenoLinux implements a balloon driver, which passes

pages between Xen and its own page allocator. For the sake of efficiency, page

faults are handled directly by the guest OS.

Table 5.2 Paravirtualization strategies for virtual memory management, CPU multiplexing, and I/O devices

for the original x86 Xen implementation.

Function Strategy

Paging A domain may be allocated discontinuous pages. A guest OS has direct access to page tables

and handles page faults directly for efficiency. Page table updates are batched for

performance and validated by Xen for safety.

Memory Memory is statically partitioned between domains to provide strong isolation.

XenoLinux implements a balloon driver to adjust domain memory.

Protection A guest OS runs at a lower priority level, in ring 1, while Xen runs in ring 0.

Exceptions A guest OS must register with Xen a description table with the addresses of exception handlers

previously validated. Exception handlers other than the page fault handler are identical to x 86

native exception handlers.

System calls To increase efficiency, a guest OS must install a “fast” handler to allow system calls from an

application to the guest OS and avoid indirection through Xen.

Interrupts A lightweight event system replaces hardware interrupts. Synchronous system calls from a

domain to Xen use hypercalls, and notifications are delivered using the asynchronous event

system.

Multiplexing A guest OS may run multiple applications.

Time Each guest OS has a timer interface and is aware of “real” and “virtual” time.

Network and Data is transferred using asynchronous I/O rings. A ring is a circular queue of descriptors I/O

devices allocated by a domain and accessible within Xen.

Disk access Only Dom0 has direct access to IDE and SCSI disks. All other domains access persistent storage

through the virtual block device (VBD) abstraction.

XenStore is a Dom0 process that supports a system-wide registry and naming

service. It is imple- mented as a hierarchical key-value storage; a watch function of

the process informs listeners of changes to the key in storage to which they have

subscribed. XenStore communicates with guest VMs via shared memory using

Dom0 privileges rather than grant tables.

The Toolstack is another Dom0 component responsible for creating, destroying,

and managing the resources and privileges of VMs. To create a new VM a user

provides a configuration file describing memory and CPU allocations as well as

device configuration.Then the Toolstack parses this file and writes this information

in the XenStore. Toolstack takes advantage of Dom0 privileges to map guest

memory, to load a kernel and virtual BIOS, and to set up initial communication

channels with the XenStore and with the virtual console when a new VM is created

Xen defines abstractions for networking and I/O devices. Split drivers have a front-

end in the DomU and a back-end in Dom0; the two communicate via a ring in

shared memory. Xen enforces access control for the shared memory and passes

synchronization signals. Access control lists (ACLs) are stored in the form of grant

tables, with permissions set by the owner of the memory.

Data for I/O and network operations move vertically through the system very

efficiently using a set of I/O rings (see Figure 5.7). A ring is a circular queue of

descriptors allocated by a domain and accessible within Xen. Descriptors do not

contain data; the data buffers are allocated off-band by the guest OS. Memory

committed for I/O and network operations is supplied in a manner designed to

avoid “cross-talk,” and the I/O buffers holding the data are protected by preventing

page faults of the corresponding page frame

Each domain has one or more virtual network interfaces (VIFs) that support the

functionality of a network interface card. A VIF is attached to a virtual firewall-

router (VFR). Two rings of buffer descriptors, one for packet sending and one for

packet receiving, are supported. To transmit a packet, a guest OS enqueues a buffer

descriptor to the send ring, then Xen copies the descriptor and checks safety and

finally copies only the packet header, notthe payload, and executes the

matching rules

The rules of the form (< pattern>, <action>) require the action to be executed if the

pattern is matched by the information in the packet header. The rules can be added

or removed by Dom0; they ensure the demultiplexing of packets based on the

destination IP address and port and, at the same time, prevent spoofing of the

source IP address. Dom0 is the only one allowed to directly access the physical

IDE (Integrated Drive Electronics) or SCSI (Small Computer System Interface)

disks. All domains other than Dom0 access persistent storage through a virtual

block device (VBD) abstraction created and managed under the control of Dom0.

Xen includes a device emulator, Qemu, to support unmodified commodity

operating systems. Qemu emulates a DMA8 and can map any page of the memory

in a DomU. Each VM has its own instance of Qemu that can run either as a Dom0

process or as a process of the VM.

An analysis of VM performance for I/O-bound applications under Xen is reported

in [298]. Two Apache Web servers, each under a different VM, share the same

server running Xen. The workload generator sends requests for files of fixed size

ranging from 1 KB to 100 KB. When the file size increases from 1 KB to 10 KB

and to 100 KB, the CPU utilization, throughput, data rate, and response time are,

respectively: (97.5% 70.44% 44.4%), (1,900 1,104 112) requests/s, (2,018 11,048

11,208) KBps,and (1.52 2.36 2.08) msec. From the first group of results we see

that for files 10 KB or larger the system is I/O bound; the second set of results

shows that the throughput measured in requests/s decreases by less than 50% when

the system becomes I/O bound, but the data rate increases by a factor of five over

the same range. The variation of the response time is quite small; it increases about

10% when the file size increases by two orders of magnitude.

Optimization of network virtualization in Xen 2.0

A virtual machine monitor introduces a significant network communication

overhead. For example, it is reported that the CPU utilization of a VMware

Workstation 2.0 system running Linux 2.2.17 was 5 to 6 times higher than that of

the native system (Linux 2.2.17) in saturating a 100 Mbps network [338].

In other words, handling the same amount of traffic as the native system to saturate

the network, the VMM executes a much larger number of instructions – 5 to 6

times larger.

Similar overheads are reported for other VMMs and, in particular, for Xen 2.0 . To

under- stand the sources of the network overhead, we examine the basic network

architecture of Xen [see Figure 5.8(a)]. Recall that privileged operations, including

I/O, are executed by Dom0 on behalf of a guest operating system. In this context

we shall refer to it as the driver domain called to execute networking operations on

behalf of the guest domain. The driver domain uses the native Linux driver for the

network interface controller, which in turn communicates with the physical NIC,

also called the network adapter. Recall from Section 5.8 that the guest domain

communicates with the driver domain through an I/O channel; more precisely, the

guest OS in the guest domain uses a virtual interface to send/receive data to/from

the back-end interface in the driver domain.

Recall that a bridge in a LAN uses broadcast to identify the MAC address of a

destination system. Once this address is identified, it is added to a table. When the

next packet for the same destination arrives, the bridge uses the link layer protocol

to send the packet to the proper MAC address rather than broadcast it. The bridge

in the driver domain performs a multiplexing/demultiplexing function; packets

received from the NIC have to be demultiplexed and sent to different VMs running

under the VMM.

Table 5.3 shows the ultimate effect of this longer processing chain for the Xen

VMM as well as the effect of optimizations [242]. The receiving and sending rates

from a guest domain are roughly 30% and 20%, respectively, of the corresponding

rates of a native Linux application. Packet multiplexing/

(a) (b)

FIGURE 5.8

Xen network architecture. (a) The original architecture. (b) The optimized

architecture.

Xen VMM
Xen VMM

Table 5.3 shows the ultimate effect of this longer processing chain for the Xen

VMM as well as the effect of optimizations [242]. The receiving and sending rates

from a guest domain are roughly 30% and 20%, respectively, of the corresponding

rates of a native Linux application. Packet multiplexing/ demultiplexing accounts

for about 40% and 30% of the communication overhead for the incoming traffic

and for the outgoing traffic, respectively.

Table 5.3 A comparison of send and receive data rates for a native Linux system, the Xen driver domain, an

original Xen guest domain, and an optimized Xen guest domain.

System Receive Data Rate (Mbps) Send Data Rate (MBPS)

Linux 2,508 3,760

Xen driver 1,728 3,760

Xen guest 820 750

Optimized Xen guest 970 3,310

The Xen network optimization discussed in [242] covers optimization of (i) the

virtual interface;(ii) the I/O channel; and (iii) the virtual memory. The effects of

these optimizations are significant for the send data rate from the optimized Xen

guest domain, an increase from 750 to 3, 310 Mbps, and rather modest for the

receive data rate, 970 versus 820 Mbps.

Next we examine briefly each optimization area, starting with the virtual

interface. There is a tradeoff between generality and flexibility on one hand and

performance on the other hand. The original virtual network interface provides the

guest domain with the abstraction of a simple low-level network interface

supporting sending and receiving primitives. This design supports a wide range of

physical devices attached to the driver domain but does not take advantage of the

capabilities of some physical NICs such as checksum offload (e.g., TSO12) and

scatter-gather DMA support.13 These features are supported by the high-level

virtual interface of the optimized system

The next target of the optimization effort is the communication between the

guest domain and the driver domain. Rather than copying a data buffer holding

a packet, each packet is allocated in a new page and then the physical page

containing the packet is remapped into the target domain. For example, when a

packet is received, the physical page is remapped to the guest domain. The

optimization is based on the observation that there is no need to remap the entire

packet; for example, when sending a packet, the network bridge needs to know

only the MAC header of the packet. As a result, the optimized implementation is

based on an “out-of-band” channel used by the guest domain to provide the bridge

with the packet MAC header. This strategy contributed to a better than four times

increase in the send data rate compared with the non-optimized version

The third optimization covers virtual memory. Virtual memory in Xen 2.0 takes

advantage of the superpage and global page-mapping hardware features available

on Pentium and Pentium Pro proces- sors. A superpage increases the granularity of

the dynamic address translation; a superpage entry covers 1, 024 pages of physical

memory, and the address translation mechanism maps a set of contiguous pages to

a set of contiguous physical pages. This helps reduce the number of TLB misses.

Obviously, all pages of a superpage belong to the same guest OS. When new

processes are created, the guest OS must allocate read-only pages for the page

tables of the address spaces running under the guest OS, and that forces the system

to use traditional page mapping rather than superpage mapping. The optimized

version uses a special memory allocator to avoid this problem.

VBLADES: paravirtualization targeting an x86-64 Itanium processor

To understand the impact of computer architecture on the ability to efficiently

virtualize a given archi- tecture, we discuss some of the findings of the vBlades

project at HP-Laboratories [228]. The goal of the vBlades project was to create a

VMM for the Itanium family of IA64 Intel processors,14 capable of supporting the

execution of multiple operating systems in isolated protection domains with

security and privacy enforced by the hardware. The VMM was also expected to

support optimal server utilization and allow comprehensive measurement and

monitoring for detailed performance analysis.

We first review the features of the Itanium processor that are important for

virtualization, starting with the observation that the hardware supports four

privilege rings, PL0, PL1, PL2, and PL3. Privileged instructions can only be

executed by the kernel running at level PL0, whereas applications run at level PL3

and can only execute nonprivileged instructions; PL2 and PL4 rings are generally

not used. The VMM uses ring compression and runs itself at PL0 and PL1 while

forcing a guest OS to run at PL2. A first problem, called privilege leaking, is that

several nonprivileged instructions allow an application to determine the current

privilege level (CPL); thus, a guest OS may not accept to boot or run or may itself

attempt to make use of all four privilege rings.

Itanium was selected because of its multiple functional units and multithreading

support. The Itanium processor has 30 functional units: six general-purpose ALUs,

two integer units, one shift unit, four data cache units, six multimedia units, two

parallel shift units, one parallel multiply, one population count, three branch units,

two 82-bit floating-point multiply-accumulate units, and two SIMD floating-point

multiply-accumulate units. A 128-bit instruction word contains three instructions;

the fetch mechanism can read up to two instruction words per clock from the L1

cache into the pipeline. Each unit can execute a particular subset of the instruction

set.

The Itanium processor supports isolation of the address spaces of different

processes with eight privileged region registers. The Processor Abstraction Layer

(PAL) firmware allows the caller to set the values in the region register. The VMM

intercepts the privileged instruction issued by the guest OS to its PAL and

partitions the set of address spaces among the guest OSs to ensure isolation. Each

guest is limited to 218 address spaces.

The hardware has an IVA register to maintain the address of the interruption vector

table. The entries in this table control both the interrupt delivery and the interrupt

state collection. Different types of interrupts activate different interrupt handlers

pointed from this table, provided that the particular interrupt is not disabled. Each

guest OS maintains its own version of this vector table and has its own IVA

register. The hypervisor uses the guest OS IVA register to give control to the guest

interrupt handler when an interrupt occurs.

First, let’s discuss CPU virtualization. When a guest OS attempts to execute a

privileged instruction, the VMM traps and emulates the instruction.There is a slight

complication related to the fact that the Itanium does not have an instruction

register (IR) and the VMM has to use state information to determine whether an

instruction is privileged. Another complication is caused by the register stack

engine (RSE), which operates concurrently with the processor and may attempt to

access memory (load or store) and generate a page fault. Normally, the problem is

solved by setting up a bit indicating that the fault is due to RSE and, at the same

time, the RSE operations are disabled. The handling of this problem by the VMM

is more intricate.

A number of privileged-sensitive instructions behave differently as a function of

the privilege level. The VMM replaces each one of them with a privileged

instruction during the dynamic transformation of the instruction stream. Among the

instructions in this category are:

•cover, which saves stack information into a privileged register. The VMM

replaces it with a break.b instruction.

•thash and ttag, which access data from privileged virtual memory control

structures and have two registers as arguments. The VMM takes advantage of the

fact that an illegal read returns a zero and an illegal write to a register in the range

32 to 127 is trapped and translates these instructions as:

thash Rx=Ry –> tpa Rx=R(y+64) and ttag Rx=Ry –> tak Rx=R(y+64), where 0 ™

y ™ 64.

•Access to performance data from performance data registers is controlled by a

bit in the processor status register with the PSR.sp instruction.

Memory virtualization is guided by the realization that a VMM should not be

involved in most memory read and write operations to prevent a significant

degradation of performance, but at the same time the VMM should exercise tight

control and prevent a guest OS from acting maliciously. The vBlades VMM does

not allow a guest OS to access the memory directly. It inserts an additional layer of

indirection called metaphysical addressing between virtual and real addressing. A

guest OS is placed in metaphysical addressing mode. If the address is virtual, the

VMM first checks to see whether the guest OS is allowed to access that address

and, if it is, it provides the regular address translation. If the address is physical the

VMM is not involved. The hardware distinguishes between virtual and real

addresses using bits in the processor status register.

A performance comparison of virtual machines

We have seen that a VMM such as Xen introduces additional overhead and

negatively affects performance. The topic of this section is a quantitative analysis

of the performance of VMs. We compare the performance of two virtualization

techniques with a standard operating system: a plain-vanilla Linux referred to as

“the base” system. The two VM systems are Xen, based on paravirtualization, and

OpenVZ .

First we take a closer look at OpenVZ, a system based on OS-level virtualization.

OpenVZ uses a single patched Linux kernel. The guest operating systems in

different containers15 may be different distributions but must use the same Linux

kernel version that the host uses. The lack of flexibility of the approach for

virtualization in OpenVZ is compensated by lower overhead.

The memory allocation in OpenVZ is more flexible than in the case of

paravirtualization; memory not used in one virtual environment can be used by

others. The system uses a common file system. Each virtual environment is a

directory of files isolated using chroot. To start a new virtual machine, one needs

to copy the files from one directory to another, create a config file for the virtual

machine, and launch the VM.

OpenVZ has a two-level scheduler: At the first level, the fair-share scheduler

allocates CPU time slices to containers based on cpuunits values; the second level

is a standard Linux scheduler that decides what process to run in that container.

The I/O scheduler also has two levels; each container has an I/O priority, and the

scheduler distributes the available I/O bandwidth according to the priorities.

There is ample experimental evidence that the load placed on system resources by

a single application varies significantly in time. A time series displaying CPU

consumption of a single application in time clearly illustrates this fact. As we all

know, this phenomenon justifies the need for CPU multiplexing among

threads/processes supported by an operating system. The concept of application

and server consolidation is an extension of the idea of creating an aggregate load

consisting of several applications and aggregating a set of servers to accommodate

this load. Indeed, the peak resource requirements of individual applications are

very unlikely to be synchronized, and the aggregate load tends to lead to a better

average resource utilization.

 (a)

 (c)

reports the counters that allow the estimation of (i) the CPU time used by a binary;

(ii) the number of L2-cache misses; and (iii) the number of instructions executed

by a binary.

The experimental setups for three different experiments are shown in Figure 5.9 .

In the first group of experiments the two tiers of the application, the Web and the

DB, run on a single server for the Linux, the OpenVZ, and the Xen systems. When

the workload increases from 500 to 800 threads, the throughput increases linearly

with the workload. The response time increases only slightly for the base system

and for the OpenVZ system, whereas it increases 600% for the Xen system. For

800 threads the response time of the Xen system is four times longer than the time

for OpenVZ. The CPU consumption grows linearly with the load in all three

systems; the DB consumption represents only 1–4% of it.

For a given workload, the Web-tier CPU consumption for the OpenVZ system is

close to that of the base system and is about half of that for the Xen system. The

performance analysis tool shows that the OpenVZ execution has two times more

L2-cache misses than the base system, whereas the Xen Dom0 has 2.5 times more

and the Xen application domain has 9 times more. Recall that the base system and

the OpenVZ run a Linux OS and the sources of cache misses can be compared

directly, whereas Xen runs a modified Linux kernel. For the Xen-based system the

procedure hypervisor _callback, invoked when an event occurs, and the procedure

evtchn_do_upcall, invoked to process an event, are responsible for 32% and 44%,

respectively, of the L2-cache misses. The first figure refers to the copying from

user to system buffers and the second to copying from system buffers to the user

space.

The second group of experiments uses two servers, one for the Web and the other

for the DB application, for each one of the three systems. When the load increases

from 500 to 800 threads the throughput increases linearly with the workload. The

response time of the Xen system increases only 114%, compared with 600%

reported for the first experiments. The CPU time of the base system, the OpenVZ

system, the Xen Dom0, and the User Domain are similar for the Web application

For the DB application, the CPU time of the OpenVZ system is twice as long as

that of the base system, whereas Dom0 and the User Domain require CPU times of

1.1 and 2.5 times longer than the base system.

The third group of experiments uses two servers, one for the Web and the other for

the DB application, for each one of the three systems but runs four instances of the

Web and the DB application on the two servers. The throughput increases linearly

with the workload for the range used in the previous two experiments, from 500 to

800 threads. The response time remains relatively constant for OpenVZ and

increases 5 times for Xen.

The main conclusion drawn from these experiments is that the virtualization

overhead of Xen is con- siderably higher than that of OpenVZ and that this is due

primarily to L2-cache misses. The performance degradation when the workload

increases is also noticeable for Xen. Another important conclusion is that hosting

multiple tiers of the same application on the same server is not an optimal solution.

The darker side of virtualization

Can virtualization empower the creators of malware16 to carry out their

mischievous activities with impunity and with minimal danger of being detected?

How difficult is it to implement such a system?

It is well understood that in a layered structure a defense mechanism at some layer

can be disabled by malware running a layer below it. Thus, the winner in the

continuous struggle between the attackers and the defenders of a computing system

is the one in control of the lowest layer of the software stack – the one that controls

the hardware (see Figure 5.10).

Recall that a VMM allows a guest operating system to run on virtual hardware.

The VMM offers to the guest operating systems a hardware abstraction and

mediates its access to the physical hardware. We argued that a VMM is simpler

and more compact than a traditional operating system; thus, it is more secure. But

what if the VMM itself is forced to run above another software layer so that it is

prevented from exercising direct control of the physical hardware

it is feasible to insert a “rogue VMM” between the physical hardware and an

operating system. Such a rogue VMM is called a virtual machine-based rootkit

(VMBR). The term rootkit refers to malware with privileged access to a system.

The name comes from root, the most privileged account on a Unix system, and kit,

a set of software components.

It is also feasible to insert the VMBR between the physical hardware and a

“legitimate VMM.” As a virtual machine running under a legitimate VMM sees

virtual hardware, the guest OS will not notice any change of the environment; so

the only trick is to present the legitimate VMM with a hardware abstraction, rather

than allow it to run on the physical hardware

(a) (b)

FIGURE 5.10

The insertion of a VIRTUAL machine-based rootkit (VMBR) as the lowest layer

of the software stack running on the physical hardware. (a) Below an operating

system; (b) Below a legitimate virtual machine monitor. The VMBR enables a

malicious OS to run surreptitiously and makes it invisible to the genuine or the

guest OS and to the application.

The only way for a VMBR to take control of a system is to modify the boot

sequence and to first load the malware and only then load the legitimate VMM or

the operating system. This is only possible if the attacker has root privileges. Once

the VMBR is loaded it must also store its image on the persistent storage.

The VMBR can enable a separate malicious OS to run surreptitiously and make

this malicious OS invisible to the guest OS and to the application running under it.

Under the protection of the VMBR, the malicious OS could (i) observe the data,

the events, or the state of the target system;(ii) run services such as spam relays or

distributed denial-of-service attacks; or (iii) interfere with the application

Software fault isolation

Software fault isolation (SFI) offers a technical solution for sandboxing binary

code of questionable provenance that can affect security in cloud computing.

Insecure and tampered VM images are one of the security threats because binary

codes of questionable provenance for native plug-ins to a Web browser can pose a

security threat when Web browsers are used to access cloud services.

ARM and 64-bit x86. ARM is a load/store architecture with 32-bit instruction and

16 general-purpose registers. It tends to avoid multicycle instructions, and it shares

many RISC architecture features, but (a) it supports a “thumb” mode with 16-bit

instruction extensions; (b) it has complex addressing modes and a complex barrel

shifter; and (c) condition codes can be used to predicate most instructions. In the

x86-64 architecture, general-purpose registers are extended to 64 bits.

This SFI implementation is based on the previous work of the same authors on

Google Native Client (NC) and assumes an execution model in which a trusted

run-time shares a process with an untrusted multithreaded plug-in. The rules for

binary code generation of the untrusted plug-in are:(i) the code section is read-only

and is statically linked; (ii) the code is divided into 32-byte bundles, and no

instruction or pseudo-instruction crosses the bundle boundary; (iii) the disassembly

starting at the bundle boundary reaches all valid instructions; and (iv) all indirect

flow-control instructions are replaced by pseudo-instructions that ensure address

alignment to bundle boundaries.

Table 5.4 The features of the SFI for the native client on the x86-32, x86-64, and ARM. ILP stands for

instruction-level parallelism.

Feature/Architecture x86-32 x86-64 ARM

Addressable memory 1 GB 4 GB 1 GB

Virtual base address Any 44 GB 0

Data model ILP 32 ILP 32 ILP 32

Reserved registers 0 of 8 1 of 16 0 of 16

Data address mask None Implicit in result width Explicit instruction

Control address mask Explicit instruction Explicit instruction Explicit instruction

Bundle size (bytes) 32 32 16

Data in text segment Forbidden Forbidden Allowed

Safe address registers All RSP, RBP SP

Out-of-sandbox store Trap Wraps mod 4 GB No effect

Out-of-sandbox jump Trap Wraps mod 4 GB Wraps mod 1 GB

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

RAJAMPET
(Autonomous)

Department of Artificial Intelligence & Machine Learning

Lecture Notes

Name of the Faculty: Dr.T.Harikrishna Class: IVYear I Semester

Branch and Section: AIML Course code: 20A57GT

Name of the Course: Cloud Computing

 Unit-IV

Unit-4

Cloud Resource Management and Scheduling

Resource management is a core function of any man-made system. It affects the

three basic criteria for the evaluation of a system: performance, functionality, and

cost. An inefficient resource management has a direct negative effect on

performance and cost and an indirect effect on the functionality of a system.

Indeed, some functions provided by the system may become too expensive or may

be avoided due to poor performance.

A cloud is a complex system with a very large number of shared resources subject

to unpredictable requests and affected by external events it cannot control. Cloud

resource management requires complex policies and decisions for multi-objective

optimization. Cloud resource management is extremely challenging because of the

complexity of the system, which makes it impossible to have accurate global state

information, and because of the unpredictable interactions with the environment.

The strategies for resource management associated with the three cloud delivery

models, IaaS, PaaS, and SaaS, differ from one another. In all cases the cloud

service providers are faced with large, fluctuating loads that challenge the claim of

cloud elasticity. In some cases, when a spike can be predicted, the resources can be

provisioned in advance, e.g., for Web services subject to seasonal spikes. For an

unplanned spike, the situation is slightly more complicated. Auto Scaling can be

used for unplanned spike loads, provided that (a) there is a pool of resources that

can be released or allocated on demand and (b) there is a monitoring system that

allows a control loop to decide in real time to reallocate resources. Auto Scaling is

supported by PaaS services such as Google App Engine.

Policies and mechanisms for resource management

A policy typically refers to the principal guiding decisions, whereas mechanisms

represent the means to implement policies. Separation of policies from

mechanisms is a guiding principle in computer science. Butler Lampson [208] and

Per Brinch Hansen [154] offer solid arguments for this separation in the context of

operating system design.

Cloud resource management policies can be loosely grouped into five classes:

1. Admission control.

2. Capacity allocation.

3. Load balancing.

4. Energy optimization.

5. Quality-of-service (QoS) guarantees.

The explicit goal of an admission control policy is to prevent the system from

accepting workloads in violation of high-level system policies; for example, a

system may not accept an additional workload that would prevent it from

completing work already in progress or contracted. Limiting the workload requires

some knowledge of the global state of the system. In a dynamic system such

knowledge, when available, is at best obsolete. Capacity allocation means to

allocate resources for individual instances; an instance is an activation of a service.

Locating resources subject to multiple global optimization constraints requires a

search of a very large search space when the state of individual systems changes

rapidly.

Load balancing and energy optimization can be done locally, but global load-

balancing and energy optimization policies encounter the same difficulties as the

one we have already discussed. Load bal-ancing and energy optimization are

correlated and affect the cost of providing the services.

The common meaning of the term load balancing is that of evenly distributing the

load to a set of servers. For example, consider the case of four identical servers, A,

B, C , and D, whose relative loads are 80%, 60%, 40%, and 20%, respectively, of

their capacity. As a result of perfect load balancing, all servers would end with the

same load 50% of each server’s capacity. In cloud computing a critical goal is

minimizing the cost of providing the service and, in particular, minimizing the

energy consumption. This leads to a different meaning of the term load balancing;

instead of having the load evenly distributed among all servers, we want to

concentrate it and use the smallest number of servers while switching the others to

standby mode, a state in which a server uses less energy.

Table 6.1 The normalized performance and energy consumption function of the processor speed.

The performance decreases at a lower rate than does the energy when the clock rate decreases.

CPU Speed (GHz) Normalized Energy (%) Normalized Performance (%)

0.6 0.44 0.61

0.8 0.48 0.70

1.0 0.52 0.79

1.2 0.58 0.81

1.4 0.62 0.88

1.6 0.70 0.90

1.8 0.82 0.95

2.0 0.90 0.99

2.2 1.00 1.00

Virtually all optimal – or near-optimal – mechanisms to address the five classes of

policies do not scale up and typically target a single aspect of resource

management, e.g., admission control, but ignore energy conservation. Many

require complex computations that cannot be done effectively in the time available

to respond.

Allocation techniques in computer clouds must be based on a disciplined approach

rather than ad hoc methods. The four basic mechanisms for the implementation of

resource management policies are:

Control theory. Control theory uses the feedback to guarantee system stability and

predict transient behavior, but can be used only to predict local rather than global

behavior. Kalman filters have been used for unrealistically simplified models.

•Machine learning. A major advantage of machine learning techniques is that they

do not need a performance model of the system.This technique could be applied to

coordination of several autonomic system managers;

•Utility-based.Utility-based approaches require a performance model and a

mechanism to correlate user-level performance with cost, as discussed in.

•Market-oriented/economic mechanisms. Such mechanisms do not require a

model of the system, e.g., combinatorial auctions for bundles of resources

discussed in.

Stability of a two-level resource allocation architecture

Two-level resource allocation architecture based on control theory concepts for the

entire cloud. The automatic resource management is based on two levels of

controllers, one for the service provider and one for the application, see Figure 6.2.

 The main components of a control system are the inputs, the control system

components, and the outputs. The inputs in such models are the offered workload

and the policies for admission control, the capacity allocation, the load balancing,

the energy optimization, and the QoS guarantees in the cloud. The system

components are sensors used to estimate relevant measures of performance and

controllers that implement various policies; the output is the resource allocations to

the individual applications.

The controllers use the feedback provided by sensors to stabilize the system;

stability is related to the change of the output. If the change is too large, the system

may become unstable. In our context the system could experience thrashing, the

amount of useful time dedicated to the execution of applications becomes

increasingly small and most of the system resources are occupied by management

functions.

There are three main sources of instability in any control system:

1. The delay in getting the system reaction after a control action.

2. The granularity of the control, the fact that a small change enacted by the

controllers leads to very large changes of the output.

3. Oscillations, which occur when the changes of the input are too large and the

control is too weak, such that the changes of the input propagate directly to the

output.

Two types of policies are used in autonomic systems: (i) threshold-based policies

and (ii) sequential decision policies based on Markovian decision models.In the

first case,upper and lower bounds on performance trigger adaptation through

resource reallocation. Such policies are simple and intuitive but require setting per-

application thresholds.

FIGURE 6.2

A two-level control architecture. Application controllers and cloud controllers

work in concert.

Adjustments should be carried out only after the performance of the system has

stabilized. The controller should measure the time for an application to stabilize

and adapt to the manner in which the controlled system reacts.

If upper and lower thresholds are set, instability occurs when they are too close to

one another if the variations of the workload are large enough and the time

required to adapt does not allow the system to stabilize. The actions consist of

allocation/deallocation of one or more virtual machines; sometimes

allocation/deallocation of a single VM required by one of the thresholds may cause

crossing of the other threshold and this may represent, another source of instability.

Feedback control based on dynamic thresholds

The elements involved in a control system are sensors, monitors, and actuators.

The sensors measure the parameter(s) of interest, then transmit the measured

values to a monitor, which determines whether the system behavior must be

changed, and, if so, it requests that the actuators carry out the necessary actions.

Often the parameter used for admission control policy is the current system load;

when a threshold, e.g., 80%, is reached, the cloud stops accepting additional load

In practice, the implementation of such a policy is challenging or outright

infeasible. First, due to the very large number of servers and to the fact that the

load changes rapidly in time, the estimation of the current system load is likely to

be inaccurate. Second, the ratio of average to maximal resource requirements of

individual users specified in a service-level agreement is typically very high. Once

an agreement is in place, user demands must be satisfied; user requests for

additional resources within the SLA limits cannot be denied.

Thresholds. A threshold is the value of a parameter related to the state of a system

that triggers a change in the system behavior. Thresholds are used in control theory

to keep critical parameters of a system in a predefined range. The threshold could

be static, defined once and for all, or it could be dynamic. A dynamic threshold

could be based on an average of measurements carried out over a time interval, a

so-called integral control. The dynamic threshold could also be a function of the

values of multiple parameters at a given time or a mix of the two.

To maintain the system parameters in a given range, a high and a low threshold are

often defined. The two thresholds determine different actions; for example, a high

threshold could force the system to limit its activities and a low threshold could

encourage additional activities. Control granularity refers to the level of detail of

the information used to control the system. Fine control means that very detailed

information about the parameters controlling the system state is used, whereas

coarse control means that the accuracy of these parameters is traded for the

efficiency of implementation.

Proportional Thresholding.Application of these ideas to cloud computing, in

particular to the IaaS delivery model, and a strategy for resource management

called proportional thresholding are discussed in . The questions addressed are:

•Is it beneficial to have two types of controllers, (1) application controllers that

determine whether additional resources are needed and (2) cloud controllers that

arbitrate requests for resources and allocate the physical resources?

•Is it feasible to consider fine control? Is course control more adequate in a cloud

computing environment.

Are dynamic thresholds based on time averages better than static ones?

• Is it better to have a high and a low threshold, or it is sufficient to define only a

high threshold

The first two questions are related to one another. It seems more appropriate to

have two controllers, one with knowledge of the application and one that’s aware

of the state of the cloud. In this case a coarse control is more adequate for many

reasons.

The essence of the proportional thresholding is captured by the following

algorithm:

1. Compute the integral value of the high and the low thresholds as averages of the

maximum and, respectively, the minimum of the processor utilization over the

process history.

2. Request additional VMs when the average value of the CPU utilization over the

current time slice exceeds the high threshold.

3. Release a VM when the average value of the CPU utilization over the current

time slice falls below the low threshold.

Coordination of specialized autonomic performance managers

 Virtually all modern processors support dynamic voltage scaling (DVS) as a

mechanism for energy saving .Indeed, the energy dissipation scales quadratically

with the supply voltage. The power management controls the CPU frequency and,

thus, the rate of instruction execution. For some compute-intensive workloads the

performance decreases linearly with the CPU clock frequency, whereas for others

the effect of lower clock frequency is less noticeable or nonexistent. The clock

frequency of individual blades/servers is controlled by a power manager, typically

implemented in the firmware; it adjusts the clock frequency several times a second

The approach to coordinating power and performance management in is based on

several ideas: • Use a join t utility function for power and performance. The joint

performance-power utility function, Upp(R, P), is a function of the response time,

R, and the power, P, and it can be of the form.

 Upp(R, P) =U(R)− × P or Upp(R, P) =U(R) P

With U(R) the utility unction based on response time only and a parameter to

weight the influence of the two factors, response time and power.

Identify a minimal set of parameters to be exchanged between the two managers.

• Set up a power cap for individual systems based on the utility-optimized power

management policy. • Use a standard performance manager modified only to

accept input from the power manager regarding the frequency determined

according to the power management policy. The power manager consists of Tcl

(Tool Command Language) and C programs to compute the per-server (per-blade)

powercapsandsendthemviaIPMI5 to the firmware controlling the blade power. The

power manager and the performance manager interact, but no negotiation between

the two agents is involved.

Use standard software systems. For example, use the WebSphere Extended

Deployment (WXD), middleware that supports setting performance targets for

individual Web applications and for the monitor response time, and periodically re

compute the resource allocation parameters to meet the targets set. Use the Wide-

Spectrum Stress Tool from the IBM Web Services Toolkit as a workload

generator.

For practical reasons the utility function was expressed interms of nc, the number

of clients, and pκ, the power cap, as in

U!(pκ,nc) =Upp(R(pκ,nc), P(pκ,nc)).

The optimal powercap popt κ is a function of the workload intensity expressed by

the number of clients,

 nc, popt κ (nc) =argmaxU!(pκ,nc).

Storage systems

 A cloud provides the vast amounts of storage and computing cycles demanded by

many applications. The network-centric content model allows a user to access data

stored on a cloud from any device connected to the Internet. Mobile devices with

limited power reserves and local storage take advantage of cloud environments to

store audio and video files. Clouds provide an ideal environment for multimedia

content delivery.

 Storage and processing on the cloud are intimately tied to one another indeed,

sophisticated strategies to reduce the access time and to support real-time

multimedia access are necessary to satisfy the requirements of content delivery. On

the other hand, most cloud applications process very large amounts of data;

effective data replication and storage management strategies are critical to the

computations performed on the cloud.

A new concept, “big data,” reflects the fact that many applications use data sets so

large that they cannot be stored and processed using local resources. The consensus

is that “big data” growth can be viewed as a three-dimensional phenomenon; it

implies an increased volume of data, requires an increased processing speed to

process more data and produce more results, and at the same time it involves a

diversity of data sources and data types.

Applications in many areas of science, including genomics, structural biology,

high-energy physics, astronomy, meteorology, and the study of the environment,

carry out complex analysis of data sets, often of the order of terabytes.1 In 2010,

the four main detectors at the Large Hadron Collider (LHC) produced 13PB of

data; the Sloan Digital Sky Survey (SDSS) collects about 200GB of data per night.

As a result of this increasing appetite for data, file systems such as

Btrfs,XFS,ZFS,exFAT,NTFS,HFS Plus, and ReFS support disk formats with

theoretical volume sizes of several exa bytes.

The evolution of storage technology

 The technological capacity to store information has grown over time at an

accelerated pace.

• 1986: 2.6EB; equivalent to less than one 730MB CD-ROM of data per computer

user.

• 1993: 15.8EB; equivalent to four CD-ROMs per user.

 • 2000: 54.5EB; equivalent to 12 CD-ROMs per user.

• 2007: 295EB; equivalent to almost 61 CD-ROMs per user.

The density of Dynamic Random Access Memory(DRAM)increased from about 1

Gb/in2 in1990 to100 Gb/in2 in2003.The cost of DRAM tumbled from about

$80/MB to less than $1/MB during the same period. In 2010 Samsung announced

the first monolithic, 4gigabit, low-power, double-data-rate (LPDDR2) DRAM

using a 30nm process. These rapid technological advancements have changed the

balance between initial investment in storage devices and system management

costs. Now the cost of storage management is the dominant element of the total

cost of a storage system. This effect favors the centralized storage strategy

supported by a cloud; indeed, a centralized approach can automate some of the

storage management functions, such as replication and backup, and thus reduce

substantially the storage management cost.

 The management of such a large collection of systems poses significant

challenges and requires novel approaches to systems design. Case in point:

Although the early distributed file systems used custom-designed reliable

components, nowadays large-scale systems are built with off the-shelf components.

The emphasis of the design philosophy has shifted from performance at any cost to

reliability at the lowest possible cost. This shift is evident in the evolution of ideas,

from the early distributed file systems of the 1980s,such as the Network File

System(NFS) and the Andrew File System (AFS), to today’s Google File System

(GFS) and the Megastore.

Storage models, file systems, and databases

 A storage model describes the layout of a data structure in physical storage; a data

model captures the most important logical aspects of a datastructure in a database.

The physical storage can be a local disk, a removable media, or storage accessible

via a network.

 Two abstract models of storage are commonly used: cell storage and journal

storage. Cell storage assumes that the storage consists of cell of the same size and

that each object fits exactly in one cell. This model reflects the physical

organization of several storage media; the primary memory of a computer is

organized as an array of memory cells, and a secondary storage device (e.g., a

disk) is organized in sectors or blocks read and written as a unit. read/write

coherence and before-or-after atomicity are two highly desirable properties so fany

storage model and in particular of cell storage.

 Journal storage is a fairly elaborate organization for storing composite objects

such as records consisting of multiple fields. Journal storage consists of a manager

and cell storage, where the entire history of a variable is maintained, rather than

just the current value. The user does not have direct access to the cell storage;

instead the user can request the journal manager to (i) start a new action; (ii) read

the value of a cell; (iii) write the value of a cell; (iv) commit an action; or (v) abort

an action. The journal manager translates user requests to commands sent to the

cell storage: (i) read a cell; (ii) write a cell; (iii) allocate a cell; or (iv) de allocate a

cell.

 An all-or-nothing action first records the action in a log in journal storage and

then installs the change in the cell storage by over writing the previous version of a

data item The log is always kept on nonvolatile storage (e.g., disk) and the

considerably larger cell storage resides typically on nonvolatile memory, but can

be held in memory for real-time access or using a write-through cache.

Many cloud applications must support online transaction processing and have to

guarantee the correctness of the transactions. Transactions consist of multiple

actions; for example, the transfer of funds from one account to another requires

withdrawing funds from one account and crediting it to another. The system may

fail during or after each one of the actions, and steps to ensure correctness must be

taken. Correctness of a transaction means that the result should be guaranteed to be

the same as though the actions were applied one after another, regardless of the

order.

 A file system consists of a collection of directories. Each directory provides

information about a set of files. Today high-performance systems can choose

among three classes of file system: network file systems (NFSs), storage area

networks (SANs), and parallel file systems (PFSs). The NFS is very popular and

has been used for some time, but it does not scale well and has reliability

problems; an NFS server could be a single point of failure.

 SANs offer additional flexibility and allow cloud servers to deal with non-

disruptive changes in the storage configuration. Moreover, the storage in a SAN

can be pooled and then allocated based on the needs of the servers; pooling

requires additional software and hardware support and represents another

advantage of a centralized storage system. A SAN-based implementation of a file

system can be expensive, since each node must have a Fibre Channel adapter to

connect to the network.

Parallel file systems are scalable, are capable of distributing files across a large

number of nodes, and provide a global naming space. In a parallel data system,

several I/O nodes serve data to all computational nodes and include a metadata

server that contains information about the data stored in the I/O nodes. The

interconnection network of a parallel file system could be a SAN. Most cloud

applications do not interact directly with file systems but rather through an

application layer that manages a database. A database is a collection of logically

related records. The software that controls the access to the database is called a

database management system (DBMS). The main functions of a DBMS are to

enforce data integrity, manage data access and concurrency control, and support

recovery after a failure.

A DBMS supports a query language, a dedicated programming language used to

develop database applications. Several database models, including the navigational

model of the 1960s, the relational model of the 1970s, the object-oriented model of

the 1980s, and the NoSQL model of the first decade of the 2000s, reflect the

limitations of the hardware available at the time and the requirements of the most

popular applications of each period.

 These requirements cannot be satisfied simultaneously by existing database

models; for example, relational databases are easy to use for application

development but do not scale well. As its name implies, the NoSQL model does

not support SQL as a query language and may not guarantee the atomicity,

consistency, isolation, durability (ACID) properties of traditional databases.

NoSQL usually guarantees the eventual consistency for transactions limited to a

single data item. The NoSQL model is useful when the structure of the data does

not require a relational model and the amount of data is very large. Several types of

NoSQL database have emerged in the last few years. Based on the way the NoSQL

databases store data, we recognize several types, such as key-value stores, Big

Table implementations, document store databases, and graph databases.

Distributed file systems: The precursors

 The systems covered are the Network File System developed by Sun

Microsystems in 1984, the Andrew File System developed at Carnegie Mellon

University as part of the Andrew project, and the Sprite Network File System

developed by John Osterhout’s group at UC Berkeley as a component of the Unix-

like distributed operating system called Sprite. Other systems developed at about

the same time are Locus [365], Apollo [211], and the Remote File System (RFS)

The main concerns in the design of these systems were scalability, performance,

and security.

A majority of workstations were running under Unix; thus, many design decisions

for the NFS were influenced by the design philosophy of the Unix File System

(UFS). It is not surprising that the NFS designers aimed to: • Provide the same

semantics as a local UFS to ensure compatibility with existing applications.

• Facilitate easy integration into existing UFS.

 • Ensure that the system would be widely used and thus support clients running on

different operating systems.

• Accept a modest performance degradation due to remote access over a network

with a bandwidth of several Mbps.

Before we examine NFS in more detail, we have to analyze three important

characteristics of the Unix File System that enabled the extension from local to

remote file management:

• The layered design provides the necessary flexibility for the file system; layering

allows separation of concerns and minimization of the interaction among the

modules necessary to implement the system. The addition of the vnode layer

allowed the Unix File System to treat local and remote file access uniformly.

• The hierarchical design supports scalability of the file system; indeed, it allows

grouping of files into special files called directories and supports multiple levels of

directories and collections of directories and files, the so-called file systems. The

hierarchical file structure is reflected by the file-naming convention.

• The metadata supports a systematic rather than an ad hoc design philosophy of

the file system. The so called inodes contain information about individual files and

directories. The inodes are kept on persistent media, together with the data.

Metadata includes the file owner, the access rights, the creation time or the time of

the last modification of the file, the file size, and information about the structure of

the file and the persistent storage device cells where data is stored. Metadata also

supports device independence, a very important objective due to the very rapid

pace of storage technology development.

The logical organization of a file reflects the data model – the view of the data

from the perspective of the application. The physical organization reflects the

storage model and describes the manner in which the file is stored on a given

storage medium. The layered design allows UFS to separate concerns for the

physical file structure from the logical one. Recall that a file is a linear array of

cells stored on a persistent storage device. The file pointer identifies a cell used as a

starting point for a read or write operation. This linear array is viewed by an

application as a collection of logical records; the file is stored on a physical device

as a set of physical records, or blocks, of a size dictated by the physical media.

The lower three layers of the UFS hierarchy – the block, the file, and the inode

layer – reflect the physical organization. The block layer allows the system to

locate individual blocks on the physical device; the file layer reflects the

organization of blocks into files; and the inode layer provides the metadata for the

objects (files and directories). The upper three layers – the path name, the absolute

path name, and the symbolic path name layer – reflect the logical organization. The

filename layer mediates between the machine-oriented and the user-oriented views

of the file system (see Figure 8.3).

Several control structures maintained by the kernel of the operating system support

file handling by a running process. These structures are maintained in the user area

of the process address space and can only be accessed in kernel mode. To access a

file, a process must first establish a connection with the file system by opening the

file. At that time a new entry is added to the file description table, and the meta-

information is brought into another control structure, the open file table. A path

specifies the location of a file or directory in a file system; a relative path specifies

this location relative to the current/working directory of the process, whereas a full

path, also called an absolute path, specifies the location of the file independently of

the current directory, typically relative to the root directory. A local file is uniquely

identified by a file descriptor (fd), generally an index in the open file table.

UFS layering

The Network File System is based on the client-server paradigm. The client runs

on the local host while the server is at the site of the remote file system, and they

interact by means of remote procedure calls (RPCs) (see Figure 8.4). The API

interface of the local file system distinguishes file operations on a local file from

the ones on a remote file and, in the latter case, invokes the RPC client. Figure 8.5

shows the API for aUnix File System, with the calls made by the RPC client in

response to API calls issued by a user program for a remote file system as well as

some of the actions carried out by the NFS server in response to an RPC call. NFS

uses a vnode layer to distinguish between operations on local and remote files, as

shown in Figure 8.4.

A remote file is uniquely identified by a file handle (fh) rather than a file descriptor.

The file handle is a 32-byte internal name, a combination of the file system

identification, an inode number, and a generation number. The file handle allows

the system to locate the remote file system and the file on that system; the

generation number allows the system to reuse the inode numbers and ensures

correct semantics when multiple clients operate on the same remote file.

Although many RPC calls, such as read,areidempotent,3 communication failures

could sometimes lead to unexpected behavior. Indeed, if the network fails to

deliver the response to a read RPC, then the call can be repeated without any side

effects. By contrast, when the network fails to deliver the response to the rmdir

RPC, the second call returns an error code to the user if the call was successful the

first time. If the server fails to execute the first call, the second call returns

normally. Note also that there is no close RPC because this action only makes

changes in the process open file structure and does not affect the remote file.

Andrew File System (AFS). AFS is a distributed file system developed in the late

1980s at Carnegie Mellon University (CMU) in collaboration with IBM [250]. The

designers of the system envisioned a very large number of workstations

interconnected with a relatively small number of servers; it was anticipated that

each individual at CMU would have an Andrew workstation, so the system would

connect up to 10,000 workstations. The set of trusted servers in AFS forms a

structure called Vice. The OS on a workstation, 4.2 BSD Unix, intercepts file

system calls and forwards them to a user-level process called Venus, which caches

files from Vice and stores modified copies of files back on the servers they came

from. Reading and writing from/to a file are performed directly on the cached copy

and bypass Venus; only when a file is opened or closed does Venus communicate

with Vice. The emphasis of the AFS design was on performance, security, and

simple management of the file system [170]. To ensure scalability and to reduce

response time, the local disks of the workstations are used as persistent cache. The

master copy of a file residing on one of the servers is updated only when the fileis

modified. This strategy reduces the load placed on the servers and contributes to

better system performance.

Another major objective of the AFS design was improved security. The

communications between clients and servers are encrypted, and all file operations

require secure network connections. When a user signs into a workstation, the

password is used to obtain security tokens from an authentication server. These

tokens are then used every time a file operation requires a secure network

connection. The AFS uses access control lists (ACLs) to allow control sharing of

the data. An ACL specifies the access rights of an individual user or group of users.

A set of tools supports ACL management. Another facet of the effort to reduce

user involvement in file management is location transparency. The files can be

accessed from any location and can be moved automatically or at the request of

system administrators without user involvement and/or inconvenience. The

relatively small number of servers drastically reduces the efforts related to system

administration because operations, such as backups, affect only the servers,

whereas workstations can be added, removed, or moved from one location to

another without administrative intervention.

Sprite Network File System (SFS). SFS is a component of the Sprite network

operating system.SFS supports non-write-through caching of files on the client as

well as the server systems. Processes running on all workstations enjoy the same

semantics for file access as they would if they were run on a single

system.Thisispossibleduetoacacheconsistencymechanismthatflushesportions of the

cache and disables caching for shared files opened for read/write operations.

Caching not only hides the network latency, it also reduces server utilization and

obviously improves performance by reducing response time. A file access request

made by a client process could be satisfied at different levels. First, the request is

directed to the local cache; if it’s not satisfied there, it is passed to the local file

system of the client .If it cannot be satisfied locally then the request is sent to the

remote server. If the request cannot be satisfied by the remote server’s cache,it is

sent to the file system running on the server.

The design decisions for the Sprite system were influenced by the resources

available at a time when a typical work station hada1–2MIPS processor and 4–

14Mbytes of physical memory. The main-memory caches allowed diskless

workstations to be integrated into the system and enabled the development of

unique caching mechanisms and policies for both clients and servers. The results of

a file-intensive benchmark report show that SFS was 30–35% faster than either

NFS or AFS.

The file cache is organized as a collection of 4 KB blocks; a cache block has a

virtual address consisting of a unique file identifier supplied by the server and a

block number in the file. Virtual addressing allows the clients to create new blocks

without the need to communicate with the server. File servers map virtual to

physical disk addresses. Note that the page size of the virtual memory in Sprite is

also 4K. The size of the cache available to an SFS client or a server system

changes dynamically as a function of the needs. This is possible because the Sprite

operating system ensures optimal sharing of the physical memory between file

caching by SFS and virtual memory management.

Thefilesystemandthevirtualmemorymanageseparatesetsofphysicalmemorypagesand

maintain a time of last access for each block or page, respectively. Virtual memory

uses a version of the clock algorithm [254] to implement a least recently used

(LRU) page replacement algorithm, and the file system implements a strict LRU

order, since it knows the time of each read and write operation. Whenever the file

system or the virtual memory management experiences a file cache miss or a page

fault, it compares the age of its oldest cache block or page, respectively, with the

age of the oldest one of the other system; the oldest cache block or page is forced

to release the real memory frame.

An important design decision related to the SFS was to delay write-backs; this

means that a block is first written to cache, and the writing to the disk is delayed

for a time of the order of tens of seconds. This strategy speeds up writing and

avoids writing when the data is discarded before the time to write it to the disk.

The obvious drawback of this policy is that data can be lost in case of a system

failure. Write-through is the alternative to the delayed write-back; it guarantees

reliability because the block is written to the disk as soon as it is available on the

cache, but it increases the time for a write operation.

Most network files ystems guarantee that once a file is closed,the server will have

the newest version on persistent storage.As far as concurrency is concerned,we

distinguish sequential write sharing,when a file cannot be opened simultaneously

for reading and writing by several clients, from concurrent write sharing, when

multiple clients can modify the file at the same time. Sprite allows both modes of

concurrency and delegates the cache consistency to the servers. In case of

concurrent write sharing, the client caching for the file is disabled; all reads and

writes are carried out through the server.

Table 8.1 presents a comparison of caching, writing strategy, and consistency of

NFS, AFS, Sprite, Locus, Apollo, and the Remote File System (RFS).

General Parallel File System

Parallel I/O implies execution of multiple input/output operations concurrently.

Support for parallel I/O is essential to the performance of many applications [236].

Therefore, once distributed file systems became ubiquitous, the natural next step in

the evolution of the file system was to support parallel access. Parallel file systems

allow multiple clients to read and write concurrently from the same file.

Concurrency control is a critical issue for parallel file systems. Several semantics

for handling the shared access are possible. For example, when the clients share the

file pointer, successive reads issued by multiple clients advance the file pointer;

another semantic is to allow each client to have its own file pointer. Early

supercomputers such as the Intel Paragon4 took advantage of parallel file systems

to support applications based on the same program, multiple data (SPMD)

paradigm.

The General Parallel File System (GPFS) [317] was developed at IBM in the early

2000s as a successor to the Tiger Shark multimedia file system [159]. GPFS is a

parallel file system that emulates closely the behavior of a general-purpose POSIX

system running on a single system.GPFS was designed for optimal performance of

large clusters; it can support a file system of up to 4PB consisting of up to 4,096

disks of 1TB each.

Reliability is a major concern in a system with many physical components. To

recover from system failures, GPFS records all metadata updates in a write-ahead

log file. Write-ahead means that updates are written to persistent storage only after

the log records have been written. For example, when a new file is created, a

directory block must be updated and an inode for the file must be created. These

records are transferred from cache to disk after the log records have been written.

When the directory block is written and then the I/O node fails before writing the

inode, then the system ends up in an inconsistent state and the log file allows the

system to recreate the inode record.

The log files are maintained by each I/O node for each file system it mounts; thus,

any I/O node is able to initiate recovery on behalf of a failed node. Disk

parallelism is used to reduce access time. Multiple I/O read requests are issued in

parallel and data is prefetched in a buffer pool.

Data striping allows concurrent access and improves performance but can have

unpleasant side effects. Indeed, when a single disk fails, a large number of files are

affected. To reduce the impact of such undesirable events, the system attempts to

mask a single disk failure or the failure of the access path to a disk.

Consistency and performance, critical to any distributed file system, are difficult to

balance. Support for concurrent access improves performance but faces serious

challenges in maintaining consistency. In GPFS, consistency and synchronization

are ensured by a distributed locking mechanism; a central lock manager grants lock

tokens to local lock managers running in each I/O node. Lock tokens are also used

by the cache management system.

Lock granularity has important implications in the performance of a file system,

and GPFS uses a variety of techniques for various types of data. Byte-range tokens

are used for read and write operations to data files as follows: The first node

attempting to write to a file acquires a token covering the entire file, [0,∞]. This

node is allowed to carry out all reads and writes to the file without any need for

permission until a second node attempts to write to the same file. Then the range of

the token given to the first node is restricted.

Byte-range token negotiations among nodes use the required range and the desired

range for the offset and for the length of the current and future operations,

respectively. Data shipping, an alternative to byte-range locking, allows fine-

grained data sharing. In this mode the file blocks are controlled by the I/O nodes in

a round-robin manner. A node forwards a read or write operation to the node

controlling the target block, the only one allowed to access the file.

A token manager maintains the state of all tokens; it creates and distributes tokens,

collects tokens once a file is closed, and downgrades or upgrades tokens when

additional nodes request access to a file. Token management protocols attempt to

reduce the load placed on the token manager; for example, when a node wants to

revoke a token, it sends messages to all the other nodes holding the token and

forwards the reply to the token manager.

GPFS uses disk maps to manage the disk space. The GPFS block size can be as

large as 1MB, and a typical block size is 256KB. A block is divided into 32 sub

blocks to reduce disk fragmentation for small files; thus, the block map has 32bits

to indicate whether a sub block is free or used. The system disk map is partitioned

into n regions, and each disk map region is stored on a different I/O node. This

strategy reduces conflicts and allows multiple nodes to allocate disk space at the

same time. An allocation manager running on one of the I/O nodes is responsible

for actions involving multiple disk map regions. For example, it updates free space

statistics and helps with deallocation by sending periodic hints of the regions used

by individual nodes.

Google File System

The Google File System (GFS) was developed in the late 1990s. It uses thousands

of storage systems built from inexpensive commodity components to provide peta

bytes of storage to a large user community with diverse needs. It is not surprising

that a main concern of the GFS designers was to ensure the reliability of a system

exposed to hardware failures, system software errors, application errors, and last

but not least, human errors. The system was designed after a careful analysis of the

file characteristics and of the access models. Some of the most important aspects of

this analysis reflected in the GFS design are.

 The system was designed after a careful analysis of the file characteristics and of

the access models. Some of the most important aspects of this analysis reflected in

the GFS design are:

• Scalability and reliability are critical features of the system; they must be

considered from the beginning rather than at some stage of the design.

• The vast majority of files range in size from a few GB to hundreds of TB.

• The most common operation is to append to an existing file; random write

operations to a file are extremely infrequent.

• Sequential read operations are the norm. • The users process the data in bulk and

are less concerned with the response time. • The consistency mode lshould be

relaxed to simplify the system implementation, but without placing an additional

burden on the application developers.

Several design decisions were made as a result of this analysis:

1. Segment a file in large chunks.

2. Implement an atomic file append operation allowing multiple applications

operating concurrently to append to the same file.

3. Build the cluster around a high-bandwidth rather than low-latency

interconnection network Separate the flow of control from the data flow; schedule

the high-bandwidth data flow by pipelining the data transfer over TCP connections

to reduce the response time. Exploit network topology by sending data to the

closest node in the network.

4. Eliminate caching at the client site. Caching increases the overhead for

maintaining consistency among cached copies at multiple client sites and it is not

likely to improve performance.

5. Ensure consistency by channeling critical file operations through a master, a

component of the cluster that controls the entire system.

6. Minimize the involvement of the master in file access operations to avoid hot-

spot contention and to ensure scalability.

7. Support efficient check pointing and fast recovery mechanisms. 8. Support an

efficient garbage-collection mechanism.

GFS files are collections of fixed-size segments called chunks; at the time of file

creation each chunk is assigned a unique chunk handle. A chunk consists of 64 KB

blocks and each block has a 32-bit checksum. Chunks are stored on Linux files

systems and are replicated on multiple sites; a user may change the number of the

replicas from the standard value of three to any desire dvalue.

The architecture of a GFS cluster is illustrated in Figure 8.7.Amaster controls a

large number of chunk servers It maintains meta data such as file names, access

control information, the location of all the replicas for every chunk of each file, and

the state of individual chunk servers. Some of the metadata is stored in persistent

storage.

The locations of the chunks are stored only in the control structure of the master’s

memory and are updated at system startup or when a new chunk server joins the

cluster. This strategy allows the master to have up-to-date information about the

location of the chunks. System reliability is a major concern and the operation log

maintains a historical record of metadata changes,enabling the master to recover in

case of a failure. As a result, such changes are atomic and are not made visible to

the clients until they have been recorded on multiple replicas on persistent storage.

To recover from a failure, the master replays the operation log. To minimize the

recovery time, the master periodically checkpoints its state and at recovery time

replays only the log records after the last checkpoint.

When data for a write straddles the chunk boundary, two operations are carried out,

one for each chunk. The steps for a write request illustrate a process that buffers

data and decouples the control flow from the data flow for efficiency:

1. The client contacts the master, which assigns a lease to one of the chunk servers

for a particular chunk if no lease for that chunk exists; then the master replies with

the ID of the primary as well as secondary chunk servers holding replicas of the

chunk. The client caches this information.

2. The client sends the data to all chunk servers holding replicas of the chunk; each

one of the chunk servers stores the data in an internal LRU buffer and then sends

an acknowledgment to the client.

3. The client sends a write request to the primary once it has received the

acknowledgments from all chunk servers holding replicas of the chunk. The

primary identifies mutations by consecutive sequence numbers.

4. The primary sends the write requests to all secondaries.

5. Each secondary applies the mutations in the order of the sequence numbers and

then sends an acknowledgment to the primary. 6. Finally, after receiving the

acknowledgments from all secondaries, the primary informs the client.

The system supports an efficient check pointing procedure based on copy-on-write

to construct system snapshots. A lazy garbage collection strategy is used to reclaim

the space after a file deletion. In the first step the filename is changed to a hidden

name and this operation is time stamped. The master periodically scans the

namespace and removes the metadata for the files with a hidden name older than a

few days; this mechanism gives a window of opportunity to a user who deleted

files by mistake to recover the files with little effort.

Apache Hadoop

 A wide range of data-intensive applications such as marketing analytics, image

processing, machine learning, and Web crawling use Apache Hadoop,an open-

source, Java-based software system. Hadoop supports distributed applications

handling extremely large volumes of data. Many members of the community

contributed to the development and optimization of Hadoop and several related

Apache projects such as Hive and HBase.

Hadoop is used by many organizations from industry, government, and research;

the long list of Hadoop users includes major IT companies such as Apple, IBM,

HP, Microsoft, Yahoo!, and Amazon; media companies such as The NewYork

Time sand Fox; social networks, including Twitter,Facebook, and LinkedIn; and

government agencies, such as the U.S. Federal Reserve. In 2011, the Facebook

Hadoop cluster had a capacity of 30PB.

A Hadoop system has two components, a MapReduce engine and a database (see

Figure 8.8). The database could be the Hadoop File System (HDFS), Amazon S3,

or Cloud Store, an implementation of the Google File System discussed in Section

8.5. HDFS is a distributed file system written in Java; it is portable, but it cannot be

directly mounted on an existing operating system. HDFS is not fully POSIX

compliant, but it is highly performant.

The Hadoop engine on the master of a multinode cluster consists of a job tracker

and a task tracker, whereas the engine on a slave has only a task tracker. Thejob

tracker receives a MapReduce job. from a client and dispatches the work to the task

trackers running on the nodes of a cluster. To increase efficiency, the job tracker

attempts to dispatch the tasks to available slaves closest to the

placewhereitstoredthetaskdata.Thetasktrackersupervisestheexecutionoftheworkallo

catedtothe node. Several scheduling algorithms have been implemented in Hadoop

engines, including Facebook’s fair scheduler and Yahoo!’s capacity scheduler; see

Section 6.8 for a discussion of cloud scheduling algorithms.

 HDFS replicates data on multiple nodes. The default tis three replicas a large data

set is distributed over many nodes. The name node running on the master manages

the data distribution and data replication and communicates with data nodes

running on all cluster nodes; it shares with the job tracker information about data

placement to minimize communication between the nodes on which data is located

and the ones where it is needed. Although HDFS can be used for applications other

than those based on the MapReduce model, its performance for such applications is

not at par with the ones for which it was originally designed.

Locks and Chubby:

A locking service Locks support the implementation of reliable storage for loosely

coupled distributed systems; they enable controlled access to shared storage and

ensure atomicity of read and write operations. Furthermore, critically important to

the design of reliable distributed storage systems are distributed consensus

problems, such as the election of a master from a group of data servers. A master

has an important role in system management; for example, in GFS the master

maintains state information about all system components.

Locks that can be held for only a very short time are called fine-grained, whereas

coarse-grained locks are held for a longer time. Some operations require meta-

information about a lock, such as the name of the lock, whether the lock is shared

or held in exclusivity, and the generation number of the lock. This meta-

information is sometimes aggregated into an opaque byte string called a sequencer.

The question of how to most effectively support a locking and consensus

component of a large-scale distributed system demands several design decisions. A

first design decision is whether the locks should be mandatory or advisory.

Mandatory locks have the obvious advantage of enforcing access control; a traffic

analogy is that a mandatory lock is like a drawbridge. Once it is up, all traffic is

forced to stop. An advisory lock is like a stop sign those who obey the traffic laws

will stop, but some might not. The disadvantages of mandatory locks are added

overhead and less flexibility. Once a data item is locked, even a high-priority task

related to maintenance or recovery cannot access the data unless it forces the

applicationholdingthelocktoterminate.Thisisaverysignificantprobleminlarge-

scalesystemswhere partial system failures are likely.

 A second design decision is whether the system should be based on fine-

grained or coarse-grained locking. Fine-grained locks allow more application

threads to access shared data in any time interval, but they generate a larger work

load for the lock server. Moreover, when the lock server fails for a period of time,

a larger number of applications are affected. Advisory locks and coarse-grained

locks seem to be a better choice for a system expected to scale to a very large

number of nodes distributed in data centers that are interconnected via wide area

networks.

A third design decision is how to support a systematic approach to locking.

Two alternatives come to mind: (i) delegate to the clients the implementation of the

consensus algorithm and provide a library of functions needed for this task, or (ii)

create a locking service that implements a version of the asynchronous Paxos

algorithm and provide a library to be linked with an application client to support

service calls.Forcing application developers to invoke calls to a Paxos library is

more cumbersome and more prone to errors than the service alternative. Of course,

the lock service itself has to be scalable to support a potentially heavy load.

Another design consideration is flexibility, the ability of the system to support a

variety of applications. A name service comes immediately to mind because many

cloud applications read and write small files. The names of small files can be

included in the namespace of the service to allow atomic file operations.The choice

should also consider the performance a service can be optimized and clients can

cache control information. Finally, we should consider the overhead and resources

for reaching consensus. Again, the service seems to be more advantageous because

it needs fewer replicas for high availability.

The basic organization of the system is shown in Figure 8.9.AChubby cell

typically serves one data center. The cell server includes several replicas, the

standard number of which is five. To reduce the probability of correlated failures,

the servers hosting replicas are distributed across the campus of a data center.

The replicas use a distributed consensus protocol to elect a new master when the

current one fails. The master is elected by a majority, as required by the

asynchronous Paxos algorithm, accompanied by the commitment that a new master

will not be elected for a period called a master lease. A session is a connection

between a client and the cell server maintained over a period of time the data

cached by the client, the locks acquired, and the handles of all files locked by the

client are valid for only the duration of the session.

Clients use RPCs to request services from the master. When it receives a write

request, the master propagates the request to all replicas and waits for a reply from

a majority of replicas before responding. When it receives a read request the

master responds without consulting the replicas. The client interface of the system

is similar to, yet simpler than, the one supported by the Unix File System. In

addition, it includes notification of events related to file or system status. A client

can subscribe to events such as file content modification, change or addition of a

child node, master failure, lock acquired, conflicting lock requests, and invalid file

handle.

The files and directories of the Chubby service are organized in a tree structure and

use a naming scheme similar to that of Unix. Each file has a file handle similar to

the file descriptor. The master of a cell periodically writes a snapshot of its dEach

file or directory can act as a lock. To write to a file the client must be the only one

holding the file handle, whereas multiple clients may hold the file handle to read

from the file. Handles are created by a call to open() and destroyed by a call to

close (). Other calls supported by the service are Get Contents And Stat(), to get

the file data and meta-information, Set Contents, and Delete() and several calls

allow the client to acquire and release locks. Some applications may decide to

create and manipulate a sequencer with calls to Set Sequencer (), which associates

a sequencer with a handle, Get Sequencer() to obtain the sequencer associated with

a handle ,or check the validity of a sequencer with Check Sequencer(). At a base to

a GFS file server.

We now take a closer look at the actual implementation of the service. As pointed

out earlier, Chubby locks and Chubby files are stored in a database, and this

database is replicated. The architecture of these replicas shows that the stack

consists of the Chubby component, which implements the Chubby protocol for

communication with the clients, and the active components, which write log entries

and files to the local storage of the replica see (Figure 8.10).

 Recall that an atomicity log for a transaction-processing system allows a crash

recovery procedure to undo all-or-nothing actions that did not complete or to finish

all-or-nothing actions that committed but did not record all of their effects. Each

replica maintains its own copy of the log; a new log entry is appended to the

existing log and the Paxos algorithm is executed repeatedly to ensure that all

replicas have the same sequence of log entries.

The next element of the stack is responsible for the maintenance of a fault-tolerant

database – in other words, making sure that all local copies are consistent. The

database consists of the actual data, or the local snapshot in Chubby speak, and a

replay log to allow recovery in case of failure. The state of the system is also

recorded in the database. The Paxos algorithm is used to reach consensus on sets of

values (e.g., the sequence of entries in a replicated log). To ensure that the Paxos

algorithm succeeds in spite of the occasional failure of a replica, the following

three phases of the algorithm are executed repeatedly.

1. Elect a replica to be the master/coordinator. When a master fails, several

replicas may decide to assume the role of a master. To ensure that the result

of the election is unique, each replica generates a sequence number larger

than any sequence number it has seen, in the range (1,r), where r is the

number of replicas, and broadcasts it in a propose message.

2. The master broadcasts to all replicas an accept message, including the value

it has selected, and waits for replies, either acknowledge or reject.

3. Consensus is reached when the majority of the replicas send an acknowledge

message; then the master broadcasts the commit message.

Transaction processing and NoSQL databases

Many cloud services are based on online transaction processing (OLTP) and

operate under tight latency constraints.Moreover, these applications have to deal

with extremely high data volumes and are expected to provide reliable services for

very large communities of users. It did not take very long for companies heavily

involved in cloud computing, such as Google and Amazon, e-commerce

companies such as eBay, and social media networks such as Facebook, Twitter, or

LinkedIn, to discover that traditional relational databases are not able to handle the

massive amount of data and the real-time demands of online applications that are

critical for their business models.

 A major concern for the designers of OLTP systems is to reduce the response

time. The term mem caching refers to a general-purpose distributed memory

system that caches objects in main memory (RAM) the system is based on a

verylarge hash table distributed across many servers. The mem cached system is

based on a client-server architecture and runs under several operating systems,

including Linux, Unix, Mac OS X, and Windows. The servers maintain a key-

value associative array. The API allows the clients to add entries to the array and to

query it. A key can be up to 250bytes long, and a value can be no larger than 1MB.

The mem cached system uses an LRU cache-replacement strategy. Scalability is

the other major concern for cloud OLTP applications and implicitly for data stores.

 Scalability is the other major concern for cloud OLTP applications and implicitly

for data stores. There is a distinction between vertical scaling, where the data and

the workload are distributed to systems that share resources such as cores and

processors, disks, and possibly RAM, and horizontal scaling, where the systems do

not share either primary or secondary storage.

 The “soft-state” approach in the design of NoSQL allows data to be inconsistent

and transfers the task of implementing only the subset of the ACID properties

required by a specific application to the application developer. The NoSQL

systems ensure that data will be “eventually consistent” at some future point in

time instead of enforcing consistency at the time when a transaction is

“committed.” Data partitioning among multiple storage servers and data replication

are also tenets of the NoSQL philosophy7; they increase availability, reduce

response time, and enhance scalability.

 The overhead of OLTP systems is due to four sources with equal contribution:

logging, locking, latching, and buffer management. Logging is expensive because

traditional data bases require transaction durability; thus, every write to the

database can be completed only after the log has been updated. To guarantee

atomicity, transactions lock every record, and this requires access to a lock table.

Many operations require multi-threading, and the access to shared data structures,

such as lock tables, demands short-term latches8 for coordination. The breakdown

of the instruction count for these operations in existing DBMSs is as follows:

34.6% for buffer management, 14.2% for latching, 16.3% for locking, 11.9% for

logging, and 16.2% for hand-coded optimization.

Today OLTP databases could exploit the vast amounts of resources of modern

computing and communication systems to store the data in main memory rather

than rely on disk-resident B-trees and heap files, locking-based concurrency

control, and support for multithreading optimized for the computer

technologyofpastdecades[157].Logless,single-threaded,andtransaction-less data

bases could replace the traditional ones for some cloud applications.

Data replication is critical not only for system reliability and availability, but also

for its performance. In an attempt to avoid catastrophic failures due to power

blackouts, natural disasters, or other causes (see also Section 1.6), many companies

have established multiple data centers located in different geographic regions.

Thus, data replication must be done over a wide area network (WAN). This could

be quite challenging, especially for log data, metadata, and system configuration

information, due to increased probability of communication failure and larger

communication delays. Several strategies are possible, some based on master/slave

configurations, and others based on homogeneous replica groups.

Master/slave replication can be asynchronous or synchronous. In the first case the

master replicates write-ahead log entries to at least one slave, and each slave

acknowledges appending the log record as soon as the operation is done. In the

second case the master must wait for the acknowledgments from all slaves before

proceeding. Homogeneous replica groups enjoy shorter latency and higher

availability than master/slave configurations. Any member of the group can initiate

mutations that propagate asynchronously.

BigTable

BigTable is a distributed storage system developed by Google to store massive

amounts of data and to scale up to thousands of storage servers . The system uses

the Google File System discussed in Section 8.5 to store user data as well as

system information. To guarantee atomic read and write operations, it uses the

Chubby distributed lock service the directories and the files in the namespace of

Chubby are used as locks

The system is based on a simple and flexible data model. It allows an application

developer to exercise control over the data format and layout and reveals data

locality information to the application clients. Any read or write row operation is

atomic, even when it affects more than one column. The column keys identify

column families, which are units of access control. The data in a column family is

of the same type. Client applications written in C++ can add or delete values,

search for a subset of data, and look up data in a row.

A row key is an arbitrary string of up to 64KB, and a row range is partitioned into

tablets serving as units for load balancing. The time stamps used to index various

versions of the data in a cell are 64-bit integers; their interpretation can be defined

by the application, whereas the default is the time of an event in microseconds. A

column key consists of a string defining the family name, a set of printable

characters, and an arbitrary string as qualifier.

 The organization of a BigTable (see Figure 8.11) shows a sparse, distributed,

multidimensional map for an email application. The system consists of three major

components :a library linked to application clients to access the system, a master

server, and a large number of tablet servers. The master server controls the entire

system, assigns tablets to tablet servers and balances the load among them,

manages garbage collection, and handles table and column family creation and

deletion.

Internally, the space management is ensured by a three-level hierarchy: the root

tablet, the location of which is stored in a Chubby file, points to entries in the

second element, the metadata tablet, which, in turn, points to user tablets,

collections of locations of users’ tablets. An application client searches through

this hierarchy to identify the location of its tablets and then caches the addresses

for further use.

The performance of the system reported in [73] is summarized in Table 8.2. The

table shows the number of random and sequential read and write and scan

operations for 1,000 bytes, when the number of servers increases from 1 to 50, then

to 250, and finally to 500. Locking prevents the system from achieving a linear

speed-up, but the performance of the system is still remarkable due to a fair

number of optimizations. For example, the number of scans on 500 tablet servers is

7 ,843/2×103instead of15 ,385/2×103.Itisreportedthat only 12 clusters use more

than 500 tablet servers, whereas some 259 clusters use between 1 and 19 tablet

servers.

BigTable is used by a variety of applications, including Google Earth, Google

Analytics, Google Finance, and Web crawlers. For example, Google Earth uses

two tables, one for preprocessing and one for serving client data. The

preprocessing table stores raw images; the table is stored on disk because it

contains some 70TB of data. Each row of data consists of a single image; adjacent

geographic segments are stored in rows in close proximity to one another. The

column family is very sparse; it contains a column for every raw image. The

preprocessing stage relies heavily on MapReduce to

cleanandconsolidatethedatafortheservingphase.TheservingtablestoredonGFSis“onl

y”500 GB, and it is distributed across several hundred tablet servers, which

maintain in-memory column families. This organization enables the serving phase

of Google Earth to provide a fast response time to tens of thousands of queries per

second.

Google Analytics provides aggregate statistics such as the number of visitors to a

Web page per day. To use this service, Web servers embed a JavaScript code into

their Web pages to record information every time a page is visited.The data is

collected in a raw-click BigTable of some 200 TB, with a row for each end-user

session. A summary table of some 20TB contains predefined summaries for a

Website.

Big table performance – the number of operations

Assignment questions for 4th one

1. Explain in detail about policies and mechanism for Resource management

2. Discuss about Network File System (NTFS) with architecture.

3. Write shot notes of the following

 a)Google File System(GFS)

 b)Big Table.

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES

RAJAMPET
(Autonomous)

Department of Artificial Intelligence & Machine Learning

Lecture Notes

Name of the Faculty: Dr.T.Harikrishna Class: IVYear I Semester

Branch and Section: AIML Course code: 20A57GT

Name of the Course: Cloud Computing

 Unit-V

Unit-5

Cloud Security

 The security of computing and communication systems takes on a new urgency

as society becomes increasingly dependent on the information infrastructure.

Nowadays, even the critical infrastructure of a nation can be attacked by

exploiting flaws in computer security. Malware, such as the Stuxnet virus, targets

industrial control systems controlled by software [81]. Recently, the term cyber

warfare has entered the dictionary with the meaning “actions by a nation-state to

penetrate another nation’s computers or networks for the purposes of causing

damage or disruption”.

 A computer cloud is a target-rich environment for malicious individuals and

criminal organizations. It is thus no surprise that security is a major concern for

existing users and for potential new users of cloud computing services.

 Cloud computing is an entirely new approach to computing based on a new

technology. It is therefore reasonable to expect that new methods to deal with

some of the security threats will be developed, whereas other perceived threats

will prove to be exaggerated. Indeed, “early on in the life cycle of a technology,

there are many concerns about how this technology will be used ...they represent

a barrier to the acceptance ...over the time, however, the concerns fade, especially

if the value proposition is strong enough.

 Cloud security risks

Some believe that it is very easy, possibly too easy, to start using cloud services

without a proper understanding of the security risks and without the commitment

to follow the ethics rules for cloud computing. A first question is: What are the

security risks faced by cloud users? There is also the possibility that a cloud could

be used to launch large-scale attacks against other components of the cyber

infrastructure.

There are multiple ways to look at the security risks for cloud computing. A recent

paper identifies three broad classes of risk: traditional security threats, threats

related to system availability, and threats related to third-party data control.

Traditional threats are those experienced for some time by any system connected

to the Internet, but with some cloud-specific twists. The impact of traditional

threats is amplified due to the vast amount of cloud resources and the large user

population that can be affected. The fuzzy bounds of responsibility between the

providers of cloud services and users and the difficulties in accurately identifying

the cause of a problem add to cloud users’ concerns.

The traditional threats begin at the user site. The user must protect the

infrastructure used to connect to the cloud and to interact with the application

running on the cloud. This task is more difficult because some components of this

infrastructure are outside the firewall protecting the user. The next threat is related

to the authentication and authorization process. The procedures in place for one

individual do not extend to an enterprise. In this case the cloud access of the

members of an organization must be nuanced; individuals should be assigned

distinct levels of privilege based on their roles in the organization. It is also

nontrivial to merge or adapt the internal policies and security metrics of an

organization with the ones of the cloud.

Moving from the user to the cloud, we see that the traditional types of attack have

already affected cloud service providers. The favourite means of attack are

distributed denial-of-service (DDoS) attacks, which prevent legitimate users

accessing cloud services; phishing SQL injection;3 or cross-site scripting.

Cloud servers host multiple VMs, and multiple applications may run under

Each VM. Multitenency in conjunction with VMM vulnerabilities could open

new attack channels for malicious users. Identifying the path followed by an

attacker is much more difficult in a cloud environment. Traditional investigation

methods based on digital forensics cannot be extended to a cloud, where there

sources are shared among a large user population and the traces of events related

to a security incident are wiped out due to the high rate of write operations on any

storage media.

Availability of cloud services is another major concern. System failures, power

outages, and other catastrophic events could shut down cloud services for

extended periods of time.

Clouds could also be affected by phase transition phenomena and other effects

specific to complex systems. Another critical aspect of availability is that users

cannot be assured that an application hosted on the cloud will return correct

results.

 Third-party control generates a spectrum of concerns caused by the lack of

transparency and limited user control. For example, a cloud provider may

subcontract some resources from a third party whose level of trust is questionable.

There are examples when subcontractors failed to maintain the customer data.

There are also examples when the third party was not a subcontractor but a

hardware supplier and the loss of data was caused by poor-quality storage devices

 It is very difficult for a cloud user to prove that data has been deleted by the

service provider. The lack of transparency makes auditability a very difficult

proposition for cloud computing. Auditing guidelines elaborated by the National

Institute of Standards and Technology (NIST), such as the Federal Information

Processing Standard (FIPS) and the Federal Information Security Management

Act (FISMA), are mandatory for U.S. government agencies.

The first release of the Cloud Security Alliance (CSA) report in 2010 identifies

seven top threats to cloud computing. These threats are the abuse of the cloud,

APIs that are not fully secure, malicious insiders, shared technology, account

hijacking, data loss or leakage, and unknown risk profiles. According to this

report, the IaaS delivery model can be affected by all threats. PaaS can be affected

by all but the shared technology, whereas SaaS is affected by all but abuse and

shared technology.

The term abuse of the cloud refers to the ability to conduct nefarious activities

from the cloud – for example, using multiple AWS instances or applications

supported by IaaS to launch DDoS attacks or to distribute spam and malware.

Shared technology considers threats due to multitenant access supported by

virtualization. VMMs can have flaws allowing a guest operating system to affect

the security of the platform shared with other virtual machines.

Insecure APIs may not protect users during a range of activities, starting with

authentication and access control to monitoring and control of the application

during runtime. The cloud service providers do not disclose their hiring standards

and policies thus, the risks of malicious insiders cannot be ignored. The potential

harm due to this particular form of attack is great.

Data loss or leakage are two risks with devastating consequences for an

individual or an organization using cloud services. Maintaining copies of the data

outside the cloud is often unfeasible due to the sheer volume of data. If the only

copy of the data is stored on the cloud, sensitive data is permanently lost when

cloud data replication fails and is followed by a storage media failure. Because

some of the data often includes proprietary or sensitive data, access to such

information by third parties could have severe consequences.

 Account or service hijacking is a significant threat, and cloud users must be

aware of and guard against all methods of stealing credentials. Finally, unknown

risk profile refers to exposure to the ignorance or underestimation of the risks of

cloud computing.

 An attempt to identify and classify the attacks in a cloud computing environment

is presented in. The three actors involved in the model considered are the user,the

service, and the cloud infrastructure, and there are six types of attacks

possible(seeFigure9.1).The user can be attacked from two directions from the

service and from the cloud. SSL certificate spoofing, attacks on browser caches,

or phishing attacks are examples of attacks that originate at the service.The user

can also be a victim of attacks that either originate at the cloud or spoofs that

originate from the cloud infrastructure.

The service can be attacked from the user. Buffer overflow, SQL injection, and

privilege escalation are the common types of attacks from the service.The service

can also be subject to attack by the cloud infrastructure; this is probably the most

serious line of attack. Limiting access to resources, privilege related attacks, data

distortion, and injecting additional operations are only a few of the many possible

lines of attack originated at the cloud.

The cloud infrastructure can be attacked by a user who targets the cloud control

system. The types of attack are the same ones that a user directs toward any other

cloud service. The cloud infrastructure may also be targeted by a service

requesting an excessive amount of resources and causing the exhaustion of the

resources.

Security: The top concern for cloud users

 Users typically operate inside a secure perimeter protected by a corporate

firewall.Inspite of the potential threats, users have to extend their trust to the cloud

service provider if they want to benefit from the economical advantages of utility

computing. This is a fairly difficult transition, yet it is a critical one for the future

of cloud computing. To support this transition,some argue that cloud security is

in the hands of experts,sousers are even better protected than when they are in

charge of their own security.

Major user concerns are unauthorized access to confidential information and

data theft. Data is more vulnerable in storage than while it is being processed.

Data is kept in storage for extended periods of time, whereas it is exposed to

threats during processing for relatively short periods of time. Hence close

attention should be paid to the security of storage servers and to data in transit.

 The next concerns regard user control over the life cycle of data. It is

virtually impossible for a user to determine whether data tha tshould have been

deleted is actually deleted. Even if it was deleted, there is no guarantee that the

media was wiped and the next user is not able to recover confidential data. This

problemisexacerbatedbecausetheCSPsrelyonseamlessbackupstopreventaccident

aldataloss.Such backups are done without users’ consent or knowledge. During

this exercise data records can be lost, accidentally deleted, or accessible to an

attacker.

Lack of standardization is next on the list of concerns. To day there are no

interoperability standards, It is undeniable that auditing and compliance pose an

entirely different set of challenges in cloud computing. These challenges are not

yet resolved. A full audit trail on a cloud is an infeasible proposition at this time.

There is no doubt that multitenancy is the root cause of many user concerns.

Nevertheless, multitenancy enables a higher server utilization thus, lower costs.

Because it is one of the pillars of utility computing, users have to learn to live

with multitenancy. The threats caused by multitenancy differ from one cloud

delivery model to another.

Users are also greatly concerned about the legal framework for enforcing cloud

computing security. The cloud technology has moved much faster than cloud

security and privacy legislation, so users have legitimate concerns regarding the

ability to defend their rights. Because the data centers of a CSP may be located

in several countries, it is difficult to understand which laws apply – the laws of

the country where information is stored and processed, the laws of the countries

where the information crossed from the user to the datacenter, or the laws of the

country where the user is located.

Now we examine briefly what cloud users can and should do to minimize security

risks regarding data handling by the CSP. First users should evaluate the security

policies and the mechanisms the CSP has in place to enforce these policies. Then

users should analyze the information that would be stored and processed on the

cloud. Finally, the contractual obligations should be clearly spelled out. The

contract between the user and the CSP should do the following.

1. State explicitly the CSP’s obligations to securely handle sensitive information

and its obligation to comply with privacy laws.

2. Spell out CSP liabilities for mishandling sensitive information.

3. Spell out CSP liabilities for data loss.

4. Spell out the rules governing the ownership of the data.

5. Specify the geographical regions where information and backups can be stored.

Privacy and privacy impact assessment

The term privacy refers to the right of an individual, a group of individuals, or an

organization to keep information of a personal or proprietary nature from being

disclosed to others. Many nations view privacy as a basic human right. The

Universal Declaration of Human Rights, Article 12, states: “No one shall be

subjected to arbitrary interference with his privacy, family, home or

correspondence, nor to attacks upon his honor and reputation. Everyone has the

right to the protection of the law against such interference or attacks.”

Privacy concerns are different for the three cloud delivery models and also

depend on the actual context. For example, consider Gmail, a widely used SaaS

delivery model. Gmail privacy policy reads we collect information in two ways:

information you give us ...like your name, email address, telephone number or

credit card; information we get from your use of our services such as: ...device

information, log.

 The main aspects of privacy are: the lack of user control, potential unauthorized

secondary use, data proliferation, and dynamic provisioning. The lack of user

control refers to the fact that user-centric data control is incompatible with cloud

usage. Once data is stored on the CSP’s servers, the user loses control of the exact

location, and in some instances the user could lose access to the data. For

example, in case of the Gmail service the account owner has no control over

where the data is stored or how long old emails are stored in some backups of the

servers.

There is a need for legislation addressing the multiple aspects of privacy in the

digital age. A document elaborated by the Federal Trade Commission for the U.S.

Congress states “Consumer-oriented commercial Web sites that collect personal

identifying information from or about consumers online would be required to

comply with the four widely accepted fair information practices.

1. Notice.Web sites would be required to provide consumers clear and

conspicuous notice of their information practices, including what

information they collect, how they collect it how they use it, how they

provide Choice, Access, and Security to consumers,whether they disclose

the information collected to other entities, and whether other entities are

collecting information through the site.

2. Choice.Websiteswouldberequiredtoofferconsumerschoicesastohowtheirp

ersonalidentifying information is used beyond the use for which the

information was provided (e.g., to consummate a transaction). Such choice

would encompass both internal secondary uses (such as marketing back to

consumers) and external secondary uses.

3. Access. Web sites would be required to offer consumers reasonable access

to the information a Web site has collected about them, including a reason

able opportunity to review information and to correct in accuracies or

delete information.

4. Security. Web sites would be required to take reasonable steps to protect

the security of the information they collect from consumers. The

Commission recognizes that the implementation of these practices may

vary with the nature of the information collected and the uses to which it

is put, as well as with technological developments. For this reason, the

Commission recommends that any legislation be phrased in general terms

and be technologically neutral. Thus, the definitions of fair information

practices set forth in the statute should be broad enough to provide

flexibility to the implementing agency in promulgating its rules or

regulations.”

There is a need for tools capable of identifing privacy issues in information

systems, the so-called Privacy Impact Assesment (PIA). As of mid-2012 there

were no international standards for such a process, though different countries

and organizations require PIA reports. An example of an analysis is to assess

the legal implications of the U.K.-U.S.

API A tool that could be deployed as a Web-based service is proposed in.The

inputs to the tool includes project information, an outline of project

documents, privacy risks, and stakeholders. The tool will produce a PIA report

consisting of a summary of findings, a risk summary, security, transparency,

and cross-border data flows.

The centrepiece of the PIA tool is a knowledge base(KB) created and

maintained by domain experts. The users of the SaaS service providing access

to the PIA tool must fill in a questionnaire. The system

usestemplatestogenerateadditionalquestionsnecessaryandtofillinthePIAreport

.An expert system infers which rules are satisfied by the facts in the database

and provided by the users and executes the rule with the highest priority.

Trust

 Trust in the context of cloud computing is intimately related to the general

problem of trust in online activities. In this section we first discuss the

traditional concept of trust and then the trust necessary to online activities.

According to the Merriam-Webster dictionary, trust means “assured reliance

on the character, ability, strength, or truth of someone or something.” Trust is

a complex phenomenon; it enables cooperative behavior, promotes adaptive

organizational forms, reduces harmful conflict, decreases transaction costs,

facilitates formulation of ad hoc workgroups, and promotes effective

responses to crisis.

Two conditions must exist for trust to develop. The first condition is risk, the

perceived probability of loss; indeed, trust would not be necessary if there

were no risk involved, if there is a certainty that an action can succeed. The

second condition is interdependence, the idea that the interests of one entity

cannot be achieved without reliance on other entities. A trust relationship goes

through three phases: (1) a building phase, when trust is formed; (2) a stability

phase, when trust exists; and (3) a dissolution phase, when trust declines.

There are different reasons for and forms of trust. Utilitarian reasons could be

based on the belief that the costly penalties for breach of trust exceed any

potential benefits from opportunistic behavior. This is the essence of

deterrence-based trust. Another reason is the belief that the action involving

the other partyisintheself-interestofthatparty.Thisistheso-calledcalculus-

basedtrust.Afteralongsequence of interactions, relational trust between entities

can develop based on the accumulated experience of dependability and

reliance on each other.

The trust in the Internet “obscures or lacks entirely the dimensions of character

and personality, nature of relationship, and institutional character” of

traditional trust. The missing identity, personal characteristics, and role

definitions are elements we have to deal with in the context of online trust.

 Policies and reputation are two ways of determining trust. Policies reveal the

conditions to obtain trust and the actions to take when some of the conditions

are met. Policies require the verification of credentials.Reputation is a quality

attributed to an entity based on a relatively long history of interactions

withorpossiblyobservationsoftheentity.Recommendationsarebasedontrustdec

isionsmadebyothers and filtered through the perspective of the entity assessing

the trust.

Operating system security

An operating system (OS) allows multiple applications to share the hardware

resources of a physical system, subject to a set of policies. A critical function

of an OS is to protect applications against a wide range of malicious attacks

such as unauthorized access to privileged information, tempering with

executable code, and spoofing. Such attacks can now target even single-user

systems such as personal computers, tablets, or smartphones. Data brought

into the system may contain malicious code; this could occur via a Java applet,

or data imported by a browser from a malicious Web site.

The mandatory security of an OS is considered to be “any security policy

where the definition of the policy logic and the assignment of security

attributes is tightly controlled by a system security policy administrator”.

Access control authentication usage, and cryptographic usage policies are all

elements of mandatory OS security. The first policy specifies how the OS

controls the access to different system objects, the second defines the

authentication mechanisms the OS uses to authenticate a principal, and the last

specifies the cryptographic mechanisms used to protect the data.

Applications with special privileges that perform security-related functions

are called trusted applications. Such applications should only be allowed the

lowest level of privileges required to perform their functions. For example,

type enforcement is a mandatory security mechanism that can be used to

restrict a trusted application to the lowest level of privileges.

The existence of trusted paths, mechanisms supporting user interactions with

trusted software, is critical to systems ecurity.If such mechanisms do not exist,

malicious software can impersonate trusted software. Some systems provide

trust paths for a few functions such as log in authentication and password

changing and allow servers to authenticate their clients.

A trusted-path mechanism is required to prevent malicious software invoked

by an authorized application to tamper with the attributes of the object and/or

with the policy rules. A trusted path is also required to prevent an impostor

from impersonating the decider agent. A similar solution is proposed for

cryptography usage, which should be decomposed into an analysis of the

invocation mechanisms and an analysis of the cryptographic mechanism.

Specialized closed-box platforms such as the ones on some cellular phones,

game consoles, and automated teller machines (ATMs) could have embedded

cryptographic keys that allow themselves to reveal their true identity to remote

systems and authenticate the software running on them. Such facilities are not

available to open-box platforms, the traditional hardware designed for

commodity operating systems.

A highly secure operating system is necessary but not sufficient unto itself;

application-specific security is also necessary. Sometimes security

implemented above the operating system is better. This is the case for

electronic commerce that requires a digital signature on each transaction.

Virtual machine security

The hybrid and the hosted VM models in Figures 5.3(c) and (d), respectively,

expose the entire system to the vulnerability of the host operating system thus,

we will not analyse these models. Our discussion of virtual machine security

is restricted to the traditional system VM model in Figure 5.3(b), where the

VMM controls access to the hardware.

Virtual security services are typically provided by the VMM, as shown in

Figure 9.2(a). Another alternative is to have a dedicated security services VM,

as shown in Figure 9.2(b). A secure trusted computing base (TCB) is a

necessary condition for security in a virtual machine environment; if the TCB

is compromised, the security of the entire system is affected.

A guest OS runs on simulated hardware, and the VMM has access to the state

of all virtual machines operating on the same hardware. The state of a guest

virtual machine can be saved, restored, cloned, and encrypted by the VMM.

Not only can replication ensure reliability, it can also support security,

whereas cloning could be used to recognize a malicious application by testing

it on a cloned system and observing whether it behaves normally. Wecan also

clone a running system and examine the effect of potentially dangerous

applications.

ThesecuritygroupinvolvedwiththeNISTprojecthasidentifiedthefollowingVM

M-andVM-based threats:

• VMM-based threats:

1. Starvation of resources and denial of service for some VMs.Probable

causes:(a)badly configured resource limits for some VMs; (b) a rogue VM

with the capability to bypass resource limits set in the VMM.

2. VMside-channel attacks .Malicious attacks on one or more VMs by a

rogue VM under the same VMM. Probable causes: (a) lack of proper

isolation of inter-VM traffic due to misconfiguration of the virtual network

residing in the VMM; (b) limitation of packet inspection devices to handle

high-speed traffic, e.g., video traffic; (c) presence of VM instances built

from insecure VM images, e.g., a VM image having a guest OS without

the latest patches.

3. Buffer overflow attacks.

VM-based threats:

1. Deployment of rogue or insecure VM. Unauthorized users may create

insecure instances from images or may perform unauthorized

administrative actions on existing VMs. Probable cause: improper

configuration of access controls on VM administrative tasks such as

instance creation, launching, suspension, reactivation, and so on.

2. Presence of insecure and tampered VM images in the VM image

repository. Probable causes: (a) lack of access control to the VM image

repository; (b) lack of mechanisms to verify the integrity of the images,

e.g., digitally signed image.

a) Virtual security services provided by the VMM.

 b)A decidecated secured VM

Security risks posed by shared images

 First, let’s review the process to create an AMI. We can start from a running

system, from another AMI, or from the image of a VM and copy the contents of

the file system to the S3, the so-called bundling. The first of the three steps in

bundling is to create an image, the second step is to compress and encrypt the

image, and the last step is to split the image into several segments and then upload

the segments to the S3.

Two procedures for the creation of an image are available: ec2-bundle-image and

ec2 bundle-volume. The first is used for images prepared as loop back files when

the data is transferred to the image in blocks. To bundle a running system,the

creator of the image can use the second procedure when bundling works at the

level of the file system and files are copied recursively to the image.

Three types of security risks were analysed: (1) backdoors and leftover

credentials, (2) unsolicited connections, and (3) malware. An astounding finding

is that about 22% of the scanned Linux AMIs contained credentials allowing an

intruder to remotely log into the system. Some 100 passwords, 995 ssh keys, and

90 cases in which both passwords and keys could be retrieved were identified.

Another threat is posed by the omission of the cloud-init script that should be

invoked when the image is booted. This script, provided by Amazon, regenerates

the host key an ssh server uses to identify itself; the public part of this key is used

to authenticate the server. When this key is shared among several systems, these

systems become vulnerable to man-in-the middle11 attacks.

Unsolicited connections pose a serious threat to a system. Outgoing connections

allow an outside entity to receive privileged information, e.g., the IP address of

an instance and events recorded by a syslog daemon to files in the var/log

directory of a Linux system. Such information is available only to users with

administrative privileges. The audit detected two Linux instances with modified

syslog daemons, which forwarded to an outside agent information about events

such as login and incoming requests to a Webserver.

Malware, including viruses,worms, spyware, and trojans, were identified using

ClamAV, asoftware tool with a database of some 850,000 malware signatures,

available from www.clamav.net. Two infected Windows AMIs were discovered,

one with a Trojan-Spy(variant50112)and a second one with a Trojan-

Agent(variant173287).The first Trojan carries out key logging and allows stealing

data from the files system and monitoring processes; the AMI also included a tool

called Trojan.Firepass to decrypt and recover passwords stored by the Firefox

browser.

Recovery of deleted files containing sensitive information poses another risk for

the provider of an image. When the sectors on the disk containing sensitive

information are actually over written by another file, recovery of sensitive

information is much harder. To be safe, the creator of the image effort should use

utilities such as shred, scrub, zero free, or wipe to make recovery of sensitive

information next to impossible.

Security risks posed by a management OS

A hypervisor supports stronger isolation between the VMs running under it than

the isolation between processes supported by a traditional operating system. Yet

the hypervisor must rely on management OS to create VMs and to transfer data

in and out from a guest VM to storage devices and network interfaces.

A small VMM can be carefully analysed thus, one could conclude that the

security risks in a virtual environment are diminished. We have to be cautious

with such sweeping statements. Indeed, the trusted computer base (TCB)15 of a

cloud computing environment includes not only the hypervisor but also

themanagementOS.ThemanagementOSsupportsadministrativetools,livemigratio

n,devicedrivers, and device emulators.

Dom0 manages the building of all user domains (DomU), a process consisting of

several steps:

1. Allocate memory in the Dom0 address space and load the kernel of the guest

operating system from secondary storage.

2. Allocate memory for the new VM and use foreign mapping to load the kernel

to the new VM.

3. Set up the initial page tables for the new VM.

4. Release the foreign mapping on the new VM memory, set up the virtual CPU

registers, and launch the new VM.

A malicious Dom0 can play several nasty tricks at the time when it creates a

DomU .

Refuse to carry out the steps necessary to start the new VM, an action that can be

considered a denial-of-service attack.

• Modify the kernel of the guest operating system in ways that will allow a third

party to monitor and control the execution of applications running under the new

VM.

• Undermine the integrity of the new VM by setting the wrong page tables and/or

setting up incorrect virtual CPU registers.

• Refuse to release the foreign mapping and access the memory while the new

VM is running.

Dom0 should be prohibited from using foreign mapping for sharing memory with

a DomU unless a DomU initiates the procedure in response to a hypercall from

Dom0. When this happens, Dom0 should be provided with an encrypted copy of

the memory pages and of the virtual CPU registers. The entire process should be

closely monitored by the hypervisor, which, after the access, should check the

integrity of the affected DomU.

New hypercalls are necessary to protect:

• The privacy and integrity of the virtual CPU of a VM. When Dom0 wants to

save the state of the VM, the hypercall should be intercepted and the contents of

the virtual CPU registers should be encrypted. When a DomU is restored, the

virtual CPU context should be decrypted and then an integrity check should be

carried out. •

 The privacy and integrity of the VM virtual memory. The page table update

hyper call should be intercepted and the page should be encrypted so that Dom0

handles only encrypted pages of the VM. To guarantee integrity, the hypervisor

should calculate a hash of all the memory pages before they are saved by Dom0.

Because a restored DomU may be allocated a different memory region, an address

translation is necessary.

 • The freshness of the virtual CPU and the memory of the VM. The solution is

to add to the hash a version number.

Cloud Application Development

It is fair to assume that the population of application developers and cloud users

is and will continue to be very diverse. Some cloud users have developed and run

parallel applications on clusters or other types of systems for many years and

expect an easy transition to the cloud. Others are less experienced but willing to

learn and expect a smooth learning curve. Many view cloud computing as an

opportunity to develop new businesses with minimum investment in computing

equipment and human resources.

The answers to these questions are different for the three cloud delivery models,

SaaS, PaaS, and IaaS the level of difficulty increases as we move toward the base

of the cloud service pyramid, as shown in Figure 11.1. Recall that SaaS

applications are designed for end users and are accessed over the Web; in this

case, users must be familiar with the API of a particular application. PaaS

provides a set of tools and services designed to facilitate application coding and

deploying; IaaS provides the hardware and the software for servers, storage, and

networks, including operating systems and storage management software. The

IaaS model poses the most challenges; thus, we restrict our discussion to the IaaS

cloud computing model and concentrate on the most popular services offered at

this time, the Amazon Web Services (AWS).

Amazon Web Services:

EC2 instances Figure 11.2 displays the Amazon Management Console (AMC)

window listing the Amazon Web Services offered at the time of this writing. The

services are grouped into several categories: computing and networking, storage

and content delivery, deployment and management, databases, and application

services.

Recall that an AWS EC2 instance is a virtual server started in a region and the

availability zone is selected by the user. Instances are grouped into a few classes,

and each class has available to it a specific amount of resources, such as: CPU

cycles, main memory, secondary storage, and communication and I/O bandwidth.

Several operating systems are supported by AWS, including Amazon Linux, Red

Hat Enterprise Linux, 6.3, SUSE Linux Enterprise Server 11, Ubuntu Server

12.04.1, and several versions of Microsoft Windows.

The next step is to create an (AMI) 1 on one of the platforms supported by AWS

and start an instance using the Run Instance API. If the application needs more

than 20 instances, a special form must be filled out.The local instance store

persists only for the duration of an instance the data will persist if an instance is

started using the Amazon Elastic Block Storage(EBS) and then the instance can

be restarted at a later time. Once an instance is created, the user can perform

several actions – for example, connect to the instance, launch more instances

identical to the current one, or create an EBS AMI. The user can also terminate,

reboot, or stop the instance (see Figure 11.4). The Network & Security panel

allows the creation of Security Groups, Elastic IP addresses, Placement Groups,

Load Balancers, and Key Pairs whereas the EBS panel allows the specification of

volumes and the creation of snapshots.

Connecting clients to cloud instances through firewalls

A firewall is a software system based on a set of rules for filtering network traffic.

Its function is to protect a computer in a local area network from unauthorized

access. The first generation of firewalls, deployed in the late 1980s, carried out

packet filtering; they discarded individual packets that did not

matchasetofacceptancerules.Suchfirewallsoperatedbelowthetransportlayeranddis

cardedpackets based on the information in the headers of physical, data link, and

transport layer protocols.

The second generation of firewalls operate at the transport layer and maintain the

state of all connections passing through them. Unfortunately, this traffic-filtering

solution opened the possibility of denial-of-service (DoS) attacks. A DoS attack

targets a widely used network service and forces the operating system of the host

to fill the connection tables with illegitimate entries. DoS attacks prevent

legitimate access to the service.

The third generation of firewalls “understand” widely used application layer

protocols such as FTP, HTTP, TELNET, SSH, and DNS. These firewalls examine

the header of application layer protocols and support intrusion detection systems

(IDSs). Firewalls screen incoming traffic and sometimes filter outgoing traffic as

well. A first filter encountered by the incoming traffic in a typical network is a

firewall provided by the operating system of the router; the second filter is a

firewall provided by the operating system running on the local computer (see

Figure 11.5).

Typically, the local area network (LAN) of an organization is connected to the

Internet via a router. A router firewall often hides the true address of hosts in the

local network using the Network Address Translation (NAT) mechanism. The

hosts behind a firewall are assigned addresses in a “private address range,”and

the router uses the NAT tables to filter the incoming traffic and translate external

IP addresses to private ones.

If one tests a client-server application with the client and the server in the same

LAN, the packets do not cross a router. Once a client from a different LAN

attempts to use the service, the packets may be discarded by the router’s firewall.

The application may no longer work if the router is not properly configured.

A rule specifies a filtering option at (i) the network layer, when filtering is based

on the destination/source IP address; (ii) the transport layer, when filtering is

based on destination/source port number; or (iii) the MAC layer, when filtering

is based on the destination/source MAC address.

In Linux or Unix systems the firewall can be configured only as a root using the

sudo command. The firewall is controlled by a kernel data structure, the ip

tables.The ip tables command is used to set up, maintain, and inspect the tables

of the IPv4 packet filter rules in the Linux kernel. Several tables may be defined;

each table contains a number of built-in chains and may also contain user-defined

chains.A chain is a list of rules that can match a set of packets: The INPUT rule

controls all incoming connections the FORWARD rule controls all packets

passing through this host; and the OUTPUT rule controls all outgoing

connections from the host. A rule specifies what to do with a packet that matches:

Accept, let the packet pass; Drop, discharge the packet; Queue, pass the packet

to the user space; or Return, stop traversing this chain and resume processing at

the head of the next chain. For complete information on the iptables, see

http://linux.die.net/man/8/iptables. To get the status of the firewall, specify the L

(List) action of the iptables command:

sudo iptables –L

To change the default behavior for the entire chain, specify the action P (Policy),

the chain name, and the target name; e.g., to allow all outgoing traffic to pass

unfiltered, use sudo iptables -P OUTPUT ACCEPT s To add a new security rule,

specify: the action, A (add), the chain, the transport protocol, TCP or UDP, and

the target ports, as in:

sudo iptables -A INPUT -p -tcp -dport ssh -j ACCEPT

sudo iptables -A OUTPUT -p -udp -dport 4321 -j ACCEPT

sudo iptables -A FORWARD -p -tcp -dport 80 -j DROP

To delete a specific security rule from a chain, set the action D (Delete) and

specify the chain name and the rule number for that chain. The top rule in a chain

has number 1:

sudo iptables -D INPUT 1

sudo iptables -D OUTPUT 1

sudo iptables -D FORWARD 1

 Important question for 5th Unit

1. Discuss about threats in cloud service

2. Explain about services provided by AWS EC2 instances

3. Discuss about connecting clients to cloud instances through firrewalls.

