
ANNAMACHARYA UNIVERSITY, RAJAMPET
(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016

RAJAMPET, Annamayya District, AP, INDIA

Course

: Database Management Systems

Course Code : 24FMCA12T

Branch : MCA

Prepared by : S.THABREEZ BASHA

Designation : Assistant Professor

Department : MCA

ANNAMACHARYA UNIVERSITY, RAJAMPET
(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016

RAJAMPET, Annamayya District, AP, INDIA

Title of the Course : Database Management Systems
Category : PC
Couse Code : 24FMCA12T
Branch : MCA
Semester : I Semester

Lecture Hours Tutorial Hours Practice Hours Credits

3 0 0 3

COURSE OBJECTIVES:
 Explain database concepts and structures and terms related to database design, transactions

and management.
 Demonstrate data modeling, normalization and development of the database.
 Formulate SQL statements for data definition, modification and retrieval of data.
 Design and build a simple database system..

 Analyze how databases are affected by real-world transactions.

UNIT I 8 Hrs
INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS: Data Vs Information,
Purpose of databases, Views of data, Database languages, Data models, Database architecture -users
and administrators. E-R Model, Entity Relationship diagrams, E-R diagrams design issues,
Extended E-R features, Specialization, Generalization, Aggregation.

UNIT II 8 Hrs
RELATIONAL MODEL: Structure of Relational database, Relational algebra, Tuple relational

calculus, Domain relational calculus, QBE (Query-by-Example).

UNIT III 12 Hrs
STRUCTURED QUERY LANGUAGE (SQL): Introduction to SQL, SQL Operators, SQL
Functions, Join queries, Sub queries, Nested queries, Views, Integrity constraints, Functional
Dependencies, Database design Normalization: Normal Forms-1st, 2nd, 3rd and BCNF, Multi -
Valued Dependency-4th Normal Form, 5th NF/Projection Join Normal form and De- Normalization.

UNIT IV 12 Hrs
PL/SQL: Introduction to PL/SQL, PL/SQL Block Structure, Conditional statements, Iterative
Processing with Loops, Triggers, Cursor, exception handling, Procedures, Functions.
FILE STRUCTURE: File Organization, Organization of Records in Files and Data-Dictionary
Storage. Indexing and Hashing: Ordered Indices, B+-Tree Index Files, B-Tree Index files, Static
and Dynamic Hashing.

UNIT V 8 Hrs
TRANSACTION MANAGEMENT: Transaction concept, ACID properties, Transaction state,
concurrent execution. Recovery System: Storage structure, Recovery and atomicity, Log-Based
Recovery, ARIES Recovery Technique and Remote Back systems.

TEXTBOOKS:
1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan. Database system Concepts.

McGraw Hill International Edition, 7thEd.
2. Raghurama Krishna, Johannes Gehrke, Database management systems,TMH.

REFERENCE BOOKS:

1. PS Deshpande, SQL/PLSQL for Oracle 9i, dreamtec Press.
2. Elmasri, Navate, Fundamentals of Database Systems, Person Education, 7thEd.

COURSE OUTCOMES:
The Student will be able to

1. Explain the significance of database languages, different data models.
2. Apply the Relational Algebra of Queries with TRC & DRC.
3. Apply SQL concepts, including operators, functions, and effectively create and analyze join

queries, sub queries, and nested queries.
4. Comprehend the File management and also ordering concepts and PL/SQL.
5. Comprehend transaction management and Rollback.

CO-PO MAPPING:

Course Outcomes

F
ou

nd
at

io
n

K
no

w
le

dg
e

P

ro
b
le

m
 A

na
ly

si
s

D
ev

el
op

m
en

t o
f

S
ol

ut
io

ns

M

o
d
er

n
 T

o
o
l

U
sa

ge

In
di

vi
du

al
 a

n
d

T
ea

m
w

or
k

P
ro

je
ct

 M
an

ag
em

en
t

an
d
 F

in
an

ce

E

th
ic

s

 L
if

e-
lo

n
g

 L
ea

rn
in

g

24FMCA012T.1 2 2 1 - - - - -

24FMCA012T.2 3 2 1 - - - - -

24FMCA012T.3 3 2 1 - - - - -

24FMCA012T.4 2 2 1 - - - - -

24FMCA012T.5 2 2 1 - - - - -

41

 UNIT I
INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS: Data Vs Information,
Purpose of databases, Views of data, Database languages, Data models, Database architecture -users
and administrators. E-R Model, Entity Relationship diagrams, E-R diagrams design issues,
Extended E-R features, Specialization, Generalization, Aggregation.

Introduction To DBMS

A database management system (DBMS) refers to the technology for creating and managing

databases. DBMS is a software tool to organize (create, retrieve, update, and manage) data in a

database.

• To develop software applications In less time.

• Data independence and efficient use of data.

• For uniform data administration.

• For data integrity and security.

• For concurrent access to data, and data recovery from crashes.

• To use user-friendly declarative query language.

Components of DBMS

Database Application

End User

Database Management System

Data Base

Fig : Components of DBMS

Users: Users may be of any kind such as DB administrator, System developer, or database users.

Database application: Database application may be Departmental, Personal, organization's

and / or Internal.

DBMS: Software that allows users to create and manipulate database access,
Database: Collection of logical data as a single unit.

Hardware

o Here the hardware means the physical part of the DBMS. Here the hardware includes

output devices like a printer, monitor, etc., and storage devices like a hard disk.

o In DBMS, information hardware is the most important visible part. The equipment which

is used for the visibility of the data is the printer, computer, scanner, etc. This equipment

is used to capture the data and present the output to the user.

o With the help of hardware, the DBMS can access and update the database.

o The server can store a large amount of data, which can be shared with the help of the

user's own system.

Software

Software is defined as the collection of programs that are used to instruct the computer about its

work. The software consists of a set of procedures, programs, and routines associated with the

computer system's operation and performance. Also, we can say that computer software is a set

of instructions that is used to instruct the computer hardware for the operation of the computers.

Data

The term data means the collection of any raw fact stored in the database. Here the data are any

type of raw material from which meaningful information is generated.

The database can store any form of data, such as structural data, non-structural data, and logical

data.

The structured data are highly specific in the database and have a structured format. But in the

case of non-structural data, it is a collection of different types of data, and these data are stored in

their native format.

Procedures

The procedure is a type of general instruction or guidelines for the use of DBMS. This

instruction includes how to set up the database, how to install the database, how to log in and log

out of the database, how to manage the database, how to take a backup of the database, and how

to generate the report of the database.

Data VS Information:

Data

Data is a raw and unorganized fact that is required to be processed to make it meaningful. It

can be considered as facts and statistics collected together for reference or analysis.

Information:

Information is delineate because the structured, organized, and processed data, conferred inside

context, that makes it relevant and helpful to the one who desires it. Data suggests that raw

facts and figures regarding individuals, places, or the other issue, that is expressed within the

type of numbers letters or symbols.

Difference between Information and Data:

The major differences between Data and Information are as follows −

Data Information

Data is the raw fact. It is a processed form of
data.

It is not significant to a
business.

It is significant to a
business.

Data is an atomic level piece of
information.

It is a collection of data.

Example: Product name, Name
of student.

Example: Report card of
student.

It is a phenomenal fact. It is organized data.

This is the primary level of
intelligence.

It is a secondary level of
intelligence.

May or may not be meaningful. Always meaningful.

Understanding is difficult. Understanding is easy.

Purpose of Databases:

It is a collection of tools that enable users to create and manage databases. In other words, it is

general-purpose software that allows users to create, manipulate, and design databases for a

number of purposes.

Database systems are design to deal with large volumes of data. Data management comprises

both the construction of data storage systems and the provision of data manipulation methods.

Furthermore, the database system must maintain the security of the information held despite

system crashes or attempts at unauthorized access. The system must avoid any unexpected

effects if data is to be shared across multiple users.

Characteristics of DBMS

▪ Firstly, It manages and stores information in a server-based digital repository.

▪ Secondly, It can logically and visibly represent the data transformation process.

▪ Automatic backup and recovery techniques are built into the database management system.

▪ It has ACID features, which ensure that data is safe even if the system fails.

▪ It has the ability to make complex data connections more understandable.

▪ It‘s utilise to help with data manipulation and processing.

▪ It is utilise to keep information safe.

▪ Lastly, It can examine the database from a variety of perspectives, depending on the needs of the

user.

Advantages of DBMS

1. Data Structure

They organize data into tables with rows and columns, providing a structured and consistent way

to store and manage data. This structure facilitates easy access, retrieval, and manipulation of

data.

2. Data Integrity

They enforce data integrity through constraints, such as primary keys, foreign keys, and unique

constraints. These constraints ensure that the data remains accurate and consistent, preventing the

introduction of duplicate or invalid information.

3. Data Relationships

They enable the establishment of relationships between tables using primary and foreign keys.

This feature allows data from different tables to be linked together, making it easier to query and

analyze related information.

4. Querying and Reporting

They provide powerful query languages (e.g., SQL) that allow users to retrieve specific data

from the database quickly. This simplicity and flexibility make it easier to generate reports and

gain insights from the data.

5. Data Security

They offer robust security mechanisms to protect sensitive data. Access control features allow

administrators to define user permissions and restrict unauthorized access to data.

6. Scalability

They can handle large amounts of data and scale up to accommodate the growth of the dataset

and user demand. Many RDBMS platforms offer high-availability options and clustering to

ensure system availability even during peak usage.

7. ACID Transactions

They support ACID (Atomicity, Consistency, Isolation, Durability) transactions, which

guarantee that database operations are reliable and that data remains in a consistent state even in

the event of failures.

8. Data Backup and Recovery

They provide tools and mechanisms to perform regular backups of the database, enabling data

recovery in case of hardware failures, accidental deletions, or other unforeseen issues.

9. Data Indexing

They use indexing techniques to optimize data retrieval. Indexes speed up query execution by

reducing the need for full-table scans, especially for large datasets.

10. Data Normalization

They encourage data normalization, which helps eliminate data redundancy and inconsistencies.

Normalized data ensures efficient storage and minimizes update anomalies.

11. Industry Standard

RDBMS, such as MySQL, Oracle, Microsoft SQL Server, and PostgreSQL, have been around

for decades and have established themselves as reliable, widely used, and well-supported

solutions.

12. Data Consistency

They enforce referential integrity, ensuring that relationships between data remain consistent.

This prevents data inconsistencies and maintains the accuracy and reliability of the information

stored in the database.

13. Data Independence

They offer data abstraction, separating the logical structure of the database from its physical

implementation. This data independence allows developers to modify the database schema

without affecting the applications built on top of it, promoting flexibility and reducing

maintenance efforts.

14. Data Accessibility

They provide concurrent access to multiple users and applications. Users can read and write data

simultaneously without interfering with each other‘s operations, promoting efficient

collaboration and multi-user support.

15. Data Backup and Recovery

They typically offer various backup and recovery options, including full, incremental, and

differential backups. These features ensure data protection and the ability to restore the database

to a specific point in time.

Disadvantages of RDBMS

While Relational Database Management Systems (RDBMS) offer numerous advantages, they are

not without their drawbacks. Here are some of the limitations of RDBMS:

1. Scalability Limitations

RDBMS may face challenges when dealing with extremely large datasets and high transaction

volumes. As the data size grows, the performance of the RDBMS can degrade, requiring careful

database design and optimization to maintain efficiency.

2. Complex Design

Designing a relational database schema can be complex, especially for large and intricate

applications. Ensuring proper normalization and establishing appropriate relationships between

tables can be time-consuming and require significant expertise.

3. Fixed Schema

They have a fixed schema, meaning the structure of the database is defined beforehand. Adding

new columns or altering the schema often requires modifying existing applications, which can be

cumbersome and may lead to downtime during updates.

4. Performance Bottlenecks

Certain operations, such as complex joins, can lead to performance bottlenecks in RDBMS,

especially when dealing with large datasets. Proper indexing and query optimization are essential

to mitigate these issues.

5. High Overhead

They typically have more overhead compared to some NoSQL databases. The need for data

normalization, transactions, and referential integrity enforcement can result in increased storage

requirements and slower performance.

6. Cost

Some commercial RDBMS solutions can be expensive, especially when considering licensing,

maintenance, and hardware requirements. While open-source options like MySQL

and PostgreSQL exist, implementing and managing RDBMS still incurs costs.

7. Replication Complexity

While RDBMS supports replication, setting up and managing replication can be complex,

particularly in distributed and multi-data center environments.

8. Single Point of Failure

In traditional RDBMS setups, the database server can become a single point of failure. Ensuring

high availability often requires implementing clustering or failover mechanisms, which can add

complexity to the system.

9. Data Modeling Challenges

Representing certain types of data, such as hierarchical or unstructured data, can be challenging

in a relational database. NoSQL databases may be better suited for handling these specific data

types.

10. Data Type Limitations

RDBMS have predefined data types, and accommodating certain data formats or unstructured

data can be difficult without resorting to workarounds.

12. Complex Joins and Performance

While relational databases are excellent at handling structured data and enforcing data integrity,

complex joins involving multiple tables can become a performance challenge. As the number of

tables and the complexity of relationships increase, query execution times may also increase

significantly.

13. Difficulty with Semi-Structured and Unstructured Data

RDBMS is not well-suited for handling semi-structured and unstructured data like JSON, XML,

or documents. Some RDBMS provide support for storing and querying such data through

specialized data types or extensions.

Views of Data:

Database systems comprise complex data structures. In order to make the system efficient in

terms of retrieval of data, and reduce complexity in terms of usability of users, developers use

abstraction. The data should hide irrelevant details from the users. This approach simplifies

database design.

There are mainly 3 levels of data abstraction:

Physical: This is the lowest level of data abstraction. It tells us how the data is actually stored

in memory. The access methods like sequential or random access and file organization

methods like B+ trees and hashing are used for the same. Usability, size of memory, and the

number of times the records are factors that we need to know while designing the database.

Suppose we need to store the details of an employee. Blocks of storage and the amount of

memory used for these purposes are kept hidden from the user.

Logical: This level comprises the information that is actually stored in the database in the form

of tables. It also stores the relationship among the data entities in relatively simple structures.

At this level, the information available to the user at the view level is unknown.

We can store the various attributes of an employee and relationships, e.g. with the manager can

also be stored.

View: This is the highest level of abstraction. Only a part of the actual database is viewed by

the users. This level exists to ease the accessibility of the database by an individual user. Users

view data in the form of rows and columns. Tables and relations are used to store data.

Multiple views of the same database may exist. Users can just view the data and interact with

the database, storage and implementation details are hidden from them.

The main purpose of data abstraction is to achieve data independence in order to save the time

and cost required when the database is modified or altered.

We have namely two levels of data independence arising from these levels of abstraction.

Physical level data independence: It refers to the characteristic of being able to modify the

physical schema without any alterations to the conceptual or logical schema, done for

optimization purposes, e.g., the Conceptual structure of the database would not be affected by

any change in storage size of the database system server. Changing from sequential to random

access files is one such example. These alterations or modifications to the physical structure

may include:

• Utilizing new storage devices.

• Modifying data structures used for storage.

• Altering indexes or using alternative file organization techniques etc.

Logical level data independence: It refers characteristic of being able to modify the logical

schema without affecting the external schema or application program. The user view of the

data would not be affected by any changes to the conceptual view of the data. These changes

may include insertion or deletion of attributes, altering table structures entities or relationships

to the logical schema, etc.

Data Schema and Instances:

o The data which is stored in the database at a particular moment of time is called an

instance of the database.

o The overall design of a database is called schema.

o A database schema is the skeleton structure of the database. It represents the logical view

of the entire database.

o A schema contains schema objects like table, foreign key, primary key, views, columns,

data types, stored procedure, etc.

o A database schema can be represented by using the visual diagram. That diagram shows

the database objects and relationship with each other.

o A database schema is designed by the database designers to help programmers whose

software will interact with the database. The process of database creation is called data

modeling.

A schema diagram can display only some aspects of a schema like the name of record type, data

type, and constraints. Other aspects can't be specified through the schema diagram. For example,

the given figure neither shows the data type of each data item nor the relationship among various

files.

In the database, actual data changes quite frequently. For example, in the given figure, the

database changes whenever we add a new grade or add a student. The data at a particular

moment of time is called the instance of the database.

Database Languages (OR) Basic SQL commands

o A DBMS has appropriate languages and interfaces to express database queries and

updates.

o Database languages can be used to read, store and update the data in the database.

Types of Database Language

1. Data Definition Language

o DDL stands for Data Definition Language. It is used to define database structure or

pattern.

o It is used to create schema, tables, indexes, constraints, etc. in the database.

o Using the DDL statements, you can create the skeleton of the database.

o Data definition language is used to store the information of metadata like the number of

tables and schemas, their names, indexes, columns in each table, constraints, etc.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that's why they come under Data

definition language.

2. Data Manipulation Language

DML stands for Data Manipulation Language. It is used for accessing and manipulating data in

a database. It handles user requests.

Here are some tasks that come under DML:

o Select: It is used to retrieve data from a database.

o Insert: It is used to insert data into a table.

o Update: It is used to update existing data within a table.

o Delete: It is used to delete all records from a table.

o Merge: It performs UPSERT operation, i.e., insert or update operations.

o Call: It is used to call a structured query language or a Java subprogram.

o Explain Plan: It has the parameter of explaining data.

o Lock Table: It controls concurrency.

3. Data Control Language

o DCL stands for Data Control Language. It is used to retrieve the stored or saved data.

o The DCL execution is transactional. It also has rollback parameters.

(But in Oracle database, the execution of data control language does not have the feature

of rolling back.)

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

4. Transaction Control Language

TCL is used to run the changes made by the DML statement. TCL can be grouped into a logical

transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit.

Data Models:

Data Model is the modeling of the data description, data semantics, and consistency constraints

of the data. It provides the conceptual tools for describing the design of a database at each level

of data abstraction. Therefore, there are following four data models used for understanding the

structure of the database:

1) Relational Data Model: This type of model designs the data in the form of rows and columns

within a table. Thus, a relational model uses tables for representing data and in-between

relationships. Tables are also called relations. This model was initially described by Edgar F.

Codd, in 1969. The relational data model is the widely used model which is primarily used by

commercial data processing applications.

2) Entity-Relationship Data Model: An ER model is the logical representation of data as

objects and relationships among them. These objects are known as entities, and relationship is an

association among these entities. This model was designed by Peter Chen and published in 1976

papers. It was widely used in database designing. A set of attributes describe the entities. For

example, student_name, student_id describes the 'student' entity. A set of the same type of

entities is known as an 'Entity set', and the set of the same type of relationships is known as

'relationship set'.

3) Object-based Data Model: An extension of the ER model with notions of functions,

encapsulation, and object identity, as well. This model supports a rich type system that includes

structured and collection types. Thus, in 1980s, various database systems following the object-

oriented approach were developed. Here, the objects are nothing but the data carrying its

properties.

4) Semi structured Data Model:

This type of data model is different from the other three data models. The semi structured data

model allows the data specifications at places where the individual data items of the same type

may have different attributes sets. The Extensible Markup Language, also known as XML, is

widely used for representing the semi structured data. Although XML was initially designed for

including the markup information to the text document, it gains importance because of its

application in the exchange of data.

Database Architecture User and Administrator:

The DBMS design depends upon its architecture. The basic client/server architecture is used to

deal with a large number of PCs, web servers, database servers and other components that are

connected with networks.

The client/server architecture consists of many PCs and a workstation which are connected via

the network.

DBMS architecture depends upon how users are connected to the database to get their request

done.

Types of DBMS Architecture

Database architecture can be seen as a single tier or multi-tier. But logically, database

architecture is of two types like: 2-tier architecture and 3-tier architecture.

1- Tier Architecture

o In this architecture, the database is directly available to the user. It means the user can

directly sit on the DBMS and uses it.

o Any changes done here will directly be done on the database itself. It doesn't provide a

handy tool for end users.

o The 1-Tier architecture is used for development of the local application, where

programmers can directly communicate with the database for the quick response.

2- Tier Architecture

o The 2-Tier architecture is same as basic client-server. In the two-tier architecture,

applications on the client end can directly communicate with the database at the server

side. For this interaction, API's like: ODBC, JDBC are used.

o The user interfaces and application programs are run on the client-side.

o The server side is responsible to provide the functionalities like: query processing and

transaction management.

o To communicate with the DBMS, client-side application establishes a connection with

the server side.

Fig: 2-tier Architecture

3- Tier Architecture

o The 3-Tier architecture contains another layer between the client and server. In this

architecture, client can't directly communicate with the server.

o The application on the client-end interacts with an application server which further

communicates with the database system.

o End user has no idea about the existence of the database beyond the application server.

The database also has no idea about any other user beyond the application.

o The 3-Tier architecture is used in case of large web application.

Fig: 3-tier Architecture

User:

1. Naive / Parametric End Users : Parametric End Users are the unsophisticated who don‘t

have any DBMS knowledge but they frequently use the database applications in their daily

life to get the desired results. For examples, Railway‘s ticket booking users are naive users.

Clerks in any bank is a naive user because they don‘t have any DBMS knowledge but they

still use the database and perform their given task.

2. System Analyst:

System Analyst is a user who analyzes the requirements of parametric end users. They check

whether all the requirements of end users are satisfied.

3. Sophisticated Users:

Sophisticated users can be engineers, scientists, business analyst, who are familiar with the

database. They can develop their own database applications according to their requirement.

They don‘t write the program code but they interact the database by writing SQL queries

directly through the query processor.

4. Database Designers: Data Base Designers are the users who design the structure of

database which includes tables, indexes, views, triggers, stored procedures and constraints

which are usually enforced before the database is created or populated with data. He/she

controls what data must be stored and how the data items to be related. It is responsibility

of Database Designers to understand the requirements of different user groups and then

create a design which satisfies the need of all the user groups.

5. Application Programmers: Application Programmers also referred as System Analysts or

simply Software Engineers, are the back-end programmers who writes the code for the

application programs. They are the computer professionals. These programs could be

written in Programming languages such as Visual Basic, Developer, C, FORTRAN,

COBOL etc. Application programmers design, debug, test, and maintain set of programs

called ―canned transactions‖ for the Naive (parametric) users in order to interact with

database.

6. Casual Users / Temporary Users: Casual Users are the users who occasionally use/access

the database but each time when they access the database they require the new information,

for example, Middle or higher level manager.

Administrator:

A Database Administrator (DBA) is an individual or person responsible for controlling,

maintaining, coordinating, and operating a database management system. Managing, securing,

and taking care of the database systems is a prime responsibility. They are responsible and in

charge of authorizing access to the database, coordinating, capacity, planning, installation, and

monitoring uses, and acquiring and gathering software and hardware resources as and when

needed. Their role also varies from configuration, database design, migration, security,

troubleshooting, backup, and data recovery. Database administration is a major and key

function in any firm or organization that is relying on one or more databases. They are overall

commanders of the Database system.

Types of Database Administrator (DBA) :

• AdministrativeDBA –

Their job is to maintain the server and keep it functional. They are concerned with data

backups, security, troubleshooting, replication, migration, etc.

• DataWarehouseDBA –

Assigned earlier roles, but held accountable for merging data from various sources into the

data warehouse. They also design the warehouse, with cleaning and scrubs data prior to

loading.

• CloudDBA

Nowadays companies are preferring to save their workpiece on cloud storage. As it

reduces the chance of data loss and provides an extra layer of data security and integrity.

• DevelopmentDBA

They build and develop queries, stores procedure, etc. that meets firm or organization

needs. They are par at programming.

• ApplicationDBA

They particularly manage all requirements of application components that interact with the

database and accomplish activities such as application installation and coordination,

application upgrades, database cloning, data load process management, etc.

• Architect –

They are held responsible for designing schemas like building tables. They work to build a

structure that meets organizational needs. The design is further used by developers and

development DBAs to design and implement real applications.

• OLAPDBA

They design and build multi-dimensional cubes for determination support or OLAP

systems.

• DataModeler

In general, a data modeler is in charge of a portion of a data architect‘s duties. A data

modeler is typically not regarded as a DBA, but this is not a hard and fast rule.

• Task-OrientedDBA

To concentrate on a specific DBA task, large businesses may hire highly specialised DBAs.

They are quite uncommon outside of big corporations. Recovery and backup DBA, whose

responsibility it is to guarantee that the databases of businesses can be recovered, is an

example of a task-oriented DBA. However, this specialism is not present in the majority of

firms. These task-oriented DBAs will make sure that highly qualified professionals are

working on crucial DBA tasks when it is possible.

• DatabaseAnalyst

This position doesn‘t actually have a set definition. Junior DBAs may occasionally be

referred to as database analysts. A database analyst occasionally performs functions that are

comparable to those of a database architect. The term ―Data Administrator‖ is also used to

describe database analysts and data analysts. Additionally, some businesses occasionally

refer to database administrators as data analysts.

Importance of Database Administrator (DBA) :

• Database Administrator manages and controls three levels of database internal level,

conceptual level, and external level of Database management system architecture and in

discussion with the comprehensive user community, gives a definition of the world view of

the database. It then provides an external view of different users and applications.

• Database Administrator ensures held responsible to maintain integrity and security of

database restricting from unauthorized users. It grants permission to users of the database

and contains a profile of each and every user in the database.

• Database Administrators are also held accountable that the database is protected and

secured and that any chance of data loss keeps at a minimum.

• Database Administrator is solely responsible for reducing the risk of data loss as it backup

the data at regular intervals.

Role and Duties of Database Administrator (DBA):

1. Database backup:

A database administrator has the responsibility to back up every data in the database,

recurrently. This is necessary, so that operations can be restored in times of disaster or

downtime.

2. Database availability:

A database administrator has the responsibility of ensuring database accessibility to users

from time to time.

3. Database restore:

A database administrator has the responsibility of restoring a file from a backup state,

when there is a need for it.

4. Database design:

A database administrator has the responsibility of designing a database that meets the

demands of users. Hence, having knowledge of database design is crucial for an

administrator.

5. Data move:

A database administrator has the responsibility of moving a database set, say from a

physical base to a cloud base, or from an existing application to a new application.

6. Database upgrade:

A database administrator has the responsibility of upgrading database software files when

there is a new update for them, as this protects software from security breaches.

7. Database patch:

In times of new upgrades for database software, the database administrator has the

responsibility of ensuring that the database system functions perfectly and works to close

up any gaps in the new update.

8. Database security:

Datasets are assets, and one major responsibility of database administrators is to protect

the data and ensure adequate security in an organization‘s database.

9. Capacity planning:

A database administrator has the responsibility of planning for increased capacity, in case

of sudden growth in database need.

10. Database monitoring:

A database administrator has the responsibility of monitoring the database and the

movement of data in the database. Administrators provide access for users who require

access to the database.

11. Error log review:

A database administrator has the responsibility of interpreting the error messages sent by

a database when there is a fault or bridge.

E-R Model:

o ER model stands for an Entity-Relationship model. It is a high-level data model. This

model is used to define the data elements and relationship for a specified system.

o It develops a conceptual design for the database. It also develops a very simple and easy

to design view of data.

o In ER modeling, the database structure is portrayed as a diagram called an entity-

relationship diagram.

For example, Suppose we design a school database. In this database, the student will be an

entity with attributes like address, name, id, age, etc. The address can be another entity with

attributes like city, street name, pin code, etc and there will be a relationship between them.

Component of ER Diagram

1. Entity:

An entity may be any object, class, person or place. In the ER diagram, an entity can be

represented as rectangles.

Consider an organization as an example- manager, product, employee, department etc. can be

taken as an entity.

a. Weak Entity

An entity that depends on another entity called a weak entity. The weak entity doesn't contain

any key attribute of its own. The weak entity is represented by a double rectangle.

2. Attribute

The attribute is used to describe the property of an entity. Eclipse is used to represent an

attribute.

For example, id, age, contact number, name, etc. can be attributes of a student.

a. Key Attribute

The key attribute is used to represent the main characteristics of an entity. It represents a primary

key. The key attribute is represented by an ellipse with the text underlined.

b. Composite Attribute

An attribute that composed of many other attributes is known as a composite attribute. The

composite attribute is represented by an ellipse, and those ellipses are connected with an ellipse.

c. Multivalued Attribute

An attribute can have more than one value. These attributes are known as a multivalued attribute.

The double oval is used to represent multivalued attribute.

For example, a student can have more than one phone number.

d. Derived Attribute

An attribute that can be derived from other attribute is known as a derived attribute. It can be

represented by a dashed ellipse.

For example, A person's age changes over time and can be derived from another attribute like

Date of birth.

3. Relationship

A relationship is used to describe the relation between entities. Diamond or rhombus is used to

represent the relationship.

Types of relationship are as follows:

a. One-to-One Relationship

When only one instance of an entity is associated with the relationship, then it is known as one to

one relationship.

For example, A female can marry to one male, and a male can marry to one female.

b. One-to-many relationship

When only one instance of the entity on the left, and more than one instance of an entity on the

right associates with the relationship then this is known as a one-to-many relationship.

For example, Scientist can invent many inventions, but the invention is done by the only

specific scientist.

c. Many-to-one relationship

When more than one instance of the entity on the left, and only one instance of an entity on the

right associates with the relationship then it is known as a many-to-one relationship.

For example, Student enrolls for only one course, but a course can have many students.

d. Many-to-many relationship

When more than one instance of the entity on the left, and more than one instance of an entity on

the right associates with the relationship then it is known as a many-to-many relationship.

For example, Employee can assign by many projects and project can have many employees.

ER Diagram:

How to Draw (Or) steps an Entity Relation Diagram (ERD)

A step-by-step process to draw an entity relation diagram (ERD) is:

Step 1: Identifying Entities

Determine the main objects you want to represent in the database. Eg, "students", "courses", or

"products".

Step 2: Defining Attributes

Identify the properties(attributes) of properties of each entity. These attributes provide more

details about an entity.

Step 3: Specifing Relationships

Create relationships between entities to specify how entities interact with each other.

Relationships are verbs like "teaches", "studies", or "sells".

Step 4: Drawing Entities

Draw entities as rectangle and write the name.

Step 5: Adding Attributes

To add attributes of a entitity write attributes inside the rectangle or connect them with lines.

Step 6: Connecting Entities

Draw lines between the related entities to represent their connection.

Step 7: Specifying Cardinality

Indicate the minimum and maximum number of relationship instances associated with an entity

using notations like crow's foot.

Step 8: Organizing ER Diagram

Organize all entities and relationships in a clean way for better readibility and understanding.

Draw Entity Relationship Diagram Example

Entity Relationship Diagram for BANK

We will follow the steps mentioned above, to draw entity relationship diagram for bank.

Defining Entities

A thing in the real world with an independent existence. It is may be an object with physical

existence (ex: house, person) or with a conceptual existence (ex: course, job). The are

represented by rectangle.

Entities for Bank are:

Bank, Branch, Employee, customer, loan, account.

Adding Attributes

Attributes are the kind of properties that describe the entities. They are represented by ovals.

Attributes for Bank are:

• For Bank Entity the Attributes are Bname, code.

• For Branch Entity the Attributes are Blocation, Bname.

• For Employee Entity the Attributes are Eid, Designation, salary.

• For Customer Entity the Attributes are Cid, Cname, Address, DOB.

• For Loan Entity the Attributes are Loan_no, amount, rate.

• For Account Entity the Attributes are acc_no, type.

Establishing Relationships

Entities have some relationships with each other. Relationships define how entities are

associated with each other.

Let's Establishing Relationships between them are:

• The Bank has branches.

• The Branch provides loan.

• The Employee works in branch.

• The Branch contains customers.

• The Customers has account.

• The Branch maintains account.

• The Customer avails loan.

Specify cardinality for Bank:

• Bank and branch has One to Many relationship (a bank has multiple branches).

• Branch and loan has also One to Many relationship(a branch can provide many loans).

• Branch and employee has One to Many relationship(one branch has many employees).

• Branch and account has One to Many relationship(one branch has many accounts).

• Branch and customer has Many to Many relationship(multiple branches have multiple

customers).

• Customer and account has Many to Many relationship(multiple customers have multiple

accounts).

• Customer and loan has Many to Many relationships(multiple customers have multiple

loans)

Final ER Diagram

The below diagram is our final entity relationship diagram for bank with all entities,

their attributes and the relationship between them with the PRIMARY KEY and Cardinality

ratio.

University diagram

The database can be represented using the notations, and these notations can be reduced to a

collection of tables.

In the database, every entity set or relationship set can be represented in tabular form.

The ER diagram is given below:

ER Diagram Design Issues:

the various designing shapes that represent a relationship, an entity, and its attributes. However,

users often mislead the concept of the elements and the design process of the ER diagram. Thus,

it leads to a complex structure of the ER diagram and certain issues that does not meet the

characteristics of the real-world enterprise model.

Here, we will discuss the basic design issues of an ER database schema in the following points:

1) Use of Entity Set vs Attributes

The use of an entity set or attribute depends on the structure of the real-world enterprise that is

being modeled and the semantics associated with its attributes. It leads to a mistake when the

user use the primary key of an entity set as an attribute of another entity set. Instead, he should

use the relationship to do so. Also, the primary key attributes are implicit in the relationship set,

but we designate it in the relationship sets.

2) Use of Entity Set vs. Relationship Sets

It is difficult to examine if an object can be best expressed by an entity set or relationship set. To

understand and determine the right use, the user need to designate a relationship set for

describing an action that occurs in-between the entities. If there is a requirement of representing

the object as a relationship set, then its better not to mix it with the entity set.

3) Use of Binary vs n-ary Relationship Sets

Generally, the relationships described in the databases are binary relationships. However, non-

binary relationships can be represented by several binary relationships. For example, we can

create and represent a ternary relationship 'parent' that may relate to a child, his father, as well as

his mother. Such relationship can also be represented by two binary relationships i.e, mother and

father that may relate to their child. Thus, it is possible to represent a non-binary relationship by

a set of distinct binary relationships.

The cardinality ratios can become an affective measure in the placement of the relationship

attributes. So, it is better to associate the attributes of one-to-one or one-to-many relationship sets

with any participating entity sets, instead of any relationship set. The decision of placing the

specified attribute as a relationship or entity attribute should possess the charactestics of the real

world enterprise that is being modeled.

For example, if there is an entity which can be determined by the combination of participating

entity sets, instead of deterring it as a separate entity. Such type of attribute must be associated

with the many-to-many relationship sets.

Thus, it requires the overall knowledge of each part that is involved in designing and modeling

an ER diagram. The basic requirement is to analyses the real-world enterprise and the

connectivity of one entity or attribute with other.

Extended ER Features

Specialization:

Specialization is a top-down approach, and it is opposite to Generalization. In

specialization, one higher level entity can be broken down into two lower level entities.

Specialization is used to identify the subset of an entity set that shares some

distinguishing characteristics.

Normally, the superclass is defined first, the subclass and its related attributes are defined

next, and relationship set are then added.

For example: In an Employee management system, EMPLOYEE entity can be specialized as

TESTER or DEVELOPER based on what role they play in the company.

Generalization:

o Generalization is like a bottom-up approach in which two or more entities of lower level

combine to form a higher level entity if they have some attributes in common.

o In generalization, an entity of a higher level can also combine with the entities of the

lower level to form a further higher level entity.

o Generalization is more like subclass and superclass system, but the only difference is the

approach. Generalization uses the bottom-up approach.

o In generalization, entities are combined to form a more generalized entity, i.e., subclasses

are combined to make a superclass.

For example, Faculty and Student entities can be generalized and create a higher level entity

Person.

Aggregation:

In aggregation, the relation between two entities is treated as a single entity. In aggregation,

relationship with its corresponding entities is aggregated into a higher level entity.

For example: Center entity offers the Course entity act as a single entity in the relationship

which is in a relationship with another entity visitor. In the real world, if a visitor visits a

coaching center then he will never enquiry about the Course only or just about the Center instead

he will ask the enquiry about both.

Attributes in DBMS

Attributes are properties or characteristics of an entity. Attributes are used to describe the

entity. The attribute is nothing but a piece of data that gives more information about the entity.

Attributes are used to distinguish one entity from the other entity. Attributes help to categorize

the entity and the entity can be easily retrieved and manipulate the entity. Attributes can help

the database to be more structural and hierarchical. An entity with no attribute is of no use in

the database.

There are 8 types of attributes in DBMS.

• Simple Attribute.

• Composite Attribute.

• Single Valued Attribute.

• Multivalued Attribute.

• Key Attribute.

• Derived Attribute.

• Stored Attribute.

• Complex Attribute.

Simple Attribute

• Simple attributes are those attributes that cannot be divided into more attributes. Simple

attributes state the simple information about the entity such as name, roll_no, class, age,

etc.

• Simple attributes are widely used for storing information about the entity.

Example

• Here in the below example, Student has roll_no, class, and name as attributes that cannot

be divided into more sub-attributes.

• These types of attributes are called simple attributes.

• Simple attributes are mainly used to create all other types of attributes.

Composite Attribute

• When 2 or more than 2 simple attributes are combined to make an attribute then that

attribute is called a Composite attribute.

• The composite attribute is made up of multiple attributes. After combining these attributes,

the composed attributes are formed.

• Complex attributes are used where data is complex and needs to be stored in a complex

structure.

Example

• Here if we look at the below example, address is the attribute derived from the 3 simple

attributes i.e. City, State, and Street.

• To get the value of the address attribute, we have first to know those city, state, and street

attributes.

• This type of attribute is known as a composite attribute.

Single Valued Attribute

• The attribute with only a single value is known as a single-valued attribute. These

attributes have a single value for each instance of a given entity.

• Mostly these attributes are used to provide the unique identity to the multiple instances of

attributes.

Example

• In the given example, we know that the DOB attribute will have only one value. So we can

say that the DOB attribute is nothing but a single Valed attribute and it cannot have

multiple attributes.

• Here roll_no and name will also have mostly one value only.

• We can say that all 3 attributes of the student are single-valued.

Multivalued Attribute

• An attribute which can have multiple values is known as a multivalued

attribute. Multivalued attributes have multiple values for the single instance of an entity.

• Keu of entity is associated with multiple values. It does not have only one value. It is the

opposite of the single-valued attribute.

Example

• Here the student has an attribute named phone_no. One student can have multiple

phone_no, so we can say that phone_no can have multiple values.

• These types of attributes are known as multi-valued attributes.

• Multi-valued attributes are used when more than 1 entries for one attribute need to be

stored in the Database.

Key Attribute

• The attribute which has unique values for every row in the table is known as a Key

Attribute. The key attribute has a very crucial role in the database.

• The key attribute is a distinct and unique characteristic of the entity that can be used to

identify the entity uniquely.

Example

• For students, we can identify every student with roll_no because each student will have a

unique roll_no.

• This indicates that roll_no will be a Key attribute for the Student entity.

• All operations on the database can be performed only using Key Attributes.

Derived Attribute

• The attribute that can be derived from the other attributes and does not require to be already

present in the database is called a Derived Attribute.

• Derived attributes are not stored in the Database directly. It is calculated by using the

stored attributes in the database.

Example

• Here the student has multiple attributes including DOB and age. It is observed that age can

be calculated with the help of the DOB attribute.

• So age is a derived attribute that is derived from an attribute named DOB.

Stored Attribute

• If the data of the attribute remains constant for every instance of entity then it is called

a Stored Attribute.

• The value of the attribute present in the database does not get updated and it remains

constant once it is stored.

• These attributes are used to store permanent information about an entity which will remain

constant throughout the lifetime of the entity.

Example

• The student has 3 attributes as shown above. Her name and DOB will remain the same

throughout his/her education. So the student has a fixed value attribute that will never

change in the future.

• These attributes are known as stored attributes.

omplex Attribute

• When multi-valued and composite attributes together form an attribute then it is called

a Complex attribute.

• Complex attributes can have an unlimited number of sub-attributes.

Example

• Here for the student, we created an attribute named contact_info which further decomposed

into phone_no + Address.

• The address is a composite attribute which is further divided into simple attributes and

phone_no is a multivalued attribute.

• This indicates that the contact_info attribute is made from the multi-valued and composite

attribute.

Types of Keys in Relational Model:

• Candidate Key

• Primary Key

• Super Key

• Alternate Key

• Foreign Key

• Composite Key

1. Candidate key

o A candidate key is an attribute or set of attributes that can uniquely identify a tuple.

o Except for the primary key, the remaining attributes are considered a candidate key. The

candidate keys are as strong as the primary key.

For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the

attributes, like SSN, Passport_Number, License_Number, etc., are considered a candidate key.

2. Primary key

o It is the first key used to identify one and only one instance of an entity uniquely. An

entity can contain multiple keys, as we saw in the PERSON table. The key which is most

suitable from those lists becomes a primary key.

o In the EMPLOYEE table, ID can be the primary key since it is unique for each employee.

In the EMPLOYEE table, we can even select License_Number and Passport_Number as

primary keys since they are also unique.

o For each entity, the primary key selection is based on requirements and developers.

3. Super Key

Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a

candidate key.

4. Alternate key

There may be one or more attributes or a combination of attributes that uniquely identify each

tuple in a relation. These attributes or combinations of the attributes are called the candidate keys.

One key is chosen as the primary key from these candidate keys, and the remaining candidate

key, if it exists, is termed the alternate key

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as

candidate keys. In this relation, Employee_Id is chosen as the primary key, so the other candidate

key, PAN_No, acts as the Alternate key.

5. Foreign key

o Foreign keys are the column of the table used to point to the primary key of another table.

o Every employee works in a specific department in a company, and employee and

department are two different entities. So we can't store the department's information in

the employee table. That's why we link these two tables through the primary key of one

table.

o We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute

in the EMPLOYEE table.

o In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are

related.

6. Composite key

Whenever a primary key consists of more than one attribute, it is known as a composite key.

This key is also known as Concatenated Key.

Unit II: Relational Model

RELATIONAL MODEL: Structure of Relational database, Relational algebra, Tuple relational

calculus, Domain relational calculus, QBE (Query-by-Example).

Relational model in DBMS

The relational model uses a collection of tables to represent both data and the relationships

among those data. Each table has multiple columns, and each column has a unique name.

Tables are also known as relations.

Structure of Relational model:

Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g.,

Student_Rollno, NAME,etc.

Tuple – It is nothing but a single row of a table, which contains a single record.

Relations- are in the table format. It is stored along with its entities. A table has two

properties rows and columns. Rows represent records and columns represent attributes.

Relation schema- A relational schema is the design for the table. It includes none of the

actual data, but is like a blueprint or design for the table, so describes what columns are on

the table and the data types. It may show basic table constraints.

Degree- (or arity) of a relation is the number of attributes n of its relation schema.

Domains: A domain is a set of values permitted for an attribute in a table. Domain is atomic.

For example, age can only be a positive integer.

Cardinality: Total number of rows present in the Table.

Relation instance – Relation instance is a finite set of tuples at a given time. The current

relationstate reflects only the valid tuples that represent a particular state of the real world.

Null value: A field with a NULL value is a field with no value. Primary key can‟t be a null

value.

Relational Algebra

RELATIONAL ALGEBRA is a widely used procedural query language. It collects instances

of relations as input and gives occurrences of relations as output. It uses various operations to

perform this action. SQL Relational algebra query operations are performed recursively on a

relation. The output of these operations is a new relation, which might be formed from one or

more input relations.

Relational Algebra divided in various types :

Unary Relational Operations

 SELECT (symbol: σ)

 PROJECT (symbol: π)

 RENAME (symbol: ρ)

Set Operations

 UNION (∪)
 INTERSECTION (∩),
 SET DIFFERENCE (-)
 CARTESIAN PRODUCT (x)

Binary Relational Operations

 JOIN

Unary Relational Operations

SELECT (σ): The SELECT operation is used for selecting a subset of the tuples

according to agiven selection condition. Sigma (σ) Symbol denotes it.

σ condition (Relation)

STUDENT

ID NAME MARK

1 Jisy 70

2 vishnu 75

3 Dwayne 80

1. To retrieve entire details from student

σ (STUDENT)

2. To retrieve details from STUDENT where ID=2

σ ID=2 (STUDENT)

Projection (π): The project operation is used for selecting attributes according to a given

selection condition.

Π Attribute(Relation)

1. To retrieve ID and NAME from STUDENT.

Π ID, NAME (STUDENT)

Combination of Select and Project:

2. Retrieve ID and Name from STUDENT where mark>=75

Π ID, NAME (σ Mark>=75 (STUDENT))

Rename Operation (ρ):
. The rename operation allows us to rename the old t relation to new. „Rename‟

operation isdenoted with small Greek letter rho ρ.

ρ New (Old Relation Name)

Set Operations:

Union operation (υ): UNION is symbolized by ∪ symbol. It includes all tuples that are in

tables Aor in B. It also eliminates duplicate tuples A ∪B.

For a union operation to be valid, the following conditions must hold -

● R and S must be the same number of attributes.

● Attribute domains need to be compatible.

● Duplicate tuples should be automatically removed.

Retrieve students name either participant in arts or sports:

ARTS

Π NAME (ARTS) ∪ Π NAME (SPORTS)

SPORTS

ID

NAME

3

C

2

B

4

D

ARTS U SPORTS

NAME

A

B

C

D

Intersection: A ∩ B of two sets A and B is the set that contains all elements of A that also

belongto B (or equivalently, all elements of B that also belong to A), but no other elements.

Retrieve students name those who participant in both arts and sports:

Query 1 : ARTS ∩SPORTS

ID

2 B

3 C

ID NAME

1 A

2 B

3 C

D

NAME

K Y

1 A

2 B

K Y

1 C

3 D

Query 2 : Π NAME (ARTS) ∩ Π NAME (SPORTS)

NAME

B

C

Set Difference (−): The result of set difference operation is tuples, which are present

in onerelation but are not in the second relation.

Retrieve students name those who participant only in arts and not in

sports:

Query 1 : ARTS - SPORTS

ID NAME

1 A

Retrieve students name those who participant only in sports and not

in arts:

Query 2 : Π NAME (SPORTS) - Π NAME (ARTS)

Cartesian Product (Χ): Combines information of two different relations into one.

Table A Table B

A Χ B

K Y K Y

1 A 1 C

1 A 3 D

2 B 1 C

2 B 3 D

Join Operations

JOIN operation also allows joining variously related tuples from different relations.

Join operation denoted by ⋈.

Types of JOIN:

Natural Join:

o A natural join is the set of tuples of all combinations in R and S that are equal on their
common attribute names.

o It is denoted by ⋈.

Example:

Let‟s consider two relations:

Relation 1: Employees

emp_id emp_name dept_id

101 Alice 10

102 Bob 20

103 Charlie 10

Relation 2: Departments

dept_id dept_name

10 HR

20 IT

Natural Join Example:

The Natural Join of Employees and Departments based on the common attribute dept_id
will result in:

Employees ⋈ DepartmentS

The resulting relation will combine tuples where dept_id matches in both relations. The result
is:

emp_id emp_name dept_id dept_name

101 Alice 10 HR

102 Bob 20 IT

103 Charlie 10 HR

Outer Join

The Join operation in relational algebra can be extended to include rows from one or both

relations that do not have matching values in the other relation. This is known as an outer join.

When necessary, it fills non-matching tuples with null values and includes them in the result.

There are three types of Outer Joins:

1. Left Outer Join ()

2. Right Outer Join (⟖)

3. Full Outer Join ()

Example:

Let‟s use the following two relations:

Relation 1: Employees

emp_id emp_name dept_id

101 Alice 10

102 Bob 20

103 Charlie 30

104 David 40

Relation 2: Departments

dept_id dept_name

10 HR

20 IT

30 Finance

1. Left Outer Join ()

Includes all rows from the left relation (R) and the matching rows from the right relation (S).

If there is no match, the missing side (right relation) will have null values.

We will perform a Left Outer Join between Employees and Departments on dept_id:

Employees Departments Result:

emp_id emp_name dept_id dept_name

101 Alice 10 HR

102 Bob 20 IT

103 Charlie 30 Finance

104 David 40 NULL

2. Right Outer Join (⟖)

Includes all rows from the right relation (S) and the matching rows from the left relation (R).
If there is no match, the missing side (left relation) will have null values.

Now, we will perform a Right Outer Join between Employees and Departments:

Employees ⟖ Departments

Result:

emp_id emp_name dept_id dept_name

101 Alice 10 HR

102 Bob 20 IT

103 Charlie 30 Finance

NULL NULL 40 NULL

Full Outer Join ():

Includes all rows from both relations. If there is no match on either side, null values are used

for the missing side.

Finally, we perform a Full Outer Join between Employees and Departments:

Employees Departments

Result:

emp_id emp_name dept_id dept_name

101 Alice 10 HR

102 Bob 20 IT

103 Charlie 30 Finance

104 David 40 NULL

NULL NULL 40 NULL

Equi Join

An Equi Join in relational algebra is a type of join operation where two relations are combined

based on an equality condition. Specifically, an Equi Join involves matching rows from two

relations where the values in the common attribute(s) are equal.

Equi Join Syntax:

The general form of an Equi Join operation between two relations R and S on a common

attribute A is:

R ⋈ R.A = S.A S

Where:

 R and S are two relations (tables).

 A is the common attribute (column) that exists in both relations.

 ⋈R.A=S.A is the join condition, indicating that the tuples will be joined where the

values of R.A are equal to S.A

Equi Join Query in Relational Algebra:

Employees ⋈Employees.deptid=Departments.deptid Departmentss

Result:

emp_id emp_name dept_id dept_name

101 Alice 10 HR

102 Bob 20 IT

103 Charlie 10 HR

104 David 30 Finance

.

Tuple Relational Calculus (TRC) in DBMS

Tuple Relational Calculus is a non-procedural query language unlike relational algebra.

Tuple Calculus provides only the description of the query but it does not provide the methods to

solve it. Thus, it explains what to do but not how to do.

In Tuple Calculus, a query is expressed as

{t| P(t)}

where t = resulting tuples,

P(t) = known as Predicate and these are the conditions that are used to fetch t

Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).

It also uses quantifiers: ∃ t ∈ r (Q(t)) = ‖there exists‖ a tuple in t in relation r such that predicate Q(t) is true. ∀ t ∈ r (Q(t)) = Q(t) is true ―for all‖ tuples in relation r.

Example:

Consider a database with a relation (table) named Students, which has the following schema:

Students(StudentID, Name, Age, Major)

Assume the table contains the following data:

StudentID Name Age Major

1 Alice 20 CS

2 Bob 22 Math

3 Carol 21 CS

StudentID Name Age Major

4 Dave 23 Physics

Query Example

Let's say we want to retrieve the names of all students who are majoring in "CS". The TRC
expression would look like this:

Query 1: { t.Name | t ∈ Students ∧ t.Major = 'CS' }

Result

For the above query, the result would be:

Name

Alice

Carol

Domain Relational Calculus

This is a non-procedural query language equivalent in power to Tuple Relational Calculus.

Domain Relational Calculus provides only the description of the query but it does not provide

the methods to solve it. In Domain Relational Calculus, a query is expressed as,

{ < x1, x2, x3, ..., xn > | P (x1, x2, x3, ..., xn) }

where, < x1, x2, x3, …, xn > represents resulting domains variables and P (x1, x2, x3, …, xn)

represents the condition or formula equivalent to the Predicate calculus.

Predicate Calculus Formula:

1. Set of all comparison operators

2. Set of connectives like and, or, not

3. Set of quantifiers (Universal Quantifier (∀),Existential Quantifier (∃))

Syntax of DRC:

{ <attributes> | P(x1, x2, ..., xn) }

Where:

 <attributes> are the output attributes.

 P(x1, x2, ..., xn) is a predicate (a condition) that describes the relationships between the

variables and the data.

Example

Example 1: Find the loan number, branch, and amount of loans greater than or equal to 10000 amount.

Schema:

 Loan(LoanNumber, Branch, Amount)

Sample Data:

LoanNumber Branch Amount

L001 Downtown 5000

L002 Uptown 12000

L003 Suburban 15000

L004 Central 8000

L005 Uptown 20000

Query :

To find the LoanNumber, Branch, and Amount of loans with an amount greater than or equal to
10,000, we select rows where the Amount is at least 10,000.

Result:

LoanNumber Branch Amount

L002 Uptown 12000

L003 Suburban 15000

L005 Uptown 20000

Differences betweem tuple and domain relation calculus

S.

No.

Basis

Comparison

of Tuple

(TRC)

Relational Calculus Domain

(DRC)

Relational Calculus

1. Definition The Tuple Relational

Calculus (TRC) is used to

select tuples from a relation.

The tuples with specific range

values, tuples with certain

attribute values, and so on can

be selected.

The Domain Relational Calculus

(DRC) employs a list of

attributes from which to choose

based on the condition. It‟s

similar to TRC, but instead of

selecting entire tuples, it selects

attributes.

2. Representation

of variables

In TRC, the variables

represent the tuples from

specified relations.

In DRC, the variables represent

the value drawn from a specified

domain.

3. Tuple/ Domain A tuple is a single element of

relation. In database terms, it

is a row.

A domain is equivalent to

column data type and any

constraints on the value of data.

4. Filtering This filtering variable uses a

tuple of relations.

This filtering is done based on

the domain of attributes.

5. Return Value The predicate expression

condition associated with the

TRC is used to test every row

using a tuple variable and

return those tuples that met

the condition.

DRC takes advantage of domain

variables and, based on the

condition set, returns the

required attribute or column that

satisfies the criteria of the

condition.

5. Membership The query cannot be The query can be expressed

S.

No.

Basis of

Comparison

Tuple Relational Calculus

(TRC)

Domain Relational Calculus

(DRC)

condition expressed using a

membership condition.

using a membership condition.

6. Query

Language

The QUEL or Query

Language is a query language

related to it,

The QBE or Query-By-Example

is query language related to it.

7. Similarity It reflects traditional pre-

relational file structures.

It is more similar to logic as a

modeling language.

8. Syntax Notation: {T | P (T)} or {T |

Condition (T)}

Notation: { a1, a2, a3, …, an | P

(a1, a2, a3, …, an)}

9. Example {T | EMPLOYEE (T) AND

T.DEPT_ID = 10}

{ | < EMPLOYEE > DEPT_ID =

10 }

QBE(Querry By Example):

If we talk about normal queries we fire on the database they should be correct and in a well-

defined structure which means they should follow a proper syntax if the syntax or query is

wrong definitely we will get an error and due to that our application or calculation definitely

going to stop. So to overcome this problem QBE was introduced. QBE stands for Query By

Example and it was developed in 1970 by Moshe Zloof at IBM.

It is a graphical query language where we get a user interface and then we fill some required

fields to get our proper result.

In SQL we will get an error if the query is not correct but in the case of QBE if the query is

wrong either we get a wrong answer or the query will not be going to execute but we will

never get any error.

Note-:

In QBE we don‟t write complete queries like SQL or other database languages it comes with

some blank so we need to just fill that blanks and we will get our required result.

Example

Consider the example where a table „SAC‟ is present in the database with Name,

Phone_Number, and Branch fields. And we want to get the name of the SAC-Representative

name who belongs to the MCA Branch. If we write this query in SQL we have to write it like

SELECT NAME

FROM SAC

WHERE BRANCH = 'MCA'"

And definitely, we will get our correct result. But in the case of QBE, it may be done as like

there is a field present and we just need to fill it with ―MCA‖ and then click on the SEARCH

button we will get our required result.

Points to be:

 Supported by most of the database programs.

 It is a Graphical Query Language.

 Created in parallel to SQL development.

 UNIT-III
STRUCTURED QUERY LANGUAGE (SQL): Introduction to SQL, SQL Operators, SQL F
Join queries, Sub queries, Nested queries, Views, Integrity constraints, Functional Dependencies,
Database design Normalization: Normal Forms-1st, 2nd, 3rd and BCNF, Multi - Valued Depe
Normal Form, 5th NF/Projection Join Normal form and De- Normalization.

Topic1: Introduction to SQL:

o QL stands for Structured Query Language. It is used for storing and managing data in

relational database management system (RDMS).

o It is a standard language for Relational Database System. It enables a user to create, read,

update and delete relational databases and tables.

o All the RDBMS like MySQL, Informix, Oracle, MS Access and SQL Server use SQL as

their standard database language.

o SQL allows users to query the database in a number of ways, using English-like

statements.

o Structure query language is not case sensitive. Generally, keywords of SQL are written in

uppercase.

o Statements of SQL are dependent on text lines. We can use a single SQL statement on

one or multiple text line. Using the SQL statements, you can perform most of the actions

in a database. SQL depends on tuple relational calculus and relational algebra.

SQL process:

o When an SQL command is executing for any RDBMS, then the system figure out the

best way to carry out the request and the SQL engine determines that how to interpret the

task.

o In the process, various components are included. These components can be optimization

Engine, Query engine, Query dispatcher, classic, etc.

o All the non-SQL queries are handled by the classic query engine, but SQL query engine

won't handle logical files.

 Topic 2: SQL Operator

Every database administrator and user uses SQL queries for manipulating and accessing the data

of database tables and views.

The manipulation and retrieving of the data are performed with the help of reserved words and

characters, which are used to perform arithmetic operations, logical operations, comparison

operations, compound operations, etc.

Types of Operator

SQL operators are categorized in the following categories:

1. SQL Arithmetic Operators

2. SQL Comparison Operators

3. SQL Logical Operators

4. SQL Set Operators

Arithmetic Operators

We can use various arithmetic operators on the data stored in the tables. Arithmetic Operators are:

Operator

Description

+ The addition is used to perform an addition operation on the data values.

– This operator is used for the subtraction of the data values.

/ This operator works with the ‗ALL‘ keyword and it calculates division operations.

* This operator is used for multiplying data values.

% Modulus is used to get the remainder when data is divided by another.

Comparison Operators

Another important operator in SQL is a comparison operator, which is used to compare one

expression‘s value to other expressions. SQL supports different types of comparison operator,

which is described below:

Operator Description

= Equal to.

> Greater than.

< Less than.

>= Greater than equal to.

<= Less than equal to.

<> Not equal to.

Logical Operators

The Logical operators are those that are true or false. They return true or false values to

combine one or more true or false values.

Operator Description

AND

Logical AND compares two Booleans as expressions and returns true when both
expressions are true.

OR

Logical OR compares two Booleans as expressions and returns true when one of the
expressions is true.

NOT

Not takes a single Boolean as an argument and change its value from false to true or
from true to false.

Special Operators

Operators Description

ALL

ALL is used to select all records of a SELECT STATEMENT. It compares
a value to every value in a list of results from a query. The ALL must be
preceded by the comparison operators and evaluated to TRUE if the query
returns no rows.

ANY

ANY compares a value to each value in a list of results from a query and
evaluates to true if the result of an inner query contains at least one row.

BETWEEN

The SQL BETWEEN operator tests an expression against a range. The
range consists of a beginning, followed by an AND keyword and an end
expression.

IN

The IN operator checks a value within a set of values separated by commas
and retrieves the rows from the table that match.

SET Operations

SQL supports few Set operations which can be performed on the table data. These are used to get

meaningful results from data stored in the table, under different special conditions.

In this tutorial, we will cover 4 different types of SET operations, along with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

UNION Operation

UNION is used to combine the results of two or more SELECT statements. However it will

eliminate duplicate rows from its result set. In case of union, number of columns and data type

must be same in both the tables, on which UNION operation is being applied.

Example:

SELECT * FROM First table

UNION

SELECT * FROM Second table;

UNION ALL

This operation is similar to Union. But it also shows the duplicate rows.

SELECT * FROM First

UNION ALL

SELECT * FROM Second;

INTERSECT

Intersect operation is used to combine two SELECT statements, but it only retunes the records

which are common from both SELECT statements. In case of Intersect the number of columns

and data type must be same.

MINUS

The Minus operation combines results of two SELECT statements and return only those in the

final result, which belongs to the first set of the result.

Topic 3: SQL FUNCTION

SQL, or Structured Query Language, is a programming language used for managing and

manipulating relational databases. One of the most powerful features of SQL is the ability to use

functions to perform various operations on the data in a database.

Types of SQL functions

 Aggregate Function

 Number Function

 Character Function

 Conversion Function

 Date Function

1. Aggregate Functions

SQL aggregation function is used to perform the calculations on multiple rows of a single

column of a table. It returns a single value.

1. COUNT

2. SUM

3. AVG

4. MAX

5. MIN

1. COUNT ():

COUNT function is used to Count the number of rows in a database table. It can work on both

numeric and non-numeric data types.

Syntax: COUNT(*)

Example: SELECT COUNT(*) FROM employee;

Output: COUNT(*)

21

2. SUM ()

Sum function is used to calculate the sum of all selected columns.

Syntax: SUM ()

Example: SELECT sum(salary) FROM employee;

Output: SUM (salary)

65440

3. AVG ()

The AVG function is used to calculate the average value of the numeric type.

Syntax: AVG()

Example: SELECT AVG(salary) FROM employee;

Output:

AVG(salary)

3116.1904

4. MAX ()

MAX function is used to find the maximum value of a certain column.

Syntax: MAX()

Example: SELECT MAX(salary) FROM employee;

Output:

MAX (salary)

7000

5. MIN ()

MIN function is used to find the minimum value of a certain column.

Syntax: MIN ()

Example: SELECT MIN (salary) FROM employee;

Output:

MIN (salary)

500
QUERIES USING CONVERSION FUNCTIONS:

The DUAL table is a special one-row, one-column table present by default in Oracle and other

database installations. This is used to perform mathematical calculations without using a table.

Example: select * from dual;

"DUMMY"

"X"
Numeric Functions:

Numeric Functions are used to perform operations on numbers and return numbers.

Following are the numeric functions defined in SQL:

ABS(): It returns the absolute value of a number.

Syntax: ABS(number)

Example: SELECT ABS(-12) FROM DUAL;

Output:

ABS (-12)

12
CEIL(): It returns the smallest integer value that is greater than or equal to a number.

Syntax: CEIL(NUMBER)

Example: SELECT CEIL(25.75) FROM DUAL;

Output:

CEIL (25.75)

26

FLOOR(): It returns the largest integer value that is less than or equal to a number.

Syntax: FLOOR(NUMBER)

Example: SELECT FLOOR(25.75) FROM DUAL;

Output:

FLOOR (25.75)

25
MOD(): It returns the remainder (aka. modulus) of n divided by m.

Syntax: MOD(m, n)

Example: SELECT MOD(10,2) FROM DUAL;

Output:

MOD(10,2)

0
ROUND(): It returns a number rounded to a certain number of decimal places.

Syntax: ROUND(NUMBER,[DECIMAL PLACES])

Example: SELECT ROUND(15.253, 1) FROM DUAL;

Output:

ROUND (15.253, 1)

15.3
SIN(): It returns the sine of a number in radians.

Syntax: SELECT SIN(2)FROM DUAL;

Example: SELECT SIN(2)FROM DUAL;

Output:

SIN(2)

0.909297

COS(): It returns the cosine of a number, in radians.

Syntax: SELECT COS(30);

Example: SELECT COS(30) FROM DUAL;

Output:

COS(30)

0.154251

TAN(): It returns the tangent of a number in radians.

Syntax: SELECT TAN(1.75);

Example: SELECT TAN(1.75) FROM DUAL;

Output:

TAN(1.75)

-5.52037992250933

SQRT(): It returns the square root of a number.

Syntax: SELECT SQRT(25);

Example: SELECT SQRT(25) FROM DUAL;

Output:
SQRT(25)

5

POWER():

This numeric function is used to return the power of a given expression.

Syntax: POWER(m, n)

Example: SELECT POWER(2, 3) FROM DUAL;

Output:

POWER(2, 3)

8
CHARACTER FUNCTIONS:

SQL provides a rich set of character functions that allow you to get information about strings

and modify the contents of those strings in multiple ways.

1. ASCII

ASCII is a String function of Oracle. This function returns the numeric value of given character.

Syntax

ASCII(character)

Example: SELECT ASCII('J') FROM DUAL;

Output:

"ASCII('J')"

74

2. CHR

This function returns all the characters of the given ASCII code.

Syntax: CHR(number)

Example: SELECT CHR(69) FROM DUAL;

Output:

"CHR(69)"

E
3. CONCAT : This function always appends (concatenates) string2 to the end of string1.

Syntax:

CONCAT('String1', 'String2')

Example: SELECT CONCAT('computer' ,'science') FROM DUAL;

Output:

“CONCAT('computer' ,'science') "

computerscience

4. INITCAP: This function converts alpha character values to uppercase for the first letter of

each word and all others in lowercase.

Syntax:

INITCAP(„computer science‘)

Example: SELECT INITCAP(‗computer science‘) FROM DUAL;

Output:

INITCAP(‗computer science‘)

Computer Science

5. LOWER(): This function converts alpha character values to lowercase.

Syntax:

LOWER(SQL course)

Example: SELECT LOWER('GEEKSFORGEEKS') FROM DUAL;

Output:

LOWER('GEEKSFORGEEKS')

Geeksforgeeks

6. UPPER(): This function converts alpha character values to uppercase.

Syntax: UPPER(SQL)

Example: SELECT UPPER('geeksforgeeks') FROM DUAL;

Output:

UPPER('geeksforgeeks')

GEEKSFORGEEKS

7. LPAD(): function is used to padding the left side of a string with a specific set

of characters.

Syntax: LPAD(string1, padded_length)

Example: Select LPAD ('ORACLE', 4) from dual;

Output:

LPAD ('ORACLE')

ORAC

8. RPAD()

This function returns the right-padded to the given length.

Syntax:

RPAD(string1, padded_length)

Example: SELECT RPAD('ORACLE',2) FROM dual;

Output:

RPAD('ORACLE',2)

OR

9. RTRIM()

This function returns the string by removing given characters from the right side.

Syntax: RTRIM(string1 [, trim_string])

Parameters

Example: SELECT RTRIM ('javatpoint', 'tpoint') FROM dual;

Output:
RTRIM ('javatpoint', 'tpoint')

Java

10. LTRIM()

This function returns the string by removing given characters from left side.

Syntax:

LTRIM(string1 [, trim_string])

Example: SELECT LTRIM ('JAVA','J') FROM DUAL;

OUTPUT:

LTRIM ('JAVA','J')

AVA

Conversion Function:

1. TO_CHAR

TO_CHAR function is used to typecast a numeric or date input to a character type with a

format model (optional).

Syntax

TO_CHAR(date, ’format’)

Example: select TO_CHAR(sysdate,'year') from dual;

OUTPUT:
TO_CHAR(sysdate,'year')

twenty twenty-four

2. TO_DATE

This function takes character values and returns the output in the date format.

syntax: TO_DATE(number, format)

Example: select TO_DATE('090623','mm dd yy') from dual;

OUTPUT:

TO_DATE('090623','mm dd yy')

06-09-23

DATE/TIME FUNCTION:

1. SYSDATE() Function

This function is used to get the current date of the system.

Syntax:

SYSDATE

Example:

SELECT SYSDATE FROM dual;

Output:

SYSDATE

08-01-24

(OR)

CURRENT_DATE ()

It is used to get the current date.

Syntax:

CURRENT_DATE

Example:

SELECT CURRENT_DATE FROM DUAL;

Output:

SYSDATE

08-01-24

2. SYSTIMESTAMP ()

This function is used to get the current date and time of the system.

Syntax:

SYSTIMESTAMP

Example:

SELECT SYSTIMESTAMP FROM dual;

Output:

SYSTIMESTAMP

08-01-24 9:57:18.607000000 PM +05:30
3. ADD_MONTHS ()

It is used to get the date in which some specified months are added.

Syntax:

ADD_MONTHS(date1, number_months)

Example:

SELECT ADD_MONTHS ('20-NOV-2018', 2) FROM DUAL;

Output:

ADD_MONTHS ('20-NOV-2018', 2)

20-01-19

4. MONTHS_BETWEEN ()

It is used to get the difference between given two dates, i.e., date1 and date2.

Syntax:

MONTHS_BETWEEN(date1, date2)

Example:

SELECT MONTHS_BETWEEN('05-JAN-23','05-JAN-22') FROM DUAL;

OUTPUT:

MONTHS_BETWEEN('05-JAN-23','05-JAN-22')

12

5. NEXT_DAY ()

This function returns the first weekday from the given date and week name.

Syntax

NEXT_DAY(date, weekday)

Example

SELECT NEXT_DAY('08-JAN-24', 'MONDAY') FROM DUAL;

OUTPUT:

NEXT_DAY('08-JAN-24', 'MONDAY')

15-01-24

6. LAST_DAY ()

It is used to get the last date of the given month in the date.

Syntax:

LAST_DAY(date)

Example:

SELECT LAST_DAY(SYSDATE) FROM DUAL;

OUTPUT:

LAST_DAY(SYSDATE)

31-01-24

Topic : 4 SQL JOIN

As the name shows, JOIN means to combine something. In case of SQL, JOIN means "to

combine two or more tables".

In SQL, JOIN clause is used to combine the records from two or more tables in a database.

Types of SQL JOIN

1. INNER JOIN

2. LEFT JOIN

3. RIGHT JOIN

4. FULL JOIN

1. INNER JOIN

In SQL, INNER JOIN selects records that have matching values in both tables as long as the

condition is satisfied. It returns the combination of all rows from both the tables where the

condition satisfies.

Syntax

SELECT table1.column1, table1.column2, table2.column1,....

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

INNER JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

2. LEFT JOIN

The SQL left join returns all the values from left table and the matching values from the right

table. If there is no matching join value, it will return NULL.

Syntax

SELECT table1.column1, table1.column2, table2.column1,....

FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

LEFT JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

3. RIGHT JOIN

In SQL, RIGHT JOIN returns all the values from the values from the rows of right table and the

matched values from the left table. If there is no matching in both tables, it will return NULL.

Syntax

SELECT table1.column1, table1.column2, table2.column1,....

FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

RIGHT JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

4. FULL JOIN

In SQL, FULL JOIN is the result of a combination of both left and right outer join. Join tables

have all the records from both tables. It puts NULL on the place of matches not found.

Syntax

SELECT table1.column1, table1.column2, table2.column1,....

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

FULL JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

Topic 5: SQl Views

A view is a virtual table that is created from an existing table. The CREATE VIEW statement is

used to create views. Views can be constructed from a single table or multiple tables. Similar to a

real table, a view consists of rows and columns jest like real table. SQL functions, WHERE

clauses and JOIN statements can be added to a view. A view does not store data in the database.

There are two types of views:

1. Simple View: These views can only contain a single base table or can be created only from

one table. Group functions such as MAX(), COUNT(), etc., cannot be used here. By using

Simple View, DML operations can be performed. Insert, delete, and update are directly

possible

2. Complex View: The view is created on multiple tables then it is called as complex view.

1. Simple View:

Creating a view from a single table

Syntax:

CREATE VIEW view_name

AS

SELECT *.

FROM table_name

WHERE [condition]; (optional)

Example:

SQL> CREATE VIEW studentview

AS

SELECT * FROM Student;

Sql> SELECT * FROM studentview;

Inserting a row into a view

Syntax:

INSERT view_name VALUES (value1, value2, value3..);

Example:

SQL> insert into studentview values(7,'Anu','Bangalore');

Deleting a row from a view

Syntax:

DELETE FROM view_name WHERE condition;

Example:

SQL> DELETE FROM studentview WHERE sid = 5;

Updating Views:

Syntax:

UPDATE view_name

SET column1 = value1,....

WHERE [condition];

Example:

UPDATE studentview

SET address = 'hyd'

WHERE sid = 1;

Dropping A View In DBMS:

Syntax:

drop view tablename;

Example : drop view studentview;

2. Complex view: Creating a view from multiple tables

Updating a View

A view can be updated with the CREATE OR REPLACE VIEW statement.

Syntax:

CREATE OR REPLACE VIEW view_name AS

SELECT column1,coulmn2,..

FROM table_name

WHERE condition;

Example:

CREATE OR REPLACE VIEW MarksView

AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS,

StudentMarks. AGE

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

Dropping a View

A view is deleted with the DROP VIEW statement.

Syntax:

DROP VIEW view_name;

Example: DROP VIEW MarksView;

Topic 6: SQL Constraints

1. NOT NULL:

The NOT NULL constraint doesn‘t accept null values but it accepts duplicate values. The NOT

NULL constraint is only allowed at the column level.

Example:

CREATE TABLE student1 (

);

Sno NUMBER (3) NOT NULL,

Name CHAR(10)

2. UNIQUE: A unique constraint doesn't allow duplicate values in a column but they accept null

values. UNIQUE constraint applied only on a particular column.

Example:

CREATE TABLE student2 (

sno number(3) unique,

name char(10)

);

3. CHECK: Specifies a condition that each row in the table must satisfy. To satisfy the constraint,

each row in the table must make the condition either TRUE or FALSE.

Example:

CREATE TABLE student3 (

);

StudentID INT,

Name VARCHAR(30),

Age INT,

Check(Age >= 17)

4. DEFAULT :

The DEFAULT constraint is used to insert a default value into a column. The default value will

be added to all new records, if no other value is specified.

Example:

Sql> CREATE TABLE student5 (

id INT PRIMARY KEY,

country VARCHAR(20) DEFAULT 'mca'

);

PRIMARY KEY:

In SQL, the PRIMARY KEY constraint is used to uniquely identify rows. It is

combinations of NOT NULL and UNIQUE constraints i.e. it cannot contain duplicate or

NULL values.

Example:

CREATE TABLE student7 (

);

id int,

college_name varchar(50),

primary key (id)

FOREIGN KEY:

The FOREIGN KEY constraint is used to create a relationship between two tables. A

foreign key is defined using the FOREIGN KEY and REFERENCES keywords. The table

with the foreign key is called the child table, and the table with the primary key is called

the referenced or parent table.

Ex:

CREATE TABLE DEPT11(

DEPTNO NUMBER,

DNAME VARCHAR2(100),

PRIMARY KEY (DEPTNO));

CREATE TABLE EMP11(

EMPID NUMBER PRIMARY KEY,

ENAME VARCHAR2(100),

DEPTNO NUMBER,

FOREIGN KEY (DEPTNO) REFERENCES DEPT11(DEPTNO)

);

Topic 7: SUB QUERIES

SQL Sub queries:

An SQL Sub query, is a SELECT query within another query. It is also known as Inner

query or Nested query and the query containing it is the outer query.

The outer query can contain the SELECT, INSERT, UPDATE, and DELETE statements. We

can use the sub query as a column expression, as a condition in SQL clauses, and with operators

like =, >, <, >=, <=, IN, BETWEEN, etc.

Following are the rules to be followed while writing sub queries –

 subqueries must be enclosed within parentheses.

 Subqueries can be nested within another subquery.

 A subquery must contain the SELECT query and the FROM clause always.

 A subquery consists of all the clauses an ordinary SELECT clause can contain: GROUP

BY, WHERE, HAVING, DISTINCT, TOP/LIMIT, etc

 A subquery can return a single value, a single row, a single column, or a whole table.

The basic syntax is as follows –

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name

OPERATOR (SELECT column_name [,column_name] FROM table1 [, table2] [WHERE]);

Now, let us check the following subquery with a SELECT statement.

ex;

SELECT * FROM CUSTOMERS

WHERE ID IN (SELECT ID FROM CUSTOMERS WHERE SALARY > 4500);

This would produce the following result −

ID NAME AGE ADDRESS SALARY

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

7 Muffy 24 Indore 10000.00

Subqueries with the INSERT Statement:

We can also use the subqueries along with the INSERT statements. The data returned by the

subquery is inserted into another table.

Now to copy the complete records of CUSTOMERS table into the CUSTOMERS_BKP

table, we can use the following query −

The basic syntax is as follows −

INSERT INTO table_name [(column1 [, column2])]

SELECT [*|column1 [, column2] FROM table1 [, table2]

[WHERE VALUE OPERATOR]

Ex:

INSERT INTO CUSTOMERS_BKP

SELECT * FROM CUSTOMERS

WHERE ID IN (SELECT ID FROM CUSTOMERS);

Subqueries with the UPDATE Statement:

A subquery can also be used with the UPDATE statement. You can update single or multiple
columns in a table using a subquery.

The basic syntax is as follows −

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE](SELECT COLUMN_NAME FROM TABLE_NAME
[WHERE]);

Example:

UPDATE CUSTOMERS

SET SALARY = SALARY * 0.25

WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP WHERE AGE >= 27);

TOPIC 8: NESTED QUERY

A nested query is a query that has another query embedded within it. The embedded query is

called a subquery.

A subquery typically appears within the WHERE clause of a query. It can sometimes appear in

the FROM clause or HAVING clause.

Subqueries can be used in various sections of an SQL statement, such as:

 WHERE clause

 FROM clause

 SELECT clause

When a subquery is used in a WHERE clause, it is often to filter the results based on a

comparison to an expression or column value from the main query. For example, you can use a

subquery to find all products whose price is above average by comparing the price column with

the average value generated by the subquery.

Example: SELECT product_name, priceFROM productsWHERE price > (SELECT AVG(price)

FROM products);

TOPIC 9: FUNCTIONAL DEPENDENCY

A functional dependency is a constraint that specifies the relationship between two sets of

attributes where one set can accurately determine the value of other sets. It is denoted as X →

Y, where X is a set of attributes that is capable of determining the value of Y. The attribute set

on the left side of the arrow, X is called Determinant, while on the right side, Y is called

the Dependent. Functional dependencies are used to mathematically express relations among

database entities.

Types of Functional dependencies in DBMS:

1. Trivial functional dependency

2. Non-Trivial functional dependency

3. Multivalued functional dependency

4. Transitive functional dependency

1. Trivial Functional Dependency

In Trivial Functional Dependency, a dependent is always a subset of the determinant.

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

Here, {roll_no, name} → name is a trivial functional dependency, since the

dependent name is a subset of determinant set {roll_no, name}

Similarly, roll_no → roll_no is also an example of trivial functional dependency.

2. Non-trivial Functional Dependency

In Non-trivial functional dependency, the dependent is strictly not a subset of the

determinant.

i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional dependency.

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

Here, roll_no → name is a non-trivial functional dependency, since the

dependent name is not a subset of determinant roll_no.

Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not

a subset of {roll_no, name}

3. Multivalued Functional Dependency

In Multivalued functional dependency, entities of the dependent set are not dependent on

each other.

i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is called

a multivalued functional dependency.

For example,

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

45 abc 19

Here, roll_no → {name, age} is a multivalued functional dependency, since the

dependents name & age are not dependent on each other(i.e. name → age or age → name

doesn‟t exist !)

4. Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant.

i.e. If a → b & b → c, then according to axiom of transitivity, a → c. This is a transitive

functional dependency

For example,

enrol_no name dept building_no

42 abc CO 4

43 pqr EC 2

44 xyz IT 1

45 abc EC 2

Here, enrol_no → dept and dept → building_no,

Hence, according to the axiom of transitivity, enrol_no → building_no is a valid functional

dependency. This is an indirect functional dependency, hence called Transitive functional

dependency.

Topic 10: Database Design:

Database designs provide the blueprints of how the data is going to be stored in a system.

A proper design of a database highly affects the overall performance of any application.

The designing principles defined for a database give a clear idea of the behavior of any

application and how the requests are processed. Another instance to emphasize the

database design is that a proper database design meets all the requirements of users.

Lastly, the processing time of an application is greatly reduced if the constraints of

designing a highly efficient database are properly implemented.

Although, the life cycle of a database is not an important discussion that has to be taken forward

in this article because we are focused on the database design. But, before jumping directly on the

designing models constituting database design it is important to understand the overall workflow

and life-cycle of the database.

Requirement Analysis

First of all, the planning has to be done on what are the basic requirements of the project under

which the design of the database has to be taken forward. Thus, they can be defined as:-

Planning - This stage is concerned with planning the entire DDLC (Database Development Life

Cycle). The strategic considerations are taken into account before proceeding.

System definition - This stage covers the boundaries and scopes of the proper database after

planning.

Database Designing

The next step involves designing the database considering the user-based requirements and

splitting them out into various models so that load or heavy dependencies on a single aspect are

not imposed. Therefore, there has been some model-centric approach and that's where logical

and physical models play a crucial role.

Physical Model - The physical model is concerned with the practices and implementations of the

logical model.

Logical Model - This stage is primarily concerned with developing a model based on the

proposed requirements. The entire model is designed on paper without any implementation or

adopting DBMS considerations.

Implementation

The last step covers the implementation methods and checking out the behavior that matches our

requirements. It is ensured with continuous integration testing of the database with different data

sets and conversion of data into machine understandable language. The manipulation of data is

primarily focused on these steps where queries are made to run and check if the application is

designed satisfactorily or not.

Data conversion and loading - This section is used to import and convert data from the old to

the new system.

Testing - This stage is concerned with error identification in the newly implemented system.

Testing is a crucial step because it checks the database directly and compares the requirement

specifications.

Topic 11: What is Normalization?

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations. It is

also used to eliminate undesirable characteristics like Insertion, Update, and Deletion

Anomalies.

o Normalization divides the larger table into smaller and links them using relationships.

o The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate

anomalies leads to data redundancy and can cause data integrity and other problems as the

database grows. Normalization consists of a series of guidelines that helps to guide you in

creating a good database structure.

Data modification anomalies can be categorized into three types:

o Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into

a relationship due to lack of data.

o Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data

results in the unintended loss of some other important data.

o Updatation Anomaly: The update anomaly is when an update of a single data value

requires multiple rows of data to be updated.

NORMAL FORMS

Forms of normalization are given below:

1. First Normal Form (1NF)

2. Second Normal Form (2NF)

3. Third Normal Form (3NF)

4. Boyce-Codd Normal Form (BCNF)

5. Fourth Normal Form (4NF)

6. Fifth Normal Form (5NF)

1.FIRST NORMAL FORM (1NF):

"A relation schema R is in 1NF, if it does not have any composite attributes,

multivalued attribute or their combination."

The objective of first normal form is that the table should contain no repeating groups of

data.Data is divided into logical units called entities or tables

All attributes (column) in the entity (table) must be single valued.

Repeating or multi valued attributes are moved into a separate entity (table) & a relationship is

established between the two tables or entities.

Example of the first normalform:
Consider the following Customer table.
Customer:

cid name address contact_no

society city

C01 aaa Amul avas,Anand {1234567988}

C02 bbb near parimal garden,abad {123,333,4445}

C03 ccc sardar colony , surat

Here, address is a composite attribute , which is further subdivided into two column society and

city. And attribute contact_no is multivalued attribute.

Problems with this relation are -

 It is not possible to store multiple values in a single field in a relation. So, if any customer

has more than one contact number, it is not possible to store those numbers.

 Another problem is related to information retrieval. Suppose, here, if there is a need to

find out all customers belonging to some particular city, it is very difficult to retrieve.

The reason is: city name for all customers are combined with society names and stored

whole as an address.

Solution for composite attribute

Insert separate attributes in a relation for each sub-attribute of a composite attribute.

In our example, insert two separate attributes for Society and city in a relation in place of single

composite attributes address. Now, insert data values separately for Society and City for all

tuples.

Customer :

Solution for Multi-valued attribute

Two approaches are available to solve problem of multi-valued attribute

1. First Approach:

In a First approach, determine maximum allowable values for a multi-valued attribute. In our

case, if maximum two numbers are allowed to store, insert two separate attributes attributes to

store contact numbers as shown.

Customer:

Now,if customer has only one contact number or no any contact number, then keep the related

field empty for tupple of that customer. If customer has two contact numbers, store both number

in related fields. If customer has more than two contact numbers, store two numbers and ignore

all other numbers.

2. Second Approach:

In a second approach, remove the multi-valued attribute that violates 1NF and place it in a

separate relation along with the primary key of given original relation. The primary key of new

relation is the combination of multi-valued attribute and primary key of old relation. for example,

in our case, remove the contact_no attribute and place it with cid in a separate relation

customer_contact. Primary Key for relation Customer_contact will be combination of cid and

contact_no.

First approach is simple. But, it is not always possible to put restriction on maximum allowable

values. It also introduces null values for mant fields.

Second approach is superior as it does not suffer from draw backs of first approach. But, it is

somewhat complicated one. For example, to display all information about any/all customers, two

relations - Customer and Customer_contact - need to be accessed.

Second Normal Form (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on the

primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a

school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which

is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be in

third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for every

non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

{EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP} so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on

EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on super

key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new <EMPLOYEE_ZIP>

table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

4. Boyce-Codd Normal Form (BCNF)

Boyce–Codd Normal Form (BCNF) is based on functional dependencies that take into account

all candidate keys in a relation; however, BCNF also has additional constraints compared with

the general definition of 3NF.

Rules for BCNF

Rule 1: The table should be in the 3rd Normal Form.

Rule 2: X should be a superkey for every functional dependency (FD) X−>Y in a given

relation.

Note: To test whether a relation is in BCNF, we identify all the determinants and make sure

that they are candidate keys.

Examples

Here, we are going to discuss some basic examples which let you understand the properties of

BCNF. We will discuss multiple examples here.

Example 1

Let us consider the student database, in which data of the student are mentioned.

Stu_ID Stu_Branch Stu_Course Branch_Number Stu_Course_No

101

Computer Science

& Engineering

DBMS

B_001

201

101

Computer Science

& Engineering

Computer

Networks

B_001

202

102

Electronics &

Communication

Engineering

VLSI Technology

B_003

401

102

Electronics &

Communication

Engineering

Mobile

Communication

B_003

402

Functional Dependency of the above is as mentioned:

Stu_ID −> Stu_Branch

Stu_Course −> {Branch_Number, Stu_Course_No}

Candidate Keys of the above table are: {Stu_ID, Stu_Course}

Why this Table is Not in BCNF?

The table present above is not in BCNF, because as we can see that neither Stu_ID nor

Stu_Course is a Super Key. As the rules mentioned above clearly tell that for a table to be in

BCNF, it must follow the property that for functional dependency X−>Y, X must be in Super

Key and here this property fails, that‘s why this table is not in BCNF.

How to Satisfy BCNF?

For satisfying this table in BCNF, we have to decompose it into further tables. Here is the full

procedure through which we transform this table into BCNF. Let us first divide this main table

into two tables Stu_Branch and Stu_Course Table.

Stu_Branch Table

Stu_ID Stu_Branch

101 Computer Science & Engineering

102 Electronics & Communication Engineering

Candidate Key for this table: Stu_ID.
Stu_Course Table

Stu_Course Branch_Number Stu_Course_No

DBMS B_001 201

Computer Networks B_001 202

VLSI Technology B_003 401

Mobile Communication B_003 402

Candidate Key for this table: Stu_Course.
Stu_ID to Stu_Course_No Table

Stu_ID Stu_Course_No

101 201

101 202

102 401

102 402

Candidate Key for this table: {Stu_ID, Stu_Course_No}.

After decomposing into further tables, now it is in BCNF, as it is passing the condition of

Super Key, that in functional dependency X−>Y, X is a Super Key.

5. Fourth Normal Form (4NF)

The Fourth Normal Form (4NF) is a level of database normalization where there are no non-

trivial multivalued dependencies other than a candidate key. It builds on the first three normal

forms (1NF, 2NF, and 3NF) and the Boyce-Codd Normal Form (BCNF). It states that, in

addition to a database meeting the requirements of BCNF, it must not contain more than one

multivalued dependency.

Properties

A relation R is in 4NF if and only if the following conditions are satisfied:

1. It should be in the Boyce-Codd Normal Form (BCNF).

2. The table should not have any Multi-valued Dependency.

A table with a multivalued dependency violates the normalization standard of the Fourth

Normal Form (4NF) because it creates unnecessary redundancies and can contribute to

inconsistent data. To bring this up to 4NF, it is necessary to break this information into two

tables.

Example: Consider the database table of a class that has two relations R1 contains student

ID(SID) and student name (SNAME) and R2 contains course id(CID) and course name

(CNAME).

Table R1
Table R2

CID CN AME

C1 C

C2 D

When their cross-product is done it resulted in multivalued dependencies.
Table R1 X R2

SID SNAME CID CNAME

S1 A C1 C

S1 A C2 D

S2 B C1 C

S2 B C2 D

Multivalued dependencies (MVD) are:
SID->->CID; SID->->CNAME; SNAME->->CNAME

SID SNAME

S1 A

S2 B

Fifth Normal Form/Projected Normal Form (5NF)

A relation R is in Fifth Normal Form if and only if everyone joins dependency in R is implied

by the candidate keys of R. A relation decomposed into two relations must have lossless

join Property, which ensures that no spurious or extra tuples are generated when relations are

reunited through a natural join.

Properties

A relation R is in 5NF if and only if it satisfies the following conditions:

1. R should be already in 4NF.

2. It cannot be further non loss decomposed (join dependency).

Example – Consider the above schema, with a case as ―if a company makes a product and an

agent is an agent for that company, then he always sells that product for the company‖. Under

these circumstances, the ACP table is shown as:

Table ACP

Agent Company Product

A1 PQR Nut

A1 PQR Bolt

A1 XYZ Nut

A1 XYZ Bolt

A2 PQR Nut

The relation ACP is again decomposed into 3 relations. Now, the natural Join of
all three relations will be shown as:

Table R1 Table R2

Agent Company

A1 PQR

A1 XYZ

A2 PQR

Agent Product

A1 Nut

A1 Bolt

A2 Nut

Table R3

Company Product

PQR Nut

PQR Bolt

Company Product

XYZ Nut

XYZ Bolt

The result of the Natural Join of R1 and R3 over ‗Company‘ and then the Natural Join of R13

and R2 over ‗Agent‘and ‗Product‘ will be Table ACP.

Hence, in this example, all the redundancies are eliminated, and the decomposition of ACP is a

lossless join decomposition. Therefore, the relation is in 5NF as it does not violate the property

of lossless join.

UNIT-IV
PL/SQL: Introduction to PL/SQL, PL/SQL Block Structure, Conditional statements, Iterative
Processing with Loops, Triggers, Cursor, exception handling, Procedures, Functions.

FILE STRUCTURE: File Organization, Organization of Records in Files and Data-Dictionary
Storage. Indexing and Hashing: Ordered Indices, B+-Tree Index Files, B-Tree Index files,
Static and Dynamic Hashing.

Introduction to PL/SQL

PL/SQL (Procedural Language/Structured Query Language) is an extension of SQL

(Structured Query Language) designed by Oracle. It enables developers to write code that

combines the power of SQL queries with the procedural capabilities of a programming

language. PL/SQL is mainly used to interact with Oracle databases, providing a way to

execute SQL statements in a procedural manner, which allows for more control over data

processing, including logic flow and error handling.

Structure of PL/SQL in DBMS

PL/SQL programs can be structured into different blocks. The basic structure of a PL/SQL

block is as follows:

1. Declaration Section (optional):

This section is used to declare variables, constants, cursors, and exceptions that will be used

in the PL/SQL block.

DECLARE

variable_name datatype;

CONSTANT_NAME CONSTANT datatype := value;

BEGIN

2. Execution Section (mandatory):

This is the section where the actual SQL statements and procedural code are written. It is the

core of the PL/SQL block and is mandatory. SQL commands like SELECT, INSERT,

UPDATE, or DELETE are executed here, along with procedural logic like loops and

conditions.

Syntax:

BEGIN

-- SQL and PL/SQL code

END;

3. Exception Handling Section (optional):

 This section is used to handle runtime errors or exceptions that occur during the

execution of the PL/SQL block. It allows programmers to gracefully handle errors

instead of having the program crash or stop.

Syntax:

EXCEPTION

WHEN exception_name THEN

-- Handle error

WHEN OTHERS THEN

-- Handle all other errors

END;

Example of a Simple PL/SQL Block:

DECLARE

v_emp_name VARCHAR2(50);

v_emp_salary NUMBER(10,2);

BEGIN

SELECT employee_name, salary INTO v_emp_name, v_emp_salary

FROM employees

WHERE employee_id = 100;

DBMS_OUTPUT.PUT_LINE('Employee Name: ' || v_emp_name);

DBMS_OUTPUT.PUT_LINE('Salary: ' || v_emp_salary);

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('No employee found with the given ID.');

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('An unexpected error occurred.');

END;

Topic 1:

Decision making statements

Or

Conditional statements

Or

Control statements:

Decision making or conditional or Control statements are those statements which are in

charge of executing a statement out of multiple given statements based on some condition.

The condition will return either true or false. Based on what the condition returns, the

associated statement is executed.

Conditional Statements available in PL/SQL are defined below:

1. IF THEN

2. IF THEN ELSE

3. NESTED-IF-THEN

4. IF THEN ELSIF-THEN-ELSE

1. IF THEN

if then the statement is the most simple decision-making statement. It is used to decide

whether a certain statement or block of statements will be executed or not i.e if a certain

condition is true then a block of statement is executed otherwise not.

Syntax:

IF condition THEN

-- Code to execute if the condition is true

END IF;

Example:

DECLARE

v_salary NUMBER := 3000;

BEGIN

IF v_salary > 2500 THEN

DBMS_OUTPUT.PUT_LINE('Salary is above 2500');

END IF;

END;

2. IF THEN ELSE

The if statement alone tells us that if a condition is true it will execute a block of statements

and if the condition is false it won‘t. But what if we want to do something else if the

condition is false. Here comes the else statement. We can use the else statement with if

statement to execute a block of code when the condition is false.

Syntax:

IF condition THEN

-- Code to execute if the condition is true

ELSE

-- Code to execute if the condition is false

END IF;

Example:

DECLARE

v_age NUMBER := 20;

BEGIN

IF v_age >= 18 THEN

DBMS_OUTPUT.PUT_LINE('Adult');

ELSE

DBMS_OUTPUT.PUT_LINE('Minor');

END IF;

END;

3. NESTED-IF-THEN

A nested IF-THEN statement occurs when an IF-THEN statement is placed inside another

IF-THEN statement.

Syntax:

IF condition1 THEN

-- Code to execute if condition1 is true

IF condition2 THEN

-- Code to execute if condition2 is true

END IF;

END IF;

Here, the second IF statement (the nested one) will only be evaluated if the first IF statement

is true.

Example:

declare

num1 number:= 10;

num2 number:= 20;

num3 number:= 20;

begin

if num1 < num2 then

dbms_output.put_line('num1 small num2');

if num1 < num3 then

dbms_output.put_line('num1 small num3 also');

end if;

end if;

dbms_output.put_line('after end if');

end;

4. if...then...elsif...else statement

It is used to check multiple conditions. Sometimes it is required to test more than one

condition in that case if...then...else statement cannot be used. For this

purpose, if...then...elsif...else statement is suitable in which all the conditions are tested one

by one and whichever condition is found to be TRUE, that block of code is executed. And if

all the conditions result in FALSE then the else part is executed.

Syntax:

if <test_condition1> then

body of action

elsif <test_condition2>then

body of action

elsif<test_condition3>then

body of action

...

...

...

else

end if;

body of action

set serveroutput on;

Example:

DECLARE

a int;

b int;

BEGIN

a := &a;

b := &b;

if(a>b) then

dbms_output.put_line(‗a is greater than b‘);

elsif(b>a) then

dbms_output.put_line(‗b is greater than a‘);

END;

else

end if;

dbms_output.put_line(‗Both a and b are equal‘);

Topic 2:

PL/SQL Loops:

Loops Statements (or) Iterative Statements

Loops in PL/SQL provides a way of repeating a particular part of any program or any code

statement as many times as required. In PL/SQL we have three different loop options to

choose from when we want to execute a statement repeatedly in our code block.

They are:

1. Basic Loop

2. While Loop

3. For Loop

1. Basic Loop

Basic loop or simple loop is preferred in PL/SQL code when there is no surety about how

many times the block of code is to be repeated. When we use the basic loop the code block

will be executed at least once.

While using it, following two things must be considered:

 Simple loop always begins with the keyword LOOP and ends with a keyword END

LOOP.

 A basic/simple loop can be terminated at any given point by using the exit statement

or by specifying certain condition by using the statement exit when.

Syntax:

LOOP

-- Statements to be executed repeatedly

EXIT WHEN condition; -- Optional exit condition

END LOOP;

Example:

DECLARE

counter NUMBER := 1;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE('Counter: ' || counter);

counter := counter + 1;

EXIT WHEN counter > 5;

END LOOP;

END;

/

2. While Loop

It is an entry controlled loop which means that before entering in a while loop first the

condition is tested, if the condition is TRUE the statement or a group of statements get

executed and if the condition is FALSE the control will move out of the while loop.

Syntax:

WHILE <test_condition> LOOP

<action>

END LOOP;

Example:

set serveroutput on;

DECLARE

num int:=1;

BEGIN

while(num <= 10) LOOP

dbms_output.put_line(''|| no);

num := num+2;

END LOOP;

END;

3. For Loop

This loop is used when some statements in PL/SQL code block are to be repeated for a fixed

number of times.

When we use the for loop we are supposed to define a counter variable which decides how

many time the loop will be executed based on a starting and ending value provided at the

beginning of the loop. The for loop automatically increments the value of the counter variable

by 1 at the end of each loop cycle.

Syntax:

FOR counter_variable IN start_value..end_value LOOP

statement to be executed

END LOOP;

Example:

set serveroutput on;

DECLARE

i number(2);

BEGIN

FOR i IN 1..10 LOOP

dbms_output.put_line(i);

END LOOP;

END;

Topic 3:

Triggers in PL/SQL

A trigger in PL/SQL is a type of stored procedure that automatically executes (or "fires") in

response to a specific event occurring in the database. Triggers are used to enforce business

rules, validate data, maintain audit trails, or automatically modify data in a table based on

changes made to that table.

Triggers are defined to execute either before or after a specific event on a database object

such as an INSERT, UPDATE, or DELETE operation. The event can be a change in a table

or view, and triggers are bound to that table or view.

Types of Triggers

1. BEFORE Trigger

2. AFTER Trigger

3. INSTEAD OF Trigger

4. Level Triggers

There are 2 different types of level triggers, they are:

1. ROW LEVEL TRIGGERS

2. STATEMENT LEVEL TRIGGERS

Trigger Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF}

{INSERT | UPDATE | DELETE}

ON table_name

[FOR EACH ROW]

DECLARE

-- Variable declarations (optional)

BEGIN

-- Trigger code

END;

1. BEFORE Trigger: This trigger fires before the triggering event (INSERT, UPDATE,

DELETE) is executed on the table.

Syntax:

CREATE OR REPLACE TRIGGER trigger_name

BEFORE {INSERT | UPDATE | DELETE}

ON table_name

[FOR EACH ROW]

DECLARE

-- Variable declarations (optional)

BEGIN

-- Trigger code

END;

Example:

CREATE OR REPLACE TRIGGER before_employee_insert

BEFORE INSERT ON employees

FOR EACH ROW

BEGIN

-- Set the hire_date to the current system date before the new record is inserted

:NEW.hire_date := SYSDATE;

END;

2. AFTER trigger in PL/SQL is a type of trigger that executes after a specified event (such

as INSERT, UPDATE, or DELETE) has been performed on a table. This trigger is typically

used for actions that need to occur after the data has been modified, such as logging changes,

auditing data, or updating related tables.

Syntax:

CREATE OR REPLACE TRIGGER trigger_name

AFTER {INSERT | UPDATE | DELETE}

ON table_name

[FOR EACH ROW]

DECLARE

-- Variable declarations (optional)

BEGIN

-- Trigger code

END;

Example:

CREATE OR REPLACE TRIGGER after_employee_insert

AFTER INSERT ON employees

FOR EACH ROW

BEGIN

-- Insert a record into the audit_log table after a new employee is inserted

INSERT INTO audit_log (log_id, action_type, employee_id, action_date)

VALUES (audit_log_seq.NEXTVAL, 'INSERT', :NEW.employee_id, SYSDATE);

END;

3. INSTEAD OF Trigger in PL/SQL

An INSTEAD OF trigger in PL/SQL is used to define the behavior that should occur

instead of the usual DML (Data Manipulation Language) operation such as INSERT,

UPDATE, or DELETE. This type of trigger is typically used on views rather than tables. The

purpose of an INSTEAD OF trigger is to replace the default action with a custom action

when an operation is performed on a view.

Syntax:

CREATE OR REPLACE TRIGGER trigger_name

INSTEAD OF {INSERT | UPDATE | DELETE}

ON view_name

[FOR EACH ROW]

DECLARE

-- Variable declarations (optional)

BEGIN

-- Trigger code

END;

Example:

CREATE OR REPLACE TRIGGER update_employee_department

INSTEAD OF UPDATE ON employee_department_view

FOR EACH ROW

BEGIN

-- Update the employees table

UPDATE employees

SET employee_name = :NEW.employee_name

WHERE employee_id = :OLD.employee_id;

-- Update the departments table

UPDATE departments

SET department_name = :NEW.department_name

WHERE department_id = :OLD.department_id;

END;

4. Level Triggers in PL/SQL

Triggers are special procedures in PL/SQL that automatically execute in response to certain

events on a particular table or view. Based on the scope of their operation, triggers are

categorized into Row-Level Triggers and Statement-Level Triggers.

1. Row-Level Triggers

 A Row-Level Trigger is executed once for each row affected by a DML (INSERT,

UPDATE, DELETE) statement.

 They are used when you need to work with or track changes to specific rows in a table.

Example of a Row-Level Trigger:

CREATE OR REPLACE TRIGGER row_level_trigger_example

AFTER INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE('Row-Level Trigger fired for Employee ID: '

|| :NEW.employee_id);

END;

/

2. Statement-Level Triggers

 A Statement-Level Trigger is executed once for the entire DML statement,

regardless of the number of rows affected.

 These triggers are used when the operation affects the table as a whole, not specific

rows.

Example of a Statement-Level Trigger:

CREATE OR REPLACE TRIGGER statement_level_trigger_example

AFTER DELETE ON employees

BEGIN

DBMS_OUTPUT.PUT_LINE('Statement-Level Trigger fired after a DELETE operation

on employees.');

END;

/

Topic 4:

Cursor in PL/SQL

A cursor in PL/SQL is a pointer to a context area that stores the result set of a query. It

allows row-by-row processing of query results.

Cursor Attributes

PL/SQL provides cursor attributes for obtaining information about the cursor state:

 %FOUND: Returns TRUE if a row was fetched, otherwise FALSE.

 %NOTFOUND: Returns TRUE if no row was fetched, otherwise FALSE.

 %ISOPEN: Returns TRUE if the cursor is open, otherwise FALSE.

 %ROWCOUNT: Returns the number of rows fetched so far.

PL/SQL provides two types of cursors:

1. Implicit Cursors

2. Explicit Cursors

1. Implicit Cursor

 Automatically created by PL/SQL for SELECT INTO, INSERT, UPDATE, and

DELETE statements that affect a single row or multiple rows.

 You don't need to declare or control it.

Example of Implicit Cursor:

DECLARE

emp_count NUMBER;

BEGIN

SELECT COUNT(*) INTO emp_count FROM employees;

DBMS_OUTPUT.PUT_LINE('Total Employees: ' || emp_count);

END;

/

2. Explicit Cursor

 Defined and controlled explicitly by the programmer.

 Useful for queries that return multiple rows.

 Consists of four main steps:

1. Declaration: Declare the cursor.

2. Opening: Open the cursor to execute the query and establish the result set.

3. Fetching: Retrieve rows from the result set one by one.

4. Closing: Close the cursor to release resources.

Example of Explicit Cursor:

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, name FROM employees;

v_emp_id employees.employee_id%TYPE;

v_name employees.name%TYPE;

BEGIN

-- Open the cursor

OPEN emp_cursor;

-- Loop through rows

LOOP

FETCH emp_cursor INTO v_emp_id, v_name;

-- Exit the loop when no more rows are available

EXIT WHEN emp_cursor%NOTFOUND;

-- Process the fetched data

DBMS_OUTPUT.PUT_LINE('Employee ID: ' || v_emp_id || ', Name: ' || v_name);

END LOOP;

-- Close the cursor

CLOSE emp_cursor;

END;

/

Exception Handling in PL/SQL
An exception is an error. An error accrued during the program execution is called exception.

Types of Exceptions

1. Pre-defined or System Exceptions: These are built-in exceptions in PL/SQL, such as

NO_DATA_FOUND, TOO_MANY_ROWS, and ZERO_DIVIDE.
2. User-Defined Exceptions: These are explicitly defined by the programmer to handle

specific business logic errors.

Syntax for Exception Handling

Syntax:

DECLARE
<exception_name> EXCEPTION;

BEGIN
...
RAISE <exception_name>;
...

END;

1. System-defined Exceptions

System-defined exceptions are predefined in programming languages to handle runtime

errors.

DECLARE

-- Declaration statements;

BEGIN

-- SQL statements;

-- Procedural statements;

EXCEPTION

-- Exception handling statements;

END;

Exception Raised when....

LOGIN_DENIED At the time when user login is denied.

TOO_MANY_ROWS When a select query returns more than one row and the

destination variable can take only single value.

VALUE_ERROR When an arithmetic, value conversion, truncation, or constraint

error occurs.

Example:

set serveroutput on;

DECLARE

a int;

b int;

c int;

BEGIN

a := &a;

b := &b;

c := a/b;

dbms_output.put_line('RESULT=' || c);

EXCEPTION

when ZERO_DIVIDE then

dbms_output.put_line('Division by 0 is not possible');

END;

User-defined Exception

In any program, there is a possibility that a number of errors can occur that may not be

considered as exceptions by oracle. In that case, an exception can be defined by the

programmer while writing the code such type of exceptions are called User-defined exception.

User defined exceptions are in general defined to handle special cases where our code can

generate exception due to our code logic.

Also, in your code logic, you can explicitly specify to genrate an exception using

the RAISE keyword and then handle it using the EXCEPTION block.

Syntax:

DECLARE

<exception name> EXCEPTION

BEGIN

<sql sentence>

If <test_condition> THEN

RAISE <exception_name>;

END;

END IF;

EXCEPTION

WHEN <exception_name> THEN

-- some action

Example:

DECLARE

v_salary NUMBER := 4000; -- Employee salary

e_low_salary EXCEPTION; -- User-defined exception

BEGIN

-- Check if salary is below the threshold

IF v_salary < 5000 THEN

RAISE e_low_salary; -- Raise the user-defined exception

END IF;

DBMS_OUTPUT.PUT_LINE('Salary is acceptable.');

EXCEPTION

WHEN e_low_salary THEN

DBMS_OUTPUT.PUT_LINE('Error: Salary is below the minimum threshold.');

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('An unexpected error occurred.');

END;

/

Procedures in PL/SQL

A procedure in PL/SQL is a named block of code that performs a specific task. It is similar

to a function but does not necessarily return a value. Procedures are used to encapsulate and

reuse business logic, reducing redundancy and enhancing maintainability.

Parameters in Procedures

In PL/SQL, parameters in procedures allow you to pass and retrieve values between the

calling program and the procedure. There are three types of parameters:

1. IN Parameter:

o Used to pass input values to the procedure.

o Acts as a constant and cannot be modified within the procedure.

2. OUT Parameter:

o Used to return a value from the procedure to the calling program.

o Must be assigned a value within the procedure.

3. IN OUT Parameter:

o Used to pass a value into the procedure, modify it within the procedure, and

return it to the calling program.

Parameters in Procedures

In PL/SQL, parameters in procedures allow you to pass and retrieve values between the

calling program and the procedure. There are three types of parameters:

1. IN Parameter:

o Used to pass input values to the procedure.

o Acts as a constant and cannot be modified within the procedure.

2. OUT Parameter:

o Used to return a value from the procedure to the calling program.

o Must be assigned a value within the procedure.

3. IN OUT Parameter:

o Used to pass a value into the procedure, modify it within the procedure, and

return it to the calling program.

Syntax for Parameters in Procedures

CREATE OR REPLACE PROCEDURE procedure_name (

parameter1 IN datatype, -- Input parameter

parameter2 OUT datatype, -- Output parameter

parameter3 IN OUT datatype -- Input and output parameter

) IS

-- Declarations

BEGIN

-- Executable statements

EXCEPTION

-- Exception handling

END procedure_name;

/

Example: Procedure with Parameters

Creating the Procedure

CREATE OR REPLACE PROCEDURE manage_salary (

p_emp_id IN NUMBER, -- Input parameter

p_salary IN OUT NUMBER, -- Input and output parameter

p_bonus OUT NUMBER -- Output parameter

) IS

BEGIN

-- Calculate bonus as 10% of salary

p_bonus := p_salary * 0.10;

-- Update salary by adding bonus

p_salary := p_salary + p_bonus;

DBMS_OUTPUT.PUT_LINE('Salary updated for Employee ID: ' || p_emp_id);

END;

/

Dropping a Procedure

To remove an existing procedure, use the DROP PROCEDURE statement.

Syntax:

DROP PROCEDURE procedure_name;

Example:

DROP PROCEDURE manage_salary;

PL/SQL Functions

PL/SQL functions are reusable blocks of code that can be used to perform specific tasks.

They are similar to procedures but must always return a value.

A function in PL/SQL contains:

 Function Header: The function header includes the function name and an optional

parameter list. It is the first part of the function and specifies the name and parameters.

 Function Body: The function body contains the executable statements that implement the

specific logic. It can include declarative statements, executable statements, and exception-

handling statements.

Create Function in PL/SQL

To create a procedure in PL/SQL, use the CREATE FUNCTION statement.

Syntax

CREATE [OR REPLACE] FUNCTION function_name
(parameter_name type [, …])

— This statement is must for functions
RETURN return_datatype

{IS | AS}

BEGIN
— program code

[EXCEPTION
exception_section;

END [function_name];
Example

CREATE OR REPLACE FUNCTION factorial(x NUMBER)

RETURN NUMBER

IS

f NUMBER;

BEGIN

IF x = 0 THEN

f := 1;

ELSE

f := x * factorial(x - 1);

END IF;

RETURN f;

END;

/

Dropping a Function

To remove an existing function, use the DROP FUNCTION statement.

Syntax:

DROP FUNCTION function_name;

Example:

DROP FUNCTION calculate_bonus;

File Organization

A database consists of a huge amount of data. The data is grouped within a table in

RDBMS, and each table have related records. A user can see that the data is stored

in form of tables, but in actual this huge amount of data is stored in physical

memory in form of files.

Types of File Organizations –

Various methods have been introduced to Organize files. These particular methods

have advantages and disadvantages on the basis of access or selection . Thus it is all

upon the programmer to decide the best suited file Organization method according

to his requirements.

Some types of File Organizations are:

 Sequential File Organization

 Heap File Organization

 Hash File Organization

 B+ Tree File Organization

 Indexed sequential access method (ISAM)

 Clustered File Organization

We will be discussing each of the file Organizations in further sets of this article

along with differences and advantages/ disadvantages of each file Organization

methods.

Sequential File Organization –

The easiest method for file Organization is Sequential method. In this method the

file are stored one after another in a sequential manner. There are two ways to

implement this method:

1. Pile File Method – This method is quite simple, in which we store the records in

a sequence i.e one after other in the order in which they are inserted into the

tables.

Insertion of new record –

Let the R1, R3 and so on upto R5 and R4 be four records in the sequence. Here,

records are nothing but a row in any table. Suppose a new record R2 has to be

inserted in the sequence, then it is simply placed at the end of the file.

2. Sorted File Method –In this method, As the name itself suggest whenever a new

record has to be inserted, it is always inserted in a sorted (ascending or

descending) manner. Sorting of records may be based on any primary key or any

other key.

Insertion of new record –

Let us assume that there is a preexisting sorted sequence of four records R1, R3,

and so on upto R7 and R8. Suppose a new record R2 has to be inserted in the

sequence, then it will be inserted at the end of the file and then it will sort the

sequence .

Heap File Organization –

Heap File Organization works with data blocks. In this method records are inserted

at the end of the file, into the data blocks. No Sorting or Ordering is required in this

method. If a data block is full, the new record is stored in some other block, Here

the other data block need not be the very next data block, but it can be any block in

the memory. It is the responsibility of DBMS to store and manage the new records.

Insertion of new record –

Suppose we have four records in the heap R1, R5, R6, R4 and R3 and suppose a

new record R2 has to be inserted in the heap then, since the last data block i.e data

block 3 is full it will be inserted in any of the data blocks selected by the DBMS,

lets say data block 1.

If we want to search, delete or update data in heap file Organization the we will

traverse the data from the beginning of the file till we get the requested record.

Thus if the database is very huge, searching, deleting or updating the record will

take a lot of time.

Hash File Organization

Hash File Organization uses the computation of hash function on some fields of the

records. The hash function's output determines the location of disk block where the

records are to be placed.

When a record has to be received using the hash key columns, then the address is

generated, and the whole record is retrieved using that address. In the same way,

when a new record has to be inserted, then the address is generated using the hash

key and record is directly inserted. The same process is applied in the case of delete

and update.

In this method, there is no effort for searching and sorting the entire file. In this

method, each record will be stored randomly in the memory.

B+ File Organization

o B+ tree file organization is the advanced method of an indexed sequential

access method. It uses a tree-like structure to store records in File.

o It uses the same concept of key-index where the primary key is used to sort

the records. For each primary key, the value of the index is generated and

mapped with the record.

o The B+ tree is similar to a binary search tree (BST), but it can have more than

two children. In this method, all the records are stored only at the leaf node.

Intermediate nodes act as a pointer to the leaf nodes. They do not contain any

records.

Indexed sequential access method (ISAM)

ISAM method is an advanced sequential file organization. In this method, records are

stored in the file using the primary key. An index value is generated for each primary

key and mapped with the record. This index contains the address of the record in the

file.

If any record has to be retrieved based on its index value, then the address of the data
block is fetched and the record is retrieved from the memory.

Cluster file organization

o When the two or more records are stored in the same file, it is known as

clusters. These files will hae two or more tables in the same data block, and

key attributes which are used to map these tables together are stored only once.

o This method reduces the cost of searching for various records in different files.

o The cluster file organization is used when there is a frequent need for joining

the tables with the same condition. These joins will give only a few records

from both tables.

In this method, we can directly insert, update or delete any record. Data is sorted

based on the key with which searching is done. Cluster key is a type of key with

which joining of the table is performed.

Data Dictionary storage

Till now, we learned and understood about relations and its representation. In the

relational database system, it maintains all information of a relation or table, from its

schema to the applied constraints. All the metadata is stored. In general, metadata

refers to the data about data. So, storing the relational schemas and other metadata

about the relations in a structure is known as Data Dictionary or System Catalog.

1. Integrated Data Dictionary:

An Integrated Data Dictionary is a data dictionary that is tightly coupled with the

DBMS. This means that the metadata (information about database structure, schema,

and other objects) is automatically stored and managed by the DBMS itself. Every

time the database schema or structure is modified (such as when a new table is

created, a column is added, or a constraint is changed), the data dictionary is updated

automatically by the DBMS.

Characteristics:

 Automatic Updates: Whenever any change is made to the database (like

creating tables, adding columns, etc.), the integrated data dictionary is

updated automatically.

 Part of DBMS: It is an internal component of the DBMS and is not a separate

system. It exists as system tables or views within the database.

 Real-Time Access: It is directly accessed by the DBMS for operations like

query optimization, integrity checks, and enforcing constraints.

 No Manual Intervention: Users or administrators do not need to manually

update the dictionary. It is managed by the DBMS system.

2. Stand-alone Data Dictionary:

A Stand-alone Data Dictionary is a separate system or repository used to store

metadata about the database schema, objects, and structures. It is not integrated with

the DBMS. This type of data dictionary must be manually updated whenever the

database schema or structure is modified. The stand-alone data dictionary can exist

outside of the DBMS and is often used for auditing or documentation purposes.

Characteristics:

 Manual Updates: Whenever a change is made to the database, such as

creating new tables, adding columns, or changing relationships, the stand-

alone data dictionary needs to be manually updated by database

administrators or users.

 Separate from DBMS: It exists outside the DBMS and is not automatically

updated by the system. It may be maintained in a separate file, document, or

external database.

 Used for Documentation and Auditing: Often used for purposes like

database documentation, auditing, and ensuring consistency across different

environments.

 No Direct Access by DBMS: The DBMS does not use the stand-alone data

dictionary for operations like query optimization or constraint enforcement.

Indexing Methods:

Ordered indices

The indices are usually sorted to make searching faster. The indices which are sorted

are known as ordered indices.

Example: Suppose we have an employee table with thousands of record and each of

which is 10 bytes long. If their IDs start with 1, 2, 3....and so on and we have to

search student with ID-543.

o In the case of a database with no index, we have to search the disk block from

starting till it reaches 543. The DBMS will read the record after reading

543*10=5430 bytes.

o In the case of an index, we will search using indexes and the DBMS will read

the record after reading 542*2= 1084 bytes which are very less compared to

the previous case.

Primary Index

o If the index is created on the basis of the primary key of the table, then it is

known as primary indexing. These primary keys are unique to each record and

contain 1:1 relation between the records.

o As primary keys are stored in sorted order, the performance of the searching

operation is quite efficient.

The primary index can be classified into two types:

Dense index and Sparse index.

Dense index

o The dense index contains an index record for every search key value in the

data file. It makes searching faster.

o In this, the number of records in the index table is same as the number of

records in the main table.

o It needs more space to store index record itself. The index records have the

search key and a pointer to the actual record on the disk.

Sparse index

o In the data file, index record appears only for a few items. Each item points to

a block.

o In this, instead of pointing to each record in the main table, the index points to

the records in the main table in a gap.

Clustering Index

o A clustered index can be defined as an ordered data file. Sometimes the index

is created on non-primary key columns which may not be unique for each

record.

o In this case, to identify the record faster, we will group two or more columns

to get the unique value and create index out of them. This method is called a

clustering index.

o The records which have similar characteristics are grouped, and indexes are

created for these group.

Example: suppose a company contains several employees in each department.

Suppose we use a clustering index, where all employees which belong to the same

Dept_ID are considered within a single cluster, and index pointers point to the cluster

as a whole. Here Dept_Id is a non-unique key.

The previous schema is little confusing because one disk block is shared by records

which belong to the different cluster. If we use separate disk block for separate

clusters, then it is called better technique.

Secondary Index

In the sparse indexing, as the size of the table grows, the size of mapping also grows.

These mappings are usually kept in the primary memory so that address fetch should

be faster. Then the secondary memory searches the actual data based on the address

got from mapping. If the mapping size grows then fetching the address itself becomes

slower. In this case, the sparse index will not be efficient. To overcome this problem,

secondary indexing is introduced.

In secondary indexing, to reduce the size of mapping, another level of indexing is

introduced. In this method, the huge range for the columns is selected initially so that

the mapping size of the first level becomes small. Then each range is further divided

into smaller ranges. The mapping of the first level is stored in the primary memory,

so that address fetch is faster. The mapping of the second level and actual data are

stored in the secondary memory (hard disk).

B+ Tree

o The B+ tree is a balanced binary search tree. It follows a multi-level index

format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all

leaf nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree

can support random access as well as sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node. The B+

tree is of the order n where n is fixed for every B+ tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers except

the root node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2

key values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next

leaf node.

Searching a record in B+ Tree

Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for

the intermediary node which will direct to the leaf node that can contain a record for

55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at

the end, we will be redirected to the third leaf node. Here DBMS will perform a

sequential search to find 55.

B+ Tree Insertion

Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf

node after 55. It is a balanced tree, and a leaf node of this tree is already full, so we

cannot insert 60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree without

affecting the fill factor, balance and order.

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50.

We will split the leaf node of the tree in the middle so that its balance is not altered.

So we can group (50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It

should have 60 added to it, and then we can have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is

very easy to find the node where it fits and then place it in that leaf node.

B+ Tree Deletion

Suppose we want to delete 60 from the above example. In this case, we have to

remove 60 from the intermediate node as well as from the 4th leaf node too. If we

remove it from the intermediate node, then the tree will not satisfy the rule of the B+

tree. So we need to modify it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as

follows:

Operationsin B+treein DBMS

In the B+ tree, we can perform so many operations of insertion, deletion, and

searching a node in a B+ tree.

 Insertion

 Deletion

 Searching

Insertionin B+Tree

Insertion is a process in which we can insert any data in the B+ tree in the form of

nodes.

We can insert value in the leaf node of the B+ tree. There are 2 cases of insertion as

follows:

 Case 1: In the first case of insertion, if the leaf node is empty then we can

simply insert the value into the leaf node in the B+ tree in increasing order if

the leaf node is not full.

 Case 2: In the second case of insertion, if the leaf node is full then we need to

follow some procedure or steps as follows:

Step 1: first we need to insert the new node in the leaf node in increasing order but

the leaf node is already full, we need some balancing in the node to store the value.

Step 2: now we need to break the node in the B+ tree at the m/2 position.

Step 3: After breaking the node, we add the m/2 value to the parent node of the B+

tree.

Step 4: if the parent node is full then in this case we just repeat steps 2 and 3.

Let's understand by an example:

Example:

First, we need to create the B+ tree with the help of this data: 1,4,7,10,17,21,31

Let's suppose our B+ tree is in the order(m) that is 4.

Now max children= 4,

and minimum children: m/2 =2 and to find the max keys(m-1):4-1=3 and to find the

min keys(m/2)-1: (4/2)-1= 1

Now, first we will insert the values 1,4 and 7 into the first node of the B+ tree.

After the insertion of 1,4 and 7, now we will insert the next element 10, but you can

see there is no space in the current node(because we can only store a maximum of 3

keys in a node), we need to split the node.

Now, we need to spilt between 4 or 7 nodes.

If we choose 4 then the tree will be left biased tree. And if we choose 7 then the tree

will be the right-biased tree. We can choose one of them.

Let‘s choose a right-based tree for this example. Now, we split node 7 and after that,

we move it up.

1 4 7 10

4 is the left biased

tree

7 is the right-based

tree

> ≥

Note : b+ tree

After inserting 10, now we will split it into:

I. 1,4 and a blank space (because the maximum number of keys in a node can

be 3) and,

II. We will insert the next value 17 into the 7 and 10 nodes and it will come after

10 in the ascending order.

Now, we will insert 21 and preferably, it should be placed after 17. But the node is

full because of 3 keys. We need to split the node, as we all know that we choose the

right biased tree after step 2, so we will split the node in the same way.

I. 7,10 and a blank space

II. And 17,21 and a blank space

And all the nodes have a minimum of 2 children, which satisfies the fact that we

deduced the B+ tree before the insertion in the B+ tree.

Deletionin B+tree

Deletion is a process when we delete the data or value/keys from the tree. In other

words, if we want to delete some value from the node in the B+ tree, we use the

deletion operation to perform that task.

Similar to insertion, deletion also follows two cases for deleting any value from the

B+ tree.

Case 1: Let's suppose we want to delete the value that is present only in the leaf node

of the B+ tree.

If the value to be deleted is present in the leaf node only then we simply delete the

value easily.

Case 2: Let's suppose the value to be deleted is present in the leaf node and also has a

pointer to it as well then first, we need to locate the node that we want to delete and

remove it from the leaf node, but we also need to remove it from the index of the B+

tree that points to this node.

Let‘s take an example to understand the deletion in the B+ tree.

Example:

Suppose we want to delete 21 from the form of the leaf node in the B+ tree.

We will simply delete the value from the B+ tree.

Before deletion:

After the deletion:

So 21 is present in the leaf node of the B+ tree and if we delete the value it will not

invalidate the minimum number of keys which is 1, so we can simply delete the value

from the leaf node.

Let's understand searching by an example:

Example 1:

Suppose we want to search the element 10 from the B+ tree.

First, we compare element 10 with the starting node which is 7 and 17. as we all

know 10 lies between them, so we simply need to search in the records between 7 and

17. Since 7 and 17 are leaf nodes we will get the desired value which is 10 in this

case.

B- trees

B trees are extended binary search trees that are specialized in m-way searching,

since the order of B trees is 'm'. Order of a tree is defined as the maximum number of

children a node can accommodate. Therefore, the height of a b tree is relatively

smaller than the height of AVL tree and RB tree.

B-Tree of Order m has the following properties...

The various properties of B trees include −

 Every node in a B Tree will hold a maximum of m
children and (m-1) keys, since the order of the tree is
m.

 Every node in a B tree, except root and leaf, can hold
at least m/2 children

 The root node must have no less than two children.
 All the paths in a B tree must end at the same level,

i.e. the leaf nodes must be at the same level.
 A B tree always maintains sorted data.

Operations on a B-Tree

The following operations are performed on a B-Tree...

1. Search

2. Insertion

3. Deletion

Search Operation in B-Tree

The search operation in B-Tree is similar to the search operation in Binary Search

Tree. In a Binary search tree, the search process starts from the root node and we

make a 2-way decision every time (we go to either left subtree or right subtree). In B-

Tree also search process starts from the root node but here we make an n-way

decision every time. Where 'n' is the total number of children the node has. In a B-

Tree, the search operation is performed with O(log n) time complexity. The search

operation is performed as follows...

 Step 1 - Read the search element from the user.

 Step 2 - Compare the search element with first key value of root node in the

tree.

 Step 3 - If both are matched, then display "Given node is found!!!" and

terminate the function

 Step 4 - If both are not matched, then check whether search element is smaller

or larger than that key value.

 Step 5 - If search element is smaller, then continue the search process in left

subtree.

 Step 6 - If search element is larger, then compare the search element with

next key value in the same node and repeate steps 3, 4, 5 and 6 until we find

the exact match or until the search element is compared with last key value in

the leaf node.

 Step 7 - If the last key value in the leaf node is also not matched then display

"Element is not found" and terminate the function.

Insertion Operation in B-Tree

In a B-Tree, a new element must be added only at the leaf node. That means, the new

keyValue is always attached to the leaf node only. The insertion operation is

performed as follows...

 Step 1 - Check whether tree is Empty.

 Step 2 - If tree is Empty, then create a new node with new key value and

insert it into the tree as a root node.

 Step 3 - If tree is Not Empty, then find the suitable leaf node to which the

new key value is added using Binary Search Tree logic.

 Step 4 - If that leaf node has empty position, add the new key value to that

leaf node in ascending order of key value within the node.

 Step 5 - If that leaf node is already full, split that leaf node by sending middle

value to its parent node. Repeat the same until the sending value is fixed into

a node.

 Step 6 - If the spilting is performed at root node then the middle value

becomes new root node for the tree and the height of the tree is increased by

one.

Example

Construct a B Tree of order 3 by inserting numbers from

1, 2, 3,4,5,6,7,8,9, 10.

The insertion is done using the following procedure −
Step 1: Calculate the maximum (m−1)(m−1) and,

minimum (⌈m2⌉−1)(⌈m2⌉−1) number of keys a node can hold, where m is denoted by

the order of the B Tree.

Order (M) =3

Maximum keys (m-1)=2

Minimum key (m/2)-1=1

Maximum chidren =3

Minimum children (m/2)=2

Insert (1):

Since '1'is the first element into the tree that is inserted into a new node. It acts as the

root node.

Insert (2)

Element '2'is added to existing leaf node. Here, we have only one node and that node

acts as root and also leaf. This leaf node has an empty position. So, new element (2)

can be inserted at that empty position.

Insert (3)

Element '3'is added to existing leaf node. Here, we have only one node and that node

acts as root and also leaf. This leaf node doesn't has an empty position. So, we split

that node by sending middle value (2) to its parent node. But here, this node doesn't

has parent. So, this middle value becomes a new root node for the tree.

Insert (4)

Element '4'is larger than root node '2' and it is not a leaf node. So, we move to the

right of '2. We reach to a leaf node with value '3' and it has an empty position. So,

new element (4) can be inserted at that empty position.

Insert (5)

Element '5'is larger than root node'2' and it is not a leaf node. So, we move to the

right of '2. We reach to a leaf node and it is already full. So, we split that node by

sending middle value (4) to its parent node (2). There is an empty position in its

parent node. So, value '4'is added to node with value '2' and new element'5' added as

new leaf node.

Insert (6)

Element '6'is larger than root node'2' &'4' and it is not a leaf node. So, we move to the

right of '4. We reach to a leaf node with value'5' and it has an empty position. So, new

element (6) can be inserted at that empty position.

Insert (7)

Element '7'is larger than root node '2'&'4' and it is not a leaf node. So, we move to the

right of '4. We reach to a leaf node and it is already full. So, we split that node by

sending middle value (6) to its parent node (2&4). But the parent (2&4) is also full.

So, again we split the node (2&4) by sending middle value '4' to its parent but this

node doesn't have parent. So, the element '4' becomes new root node for the tree.

Insert (8)

Element '8'is larger than root node'4' and it is not a leaf node. So, we move to the

right of '4. We reach to a node with value '6''8' is larger than '6' and it is also not a leaf

node. So, we move to the right of '6: We reach to a leaf node (7) and it has an empty

position. So, new element (8) can be inserted at that empty position.

Insert (9)

Element '9'is larger than root node'4' and it is not a leaf node. So, we move to the

right of '4. We reach to a node with value'6. '9' is larger than '6' and it is also not a

leaf node. So, we move to the right of '6: We reach to a leaf node (7 & 8). This leaf

node is already full. So, we split this node by sending middle value (8) to its parent

node. The parent node (6) has an empty position. So, '8' is added at that position. And

new element is added as a new leaf node.

Insert (10)

Element '10' is larger than root node '4' and it is not a leaf node. So, we move to the

right of'4. We reach to a node with values '6 & 8 '10' is larger than '6 & 8' and it is

also not a leaf node. So, we move to the right of'8. We reach to a leaf node (9). This

leaf node has an empty position. So, new element '10' is added at that empty position.

Hashing in DBMS

In a huge database structure, it is very inefficient to search all the index values and

reach the desired data. Hashing technique is used to calculate the direct location of a

data record on the disk without using index structure.

In this technique, data is stored at the data blocks whose address is generated by

using the hashing function. The memory location where these records are stored is

known as data bucket or data blocks.

In this, a hash function can choose any of the column value to generate the address.

Most of the time, the hash function uses the primary key to generate the address of

the data block. A hash function is a simple mathematical function to any complex

mathematical function. We can even consider the primary key itself as the address of

the data block. That means each row whose address will be the same as a primary key

stored in the data block.

The above diagram shows data block addresses same as primary key value. This hash

function can also be a simple mathematical function like exponential, mod, cos, sin,

etc. Suppose we have mod (5) hash function to determine the address of the data

block. In this case, it applies mod (5) hash function on the primary keys and generates

3, 3, 1, 4 and 2 respectively, and records are stored in those data block addresses.

Types of Hashing:

Static Hashing

In static hashing, the resultant data bucket address will always be the same. That

means if we generate an address for EMP_ID =103 using the hash function mod (5)

then it will always result in same bucket address 3. Here, there will be no change in

the bucket address.

Hence in this static hashing, the number of data buckets in memory remains constant

throughout. In this example, we will have five data buckets in the memory used to

store the data.

Operations of Static Hashing

o Searching a record

When a record needs to be searched, then the same hash function retrieves the

address of the bucket where the data is stored.

o Insert a Record

When a new record is inserted into the table, then we will generate an address for a

new record based on the hash key and record is stored in that location.

o Delete a Record

To delete a record, we will first fetch the record which is supposed to be deleted.

Then we will delete the records for that address in memory.

o Update a Record

To update a record, we will first search it using a hash function, and then the data

record is updated.

If we want to insert some new record into the file but the address of a data bucket

generated by the hash function is not empty, or data already exists in that address.

This situation in the static hashing is known as bucket overflow. This is a critical

situation in this method.

To overcome this situation, there are various methods. Some commonly used

methods are as follows:

1. Open Hashing

When a hash function generates an address at which data is already stored, then the

next bucket will be allocated to it. This mechanism is called as Linear Probing.

For example: suppose R3 is a new address which needs to be inserted, the hash

function generates address as 112 for R3. But the generated address is already full. So

the system searches next available data bucket, 113 and assigns R3 to it.

2. Close Hashing

When buckets are full, then a new data bucket is allocated for the same hash result

and is linked after the previous one. This mechanism is known as Overflow chaining.

For example: Suppose R3 is a new address which needs to be inserted into the table,

the hash function generates address as 110 for it. But this bucket is full to store the

new data. In this case, a new bucket is inserted at the end of 110 buckets and is linked

to it.

Dynamic Hashing

o The dynamic hashing method is used to overcome the problems of static

hashing like bucket overflow.

o In this method, data buckets grow or shrink as the records increases or

decreases. This method is also known as Extendable hashing method.

o This method makes hashing dynamic, i.e., it allows insertion or deletion

without resulting in poor performance.

How to search a key

o First, calculate the hash address of the key.

o Check how many bits are used in the directory, and these bits are called as i.

o Take the least significant i bits of the hash address. This gives an index of the

directory.

o Now using the index, go to the directory and find bucket address where the

record might be.

How to insert a new record

o Firstly, you have to follow the same procedure for retrieval, ending up in

some bucket.

o If there is still space in that bucket, then place the record in it.

o If the bucket is full, then we will split the bucket and redistribute the records.

For example:

Consider the following grouping of keys into buckets, depending on the prefix of

their hash address:

The last two bits of 2 and 4 are 00. So it will go into bucket B0. The last two bits of 5

and 6 are 01, so it will go into bucket B1. The last two bits of 1 and 3 are 10, so it

will go into bucket B2. The last two bits of 7 are 11, so it will go into B3.

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket. But

bucket B1 is full, so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it

will go into bucket B1, and the last three bits of 6 are 101, so it will go into

bucket B5.

o Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and 100

entry because last two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110

entry because last two bits of both the entry are 10.

o Key 7 are still in B3. The record in B3 pointed by the 111 and 011 entry

because last two bits of both the entry are 11.

Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in the

system. It simply increases the size of memory to accommodate the data.

o In this method, memory is well utilized as it grows and shrinks with the data.

There will not be any unused memory lying.

o This method is good for the dynamic database where data grows and shrinks

frequently.

Disadvantages of dynamic hashing

o In this method, if the data size increases then the bucket size is also increased.

These addresses of data will be maintained in the bucket address table. This is

because the data address will keep changing as buckets grow and shrink. If

there is a huge increase in data, maintaining the bucket address table becomes

tedious.

o In this case, the bucket overflow situation will also occur. But it might take

little time to reach this situation than static hashing.

All internal nodes and leaf nodes
contain data pointers along with
keys.

Only leaf nodes contain data pointers
along with keys, internal nodes contain
keys only.

There are no duplicate keys.
Duplicate keys are present in this, all
internal nodes are also present at leaves.

Leaf nodes are not linked to each
other.

Sequential access of nodes is not
possible.

Leaf nodes are linked to each other.

All nodes are present at leaves, so
sequential access is possible just like a
linked list.

Searching for a key is slower. Searching is faster.

For a particular number of entries,
the height of the B-tree is larger.

The height of the B+ tree is lesser than
B-tree for the same number of entries.

Differences between B-Tree and B+ Tree

B-Tree B+ Tree

Unit - V

TRANSACTION MANAGEMENT: Transaction concept, ACID properties, Transaction state,
concurrent execution. Recovery System: Storage structure, Recovery and atomicity, Log-Based
Recovery, ARIES Recovery Technique and Remote Back systems.

Topic I: Transaction Management Concept:

Transactions are a set of operations used to perform a logical set of work. A transaction usually

means that the data in the database has changed. One of the major uses of DBMS is to protect

the user‘s data from system failures. It is done by ensuring that all the data is restored to a

consistent state when the computer is restarted after a crash. The transaction is any one

execution of the user program in a DBMS. Executing the same program multiple times will

generate multiple transactions.

Example –

Transaction to be performed to withdraw cash from an ATM vestibule.

Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account. This

small transaction contains several low-level tasks:

X‘accont:

Open_Account(X)

Old_Balance = X.balance

New_Balance = Old_Balance - 800

X.balance = New_Balance

Close_Account(X)

Y's Account

Open_Account(Y)

Old_Balance = Y.balance

New_Balance = Old_Balance + 800

Y.balance = New_Balance

Close_Account(Y)

Operations of Transaction:

Following are the main operations of transaction:

Read(X): Read operation is used to read the value of X from the database and stores it in a

buffer in main memory.

Write(X): Write operation is used to write the value back to the database from the buffer.

Let's take an example to debit transaction from an account which consists of following

operations:

R(X); X =

X - 500;

W(X);

Let's assume the value of X before starting of the transaction is 4000.

o The first operation reads X's value from database and stores it in a buffer.

o The second operation will decrease the value of X by 500. So buffer will contain 3500.

o The third operation will write the buffer's value to the database. So X's final value will be

3500.

But it may be possible that because of the failure of hardware, software or power, etc. that

transaction may fail before finished all the operations in the set.

For example: If in the above transaction, the debit transaction fails after executing operation 2

then X's value will remain 4000 in the database which is not acceptable by the bank.

To solve this problem, we have two important operations:

Commit: It is used to save the work done permanently.

Rollback: It is used to undo the work done.

Topic II: ACID Properties:

A transaction is a single logical unit of work that accesses and possibly modifies the contents

of a database. Transactions access data using read and write operations.

In order to maintain consistency in a database, before and after the transaction, certain

properties are followed. These are called ACID properties.

Atomicity:

By this, we mean that either the entire transaction takes place at once or doesn‘t happen at all.

There is no midway i.e. transactions do not occur partially. Each transaction is considered as

one unit and either runs to completion or is not executed at all. It involves the following two

operations.

—Abort: If a transaction aborts, changes made to the database are not visible.

—Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‗All or nothing rule‘.

Consider the following transaction T consisting of T1 and T2: Transfer of 100 from

account X to account Y.

If the transaction fails after completion of T1 but before completion of T2.(say,

after write(X) but before write(Y)), then the amount has been deducted from X but not added

to Y. This results in an inconsistent database state. Therefore, the transaction must be executed

in its entirety in order to ensure the correctness of the database state.

Consistency:

This means that integrity constraints must be maintained so that the database is consistent

before and after the transaction. It refers to the correctness of a database. Referring to the

example above,

the total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, the database is consistent. Inconsistency occurs in case T1 completes but T2 fails.

As a result, T is incomplete.

Isolation:

This property ensures that multiple transactions can occur concurrently without leading to the

inconsistency of the database state. Transactions occur independently without interference.

Changes occurring in a particular transaction will not be visible to any other transaction until

that particular change in that transaction is written to memory or has been committed. This

property ensures that the execution of transactions concurrently will result in a state that is

equivalent to a state achieved these were executed serially in some order.

Let X= 500, Y = 500.

Consider two transactions T and T”.

Suppose T has been executed till Read (Y) and then T‟‟ starts. As a result, interleaving of

operations takes place due to which T‟‟ reads the correct value of X but the incorrect value

of Y and sum computed by

T‟‟: (X+Y = 50, 000+500=50, 500)

is thus not consistent with the sum at end of the transaction:

T: (X+Y = 50, 000 + 450 = 50, 450).

This results in database inconsistency, due to a loss of 50 units. Hence, transactions must take

place in isolation and changes should be visible only after they have been made to the main

memory.

Durability:

This property ensures that once the transaction has completed execution, the updates and

modifications to the database are stored in and written to disk and they persist even if a system

failure occurs. These updates now become permanent and are stored in non-volatile memory.

The effects of the transaction, thus, are never lost.

Some important points:

Property Responsibility for maintaining properties

Atomicity Transaction Manager

Consistency Application programmer

Isolation Concurrency Control Manager

Durability Recovery Manager

The ACID properties, in totality, provide a mechanism to ensure the correctness and

consistency of a database in a way such that each transaction is a group of operations that acts

as a single unit, produces consistent results, acts in isolation from other operations, and updates

that it makes are durably stored.

Topic III: Transaction states:

States through which a transaction goes during its lifetime. These are the states which tell

about the current state of the Transaction and also tell how we will further do the processing in

the transactions. These states govern the rules which decide the fate of the transaction whether

it will commit or abort.

They also use Transaction log. Transaction log is a file maintain by recovery management

component to record all the activities of the transaction. After commit is done transaction log

file is removed.

These are different types of Transaction States :

1. Active State –

When the instructions of the transaction are running then the transaction is in active state.

If all the ‗read and write‘ operations are performed without any error then it goes to the

―partially committed state‖; if any instruction fails, it goes to the ―failed state‖.

2. Partially Committed –

After completion of all the read and write operation the changes are made in main memory

or local buffer. If the changes are made permanent on the DataBase then the state will

change to ―committed state‖ and in case of failure it will go to the ―failed state‖.

3. Failed State –

When any instruction of the transaction fails, it goes to the ―failed state‖ or if failure occurs

in making a permanent change of data on Data Base.

4. Aborted State –

After having any type of failure the transaction goes from ―failed state‖ to ―aborted state‖

and since in previous states, the changes are only made to local buffer or main memory and

hence these changes are deleted or rolled-back.

5. Committed State –

It is the state when the changes are made permanent on the Data Base and the transaction is

complete and therefore terminated in the ―terminated state‖.

6. Terminated State –

If there isn‘t any roll-back or the transaction comes from the ―committed state‖, then the

system is consistent and ready for new transaction and the old transaction is terminated.

Topic 4: Concurrent Execution:

Concurrency Control is the management procedure that is required for controlling concurrent

execution of the operations that take place on a database.

But before knowing about concurrency control, we should know about concurrent execution.

Concurrent Execution in DBMS

o In a multi-user system, multiple users can access and use the same database at one time,

which is known as the concurrent execution of the database. It means that the same

database is executed simultaneously on a multi-user system by different users.

o While working on the database transactions, there occurs the requirement of using the

database by multiple users for performing different operations, and in that case,

concurrent execution of the database is performed.

o The thing is that the simultaneous execution that is performed should be done in an

interleaved manner, and no operation should affect the other executing operations, thus

maintaining the consistency of the database. Thus, on making the concurrent execution of

the transaction operations, there occur several challenging problems that need to be

solved.

Problems with Concurrent Execution:

In a database transaction, the two main operations are READ and WRITE operations. So, there

is a need to manage these two operations in the concurrent execution of the transactions as if

these operations are not performed in an interleaved manner, and the data may become

inconsistent. So, the following problems occur with the Concurrent Execution of the operations:

Problem 1: Lost Update Problems (W - W Conflict)

The problem occurs when two different database transactions perform the read/write operations

on the same database items in an interleaved manner (i.e., concurrent execution) that makes the

values of the items incorrect hence making the database inconsistent.

For example:

Consider the below diagram where two transactions TX and TY, are performed on the same

account A where the balance of account A is $300.

o At time t1, transaction TX reads the value of account A, i.e., $300 (only read).

o At time t2, transaction TX deducts $50 from account A that becomes $250 (only deducted

and not updated/write).

o Alternately, at time t3, transaction TY reads the value of account A that will be $300 only

because TX didn't update the value yet.

o At time t4, transaction TY adds $100 to account A that becomes $400 (only added but not

updated/write).

o At time t6, transaction TX writes the value of account A that will be updated as $250 only,

as TY didn't update the value yet.

o Similarly, at time t7, transaction TY writes the values of account A, so it will write as

done at time t4 that will be $400. It means the value written by TX is lost, i.e., $250 is lost.

Hence data becomes incorrect, and database sets to inconsistent.

Problem 2: Dirty Read Problems (W-R Conflict)

The dirty read problem occurs when one transaction updates an item of the database, and

somehow the transaction fails, and before the data gets rollback, the updated database item is

accessed by another transaction. There comes the Read-Write Conflict between both

transactions.

For example:

Consider two transactions TX and TY in the below diagram performing read/write

operations on account A where the available balance in account A is $300:

o At time t1, transaction TX reads the value of account A, i.e., $300.

o At time t2, transaction TX adds $50 to account A that becomes $350.

o At time t3, transaction TX writes the updated value in account A, i.e., $350.

o Then at time t4, transaction TY reads account A that will be read as $350.

o Then at time t5, transaction TX rollbacks due to server problem, and the value changes

back to $300 (as initially).

o But the value for account A remains $350 for transaction TY as committed, which is the

dirty read and therefore known as the Dirty Read Problem.

Problem 3: Unrepeatable Read Problem (W-R Conflict)

Also known as Inconsistent Retrievals Problem that occurs when in a transaction, two different

values are read for the same database item.

For example:

Consider two transactions, TX and TY, performing the read/write operations on account A,

having an available balance = $300. The diagram is shown below:

o At time t1, transaction TX reads the value from account A, i.e., $300.

o At time t2, transaction TY reads the value from account A, i.e., $300.

o At time t3, transaction TY updates the value of account A by adding $100 to the available

balance, and then it becomes $400.

o At time t4, transaction TY writes the updated value, i.e., $400.

o After that, at time t5, transaction TX reads the available value of account A, and that will

be read as $400.

o It means that within the same transaction TX, it reads two different values of account A,

i.e., $ 300 initially, and after updation made by transaction TY, it reads $400. It is an

unrepeatable read and is therefore known as the Unrepeatable read problem.

Chapter 2: Recovery System

Topic1: Storage Structure:

A database system provides an ultimate view of the stored data. However, data in the form of

bits, bytes get stored in different storage devices.

In this section, we will take an overview of various types of storage devices that are used for

accessing and storing data.

Storage Structure

We have already described the storage system. In brief, the storage structure can be

divided into two categories −

 Volatile storage − As the name suggests, a volatile storage cannot survive system

crashes. Volatile storage devices are placed very close to the CPU; normally they are

embedded onto the chipset itself. For example, main memory and cache memory are

examples of volatile storage. They are fast but can store only a small amount of

information.

 Non-volatile storage − These memories are made to survive system crashes. They are

huge in data storage capacity, but slower in accessibility. Examples may include hard-

disks, magnetic tapes, flash memory, and non-volatile (battery backed up) RAM.

Topic 2: Recovery And Atomicity

Recovery and Atomicity

When a system crashes, it may have several transactions being executed and various files opened

for them to modify the data items. Transactions are made of various operations, which are atomic

in nature. But according to ACID properties of DBMS, atomicity of transactions as a whole must

be maintained, that is, either all the operations are executed or none.

When a DBMS recovers from a crash, it should maintain the following −

 It should check the states of all the transactions, which were being executed.

 A transaction may be in the middle of some operation; the DBMS must ensure the

atomicity of the transaction in this case.

 It should check whether the transaction can be completed now or it needs to be rolled

back.

 No transactions would be allowed to leave the DBMS in an inconsistent state.

There are two types of techniques, which can help a DBMS in recovering as well as

maintaining the atomicity of a transaction −

 Maintaining the logs of each transaction, and writing them onto some stable storage

before actually modifying the database.

 Maintaining shadow paging, where the changes are done on a volatile memory, and later,

the actual database is updated.

Topic 3: Log Based Recovery

The log is a sequence of records. Log of each transaction is maintained in some stable storage so

that if any failure occurs, then it can be recovered from there. If any operation is performed on

the database, then it will be recorded in the log. But the process of storing the logs should be

done before the actual transaction is applied in the database.

Let's assume there is a transaction to modify the City of a student. The following logs are written

for this transaction.

When the transaction is initiated, then it writes 'start' log.

<Tn, Start>

When the transaction modifies the City from 'Noida' to 'Bangalore', then another log is written to

the file.

<Tn, City, 'Noida', 'Bangalore' >

When the transaction is finished, then it writes another log to indicate the end of the transaction.

<Tn, Commit>

There are two approaches to modify the database:

1. Deferred database modification:

o The deferred modification technique occurs if the transaction does not modify the

database until it has committed.

o In this method, all the logs are created and stored in the stable storage, and the database is

updated when a transaction commits.

2. Immediate database modification:

o The Immediate modification technique occurs if database modification occurs while the

transaction is still active.

o In this technique, the database is modified immediately after every operation. It follows

an actual database modification.

Topic 4 :

Log-Based Recovery in DBMS

Log-based recovery is a technique used in database management systems (DBMS) to ensure

database consistency and durability in case of system failures. It relies on maintaining a

transaction log, which records all changes made to the database, and uses this log to recover the

database to a consistent state.

Phases of Log-Based Recovery

1. Log Analysis:

o Determines which transactions were committed and which were active at the time

of the failure.

o Marks transactions as:

 Committed: Changes will be redone.

 Active/Uncommitted: Changes will be undone.

2. Redo Phase:

o Reapplies changes of committed transactions to ensure durability.

o Scans the log forward from the last checkpoint to apply the after image.

3. Undo Phase:

o Rolls back the changes of uncommitted transactions to maintain atomicity.

o Scans the log backward from the end and applies the before image.

Example of Log-Based Recovery

Scenario:

 A database contains a data item A with an initial value of 50.

 Two transactions, T1 and T2, update the value of A:

o T1 changes A to 60.

o T2 changes A to 70.

 A system crash occurs after T1 commits but before T2 commits.

Log Entries:

Log Sequence

Number (LSN)

Transaction

ID
Operation

Data

Item

Before

Image

After

Image
Status

1 T1 Update A 50 60 Committed

2 T2 Update A 60 70 Uncommitted

Recovery Process:

1. Analysis Phase:

o The log is analyzed to determine that:

 T1 is committed.

 T2 is active/uncommitted at the time of the crash.

2. Redo Phase:

o T1's changes (A = 60) are reapplied because T1 was committed.

o T2's changes (A = 70) are not redone because T2 was not committed.

3. Undo Phase:

o Rolls back T2's changes using the before image in the log, restoring A to 60.

Final State:

 After recovery, A = 60, reflecting the committed changes of T1 and ignoring the

uncommitted changes of T2.

Topic 4:

RIES Recovery Technique in DBMS

ARIES (Algorithm for Recovery and Isolation Exploiting Semantics) is a widely used

recovery technique in database management systems (DBMS) for ensuring database consistency

and fault tolerance. It efficiently handles failures by supporting atomicity and durability, two key

properties of database transactions in the ACID model.

Steps of ARIES Recovery Technique

ARIES performs recovery in three phases:

1. Analysis Phase:

 Scans the log to identify transactions that were active at the time of failure.

 Determines the point where recovery should begin.

 Reconstructs transaction and dirty page information.

2. Redo Phase:

 Redoes all changes made by committed transactions since the last checkpoint.

 Ensures all committed changes are applied to the database.

3. Undo Phase:

 Reverts the effects of uncommitted transactions to maintain database consistency.

 Uses the log to roll back uncommitted changes in reverse order.

Key Features of Aries Recovery Algorithm in DBMS

1. Write-Ahead Logging (WAL): This make sure that all changes are logged before they are

applied to the database.

2. Checkpointing: To create a stable point in the database from which recovery can start.

3. Three Phases of Recovery: To ensure database recovery Analysis, Redo, and Undo phases

are crucial.

