Dr. N. PENCHALAIAH, ASSOCIATE PROFESSOR, Al&ML, ANNAMACHARYA UNIVERSITY

DevOps
UNIT - |

Introduction:

Introduction, Agile development model, DevOps, and ITIL. DevOps process and ContinuousDelivery,
Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples.

UNIT - 11
Software development models and DevOps:

DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. DevOps influence on
Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb,
The separation of concerns, Handling database migrations, Microservices, and the data tier, DevOps,
architecture, and resilience.

UNIT -1

Introduction to project management: The need for source code control, The history of sourcecode
management, Roles and code, source code management system and migrations, Shared authentication,
Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull
request model, GitLab.

UNIT - IV

Integrating the system:

Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The
host server, Build slaves, Software on the host, Triggers, Job chaining andbuild pipelines, Build servers and
infrastructure as code, Building by dependency order, Buildphases, Alternative build servers, Collating quality
measures.

UNIT -V

Testing Tools and automation: Various types of testing, Automation of testing Pros and cons,
Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points,
Test-driven development, REPL-driven development Deployment of the system: Deployment systems,
Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment
tools: Chef, Salt Stack and Docker

TEXT BOOKS:

Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018).
ISBN10: 1788392574 2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's
Viewpoint. Wiley publications. ISBN: 9788126579952

REFERENCE BOOK:

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison
Wesley; ISBN-10.

DevOps
Unit1

History Introduction

Software Development Life Cycle (SDLC)

A software life cycle model (also termed process model) is a pictorial and diagrammatic
representation of the software life cycle. A life cycle model represents all the methods required to
make a software product transit through its life cycle stages. It also captures the structure in
which these methods are to be undertaken.

s
7
E
S
o
&
Q

/ spLc

(Software Development
life Cycle)

Stagel: Planning and requirement analysis
Requirement Analysis is the most important and necessary stage in SDLC.

The senior members of the team perform it with inputs from all the stakeholders and domain
experts or SMEs in the industry.

Planning for the quality assurance requirements and identifications of the risks associated with
the projects is also done at this stage.

DevOps

Business analyst and Project organizer set up a meeting with the client to gather all the data like
what the customer wants to build, who will be the end user, what is the objective of the product.
Before creating a product, a core understanding or knowledge of the product is very necessary.

For Example, A client wants to have an application which concerns money transactions. In this
method, the requirement has to be precise like what kind of operations will be done, how it will
be done, in which currency it will be done, etc.

Once the required function is done, an analysis is complete with auditing the feasibility of the
growth of a product. In case of any ambiguity, a signal is set up for further discussion.

Once the requirement is understood, the SRS (Software Requirement Specification) document is
created. The developers should thoroughly follow this document and also should be reviewed by
the customer for future reference.

Stage2: Defining Requirements

Once the requirement analysis is done, the next stage is to certainly represent and document the
software requirements and get them accepted from the project stakeholders.

This is accomplished through "SRS"- Software Requirement Specification document which
contains all the product requirements to be constructed and developed during the project life
cycle.

Stage3: Designing the Software

The next phase is about to bring down all the knowledge of requirements, analysis, and design of
the software project. This phase is the product of the last two, like inputs from the customer and
requirement gathering.

Stage4: Developing the project

In this phase of SDLC, the actual development begins, and the programming is built. The
implementation of design begins concerning writing code. Developers have to follow the coding
guidelines described by their management and programming tools like compilers, interpreters,
debuggers, etc. are used to develop and implement the code.

Stageb: Testing

After the code is generated, it is tested against the requirements to make sure that the products
are solving the needs addressed and gathered during the requirements stage.

DevOps

During this stage, unit testing, integration testing, system testing, acceptance testing are done.
Stage6: Deployment
Once the software is certified, and no bugs or errors are stated, then it is deployed.

Then based on the assessment, the software may be released as it is or with suggested
enhancement in the object segment.

After the software is deployed, then its maintenance begins.
Stage7: Maintenance

Once when the client starts using the developed systems, then the real issues come up and
requirements to be solved from time to time.

This procedure where the care is taken for the developed product is known as maintenance.

Waterfall model

Winston Royce introduced the Waterfall Model in 1970.This model has five phases:
Requirements analysis and specification, design, implementation, and unit testing, integration
and system testing, and operation and maintenance. The steps always follow in this order and do
not overlap. The developer must complete every phase before the next phase begins. This model
is named "Waterfall Model", because its diagrammatic representation resembles a cascade of
waterfalls.

1. Requirements analysis and specification phase: The aim of this phase is to understand the
exact requirements of the customer and to document them properly. Both the customer and the
software developer work together so as to document all the functions, performance, and
interfacing requirement of the software. It describes the "what" of the system to be produced and
not "how."In this phase, a large document called Software Requirement Specification
(SRS) document is created which contained a detailed description of what the system will do in
the common language.

2. Design Phase: This phase aims to transform the requirements gathered in the SRS into a
suitable form which permits further coding in a programming language. It defines the overall
software architecture together with high level and detailed design. All this work is documented
as a Software Design Document (SDD).

3. Implementation and unit testing: During this phase, design is implemented. If the SDD is
complete, the implementation or coding phase proceeds smoothly, because all the information
needed by software developers is contained in the SDD.

During testing, the code is thoroughly examined and modified. Small modules are tested in

isolation initially, After that these modules are tested hy writing some gverhead code to check the

DevOps

interaction between these modules and the flow of intermediate output.

4. Integration and System Testing: This phase is highly crucial as the quality of the end
product is determined by the effectiveness of the testing carried out. The better output will lead
to satisfied customers, lower maintenance costs, and accurate results. Unit testing determines the
efficiency of individual modules. However, in this phase, the modules are tested for their
interactions with each other and with the system.

5. Operation and maintenance phase: Maintenance is the task performed by every user once
the software has been delivered to the customer, installed, and operational.

Requirement Analysis
and Specification

Waterfall :
Implementation and
Model LEi s

Operation and

maintenance phase

Advantages of Waterfall model
o This model is simple to implement also the number of resources that are required for it is
minimal.
o The requirements are simple and explicitly declared; they remain unchanged during the entire
project development.

o The start and end points for each phase is fixed, which makes it easy to cover progress.
o The release date for the complete product, as well as its final cost, can be determined before

development.
o It gives easy to control and clarity for the customer due to a strict reporting system.

Disadvantages of Waterfall model
o In this model, the risk factor is higher, so this model is not suitable for more significant and
complex projects.
o This model cannot accept the changes in requirements during development.

e It becomes tough to go back to the phase. For example, if the application has now shifted to the
coding phase, and there is a change in requirement, It becomes tough to go back and change it.

o Since the testing done at a later stage, it does not allow identifying the challenges and risks in the
earlier phase, so the risk reduction strategy is difficult to prepare.

DevOps
Introduction

The DevOps is the combination of two words, one is Development and other is Operations. It is
a culture to promote the development and operation process collectively.

The DevOps tutorial will help you to learn DevOps basics and provide depth knowledge of
various DevOps tools such as Git, Ansible, Docker, Puppet, Jenkins, Chef, Nagios,

and Kubernetes.

What is DevOps?

What is DevOps?

o
T

Developers & Testers IT Operations

Why DevOps?
Before going further, we need to understand why we need the DevOps over the other methods.

o The operation and development team worked in complete isolation.

o After the design-build, the testing and deployment are performed respectively. That's why
they consumed more time than actual build cycles.

o Without the use of DevOps, the team members are spending a large amount of time on
designing, testing, and deploying instead of building the project.

o Manual code deployment leads to human errors in production.

o Coding and operation teams have their separate timelines and are not in synch, causing
further delays.

DevOps

DevOps History

o In 2009, the first conference named DevOpsdays was held in Ghent Belgium. Belgian
consultant and Patrick Debois founded the conference.

o In 2012, the state of DevOps report was launched and conceived by Alanna Brown at
Puppet.

o In 2014, the annual State of DevOps report was published by Nicole Forsgren, Jez
Humble, Gene Kim, and others. They found DevOps adoption was accelerating in 2014
also.

o In 2015, Nicole Forsgren, Gene Kim, and Jez Humble founded DORA (DevOps Research
and Assignment).

o In 2017, Nicole Forsgren, Gene Kim, and Jez Humble published "Accelerate: Building
and Scaling High Performing Technology Organizations".

Agile development

An agile methodology is an iterative approach to software development. Each iteration of agile
methodology takes a short time interval of 1 to 4 weeks. The agile development process is
aligned to deliver the changing business requirement. It distributes the software with faster and
fewer changes.

The single-phase software development takes 6 to 18 months. In single-phase development, all
the requirement gathering and risks management factors are predicted initially.

The agile software development process frequently takes the feedback of workable product. The
workable product is delivered within 1 to 4 weeks of iteration.

First time to get
real feedback

Ideas
Define Code Integrate
Final
Software

Traditional Method

Review and Adjust Review and Adjust Review and Adjust

\¥ X First Time to get
Define Define Define real feedback

Test

lIdeas— 5 ‘ t ‘ E Einal
Code Code Code 2 2

Agile Method

o > D E

DevOps

ITIL
ITIL is an abbreviation of Information Technology Infrastructure Library.

It is a framework which helps the IT professionals for delivering the best services of IT. This
framework is a set of best practices to create and improve the process of ITSM (IT Service
Management). It provides a framework within an organization, which helps in planning,
measuring, and implementing the services of IT.

The main motive of this framework is that the resources are used in such a way so that the
customer get the better services and business get the profit.

It is not a standard but a collection of best practices guidelines.

Service Lifecycle in ITIL

ITIL Service

Lifecycle

Service
Operations

Service Strategy.

Service Design.

Service Transition.

Service Operation.

Continual Service Improvement.

DevOps

Service Strategy

Service Strategy is the first and initial stage in the lifecycle of the ITIL framework. The main
aim of this stage is that it offers a strategy on the basis of the current market scenario and
business perspective for the services of IT.

This stage mainly defines the plans, position, patters, and perspective which are required for a
service provider. It establishes the principles and policies which guide the whole lifecycle of IT
service.

Following are the various essential services or processes which comes under the Service
Strategy stage:

o Financial Management

o Demand Management

o Service Portfolio Management

o Business Relationship Management
o Strategy Management

Strategy Management:

The aim of this management process is to define the offerings, rivals, and capabilities of a
service provider to develop a strategy to serve customers.

According to the version 3 (V3) of ITIL, this process includes the following activities for IT
services:

Identification of Opportunities
Identification of Constraints
Organizational Positioning
Planning

g > DN oE

Execution
Following are the three sub-processes which comes under this management process:

1. Strategic Service Assessment
2. Service Strategy Definition
3. Service Strategy Execution

Financial Management:

This process helps in determining and controlling all the costs which are associated with the
services of an IT organization. It also contains the following three basic activities:

DevOps
1. Accounting 2. charging 3. Budgeting

Following are the four sub-processes which comes under this management process:

1. Financial Management Support
2. Financial Planning

3. Financial Analysis and Reporting
4. Service Invoicing

Demand Management

This management process is critical and most important in this stage. It helps the service
providers to understand and predict the customer demand for the IT services. Demand
management is a process which also work with the process of Capacity Management. Following
are basic objectives of this process:

o This process balances the resources demand and supply.
o Italso manages or maintains the quality of service.

According to the version 3 (V3) of ITIL, this process performs the following 3 activities:

1. Analysing current Usage of IT services
2. Anticipate the Future Demands for the Services of IT.
3. Influencing Consumption by Technical or Financial Means

Following are the two sub-processes which comes under this management process:

1. Demand Prognosis
2. Demand Control.

Business Relationship Management

This management process is responsible for maintaining a positive and good relationship
between the service provider and their customers. It also identifies the needs of a customer. And,
then ensure that the services are implemented by the service provider to meet those requirements.

This process has been released as a new process in the ITIL 2011.
According to the version 3 (V3) of ITIL, this process performs the following various activities:

o This process is used to represent the service provider to the customer in a positive manner.
o This process identifies the business needs of a customer.

o It also acts as a mediator if there is any case of conflicting requirements from the different
businesses.

DevOps

Following are the six sub-processes which comes under this management process:

Maintain Customer Relationships
Identify Service Requirements

Sign up Customers to standard Services
Customer Satisfaction Survey

Handle Customer Complaints

o gk~ w b

Monitor Customer Complaints.
Service Portfolio Management

This management process defines the set of customer-oriented services which are provided by a
service provider to meet the customer requirements. The primary goal of this process is to
maintain the service portfolio.

Following are the three types of services under this management process:
1. Live Services 2. Retired Services 3. Service Pipeline.
Following are the three sub-processes which comes under this management process:

1. Define and Analyse the new services or changed services of IT.
2. Approve the changes or new IT services
3. Service Portfolio review.

Service Design
It is the second phase or a stage in the lifecycle of a service in the framework of ITIL. This stage

provides the blueprint for the IT services. The main goal of this stage is to design the new IT
services. We can also change the existing services in this stage.

Following are the various essential services or processes which comes under the Service Design
stage:

o Service Level Management

o Capacity Management

o Availability Management

o Risk Management

o Service Continuity Management

o Service Catalogue Management

o Information Security Management
o Supplier Management

o Compliance Management

o Architecture Management

DevOps

Service Level Management

In this process, the Service Level Manager is the process owner. This management is fully
redesigned in the ITIL 2011.

Service Level Management deals with the following two different types of agreements:

1. Operational Level Agreement

2. Service Level Agreement

According to the version 3 (VV3) of ITIL, this process performs the following activities:

@)

(o]

It manages and reviews all the IT services to match service Level Agreements.
It determines, negotiates, and agrees on the requirements for the new or changed IT services.

Following are the four sub-processes which comes under this management process:

1
2.
3.
4

Maintenance of SLM framework

Identifying the requirements of services

Agreements sign-off and activation of the IT services
Service level Monitoring and Reporting.

Capacity Management

This management process is accountable for ensuring that the capacity of the IT service can meet
the agreed capacity in a cost-effective and timely manner. This management process is also
working with other processes of ITIL for accessing the current infrastructure of IT.

According to the version 3 (V3) of ITIL, this process performs the following activities:

It manages the performance of the resources so that the IT services can easily meet their SLA
targets.

It creates and maintains the capacity plan which aligns with the strategic plan of an organization.
It reviews the performance of a service and the capacity of current service periodically.

It understands the current and future demands of customer for the resources of IT.

Following are the four sub-processes which comes under this management process:

Ll e

Business Capacity Management
Service Capacity Management

Component Capacity Management
Capacity Management Reporting

DevOps
Availability Management

In this process, the Availability Manager is the owner. This management process has a
responsibility to ensure that the services of IT meet the agreed availability goals. This process
also confirms that the services which are new or changed does not affect the existing services.

It is used for defining, planning, and analysing all the availability aspects of the services of IT.
According to the version 3 (\V3) of ITIL, this process contains the following two activities:

1. Reactive Activity
2. Proactive Activity

Following are the four sub-processes which comes under this management process:

1. Design the IT services for availability
2. Availability Testing
3. Availability Monitoring and Reporting

Risk Management

In this process, the Risk Manager is the owner. This management process allows the risk
manager to check, assess, and control the business risks. If any risk is identified in the process of
business, the risk of that entry is created in the ITIL Risk Register.

According to the version 3 (V3) of ITIL, this process performs the following activities in the
given order:

o Itidentifies the threats.

o It finds the probability and impact of risk.
o It checks the way for reducing those risks.
o It always monitors the risk factors.

Following are the four sub-processes which comes under the Risk process:

Risk Management Support

Impact on business and Risk analysis
Monitoring the Risks.

Assessment of Required Risk Mitigation

Ll

DevOps
Service Catalogue Management (SCM)

In this process, the Service Catalogue Manager is the owner. This management process allows
the Catalogue Manager to give the huge information about all the other management processes.

It contains the services in the service operation phase which are presently active.

It is a process which certifies that the service catalogue is maintained, produced, and contains all
the accurate information for all the operational IT services.

Following are the two types or aspects of service catalogue in ITIL framework:

1. BSC or Business Service Catalogue
2. TSC or Technical Service Catalogue

Under this management process, no sub-process is specified or defined.
Service Continuity Management

In this process, the IT Service Continuity Manager is specified as the owner. It allows the
continuity manager to maintain the risks which could impact on the service of IT.

This process is bound with other processes of ITIL such as capacity and availability management
to access and plan the resources which are needed to manage the desired service level.

The ITSCM consists of the following four activities or stages:

1. Initiation

2. Requirements and Strategy
3. Implementation

4. Ongoing Operation

Information Security Management

In this process, the Information Security Manager is specified as the owner. The main aim of
this management process is to verify the confidentiality, integrity, and availability of the data,
information, and services of an IT organization.

The main objective of this process is to control the access of information in the organizations.
According to the version 3 (V3) of ITIL, this process performs the following four activities:

1.Plan 2. Implement 3. Evaluation 4. Maintain

According to the version 3 (V3) of ITIL, following are the four sub-processes which comes
under this management process:

DevOps

1. Design of Security controls

2. Validation and Testing of Security
3. Management of Security Incidents
4. Security Review

Supplier Management

In this process, the Supplier Manager plays a role as an owner. The supplier manager is
responsible to verify that all the suppliers meet their contractual commitments.

It also works with the Financial and knowledge management, which helps in selecting the
suppliers on the basis of previous knowledge.

Following are the various activities which are involved in this process:

o It manages the sub-contracted suppliers.

o It manages the relationship with the suppliers.

o It helps in implementing the supplier policy.

o It also manages the supplier policy and supports the SCMIS.
o It also manages or maintains the performance of the suppliers.

According to the version 3 (V3) of ITIL, following are the six sub-processes which comes under
this management process:

Provide the Framework of Supplier Management
Evaluation and selection of new contracts and suppliers
Establish the new contracts and suppliers

Process the standard orders

Contract and Supplier Review

© ok~ wbd Pk

Contract Renewal or Termination.

Compliance Management

In this process, the Compliance Manager plays a role as an owner. This management process
allows the compliance manager to check and address all the issues which are associated with
regulatory and non-regulatory compliances.

Under this compliance management process, no sub-process is specified or defined.

Here, the role of Compliance Manager is to certify that the guidelines, legal requirements, and
standards are being followed properly or not. This manager works in parallel with the following
three managers:

DevOps

1. Information Security Manager
2. Financial Manager
3. Service Design Manager.

Architecture Management

In this process, the Enterprise Architect plays a role as an owner. The main aim of Enterprise
Architect is to maintain and manage the architecture of the Enterprise.

This management process helps the Enterprise Architect by verifying that all the deployed
services and products operate according to the specified architecture baseline in the Enterprise.

This process also defines and manages a baseline for the future technological development.

Under this Architecture management process, no sub-process is specified or defined.

Service Transition
Service Transition is the third stage in the lifecycle of ITIL Management Framework.

The main goal of this stage is to build, test, and develop the new or modified services of IT. This
stage of service lifecycle manages the risks to the existing services. It also certifies that the value
of a business is obtained.

This stage also makes sure that the new and changed IT services meet the expectation of the
business as defined in the previous two stages of service strategy and service design in the
lifecycle.

It can also easily manage or maintains the transition of new or modified IT services from
the Service Design stage to Service Operation stage.

There are following various essential services or processes which comes under the Service
Transition stage:

o Change Management

o Release and Deployment Management

o Service Asset and Configuration Management

o Knowledge Management

o Project Management (Transition Planning and Support)
o Service Validation and Testing

o Change Evaluation

DevOps

Change Management

In this process, the Change Manager plays a role as an owner. The Change Manager controls or
manages the service lifecycle of all changes. It also allows the change Manager to implement all
the essential changes to be required with the less disruption of IT services.

This management process also allows its owner to recognize and stop any unintended change
activity. Actually, this management process is tightly bound with the process **Service Asset and
Configuration Management™'.

Following are the three types of changes which are defined by the ITIL.

1. Normal Change
2. Standard Change
3. Emergency Change

All these changes are also known as the Change Models.

According to the version 3 (V3) of ITIL, following are the eleven sub-processes which comes
under this Change management process:

Change Management Support

RFC (Request for Change) Logging and Review
Change Assessment by the Owner (Change Manager)
Assess and Implement the Emergency Changes
Assessment of change Proposals

Change Scheduling and Planning

Change Assessment by the CAB

Change Development Authorization

© 0 N o g s~ DR

Implementation or Deployment of Change
10. Minor change Deployment
11. Post Implementation Review and change closure

Release and Deployment Management

In this process, the Release Manager plays a role as an owner. Sometimes, this process is also
known as the 'ITIL Release Management Process'.

This process allows the Release Manager for managing, planning, and controlling the updates &
releases of IT services to the real environment.

DevOps

Following are the three types of releases which are defined by the ITIL.

1. Minor release
2. Major Release
3. Emergency Release

According to the version 3 (V3) of ITIL, following are the six sub-processes which comes under
this Change management process:

Release Management Support
Release Planning

Release build

Release Deployment

Early Life Support

Release Closure

ISl A

Service Asset and Configuration Management
In this process, the Configuration Manager plays a role as an owner.
This management process is a combination of two implicit processes:

1. Asset Management
2. Configuration Management

The aim of this management process is to manage the information about the (Cls) Configuration
Items which are needed to deliver the services of IT. It contains information about versions,
baselines, and the relationships between assets.

According to the version 3 (V3) of ITIL, following are the five sub-processes which comes under
this Change management process:

Planning and Management
Configuration Control and Identification
Status Accounting and reporting

Audit and Verification

Manage the Information

o~ DN E

Knowledge Management

In this process, the Knowledge Manager plays a role as an owner. This management process
helps the Knowledge Manager by analysing, storing and sharing the knowledge and the data or
information in an entire IT organization.

DevOps

Under this Knowledge Management Process, no sub-process is specified or defined.
Transition Planning and Support

In this process, the Project Manager plays a role as an owner. This management process
manages the service transition projects. Sometimes, this process is also known as the Project
Management Process.

In this process, the project manager is accountable for planning and coordinating resources to
deploy IT services within time, cost, and quality estimates.

According to the version 3 (V3) of ITIL, this process performs the following activities:

o It manages the issues and risks.

o It defines the tasks and activities which are to be performed by the separate processes.
o It makes a group with the same type of releases.

o It manages each individual deployment as a separate project.

According to the version 3 (V3) of ITIL, following are the four sub-processes which comes
under this Project management process:

Initiate the Project
Planning and Coordination of a Project
Project Control

El

Project Communication and Reporting
Service Validation and Testing

In this process, the Test Manager plays a role as an owner. The main goal of this management
process is that it verifies whether the deployed releases and the resulting IT service meets the
customer expectations.

It also checks whether the operations of IT are able to support the new IT services after the
deployment. This process allows the Test Manager to remove or delete the errors which are
observed at the first phase of the service operation stage in the lifecycle.

It provides the quality assurance for both the services and components. It also identifies the risks,
errors and issues, and then they are eliminated through this current stage.

This management process has been released in the version 3 of ITIL as a new process.

DevOps

Following are the various activities which are performed under this process:

o Validation and Test Management

o Planning and Design

o Verification of Test Plan and Design
o Preparation of the Test Environment
o Testing

o Evaluate Exit Criteria and Report

o Clean up and closure

According to the version 3 (V3) of ITIL, following are the four sub-processes which comes
under this management process:

1. Test Model Definition

2. Release Component Acquisition
3. Release Test

4. Service Acceptance Testing

Change Evaluation

In this process, the Change Manager plays a role as an owner. The goal of this management
process is to avoid the risks which are associated with the major changes for reducing the
chances of failures.

This process is started and controlled by the change management and performed by the change
manager.

Following are the various activities which are performed under this process:

o It can easily identify the risks.
o Itevaluates the effects of a change.

According to the version 3 (V3) of ITIL, following are the four sub-processes which comes
under this management process:

1. Change the Evaluation prior to Planning

2. Change the Evaluation prior to Build

3. Change the Evaluation prior to Deployment

4. Change the Evaluation prior after Deployment

DevOps

Service Operations

Service Operations is the fourth stage in the lifecycle of ITIL. This stage provides the
guidelines about how to maintain and manage the stability in services of IT, which helps in
achieving the agreed level targets of service delivery.

This stage is also responsible for monitoring the services of IT and fulfilling the requests. In this
stage, all the plans of transition and design are measured and executed for the actual efficiency. It
is also responsible for resolving the incidents and carrying out the operational tasks.

There are following various essential services or processes which comes under the stage of
Service Operations:

o Event Management

o Access Management

o Problem Management

o Incident Management

o Application Management
o Technical Management

Event Management

In this process, the IT Operations Manager plays a role as an owner. The main goal of this
management process is to make sure that the services of IT and Cls are constantly monitored. It
also helps in categorizing the events so that appropriate action can be taken if needed.

In this Management process, the process owner takes all the responsibilities of processes and
functions for the multiple service operations.

Following are the various purposes of Event Management Process:

o Itallows the IT Operations Manager to decide the appropriate action for the events.
o Italso provides the trigger for the execution of management activities of many services.
o Ithelps in providing the basis for service assurance and service improvement.

The Event Monitoring Tools are divided into two types, which are defined by the Version 3 (V3)
of ITIL:

1. Active Monitoring Tool
2. Passive Monitoring Tool

DevOps
Following are the three types of events which are defined by the ITIL:

1. Warning
2. Informational
3. Exception

According to the version 3 (V3) of ITIL, following are the four sub-processes which comes
under this management process:

1. Event Monitoring and Notification

2. First level Correlation and Event Filtering

3. Second level Correlation and Response Selection
4. Event Review and Closure.

Access Management

In this process, the Access Manager plays a role as an owner. This type of Management process
is also sometimes called as the "Identity Management’ or ‘Rights Management'.

The role of a process manager is to provide the rights to use the services for authorized users.

In this Management process, the owner of a process follows those policies and guidelines which
are defined by the (ISM) 'Information Security Management'.

Following are the six activities which come under this management process and are followed
sequentially:

Request Access

Verification

Providing Rights

Monitoring or Observing the Identity Status
Logging and Tracking Status

2L O

Restricting or Removing Rights

According to the version 3 (V3) of ITIL, following are the two sub-processes which comes under
this management process:

1. Maintenance of Catalogue of User Roles and Access profiles
2. Processing of User Access Requests.

DevOps

Problem Management

In this process, the Problem Manager plays a role as an owner. The main goal of this
management process is to maintain or manage the life cycle of all the problems which happen in
the services of IT. In the ITIL Framework, the problem is referred to as "an unknown cause or
event of one or more incident”.

It helps in finding the root cause of the problem. It also helps in maintaining the information
about the problems.

Following are the ten activities which come under this management process and are followed
sequentially. These ten activities are also called as a lifecycle of Problem Management:

Problem Detection

Problem Logging

Categorization of a Problem
Prioritization of a Problem

Investigation and Diagnosis of a Problem
Identify Workaround

Raising a Known Error Record
Resolution of a Problem

© ©®© N o s~ 0N RE

Problem Closure
10. Major Problem Review

Incident Management

In this process, the Incident Manager plays a role as an owner. The main goal of this
management process is to maintain or manage the life cycle of all the incidents which happen in
the services of IT.

An incident is a term which is defined as the failure of any Configuration Item (CI) or reduction
in the quality of services of IT.

This management process maintains the satisfaction of users by managing the qualities of IT
service. It increases the visibility of incidents.

According to the version 3 (V3) of ITIL, following are the nine sub-processes which comes
under this management process:

1. Incident Management Support

2. Incident Logging and Categorization

3. Pro-active User Information

4. First Level Support for Immediate Incident Resolution

DevOps

5. Second Level Support for Incident Resolution
6. Handling of Major Incidents

7. Incident Monitoring and Escalation

8. Closure and Evaluation of Incident

9. Management Reporting of Incident

Application Management

In this function, the Application Analyst plays a role as an owner.

This management function maintains or improves the applications throughout the entire service
lifecycle. This function plays an important and essential role in the applications and system
management.

Under this management function, no sub-process is specified or defined. But, this management
function into the following six activities or stages:

1. Define 2. Design 3. Build 4. Deploy 5. Operate 6. Optimize
Technical Management

In this function, the Technical Analyst plays a role as an owner. This function acts as standalone
in the IT organizations, which basically consists of technical people and teams. The main goal of
this function is to provide or offer the technical expertise. And, it also supports for maintaining or
managing of IT infrastructure throughout the entire lifecycle of a service.

The role of the Technical Analyst is to develop the skills, which are required to

operate the day-to-day operations of IT infrastructure. Under this management function, no sub-
process is specified or defined.

Continual Service Improvement

It is the fifth stage in the lifecycle of ITIL service. This stage helps to identify and implement
strategies, which is used for providing better services in future.

Following are the various objectives or goals under this CSI:

o Itimproves the quality services by learning from the past failures.

o It also helps in analyzing and reviewing the improvement opportunities in every phase of the
service lifecycle.

o It also evaluates the service level achievement results.

o It also describes the best guidelines to achieve the large-scale improvements in the quality of
service.

DevOps

o It also helps in describing the concept of KPI, which is a process metrics-driven for evaluating
and reviewing the performance of the services.

There are following various essential services or processes which comes under the stage of CSI:

o Service Review

o Process Evaluation

o Definition of CSI Initiatives
o Monitoring of CSI Initiatives

This stage follows the following six-step approach (pre-defined question) for planning,
reviewing, and implementing the improvement process:

Service Review

In this process, the CSI Manager plays a role as an owner. The main aim of this management
process is to review the services of business and infrastructure on a regular basis.

Sometimes, this process is also called as "ITIL Service Review and Reporting”. Under this
management process, no sub-process is specified or defined.

Process Evaluation

In this process, the Process Architect plays a role as an owner. The main aim of this
management process is to evaluate the processes of IT services on a regular basis. This process
accepts inputs from the process of Service Review and provides its output to the process
of Definition of CSI Initiatives.

In this process, the process owner is responsible for maintaining and managing the process
architecture and also ensures that all the processes of services cooperate in a seamless way.

According to the version 3 (V3) of ITIL, following are the five sub-processes which comes under
this management process:

Process Management support
Process Benchmarking
Process Maturity Assessment
Process Audit

ok~ 0D PE

Process Control and Review

DevOps
Definition of CSI Initiatives

In this process, the CSI Manager plays a role as an owner. This management process is also
called/known as a "Definition of Improvement Initiatives".

Definition of CSI Initiatives is a process, which is used for describing the particular initiatives
whose aim is to improve the qualities of IT services and processes.

In this process, the CSI Manager (process owner) is accountable for managing and maintaining
the CSI registers and also helps in taking the good decisions regarding improvement initiatives.

Under this management process, no sub-process is specified or defined.

Monitoring of CSI Initiatives

In this process, the CSI Manager plays a role as an owner. This management process is also
called as a "CSI Monitoring".

Under this management process, no sub-process is specified or defined.

Advantages of ITIL
Following are the various advantages or benefits of ITIL:

One of the best advantages of ITIL is that it helps in increasing the customer satisfaction.
It allows managers to improve the decision-making process.

It is also used for creating the clear structure of an organization.

It also helps managers by controlling the infrastructure services.

It improves the interaction between the customers and the service provider.

With the help of this framework, service delivery is also improved.

N o o~ e

It establishes the framework of ITSM for the organization.

DevOps

DevOps Process

The DevOps process flow

The DevOps process flow is all about agility and automation. Each phase in the DevOps
lifecycle focuses on closing the loop between development and operations and driving
production through continuous development, integration, testing, monitoring and feedback,
delivery, and deployment.

DevOps Process Flow (Click on image to modify

App Development Operations

L)

-
ey
- I l

{ DevOps J >

I
>

- Continuous Deployment

Agile Development

~

\
1

Continuous Monitoring and
Feedback

)

%

Made in
Lucidchart

Continuous development

Continuous development is an umbrella term that describes the iterative process for developing
software to be delivered to customers. It involves continuous integration, continuous testing,
continuous delivery, and continuous deployment.

By implementing a continuous development strategy and its associated sub-strategies, businesses
can achieve faster delivery of new features or products that are of higher quality and lower risk,
without running into significantly bandwidth barriers.

DevOps

Continuous integration

Continuous integration (CI) is a software development practice commonly applied in the DevOps
process flow. Developers regularly merge their code changes into a shared repository where
those updates are automatically tested.

Continuous integration ensures the most up-to-date and validated code is always readily
available to developers. CI helps prevent costly delays in development by allowing multiple
developers to work on the same source code with confidence, rather than waiting to integrate
separate sections of code all at once on release day.

This practice is a crucial component of the DevOps process flow, which aims to combine speed
and agility with reliability and security.

Continuous testing

Continuous testing is a verification process that allows developers to ensure the code actually
works the way it was intended to in a live environment. Testing can surface bugs and particular
aspects of the product that may need fixing or improvement, and can be pushed back to the
development stages for continued improvement.

Continuous monitoring and feedback

Throughout the development pipeline, your team should have measures in place for continuous
monitoring and feedback of the products and systems. Again, the majority of the monitoring
process should be automated to provide continuous feedback.

This process allows IT operations to identify issues and notify developers in real time.
Continuous feedback ensures higher security and system reliability as well as more agile
responses when issues do arises.

Continuous delivery

Continuous delivery (CD) is the next logical step from CI. Code changes are automatically built,
tested, and packaged for release into production. The goal is to release updates to the users
rapidly and sustainably.

To do this, CD automates the release process (building on the automated testing in CI) so that
new builds can be released at the click of a button.

DevOps
Continuous deployment

For the seasoned DevOps organization, continuous deployment may be the better option over
CD. Continuous deployment is the fully automated version of CD with no human (i.e., manual)
intervention necessary.

In a continuous deployment process, every validated change is automatically released to users.
This process eliminates the need for scheduled release days and accelerates the feedback loop.
Smaller, more frequent releases allow developers to get user feedback quickly and address issues
with more agility and accuracy.

Continuous deployment is a great goal for a DevOps team, but it is best applied after the DevOps
process has been ironed out. For continuous deployment to work well, organizations need to
have a rigorous and reliable automated testing environment. If you’re not there yet, starting with
Cl and CD will help you get there.

Continuous Delivery

Continuous delivery is an approach where teams release quality products frequently and
predictably from source code repository to production in an automated fashion.

Some organizations release products manually by handing them off from one team to the next,
which is illustrated in the diagram below. Typically, developers are at the left end of this
spectrum and operations personnel are at the receiving end. This creates delays at every hand-off
that leads to frustrated teams and dissatisfied customers. The product eventually goes live
through a tedious and error-prone process that delays revenue generation.

—— o — o — — — — —

SOURCE
REPOSITORY BUILD

°
-

CHECK-IN

\ \

DevOps

How does continuous delivery work?

A continuous delivery pipeline could have a manual gate right before production. A manual gate
requires human intervention, and there could be scenarios in your organization that require
manual gates in pipelines. Some manual gates might be questionable, whereas some could be
legitimate. One legitimate scenario allows the business team to make a last-minute release
decision. The engineering team keeps a shippable version of the product ready after every sprint,
and the business team makes the final call to release the product to all customers, or a cross-
section of the population, or perhaps to people who live in a certain geographical location.

The architecture of the product that flows through the pipeline is a key factor that determines the
anatomy of the continuous delivery pipeline. A highly coupled product architecture generates a
complicated graphical pipeline pattern where various pipelines could get entangled before
eventually making it to production.

The product architecture also influences the different phases of the pipeline and what artifacts are
produced in each phase. The pipeline first builds components - the smallest distributable and
testable units of the product. For example, a library built by the pipeline can be termed a
component. This is the component phase.

Loosely coupled components make up subsystems - the smallest deployable and runnable units.
For example, a server is a subsystem. A microservice running in a container is also an example of
a subsystem. This is the subsystem phase. As opposed to components, subsystems can be stood
up and tested.

The software delivery pipeline is a product in its own right and should be a priority for
businesses. Otherwise, you should not send revenue-generating products through it. Continuous
delivery adds value in three ways. It improves velocity, productivity, and sustainability of
software development teams.

Velocity

Velocity means responsible speed and not suicidal speed. Pipelines are meant to ship quality
products to customers. Unless teams are disciplined, pipelines can shoot faulty code to
production, only faster! Automated software delivery pipelines help organizations respond to
market changes better.

Productivity

A spike in productivity results when tedious tasks, like submitting a change request for every
change that goes to production, can be performed by pipelines instead of humans. This lets scrum
teams focus on products that wow the world, instead of draining their energy on logistics. And
that can make team members happier, more engaged in their work, and want to stay on the team
longer.

DevOps

Sustainability

Sustainability is key for all businesses, not just tech. “Software is eating the world” is no longer
true — software has already consumed the world! Every company at the end of the day, whether
in healthcare, finance, retail, or some other domain, uses technology to differentiate and
outmaneuver their competition. Automation helps reduce/eliminate manual tasks that are error-
prone and repetitive, thus positioning the business to innovate better and faster to meet their
customers' needs.

Release Management

Release management is the process of overseeing the planning, scheduling, and controlling of
software builds throughout each stage of development and across various environments. Release
management typically included the testing and deployment of software releases as well.

Release management has had an important role in the software development lifecycle since
before it was known as release management. Deciding when and how to release updates was its
own unique problem even when software saw physical disc releases with updates occurring as
seldom as every few years.

Now that most software has moved from hard and fast release dates to the software as a
service (SaaS) business model, release management has become a constant process that works
alongside development. This is especially true for businesses that have converted to utilizing
continuous delivery pipelines that see new releases occurring at blistering rates. DevOps now
plays a large role in many of the duties that were originally considered to be under the purview
of release management roles; however, DevOps has not resulted in the obsolescence of release
management.

Advantages of Release Management for DevOps

With the transition to DevOps practices, deployment duties have shifted onto the shoulders of the
DevOps teams. This doesn’t remove the need for release management; instead, it modifies the
data points that matter most to the new role release management performs.

Release management acts as a method for filling the data gap in DevOps. The planning of
implementation and rollback safety nets is part of the DevOps world, but release management
still needs to keep tabs on applications, its components, and the promotion schedule as part of
change orders. The key to managing software releases in a way that keeps pace with DevOps
deployment schedules is through automated management tools.

DevOps

Aligning business & IT goals

The modern business is under more pressure than ever to continuously deliver new features and
boost their value to customers. Buyers have come to expect that their software evolves and
continues to develop innovative ways to meet their needs. Businesses create an outside
perspective to glean insights into their customer needs. However, IT has to have an inside
perspective to develop these features.

Release management provides a critical bridge between these two gaps in perspective. It
coordinates between IT work and business goals to maximize the success of each release.
Release management balances customer desires with development work to deliver the greatest
value to users.

Minimizes organizational risk

Software products contain millions of interconnected parts that create an enormous risk of
failure. Users are often affected differently by bugs depending on their other software,
applications, and tools. Plus, faster deployments to production increase the overall risk that faulty
code and bugs slip through the cracks.

Release management minimizes the risk of failure by employing various strategies. Testing and
governance can catch critical faulty sections of code before they reach the customer. Deployment
plans ensure there are enough team members and resources to address any potential issues before
affecting users. All dependencies between the millions of interconnected parts are recognized and
understood.

Direct accelerating change

Release management is foundational to the discipline and skill of continuously producing
enterprise-quality software. The rate of software delivery continues to accelerate and is unlikely
to slow down anytime soon. The speed of changes makes release management more necessary
than ever.

The move towards CI/CD and increases in automation ensure that the acceleration will only
increase. However, it also means increased risk, unmet governance requirements, and potential
disorder. Release management helps promote a culture of excellence to scale DevOps to an
organizational level.

DevOps

Release management best practices

As DevOps increases and changes accelerate, it is critical to have best practices in place to
ensure that it moves as quickly as possible. Well-refined processes enable DevOps teams to more
effectively and efficiently. Some best practices to improve your processes include:

Define clear criteria for success

Well-defined requirements in releases and testing will create more dependable releases.
Everyone should clearly understand when things are actually ready to ship.

Well-defined means that the criteria cannot be subjective. Any subjective criteria will keep you
from learning from mistakes and refining your release management process to identify what
works best. It also needs to be defined for every team member. Release managers, quality
supervisors, product vendors, and product owners must all have an agreed-upon set of criteria
before starting a project.

Minimize downtime

DevOps is about creating an ideal customer experience. Likewise, the goal of release
management is to minimize the amount of disruption that customers feel with updates.

Strive to consistently reduce customer impact and downtime with active monitoring, proactive
testing, and real-time collaborative alerts that enable you to quickly notify you of issues during a
release. A good release manager will be able to identify any problems before the customer.

The team can resolve incidents quickly and experience a successful release when proactive
efforts are combined with a collaborative response plan.

Optimize your staging environment

The staging environment requires constant upkeep. Maintaining an environment that is as close
as possible to your production one ensures smoother and more successful releases. From QA
to product owners, the whole team must maintain the staging environment by running tests and
combing through staging to find potential issues with deployment. ldentifying problems in
staging before deploying to production is only possible with the right staging environment.
Maintaining a staging environment that is as close as possible to production will enable DevOps
teams to confirm that all releases will meet acceptance criteria more quickly.

DevOps

Strive for immutable

Whenever possible, aim to create new updates as opposed to modifying new ones. Immutable
programming drives teams to build entirely new configurations instead of changing existing
structures. These new updates reduce the risk of bugs and errors that typically happen when
modifying current configurations.

The inherently reliable releases will result in more satisfied customers and employees.
Keep detailed records

Good records management on any release/deployment artifacts is critical. From release notes to
binaries to compilation of known errors, records are vital for reproducing entire sets of assets. In
most cases, tacit knowledge is required.

Focus on the team

Well-defined and implemented DevOps procedures will usually create a more effective release
management structure. They enable best practices for testing and cooperation during the
complete delivery lifecycle.

Although automation is a critical aspect of DevOps and release management, it aims to enhance
team productivity. The more that release management and DevOps focus on decreasing human
error and improving operational efficiency, the more they’ll start to quickly release dependable
services.

Scrum

Scrum is a framework used by teams to manage work and solve problems collaboratively in
short cycles. Scrum implements the principles of Agile as a concrete set of artifacts, practices,
and roles.

The Scrum lifecycle

The diagram below details the iterative Scrum lifecycle. The entire lifecycle is completed in fixed time
periods called sprints. A sprint is typically one-to-four weeks long

DevOps

LY Sprint
Retrospective
Daily
Scrum

4
=5 =

6,

Sprint
Planning

Sprint
Execution

Product Backlog Sprint Backlog Potentially Shippable
Increment

Scrum roles

There are three key roles in Scrum: the product owner, the Scrum master, and the Scrum team.

Product owner

The product owner is responsible for what the team builds, and why they build it. The product
owner is responsible for keeping the backlog of work up to date and in priority order.

Scrum master

The Scrum master ensures that the Scrum process is followed by the team. Scrum masters are
continually on the lookout for how the team can improve, while also resolving impediments and
other blocking issues that arise during the sprint. Scrum masters are part coach, part team
member, and part cheerleader.

Scrum team

The members of the Scrum team actually build the product. The team owns the engineering of
the product, and the quality that goes with it.

Product backlog

The product backlog is a prioritized list of work the team can deliver. The product owner is
responsible for adding, changing, and reprioritizing the backlog as needed. The items at the top
of the backlog should always be ready for the team to execute on.

Plan the sprint

In sprint planning, the team chooses backlog items to work on in the upcoming sprint. The team
chooses backlog items based on priority and what they believe they can complete in the sprint.
The sprint backlog is the list of items the team plans to deliver in the sprint. Often, each item on
the sprint backlog is broken down into tasks. Once all members agree the sprint backlog is

aciievanie, tite sprift starts.

DevOps

Execute the sprint

Once the sprint starts, the team executes on the sprint backlog. Scrum does not specify how the
team should execute. The team decides how to manage its own work.

Scrum defines a practice called a daily Scrum, often called the daily standup. The daily Scrum is
a daily meeting limited to fifteen minutes. Team members often stand during the meeting to
ensure it stays brief. Each team member briefly reports their progress since yesterday, the plans
for today, and anything impeding their progress.

To aid the daily Scrum, teams often review two artifacts:

Task board

The task board lists each backlog item the team is working on, broken down into the tasks
required to complete it. Tasks are placed in To do, In progress, and Done columns based on
their status. The board provides a visual way to track the progress of each backlog item.

Todo 82h In progress 22 h
<
366 Hello World Web Site 368 Change background 367 Design welcome screen
color
I i Johnnie Mcleod 8
Jamal Hartnett 4

Jamal Hartnett 30 h
370 Standardize on form

New 369 About screen factors
= - 7§ Christie Church 12 e Jamal Hartnett 6
b | Slow response on information form not started (12 h) | in progresz (8 h)
b | Add an information form 2 not started (14 h)
b | Change initial view | not started (8 h)

Sprint burndown chart

The sprint burndown is a graph that plots the daily total of remaining work, typically shown in
hours. The burndown chart provides a visual way of showing whether the team is on track to
complete all the work by the end of the sprint.

DevOps

Sprint review and sprint retrospective

At the end of the sprint, the team performs two practices:

Sprint review

The team demonstrates what they've accomplished to stakeholders. They demo the software and
show its value.

Sprint retrospective

The team takes time to reflect on what went well and which areas need improvement. The
outcome of the retrospective are actions for the next sprint.

Increment

The product of a sprint is called the increment or potentially shippable increment. Regardless of
the term, a sprint's output should be of shippable quality, even if it's part of something bigger and
can't ship by itself. It should meet all the quality criteria set by the team and product owner.

Repeat, learn, improve

The entire cycle is repeated for the next sprint. Sprint planning selects the next items on the
product backlog and the cycle repeats. While the team executes the sprint, the product owner
ensures the items at the top of the backlog are ready to execute in the following sprint.

This shorter, iterative cycle provides the team with lots of opportunities to learn and improve. A
traditional project often has a long lifecycle, say 6-12 months. While a team can learn from a
traditional project, the opportunities are far less than a team who executes in two-week sprints,
for example.

This iterative cycle is, in many ways, the essence of Agile.

Scrum is very popular because it provides just enough framework to guide teams while giving
them flexibility in how they execute. Its concepts are simple and easy to learn. Teams can get
started quickly and learn as they go. All of this makes Scrum a great choice for teams just
starting to implement Aagile principles.

DevOps

Kanban

Kanban is a Japanese term that means signboard or billboard. An industrial engineer named
Taiichi Ohno developed Kanban at Toyota Motor Corporation to improve manufacturing
efficiency.

Although Kanban was created for manufacturing, software development shares many of the
same goals, such as increasing flow and throughput. Software development teams can improve
their efficiency and deliver value to users faster by using Kanban guiding principles and
methods.

Kanban principles

Adopting Kanban requires adherence to some fundamental practices that might vary from teams'
previous methods.

Visualize work

Understanding development team status and work progress can be challenging. Work progress
and current state is easier to understand when presented visually rather than as a list of work
items or a document.

Visualization of work is a key principle that Kanban addresses primarily through Kanban boards.
These boards use cards organized by progress to communicate overall status. Visualizing work as
cards in different states on a board helps to easily see the big picture of where a project currently
stands, as well as identify potential bottlenecks that could affect productivity.

DevOps

Use a pull model

Historically, stakeholders requested functionality by pushing work onto development teams,
often with tight deadlines. Quality suffered if teams had to take shortcuts to deliver the
functionality within the timeframe.

Kanban focuses on maintaining an agreed-upon level of quality that must be met before
considering work done. To support this model, stakeholders don't push work on teams that are
already working at capacity. Instead, stakeholders add requests to a backlog that a team pulls into
their workflow as capacity becomes available.

Impose a WIP limit

Teams that try to work on too many things at once can suffer from reduced productivity due to
frequent and costly context switching. The team is busy, but work doesn't get done, resulting in
unacceptably high lead times. Limiting the number of backlog items a team can work on at a
time helps increase focus while reducing context switching. The items the team is currently
working on are called work in progress (WIP).

Teams decide on a WIP limit, or maximum number of items they can work on at one time. A
well-disciplined team makes sure not to exceed their WIP limit. If teams exceed their WIP limits,
they investigate the reason and work to address the root cause.

Measure continuous improvement

To practice continuous improvement, development teams need a way to measure effectiveness
and throughput. Kanban boards provide a dynamic view of the states of work in a workflow, so
teams can experiment with processes and more easily evaluate impact on workflows. Teams that
embrace Kanban for continuous improvement use measurements like lead time and cycle time.

DevOps

Kanban boards

The Kanban board is one of the tools teams use to implement Kanban practices. A Kanban board
can be a physical board or a software application that shows cards arranged into columns.
Typical column names are To-do, Doing, and Done, but teams can customize the names to match
their workflow states. For example, a team might prefer to
use New, Development, Testing, UAT, and Done.

Software development-based Kanban boards display cards that correspond to product backlog
items. The cards include links to other items, such as tasks and test cases. Teams can customize
the cards to include information relevant to their process.

New { Development 2;’ Testing 2;’ Done
New item L [486 Welcome back page (M) 344 Implement a factary
.ﬂ which abstracts
— . Raisa Pokrovskaya 3
1] Wy it
(B9 532 Hello World Web Site B (o Harinett ;
A Jamal Hartnett
= M| 346 Add animated emoticons 0/1
[398 Cancel order form 7] Christie Church 3
M 405 GPS locator
a Jamal Hartnett 13 ~ -
= #® Slow respanse on form = Jamal Hartnett 8
Phone Service Web " P
v} Lhnstie Church 2
0/1

On a Kanban board, the WIP limit applies to all in-progress columns. WIP limits don't apply to
the first and last columns, because those columns represent work that hasn't started or is
completed. Kanban boards help teams stay within WIP limits by drawing attention to columns
that exceed the limits. Teams can then determine a course of action to remove the bottleneck.

Cumulative flow diagrams

A common addition to software development-based Kanban boards is a chart called a cumulative
flow diagram (CFD). The CFD illustrates the number of items in each state over time, typically
across several weeks. The horizontal axis shows the timeline, while the vertical axis shows the
number of product backlog items. Colored areas indicate the states or columns the cards are
currently in.

The CFD is particularly useful for identifying trends over time, including bottlenecks and other
disruptions to progress velocity. A good CFD shows a consistent upward trend while a team is

DevOps

working on a project. The colored areas across the chart should be roughly parallel if the team is
working within their WIP limits.

120

100

60

Jan 10 Jan 15 Jan 20 Jan 25 Jan 30 Feb 4 Feb 9

A bulge in one or more of the colored areas usually indicates a bottleneck or impediment in the
team's flow. In the following CFD, the completed work in green is flat, while the testing state in
blue is growing, probably due to a bottleneck.

120 Indication of
likely issue

100

80

60

Jan 10 Jan 15 Jan 20 Jam 25 Jan 30 Feb 4 Feb 9

Kanban and Scrum in Agile development

While broadly fitting under the umbrella of Agile development, Scrum and Kanban are quite
different.

Scrum focuses on fixed length sprints, while Kanban is a continuous flow model.
Scrum has defined roles, while Kanban doesn't define any team roles.
Scrum uses velocity as a key metric, while Kanban uses cycle time.

Teams commonly adopt aspects of both Scrum and Kanban to help them work most effectively.
Regardless of which characteristics they choose, teams can always review and adapt until they
find the best fit. Teams should start simple and not lose sight of the importance of delivering

DevOps

value regularly to users.

Kanban with GitHub

GitHub offers a Kanban experience through project boards (classic). These boards help
you organize and prioritize work for specific feature development, comprehensive roadmaps, or
release checklists. You can automate project boards (classic) to sync card status with associated
issues and pull requests.

Kanban with Azure Boards

Azure Boards provides a comprehensive Kanban solution for DevOps planning. Azure Boards
has deep integration across Azure DevOps, and can also be part of Azure Boards-GitHub

integration.

For more information, see Reasons to use Azure Boards to plan and track your work.
The Learn module Choose an Agile approach to software development provides hands-on Kanban
experience in Azure Boards.

Delivery Pipeline

A DevOps pipeline is a set of automated processes and tools that allows both developers and
operations professionals to work cohesively to build and deploy code to a production
environment.

While a DevOps pipeline can differ by organization, it typically includes

build automation/continuous integration, automation testing, validation, and reporting. It may
also include one or more manual gates that require human intervention before code is allowed to
proceed.
Continuous is a differentiated characteristic of a DevOps pipeline. This includes continuous
integration, continuous delivery/deployment (CI/CD), continuous feedback, and continuous
operations. Instead of one-off tests or scheduled deployments, each function occurs on an
ongoing basis.

Considerations for building a DevOps pipeline

Since there isn’t one standard DevOps pipeline, an organization’s design and implementation of a DevOps
pipeline depends on its technology stack, a DevOps engineer’s level of experience, budget, and more.
A DevOps engineer should have a wide-ranging knowledge of both development and operations,
including coding, infrastructure management, system administration, and DevOps toolchains.

Plus, each organization has a different technology stack that can impact the process. For
example, if your codebase is node.js, factors include whether you use a local proxy npm registry,
whether you download the source code and run “npm install™ at every stage in the pipeline, or do
it once and generate an artifact that moves through the pipeline. Or, if an application is container-
based, you need to decide to use a local or remote container registry, build the container once and

DevOps

move it through the pipeline, or rebuild it at every stage.

Merge to Integration
Trunk Tests

Regression

Commit Build Unit Tests
Tests

Staging Deploy

D R R R R R I I A FAILTEST

While every pipeline is unique, most organizations use similar fundamental components. Each
step is evaluated for success before moving on to the next stage of the pipeline. In the event of a
failure, the pipeline is stopped, and feedback is provided to the developer.

Components of a DevOps pipeline
1. Continuous integration/continuous delivery/deployment (CI/CD)

Continuous integration is the practice of making frequent commits to a common source code
repository. It’s continuously integrating code changes into existing code base so that any
conflicts between different developer’s code changes are quickly identified and relatively easy to
remediate. This practice is critically important to increasing deployment efficiency.

We believe that trunk-based development is a requirement of continuous integration. If you are
not making frequent commits to a common branch in a shared source code repository, you are
not doing continuous integration. If your build and test processes are automated but your
developers are working on isolated, long-living feature branches that are infrequently integrated
into a shared branch, you are also not doing continuous integration.

Continuous delivery ensures that the “main” or “trunk” branch of an application's source code
is always in a releasable state. In other words, if management came to your desk at 4:30 PM on a
Friday and said, “We need the latest version released right now,” that version could be deployed
with the push of a button and without fear of failure.

This means having a pre-production environment that is as close to identical to the production
environment as possible and ensuring that automated tests are executed, so that every variable
that might cause a failure is identified before code is merged into the main or trunk branch.

Continuous deployment entails having a level of continuous testing and operations that is so
robust, new versions of software are validated and deployed into a production environment
without requiring any human intervention.

This is rare and in most cases unnecessary. It is typically only the unicorn businesses who have

hundreds or thousands of developers and have many releases each day that require, or even want
to have_this level of automation

DevOps

To simplify the difference between continuous delivery and continuous deployment, think of
delivery as the FedEx person handing you a box, and deployment as you opening that box and
using what’s inside. If a change to the product is required between the time you receive the box
and when you open it, the manufacturer is in trouble!

3. Continuous feedback

The single biggest pain point of the old waterfall method of software development — and
consequently why agile methodologies were designed — was the lack of timely

feedback. When new features took months or years to go from idea to implementation, it
was almost guaranteed that the end result would be something other than what the
customer expected or wanted. Agile succeeded in ensuring that developers received faster
feedback from stakeholders. Now with DevOps, developers receive continuous feedback
not not only from stakeholders, but from systematic testing and monitoring of their code
in the pipeline.

Continuous testing is a critical component of every DevOps pipeline and one of the primary
enablers of continuous feedback. In a DevOps process, changes move continuously from
development to testing to deployment, which leads not only to faster releases, but a higher
quality product. This means having automated tests throughout your pipeline, including unit tests
that run on every build change, smoke tests, functional tests, and end-to-end tests.

Continuous monitoring is another important component of continuous feedback. A DevOps
approach entails using continuous monitoring in the staging, testing, and even development
environments. It is sometimes useful to monitor pre-production environments for anomalous
behavior, but in general this is an approach used to continuously assess the health and
performance of applications in production.

Numerous tools and services exist to provide this functionality, and this may involve anything
from monitoring your on-premise or cloud infrastructure such as server resources, networking,
etc. or the performance of your application or its API interfaces.

3. Continuous operations

Continuous operations is a relatively new and less common term, and definitions vary. One
way to interpret it is as “continuous uptime”. For example in the case of a blue/green deployment
strategy in which you have two separate production environments, one that is “blue” (publicly
accessible) and one that is “green” (not publicly accessible). In this situation, new code would be
deployed to the green environment, and when it was confirmed to be functional then a switch
would be flipped (usually on a load-balancer) and traffic would switch from the “blue” system to
the “green” system. The result is no downtime for the end-users.

Another way to think of Continuous operations is as continuous alerting. This is the notion that
engineering staff is on-call and notified if any performance anomalies in the application or
infrastructure occur. In most cases, continuous alerting goes hand in hand with continuous
monitoring.

DevOps

One of the main goals of DevOps is to improve the overall workflow in the software
development life cycle (SDLC). The flow of work is often described as WIP or work in progress.
Improving WIP can be accomplished by a variety of means. In order to effectively remove
bottlenecks that decrease the flow of WIP, one must first analyze the people, process, and
technology aspects of the entire SDLC.

These are the 11 bottlenecks that have the biggest impact on the flow of work.

1. Inconsistent Environments

In almost every company | have worked for or consulted with, a huge amount of
waste exists because the various environments (dev, test, stage, prod) are configured
differently. | call this “environment hell”. How many times have you heard a
developer say “it worked on my laptop”? As code moves from one environment to the
next, software breaks because of the different configurations within each environment.
| have seen teams waste days and even weeks fixing bugs that are due to
environmental issues and are not due to errors within the code. Inconsistent
environments are the number one killer of agility.

Create standard infrastructure blueprints and implement continuous delivery to ensure all
environments are identical.

2. Manual Intervention

Manual intervention leads to human error and non-repeatable processes. Two areas where
manual intervention can disrupt agility the most are in testing and deployments. If testing is
performed manually, it is impossible to implement continuous integration and continuous
delivery in an agile manner (if at all). Also, manual testing increases the chance of producing
defects, creating unplanned work. When deployments are performed fully or partially manual,
the risk of deployment failure increases significantly which lowers qualityand reliability and
increases unplanned work.

Automate the build and deployment processes and implement a test automation
methodology like test driven development (TDD)

3. SDLC Maturity
The maturity of a team’s software development lifecycle (SDLC) has a direct impact on their

ability to deliver software. There is nothing new here; SDLC maturity has plagued IT for
decades. In the age of DevOps, where we strive to deliver software in shorter increments with a
high degree of reliability and quality, it is even more critical for a team to have a mature process.

Some companies | visit are still practicing waterfall methodologies. These companies struggle
with DevOps because they don’t have any experience with agile. But not all companies that
practice agile do it well. Some are early in their agile journey, while others have implemented
what I call “Wagile”: waterfall tendencies with agile terminology sprinkled in. I have seen teams
who have implemented Kanban but struggle with the prioritization and control of WIP. | have
seen scrum teams struggle to complete the story points that they promised. It takes time to get

DevOps

really good at agile.

Invest in training and hold blameless post mortems to continously solicit feedback and
improve.

4. Legacy Change Management Processes

Many companies have had their change management processes in place for years and are
comfortable with it. The problem is that these processes were created back when companies were
deploying and updating back office solutions or infrastructure changes that happened
infrequently. Fast forward to today’s environments where applications are made of many small
components or micro services that can be changed and deployed quickly, now all of a sudden the
process gets in the way.

Many large companies with well-established ITIL processes struggle with DevOps. In these
environments | have seen development teams implement highly automated CI/CD processes only
to stop and wait for weekly manual review gates. Sometimes these teams have to go through
multiple reviews (security, operations, code, and change control). What is worse is that there is
often a long line to wait in for reviews, causing a review process to slip another week. Many of
these reviews are just rubber stamp approvals that could be entirely avoided with some minor
modifications to the existing processes.

Companies with legacy processes need to look at how they can modernize processes to be
more agile instead of being the reason why their company can’t move fast enough.

5. Lack of Operational Maturity

Moving to a DevOps model often requires a different approach to operations. Some companies
accustomed to supporting back office applications that change infrequently. It requires a different
mindset to support software delivered as a service that is always on, and deployed frequently.
With DevOps, operations is no longer just something Ops does. Developers now must have tools
so they can support applications. Often | encounter companies that only monitor infrastructure.
In the DevOps model developers need access to logging solutions, application performance
monitoring (APM) tools, web and mobile analytics, advanced alerting and notification solutions.
Processes like change management, problem management, request management, incident
management, access management, and many others often need to be modernized to allow for
more agility and transparency. With DevOps, operations is a team sport.

Assess your operational processes, tools, and organization and modernize to increase
agility and transparency.

6. Outdated testing practices

Too often | see clients who have a separate QA department that is not fully integrated with the
development team. The code is thrown over the wall and then testing begins. Bugs are detected
and sent back to developers who then have to quickly fix, build, and redeploy.

DevOps

This process is repeated until there is no time remaining and teams are left to agree on what
defects they can tolerate and promote to production. This is a death spiral in action. With every
release, they introduce more technical debt into the system lowering its quality and reliability,
and increasing unplanned work. There is a better way.

The better way is to block bugs from moving forward in the development process. This is
accomplished by building automated test harnesses and by automatically failing the build if any
of the tests fail. This is what continuous integration is designed for. Testing must be part of the
development process, not a handoff that is performed after development. Developers need to play
a bigger part in testing and testers need to play a bigger part in development. This strikes fear in
some testers and not all testers can make the transition.

Quality is everyone’s responsibility, not just the QA team.
7. Automating waste

A very common pattern | run into is the automation of waste. This occurs when a team declares
itself a DevOps team or a person declares themselves a DevOps engineer and immediately starts
writing hundreds or thousands of lines of Chef or Puppet scripts to automate their existing
processes. The problem is that many of the existing processes are bottlenecks and need to be
changed. Automating waste is like pouring concrete around unbalanced support beams. It makes
bad design permanent.

Automate processes after the bottlenecks are removed.
8. Competing or Misaligned Incentives and Lack of Shared Ownership

This bottleneck has plagued IT for years but is more profound when attempting to be agile. In
fact, this issue is at the heart of why DevOps came to be in the first place. Developers are
incented for speed to market and operations is incented to ensure security, reliability, availability,
and governance. The incentives are conflicting. Instead, everyone should be incented for
customer satisfaction, with a high degree of agility, reliability, and quality (which is what
DevOps is all about). If every team is not marching towards the same goals, then there will be a
never-ending battle of priorities and resources. If all teams’ goals are in support of the goals I
mentioned above, and everyone is measured in a way that enforces those incentives, then
everyone wins --- especially the customer.

Work with HR to help change the reward and incentives to foster the desired behaviors.
9. Dependence on Heroic Efforts

When heroic efforts are necessary to succeed, then a team is in a dark place. This often means
working insane hours, being reactive instead of proactive, and being highly reliant on luck and
chance. The biggest causes of this are a lack of automation, too much tribal knowledge,
immature operational processes, and even poor management. The culture of heroism often leads

DevOps

to burnout, high turnover, and poor customer satisfaction.

If your organization relies on heroes, find out what the root causes are that creates these
dependencies and fix them fast.

10. Governance as an Afterthought

When DevOps starts as a grassroots initiative there is typically little attention paid to the
question “how does this scale?” It is much easier to show some success in a small isolated team
and for an initial project. But once the DevOps initiative starts scaling to larger projects running
on way more infrastructures or once it starts spreading to other teams, it can come crashing down
without proper governance in place. This is very similar to building software in the cloud. How
many times have you seen a small team whip out their credit card and build an amazing solution
on AWS? Easy to do, right? Then a year later the costs are spiraling out of control as they lose
sight of how many servers are in use and what is running on them. They all have different
versions of third party products and libraries on them. Suddenly, it is not so easy anymore.

With DevOps, the same thing can happen without the appropriate controls in place. Many
companies start their DevOps journey with a team of innovators and are able to score some
major wins. But when they take that model to other teams it all falls down. There are numerous
reasons that this happens. Is the organization ready to manage infrastructure and operations
across multiple teams? Are there common shared services available like central logging and
monitoring solutions or is each team rolling their own? Is there a common security architecture
that everyone can adhere to? Can the teams provision their own infrastructure from a self-service
portal or are they all dependent on a single queue ticketing system? I could go on but you get the
point. It is easier to cut some corners when there is one team to manage but to scale we must
look at the entire service catalog. DevOps will not scale without the appropriate level of
governance in place.

Assign an owner and start building a plan for scaling DevOps across the organization.
11. Limited to No Executive Sponsorship

The most successful companies have top level support for their DevOps initiative. One of my
clients is making a heavy investment in DevOps training and it will run a large number of
employees through the program. Companies with top level support make DevOps a priority.
They break down barriers, drive organizational change, improve incentive plans, communicate
“Why” they are doing Devops, and fund the initiative. When there is no top level support,
DevOps becomes much more challenging and often becomes a new silo. Don’t let this stop you
from starting a grass roots initiative. Many sponsored initiatives started as grassroots initiatives.
These grassroots teams measured their success and pitched their executives. Sometimes when
executives see the results and the ROI they become the champions for furthering the cause. My
point is, it is hard to get dev and ops to work together with common goals when it is not
supported at the highest levels. It is difficult to transform a company to DevOps if it is not
supported at the highest levels.

DevOps
Unit 2

Software Development Life Cycle models and
Devops

Software Development Life Cycle models
Aaile
Lean
Waterfall
Iterative

Spiral
DevOps

Each of these approaches varies in some ways from the others, but all have a common purpose:
to help teams deliver high-quality software as quickly and cost-effectively as possible.

1. Agile

The Agile model first emerged in 2001 and has since become the de facto industry standard.
Some businesses value the Agile methodology so much that they apply it to other types of
projects, including nontech initiatives.

In the Agile model, fast failure is a good thing. This approach produces ongoing release cycles,
each featuring small, incremental changes from the previous release. At each iteration, the
product is tested. The Agile model helps teams identify and address small issues on projects
before they evolve into more significant problems, and it engages business stakeholders to give
feedback throughout the development process.

As part of their embrace of this methodology, many teams also apply an Agile framework known
as Scrum to help structure more complex development projects. Scrum teams work in sprints,
which usually last two to four weeks, to complete assigned tasks. Daily Scrum meetings help the
whole team monitor progress throughout the project. And the ScrumMaster is tasked with
keeping the team focused on its goal.

2. Lean

The Lean model for software development is inspired by "lean" manufacturing practices and
principles. The seven Lean principles (in this order) are: eliminate waste, amplify learning,
decide as late as possible, deliver as fast as possible, empower the team, build in integrity and see
the whole.

The Lean process is about working only on what must be worked on at the time, so there’s no
room for multitasking. Project teams are also focused on finding opportunities to cut waste at
every turn throughout the SDLC process, from dropping unnecessary meetings to reducing
documentation.

DevOps

The Agile model is actually a Lean method for the SDLC, but with some notable differences.
One is how each prioritizes customer satisfaction: Agile makes it the top priority from the outset,
creating a flexible process where project teams can respond quickly to stakeholder feedback
throughout the SDLC. Lean, meanwhile, emphasizes the elimination of waste as a way to create
more overall value for customers — which, in turn, helps to enhance satisfaction.

3. Waterfall

Some experts argue that the Waterfall model was never meant to be a process model for real
projects. Regardless, Waterfall is widely considered the oldest of the structured SDLC
methodologies. It’s also a very straightforward approach: finish one phase, then move on to the
next. No going back. Each stage relies on information from the previous stage and has its own
project plan.

The downside of Waterfall is its rigidity. Sure, it’s easy to understand and simple to manage. But
early delays can throw off the entire project timeline. With little room for revisions once a stage
is completed, problems can’t be fixed until you get to the maintenance stage. This model doesn’t
work well if flexibility is needed or if the project is long-term and ongoing.

Even more rigid is the related Verification and Validation model — or V-shaped model. This
linear development methodology sprang from the Waterfall approach. It’s characterized by a
corresponding testing phase for each development stage. Like Waterfall, each stage begins only
after the previous one has ended. This SDLC model can be useful, provided your project has no
unknown requirements.

4. lterative

The Iterative model is repetition incarnate. Instead of starting with fully known requirements,
project teams implement a set of software requirements, then test, evaluate and pinpoint further
requirements. A new version of the software is produced with each phase, or iteration. Rinse and
repeat until the complete system is ready.

Advantages of the Iterative model over other common SDLC methodologies is that it produces a
working version of the project early in the process and makes it less expensive to implement
changes. One disadvantage: Repetitive processes can consume resources quickly.

One example of an Iterative model is the Rational Unified Process (RUP), developed by IBM’s
Rational Software division. RUP is a process product, designed to enhance team productivity for
a wide range of projects and organizations.

RUP divides the development process into four phases:

+ Inception, when the idea for a project is set

+ Elaboration, when the project is further defined and resources are evaluated
+ Construction, when the project is developed and completed

+ Transition, when the product is released

DevOps

Each phase of the project involves business modeling, analysis and design, implementation,
testing, and deployment.

5. Spiral

One of the most flexible SDLC methodologies, Spiral takes a cue from the Iterative model and
its repetition. The project passes through four phases (planning, risk analysis, engineering and
evaluation) over and over in a figurative spiral until completed, allowing for multiple rounds of
refinement.

The Spiral model is typically used for large projects. It enables development teams to build a
highly customized product and incorporate user feedback early on. Another benefit of this SDLC
model is risk management. Each iteration starts by looking ahead to potential risks and figuring
out how best to avoid or mitigate them.

6. DevOps

The DevOps methodology is a relative newcomer to the SDLC scene. It emerged from two
trends: the application of Agile and Lean practices to operations work, and the general shift in
business toward seeing the value of collaboration between development and operations staff at
all stages of the SDLC process.

In a DevOps model, Developers and Operations teams work together closely — and sometimes
as one team — to accelerate innovation and the deployment of higher-quality and more reliable
software products and functionalities. Updates to products are small but frequent. Discipline,
continuous feedback and process improvement, and automation of manual development
processes are all hallmarks of the DevOps model.

Amazon Web Services describes DevOps as the combination of cultural philosophies, practices,
and tools that increases an organization’s ability to deliver applications and services at high
velocity, evolving and improving products at a faster pace than organizations using traditional
software development and infrastructure management processes. So like many SDLC models,
DevOps is not only an approach to planning and executing work, but also a philosophy that
demands a nontraditional mindset in an organization.

Choosing the right SDLC methodology for your software development project requires careful
thought. But keep in mind that a model for planning and guiding your project is only one
ingredient for success. Even more important is assembling a solid team of skilled talent
committed to moving the project forward through every unexpected challenge or setback.

DevOps Lifecycle

DevOps defines an agile relationship between operations and Development. It is a process that is
practiced by the development team and operational engineers together from beginning to the
final stage of the product.

DevOps

Development

Operations Integration

DevOps

Deployment Testing

Lidecycle

Feedback Monitering

Learning DevOps is not complete without understanding the DevOps lifecycle phases. The
DevOps lifecycle includes seven phases as given below:

1) Continuous Development

This phase involves the planning and coding of the software. The vision of the project is decided
during the planning phase. And the developers begin developing the code for the application.

There are no DevOps tools that are required for planning, but there are several tools for
maintaining the code.

2) Continuous Integration

This stage is the heart of the entire DevOps lifecycle. It is a software development practice in
which the developers require to commit changes to the source code more frequently. This may be
on a daily or weekly basis. Then every commit is built, and this allows early detection of
problems if they are present. Building code is not only involved compilation, but it also
includes unit testing, integration testing, code review, and packaging.

The code supporting new functionality is continuously integrated with the existing code.
Therefore, there is continuous development of software. The updated code needs to be integrated
continuously and smoothly with the systems to reflect changes to the end-users.

Commit Build Test Stage Deploy Dev/QA

Production

Jenkins is a popular tool used in this phase. Whenever there is a change in the Git repository,
then Jenkins fetches the updated code and prepares a build of that code, which is an executable
file in the form of war or jar. Then this build is forwarded to the test server or the production
server.

3) Continuous Testing

This phase, where the developed software is continuously testing for bugs. For constant testing,
automation testing tools such as TestNG, JUnit, Selenium, etc are used. These tools allow QAs
to test multiple code-bases thoroughly in parallel to ensure that there is no flaw in the
functionality. In this phase, Docker Containers can be used for simulating the test environment.

TEST REPORTS

Selenium does the automation testing, and TestNG generates the reports. This entire testing
phase can automate with the help of a Continuous Integration tool called Jenkins.

Automation testing saves a lot of time and effort for executing the tests instead of doing this
manually. Apart from that, report generation is a big plus. The task of evaluating the test cases
that failed in a test suite gets simpler. Also, we can schedule the execution of the test cases at
predefined times. After testing, the code is continuously integrated with the existing code.

DevOps
4) Continuous Monitoring

Monitoring is a phase that involves all the operational factors of the entire DevOps process,
where important information about the use of the software is recorded and carefully processed to
find out trends and identify problem areas. Usually, the monitoring is integrated within the
operational capabilities of the software application.

It may occur in the form of documentation files or maybe produce large-scale data about the
application parameters when it is in a continuous use position. The system errors such as server
not reachable, low memory, etc are resolved in this phase. It maintains the security and
availability of the service.

5) Continuous Feedback

The application development is consistently improved by analyzing the results from the
operations of the software. This is carried out by placing the critical phase of constant feedback
between the operations and the development of the next version of the current software
application.

The continuity is the essential factor in the DevOps as it removes the unnecessary steps which
are required to take a software application from development, using it to find out its issues and
then producing a better version. It kills the efficiency that may be possible with the app and
reduce the number of interested customers.

6) Continuous Deployment

In this phase, the code is deployed to the production servers. Also, it is essential to ensure that
the code is correctly used on all the servers.

Team

Team SCMANVCS SCMANCS Beploy-prod

DevOps

The new code is deployed continuously, and configuration management tools play an essential
role in executing tasks frequently and quickly. Here are some popular tools which are used in this
phase, such as Chef, Puppet, Ansible, and SaltStack.

Containerization tools are also playing an essential role in the deployment
phase. Vagrant and Docker are popular tools that are used for this purpose. These tools help to
produce consistency across development, staging, testing, and production environment. They
also help in scaling up and scaling down instances softly.

Containerization tools help to maintain consistency across the environments where the
application is tested, developed, and deployed. There is no chance of errors or failure in the
production environment as they package and replicate the same dependencies and packages used
in the testing, development, and staging environment. It makes the application easy to run on
different computers.

Devops influence on Architecture

Introducing software architecture
DevOps Model

The DevOps model goes through several phases governed by cross-discipline teams.
Those phases are as follows:

Planning,ldentify,andTrack Using the latest in project management tools and agile practices,
track ideas and workflows visually. This gives all important stakeholders a clear pathway to
prioritization and better results. With better oversight, project managers can ensure teams are on
the right track and aware of potential obstacles and pitfalls. All applicable teams can better work
together to solve any problems in the development process.

Development Phase Version control systems help developers continuously code, ensuring one
patch connects seamlessly with the master branch. Each complete feature triggers the developer
to submit a request that, if approved, allows the changes to replace existing code. Development is
ongoing.

Testing Phase After a build is completed in development, it is sent to QA testing. Catching bugs
is important to the user experience, in DevOps bug testing happens early and often. Practices like
continuous integration allow developers to use automation to build and test as a cornerstone of
continuous development.

DevOps

Deployment Phase In the deployment phase, most businesses strive to achieve continuous
delivery. This means enterprises have mastered the art of manual deployment. After bugs have
been detected and resolved, and the user experience has been perfected, a final team is
responsible for the manual deployment. By contrast, continuous deployment is a DevOps
approach that automates deployment after QA testing has been completed.

Management Phase During the post-deployment management phase, organizations monitor
and maintain the DevOps architecture in place. This is achieved by reading and interpreting data
from users, ensuring security, availability and more.

Benefits of DevOps Architecture
A properly implemented DevOps approach comes with a number of benefits. These include the
following that we selected to highlight:

Decrease Cost Of primary concern for businesses is operational cost, DevOps helps
organizations keep their costs low. Because efficiency gets a boost with DevOps practices,
software production increases and businesses see decreases in overall cost for production.

IncreasedProductivity and ReleaseTime With shorter development cycles and streamlined
processes, teams are more productive and software is deployed more quickly.

Customers are Served User experience, and by design, user feedback is important to the
DevOps process. By gathering information from clients and acting on it, those who practice
DevOps ensure that clients wants and needs get honored, and customer satisfaction reaches new
highs

It Gets More Efficient with TimeDevOps simplifies the development lifecycle, which in
previous iterations had been increasingly complex. This ensures greater efficiency throughout a
DevOps organization, as does the fact that gathering requirements also gets easier. In DevOps,
requirements gathering is a streamlined process, a culture of accountability, collaboration and
transparency makes requirements gathering a smooth going team effort where no stone is left
unturned.

The monolithic scenario

Monolithic software is designed to be self-contained, wherein the program’'s components or
functions are tightly coupled rather than loosely coupled, like in modular software programs. In a
monolithic architecture, each component and its associated components must all be present for
code to be executed or compiled and for the software to run.

Monolithic applications are single-tiered, which means multiple components are combined into
one large application. Consequently, they tend to have large codebases, which can be
cumbersome to manage over time.

DevOps

Furthermore, if one program component must be updated, other elements may also require
rewriting, and the whole application has to be recompiled and tested. The process can be time-
consuming and may limit the agility and speed of software development teams. Despite these
issues, the approach is still in use because it does offer some advantages. Also, many early
applications were developed as monolithic software, so the approach cannot be completely
disregarded when those applications are still in use and require updates.

What is monolithic architecture?

A monolithic architecture is the traditional unified model for the design of a software program.
Monolithic, in this context, means "composed all in one piece." According to the Cambridge
dictionary, the adjective monolithic also means both "too large™ and "unable to be changed."

Benefits of monolithic architecture

There are benefits to monolithic architectures, which is why many applications are still created
using this development paradigm. For one, monolithic programs may have better throughput than
modular applications. They may also be easier to test and debug because, with fewer elements,
there are fewer testing variables and scenarios that come into play.

At the beginning of the software development lifecycle, it is usually easier to go with the
monolithic architecture since development can be simpler during the early stages. A single
codebase also simplifies logging, configuration management, application performance
monitoring and other development concerns. Deployment can also be easier by copying the
packaged application to a server. Finally, multiple copies of the application can be placed behind
a load balancer to scale it horizontally.

That said, the monolithic approach is usually better for simple, lightweight applications. For
more complex applications with frequent expected code changes or evolving scalability
requirements, this approach is not suitable.

Drawbacks of monolithic architecture

Generally, monolithic architectures suffer from drawbacks that can delay application
development and deployment. These drawbacks become especially significant when the
product's complexity increases or when the development team grows in size.

The code base of monolithic applications can be difficult to understand because they may be
extensive, which can make it difficult for new developers to modify the code to meet changing
business or technical requirements. As requirements evolve or become more complex, it becomes
difficult to correctly implement changes without hampering the quality of the code and affecting
the overall operation of the application.

DevOps

Following each update to a monolithic application, developers must compile the entire codebase
and redeploy the full application rather than just the part that was updated. This makes
continuous or regular deployments difficult, which then affects the application's and team's

agility.

The application's size can also increase startup time and add to delays. In some cases, different
parts of the application may have conflicting resource requirements. This makes it harder to find
the resources required to scale the application.

Architecture Rules of Thumb

1.

There is always a bottleneck. Even in a serverless system or one you think will
“infinitely” scale, pressure will always be created elsewhere. For example, if your
API scales, does your database also scale? If your database scales, does your email
system? In modern cloud systems, there are so many components that scalability is
not always the goal. Throttling systems are sometimes the best choice.

Your data model is linked to the scalability of your application. If your table
design is garbage, your queries will be cumbersome, so accessing data will be slow.
When designing a database (NoSQL or SQL), carefully consider your access
pattern and what data you will have to filter. For example, with DynamoDB, you
need to consider what “Key” you will have to retrieve data. If that field is not set as
the primary or sort key, it will force you to use a scan rather than a faster query.
Scalability is mainly linked with cost. When you get to a large scale, consider
systems where this relationship does not track linearly. If, like many, you have
systems on RDS and ECS; these will scale nicely. But the downside is that as you
scale, you will pay directly for that increased capacity. It’s common for these
workloads to cost $50,000 per month at scale. The solution is to migrate these
workloads to serverless systems proactively.

Favour systems that require little tuning to make fast. The days of configuring
your own servers are over. AWS, GCP and Azure all provide fantastic systems that
don’t need expert knowledge to achieve outstanding performance.

Use infrastructure as code. Terraform makes it easy to build repeatable and version-
controlled infrastructure. It creates an ethos of collaboration and reduces errors by
defining them in code rather than “missing” a critical checkbox.

Use a PaaS if you’re at less than 100k MAUs. With Heroku, Fly and Render,
there is no need to spend hours configuring AWS and messing around with your
application build process. Platform-as-a-service should be leveraged to deploy
quickly and focus on the product.

Outsource systems outside of the market you are in. Don’t roll your own CMS
or Auth, even if it costs you tonnes. If you go to the pricing page of many third-
party systems, for enterprise-scale, the cost is insane - think $10,000 a month for an
authentication system! “I could make that in a week,” you think. That may be true,

| - R | 2y -1) 1 " Hy () i " !
YUl TU JOUTSIT U CUIISIUCT UTC TUTTYTICTTIT TTTAammeTIarve ditu — urc Uire yuu Ldimiut SPTTiu UTT

DevOps
your core product. Where possible, buy off the shelf.

8. You have three levers, quality, cost and time. You have to balance them
accordingly. You have, at best, 100 “points” to distribute between the three. Of
course, you always want to maintain quality, so the other levers to pull are time and
cost.

9. Design your APIs as open-source contracts. Leveraging tools such as
OpenAPI/Swagger (not a sponsor, just a fan!) allows you to create ‘“contracts”
between your front-end and back-end teams. This reduces bugs by having the shape
of the request and responses agreed upon ahead of time.

10. Start with a simple system first (Gall’s law). Galls’ law states, “all complex
systems that work evolved from simpler systems that worked. If you want to build a
complex system that works, build a simpler system first, and then improve it over
time.”. You should avoid going after shiny technology when creating a new
software architecture. Focus on simple, proven systems. S3 for your static website,
ECS for your API, RDS for your database, etc. After that, you can chop and change
your workload to add these fancy technologies into the mix.

The Separation of Concerns

Separation of concerns is a software architecture design pattern/principle for separating an
application into distinct sections, so each section addresses a separate concern. At its essence,
Separation of concerns is about order. The overall goal of separation of concerns is to establish a
well-organized system where each part fulfills a meaningful and intuitive role while maximizing
its ability to adapt to change.

How is separation of concerns achieved

Separation of concerns in software architecture is achieved by the establishment of boundaries. A
boundary is any logical or physical constraint which delineates a given set of responsibilities.
Some examples of boundaries would include the use of methods, objects, components, and
services to define core behavior within an application; projects, solutions, and folder hierarchies
for source organization; application layers and tiers for processing organization.

Separation of concerns - advantages

Separation of Concerns implemented in software architecture would have several advantages:

1. Lack of duplication and singularity of purpose of the individual components render the overall
system easier to maintain.

2. The system becomes more stable as a byproduct of the increased maintainability.

3. The strategies required to ensure that each component only concerns itself with a single set of

cohesive responsibilities often result in natural extensibility points.

4. The decoupling which results from requiring components to focus on a single purpose leads to
components which are more easily reused in other systems, or different contexts within the same
system.

DevOps

The increase in maintainability and extensibility can have a major impact on the marketability
and adoption rate of the system.

There are several flavors of Separation of Concerns. Horizontal Separation, Vertical Separation,
Data Separation and Aspect Separation. In this article, we will restrict ourselves to Horizontal
and Aspect separation of concern.

Handling database migrations

Introduction

Database schemas define the structure and interrelations of data managed by relational databases.
While it is important to develop a well-thought out schema at the beginning of your projects,
evolving requirements make changes to your initial schema difficult or impossible to avoid. And
since the schema manages the shape and boundaries of your data, changes must be carefully
applied to match the expectations of the applications that use it and avoid losing data currently
held by the database system.

What are database migrations?

Database migrations, also known as schema migrations, database schema migrations, or simply
migrations, are controlled sets of changes developed to modify the structure of the objects within
a relational database. Migrations help transition database schemas from their current state to a
new desired state, whether that involves adding tables and columns, removing elements, splitting
fields, or changing types and constraints.

Migrations manage incremental, often reversible, changes to data structures in a programmatic
way. The goals of database migration software are to make database changes repeatable,
shareable, and testable without loss of data. Generally, migration software produces artifacts that
describe the exact set of operations required to transform a database from a known state to the
new state. These can be checked into and managed by normal version control software to track
changes and share among team members.

While preventing data loss is generally one of the goals of migration software, changes that drop
or destructively modify structures that currently house data can result in deletion. To cope with
this, migration is often a supervised process involving inspecting the resulting change scripts and
making any modifications necessary to preserve important information.

DevOps

Database
server (source)) Database
¥ server (target)
Database ’ Database
server (source) migration service
v .. Database
Database server (target)

server (source)

What are the advantages of migration tools?

Migrations are helpful because they allow database schemas to evolve as requirements change.
They help developers plan, validate, and safely apply schema changes to their environments.
These compartmentalized changes are defined on a granular level and describe the
transformations that must take place to move between various "versions" of the database.

In general, migration systems create artifacts or files that can be shared, applied to multiple
database systems, and stored in version control. This helps construct a history of modifications to
the database that can be closely tied to accompanying code changes in the client applications.
The database schema and the application's assumptions about that structure can evolve in
tandem.

Some other benefits include being allowed (and sometimes required) to manually tweak the
process by separating the generation of the list of operations from the execution of them. Each
change can be audited, tested, and modified to ensure that the correct results are obtained while
still relying on automation for the majority of the process.

State based migration

State based migration software creates artifacts that describe how to recreate the desired
database state from scratch. The files that it produces can be applied to an empty relational
database system to bring it fully up to date.

After the artifacts describing the desired state are created, the actual migration involves
comparing the generated files against the current state of the database. This process allows the
software to analyze the difference between the two states and generate a new file or files to bring
the current database schema in line with the schema described by the files. These change
operations are then applied to the database to reach the goal state.

DevOps

What to keep in mind with state based migrations

Like almost all migrations, state based migration files must be carefully examined by
knowledgeable developers to oversee the process. Both the files describing the desired final state
and the files that outline the operations to bring the current database into compliance must be
reviewed to ensure that the transformations will not lead to data loss. For example, if the
generated operations attempt to rename a table by deleting the current one and recreating it with
its new name, a knowledgable human must recognize this and intervene to prevent data loss.

State based migrations can feel rather clumsy if there are frequent major changes to the database
schema that require this type of manual intervention. Because of this overhead, this technique is
often better suited for scenarios where the schema is well-thought out ahead of time with
fundamental changes occurring infrequently.

However, state based migrations do have the advantage of producing files that fully describe the
database state in a single context. This can help new developers onboard more quickly and works
well with workflows in version control systems since conflicting changes introduced by code
branches can be resolved easily.

Change based migrations

The major alternative to state based migrations is a change based migration system. Change
based migrations also produce files that alter the existing structures in a database to arrive at the
desired state. Rather than discovering the differences between the desired database state and the
current one, this approach builds off of a known database state to define the operations to bring it
into the new state. Successive migration files are produced to modify the database further,
creating a series of change files that can reproduce the final database state when applied
consecutively.

Because change based migrations work by outlining the operations required from a known
database state to the desired one, an unbroken chain of migration files is necessary from the
initial starting point. This system requires an initial state, which may be an empty database
system or a files describing the starting structure, the files describing the operations that take the
schema through each transformation, and a defined order which the migration files must be
applied.

What to keep in mind with change based migrations

Change based migrations trace the provenance of the database schema design back to the original
structure through the series of transformation scripts that it creates. This can help illustrate the
evolution of the database structure, but is less helpful for understanding the complete state of the
database at any one point since the changes described in each file modify the structure produced
by the last migration file.

DevOps

Since the previous state is so important to change based systems, the system often uses a
database within the database system itself to track which migration files have been applied. This
helps the software understand what state the system is currently in without having to analyze the
current structure and compare it against the desired state, known only by compiling the entire
series of migration files.

The disadvantage of this approach is that the current state of the database isn't described in the
code base after the initial point. Each migration file builds off of the previous one, so while the
changes are nicely compartmentalized, the entire database state at any one point is much harder
to reason about. Furthermore, because the order of operations is so important, it can be more
difficult to resolve conflicts produced by developers making conflicting changes.

Change based systems, however, do have the advantage of allowing for quick, iterative changes
to the database structure. Instead of the time intensive process of analyzing the current state of
the database, comparing it to the desired state, creating files to perform the necessary operations,
and applying them to the database, change based systems assume the current state of the database
based on the previous changes. This generally makes changes more light weight, but does make
out of band changes to the database especially dangerous since migrations can leave the target
systems in an undefined state.

Microservices

Micro services, often referred to as Micro services architecture, is an architectural approach that
involves dividing large applications into smaller, functional units capable of functioning and
communicating independently.

This approach arose in response to the limitations of monolithic architecture. Because monoliths
are large containers holding all software components of an application, they are severely limited:
inflexible, unreliable, and often develop slowly.

With micro services, however, each unit is independently deployable but can communicate with
each other when necessary. Developers can now achieve the scalability, simplicity, and flexibility
needed to create highly sophisticated software.

DevOps

How does microservices architecture work?

28s

Clients
1
&
e = = S, e
. API Gateway
e e e oy o o - :
- 1 .v i - o
' ' ' '
' O 1 ; ' '
00 — oo — o0 — SW— T —
oo — 00 — 00 — o9 — e —
Mircroservice Mircroservice Mircroservice Mircroservice Mircroservice
- It ' +! ' !
I T GiiiS) =) < o
S == = e =

LW middlewars

The key benefits of microservices architecture

Microservices architecture presents developers and engineers with a number of benefits that
monoliths cannot provide. Here are a few of the most notable.

What are the key benefits of microservices architecture?

1. Less 2. Improved 3. Independent 4. Error isolation 5. Integration
development effort scalability deployment with various
tech stacks

LW middleware

1. Less development effort

DevOps

Smaller development teams can work in parallel on different components to update existing
functionalities. This makes it significantly easier to identify hot services, scale independently
from the rest of the application, and improve the application.

2. Improved scalability

Microservices launch individual services independently, developed in different languages or
technologies; all tech stacks are compatible, allowing DevOps to choose any of the most efficient
tech stacks without fearing if they will work well together. These small services work on
relatively less infrastructure than monolithic applications by choosing the precise scalability of
selected components per their requirements.

3. Independent deployment

Each microservice constituting an application needs to be a full stack. This enables microservices
to be deployed independently at any point. Since microservices are granular in nature,
development teams can work on one microservice, fix errors, then redeploy it without
redeploying the entire application.

Microservice architecture is agile and thus does not need a congressional act to modify the
program by adding or changing a line of code or adding or eliminating features. The software
offers to streamline business structures through resilience improvisation and fault separation.

4. Error isolation

In monolithic applications, the failure of even a small component of the overall application can
make it inaccessible. In some cases, determining the error could also be tedious. With
microservices, isolating the problem-causing component is easy since the entire application is
divided into standalone, fully functional software units. If errors occur, other non-related units
will still continue to function.

5. Integration with various tech stacks

With microservices, developers have the freedom to pick the tech stack best suited for one
particular microservice and its functions. Instead of opting for one standardized tech stack
encompassing all of an application’s functions, they have complete control over their options.

What is the microservices architecture used for?

Put simply: microservices architecture makes app development quicker and more efficient. Agile
deployment capabilities combined with the flexible application of different technologies
drastically reduce the duration of the development cycle. The following are some of the most

DevOps

vital applications of microservices architecture.

Data processing

Since applications running on microservice architecture can handle more simultaneous requests,
microservices can process large amounts of information in less time. This allows for faster and
more efficient application performance.

Media content

Companies like Netflix and Amazon Prime Video handle billions of API requests daily. Services
such as OTT platforms offering users massive media content will benefit from deploying a
microservices architecture. Microservices will ensure that the plethora of requests for different
subdomains worldwide is processed without delays or errors.

Website migration

Website migration involves a substantial change and redevelopment of a website’s major areas,
such as its domain, structure, user interface, etc. Using microservices will help you avoid
business-damaging downtime and ensure your migration plans execute smoothly without any
hassles.

Transactions and invoices

Microservices are perfect for applications handling high payments and transaction volumes and
generating invoices for the same. The failure of an application to process payments can cause
huge losses for companies. With the help of microservices, the transaction functionality can be
made more robust without changing the rest of the application.

Microservices tools

Building a microservices architecture requires a mix of tools and processes to perform the core
building tasks and support the overall framework. Some of these tools are listed below.

Operating & @ = -
system
2t Linux Ubuntu Windows
Programming é > —:m P ﬂ.‘\de
languages "
Lo Java Golang Python, Node JS
APl management (}/l {)) a - I y k.lo
& testing tools
API Fortress Postman Tyk
Messaging e % kafka 9
tools Amazon Simple Queue Google Cloud
Service (SQS) Apscheiicamin Pub/Sub
@
Toolkits k@’ St:neca
Google Cloud eneca
Eabdes; Functions
P
Architectural - ‘.b
ramewo
3 Savarks Helidon Quarkus Molecular
i Rl]
Orchestration GEEEE- b4 :
Tools
Kubernetes A‘s“e'fvﬁ:“:(e;:es‘)es Conductore
-
Monitoring - < PN S 0._‘
ol
to Logstash Middleware Elastic Stack
Serverless “ @

e

tools

Claudia Apache Openwhisk Kubeless

1. Operating system

The most basic tool required to build an application is an operating system (OS). One such
operating system allows great flexibility in development and uses in Linux. It offers a largely
self-contained environment for executing program codes and a series of options for large and
small applications in terms of security, storage, and networking.

2. Programming languages

One of the benefits of using a microservices architecture is that you can use a variety of
programming languages across applications for different services. Different programming
languages have different utilities deployed based on the nature of the microservice.

3. APl management and testing tools

The various services need to communicate when building an application using a microservices
architecture. This is accomplished using application programming interfaces (APIs). For APIs to
work optimally and desirably, they need to be constantly monitored, managed and tested, and
API management and testing tools are essential for this.

4. Messaging tools

Messaging tools enable microservices to communicate both internally and externally. Rabbit MQ
and Apache Kafka are examples of messaging tools deployed as part of a microservice system.

DevOps
5. Toolkits

Toolkits in a microservices architecture are tools used to build and develop applications.
Different toolkits are available to developers, and these kits fulfill different purposes. Fabric8
and Seneca are some examples of microservices toolKits.

6. Architectural frameworks

Microservices architectural frameworks offer convenient solutions for application development
and usually contain a library of code and tools to help configure and deploy an application.

7. Orchestration tools

A container is a set of executables, codes, libraries, and files necessary to run a microservice.
Container orchestration tools provide a framework to manage and optimize containers within
microservices architecture systems.

8. Monitoring tools

Once a microservices application is up and running, you must constantly monitor it to ensure
everything is working smoothly and as intended. Monitoring tools help developers stay on top of
the application’s work and avoid potential bugs or glitches.

9. Serverless tools Serverless tools further add flexibility and mobility to the various
microservices within an application by eliminating server dependency. This helps in the easier
rationalization and division of application tasks.

Microservices vs monolithic architecture

With monolithic architectures, all processes are tightly coupled and run as a single service. This
means that if one process of the application experiences a spike in demand, the entire
architecture must be scaled. Adding or improving a monolithic application’s features becomes
more complex as the code base grows. This complexity limits experimentation and makes it
difficult to implement new ideas. Monolithic architectures add risk for application availability
because many dependent and tightly coupled processes increase the impact of a single process
failure.

With a microservices architecture, an application is built as independent components that run
each application process as a service. These services communicate via a well-defined interface
using lightweight APIs. Services are built for business capabilities and each service performs a
single function. Because they are independently run, each service can be updated, deployed, and
scaled to meet demand for specific functions of an application.

DevOps
Data tier

The data tier in DevOps refers to the layer of the application architecture that is responsible for

storing, retrieving, and processing data. The data tier is typically composed of databases, data
warehouses, and data processing systems that manage large amounts of structured and
unstructured data.

In DevOps, the data tier is considered an important aspect of the overall application architecture
and is typically managed as part of the DevOps process. This includes:

1. Data management and migration: Ensuring that data is properly managed and migrated as
part of the software delivery pipeline.

2. Data backup and recovery: Implementing data backup and recovery strategies to ensure
that data can be recovered in case of failures or disruptions.

3. Data security: Implementing data security measures to protect sensitive information and
comply with regulations.

4. Data performance optimization: Optimizing data performance to ensure that applications
and services perform well, even with large amounts of data.

5. Data integration: Integrating data from multiple sources to provide a unified view of data
and support business decisions.

By integrating data management into the DevOps process, teams can ensure that data is properly
managed and protected, and that data-driven applications and services perform well and deliver
value to customers.

Devops architecture and resilience

DevOps Architecture

DevOps

Development and operations both play essential roles in order to deliver applications. The
deployment comprises analyzing the requirements, designing, developing, and testing of the
software components or frameworks.

The operation consists of the administrative processes, services, and support for the software.
When both the development and operations are combined with collaborating, then the DevOps
architecture is the solution to fix the gap between deployment and operation terms; therefore,
delivery can be faster.

DevOps architecture is used for the applications hosted on the cloud platform and large
distributed applications. Agile Development is used in the DevOps architecture so that
integration and delivery can be contiguous. When the development and operations team works
separately from each other, then it is time-consuming to design, test, and deploy. And if the
terms are not in sync with each other, then it may cause a delay in the delivery. So DevOps
enables the teams to change their shortcomings and increases productivity.

Below are the various components that are used in the DevOps architecture

DevOps Components

Moniter

Dev

S,

Operate

Release

1) Build

Without DevOps, the cost of the consumption of the resources was evaluated based on the pre-
defined individual usage with fixed hardware allocation. And with DevOps, the usage of cloud,
sharing of resources comes into the picture, and the build is dependent upon the user's need,
which is a mechanism to control the usage of resources or capacity.

DevOps
2) Code

Many good practices such as Git enables the code to be used, which ensures writing the code for
business, helps to track changes, getting notified about the reason behind the difference in the
actual and the expected output, and if necessary reverting to the original code developed. The
code can be appropriately arranged in files, folders, etc. And they can be reused.

3) Test

The application will be ready for production after testing. In the case of manual testing, it
consumes more time in testing and moving the code to the output. The testing can be automated,
which decreases the time for testing so that the time to deploy the code to production can be
reduced as automating the running of the scripts will remove many manual steps.

4) Plan

DevOps use Agile methodology to plan the development. With the operations and development
team in sync, it helps in organizing the work to plan accordingly to increase productivity.

5) Monitor

Continuous monitoring is used to identify any risk of failure. Also, it helps in tracking the system
accurately so that the health of the application can be checked. The monitoring becomes more
comfortable with services where the log data may get monitored through many third-party tools
such as Splunk.

6) Deploy

Many systems can support the scheduler for automated deployment. The cloud management
platform enables users to capture accurate insights and view the optimization scenario, analytics
on trends by the deployment of dashboards.

7) Operate

DevOps changes the way traditional approach of developing and testing separately. The teams
operate in a collaborative way where both the teams actively participate throughout the service
lifecycle. The operation team interacts with developers, and they come up with a monitoring plan
which serves the IT and business requirements.

8) Release

Deployment to an environment can be done by automation. But when the deployment is made to
the production environment, it is done by manual triggering. Many processes involved in release
management commonly used to do the deployment in the production environment manually to
lessen the impact on the customers.

DevOps
DevOps resilience

DevOps resilience refers to the ability of a DevOps system to withstand and recover from
failures and disruptions. This means ensuring that the systems and processes used in DevOps are
robust, scalable, and able to adapt to changing conditions. Some of the key components of
DevOps resilience include:

1.

Infrastructure automation: Automating infrastructure deployment, scaling, and
management helps to ensure that systems are deployed consistently and are easier to
manage in case of failures or disruptions.

Monitoring and logging: Monitoring systems, applications, and infrastructure in real-time
and collecting logs can help detect and diagnose issues quickly, reducing downtime.

Disaster recovery: Having a well-designed disaster recovery plan and regularly testing it
can help ensure that systems can quickly recover from disruptions.

Continuous testing: Continuously testing systems and applications can help identify and
fix issues before they become critical.

High availability: Designing systems for high availability helps to ensure that systems
remain up and running even in the event of failures or disruptions.

By focusing on these components, DevOps teams can create a resilient and adaptive DevOps
system that is able to deliver high-quality applications and services, even in the face of failures
and disruptions.

DevOps
Unit 3

Introduction to project management

The need for source code control:

Source code control (also known as version control) is an essential part of DevOps practices.
Here are a few reasons why:

Collaboration: Source code control allows multiple team members to work on the same
codebase simultaneously and track each other's changes.

Traceability: Source code control systems provide a complete history of changes to the code,
enabling teams to trace bugs, understand why specific changes were made, and roll back to
previous versions if necessary.

Branching and merging: Teams can create separate branches for different features or bug fixes,
then merge the changes back into the main codebase. This helps to ensure that different parts of
the code can be developed independently, without interfering with each other.

Continuous integration and delivery: Source code control systems are integral to continuous
integration and delivery (CI/CD) pipelines, where changes to the code are automatically built,
tested, and deployed to production.

In summary, source code control is a critical component of DevOps practices, as it enables teams
to collaborate, manage changes to code, and automate the delivery of software.

History of source code management

The history of source code management (SCM) in DevOps dates back to the early days of
software development. Early SCM systems were simple and focused on tracking changes to
source code over time.

In the late 1990s and early 2000s, the open-source movement and the rise of the internet led to a
proliferation of new SCM tools, including CVS (Concurrent Versions System), Subversion, and
Git. These systems made it easier for developers to collaborate on projects, manage multiple
versions of code, and automate the build, test, and deployment process.

As DevOps emerged as a software development methodology in the mid-2000s, SCM became an
integral part of the DevOps toolchain. DevOps teams adopted Git as their SCM tool of choice,
leveraging its distributed nature, branch and merge capabilities, and integration with CI/CD
pipelines.

Today, Git is the most widely used SCM system in the world, and is a critical component of
DevOps practices. With the rise of cloud-based platforms, modern SCM systems also offer
features like collaboration, code reviews, and integrated issue tracking.

DevOps
Roles and code in Devops

In DevOps, roles and code play a critical role in the development, delivery, and operation of
software.

Roles:

Code:

Development team: responsible for writing and testing code.

Operations team: responsible for the deployment and maintenance of the code in
production.

DevOps team: responsible for bridging the gap between development and operations,
ensuring that code is delivered quickly and reliably to production.

Code is the backbone of DevOps and represents the software that is being developed,
tested, deployed, and maintained.

Code is managed using source code control systems like Git, which provide a way to
track changes to the code over time, collaborate on the code with other team members,
and automate the build, test, and deployment process.

Code is continuously integrated and tested, ensuring that any changes to the code do not
cause unintended consequences in the production environment.

In conclusion, both roles and code play a critical role in DevOps. Teams work together to ensure
that code is developed, tested, and delivered quickly and reliably to production, while operations
teams maintain the code in production and respond to any issues that arise.

Overall, SCM has been an important part of the evolution of DevOps, enabling teams to
collaborate, manage code changes, and automate the software delivery process.

Source code management system and migrations

A source code management (SCM) system is a software application that provides version
control for source code. It tracks changes made to the code over time, enabling teams to

revert to previous versions if necessary, and helps ensure that code can be collaborated on
by multiple team members.

SCM systems typically provide features such as version tracking, branching and merging,
change history, and rollback capabilities. Some popular SCM systems include Git,
Subversion, Mercurial, and Microsoft Team Foundation Server.

Source code management (SCM) systems are often used to manage code migrations,
which are the process of moving code from one environment to another. This is typically
done as part of a software development project, where code is moved from a
development environment to a testing environment and finally to a production
environment.

DevOps

SCM systems provide a number of benefits for managing code migrations, including:

Version control
Branching and merging
Rollback

Collaboration

5. Automation

o

1) Version control: SCM systems keep a record of all changes to the code, enabling teams to
track the code as it moves through different environments.

Purpose of Version Control:

Multiple people can work simultaneously on a single project. Everyone works on and
edits their own copy of the files and it is up to them when they wish to share the changes
made by them with the rest of the team.

It also enables one person to use multiple computers to work on a project, so it is
valuable even if you are working by yourself.

It integrates the work that is done simultaneously by different members of the team. In
some rare cases, when conflicting edits are made by two people to the same line of a file,
then human assistance is requested by the version control system in deciding what should
be done.

. Version control provides access to the historical versions of a project. This is insurance
against computer crashes or data loss. If any mistake is made, you can easily roll back to a
previous version. It is also possible to undo specific edits that too without losing the work
done in the meanwhile. It can be easily known when, why, and by whom any part of a file was edited.

Benefits of the version control system:

Enhances the project development speed by providing efficient collaboration,

Leverages the productivity, expedites product delivery, and skills of the employees
through better communication and assistance,

Reduce possibilities of errors and conflicts meanwhile project development through
traceability to every small change,

Employees or contributors of the project can contribute from anywhere irrespective of
the different geographical locations through this VCS,

For each different contributor to the project, a different working copy is maintained and

not merged to the main file unless the working copy is validated. The most popular
example is Git, Helix core, Microsoft TFS,

Helps in recovery in case of any disaster or contingent situation,
Informs us about Who, What, When, Why changes have been made.

Types of Version Control Systems:

Local Version Control Systems
Centralized Version Control Systems
Distributed Version Control Systems

DevOps

Local Version Control Systems: It is one of the simplest forms and has a database that kept
all the changes to files under revision control. RCS is one of the most common VCS tools. It
keeps patch sets (differences between files) in a special format on disk. By adding up all the
patches it can then re-create what any file looked like at any point in time.

Centralized Version Control Systems: Centralized version control systems contain just one
repository globally and every user need to commit for reflecting one’s changes in the
repository. It is possible for others to see your changes by updating.

Two things are required to make your changes visible to others which are:

You commit
They update

Centralized version control

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

The benefit of CVCS (Centralized Version Control Systems) makes collaboration amongst
developers along with providing an insight to a certain extent on what everyone else is doing
on the project. It allows administrators to fine-grained control over who can do what.

It has some downsides as well which led to the development of DVS. The most obvious is the
single point of failure that the centralized repository represents if it goes down during that
period collaboration and saving versioned changes is not possible. What if the hard disk of the
central database becomes corrupted, and proper backups haven’t been kept? You lose
absolutely everything.

Distributed Version Control Systems:

Distributed version control systems contain multiple repositories. Each user has their own
repository and working copy. Just committing your changes will not give others access to your
changes. This is because commit will reflect those changes in your local repository and you
need to push them in order to make them visible on the central repository. Similarly, When you
update, you do not get others’ changes unless you have first pulled those changes into your
repository.

DevOps

To make your changes visible to others, 4 things are required:

You commit
You push
They pull
+ They update
The most popular distributed version control systems are Git, and Mercurial. They help
us overcome the problem of single point of failure.

Distributed version control

2)Branching and merging: Teams can create separate branches of code for different
environments, making it easier to manage the migration process.

Branching and merging are key concepts in Git-based version control systems, and are widely
used in DevOps to manage the development of software.

Branching in Git allows developers to create a separate line of development for a new feature or
bug fix. This allows developers to make changes to the code without affecting the main branch,
and to collaborate with others on the same feature or bug fix.

Merging in Git is the process of integrating changes made in one branch into another branch. In
DevOps, merging is often used to integrate changes made in a feature branch into the main
branch, incorporating the changes into the codebase.

Branching and merging provide several benefits in DevOps:

Improved collaboration: By allowing multiple developers to work on the same codebase at the
same time, branching and merging facilitate collaboration and coordination among team
members.

Improved code quality: By isolating changes made in a feature branch, branching and merging
make it easier to thoroughly review and test changes before they are integrated into the main
codebase, reducing the risk of introducing bugs or other issues.

DevOps

Increased transparency: By tracking all changes made to the codebase, branching and merging
provide a clear audit trail of how code has evolved over time.

Overall, branching and merging are essential tools in the DevOps toolkit, helping to improve
collaboration, code quality, and transparency in the software development process.

Rollback: In the event of a problem during a migration, teams can quickly revert to a previous
version of the code.

Rollback in DevOps refers to the process of reverting a change or returning to a previous version
of a system, application, or infrastructure component. Rollback is an important capability in
DevOps, as it provides a way to quickly and efficiently revert changes that have unintended
consequences or cause problems in production.

There are several approaches to rollback in DevOps, including:

Version control: By using a version control system, such as Git, DevOps teams can revert to a
previous version of the code by checking out an earlier commit.

Infrastructure as code: By using infrastructure as code tools, such as Terraform or Ansible,
DevOps teams can roll back changes to their infrastructure by re-applying an earlier version of
the code.

Continuous delivery pipelines: DevOps teams can use continuous delivery pipelines to
automate the rollback process, by automatically reverting changes to a previous version of the
code or infrastructure if tests fail or other problems are detected.

Snapshots: DevOps teams can use snapshots to quickly restore an earlier version of a system or
infrastructure component.

Overall, rollback is an important capability in DevOps, providing a way to quickly revert
changes that have unintended consequences or cause problems in production. By using a
combination of version control, infrastructure as code, continuous delivery pipelines, and
snapshots, DevOps teams can ensure that their systems and applications can be quickly and
easily rolled back to a previous version if needed.

Collaboration: SCM systems enable teams to collaborate on code migrations, with team
members working on different aspects of the migration process simultaneously.

Collaboration is a key aspect of DevOps, as it helps to bring together development, operations,
and other teams to work together towards a common goal of delivering high-quality software
quickly and efficiently.

In DevOps, collaboration is facilitated by a range of tools and practices, including:

Version control systems: By using a version control system, such as Git, teams can collaborate
on code development, track changes to source code, and merge code changes from multiple
contributors.

DevOps

Continuous integration and continuous deployment (CI/CD): By automating the build, test,
and deployment of code, CI/CD pipelines help to streamline the development process and reduce
the risk of introducing bugs or other issues into the codebase.

Code review: By using code review tools, such as pull requests, teams can collaborate on code
development, share feedback, and ensure that changes are thoroughly reviewed and tested before
they are integrated into the codebase.

Issue tracking: By using issue tracking tools, such as JIRA or GitHub Issues, teams can
collaborate on resolving bugs, tracking progress, and managing the development of new features.

Communication tools: By using communication tools, such as Slack or Microsoft Teams, teams
can collaborate and coordinate their work, share information, and resolve problems quickly and
efficiently.

Overall, collaboration is a critical component of DevOps, helping teams to work together
effectively and efficiently to deliver high-quality software. By using a range of tools and
practices to facilitate collaboration, DevOps teams can improve the transparency, speed, and
quality of their software development processes.

Automation: Many SCM systems integrate with continuous integration and delivery (CI/CD)
pipelines, enabling teams to automate the migration process.

In conclusion, SCM systems play a critical role in managing code migrations. They provide a
way to track code changes, collaborate on migrations, and automate the migration process,
enabling teams to deliver code quickly and reliably to production.

Shared authentication

Shared authentication in DevOps refers to the practice of using a common identity management system to
control access to the various tools, resources, and systems used in software development and operations.
This helps to simplify the process of managing users and permissions and ensures that everyone has the
necessary access to perform their jobs. Examples of shared authentication systems include Active
Directory, LDAP, and SAML-based identity providers.

Hosted Git servers

Hosted Git servers are online platforms that provide Git repository hosting services for software
development teams. They are widely used in DevOps to centralize version control of source code, track
changes, and collaborate on code development. Some popular hosted Git servers include GitHub, GitLab,
and Bitbucket. These platforms offer features such as pull requests, code reviews, issue tracking, and
continuous integration/continuous deployment (CI/CD) pipelines. By using a hosted Git server, DevOps
teams can streamline their development processes and collaborate more efficiently on code projects.

Different Git server implementations

There are several different Git server implementations that organizations can use to host their Git
repositories. Some of the most popular include:

GitHub: One of the largest Git repository hosting services, GitHub is widely used by developers
for version control, collaboration, and code sharing.

DevOps

GitLab: An open-source Git repository management platform that provides version control,
issue tracking, code review, and more.

Bitbucket: A web-based Git repository hosting service that provides version control, issue
tracking, and project management tools.

Gitea: An open-source Git server that is designed to be lightweight, fast, and easy to use.

Gogs: Another open-source Git server, Gogs is designed for small teams and organizations and
provides a simple, user-friendly interface.

GitBucket: A Git server written in Scala that provides a wide range of features, including issue
tracking, pull requests, and code reviews.

Organizations can choose the Git server implementation that best fits their needs, taking into
account factors such as cost, scalability, and security requirements.

Docker intermission

Docker is an open-source project with a friendly-whale logo that facilitates the deployment of
applications in software containers. It is a set of PaaS products that deliver containers (software
packages) using OS-level virtualization. It embodies resource isolation features of the Linux
kernel but offers a friendly API.

In simple words, Docker is a tool or platform design to simplify the process of creating,
deploying, and packaging and shipping out applications along with its parts such as libraries and
other dependencies. Its primary purpose is to automate the application deployment process and
operating-system-level virtualization on Linux. It allows multiple containers to run on the same
hardware and provides high productivity, along with maintaining isolated applications and
facilitating seamless configuration.

Docker benefits include:
High ROI and cost savings
Productivity and standardization
Maintenance and compatibility
Rapid deployment
Faster configurations
Seamless portability
Continuous testing and deployment

Isolation, segregation, and security
Docker vs. Virtual Machines

Virtual Machine is an application environment that imitates dedicated hardware by providing an
emulation of the computer system. Docker and Vmboth have their set of benefits and uses, but
when it comes to running applications in multiple environments, both can be utilized. So which
one wins? Let's get into a quick Docker vs. VM comparison.

DevOps

OS Support: VM requires a lot of memory when installed in an OS, whereas Docker containers
occupy less space.

Performance: Running several VMs can affect the performance, whereas, Docker containers are
stored in a single Docker engine; thus, they provide better performance.

Boot-up time: VMs have a longer booting time compared to Docker.
Efficiency: VMs have lower efficiency than Docker.

Scaling: VMs are difficult to scale up, whereas Docker is easy to scale up.

Space allocation: You cannot share data volumes with VVMs, but you can share and reuse them
among various Docker containers.

Portability: With VMs, you can face compatibility issues while porting across different
platforms; Docker is easily portable.
Clearly, Docker is a hands-down winner.

Gerrit

Gerrit is a web based code review tool which is integrated with Git and built on top of Git
version control system (helps developers to work together and maintain the history of their
work). It allows to merge changes to Git repository when you are done with the code reviews.

Gerrit was developed by Shawn Pearce at Google which is written in Java, Servlet,
GWT(Google Web Toolkit). The stable release of Gerrit is 2.12.2 and published on March 11,
2016 licensed under Apache License v2.

Why Use Gerrit?
Following are certain reasons, why you should use Gerrit.

You can easily find the error in the source code using Gerrit.

You can work with Gerrit, if you have regular Git client; no need to install any Gerrit
client.
Gerrit can be used as an intermediate between developers and git repositories.

Features of Gerrit

Gerrit is a free and an open source Git version control system.
The user interface of Gerrit is formed on Google Web ToolKkit.

It is a lightweight framework for reviewing every commit.
Gerrit acts as a repository, which allows pushing the code and creates the review for your
commit.

Advantages of Gerrit

Gerrit provides access control for Git repositories and web frontend for code review.

You can push the code without using additional command line tools.

Gerrit can allow or decline the permission on the repository level and down to the branch
level.

Gerrit is supported by Eclipse.

DevOps
Disadvantages of Gerrit
Reviewing, verifying and resubmitting the code commits slows down the time to market.

Gerrit can work only with Git.
Gerrit is slow and it's not possible to change the sort order in which changes are listed.

You need administrator rights to add repository on Gerrit.

What is Gerrit?

Gerrit is an exceptionally extensible and configurable apparatus for online code survey and
storehouse the executives for projects utilizing the Git rendition control framework. Gerrit is
similarly helpful where all clients are believed committers, for example, might be the situation
with shut source business advancement.

gerritasterisk.org zuul.asterisk.org

& —
SSH (Geit)
S5H S5H (Git) I v
(Stream Events) Git Repositories Git Repositories] Agent
SSH (Git)
SSH jenkins.asterisk.org SSH (Jenkins)
(Zuul Verify) Gearman
—
) Jenkins Build
- Jenkins Agent
A

- Gearman

It is used to store the merged code base and the changes under review that have not being merged
yet. Gerrit has the limitation of a single repository per project.

Gerrit is first and foremost an arranging region where changes can be looked at prior to turning
into a piece of the code base. It is likewise an empowering agent for this survey cycle, catching
notes and remarks about the progressions to empower conversation of the change. This is
especially valuable with conveyed groups where this discussion can’t occur eye to eye.

DevOps

How Gerrit Works Architecture?

Your Local Environment

it clone
nova / master d

nova / master

T l git branch fix_bug_foo

Jenkins

(automated testing)

nova / fix_bug_Foo

\ git commit —-amend
Fix changes
Run unit tests
git commit
-

Gerrit Review Server

(needs 2 +1,0 -1)
o git review nova / fix_bug_Foo

(automated
testing)

Use case of Gerrit

Knowledge exchange:

o The code review process allows newcomers to see the code of other moreexperienced
developers.

o Developers can get feedback on their suggested changes.
o Experienced developers can help to evaluate the impact on the whole code.

o Shared code ownership: by reviewing code of other developers the whole teamgets a solid
knowledge of the complete code base.

The pull request model

Pull request is a feature of Git-based version control systems that allows developers to propose
changes to a Git repository and request feedback or approval f rom other team members. It is
widely used in DevOps to facilitate collaboration and code review in the software development

process.

DevOps

In the pull request model, a developer creates a new branch in a Git repository, makes changes to
the code, and then opens a pull request to merge the changes into the main branch. Other team
members can then review the changes, provide feedback, and approve or reject the request.

Pull Requests are a mechanism popularized by github, used to help facilitate merging of work,
particularly in the context of open-source projects. A contributor works on their contribution in a
fork (clone) of the central repository. Once their contribution is finished they create a pull request
to notify the owner of the central repository that their work is ready to be merged into the
mainline. Tooling supports and encourages code review of the contribution before accepting the
request. Pull requests have become widely used in software development, but critics are
concerned by the addition of integration friction which can prevent continuous integration.

Pull requests essentially provide convenient tooling for a development workflow that existed in
many open-source projects, particularly those using a distributed source-control system (such as
git). This workflow begins with a contributor creating a new logical branch, either by starting a
new branch in the central repository, cloning into a personal repository, or both. The contributor
then works on that branch, typically in the style of a Feature Branch, pulling any updates

from Mainline into their branch. When they are done they communicate with the maintainer of
the central repository indicating that they are done, together with a reference to their commits.
This reference could be the URL of a branch that needs to be integrated, or a set of patches in an
email.

Once the maintainer gets the message, she can then examine the commits to decide if they are
ready to go into mainline. If not, she can then suggest changes to the contributor, who then has
opportunity to adjust their submission. Once all is ok, the maintainer can then merge, either with
a regular merge/rebase or applying the patches from the final email.

Github's pull request mechanism makes this flow much easier. It keeps track of the clones
through its fork mechanism, and automatically creates a message thread to discuss the pull
request, together with behavior to handle the various steps in the review workflow. These
conveniences were a major part of what made github successful and led to "pull request"”
becoming a fundamental part of the developer's lexicon.

So that's how pull requests work, but should we use them, and if so how? To answer that
question, | like to step back from the mechanism and think about how it works in the context of a
source code management workflow. To help me think about that, | wrote down a series of
patterns for managing source code branching. I find understanding these (specifically the Base
and Integration patterns) clarifies the role of pull requests.

In terms of these patterns, pull requests are a mechanism designed to implement a combination
of Feature Branching and Pre-Integration Reviews. Thus to assess the usefulness of pull requests
we first need to consider how applicable those patterns are to our situation. Like most patterns,
they are sometimes valuable, and sometimes a pain in the neck - we have to examine them based
on our specific context. Feature Branching is a good way of packaging together a logical
contribution so that it can be assessed, accepted, or deferred as a single unit.

DevOps

This makes a lot of sense when contributors are not trusted to commit directly to mainline. But
Feature Branching comes at a cost, which is that it usually limits the frequency of integration,
leading to complicated merges and deterring refactoring. Pre-Integration Reviews provide a
clear place to do code review at the cost of a significant increase in integration friction. [1]

That's a drastic summary of the situation (I need a lot more words to explain this further in the
feature branching article), but it boils down to the fact that the value of these patterns, and thus
the value of pull requests, rest mostly on the social structure of the team. Some teams work better
with pull requests, some teams would find pull requests a severe drag on the effectiveness. |
suspect that since pull requests are so popular, a lot of teams are using them by default when they
would do better without them.

While pull requests are built for Feature Branches, teams can use them within a Continuous
Integration environment. To do this they need to ensure that pull requests are small enough, and
the team responsive enough, to follow the CI rule of thumb that everybody does Mainline
Integration at least daily. (And | should remind everyone that Mainline Integration is more than
just merging the current mainline into the feature branch). Using the ship/show/ask classification
can be an effective way to integrate pull requests into a more Cl-friendly workflow.

The wide usage of pull requests has encouraged a wider use of code review, since pull requests
provide a clear point for Pre-Integration Review, together with tooling that encourages it. Code
review is a Good Thing, but we must remember that a pull request isn't the only mechanism we
can use for it. Many teams find great value in the continuous review afforded by Pair
Programming. To avoid reducing integration frquency we can carry out post-integration code
review in several ways.

A formal process can record a review for each commit, or a tech lead canexamine risky commits
every couple of days. Perhaps the most powerful form of code review is one that's frequently
ignored. A team that takes the attitude that the codebase is a fluid system, one that can be
steadily refined with repeated iteration carries out Refinement Code

Review every time a developer looks at existing code. | often hear people say that pull requests
are necessary because without them you can't do code reviews - that's rubbish. Pre-integration
code review is just one way to do code reviews, and for many teams it isn't the best choice.

The pull request model provides several benefits in DevOps:

Improved code quality: Pull requests encourage collaboration and code review, helping to catch
potential bugs and issues before they make it into the main codebase.

Increased transparency: Pull requests provide a clear audit trail of all changes made to the
code, making it easier to understand how code has evolved over time.

Better collaboration: Pull requests allow developers to share their work and get feedback from
others, improving collaboration and communication within the development team.

DevOps

Overall, the pull request model is an important tool in the DevOps toolkit, helping to improve the
quality, transparency, and collaboration of software development processes.

GitLab

GitLab is an open-source Git repository management platform that provides a wide range of
features for software development teams. It is commonly used in DevOps for version control,
issue tracking, code review, and continuous integration/continuous deployment (CI/CD)
pipelines.

GitLab provides a centralized platform for teams to manage their Git repositories, track changes
to source code, and collaborate on code development. It offers a range of tools to support code
review and collaboration, including pull requests, code comments, and merge request approvals.

In addition, GitLab provides a CI/CD pipeline tool that allows teams to automate the process of
building, testing, and deploying code. This helps to streamline the development process and
reduce the risk of introducing bugs or other issues into the codebase.

Overall, GitLab is a comprehensive Git repository management platform that provides a wide
range of tools and features for software development teams. By using GitLab, DevOps teams can
improve the efficiency, transparency, and collaboration of their software development processes.

What is Git?

Git is a distributed version control system, which means that a local clone of the project is a
complete version control repository. These fully functional local repositories make it easy to
work offline or remotely. Developers commit their work locally, and then sync their copy of the
repository with the copy on the server. This paradigm differs from centralized version control
where clients must synchronize code with a server before creating new versions of code.

Git's flexibility and popularity make it a great choice for any team. Many developers and college
graduates already know how to use Git. Git's user community has created resources to train
developers and Git's popularity make it easy to get help when needed. Nearly every development
environment has Git support and Git command line tools implemented on every major operating
system.

Git basics

Every time work is saved, Git creates a commit. A commit is a snapshot of all files at a point in
time. If a file hasn't changed from one commit to the next, Git uses the previously stored file.

This design differs from other systems that store an initial version of a file and keep a record of
deltas over time.

DevOps

o O o o

Commits create links to other commits, forming a graph of the development history. It's possible
to revert code to a previous commit, inspect how files changed from one commit to the next, and
review information such as where and when changes were made. Commits are identified in Git
by a unique cryptographic hash of the contents of the commit. Because everything is hashed, it's
impossible to make changes, lose information, or corrupt files without Git detecting it.

Branches

Each developer saves changes to their own local code repository. As a result, there can be many
different changes based off the same commit. Git provides tools for isolating changes and later
merging them back together. Branches, which are lightweight pointers to work in progress,
manage this separation. Once work created in a branch is finished, it can be merged back into the
team'’s main (or trunk) branch.

Same Feature

o O O O O

haster

Files and commits

Files in Git are in one of three states: modified, staged, or committed. When a file is first
modified, the changes exist only in the working directory. They aren't yet part of a commit or the
development history. The developer must stage the changed files to be included in the commit.
The staging area contains all changes to include in the next commit. Once the developer is happy
with the staged files, the files are packaged as a commit with a message describing what changed.
This commit becomes part of the development history.

DevOps

Unmodified Madified Staged

T—

Staging lets developers pick which file changes to save in a commit in order to break down large
changes into a series of smaller commits. By reducing the scope of commits, it's easier to review
the commit history to find specific file changes.

Benefits of Git

The benefits of Git are many.

Simultaneous development

Everyone has their own local copy of code and can work simultaneously on their own branches.
Git works offline since almost every operation is local.

Faster releases

Branches allow for flexible and simultaneous development. The main branch contains stable,
high-quality code from which you release. Feature branches contain work in progress, which are
merged into the main branch upon completion. By separating the release branch from
development in progress, it's easier to manage stable code and ship updates more quickly.

Built-in integration

Due to its popularity, Git integrates into most tools and products. Every major IDE has built-in
Git support, and many tools support continuous integration, continuous deployment, automated
testing, work item tracking, metrics, and reporting feature integration with Git. This integration
simplifies the day-to-day workflow.

Strong community support

Git is open-source and has become the de facto standard for version control. There is no shortage
of tools and resources available for teams to leverage. The volume of community support for Git
compared to other version control systems makes it easy to get help when needed.

DevOps

Git works with any team

Using Git with a source code management tool increases a team's productivity by encouraging
collaboration, enforcing policies, automating processes, and improving visibility and traceability
of work. The team can settle on individual tools for version control, work item tracking, and
continuous integration and deployment. Or, they can choose a solution like GitHub or Azure
DevOps that supports all of these tasks in one place.

Pull requests

Use pull requests to discuss code changes with the team before merging them into the main
branch. The discussions in pull requests are invaluable to ensuring code quality and increase
knowledge across your team. Platforms like GitHub and Azure DevOps offer a rich pull request
experience where developers can browse file changes, leave comments, inspect commits, view
builds, and vote to approve the code.

Branch policies

Teams can configure GitHub and Azure DevOps to enforce consistent workflows and process
across the team. They can set up branch policies to ensure that pull requests meet requirements
before completion. Branch policies protect important branches by preventing direct pushes,
requiring reviewers, and ensuring clean builds.

DevOps
Unit 4

Integrating the system

Build systems

A build system is a key component in DevOps, and it plays an important role in the software
development and delivery process. It automates the process of compiling and packaging source
code into a deployable artifact, allowing for efficient and consistent builds.

Here are some of the key functions performed by a build system:

Compilation: The build system compiles the source code into a machine-executable format,
such as a binary or an executable jar file.

Dependency Management: The build system ensures that all required dependencies are
available and properly integrated into the build artifact. This can include external libraries,
components, and other resources needed to run the application.

Testing: The build system runs automated tests to ensure that the code is functioning as intended,
and to catch any issues early in the development process.

Packaging: The build system packages the compiled code and its dependencies into a single,
deployable artifact, such as a Docker image or a tar archive.

Version Control: The build system integrates with version control systems, such as Git, to track
changes to the code and manage releases.

Continuous Integration: The build system can be configured to run builds automatically
whenever changes are made to the code, allowing for fast feedback and continuous integration of
new code into the main branch.

Deployment: The build system can be integrated with deployment tools and processes to
automate the deployment of the build artifact to production environments.

In DevOps, it's important to have a build system that is fast, reliable, and scalable, and that can
integrate with other tools and processes in the software development and delivery pipeline. There
are many build systems available, each with its own set of features and capabilities, and choosing
the right one will depend on the specific needs of the project and team.

DevOps
Jenkins build server

What is Jenkin?

Jenkins is an open source automation tool written in Java programming language that allows
continuous integration.

Jenkins builds and tests our software projects which continuously making it easier for
developers to integrate changes to the project, and making it easier for users to obtain a fresh
build.

It also allows us to continuously deliver our software by integrating with a large number of
testing and deployment technologies.

Jenkins offers a straightforward way to set up a continuous integration or continuous delivery
environment for almost any combination of languages and source code repositories using
pipelines, as well as automating other routine development tasks.

With the help of Jenkins, organizations can speed up the software development process through
automation. Jenkins adds development life-cycle processes of all kinds, including build,
document, test, package, stage, deploy static analysis and much more.

Jenkins achieves CI (Continuous Integration) with the help of plugins. Plugins is used to allow
the integration of various DevOps stages. If you want to integrate a particular tool, you have to
install the plugins for that tool. For example: Maven 2 Project, Git, HTML Publisher, Amazon
EC2, etc.

For example: If any organization is developing a project, then Jenkins will continuously test
your project builds and show you the errors in early stages of your development.

Possible steps executed by Jenkins are for example:

Perform a software build using a build system like Gradle or Maven Apache
Execute a shell script
Archive a build result

o O O O

Running software tests

DevOps

Developers chedk their
saurce code.

|

Jenking will pick upthe
changed source code

and trigier & build and
run any tests if required.

|

The build output will be
available inthe Jenkins
dashboardsz. Autom atic
notifications can alzo he
zent back tothe
developer.

Jenkin workflow

Build and test results are
fed back to the developers

Commit changes

' me’ to the source code

Commit changes

| R e o Git o jenkins — eniym —— Production
' EUE T Sever < = Server

. {1 Jenking chack the Joniking daploys the Tha build

: {1 shared repository build apphication on application is then
: mﬂl {1 ot periodic intervals the test erver deployed to the
i Commit changes i i and every chck-in production server
: to the source code 3 Hﬂl‘i‘:‘::ﬂm

DevOps

Jenkins Master-Slave Architecture

Jenkins master pulls the code every - >
time there is a commit ey]

EI TCPIP_— TCPIP I
Remote source /’
code repository P e
Jenkins slave
Bl Windows Linux "

.
Mac 05
* Jenkins master distributes its workload to all the slaves

* On request from Jenkins master, the slaves camy out builds and tests and produce test
reports

learn

As you can see in the diagram provided above, on the left is the Remote source code repository.
The Jenkins server accesses the master environment on the left side and the master environment
can push down to multiple other Jenkins Slave environments to distribute the workload.

That lets you run multiple builds, tests, and product environment across the entire architecture.
Jenkins Slaves can be running different build versions of the code for different operating systems
and the server Master controls how each of the builds operates.

Supported on a master-slave architecture, Jenkins comprises many slaves working for a master.
This architecture - the Jenkins Distributed Build - can run identical test cases in different
environments. Results are collected and combined on the master node for monitoring.

Jenkins Applications

Jenkins helps to automate and accelerate the software development process. Here are some of the
most common applications of Jenkins:

DevOps

1. Increased Code Coverage

Code coverage is determined by the number of lines of code a component has and how many of
them get executed. Jenkins increases code coverage which ultimately promotes a transparent
development process among the team members.

2. No Broken Code

Jenkins ensures that the code is good and tested well through continuous integration. The final
code is merged only when all the tests are successful. This makes sure that no broken code is
shipped into production.

What are the Jenkins Features?

Jenkins offers many attractive features for developers:

- Easy Installation

Jenkins is a platform-agnostic, self-contained Java-based program, ready to run with packages for
Windows, Mac OS, and Unix-like operating systems.

- Easy Configuration

Jenkins is easily set up and configured using its web interface, featuring error checks and a built-in
help function.

- Available Plugins

There are hundreds of plugins available in the Update Center, integrating with every tool in the Cl and
CD toolchain.

. Extensible

Jenkins can be extended by means of its plugin architecture, providing nearly endless possibilities for
what it can do.

Easy Distribution

Jenkins can easily distribute work across multiple machines for faster builds, tests, and deployments
across multiple platforms.

DevOps

Free Open Source

Jenkins is an open-source resource backed by heavy community support.

As a part of our learning about what is Jenkins, let us next learn about the Jenkins architecture.

Jenkins build server

Jenkins is a popular open-source automation server that helps developers automate parts of the software
development process. A Jenkins build server is responsible for building, testing, and deploying software
projects.

A Jenkins build server is typically set up on a dedicated machine or a virtual machine, and is used to
manage the continuous integration and continuous delivery (CI/CD) pipeline for a software project. The
build server is configured with all the necessary tools, dependencies, and plugins to build, test, and deploy
the project.

The build process in Jenkins typically starts with code being committed to a version control system (such
as Git), which triggers a build on the Jenkins server. The Jenkins server then checks out the code, builds
it, runs tests on it, and if everything is successful, deploys the code to a staging or production
environment.

Jenkins has a large community of developers who have created hundreds of plugins that extend its
functionality, so it's easy to find plugins to support specific tools, technologies, and workflows. For
example, there are plugins for integrating with cloud infrastructure, running security scans, deploying to
various platforms, and more.

Overall, a Jenkins build server can greatly improve the efficiency and reliability of the software
development process by automating repetitive tasks, reducing the risk of manual errors, and enabling
developers to focus on writing code.

Managing build dependencies

Managing build dependencies is an important aspect of continuous integration and continuous
delivery (CI/CD) pipelines. In software development, dependencies refer to external libraries,
tools, or resources that a project relies on to build, test, and deploy. Proper management of
dependencies can ensure that builds are repeatable and that the build environment is consistent
and up-to-date.

Here are some common practices for managing build dependencies in Jenkins:

Dependency Management Tools: Utilize tools such as Maven, Gradle, or npm to manage
dependencies and automate the process of downloading and installing required dependencies for
a build.

Version Pinning: Specify exact versions of dependencies to ensure builds are consistent and
repeatable.

Caching: Cache dependencies locally on the build server to improve build performance and
reduce the time it takes to download dependencies.

Continuous Monitoring: Regularly check for updates and security vulnerabilities in

DevOps

dependencies to ensure the build environment is secure and up-to-date.

Automated Testing: Automated testing can catch issues related to dependencies early in the
development process.

By following these practices, you can effectively manage build dependencies and maintain the
reliability and consistency of your CI/CD pipeline.

Jenkins plugins

Jenkins plugins are packages of software that extend the functionality of the Jenkins automation
server. Plugins allow you to integrate Jenkins with various tools, technologies, and workflows,
and can be easily installed and configured through the Jenkins web interface.

Some popular Jenkins plugins include:

Git Plugin: This plugin integrates Jenkins with Git version control system, allowing you to pull
code changes, build and test them, and deploy the code to production.

Maven Plugin: This plugin integrates Jenkins with Apache Maven, a build automation tool
commonly used in Java projects.

Amazon Web Services (AWS) Plugin: This plugin allows you to integrate Jenkins with Amazon
Web Services (AWS), making it easier to run builds, tests, and deployments on AWS
infrastructure.

Slack Plugin: This plugin integrates Jenkins with Slack, allowing you to receive notifications
about build status, failures, and other important events in your Slack channels.

Blue Ocean Plugin: This plugin provides a new and modern user interface for Jenkins, making
it easier to use and navigate.

Pipeline Plugin: This plugin provides a simple way to define and manage complex CI/CD
pipelines in Jenkins.

Jenkins plugins are easy to install and can be managed through the Jenkins web interface. There
are hundreds of plugins available, covering a wide range of tools, technologies, and use cases, so
you can easily find the plugins that best meet your needs.

By using plugins, you can greatly improve the efficiency and automation of your software
development process, and make it easier to integrate Jenkins with the tools and workflows you
use.

Git Plugin

The Git Plugin is a popular plugin for Jenkins that integrates the Jenkins automation server with
the Git version control system. This plugin allows you to pull code changes from a Git
repository, build and test the code, and deploy it to production.

With the Git Plugin, you can configure Jenkins to automatically build and test your code
whenever changes are pushed to the Git repository. You can also configure it to build and test
code on a schedule, such as once a day or once a week.

DevOps

The Git Plugin provides a number of features for managing code changes, including:

Branch and Tag builds: You can configure Jenkins to build specific branches or tags from your
Git repository.

Pull Requests: You can configure Jenkins to build and test pull requests from your Git
repository, allowing you to validate code changes before merging them into the main branch.

Build Triggers: You can configure Jenkins to build and test code changes whenever changes are
pushed to the Git repository or on a schedule.

Code Quality Metrics: The Git Plugin integrates with tools such as SonarQube to provide code
quality metrics, allowing you to track and improve the quality of your code over time.

Notification and Reporting: The Git Plugin provides notifications and reports on build status,
failures, and other important events. You can configure Jenkins to send notifications via email,
Slack, or other communication channels.

By using the Git Plugin, you can streamline your software development process and make it
easier to manage code changes and collaborate with other developers on your team.

file system layout

In DevOps, the file system layout refers to the organization and structure of files and directories
on the systems and servers used for software development and deployment. A well-designed file
system layout is critical for efficient and reliable operations in a DevOps environment.

Here are some common elements of a file system layout in DevOps:

Code Repository: A central code repository, such as Git, is used to store and manage source
code, configuration files, and other artifacts.

Build Artifacts: Build artifacts, such as compiled code, are stored in a designated directory for
easy access and management.

Dependencies: Directories for storing dependencies, such as libraries and tools, are designated
for easy management and version control.

Configuration Files: Configuration files, such as YAML or JSON files, are stored in a
designated directory for easy access and management.

Log Files: Log files generated by applications, builds, and deployments are stored in a
designated directory for easy access and management.

Backup and Recovery: Directories for storing backups and recovery data are designated for
easy management and to ensure business continuity.

Environment-specific Directories: Directories are designated for each environment, such as
development, test, and production, to ensure that the correct configuration files and artifacts are
used for each environment.

By following a well-designed file system layout in a DevOps environment, you can improve the

DevOps

efficiency, reliability, and security of your software development and deployment processes.
The host server

In Jenkins, a host server refers to the physical or virtual machine that runs the Jenkins
automation server. The host server is responsible for running the Jenkins process and providing
resources, such as memory, storage, and CPU, for executing builds and other tasks.

The host server can be either a standalone machine or part of a network or cloud-based
infrastructure. When running Jenkins on a standalone machine, the host server is responsible for
all aspects of the Jenkins installation, including setup, configuration, and maintenance.

When running Jenkins on a network or cloud-based infrastructure, the host server is responsible
for providing resources for the Jenkins process, but the setup, configuration, and maintenance
may be managed by other components of the infrastructure.

By providing the necessary resources and ensuring the stability and reliability of the host server,
you can ensure the efficient operation of Jenkins and the success of your software development
and deployment processes.

To host a server in Jenkins, you'll need to follow these steps:

Install Jenkins: You can install Jenkins on a server by downloading the Jenkins WAR file,
deploying it to a servlet container such as Apache Tomcat, and starting the server.

Configure Jenkins: Once Jenkins is up and running, you can access its web interface to
configure and manage the build environment. You can install plugins, set up security, and
configure build jobs.

Create a Build Job: To build your project, you'll need to create a build job in Jenkins. This will
define the steps involved in building your project, such as checking out the code from version
control, compiling the code, running tests, and packaging the application.

Schedule Builds: You can configure your build job to run automatically at a specific time or
when certain conditions are met. You can also trigger builds manually from the web interface.

Monitor Builds: Jenkins provides a variety of tools for monitoring builds, such as build history,
build console output, and build artifacts. You can use these tools to keep track of the status of
your builds and to diagnose problems when they occur.

DevOps

Build slaves

Jenkins Master-Slave Architecture

Jenkins master pulls the code every

time there is a commit o
Remote source
code repository

TCPIP_— TCPIP TTCPIP

Jenkins slave

Wl Windows IJQEK_& i
Mac 05
+ Jenkins master distributes its workload to all the slaves

* On request from Jenkins master, the slaves camy out builds and tests and produce test
reports

learn

As you can see in the diagram provided above, on the left is the Remote source code repository.
The Jenkins server accesses the master environment on the left side and the master environment
can push down to multiple other Jenkins Slave environments to distribute the workload.

That lets you run multiple builds, tests, and product environment across the entire architecture.
Jenkins Slaves can be running different build versions of the code for different operating systems
and the server Master controls how each of the builds operates.

Supported on a master-slave architecture, Jenkins comprises many slaves working for a master.
This architecture - the Jenkins Distributed Build - can run identical test cases in different
environments. Results are collected and combined on the master node for monitoring.

The standard Jenkins installation includes Jenkins master, and in this setup, the master will be
managing all our build system's tasks. If we're working on a number of projects, we can run
numerous jobs on each one. Some projects require the use of specific nodes, which necessitates
the use of slave nodes.

The Jenkins master is in charge of scheduling jobs, assigning slave nodes, and sending
builds to slave nodes for execution. It will also keep track of the slave node state (offline or
online), retrieve build results from slave nodes, and display them on the terminal output. In most
installations, multiple slave nodes will be assigned to the task of building jobs.

DevOps

Before we get started, let's double-check that we have all of the prerequisites in place for
adding a slave node:

+Jenkins Server is up and running and ready to use
+ Another server for a slave node configuration
+ The Jenkins server and the slave server are both connected to the same network

To configure the Master server, we'll log in to the Jenkins server and follow the steps below.

First, we'll go to “Manage Jenkins -> Manage Nodes -> New Node” to create a new node:

System Configuration

‘W Configure System Global Tool Configuration Manage Plugins gl Manage Nodes and Clouds

o Configure global settings and paths. d Configure tools, their locations and Add, remove, disable or enable plugins that .-.If Add, remave, control and menitor the
automatic installers, can extend the functionality of Jenkins, various nodes that Jenkins runs jobs on,

-

' Install as Windows Service

Installs Jenkins a5 a Windows service fo this
50 that Jenkins starts automatically
hine boots.

On the next screen, we enter the “Node Name” (slaveNodel), select “Permanent Agent”,
then click “OK”:

Dashboard ' Nodes

% Back to Dashboard Node name

|5IaveNcceW

k Manage Jenkins

@ Permanent Agent

!NewNode N T , e e N BT
Adds 2 plain, permanent agent to Jenkins, This is called “permanent” because Jenking dossn't provide higher level of integration with these agents, such as
dynamic provisioning. Select this type if no other agent types apply — for example such s when you are adding a physical computer, virtual machines
@ Configure Clouds managed outside Jenkins, etc.

" Node Monitoring
' OK

Build Queue A

No builds in the queve.

After clicking “OK”, we'll be taken to a screen with a new form where we need to fill out the
slave node's information. We're considering the slave node to be runningon Linux operating
systems, hence the launch method is set to “Launch agents via ssh”.

In the same way, we'll add relevant details, such as the name, description, and a number of
executors.

We'll save our work by pressing the “Save” button. The “Labels” with the name

S vapall ol

1 AT 1.1 Lo 4 4+ 2 an 1ol n thia alovia nada.
SIAVUINUUUT VVTTT IICIIJ US tU oCT UIJ JUIJO UTT UI1o STave 1TTUuUT,

DevOps

Mame

slaveiModel

Description

Slave node to execute builds

Mumber of executors

Remote root directory

Shome/user

Labels

slaveMNodel

Usage

Only build jobs with label expressions matching this node

Launch method

Launch agents via SSH

Host

200743000000

Credentials

Jerknusen T fenkinuser) o—Add ~

4. Building the Project on Slave Nodes

Now that our master and slave nodes are ready, we'll discuss the steps for building the project on
the slave node.

For this, we start by clicking “New Item” in the top left corner of the dashboard.

Next, we need to enter the name of our project in the “Enter an item name” field and select the
“Pipeline project”, and then click the “OK” button.

On the next screen, we'll enter a “Description” (optional) and navigate to the “Pipeline” section.
Make sure the “Definition” field has the Pipeline script option selected.

After this, we copy and paste the following declarative Pipeline script into a “script” field:

node('slaveNodel"){
stage('Build") {
sh "echo build steps
¥
stage('Test") {
sh "echo test steps™
}
}

Copy
Next, we click on the “Save” button. This will redirect to the Pipeline view page.

On the left pane, we click the “Build Now” button to execute our Pipeline. After Pipeline
execution is completed, we'll see the Pipeline view:

DevOps
& Jenkins

Jenkins project-pipeline-slave #1

4% Back to Pl'C‘eC'. _
 status () Console Output

= Changes
Started by user admin
B8 console Output Running in Durability lewvel: MAX_SURVIVABILITY
View as plain text

= Edit Build Information Running on slaveModel in fhome/user/workspace/project-pipeline-slave

{y Delete build '#1’
Replay

+ echo build steps

Pipeline Steps build steps

B Workspaces

+ echo test steps
test steps

We can verify the history of the executed build under the Build History by
clicking the build number. As shown above, when we click on the build number and
select “Console Output”, we can see that the pipeline ran on our slaveNodel machine.

Software on the host

To run software on the host in Jenkins, you need to have the necessary dependencies and tools
installed on the host machine. The exact software you'll need will depend on the specific
requirements of your project and build process. Some common tools and software used in
Jenkins include:

Java: Jenkins is written in Java and requires Java to be installed on the host machine.

Git: If your project uses Git as the version control system, you'll need to have Git installed on the
host machine.

Build Tools: Depending on the programming language and build process of your project, you
may need to install build tools such as Maven, Gradle, or Ant.

Testing Tools: To run tests as part of your build process, you'll need to install any necessary
testing tools, such as JUnit, TestNG, or Selenium.

Database Systems: If your project requires access to a database, you'll need to have the
necessary database software installed on the host machine, such as MySQL, PostgreSQL, or
Oracle.

Continuous Integration Plugins: To extend the functionality of Jenkins, you may need to install
plugins that provide additional tools and features for continuous integration, such as the Jenkins
GitHub plugin, Jenkins Pipeline plugin, or Jenkins Slack plugin.

DevOps

To install these tools and software on the host machine, you can use a package manager such as
apt or yum, or you can download and install the necessary software manually. You can also use a
containerization tool such as Docker to run Jenkins and the necessary software in isolated
containers, which can simplify the installation process and make it easier to manage the
dependencies and tools needed for your build process.

Trigger

These are the most common Jenkins build triggers:

Trigger builds remotely

Build after other projects are built

Build periodically

GitHub hook trigger for GITScm polling
Poll SCM

1. Trigger builds remotely :

If you want to trigger your project built from anywhere anytime then you should select Trigger
builds remotely option from the build triggers.

You’ll need to provide an authorization token in the form of a string so that only those who know
it would be able to remotely trigger this project’s builds. This provides the predefined URL to
invoke this trigger remotely.

predefined URL to trigger build remotely:
JENKINS_URL/job/JobName/build?token=TOKEN_NAME
JENKINS_URL: the IP and PORT which the Jenkins server is running
TOKEN_NAME: You have provided while selecting this build trigger.
I/Example:

http://e330c73d.ngrok.io/job/test/build?token=12345

http://e330c73d.ngrok.io/job/test/build?token=12345

DevOps

Whenever you will hit this URL from anywhere you project build will start.
2. Build after other projects are built

If your project depends on another project build then you should select Build after other
projects are built option from the build triggers.

In this, you must specify the project(Job) names in the Projects to watch field section and
selectone of the following options:

1. Trigger only if the build
is

Note: A build is stable if it was built successfully and no publisher reports it as unstable

2. Trigger even if the build is
Note: A build is unstable if it was built successfully and one or more publishers report it unstable

3. Trigger even if the build fails

After that, It starts watching the specified projects in the Projects to watch section.

Whenever the build of the specified project completes (either is stable, unstable or failed
according to your selected option) then this project build invokes.

3)Build periodically:

If you want to schedule your project build periodically then you should select the Build
periodically option from the build triggers.

You must specify the periodical duration of the project build in the scheduler field section

This field follows the syntax of cron (with minor differences). Specifically, each line
consists of5 fields separated by TAB or whitespace:

MINUTE HOUR DOM MONTH DOW

MINUTE Minutes within the hour (0-59)

HOUR The hour of the day (0-23)

DOM The day of the month (1-31)

MONTH The month (1-12)

DOow The day of the week (0-7) where 0 and 7 are Sunday.

To specify multiple values for one field, the following operators are available. In the order of
precedence,

* specifies all valid values

M-N specifies a range of values

M-N/X or */X steps by intervals of X through the specified range or whole valid range
A,B,...,Z enumerates multiple values

Examples:

every fifteen minutes (perhaps at .07, 122, :37, :52)
H/15 * * * *

every ten minutes in the first half of every hour (three times, perhaps at :04, :14, :24)
H(0-29)/10 * * * *

once every two hours at 45 minutes past the hour starting at 9:45 AM and finishing at 3:45 PM every weekday.

45 9-16/2 * * 1-5

once in every two hours slot between 9 AM and 5 PM every weekday (perhaps at 10:38 AM, 12:38 PM, 2:38 PM, 4:38 PM)
H H(9-16)/2 * * 1-5

once a day on the 1st and 15th of every month except December
HH1151-11*

After successfully scheduled the project build then the scheduler will invoke the build
periodically according to your specified duration.

4)GitHub webhook trigger for GITScm polling:

A webhook is an HTTP callback, an HTTP POST that occurs when something happens through a
simple event-notification via HTTP POST.

GitHub webhooks in Jenkins are used to trigger the build whenever a developer commits
something to the branch.

Let’s see how to add build a webhook in GitHub and then add this webhook in Jenkins.
1. Go to your project repository.

2. Go to “settings” in the right corner.
3. Click on “webhooks.”

DevOps

4. Click “Add webhooks.”
5. Write the Payload URL as

http://e330c73d.ngrok.io/github-webhook

/[This URL is a public URL where the Jenkins server is running

Here https://e330c73d.ngrok.io/ is the IP and port where my Jenkins is running.

If you are running Jenkins on localhost then writing https://localhost:8080/github-webhook/ will
not work because Webhooks can only work with the public IP.

So if you want to make your localhost:8080 expose public then we can use some tools.
In this example, we used ngrok tool to expose my local address to the public.

To know more on how to add webhook in Jenkins pipeline,
visit: https://blog.knoldus.com/opsinit-adding-a-github-webhook-in-jenkins-pipeline/

5)Poll SCM:

Poll SCM periodically polls the SCM to check whether changes were made (i.e. new commits)
and builds the project if new commits were pushed since the last build.

You must schedule the polling duration in the scheduler field. Like we explained above in the
Build periodically section. You can see the Build periodically section to know how to schedule.

After successfully scheduled, the scheduler polls the SCM according to your specified duration
in scheduler field and builds the project if new commits were pushed since the last build.LET'S
INITIATE APARTNERSHIP

Job chaining

Job chaining in Jenkins refers to the process of linking multiple build jobs together in a
sequence. When one job completes, the next job in the sequence is automatically triggered. This
allows you to create a pipeline of builds that are dependent on each other, so you can automate
the entire build process.

There are several ways to chain jobs in Jenkins:

Build Trigger: You can use the build trigger in Jenkins to start one job after another. This is done
by configuring the upstream job to trigger the downstream job when it completes.

http://e330c73d.ngrok.io/github-webhook

DevOps

Jenkinsfile: If you are using Jenkins Pipeline, you can write a Jenkinsfile to define the steps in
your build pipeline. The Jenkinsfile can contain multiple stages, each of which represents a
separate build job in the pipeline.

JobDSL plugin: The JobDSL plugin allows you to programmatically create and manage Jenkins
jobs. You can use this plugin to create a series of jobs that are linked together and run in
sequence.

Multi-Job plugin: The Multi-Job plugin allows you to create a single job that runs multiple
build steps, each of which can be a separate build job. This plugin is useful if you have a build
pipeline that requires multiple build jobs to be run in parallel.

By chaining jobs in Jenkins, you can automate the entire build process and ensure that each step
iIs completed before the next step is started. This can help to improve the efficiency and
reliability of your build process, and allow you to quickly and easily make changes to your build
pipeline.

Build pipelines

Stages in build pipeline

: .
Compile Integration _f\ Code — Assemble — Publish
Unit Tests Tests r—1/1 Analysis Distribution Binaries

Commit stage

Retrieve : Deploy - Functional Deploy v | Deploy
Binaries Binaries tests Binaries Binaries
Acceptance stage UAT Production

Trigger manually

A build pipeline in DevOps is a set of automated processes that compile, build, and test software,
and prepare it for deployment. A build pipeline represents the end-to-end flow of code changes
from development to production.

The steps involved in a typical build pipeline include:
Code Commit: Developers commit code changes to a version control system such as Git.

Build and Compile: The code is built and compiled, and any necessary dependencies are

DevOps

resolved.
Unit Testing: Automated unit tests are run to validate the code changes.

Integration Testing: Automated integration tests are run to validate that the code integrates
correctly with other parts of the system.

Staging: The code is deployed to a staging environment for further testing and validation.
Release: If the code passes all tests, it is deployed to the production environment.
Monitoring: The deployed code is monitored for performance and stability.

A build pipeline can be managed using a continuous integration tool such as Jenkins, TravisCl,
or CircleCl. These tools automate the build process, allowing you to quickly and easily make
changes to the pipeline, and ensuring that the pipeline is consistent and reliable.

In DevOps, the build pipeline is a critical component of the continuous delivery process, and is
used to ensure that code changes are tested, validated, and deployed to production as quickly and
efficiently as possible. By automating the build pipeline, you can reduce the time and effort
required to deploy code changes, and improve the speed and quality of your software delivery
process.

Build servers

When you're developing and deploying software, one of the first things to figure out is how to
take your code and deploy your working application to a production environment where people
can interact with your software.

Most development teams understand the importance of version control to coordinate code
commits, and build servers to compile and package their software, but Continuous Integration
(C) is a big topic.

Why build servers are important
Build servers have 3 main purposes:

Compiling committed code from your repository many times a day
Running automatic tests to validate code
Creating deployable packages and handing off to a deployment tool, like Octopus Deploy

Without a build server you're slowed down by complicated, manual processes and the needless
time constraints they introduce. For example, without a build server:
Your team will likely need to commit code before a daily deadline or during change
windows
After that deadline passes, no one can commit again until someone manually creates and
tests a build
If there are problems with the code, the deadlines and manual processes further delay the
fixes

DevOps

Without a build server, the team battles unnecessary hurdles that automation removes. A build
server will repeat these tasks for you throughout the day, and without those human-caused
delays.

But CI doesn’t just mean less time spent on manual tasks or the death of arbitrary deadlines,
either. By automatically taking these steps many times a day, you fix problems sooner and your
results become more predictable. Build servers ultimately help you deploy through your pipeline
with more confidence.

Building servers in DevOps involves several steps:

Requirements gathering: Determine the requirements for the server, such as hardware
specifications, operating system, and software components needed.

Server provisioning: Choose a method for provisioning the server, such as physical installation,
virtualization, or cloud computing.

Operating System installation: Install the chosen operating system on the server.

Software configuration: Install and configure the necessary software components, such as web
servers, databases, and middleware.

Network configuration: Set up network connectivity, such as IP addresses, hostnames, and
firewall rules.

Security configuration: Configure security measures, such as user authentication, access
control, and encryption.

Monitoring and maintenance: Implement monitoring and maintenance processes, such as
logging, backup, and disaster recovery.

Deployment: Deploy the application to the server and test it to ensure it is functioning as
expected.

Throughout the process, it is important to automate as much as possible using tools such as
Ansible, Chef, or Puppet to ensure consistency and efficiency in building servers.

Infrastructure as code

Infrastructure as code (1aC) uses DevOps methodology and versioning with a descriptive model
to define and deploy infrastructure, such as networks, virtual machines, load balancers, and
connection topologies. Just as the same source code always generates the same binary, an 1aC
model generates the same environment every time it deploys.

DevOps

|

v
y

laC is a key DevOps practice and a component of continuous delivery. With 1aC, DevOps teams

can work together with a unified set of practices and tools to deliver applications and their
supporting infrastructure rapidly and reliably at scale.

laC evolved to solve the problem of environment drift in release pipelines. Without laC, teams
must maintain deployment environment settings individually. Over time, each environment
becomes a "snowflake,” a unique configuration that can't be reproduced automatically.
Inconsistency among environments can cause deployment issues. Infrastructure administration
and maintenance involve manual processes that are error prone and hard to track.

laC avoids manual configuration and enforces consistency by representing desired environment
states via well-documented code in formats such as JSON. Infrastructure deployments with 1aC
are repeatable and prevent runtime issues caused by configuration drift or missing dependencies.
Release pipelines execute the environment descriptions and version configuration models to
configure target environments. To make changes, the team edits the source, not the target.

Idempotence, the ability of a given operation to always produce the same result, is an important
laC principle. A deployment command always sets the target environment into the same
configuration, regardless of the environment's starting state. ldempotency is achieved by either
automatically configuring the existing target, or by discarding the existing target and recreating a
fresh environment.

IAC can be achieved by using tools such as Terraform, CloudFormation, or Ansible to define
infrastructure components in a file that can be versioned, tested, and deployed in a consistent and
automated manner.

Benefits of IAC include:
Speed: IAC enables quick and efficient provisioning and deployment of infrastructure.

Consistency: By using code to define and manage infrastructure, it is easier to ensure
consistency across multiple environments.

DevOps

Repeatability: 1AC allows for easy replication of infrastructure components in different
environments, such as development, testing, and production.

Scalability: IAC makes it easier to scale infrastructure as needed by simply modifying the code.

Version control: Infrastructure components can be versioned, allowing for rollback to previous
versions if necessary.

Overall, IAC is a key component of modern DevOps practices, enabling organizations to manage their
infrastructure in a more efficient, reliable, and scalable way.

Building by dependency order

Building by dependency order in DevOps is the process of ensuring that the components of a
system are built and deployed in the correct sequence, based on their dependencies. This is
necessary to ensure that the system functions as intended, and that components are deployed in
the right order so that they can interact correctly with each other.

The steps involved in building by dependency order in DevOps include:

Define dependencies: Identify all the components of the system and the dependencies between
them. This can be represented in a diagram or as a list.

Determine the build order: Based on the dependencies, determine the correct order in which
components should be built and deployed.

Automate the build process: Use tools such as Jenkins, TravisCl, or CircleCI to automate the
build and deployment process. This allows for consistency and repeatability in the build process.

Monitor progress: Monitor the progress of the build and deployment process to ensure that
components are deployed in the correct order and that the system is functioning as expected.

Test and validate: Test the system after deployment to ensure that all components are
functioning as intended and that dependencies are resolved correctly.

Rollback: If necessary, have a rollback plan in place to revert to a previous version of the system
if the build or deployment process fails.

In conclusion, building by dependency order in DevOps is a critical step in ensuring the success
of a system deployment, as it ensures that components are deployed in the correct order and that
dependencies are resolved correctly. This results in a more stable, reliable, and consistent system.

Build phases

In DevOps, there are several phases in the build process, including:

Planning: Define the project requirements, identify the dependencies, and create a build plan.
Code development: Write the code and implement features, fixing bugs along the way.

Continuous Integration (Cl): Automatically build and test the code as it is committed to a
version control system.

oD e

DevOps

Continuous Delivery (CD): Automatically deploy code changes to a testing environment, where
they can be tested and validated.

Deployment: Deploy the code changes to a production environment, after they have passed
testing in a pre-production environment.

Monitoring: Continuously monitor the system to ensure that it is functioning as expected, and to
detect and resolve any issues that may arise.

Maintenance: Continuously maintain and update the system, fixing bugs, adding new features,
and ensuring its stability.

These phases help to ensure that the build process is efficient, reliable, and consistent, and that
code changes are validated and deployed in a controlled manner. Automation is a key aspect of
DevOps, and it helps to make these phases more efficient and less prone to human error.

In continuous integration (CI), this is where we build the application for the first time. The build
stage is the first stretch of a CI/CD pipeline, and it automates steps like downloading
dependencies, installing tools, and compiling.

Besides building code, build automation includes using tools to check that the code is safe and
follows best practices. The build stage usually ends in the artifact generation step, where we
create a production-ready package. Once this is done, the testing stage can begin.

Test app
) Analyze
£} Compile app 4 Lint W Artifact © Unittests 99: 02
; 4 + @ Complexity @001 ; .
& Compile 00:01 @ Lintcode 00:02 O Generate 90:01 @ Integration 80:01
© Security 08:02
O Etc.. 68:01

The build stage starts from code commit and runs from the beginning up to the test stage
We’ll be covering testing in-depth in future articles (subscribe to the newsletter so you don’t miss

them). Today, we’ll focus on build automation.

Build automation verifies that the application, at a given code commit, can qualify for further
testing. We can divide it into three parts:

Compilation: the first step builds the application.

Linting: checks the code for programmatic and stylistic errors.

Code analysis: using automated source-checking tools, we control the code’s quality.
Artifact generation: the last step packages the application for release or deployment.

DevOps
Alternative build servers

There are several alternative build servers in DevOps, including:

Jenkins - an open-source, Java-based automation server that supports various plugins and
integrations.

Travis CI - a cloud-based, open-source CI/CD platform that integrates with Github.

CircleCl - a cloud-based, continuous integration and delivery platform that supports multiple
languages and integrates with several platforms.

GitLab CI/CD - an integrated CI/CD solution within GitLab that allows for complete project
and pipeline management.

Bitbucket Pipelines - a CI/CD solution within Bitbucket that allows for pipeline creation and
management within the code repository.

AWS CodeBuild - a fully managed build service that compiles source code, runs tests, and
produces software packages that are ready to deploy.

Azure Pipelines - a CI/CD solution within Microsoft Azure that supports multiple platforms and
programming languages.

Collating quality measures

In DevOps, collating quality measures is an important part of the continuous improvement
process. The following are some common quality measures used in DevOps to evaluate the
quality of software systems:

Continuous Integration (CI) metrics - metrics that track the success rate of automated builds and
tests, such as build duration and test pass rate.

Continuous Deployment (CD) metrics - metrics that track the success rate of deployments, such
as deployment frequency and time to deployment.

Code review metrics - metrics that track the effectiveness of code reviews, such as review
completion time and code review feedback.

Performance metrics - measures of system performance in production, such as response time and
resource utilization.User experience metrics - measures of how users interact with the system,
such as click-through rate and error rate.

Security metrics - measures of the security of the system, such as the number of security
vulnerabilities and the frequency of security updates.

Incident response metrics - metrics that track the effectiveness of incident response, such as
mean time to resolution (MTTR) and incident frequency.

By regularly collating these quality measures, DevOps teams can identify areas for improvement,
track progress over time, and make informed decisions about the quality of their systems.

DevOps
Unit 5

Testing Tools and automation

As we know, software testing is a process of analyzing an application's functionality as per the
customer prerequisite.

If we want to ensure that our software is bug-free or stable, we must perform the various types of
software testing because testing is the only method that makes our application bug-free.

Various types of testing

The categorization of software testing is a part of diverse testing activities, such as test strategy,
test deliverables, a defined test objective, etc. And software testing is the execution of the
software to find defects.

The purpose of having a testing type is to confirm the AUT (Application Under Test).

To start testing, we should have a requirement, application-ready, necessary resources
available. To maintain accountability, we should assign a respective module to different test
engineers.

The software testing mainly divided into two parts, which are as follows:

o Manual Testing
o Automation Testing

Twvpes of Software Testing
Manual Testing Automation Testing
¥
White Box Black Box Grey Box
Functional Non-Functional
Testing Testing
Integration Performance - . Compatibility
Non-Incremental
Testing

|
i

Incremental
Testing

Load Testing

e Stress Testing

Scalability
Testing

Bottom-up

Stability Testing

DevOps
What is Manual Testing?

Testing any software or an application according to the client's needs without using any
automation tool is known as manual testing.

In other words, we can say that it is a procedure of verification and validation. Manual testing
is used to verify the behavior of an application or software in contradiction of requirements
specification.

We do not require any precise knowledge of any testing tool to execute the manual test cases. We
can easily prepare the test document while performing manual testing on any application.

To get in-detail information about manual testing, click on the following link:
https://www.javatpoint.com/manual-testing.

Classification of Manual Testing

In software testing, manual testing can be further classified into three different types of testing,
which are as follows:

o White Box Testing
o Black Box Testing
o GreyBox Testing

For our better understanding let's see them one by one:
White Box Testing

In white-box testing, the developer will inspect every line of code before handing it over to the
testing team or the concerned test engineers.

Subsequently, the code is noticeable for developers throughout testing; that's why this process is
known as WBT (White Box Testing).

In other words, we can say that the developer will execute the complete white-box testing for the
particular software and send the specific application to the testing team.

The purpose of implementing the white box testing is to emphasize the flow of inputs and
outputs over the software and enhance the security of an application.

http://www.javatpoint.com/manual-testing

DevOps

White Box Testing

Application Code

»
o
L

White box testing is also known as open box testing, glass box testing, structural testing,
clear box testing, and transparent box testing.

Black Box Testing

Another type of manual testing is black-box testing. In this testing, the test engineer will
analyze the software against requirements, identify the defects or bug, and sends it back to the
development team.

Then, the developers will fix those defects, do one round of White box testing, and send it to the
testing team.

Here, fixing the bugs means the defect is resolved, and the particular feature is working
according to the given requirement.

The main objective of implementing the black box testing is to specify the business needs or the
customer's requirements.

In other words, we can say that black box testing is a process of checking the functionality of an
application as per the customer requirement. The source code is not visible in this testing; that's
why it is known as black-box testing.

Black Box Testing

Test Case input Black Box

Test Case Output

DevOps
Types of Black Box Testing

Black box testing further categorizes into two parts, which are as discussed below:

o Functional Testing
o Non-function Testing

Types of Black Box Testing

Functional MNon-function
Testing Testing

Functional Testing

The test engineer will check all the components systematically against requirement specifications
is known as functional testing. Functional testing is also known as Component testing.

In functional testing, all the components are tested by giving the value, defining the output, and
validating the actual output with the expected value.

Functional testing is a part of black-box testing as its emphases on application requirement rather
than actual code. The test engineer has to test only the program instead of the system.

Types of Functional Testing

Just like another type of testing is divided into several parts, functional testing is also classified
into various categories.

The diverse types of Functional Testing contain the following:

o Unit Testing
o Integration Testing
o System Testing

Now, Let's understand them one by one:

DevOps

1. Unit Testing

Unit testing is the first level of functional testing in order to test any software. In this, the test
engineer will test the module of an application independently or test all the module functionality
is called unit testing.

The primary objective of executing the unit testing is to confirm the unit components with their
performance. Here, a unit is defined as a single testable function of a software or an application.
And it is verified throughout the specified application development phase.

2. Integration Testing

Once we are successfully implementing the unit testing, we will go integration testing. It is the
second level of functional testing, where we test the data flow between dependent modules or
interface between two features is called integration testing.

The purpose of executing the integration testing is to test the statement's accuracy between each
module.

Types of Integration Testing
Integration testing is also further divided into the following parts:

o Incremental Testing
o Non-Incremental Testing

Incremental Integration Testing

Whenever there is a clear relationship between modules, we go for incremental integration
testing. Suppose, we take two modules and analysis the data flow between them if they are
working fine or not.

If these modules are working fine, then we can add one more module and test again. And we can
continue with the same process to get better results.

In other words, we can say that incrementally adding up the modules and test the data flow
between the modules is known as Incremental integration testing.

Types of Incremental Integration Testing

Incremental integration testing can further classify into two parts, which are as follows:

1. Top-down Incremental Integration Testing
2. Bottom-up Incremental Integration Testing

DevOps
Let's see a brief introduction of these types of integration testing:
1. Top-down Incremental Integration Testing

In this approach, we will add the modules step by step or incrementally and test the data flow
between them. We have to ensure that the modules we are adding are the child of the earlier
ones.

2. Bottom-up Incremental Integration Testing

In the bottom-up approach, we will add the modules incrementally and check the data flow
between modules. And also, ensure that the module we are adding is the parent of the earlier
ones.

Non-Incremental Integration Testing/ Big Bang Method

Whenever the data flow is complex and very difficult to classify a parent and a child, we will go
for the non-incremental integration approach. The non-incremental method is also known as the
Big Bang method.

3. System Testing

Whenever we are done with the unit and integration testing, we can proceed with the system
testing.

In system testing, the test environment is parallel to the production environment. It is also known
as end-to-end testing.

In this type of testing, we will undergo each attribute of the software and test if the end feature
works according to the business requirement. And analysis the software product as a complete
system.

Non-function Testing

The next part of black-box testing is non-functional testing. It provides detailed information on
software product performance and used technologies.

Non-functional testing will help us minimize the risk of production and related costs of the
software.

Non-functional testing is a combination of performance, load, stress, usability and,
compatibility testing.

DevOps
Types of Non-functional Testing

Non-functional testing categorized into different parts of testing, which we are going to discuss
further:

o Performance Testing
o Usability Testing
o Compatibility Testing

1. Performance Testing

In performance testing, the test engineer will test the working of an application by applying some
load.

In this type of non-functional testing, the test engineer will only focus on several aspects, such
as Response time, Load, scalability, and Stability of the software or an application.

Classification of Performance Testing
Performance testing includes the various types of testing, which are as follows:

Load Testing
Stress Testing
Scalability Testing
Stability Testing
Load Testing

O O O O O

While executing the performance testing, we will apply some load on the particular application
to check the application's performance, known as load testing. Here, the load could be less than
or equal to the desired load.

It will help us to detect the highest operating volume of the software and bottlenecks.
o Stress Testing

It is used to analyze the user-friendliness and robustness of the software beyond the common
functional limits.

Primarily, stress testing is used for critical software, but it can also be used for all types of
software applications.

o Scalability Testing

To analysis, the application's performance by enhancing or reducing the load in particular

DevOps

balances is known as scalability testing.

In scalability testing, we can also check the system, processes, or database's ability to meet an
upward need. And in this, the Test Cases are designed and implemented efficiently.

o Stability Testing

Stability testing is a procedure where we evaluate the application's performance by applying the
load for a precise time.

It mainly checks the constancy problems of the application and the efficiency of a developed
product. In this type of testing, we can rapidly find the system's defect even in a stressful
situation.

2. Usability Testing

Another type of non-functional testing is usability testing. In usability testing, we will analyze
the user-friendliness of an application and detect the bugs in the software's end-user interface.

Here, the term user-friendliness defines the following aspects of an application:

o The application should be easy to understand, which means that all the features must be
visible to end-users.

o The application's look and feel should be good that means the application should be
pleasant looking and make a feel to the end-user to use it.

3. Compatibility Testing

In compatibility testing, we will check the functionality of an application in specific hardware
and software environments. Once the application is functionally stable then only, we go
for compatibility testing.

Here, software means we can test the application on the different operating systems and other
browsers, and hardware means we can test the application on different sizes.

Grey Box Testing

Another part of manual testing is Grey box testing. It is a collaboration of black box and
white box testing.

Since, the grey box testing includes access to internal coding for designing test cases. Grey box
testing is performed by a person who knows coding as well as testing.

Black Box White Box
Testing Testing

In other words, we can say that if a single-person team done both white box and black-box
testing, it is considered grey box testing.

Automation Testing

The most significant part of Software testing is Automation testing. It uses specific tools to
automate manual design test cases without any human interference.

Automation testing is the best way to enhance the efficiency, productivity, and coverage of
Software testing.

It is used to re-run the test scenarios, which were executed manually, quickly, and repeatedly.

In other words, we can say that whenever we are testing an application by using some tools is
known as automation testing.

We will go for automation testing when various releases or several regression cycles goes on the
application or software. We cannot write the test script or perform the automation testing without
understanding the programming language.

Automation of testing Pros and cons
Some other types of Software Testing

In software testing, we also have some other types of testing that are not part of any above
discussed testing, but those testing are required while testing any software or an application.
o Smoke Testing

Sanity Testing
Regression Testing

User Acceptance Testing
Exploratory Testing
Adhoc Testing

Security Testing

o O O O O O O

Globalization Testing

DevOps

Let's understand those types of testing one by one:

In smoke testing, we will test an application’s basic and critical features before doing one round
of deep and rigorous testing.

Or before checking all possible positive and negative values is known as smoke testing.
Analyzing the workflow of the application's core and main functions is the main objective of
performing the smoke testing.

Sanity Testing

It is used to ensure that all the bugs have been fixed and no added issues come into existence due
to these changes. Sanity testing is unscripted, which means we cannot documented it. It checks
the correctness of the newly added features and components.

Regression Testing

Regression testing is the most commonly used type of software testing. Here, the
term regression implies that we have to re-test those parts of an unaffected application.

Regression testing is the most suitable testing for automation tools. As per the project type and
accessibility of resources, regression testing can be similar to Retesting.

Whenever a bug is fixed by the developers and then testing the other features of the applications
that might be simulated because of the bug fixing is known as regression testing.

In other words, we can say that whenever there is a new release for some project, then we can
perform Regression Testing, and due to a new feature may affect the old features in the earlier
releases.

User Acceptance Testing

The User acceptance testing (UAT) is done by the individual team known as domain
expert/customer or the client. And knowing the application before accepting the final product is
called as user acceptance testing.

In user acceptance testing, we analyze the business scenarios, and real-time scenarios on the
distinct environment called the UAT environment. In this testing, we will test the application
before UAI for customer approval.

Exploratory Testing

Whenever the requirement is missing, early iteration is required, and the testing team has
experienced testers when we have a critical application. New test engineer entered into the team
then we go for the exploratory testing.

DevOps

To execute the exploratory testing, we will first go through the application in all possible ways,
make a test document, understand the flow of the application, and then test the application.

Adhoc Testing

Testing the application randomly as soon as the build is in the checked sequence is known
as Adhoc testing.

It is also called Monkey testing and Gorilla testing. In Adhoc testing, we will check the
application in contradiction of the client's requirements; that's why it is also known as negative
testing.

When the end-user using the application casually, and he/she may detect a bug. Still, the
specialized test engineer uses the software thoroughly, so he/she may not identify a similar
detection.

Security Testing

It is an essential part of software testing, used to determine the weakness, risks, or threats in the
software application.

The execution of security testing will help us to avoid the nasty attack from outsiders and ensure
our software applications' security.

In other words, we can say that security testing is mainly used to define that the data will be safe
and endure the software's working process.

Globalization Testing

Another type of software testing is Globalization testing. Globalization testing is used to check
the developed software for multiple languages or not. Here, the words globalization means
enlightening the application or software for various languages.

Globalization testing is used to make sure that the application will support multiple languages
and multiple features.

In present scenarios, we can see the enhancement in several technologies as the applications are
prepared to be used globally.

Conclusion
In the tutorial, we have discussed various types of software testing. But there is still a list of more

than 100+ categories of testing. However, each kind of testing is not used in all types of projects.

We have discussed the most commonly used types of Software Testing like black-box testing,
white box testing, functional testing, non-functional testing, regression testing, Adhoc
testing, etc.

DevOps

Also, there are alternate classifications or processes used in diverse organizations, but the general
concept is similar all over the place.

These testing types, processes, and execution approaches keep changing when the project,
requirements, and scope change.

Automation of testing Pros and cons

Pros of Automated Testing:

Automated Testing has the following advantages:

1.

9.

10.

Automated testing improves the coverage of testing as automated execution of test
cases is faster than manual execution.

Automated testing reduces the dependability of testing on the availability of the test
engineers.

Automated testing provides round the clock coverage as automated tests can be run all
time in 24*7 environment.

Automated testing takes far less resources in execution as compared to manual testing.
It helps to train the test engineers to increase their knowledge by producing a repository
of different tests.

It helps in testing which is not possible without automation such as reliability testing,
stress testing, load and performance testing.

It includes all other activities like selecting the right product build, generating the right
test data and analyzing the results.

It acts as test data generator and produces maximum test data to cover a large number
of input and expected output for result comparison.

Automated testing has less chances of error hence more reliable.

As with automated testing test engineers have free time and can focus on other creative
tasks.

Cons of Automated Testing :Automated Testing has the following disadvantages:

1.
2.

B

Automated testing is very much expensive than the manual testing.

It also becomes inconvenient and burdensome as to decide who would automate and
who would train.

It has limited to some organisations as many organisations not prefer test automation.
Automated testing would also require additionally trained and skilled people.
Automated testing only removes the mechanical execution of testing process, but
creation of test cases still required testing professionals.

DevOps

Selenium

Introduction

Selenium is one of the most widely used open source Web Ul (User Interface) automation testing
suite.It was originally developed by Jason Huggins in 2004 as an internal tool at Thought Works.
Selenium supports automation across different browsers, platforms and programming languages.

Selenium can be easily deployed on platforms such as Windows, Linux, Solaris and Macintosh.
Moreover, it supports OS (Operating System) for mobile applications like iOS, windows mobile
and android.

Selenium supports a variety of programming languages through the use of drivers specific to
each Language.

Languages supported by Selenium include C#, Java, Perl, PHP, Python and Ruby.

Currently, Selenium Web driver is most popular with Java and C#. Selenium test scripts can be
coded in any of the supported programming languages and can be run directly in most modern
web browsers. Browsers supported by Selenium include Internet Explorer, Mozilla Firefox,
Google Chrome and Safari.

Web-based Automated Testing

Open Source Multiple OS
Selenium

Multiple Frameworks Multiple Browsers

Multiple Programming languages

Selenium can be used to automate functional tests and can be integrated with automation test
tools such as Maven, Jenkins, & Docker to achieve continuous testing. It can also be integrated
with tools such as TestNG, & JUnit for managing test cases and generating reports.

Selenium Features

o Selenium is an open source and portable Web testing Framework.

o Selenium IDE provides a playback and record feature for authoring tests without the need
to learn a test scripting language.

o It can be considered as the leading cloud-based testing platform which helps testers to
record their actions and export them as a reusable script with a simple-to-understand and
easy-to-use interface.

DevOps

o Selenium supports various operating systems, browsers and programming languages.
Following is the list:

o Programming Languages: C#, Java, Python, PHP, Ruby, Perl, and JavaScript
o Operating Systems: Android, i0OS, Windows, Linux, Mac, Solaris.

o Browsers: Google Chrome, Mozilla Firefox, Internet Explorer, Edge, Opera,
Safari, etc.

o It also supports parallel test execution which reduces time and increases the efficiency of
tests.

o Selenium can be integrated with frameworks like Ant and Maven for source code
compilation.

o Selenium can also be integrated with testing frameworks like TestNG for application
testing and generating rseports.
o Selenium requires fewer resources as compared to other automation test tools.

o WebDriver API has been indulged in selenium whichis one of the most important
modifications done to selenium.

o Selenium web driver does not require server installation, test scripts interact directly with
the browser.

o Selenium commands are categorized in terms of different classes which make it easier to
understand and implement.

JavaScript testing

JavaScript testing is a crucial part of the software development process that helps ensure the
quality and reliability of code. The following are the key components of JavaScript testing:

Test frameworks: A test framework provides a structure for writing and organizing tests. Some
popular JavaScript test frameworks include Jest, Mocha, and Jasmine.

Assertion libraries: An assertion library provides a set of functions that allow developers to
write assertions about the expected behavior of the code. For example, an assertion might check
that a certain function returns the expected result.

Test suites: A test suite is a collection of related tests that are grouped together. The purpose of a
test suite is to test a specific aspect of the code in isolation.

Test cases: A test case is a single test that verifies a specific aspect of the code. For example, a
test case might check that a function behaves correctly when given a certain input.

Test runners: A test runner is a tool that runs the tests and provides feedback on the results. Test
runners typically provide a report on which tests passed and which tests failed.

Continuous Integration (CI): Cl is a software development practice where developers integrate
code into a shared repository frequently. By using ClI, developers can catch issues early and
avoid integration problems.

DevOps

The goal of JavaScript testing is to catch bugs and defects early in the development cycle, before
they become bigger problems and impact the quality of the software. Testing also helps to ensure
that the code behaves as expected, even when changes are made in the future.

There are different types of tests that can be performed in JavaScript, including unit tests,
integration tests, and end-to-end tests. The choice of which tests to write depends on the specific
requirements and goals of the project.

Testing backend integration points

The term backend generally refers to server-side deployment. Here the process is
entirely happening in the backend which is not shown to the user only the expected
results will be shown to the user. In every web application, there will be a backend
language to accomplish the task.

For Example, while uploading the details of the students in the database, the database will
store all the details. When there is a need to display the details of the students, it will
simply fetch all the details and display them. Here, it will show only the result, not the
process and how it fetches the details.

What is Backend Testing?

Backend Testing is a testing method that checks the database or server-side of the web
application. The main purpose of backend testing is to check the application layer and the
database layer. It will find an error or bug in the database or server-side.

For implementing backend testing, the backend test engineer should also have some
knowledge about that particular server-side or database language. It is also known
as Database Testing.

Importance of Backend Testing: Backend testing is a must because anything wrong or
error happens at the server-side, it will not further proceed with that task or the output
will get differed or sometimes it will also cause problems such as data loss, deadlock,
etc.,

Types of Backend Testing

The following are the different types of backend testing:

1. Structural Testing

2. Functional Testing

3. Non-Functional Testing

Let’s discuss each of these types of backend testing.

DevOps

1. Structural Testing

Structural testing is the process of validating all the elements that are present inside the
data repository and are primarily used for data storage. It involves checking the objects of
front-end developments with the database mapping objects.

Types of Structural Testing: The following are the different types of structural testing:
a) Schema Testing: In this Schema Testing, the tester will check for the correctly mapped
objects. This is also known as mapping testing. It ensures whether the objects of the
front-end and the objects of the back-end are correctly matched or mapped. It will mainly
focus on schema objects such as a table, view, indexes, clusters, etc., In this testing, the
tester will find the issues of mapped objects like table, view, etc.,
b) Table and Column Testing: In this, it ensures that the table and column properties are
correctly mapped.

It ensures whether the table and the column names are correctly mapped on both

the front-end side and server-side.

It validates the datatype of the column is correctly mentioned.

It ensures the correct naming of the column values of the database.

It detects the unused tables and columns.

It validates whether the users are able to give the correct input as per the
requirement.
For example, if we mention the wrong datatype for the column on the server-side which
is different from the front-end then it will raise an error.

c) Key and Indexes Testing: In this, it validates the key and indexes of the columns.

It ensures whether the mentioned key constraints are correctly provided. For
example, Primary Key for the column is correctly mentioned as per the given
requirement.

It ensures the correct references of Foreign Key with the parent table.

It checks the length and size of the indexes.

It ensures the creation of clustered and non-clustered indexes for the table as per
the requirement.

It validates the naming conventions of the Keys.

d) Trigger Testing: It ensures that the executed triggers are fulfilling the required
conditions of the DML transactions.

It validates whether the triggers make the data updates correctly when we have
executed them.

It checks the coding conventions are followed correctly during the coding phase of
the triggers.

It ensures that the trigger functionalities of update, delete, and insert.

DevOps

e) Stored Procedures Testing: In this, the tester checks for the correctness of the stored
procedure results.
It checks whether the stored procedure contains the valid conditions for looping
and conditional statements as per the requirement.
It validates the exception and error handling in the stored procedure.
It detects the unused stored procedure.
It validates the cursor operations.
It validates whether the TRIM operations are correctly applied or not.
It ensures that the required triggers are implicitly invoked by executing the stored
procedures.
f) Database Server Validation Testing: It validates the database configuration details as
per the requirements.
It validates that the transactions of the data are made as per the requirements.

It validates the user’s authentication and authorization.
For Example, If wrong user authentication is given, it will raise an error.

2. Functional Testing

Functional Testing is the process of validating that the transactions and operations made
by the end-users meet the requirements.

Types of Functional Testing: The following are the different types of functional testing:
a) Black Box Testing:

Black Box Testing is the process of checking the functionalities of the integration
of the database.

This testing is carried out at the early stage of development and hence It is very
helpful to reduce errors.

It consists of various techniques such as boundary analysis, equivalent
partitioning, and cause-effect graphing.

These techniques are helpful in checking the functionality of the database.

The best example is the User login page. If the entered username and password are
correct, It will allow the user and redirect to the next page.

b) White Box Testing:

White Box Testing is the process of validating the internal structure of the
database.

Here, the specified details are hidden from the user.

The database triggers, functions, views, queries, and cursors will be checked in
this testing.

It validates the database schema, database table, etc.,
Here the coding errors in the triggers can be easily found.

Errors in the queries can also be handled in this white box testing and hence
internal errors are easily eliminated.

DevOps
3. Non-Functional Testing

Non-functional testing is the process of performing load testing, stress testing, and
checking minimum system requirements are required to meet the requirements. It will
also detect risks, and errors and optimize the performance of the database.

a) Load Testing:
Load testing involves testing the performance and scalability of the database.
It determines how the software behaves when it is been used by many users
simultaneously.
It focuses on good load management.

For example, if the web application is accessed by multiple users at the same time
and it does not create any traffic problems then the load testing is successfully

completed.

b) Stress Testing:

Stress Testing is also known as endurance testing. Stress testing is a testing
process that is performed to identify the breakpoint of the system.

In this testing, an application is loaded till the stage the system fails.
This point is known as a breakpoint of the database system.

It evaluates and analyzes the software after the breakage of system failure. In case
of error detection, It will display the error messages.

For example, if users enter the wrong login information then it will throw an error
message.

Backend Testing Process

Set up the test environment

$

Generate the test cases

y

Execution of test cases

$

Analyzing the test cases

4

Submission of test reports

DevOps

1. Set up the Test Environment: When the coding process is done for the application,
set up the test environment by choosing a proper testing tool for back-end testing. It
includes choosing the right team to test the entire back-end environment with a proper
schedule. Record all the testing processes in the documents or update them in software to
keep track of all the processes.

2. Generate the Test Cases: Once the tool and the team are ready for the testing process,
generate the test cases as per the business requirements. The automation tool itself will
analyze the code and generate all possible test cases for developed code. If the process is
manual then the tester will have to write the possible test cases in the testing tool to
ensure the correctness of the code.

3. Execution of Test Cases: Once the test cases are generated, the tester or Quality
Analyst needs to execute those test cases in the developed code. If the tool is automated,
it will generate and execute the test cases by itself. Otherwise, the tester needs to write
and execute those test cases. It will highlight whether the execution of test cases is
executed successfully or not.

4. Analyzing the Test Cases: After the execution of test cases, it highlights the result of
all the test cases whether it has been executed successfully or not. If an error occurs in the
test cases, it will highlight where the particular error is formed or raised, and in some
cases, the automation tool will give hints regarding the issues to solve the error. The tester
or Quality Analyst should analyze the code again and fix the issues if an error occurred.

5. Submission of Test Reports: This is the last stage in the testing process. Here, all the
details such as who is responsible for testing, the tool used in the testing process, number
of test cases generated, number of test cases executed successfully or not, time is taken to
execute each test case, number of times test cases failed, number of times errors occurred.
These details are either documented or updated in the software. The report will be
submitted to the respective team.

Backend Testing Validation

The following are some of the factors for backend testing validation:

Performance Check: It validates the performance of each individual test and the
system behavior.

Sequence Testing: Backend testing validates that the tests are distributed
according to the priority.

Database Server Validations: In this, ensures that the data fed through for the
tests is correct or not.

Functions Testing: In this, the test validates the consistency in transactions of the
database.

Key and Indexes: In this, the test ensures that the accurate constraint and the rules
of constraints and indexes are followed properly.

DevOps

Data Integrity Testing: It is a technique in which data is verified in the database
whether it is accurate and functions as per requirements.

Database Tables: It ensures that the created table and the queries for the output
are providing the expected result.

Database Triggers: Backend Testing validates the correctness of the functionality
of triggers.

Stored Procedures: Backend testing validates the functions, return statements,
calling the other events, etc., are correctly mentioned as per the requirements,

Schema: Backend testing validates that the data is organized in a correct way as
per the business requirement and confirms the outcome.

Tools For Backend Testing
The following are some of the tools for backend testing:

1. LoadRunner:
It is a stress testing tool.
It is an automated performance and testing automation tool for analyzing system
behavior and the performance of the system while generating the actual load.
2. Empirix-TEST Suite:
It is acquired by Oracle from Empirix. It is a load testing tool.
It validates the scalability along with the functionality of the application under
heavy test.
Acquisition with the Empirix -Test suite may be proven effective to deliver the
application with improved quality.
3. Stored Procedure Testing Tools — LINQ:
It is a powerful tool that allows the user to show the projects.
It tracks all the ORM calls and database queries from the ORM.

It enables to see the performance of the data access code and easily determine

performance.
4. Unit Testing Tools — SQL Unit, DBFit, NDbUnit:

SQL UNIT: SQLUnit is a Unit Testing Framework for Regression and Unit
Testing of database stored procedures.

DBFit: It is a part of FitNesse and manages stored procedures and custom
procedures. Accomplishes database testing either through Java or .NET and runs from
the command line.

NDbUnit: It performs the database unit test for the system either before or after
execution or compiled the other parts of the system.

DevOps
5. Data Factory Tools:

These tools work as data managers and data generators for backend database
testing.

It is used to validate the queries with a huge set of data.

It allows performing both stress and load testing.

6. SQLMap:

It is an open-source tool.

It is used for performing Penetration Testing to automate the process of detection.

Powerful detection of errors will lead to efficient testing and result in the expected
behavior of the requirements.

7.phpMyadmin:

This is the software tool and it is written in PHP.

It is developed to handle the databases and we can execute test queries to ensure
the correctness of the result as a whole and even for a separate table.

8. Automatic Efficient Test Generator (AETG):

It mechanically generates the possible tests from user-defined requirements.

It is based on algorithms that use ideas from statistical experimental design theory
to reduce the number of tests needed for a specific level of test coverage of the input
test space.

9. Hammer DB:

It is an open-source tool for load testing.

It validates the activity replay functionality for the oracle database.

It is based on industry standards like TPC-C and TPC-H Benchmarks.

10. SQL Test:

SQL Test uses an open-source tSQLt framework, views, stored procedures, and
functions.

This tool stores database object in a separate schema and if changes occur there is
no need for clearing the process.

It allows running the unit test cases for the SQL server database.

Advantages of Backend Testing
The following are some of the benefits of backend testing:

Errors are easily detectable at the earlier stage.

It avoids deadlock creation on the server-side.

Web load management is easily achieved.

The functionality of the database is maintained properly.

It reduces data loss.

Enhances the functioning of the system.

It ensures the security and protection of the system.

While doing the backend testing, the errors in the Ul parts can also be detected and
replaced.

Coverage of all possible test cases.

DevOps
Disadvantages of Backend Testing

The following are some of the disadvantages of backend testing:

Good domain knowledge is required.
Providing test cases for testing requires special attention.

Investment in Organizational costs is higher.
It takes more time to test.

If more testing becomes fails then It will lead to a crash on the server-side in some
cases.

Errors or Unexpected results from one test case scenario will affect the other
system results also.

Test-driven development

Test Driven Development (TDD) is software development approach in which test cases
are developed to specify and validate what the code will do. In simple terms, test
cases for each functionality are created and tested first and if the test fails then the
new code is written in order to pass the test and making code simple and bug-free.
Test-Driven Development starts with designing and developing tests for every small
functionality of an application. TDD framework instructs developers to write new
code only if an automated test has failed. This avoids duplication of code. The TDD
full form is Test-driven development.

/

Unit Test p— Code — Refactor

-
-
&
-
-
-
-
-
"
-
I'.'
- .-.-
-
frssssssssmmeEes

Forces developer to consider use of a method
bpefore implementation of it

The simple concept of TDD is to write and correct the failed tests before writing new code
(before development). This helps to avoid duplication of code as we write a small amount of
code at a time in order to pass tests. (Tests are nothing but requirement conditions that we need to
test to fulfill them).

Test-Driven development is a process of developing and running automated test before actual
development of the application. Hence, TDD sometimes also called as Test First Development.

DevOps

How to perform TDD Test

Following steps define how to perform TDD test,

Add a test.

Run all tests and see if any new test fails.
Write some code.

Run tests and Refactor code.

Repeat

Ok owbhe

Add a Test

Execute the Tests

Refactoring

Make Changes to
the Code

Execute the Tests

Pass. Development Stops

TDD Vs. Traditional Testing

Below is the main difference between Test driven development and traditional testing:

TDD approach is primarily a specification technique. It ensures that your source code
is thoroughly tested at confirmatory level.

With traditional testing, a successful test finds one or more defects. It is same
as TDD. When a test fails, you have made progress because you know that you
need to resolve the problem.

TDD ensures that your system actually meets requirements defined for it. It
helps to build your confidence about your system.

DevOps

+ In TDD more focus is on production code that verifies whether testing will

work properly. In traditional testing, more focus is on test case design. Whether

the test will show the proper/improper execution of the application in order to
fulfill requirements.

In TDD, you achieve 100% coverage test. Every single line of code is tested,
unlike traditional testing.

The combination of both traditional testing and TDD leads to the importance of
testing the system rather than perfection of the system.

In Agile Modeling (AM), you should “test with a purpose”. You should know
why you are testing something and what level its need to be tested.

What is acceptance TDD and Developer TDD

There are two levels of TDD

1. Acceptance TDD (ATDD): With ATDD you write a single acceptance test. This test
fulfills the requirement of the specification or satisfies the behavior of the system. After
that write just enough production/functionality code to fulfill that acceptance test.
Acceptance test focuses on the overall behavior of the system. ATDD also was known
as Behavioral Driven Development (BDD).

2. Developer TDD: With Developer TDD you write single developer test i.e. unit test and
then just enough production code to fulfill that test. The unit test focuses on every small
functionality of the system. Developer TDD is simply called as TDD.The main goal of
ATDD and TDD is to specify detailed, executable requirements for your solution on a just
in time (JIT) basis. JIT means taking only those requirements in consideration that are
needed in the system. So increase efficiency.

Add an
acceptance test

[Pass] Run the
acceptance tests

Fail

Add a developar
test
Run the
developer tests

[Fail]

Make a little
change
Run the

dewveloper tests

[Pass,
Functionality
complota)

Refactoring [Pass])

Refactoring

[Developar
Make a litttle | T0D]
change

[Pass,
Functionality
incomplata]

[Pass, [Fail] gt
Development Run the

continues] acceptance tests
[Pass,
Development stops]

Acceptance TDD

Developer TDD

DevOps
REPL-driven development

REPL-driven development (Read-Eval-Print Loop) is an interactive programming approach that
allows developers to execute code snippets and see their results immediately. This enables
developers to test their code quickly and iteratively, and helps them to understand the behavior of
their code as they work.

In a REPL environment, developers can type in code snippets, and the environment will
immediately evaluate the code and return the results. This allows developers to test small bits of
code and quickly see the results, without having to create a full-fledged application.

REPL-driven development is commonly used in dynamic programming languages such as
Python, JavaScript, and Ruby. Some popular REPL environments include the Python REPL,
Node.js REPL, and IRB (Interactive Ruby).

Benefits of REPL-driven development include:

Increased efficiency: The immediate feedback provided by a REPL environment allows
developers to test and modify their code quickly, without having to run a full-fledged application.

Improved understanding: By being able to see the results of code snippets immediately,
developers can better understand how the code works and identify any issues early on.

Increased collaboration: REPL-driven development makes it easy for developers to share code
snippets and collaborate on projects, as they can demonstrate the behavior of the code quickly
and easily.

Overall, REPL-driven development is a useful tool for developers looking to improve their
workflow and increase their understanding of their code. By providing an interactive
environment for testing and exploring code, REPL-driven development can help developers to be
more productive and efficient.

Deployment of the system:

In DevOps, deployment systems are responsible for automating the release of software updates
and applications from development to production. Some popular deployment systems include:

Jenkins: an open-source automation server that provides plugins to support building, deploying,
and automating any project.

Ansible: an open-source platform that provides a simple way to automate software provisioning,
configuration management, and application deployment.

Docker: a platform that enables developers to create, deploy, and run applications in containers.

Kubernetes: an open-source system for automating deployment, scaling, and management of
containerized applications.

AWS Code Deploy: a fully managed deployment service that automates software deployments
to a variety of compute services such as Amazon EC2, AWS Fargate, and on-premises servers.

DevOps

Azure DevOps: a Microsoft product that provides an end-to-end DevOps solution for
developing, delivering, and deploying applications on multiple platforms.

Virtualization stacks

In DevOps, virtualization refers to the creation of virtual machines, containers, or environments
that allow multiple operating systems to run on a single physical machine. The following are
some of the commonly used virtualization stacks in DevOps:

Docker: An open-source platform for automating the deployment, scaling, and management of
containerized applications.

Kubernetes: An open-source platform for automating the deployment, scaling, and management
of containerized applications, commonly used in conjunction with Docker.

VirtualBox: An open-source virtualization software that allows multiple operating systems to
run on a single physical machine.

VMware: A commercial virtualization software that provides a comprehensive suite of tools for
virtualization, cloud computing, and network and security management.

Hyper-V: Microsoft's hypervisor technology that enables virtualization on Windows-based
systems.

These virtualization stacks play a crucial role in DevOps by allowing developers to build, test,
and deploy applications in isolated, consistent environments, while reducing the costs and
complexities associated with physical infrastructure.

code execution at the client

In DevOps, code execution at the client refers to the process of executing code or scripts on
client devices or machines. This can be accomplished in several ways, including:

Client-side scripting languages: JavaScript, HTML, and CSS are commonly used client-side
scripting languages that run in a web browser and allow developers to create dynamic,
interactive web pages.

Remote execution tools: Tools such as SSH, Telnet, or Remote Desktop Protocol (RDP) allow
developers to remotely execute commands and scripts on client devices.

Configuration management tools: Tools such as Ansible, Puppet, or Chef use agent-based or
agentless architectures to manage and configure client devices, allowing developers to execute
code and scripts remotely.

Mobile apps: Mobile applications can also run code on client devices, allowing developers to
create dynamic, interactive experiences for users.

These methods are used in DevOps to automate various tasks, such as application deployment,
software updates, or system configuration, on client devices. By executing code on the client
side, DevOps teams can improve the speed, reliability, and security of their software delivery
process.

DevOps
Puppet master and agents:

Puppet Architecture

Puppet uses master-slave or client-server architecture. Puppet client and server interconnected by
SSL, which is a secure socket layer. It is a model-driven system.

Catalog

Catalog

Here, the client is referred to as a Puppet agent/slave/node, and the server is referred to as a
Puppet master.

Let's see the components of Puppet architecture:
Puppet Master

Puppet master handles all the configuration related process in the form of puppet codes. It is a
Linux based system in which puppet master software is installed. The puppet master must be in
Linux. It uses the puppet agent to apply the configuration to nodes.

This is the place where SSL certificates are checked and marked.
Puppet Slave or Agent

Puppet agents are the real working systems and used by the Client. It is installed on the client
machine and maintained and managed by the puppet master. They have a puppet agent service
running inside them.

The agent machine can be configured on any operating system such as Windows, Linux, Solaris,
or Mac OS.

DevOps

Config Repository

Config repository is the storage area where all the servers and nodes related configurations are
stored, and we can pull these configurations as per requirements.

Facts

Facts are the key-value data pair. It contains information about the node or the master machine. It
represents a puppet client states such as operating system, network interface, IP address, uptime,
and whether the client machine is virtual or not.

These facts are used for determining the present state of any agent. Changes on any target
machine are made based on facts. Puppet's facts are predefined and customized.

Catalog
The entire configuration and manifest files that are written in Puppet are changed into a compiled

format. This compiled format is known as a catalog, and then we can apply this catalog to the
target machine.

The above image performs the following functions:
o First of all, an agent node sends facts to the master or server and requests for a catalog.

o The master or server compiles and returns the catalog of a node with the help of some
information accessed by the master.

o Then the agent applies the catalog to the node by checking every resource mentioned in the
catalog. If it identifies resources that are not in their desired state, then makes the necessary
adjustments to fix them. Or, it determines in no-op mode, the adjustments would be required to
reconcile the catalog.

o And finally, the agent sends a report back to the master.
Puppet Master-Slave Communication

Puppet master-slave communicates via a secure encrypted channel through the SSL (Secure
Socket Layer). Let's see the below diagram to understand the communication between the master
and slave with this channel:

Request for Master Certiicate

Send Master Certificate

Request for Slave Certficate

Send Slave Certhicate

Request for Data

Send Data

The above diagram depicts the following:

o Puppet slave requests for Puppet Master Certificate.

o Puppet master sends the Master Certificate to the puppet slave in response to the client request.
o Puppet master requests to the Puppet slave for the slave certificate.

o Puppet slave sends the requested slave certificate to the puppet master.

o Puppet slave sends a request for data to the puppet master.

o Finally, the master sends the data to the puppet slave as per the request.

Puppet Blocks
Puppet provides the flexibility to integrate Reports with third-party tools using Puppet APlIs.

Four types of Puppet building blocks are

Resources
Classes
Manifest
Modules

PowhdPRE

Puppet Resources:

Puppet Resources are the building blocks of Puppet.

Resources are the inbuilt functions that run at the back end to perform the required operations in
puppet.

Puppet Classes:

A combination of different resources can be grouped together into a single unit called class.

DevOps
Puppet Manifest:

Manifest is a directory containing puppet DSL files. Those files have a .pp extension. The .pp
extension stands for puppet program. The puppet code consists of definitions or declarations of
Puppet Classes.

Puppet Modules:

Modules are a collection of files and directories such as Manifests, Class definitions. They are
the re-usable and sharable units in Puppet.

For example, the MySQL module to install and configure MySQL or the Jenkins module to
manage Jenkins, etc..

Resource }
Resource

Resource

m

Class e

Resource

Resource
}
Resource

m

DevOps

Ansible:

Ansible is simple open source IT engine which automates application deployment, intra service
orchestration, cloud provisioning and many other IT tools.

Ansible is easy to deploy because it does not use any agents or custom security infrastructure.

Ansible uses playbook to describe automation jobs, and playbook uses very simple language
i.e. YAML (It’s a human-readable data serialization language & is commonly used for
configuration files, but could be used in many applications where data is being stored)which is
very easy for humans to understand, read and write. Hence the advantage is that even the IT
infrastructure support guys can read and understand the playbook and debug if needed (YAML —
It is in human readable form).

Ansible is designed for multi-tier deployment. Ansible does not manage one system at time, it
models IT infrastructure by describing all of your systems are interrelated. Ansible is completely
agentless which means Ansible works by connecting your nodes through ssh(by default). But if
you want other method for connection like Kerberos, Ansible gives that option to you.

After connecting to your nodes, Ansible pushes small programs called as “Ansible Modules”.
Ansible runs that modules on your nodes and removes them when finished. Ansible manages
your inventory in simple text files (These are the hosts file). Ansible uses the hosts file where one
can group the hosts and can control the actions on a specific group in the playbooks.

Sample Hosts File
This is the content of hosts file —

#File name: hosts

#Description: Inventory file for your application. Defines machine type abc
node to deploy specific artifacts

Defines machine type def node to upload

metadata.

[abc-node]

#serverl ansible_host = <target machine for DU deployment> ansible_user = <Ansible
user> ansible_connection = ssh

serverl ansible_host = <your host name> ansible_user = <your unix user>
ansible_connection = ssh

[def-node]

#server2 ansible_host = <target machine for artifact upload>

ansible_user = <Ansible user> ansible_connection = ssh

server2 ansible_host = <host> ansible_user = <user> ansible_connection = ssh

DevOps

What is Configuration Management

Configuration management in terms of Ansible means that it maintains configuration of the
product performance by keeping a record and updating detailed information which describes an
enterprise’s hardware and software.

Such information typically includes the exact versions and updates that have been applied to
installed software packages and the locations and network addresses of hardware devices. For
e.g. If you want to install the new version of WebLogic/WebSphere server on all of the machines
present in your enterprise, it is not feasible for you to manually go and update each and every
machine.

You can install WebLogic/WebSphere in one go on all of your machines with Ansible playbooks
and inventory written in the most simple way. All you have to do is list out the IP addresses of
your nodes in the inventory and write a playbook to install WebLogic/WebSphere. Run the
playbook from your control machine & it will be installed on all your nodes.

Ansible Workflow

Ansible works by connecting to your nodes and pushing out a small program called Ansible
modules to them. Then Ansible executed these modules and removed them after finished. The
library of modules can reside on any machine, and there are no
daemons, servers, or databases required.

Host 1
Ansible {group A}
Management
MNode
Host 2
¢ ¢ (group B)
playbook inventory
Eﬂ)’;‘;“ Al Host N
[group B] (group B)
host 2
host M

In the above image, the Management Node is the controlling node that controls the entire
execution of the playbook. The inventory file provides the list of hosts where the Ansible
modules need to be run. The Management Node makes an SSH connection and executes the
small modules on the host's machine and install the software.

177

DevOps

Ansible removes the modules once those are installed so expertly. It connects to the host machine
executes the instructions, and if it is successfully installed, then remove that code in which one
was copied on the host machine.

Terms used in Ansible

Terms

Ansible
Server

Modules

Task

Role

Fact

Inventory

Play

Handler

Notifier

Tag

Explanation

It is a machine where Ansible is installed and from which all tasks and
playbooks will be executed.

The module is a command or set of similar commands which is executed on the
client-side.

A task is a section which consists of a single procedure to be completed.
It is a way of organizing tasks and related files to be later called in a playbook.

The information fetched from the client system from the global variables with
the gather facts operation.

A file containing the data regarding the Ansible client-server.

It is the execution of the playbook.

The task is called only if a notifier is present.

The section attributed to a task which calls a handler if the output is changed.

It is a name set to a task that can be used later on to issue just that specific task
or group of jobs.

Ansible Architecture

The Ansible orchestration engine interacts with a user who is writing the Ansible playbook to
execute the Ansible orchestration and interact along with the services of private or public cloud
and configuration management database. You can show in the below diagram, such as:

DevOps

=) CMDB
Public/Private C—)
Cloud %

ANSIBELE ORCHESTRATION ENGINE
[™ +
E </> e
J
Inventroy

_}.
EE —> API
4
O | 6
S Perlliles

Inventory

Inventory is lists of nodes or hosts having their IP addresses, databases, servers, etc. which are
need to be managed.

API's
The Ansible API's works as the transport for the public or private cloud services.
Modules

Ansible connected the nodes and spread out the Ansible modules programs. Ansible executes the
modules and removed after finished. These modules can reside on any machine; no database or
servers are required here. You can work with the chose text editor or a terminal or version control
system to keep track of the changes in the content.

Plugins

Plugins is a piece of code that expends the core functionality of Ansible. There are many useful
plugins, and you also can write your own.

Playbooks

Playbooks consist of your written code, and they are written in YAML format, which describes
the tasks and executes through the Ansible. Also, you can launch the tasks synchronously and
asynchronously with playbooks.

Hosts

In the Ansible architecture, hosts are the node systems, which are automated by Ansible, and any
machine such as RedHat, Linux, Windows, etc.

DevOps

Networking

Ansible is used to automate different networks, and it uses the simple, secure, and powerful
agentless automation framework for IT operations and development. It uses a type of data model
which separated from the Ansible automation engine that spans the different hardware quite
easily.

Cloud

A cloud is a network of remote servers on which you can store, manage, and process the data.
These servers are hosted on the internet and storing the data remotely rather than the local server.
It just launches the resources and instances on the cloud, connect them to the servers, and you
have good knowledge of operating your tasks remotely.

CMDB

CMDB is a type of repository which acts as a data warehouse for the IT installations.
Puppet Components

Following are the key components of Puppet:

Manifests
Module
Resource
Factor
M-collective
Catalogs
Class

Nodes

o O O O O O O O

Let's understand these components in detail:
Manifests

Puppet Master contains the Puppet Slave's configuration details, and these are written in Puppet's
native language.

Manifest is nothing but the files specifying the configuration details for Puppet slave. The
extension for manifest files is .pp, which means Puppet Policy. These files consist of puppet
scripts describing the configuration for the slave.

DevOps

Module

The puppet module is a set of manifests and data. Here data is file, facts, or templates. The
module follows a specific directory structure. These modules allow the puppet program to split
into multiple manifests. Modules are simply self-contained bundles of data or code.

Let's understand the module by the following image:

(Facts, Files, Templates) |

Resources are a basic unit of system configuration modeling. These are the predefined functions
that run at the backend to perform the necessary operations in the puppet.

Resource

Each puppet resource defines certain elements of the system, such as some particular service or
package.

Factor

The factor collects facts or important information about the puppet slave. Facts are the key-value
data pair. It contains information about the node or the master machine. It represents a puppet
client states such as operating system, network interface, IP address, uptime, and whether the
client machine is virtual or not.

These facts are used for determining the present state of any agent. Changes on any target
machine are made based on facts. Puppet's facts are predefined and customized.

M-Collective

M-collective is a framework that enables parallel execution of several jobs on multiple Slaves.
This framework performs several functions, such as:

o This is used to interact with clusters of puppet slaves; they can be in small groups or very
large deployments.

o To transmit demands, use a broadcast model. All Slaves receive all requests at the same
time, requests have filters attached, and only Slaves matching the filter can act on
requests.

o This is used to call remote slaves with the help of simple command-line tools.

o This is used to write custaom renarts ahout vaur infrastructiure
™ J

DevOps

Catalogs

The entire configuration and manifest files that are written in Puppet are changed into a compiled
format. This compiled format is known as a catalog, and then we can apply this catalog to the
target machine.

All the required states of slave resources are described in the catalog.
Class

Like other programming languages, the puppet also supports a class to organize the code in a
better way. Puppet class is a collection of various resources that are grouped into a single unit.

Nodes

The nodes are the location where the puppet slaves are installed used to manage all the clients
and servers.

Deployment tools
Chef

Chef is an open source technology developed by Opscode. Adam Jacob, co-founder of Opscode
is known as the founder of Chef. This technology uses Ruby encoding to develop basic building
blocks like recipe and cookbooks. Chef is used in infrastructure automation and helps in
reducing manual and repetitive tasks for infrastructure management.

Chef have got its own convention for different building blocks, which are required to manage
and automate infrastructure.

Why Chef?

Chef is a configuration management technology used to automate the infrastructure provisioning.
It is developed on the basis of Ruby DSL language. It is used to streamline the task of
configuration and managing the company’s server. It has the capability to get integrated with any
of the cloud technology.

In DevOps, we use Chef to deploy and manage servers and applications in-house and on the
cloud.

Features of Chef
Following are the most prominent features of Chef —

Chef uses popular Ruby language to create a domain-specific language.
Chef does not make assumptions on the current status of a node. It uses its mechanisms to
get the current status of machine.

Chef is ideal for deploying and managing the cloud server, storage, and software.

DevOps

Advantages of Chef
Chef offers the following advantages —

Lower barrier for entry — As Chef uses native Ruby language for configuration, a
standard configuration language it can be easily picked up by anyone having some
development experience.

Excellent integration with cloud — Using the knife utility, it can be easily integrated
with any of the cloud technologies. It is the best tool for an organization that wishes to
distribute its infrastructure on multi-cloud environment.

Disadvantages of Chef
Some of the major drawbacks of Chef are as follows —

One of the huge disadvantages of Chef is the way cookbooks are controlled. It needs
constant babying so that people who are working should not mess up with others
cookbooks.
Only Chef solo is available.
In the current situation, it is only a good fit for AWS cloud.
It is not very easy to learn if the person is not familiar with Ruby.
Documentation is still lacking.
Key Building Blocks of Chef
Recipe

It can be defined as a collection of attributes which are used to manage the infrastructure. These
attributes which are present in the recipe are used to change the existing state or setting a
particular infrastructure node. They are loaded during Chef client run and comparted with the
existing attribute of the node (machine). It then gets to the status which is defined in the node
resource of the recipe. It is the main workhorse of the cookbook.

Cookbook

A cookbook is a collection of recipes. They are the basic building blocks which get uploaded to
Chef server. When Chef run takes place, it ensures that the recipes present inside it gets a given
infrastructure to the desired state as listed in the recipe.

Resource

It is the basic component of a recipe used to manage the infrastructure with different kind of
states. There can be multiple resources in a recipe, which will help in configuring and managing
the infrastructure. For example —

package — Manages the packages on a node

service — Manages the services on a node

user — Manages the users on the node

group — Manages groups

template — Manages the files with embedded Ruby template

cookbook_file — Transfers the files from the files subdirectory in the cookbook to a

DevOps

location on the node

file — Manages the contents of a file on the node
directory — Manages the directories on the node
execute — Executes a command on the node

cron — Edits an existing cron file on the node
Chef - Architecture

Chef works on a three-tier client server model wherein the working units such as
cookbooks are developed on the Chef workstation. From the command line utilities such
as knife, they are uploaded to the Chef server and all the nodes which are present in the
architecture are registered with the Chef server.

Chef
Workstation

Chef Chef
Node node

In order to get the working Chef infrastructure in place, we need to set up multiple things
in sequence.

In the above setup, we have the following components.
Chef Workstation

This is the location where all the configurations are developed. Chef workstation is
installed on the local machine. Detailed configuration structure is discussed in the later
chapters of this tutorial.

Chef Server

This works as a centralized working unit of Chef setup, where all the configuration files
are uploaded post development. There are different kinds of Chef server, some are hosted
Chef server whereas some are built-in premise.

Chef Nodes

They are the actual machines which are going to be managed by the Chef server. All the
nodes can have different kinds of setup as per requirement. Chef client is the key
component of all the nodes, which helps in setting up the communication between the

DevOps

Chef server and Chef node. The other components of Chef node is Ohai, which helps in
getting the current state of any node at a given point of time.

Salt Stack

Salt Stack is an open-source configuration management software and remote execution engine.
Salt is a command-line tool. While written in Python, SaltStack configuration management is
language agnostic and simple. Salt platform uses the push model for executing commands via the
SSH protocol. The default configuration system is YAML and Jinja templates. Salt is primarily
competing with Puppet, Chef and Ansible.

Salt provides many features when compared to other competing tools. Some of these important
features are listed below.

Fault tolerance — Salt minions can connect to multiple masters at one time by
configuring the master configuration parameter as a YAML list of all the available
masters. Any master can direct commands to the Salt infrastructure.

Flexible — The entire management approach of Salt is very flexible. It can be
implemented to follow the most popular systems management models such as Agent and
Server, Agent-only, Server-only or all of the above in the same environment.

Scalable Configuration Management — SaltStack is designed to handle ten thousand
minions per master.

Parallel Execution model — Salt can enable commands to execute remote systems in a
parallel manner.

Python API — Salt provides a simple programming interface and it was designed to be
modular and easily extensible, to make it easy to mold to diverse applications.

Easy to Setup — Salt is easy to setup and provides a single remote execution architecture
that can manage the diverse requirements of any number of servers.

Language Agnostic — Salt state configuration files, templating engine or file type
supports any type of language.

Benefits of SaltStack

Being simple as well as a feature-rich system, Salt provides many benefits and they can be
summarized as below —

Robust — Salt is powerful and robust configuration management framework and works
around tens of thousands of systems.

Authentication — Salt manages simple SSH key pairs for authentication.

Secure — Salt manages secure data using an encrypted protocol.

Fast — Salt is very fast, lightweight communication bus to provide the foundation for a
remote execution engine.

Virtual Machine Automation — The Salt Virt Cloud Controller capability is used for
automation.

Infrastructure as data, not code — Salt provides a simple deployment, model driven
configuration management and command execution framework.

DevOps

Introduction to ZeroMQ

Salt is based on the ZeroMQ library and it is an embeddable networking library. It is lightweight
and a fast messaging library. The basic implementation is in C/C++ and native implementations
for several languages including Java and .Net is available.

ZeroMQ is a broker-less peer-peer message processing. ZeroMQ allows you to design a complex
communication system easily.

ZeroMQ comes with the following five basic patterns —

Synchronous Request/Response — Used for sending a request and receiving subsequent
replies for each one sent.

Asynchronous Request/Response — Requestor initiates the conversation by sending a
Request message and waits for a Response message. Provider waits for the incoming
Request messages and replies with the Response messages.

Publish/Subscribe — Used for distributing data from a single process (e.g. publisher) to
multiple recipients (e.g. subscribers).

Push/Pull — Used for distributing data to connected nodes.

Exclusive Pair — Used for connecting two peers together, forming a pair.

ZeroMQ is a highly flexible networking tool for exchanging messages among clusters, cloud and
other multi system environments. ZeroMQ is the default transport library presented in
SaltStack.

SaltStack — Architecture

The architecture of SaltStack is designed to work with any number of servers, from local
network systems to other deployments across different data centers. Architecture is a simple
server/client model with the needed functionality built into a single set of daemons.

Take a look at the following illustration. It shows the different components of SaltStack
architecture.

DevOps

o Grains
— = Sait minions / i
Database

Salt minion selumers

T~

Runner
command Salt minion

Webd
applications

Salt result

Master Salt minions

Salt Cioud command Top file
Salt minion
resuit
/ Grains
) | Salt minion
Reactor
- ~Retumners
In -~
' out . i
et Event * command return
Execution
module

Eg: Sal ™' disk.usage

SaltMaster — SaltMaster is the master daemon. A SaltMaster is used to send commands
and configurations to the Salt slaves. A single master can manage multiple masters.

SaltMinions — SaltMinion is the slave daemon. A Salt minion receives commands and
configuration from the SaltMaster.

Execution — Modules and Adhoc commands executed from the command line against
one or more minions. It performs Real-time Monitoring.

Formulas — Formulas are pre-written Salt States. They are as open-ended as Salt States
themselves and can be used for tasks such as installing a package, configuring and
starting a service, setting up users or permissions and many other common tasks.
Grains — Grains is an interface that provides information specific to a minion. The
information available through the grains interface is static. Grains get loaded when the
Salt minion starts. This means that the information in grains is unchanging. Therefore,
grains information could be about the running kernel or the operating system. It is case
insensitive.

Pillar — A pillar is an interface that generates and stores highly sensitive data specific to a
particular minion, such as cryptographic keys and passwords. It stores data in a key/value
pair and the data is managed in a similar way as the Salt State Tree.

Top File — Matches Salt states and pillar data to Salt minions.

Runners — It is a module located inside the SaltMaster and performs tasks such as job
status, connection status, read data from external APIs, query connected salt minions and
more.

Returners — Returns data from Salt minions to another system.

Reactor — It is responsible for triggering reactions when events occur in your SaltStack
environment.

SaltCloud — Salt Cloud provides a powerful interface to interact with cloud hosts.
SaltSSH — Run Salt commands over SSH on systems without using Salt minion.

Docker

Docker is a container management service. The keywords of Docker are develop,

| - 1 L o)) 1 aal L ™ 1 H £ 1 1 N - | 1 1
SITIY dITu TuUrT dITywriItTt. TTIC WITTUTT TuTd UT DUURET 1S5 TUT UTVETUPTTS WU CadilTy UctvtTiupy

DevOps

applications, ship them into containers which can then be deployed anywhere.

The initial release of Docker was in March 2013 and since then, it has become the buzzword for
modern world development, especially in the face of Agile-based projects.

Features of Docker

Docker has the ability to reduce the size of development by providing a smaller footprint
of the operating system via containers.

With containers, it becomes easier for teams across different units, such as development,
QA and Operations to work seamlessly across applications.

You can deploy Docker containers anywhere, on any physical and virtual machines and
even on the cloud.

Since Docker containers are pretty lightweight, they are very easily scalable.
Components of Docker

Docker has the following components

Docker for Mac — It allows one to run Docker containers on the Mac OS.

Docker for Linux — It allows one to run Docker containers on the Linux OS.

Docker for Windows — It allows one to run Docker containers on the Windows OS.
Docker Engine — It is used for building Docker images and creating Docker containers.
Docker Hub — This is the registry which is used to host various Docker images.

Docker Compose — This is used to define applications using multiple Docker containers.

Docker architecture

Docker uses a client-server architecture. The Docker client talks to the Docker daemon,
which does the heavy lifting of building, running, and distributing your Docker
containers. The Docker client and daemon can run on the same system, or you can
connect a Docker client to a remote Docker daemon. The Docker client and daemon
communicate using a REST API, over UNIX sockets or a network interface. Another
Docker client is Docker Compose, that lets you work with applications consisting of a set
of containers.

DevOps

DOCKER_HOST Registry 8
~—

~~~~~~~~~~~~~~~
: NGiNX
[ pockerun By | e
/,/ L=
_.-~ openstack.

-
—
= mAa”
D)

openstack.

----------- build

—————— pull

run

The Docker daemon

The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such
as images, containers, networks, and volumes. A daemon can also communicate with other
daemons to manage Docker services.

The Docker client

The Docker client (docker) is the primary way that many Docker users interact with Docker.
When you use commands such as docker run, the client sends these commands to dockerd,
which carries them out. The docker command uses the Docker API. The Docker client can
communicate with more than one daemon.

Docker Desktop

Docker Desktop is an easy-to-install application for your Mac, Windows or Linux environment
that enables you to build and share containerized applications and microservices. Docker
Desktop includes the Docker daemon (dockerd), the Docker client (docker), Docker Compose,
Docker Content Trust, Kubernetes, and Credential Helper. For more information, see Docker

Desktop.

Docker registries

A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use,
and Docker is configured to look for images on Docker Hub by default. You can even run your
own private registry.

When you use the docker pull or docker run commands, the required images are pulled from
your configured registry. When you use the docker push command, your image is pushed to your
configured registry.




DevOps

Docker objects

When you use Docker, you are creating and using images, containers, networks, volumes,
plugins, and other objects. This section is a brief overview of some of those objects.

Images

An image is a read-only template with instructions for creating a Docker container. Often, an
image is based on another image, with some additional customization. For example, you may
build an image which is based on the ubuntu image, but installs the Apache web server and your
application, as well as the configuration details needed to make your application run.

You might create your own images or you might only use those created by others and published
in a registry. To build your own image, you create a Dockerfile with a simple syntax for defining
the steps needed to create the image and run it. Each instruction in a Dockerfile creates a layer in
the image. When you change the Dockerfile and rebuild the image, only those layers which have
changed are rebuilt. This is part of what makes images so lightweight, small, and fast, when
compared to other virtualization technologies.

Containers

A container is a runnable instance of an image. You can create, start, stop, move, or delete a
container using the Docker APl or CLI. You can connect a container to one or more networks,
attach storage to it, or even create a new image based on its current state.

By default, a container is relatively well isolated from other containers and its host machine. You
can control how isolated a container’s network, storage, or other underlying subsystems are from
other containers or from the host machine.

A container is defined by its image as well as any configuration options you provide to it when
you create or start it. When a container is removed, any changes to its state that are not stored in
persistent storage disappear.

Example docker run command

The following command runs an ubuntu container, attaches interactively to your local command-
line session, and runs /bin/bash.
$ docker run -i -t ubuntu /bin/bash

When you run this command, the following happens (assuming you are using the default registry
configuration):

1. If you do not have the ubuntu image locally, Docker pulls it from your configured
registry, as though you had run docker pull ubuntu manually.

2. Docker creates a new container, as though you had run a docker container
create command manually.

3. Docker allocates a read-write filesystem to the container, as its final layer. This allows a
running container to create or modify files and directories in its local filesystem.

4. Docker creates a network interface to connect the container to the default network, since




DevOps

container. By default, containers can connect to external networks using the host
machine’s network connection.

5. Docker starts the container and executes /bin/bash. Because the container is running
interactively and attached to your terminal (due to the -i and -t flags), you can provide
input using your keyboard while the output is logged to your terminal.

6. When you type exit to terminate the /bin/bash command, the container stops but is not
removed. You can start it again or remove it.

The underlying technology

Docker is written in the Go programming language and takes advantage of several features of the
Linux kernel to deliver its functionality. Docker uses a technology called namespaces to provide
the isolated workspace called the container. When you run a container, Docker creates a set
of namespaces for that container.

These namespaces provide a layer of isolation. Each aspect of a container runs in a separate
namespace and its access is limited to that namespace.




DevOps

Sample questions for Internal exam with key
SUBJECT: DEVOPS

YEAR:-1II

UNIT —I:- Introduction

Introduction, Agile development model, DevOps, and ITIL. DevOps process and Continuous
Delivery, Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples.

PART A:

1) Explain briefly about Sdic?

2) What is waterfall model?

3) What is agile model?

4) Why Devops ?

5) What is Devops?

6) Whatis IITL?

7) What is continuous development?
8) What is continuous Integration?
9) What is continuous Testing?

10) What is continuous delivery?
11) What is continuous deployment?
12) What is Scrum?

13) What is Kanban?

PART B:

1) What is the difference between agile and Devops?

2) What are the differences between agile and waterfall model?
3) Explain Devops process flow in detail?

4) What is continuous delivery and how it works?

5) Explain components of delivery pipeline?




DevOps

UNIT-I1I:- Software development models and DevOps

DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. DevOps influence on
Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of
thumb, The separation of concerns, Handling database migrations, Microservices, and the data
tier, DevOps, architecture, and resilience.

PART A:

1) What are different software development lifecycle models?
2) What is datatier in Devops?

3) What is monolithic architecture?

4) What are benefits of monolithic architecture ?

PART B:

1) Explain Devops lifecycle iin detail?

2) What are Devops components?

3) Explain about Devops architecture in detail?

4) What are microservices and how does microservices architecture work?
5) Explain architecture rules of thumb?

6) Explain data base migration?

7) What are the advantages of migration tools?

UNIT-I11I:- Introduction to project management:

Introduction to project management: The need for source code control, The history of source
code management, Roles and code, source code management system and migrations, Shared
authentication, Hosted Git servers, Different Git server implementations, Docker intermission,
Gerrit, The pull request model, GitLab.

PART A:

1) What is the need for source code control in Devops?

2) What are the roles and codes in devops?

3) What are the benefits of source code management in Devops?
4) What is shared authentication in Devops?

5) What is pull request model in Devops ?

PART B:

1) What is version control, Explain types of version control systems and benefits of
version control systems?

2) What is Gerrit and explain the architecture of gerrit?

3) What is docker intermission and what are the differences between Docker and
machine?

4) Explain gerrit and its architecture?




DevOps

UNIT-1V:- Integrating the system

Integrating the system: Build systems, Jenkins build server, Managing build dependencies,
Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host,
Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by
dependency order, Build phases, Alternative build servers, Collating quality measures.

PART A:
1) What is Git plugin?
2) What is managing build dependencies in Devops?
3) What is buildpipelines?
4) What is job chaining?
5) Explain collating Quality measures?
6) What are alternative build servers?

PART B:

1)  What is Jenkin and explain its workflow?

2) Explain Jenkin master slave architecture and Jenki applications?
3) What are build slaves in Devops?

4) What is infrastructure as a code in Devops?

5) What are different build phases in Devops ?

UNIT-V:- Testing Tools and automation and Deployment of the system

Testing Tools and automation: Various types of testing, Automation of testing Pros and cons,
Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration
points, Test-driven development, REPL-driven development Deployment of the system:
Deployment systems, Virtualization stacks, code execution at the client, Puppet master and
agents, Ansible, Deployment tools: Chef, Salt Stack and Docker.

PART A:

1) What is java script testing?

2) What are the different tools used for backend testing?
3) Explain TDD vs Traditional Testing?

4) What is acceptance TDD and Developer TDD?

5) What is REPL driven development?

6) What is deployment of the system?

7) What is virtualization of the stack?




DevOps
PART B:

1) What is testing and Explain different types of testing?

2) Pros and cons of testing?

3) What is selenium and Explain selenium features?

4) What are backend integration points and explain backend testing validation?
5) What are advantages and disadvantages of backend testing?

6) What is TTD and how it is performed?

OBJECTIVE TYPE UNIT WISE QUESTIONS

UNIT-1
1) What is the main philosophy of Agile development?
a. To deliver working software frequently
b. To prioritize customer satisfaction
c. To respond to change over following a plan
d. All of the above
Answer: d. All of the above
2) What is the most commonly used Agile methodology?
a. Scrum
b. Kanban
c. Waterfall
d. XP (Extreme Programming)
Answer: a. Scrum
3)In Scrum, what is the role of the Scrum Master?
a. To lead the development team
b. To manage the project schedule
c. To facilitate the Scrum process
d. To direct the work of the development team
Answer: c. To facilitate the Scrum process
4)In Scrum, what is the purpose of the daily stand-up meeting?
a. To review progress

b. To plan the next sprint

1338




DevOps

c. To inspect the previous sprint
d. To coordinate work between team members

Answer: a. To review progress

4)What is the main purpose of sprint retrospectives in Scrum?
a. To evaluate the sprint and identify areas for improvement
b. To plan the next sprint
c. To review progress

d. To coordinate work between team members

Answer: a. To evaluate the sprint and identify areas for improvement

5)What is pair programming in XP (Extreme Programming)?
a. Two programmers working on the same task
b. Two programmers working on different tasks
c. One programmer working alone
d. None of the above
Answer: a. Two programmers working on the same task
6) What is ITIL (Information Technology Infrastructure Library)?
a. A set of best practices for IT service management
b. A framework for managing and delivering IT services
c. A methodology for continuous delivery and integration
d. All of the above
Answer: a. A set of best practices for IT service management
7) What is the main goal of ITIL?
a. To improve the quality of IT services
b. To reduce the cost of IT services
c. To improve the efficiency of IT service delivery
d. All of the above
Answer: d. All of the above

8) What is the relationship between ITIL and DevOps?

a. ITIL and DevOps are completely separate and have no relationship

b. ITIL is a methodology that can be used to support DevOps

c. DevOps is a methodology that can be used to support ITIL




DevOps

d. Both ITIL and DevOps are completely integrated and cannot be used separately
Answer: b. ITIL is a methodology that can be used to support DevOps
9) Which ITIL process is concerned with the delivery of IT services to customers?
a. Incident Management
b. Service Delivery
c. Service Level Management
d. Capacity Management
Answer: b. Service Delivery
10) What is the purpose of the Change Management process in ITIL?
a. To ensure that changes to IT services are properly planned and tested
b. To minimize the disruption caused by changes to IT services
c. To ensure that changes are implemented in a controlled and coordinated manner
d. All of the above
Answer: d. All of the above
11) Which ITIL process is concerned with the management of IT service continuity?
a. Incident Management
b. Service Delivery
c. Service Level Management
d. Continuity Management
Answer: d. Continuity Management
12) What is the main purpose of using Kanban in DevOps?
a) To increase efficiency in the development process
b) To manage the entire software development lifecycle
c) To increase speed and agility in delivering software

d) To visualize the flow of work

Answer: d

13) What is the main difference between Scrum and Kanban?
a) Scrum has time-boxed iterations, while Kanban does not
b) Kanban focuses on delivering software quickly, while Scrum focuses on teamwork
c¢) Scrum has defined roles and ceremonies, while Kanban does not

d) Kanban is mainly used for maintenance and operations, while Scrum is mainly used for new




DevOps

d evelopment
Answer: a
14) How is work prioritized in a Kanban system?
a) Based on the order in which it was received
b) Based on the availability of team members
c)Based on the priority set by the customer
d) Based on the importance of the work
Answer: ¢
15) In a Kanban system, what is the purpose of a "pull™ system?
a) To assign tasks to team members
b) To ensure work is only started when there is capacity available
c) To control the flow of work
d) To prioritize tasks
Answer: b
16) What is the main purpose of a delivery pipeline in DevOps?
a) To automate the software delivery process
b) To manage the entire software development lifecycle
c) To increase speed and agility in delivering software
d) To visualize the flow of work
Answer: a
17) What are the main stages in a typical delivery pipeline?

a) Development, testing, deployment

b) Requirements gathering, design, coding

¢) Planning, execution, monitoring

d) Continuous integration, continuous delivery, continuous deployment
Answer: d
18) What is the purpose of continuous integration in a delivery pipeline?

a) To automate the testing process

b) To integrate code changes from multiple developers

¢) To deploy software to production

d) To manage the entire software development lifecycle




DevOps

Answer: b
19) What is the purpose of continuous delivery in a delivery pipeline?
a) To automate the testing process
b) To integrate code changes from multiple developers
c) To deploy software to production with a single click
d) To manage the entire software development lifecycle
Answer: c
20) What is the purpose of continuous deployment in a delivery pipeline?
a) To automate the testing process
b) To integrate code changes from multiple developers
c) To deploy software to production with a single click
d) To automatically deploy software to production whenever changes are made

Answer: d

OBJECTIVE TYPE UNIT WISE QUESTIONS
UNIT-2

1) What are the main stages of the DevOps lifecycle?
a) Development, testing, deployment
b) Plan, code, deploy
c¢) Continuous integration, continuous delivery, continuous deployment
d) Plan, build, test, release, deploy, operate, monitor
Answer: d
2) What is the purpose of the "plan" stage in the DevOps lifecycle?
a) To plan the development and deployment process
b) To build the software
c) To test the software
d) To release the software
Answer: a
3) What is the purpose of the "build” stage in the DevOps lifecycle?
a) To plan the development and deployment process
b) To build the software

c) To test the software




DevOps

d) To release the software

Answer: b

4) What is the purpose of the "test" stage in the DevOps lifecycle?
a) To plan the development and deployment process

b) To build the software
c) To test the software

d) To release the software
Answer: c
5) What is the purpose of the "release™ stage in the DevOps lifecycle?
a) To plan the development and deployment process
b) To build the software
c) To test the software
d) To release the software
Answer: d
6) What is the purpose of the "deploy" stage in the DevOps lifecycle?
a) To deploy the software to production
b) To build the software
c) To test the software
d) To release the software
Answer: a
7) What is the purpose of the "operate™ stage in the DevOps lifecycle?
a) To operate and maintain the software
b) To build the software
c) To test the software
d) To release the software

Answer: a




DevOps
8) What is the purpose of the "monitor" stage in the DevOps lifecycle?

a) To monitor the performance and stability of the software
b) To build the software
¢) To test the software
d) To release the software
Answer: a

9) What is a monolithic architecture in DevOps?

a) An architecture in which all components are tightly coupled and cannot be separated
b) An architecture in which components are loosely coupled and can be separated
¢) An architecture in which components are dependent on each other
d) An architecture in which components are independent of each other
Answer: a
10) What are the main benefits of a monolithic architecture in DevOps?
a) Scalability and flexibility
b) Ease of deployment
c) Simplicity and ease of maintenance
d) Isolation of components
Answer: ¢
11) What are the main drawbacks of a monolithic architecture in DevOps?
a) Scalability and flexibility
b) Ease of deployment
c¢) Simplicity and ease of maintenance
d) Isolation of components
Answer: a
12) How does a monolithic architecture impact deployment in DevOps?
a) Deployment is difficult because all components are tightly coupled
b) Deployment is easy because all components are loosely coupled
c) Deployment is not impacted by the architecture
d) Deployment is made more complex because of the inter-dependencies of components

Answer: a




DevOps

13) How does a monolithic architecture impact scalability in DevOps?
a) Scalability is difficult because all components are tightly coupled
b) Scalability is easy because all components are loosely coupled
c) Scalability is not impacted by the architecture

d) Scalability is made more complex because of the inter-dependencies of components
Answer: a

14) What is the main purpose of database migrations in DevOps?
a) To move data from one database to another
b) To change the schema of a database
c) To store data in a database
d) To retrieve data from a database
Answer: b
15) What are the main challenges of handling database migrations in DevOps?
a) Data loss and downtime
b) Incompatibility with different database systems
c¢) Lack of automation
d) All of the above
Answer: d
16) How can database migrations be automated in DevOps?
a) By using manual scripts
b) By using database migration tools
c) By using continuous integration and continuous deployment (CI/CD) pipelines
d) By using database backup tools
Answer: ¢
17) What is the purpose of using database migration tools in DevOps?
a) To automate the process of database migrations
b) To store data in a database
c) To retrieve data from a database
d) To move data from one database to another

Answer: a




DevOps

18) How can database downtime be minimized during migrations in DevOps?
a) By using manual scripts

b) By using database migration tools

¢) By using continuous integration and continuous deployment (CI/CD) pipelines
d) By using database backup tools

Answer: b

19) What is a microservice architecture in DevOps?

a) An architecture in which a large application is divided into small, independent services
b) An architecture in which a large application is tightly coupled and cannot be separated
c¢) An architecture in which a large application is loosely coupled and can be separated
d) An architecture in which a large application is dependent on a single service

Answer: a
20) What are the main benefits of using microservices in DevOps?

a) Scalability and flexibility
b) Ease of deployment
c) Simplicity and ease of maintenance
d) All of the above

Answer: d
21) What are the main drawbacks of using microservices in DevOps?

a) Complexity of managing multiple services

b) Inter-service communication overhead
c) Lack of scalability
d) All of the above

Answer: a
22) How does using microservices impact deployment in DevOps?

a) Deployment is more complex because multiple services must be deployed
b) Deployment is simpler because services can be deployed independently
c¢) Deployment is not impacted by the architecture

d) Deployment is made easier because of the inter-dependencies of services

Answer: b




DevOps

OBJECTIVE TYPE UNIT WISE QUESTIONS
UNIT-3

1) What is the purpose of source code management in DevOps?
a) To manage and track changes to source code
b) To store source code
c) To compile source code
d) To distribute source code
Answer: a
2) What are the main benefits of using source code management in DevOps?
a) Improved collaboration and coordination between developers
b) Increased visibility into code changes
c) Better organization of source code
d) All of the above
Answer: d
3) What are the main tools used for source code management in DevOps?
a) Git
b) Subversion
c¢) Mercurial
d) All of the above
Answer: a
4) How does using source code management impact deployment in DevOps?

a) Deployment is not impacted by source code management

b) Deployment is made more complex because of the need to manage code changes
c¢) Deployment is simplified because code changes are tracked and can be easily rolled back
d) Deployment is made easier because code changes are automatically compiled

Answer: ¢




DevOps
5) How does using source code management impact collaboration between developers in
DevOps?

a) Collaboration is not impacted by source code management
b) Collaboration is made more complex because of the need to manage code changes
c¢) Collaboration is simplified because code changes are tracked and can be easily reviewed
d) Collaboration is made easier because code changes are automatically compiled
Answer: ¢
6) What is a migration in DevOps?
a) A process of moving data from one location to another
b) A process of changing infrastructure
c) A process of updating software
d) A process of changing development processes
Answer: a
7) What are the main benefits of using migrations in DevOps?
a) Improved stability of systems
b) Increased efficiency of systems
c) Better ability to scale systems
d) All of the above
Answer: d
8) What are the main challenges associated with migrations in DevOps?
a) Data loss
b) Downtime
c) Increased complexity of systems

d) All of the above

Answer: d
9) How do migrations impact deployment in DevOps?
a) Deployment is not impacted by migrations
b) Deployment is made more complex because of the need to manage data migrations
c) Deployment is simplified because migrations are automated
d) Deployment is made easier because migrations are automatically performed

Answer: b




DevOps

10) How do migrations impact collaboration between teams in DevOps?
a) Collaboration is not impacted by migrations
b) Collaboration is made more complex because of the need to coordinate migrations
c) Collaboration is simplified because migrations are tracked and can be easily reviewed
d) Collaboration is made easier because migrations are automatically performed
Answer: b
10) What is shared authentication in DevOps?
a) A system for sharing authentication credentials between different systems
b) A system for storing authentication credentials
c) A system for managing authentication credentials
d) A system for distributing authentication credentials
Answer: a
11)What are the main benefits of using shared authentication in DevOps?
a) Improved security
b) Increased efficiency
c) Better ability to manage authentication credentials
d) All of the above
Answer: d
12) What are the main challenges associated with shared authentication in DevOps?
a) Lack of control over authentication credentials

b) Increased risk of unauthorized access
c) Increased complexity of systems

d) All of the above
Answer: d
13) How does shared authentication impact deployment in DevOps?

a) Deployment is not impacted by shared authentication

b) Deployment is made more complex because of the need to manage shared authentication

credentials
c) Deployment is simplified because authentication is centralized
d) Deployment is made easier because authentication is automatically performed

Answer: b




DevOps

14) How does shared authentication impact collaboration between teams in DevOps?
a) Collaboration is not impacted by shared authentication

b) Collaboration is made more complex because of the need to coordinate shared
authentication credentials

c) Collaboration is simplified because authentication is centralized
d) Collaboration is made easier because authentication is automatically performed.
15) What is Git?
a) A version control system
b) A file backup system
c) A project management tool
d) A software distribution platform
Answer: a
16) What are the main benefits of using Git in software development?
a) Improved collaboration
b) Increased efficiency

c) Better ability to manage code changes
d) All of the above

Answer: d

17) What is the default branch in a Git repository?
a) master
b) develop
c) trunk
d) main
Answer: a
18) How does Git handle conflicts between multiple code changes?
a) Git automatically merges changes
b) Git prompts the user to manually resolve conflicts
c) Git discards conflicting changes
d) Git stores conflicting changes as separate branches

Answer: b




DevOps
19) What is the purpose of a Git stash?

a) To save changes temporarily without committing them
b) To discard changes
c) To revert code changes
d) To store changes as a new branch
20) What is GitHub?
a) A version control system
b) A code hosting platform
c) A project management tool
d) A software distribution platform
Answer: b
21) What are the main benefits of using GitHub in software development?
a) Improved collaboration
b) Increased visibility of code changes
c) Better ability to manage code changes

d) All of the above
Answer: d

22) What is a GitHub repository?
a) A collection of code and related files
b) A place to store code backups
c) A project management tool
d) A software distribution platform
Answer: a
23) What is a pull request in GitHub?
a) A request for code changes to be merged into a repository
b) A request for code to be stored in a repository
c) A request for a repository to be deleted
d) A request for code to be reviewed

Answer: a




DevOps
24) What is a GitHub issue?

a) A place to report bugs or request features

b) A place to store code backups

c) A project management tool

d) A software distribution platform
Answer: a
25) What is Docker?

a) A virtual machine software

b) A containerization platform

c) A configuration management tool

d) A software distribution platform
Answer: b
26) What are the main benefits of using Docker in software development?

a) Improved application portability
b) Increased efficiency in deploying applications

c) Better ability to manage dependencies
d) All of the above
Answer: d
27) What is a Docker image?
a) A pre-configured environment for running applications
b) A set of instructions for building containers
c) A place to store configuration data
d) A way to manage container resources
Answer: a
28) What is a Docker container?
a) A pre-configured environment for running applications
b) A set of instructions for building containers
c) A place to store configuration data
d) A running instance of a Docker image

Answer: d

29)




DevOps
30) What is the purpose of a Dockerfile?

a) To store configuration data for a Docker container
b) To specify the steps to build a Docker image
¢) To run a Docker container
d) To manage container resources
Answer: b
31)What is Gerrit?
a) A version control system
b) A code hosting platform
c) A code review tool
d) A software distribution platform
Answer: c

32) What are the main benefits of using Gerrit in software development?

a) Improved collaboration
b) Increased visibility of code changes
c) Better ability to manage code changes
d) All of the above
Answer: d
33) What is a Gerrit change?
a) A set of code changes in a repository
b) A request for code changes to be merged
c) A request for code review
d) A place to store code backups
Answer: a
34) What is a Gerrit patch set?
a) A new version of a change in Gerrit
b) A request for code changes to be merged
c) A request for code review
d) A place to store code backups

Answer: a




DevOps

35) What is a Gerrit review?
a) An evaluation of code changes in Gerrit
b) A request for code changes to be merged

¢) A request for code review
d) A place to store code backups

Answer: a

OBJECTIVE TYPE UNIT WISE QUESTIONS

UNIT-4
1) What is Jenkins?
a) A virtual machine software
b) A continuous integration and continuous delivery (CI/CD) tool
c) A configuration management tool
d) A software distribution platform
Answer: b
2) What are the main benefits of using Jenkins in software development?
a) Improved collaboration
b) Increased efficiency in software delivery
c) Better ability to manage build and deployment processes
d) All of the above
Answer: d
3) What is a Jenkins job?
a) A set of instructions for building and deploying software
b) A place to store code backups
c) A project management tool
d) A software distribution platform
Answer: a
4)What is a Jenkins build?
a) The process of building and compiling software

b) A place to store build artifacts
c) A request for code review

d) A running instance of a Docker image

Answer: a




DevOps
5) What is a Jenkins pipeline?

a) A set of instructions for building and deploying software
b) A continuous delivery pipeline
c) A place to store configuration data
d) A way to manage container resources
Answer: b
6) What is a Jenkins plugin?
a) A software component that adds functionality to Jenkins
b) A version control system
c) A code review tool
d) A software distribution platform
Answer: a
7)What are the main benefits of using Jenkins plugins in software development?
a) Improved efficiency in software delivery
b) Increased flexibility in customizing Jenkins
c) Better ability to integrate with other tools and systems
d) All of the above
Answer: d
8) What is the purpose of the Jenkins Git plugin?
a) To integrate Git version control with Jenkins
b) To manage Jenkins jobs
c) To automate code review processes
d) To distribute software packages
Answer: a
9) What is the purpose of the Jenkins Pipeline plugin?

a) To define and manage Jenkins pipelines

b) To automate code review processes
c) To distribute software packages
d) To manage Docker images

Answer: a




DevOps

10) What is the purpose of the Jenkins Deployment Pipeline plugin?
a) To automate deployment processes in Jenkins
b) To manage Jenkins jobs
¢) To integrate version control with Jenkins
d) To distribute software packages
Answer: a
11) What is a trigger in DevOps?
a) An event or condition that initiates a process or action
b) A version control system
c) A code review tool
d) A software distribution platform
Answer: a
12) What are the main types of triggers in DevOps?
a) Scheduled triggers
b) Event-based triggers
c¢) Manual triggers
d) All of the above
Answer: d
13) What is the purpose of scheduled triggers in DevOps?
a) To initiate processes or actions at pre-determined times
b) To respond to events or conditions
c¢) To manually initiate processes or actions
d) To distribute software packages

Answer: a

14) What is the purpose of event-based triggers in DevOps?
a) To respond to events or conditions
b) To initiate processes or actions at pre-determined times
¢) To manually initiate processes or actions
d) To distribute software packages

Answer: a




DevOps
15) What is the purpose of manual triggers in DevOps?

a) To manually initiate processes or actions
b) To respond to events or conditions
¢) To initiate processes or actions at pre-determined times
d) To distribute software packages
Answer: a
16) What is the purpose of build pipelines in DevOps?
a) To automate the process of building software
b) To manage version control
¢) To automate code review processes
d) To distribute software packages
Answer: a
17) What is the difference between build pipelines and orchestration in DevOps?

a) Build pipelines are a series of automated steps for building software, while orchestration
involves coordinating and automating the various steps and processes involved in software
delivery

b) Build pipelines are a manual process, while orchestration involves automating processes

c) Build pipelines are only for code review, while orchestration involves the entire software
delivery process

d) There is no difference, they refer to the same thing
Answer: a
18) What are the benefits of using build pipelines in DevOps?

a) Improved efficiency in software delivery
b) Increased transparency in software development processes

c) Better ability to identify and resolve problems early in the development process
d) All of the above
Answer: d
19) What are the benefits of using orchestration in DevOps?
a) Improved efficiency in software delivery
b) Increased collaboration among teams
c¢) Improved ability to scale processes and systems

d) All of the above

A ol
ATIDVWCT. U




DevOps
20) How does orchestration in DevOps help with continuous delivery and continuous
deployment?

a) By coordinating and automating the various steps and processes involved in software delivery
b) By manual review and approval of every step in the delivery process

c) By only building software, without coordinating and automating delivery processes

d) By only distributing software packages, without coordinating and automating delivery
processes

Answer: a




DevOps
OBJECTIVE TYPE UNIT WISE QUESTIONS

UNIT-5

1) What is the main goal of testing in DevOps?
a) To ensure that software is of high quality and meets customer requirements
b) To increase development speed
c) To implement version control
d) To automate code review processes
Answer: a
2) What are the benefits of incorporating testing into the DevOps process?
a) Faster time-to-market for software releases
b) Improved software quality and reliability
c) Increased transparency in the development process
d) All of the above
Answer: d
3) What is continuous testing in DevOps?
a) The practice of testing software continuously throughout the development process
b) A manual testing process
¢) Only testing software after it has been built
d) Only testing software before it is deployed
Answer: a
4) What is the role of automation in testing in DevOps?
a) Automation helps to make testing faster, more efficient, and more reliable
b) Automation is not necessary in testing

¢) Automation slows down the testing process

d) Automation only makes testing more manual

Answer: a




DevOps

5) What is the purpose of test-driven development (TDD) in DevOps?
a) To ensure that code meets requirements before it is even written
b) To test code after it has been written
¢) To manually review and approve code
d) To only distribute software packages
Answer: a
6) What is Selenium used for in software testing?
a) Automated testing of web applications
b) Automated testing of desktop applications
c¢) Automated testing of mobile applications
d) Automated testing of command-line applications
Answer: a
7) What programming languages can be used with Selenium?
a) Java, Python, Ruby, and C#
b) Assembly language only
c) Swift only
d) Visual Basic only
Answer: a
8) What is the Selenium WebDriver?
a) A library for automating web browsers
b) A library for automating desktop applications
c) A library for automating mobile applications
d) A library for automating command-line applications
Answer: a
9) What are the components of the Selenium Suite?

a) Selenium WebDriver, Selenium Grid, and Selenium IDE
b) Selenium WebDriver only

¢) Selenium Grid only
d) Selenium IDE only

Answer: a




DevOps
10) What is the purpose of Selenium Grid in the Selenium Suite?

a) To distribute tests across multiple machines and environments for parallel execution
b) To run tests sequentially on a single machine
¢) To manually review and approve tests
d) To only distribute test results
Answer: a
11) What is the main goal of JavaScript testing in DevOps?
a) To ensure the functionality and reliability of JavaScript code
b) To ensure the functionality and reliability of only server-side code
¢) To ensure the functionality and reliability of only database code
d) To ensure the functionality and reliability of only HTML and CSS code
Answer: a
12) What are some common tools used for JavaScript testing in DevOps?
a) Jest, Mocha, and Karma
b) Git, Jenkins, and Docker
c) Selenium, Appium, and Espresso
d) Oracle, MySQL, and PostgreSQL
Answer: a
13) What is unit testing in JavaScript testing?
a) Testing individual units of JavaScript code in isolation
b) Testing the entire JavaScript application as a whole
c) Testing only server-side code
d) Testing only database code

ANSwer: a

14) What is integration testing in JavaScript testing?
a) Testing the integration of individual units of JavaScript code with the rest of the application
b) Testing the entire JavaScript application as a whole

c) Testing only server-side code

d) Testing only database code

AnNsSwer: a




DevOps

15) How can JavaScript testing improve the speed and reliability of software delivery in
DevOps?

a) By quickly identifying and resolving issues in JavaScript code, reducing the risk of causing
problems in later stages of the software delivery process

b) By slowing down the software delivery process
¢) By having no impact on the software delivery process
d) By increasing the manual effort required for software delivery
Answer: a
16) What is Puppet Master?
a) An open-source configuration management tool
b) A version control system
c) A cloud service provider
d) A continuous integration tool
Answer: a
17) What is the main purpose of using Puppet Master in DevOps?
a) To automate the configuration and management of IT infrastructure
b) To automate the development process
¢) To automate the deployment process
d) To automate all stages of the software delivery process
Answer: a
18) What kind of infrastructure can be managed using Puppet Master?

a) Physical servers, virtual machines, and cloud-based systems
b) Only physical servers

c) Only virtual machines
d) Only cloud-based systems
Answer: a
19) What is a Puppet module in Puppet Master?
a) A pre-written set of Puppet code that can be used to automate specific tasks
b) A manual process that requires manual coding
c) Atool for code collaboration
d) A tool for code deployment

Answer: a




DevOps
20) What are the benefits of using Puppet Master in DevOps?

a) Improved speed, reliability, and consistency of IT infrastructure management
b) Increased manual effort required for IT infrastructure management
¢) No impact on IT infrastructure management

d) Slower and less reliable IT infrastructure management

Answer: a

21) What is Ansible?
a) An open-source configuration management tool
b) A version control system
c) A cloud service provider
d) A continuous integration tool

Answer: a

22) What is the main purpose of using Ansible in DevOps?
a) To automate the configuration and management of IT infrastructure
b) To automate the development process

¢) To automate the deployment process
d) To automate all stages of the software delivery process

Answer: a

23) What kind of infrastructure can be managed using Ansible?
a) Physical servers, virtual machines, and cloud-based systems
b) Only physical servers
¢) Only virtual machines

d) Only cloud-based systems

Answer: a

24) What is an Ansible playbook in Ansible?

a) A pre-written set of Ansible code that can be used to automate specific tasks
b) A manual process that requires manual coding

c¢) Atool for code collaboration

d) A tool for code deployment

Answer: a




DevOps
25) What are the benefits of using Ansible in DevOps?

a) Improved speed, reliability, and consistency of IT infrastructure management
b) Increased manual effort required for IT infrastructure management
¢) No impact on IT infrastructure management
d) Slower and less reliable IT infrastructure management

Answer: a

26) What is Chef?
a) An open-source configuration management tool
b) A version control system
c) A cloud service provider

d) A continuous integration tool

Answer: a

270 What is the main purpose of using Chef in DevOps?
a) To automate the configuration and management of IT infrastructure
b) To automate the development process

¢) To automate the deployment process

d) To automate all stages of the software delivery process
Answer: a
28) What kind of infrastructure can be managed using Chef?
a) Physical servers, virtual machines, and cloud-based systems
b) Only physical servers
c) Only virtual machines
d) Only cloud-based systems
Answer: a
29) What is a Chef recipe in Chef?
a) A pre-written set of Chef code that can be used to automate specific tasks
b) A manual process that requires manual coding
c) Atool for code collaboration
d) A tool for code deployment

Answer: a




DevOps
30) What are the benefits of using Chef in DevOps?

a) Improved speed, reliability, and consistency of IT infrastructure management
b) Increased manual effort required for IT infrastructure management

¢) No impact on IT infrastructure management

d) Slower and less reliable IT infrastructure management

Answer: a




