Dr. N. Penchalaiah, Associate Professor ,

AI&ML, Annamacharya University

UNIT-1
Introduction to Internet
of Things

Contents

® Definition and Characteristics of IoT
® Introduction to Internet of Things

¢ History of IoT

¢ Physical Design of IoT

¢ Logical Design of IoT

® 10T Enabling Technologies

® 10T Levels and Deployment Templates

¢ Applications of IoT

Definition and Characteristics of IoT

What is an [oT (Internet of Things):

Definition: A dynamic global network infrastructure with self-configuring capabilities
based on standard and interoperable communication protocols where physical and virtual
"things" have identities, physical attributes, and virtual personalities and use intelligent
interfaces, and are seamlessly integrated into the information network, often communicate
data associated with users and their environments.

Some of the terms from the definition are:

e The interconnection via the Internet of computing
devices embedded in everyday objects, enabling them to
send and receive data.

* The internet of things, or 10T, is a system of interrelated
computing devices, mechanical and digital machines,
objects, animals or people that are provided with unique
identifiers (UIDs) and the ability to transfer data over a
network without requiring human-to-human or human-
to-computer interaction.

Self configuring

* IoT devices may have self configuring capability
allowing a large number of devices to work together to
provide certain functionality. These devices have the
ability to configure themselves, setup the networking,
and fetch latest software upgrades with minimal manual
or user intervention.

Definition and Characteristics of IoT

Interoperable Communication protocols:

® IoT devices may support a number of interoperable

communication protocols and can communicate with
other devices and also with the infrastructure. Ex:
MQTT, CoAP, Websockets, AMQP, REST, etc

Unique identity:

® each IoT device has a unique identity and a unique
identifier

Integrated into information network:

® JoT devices are integrated into the information

network that allows them to communicate and
exchange data with other devices and systems.

Introduction to Internet of Things:

U Internet of Things comprises things that have unique
identities and are connected to the internet
(networked computers or 4G enabled mobile phones
which have some form of unique identities are
connected to the internet (MAC Address))

U The main focus here is to configure, control and
network the things that are traditionally not
associated with the internet(ex: thermostats, utility
meters, bluetooth connected headset, irrigation
pumps and sensors).

U Scope of 10T is not limited to just connecting things
to the internet. IoT allows these things to
communicate and exchange data(control and
information that could include data associated with
users).

U Applications on IoT networks extract and create
information from lower level data by filtering,
processing, categorizing, condensing and
contextualizing the data.

U For example, (72,45) raw data is generated by the
sensors which by themselves have no meaning. To
give meaning to the data a context is added, like each
tuple in data represents the temperature and humidity
measured every minute. Further information is
obtained by categorizing, condensing or processing
this data like the average temperature and humidity
readings for last five minutes is obtained by
averaging the last five data tuples.

U Next step is to organize the information and understand the
relationships between pieces of information to infer
knowledge which can be put into action. Like an alert is
raised if the average temperature in last five minutes
exceeds 120F.

DApplications of Internet of Things span a wide range of
domains including homes, cities, environment, energy
systems, retail, logistics, industry, agriculture and health.

— — ey =

History of IoT:
* The term IoT was first coined by KEVIN ASHTON in 1999.

* The concept of IoT first became popular in the Auto-ID
research center at the MIT [Massachusetts Institute],
where an important effort was made to uniquely identify
products. The result was termed EPC(electronic product
code). And it was then commercialized by EPCglobal.

* Radio Frequency Identification was seen as a prerequisite
for the IoT at that point, if all objects and people in daily
life were equipped with identifiers, computers could
manage and inventory them.

* A “thing” or “object” is any possible item in the real world
that might join the communication chain.

* The initial main objective of the IoT was to combine
the communication

capabilities characterized by data transmission.

 This was viewed as the Internet, also known as the
network of bits representing the “digital world”.

* The process of automation was viewed as connecting the
real or physical world, named the “network of atoms”

Supply Chain
Matwork, ol poms
Fuw Materials

Rioms

ManiTachuring

g |

Diistribastion
ST
Roaptiwel
Asaira |
Cionsumar
" Atoms |

Dispscrianl

il

Matanik ol Bes

Compans
Bits |

Compiate
Bits |

Compule

Hits

i

Bits .

Lomipuie

Supply Chasn it
Rabwork of nboms Rirtwork of Bils

BT Mabwork margos: them
L i e & brdsrmasd of
T

[ty 0N et EPC ekl

20001

=

Fenw Maberids
ftoms | | Bits
Mg i i LT
Asoms | | BAs
Distribution
Atoms | | Bits
il
.k"umi- | [+1H]
Consumer
TAloms | | Bas

Diapasal

e In 2005, the ITU (International Telecommunication Unit)

showed

interest

in new telecommunication business

possibilities that could be built into services around the
new connectivity of environment objects to the network.

 The ITU produced a comprehensive report on the IoT

from technical, economical and

ethical views.

* It introduced a new axis in the ubiquitous networking path
to complete the existing ‘“anywhere” and “anytime”
connectivity. It is the “anything” connectivity axes where
the thing-to-thing or machine-to-machine interaction is
added to complete the existing person-to-person and
person-to-machine interaction in the possible connectivity.

* Figure presents the ITU view of ubiquitous networking,

adding the “anything connection”

to the connectivity anywhere and anytime.

ITU any place, any time and any thing vision

Any TIME connection

= On the move

= Cusdcors and
ndoors
* On the move

= Outdoors

- Mighe
~Daytme
* Incocors (away from the PC)

- At the PC
Any PLACE connection

* Human-to-Human (H2H), not using a PC

* Between PCs

- Human-2o-Thing (H2T). using generic equipment
* Thing-to-Thing (T2T}

By connecting these new objects will raise many questions such as
* The connecting technology of the so-called object
* Interoperability between objects
* Communication model of these connected objects
* Possible interaction with the existing models(internet)
 Choice of the transport model
* Addressing, identifying and naming

 Security and privacy

Logical Design of IoT

Logical design of an IoT system refers to an abstract
representation of the entities
and processes.
Here we will be discussing about
* JoT Functional Blocks
* JoT Communication models

* [oT Communication APIs

L IoT Functional Blocks:

IoT system comprises of a number of functional blocks that
provide the system capabilities for identification,
sensing, actuation, communication and management.

Functional blocks are

® Devices, an IoT system comprises of devices that
pr0V1de sensing, actuation, monitoring and control
functions.

Communication, the communication block handles the
communication for the IoT System.

Services, 0T system uses various types of 10T services
such as services for device monitoring, device control
services, data publishing services and services for device
discovery.

Logical Design of IoT

Application

* Management, management functional block provides
various functions to govern the [oT system.

* Security, security functional block secures the IoT
system and by providing functions such as
authentication, authorization, message and content
integrity and data security.

* Application, applications provide interface through
which users can control and monitor various aspects
of IoT system. Applications also allow users to view
the system status and view or analyze the processed
data.

Logical Design of IoT

L IoT communication Models:

® In this communication model, client sends requests to the
server and the server responds to the requests.

® When the server receives a request it decides how to
respond, fetches the data, retrieves resource
representations, prepares the response and then sends the
response to the client.

Logical Design of IoT

IoT communication Models:

Publisher

Publish-subscribe o

» Consumer-1

+ Consumer-2

* Consumer-3

e Publish-subscribe is a communication model that

involves publishers brokers and consumers.

 Publishers are the source of data, publishers send the
data to the topics which are managed by the broker.

Publishers are not aware of the consumers.

* Consumers subscribe to the topics which are managed by

the broker.

* When the broker receives data for a topic from the

publisher, it sends the data to all the subscribed

consumers.

Logical Design of IoT

IoT communication Models:

Push —Pull:

Publisher

Queues
Sends

|
S) - Consumer-1
messages to " o

queue Messages pushed Messages pulled
to queues from queues

S consumer2 |

* Push pull is a communication model in which the data
producers push the data to queues and the consumers
pull the data from the queues. Producers do not need
to be aware of the consumers.

* Queues decouples producers and consumers and they act as
buffers.

Logical Design of IoT

IoT communication Models:

Exclusive pair:

Request to setup Connection

Response accepting the request

Message from Client to Server

Client Server

Message from Server to Client

Connection close request

Connection close response

* This communication model 1s a bi-directional,
fully duplex communication model that uses a
persistent connection between the client and server.

* Once the connection is setup it remains open until the
client sends a request to close the connection.

* Client and server can send messages to each other after
connection setup.

* Exclusive pair is a stateful communication model and
the server is aware of all the open connections.

Logical Design of IoT

i IoT Communication APIs:
REST based Communication APIs:

REST stands for representational state transfer

REST APIs follow the request-response communication model

REST architectural constraints are as follows:

® (Client-server, the reason behind client server constraint is
the separation of concerns. Client should not be concerned
with the storage of data which is a concern of the server.
Similarly the server should not be concerned about the
user interface which is the concern of the client. And this
separation allows client and server to be independently
developed and updated.

® Stateless: each request from client to server must contain
all the information necessary to understand the request.

® Cacheable: if a response is cacheable then a client cache
is given the right to reuse that response data for later
equivalent requests. Caching can eliminate some
interactions and improve efficiency and scalability.

® Layered systems: layered system constraint will make
each component cannot see beyond the immediate layer
with which they are interacting.

Logical Design of IoT

* Uniform interface, uniform interface constraint
requires that the method of communication between
a client and a server must be uniform.

* Code on demand, server can provide executable
code or scripts for clients to execute in their context.

HTTP Client HTTP Packet HTTP Server
HTTP Command
REST- GET PuT Authorization
Aware
HTTP Client - ol POST DELETE ¢
REST-ful Web
REST Payload Service
JSON XML
Resources

URI URI

Representations Representations

Resource Resource

Logical Design of IoT

* RESTful web service is a “web API” implemented
using HTTP and REST principles.

Logical Design of IoT

* web service is a “web API” implemented using HTTP and
REST principles.

Logical Design of IoT

Websocket-based communication APIs:

Websocket API’s allow bidirectional, full duplex
communication between clients and servers.

Websocket API’s follow the exclusive pair communication
model

Websocket communication begins with a connection
setup request sent by the client to the server. This
request is sent over HTTP and the server interprets it
as an upgrade request. If the server supports
websocket protocol, the server responds to the
websocket handshake response. After the connection
is setup the client and server can send data/messages
to each other in full-duplex mode.

Web socket API’s reduce the network traffic and latency as
there is no overhead
for connection setup and termination requests for each

message.

Websocket API’s is suitable for IoT applications that
have low latency or high throughput requirements.

Logical Design of IoT

WebSocket Protocol

Request to setup WebSocket Connection

| Initial Handshake
Response accepting the request | (over HTTP)
Data frame
Data frame
\ Bidirectional Communication
Data frame ™ (over persistent
j WebSocket connection)
Data frame ‘\
Connection close request _’

Connection close response

} Closing Connection

Physical Design of IoT

Things in IoT:

1.

The “things” in IoT usually refers to IoT devices
which have unique identities and can perform
remote sensing, actuating and monitoring
capabilities.

IoT devices can exchange data with other
connected devices and applications or collect data
from other devices andp process the data either
locally or send the data to the centralized servers
or cloud based application back-ends for
processing the data or perform some tasks locally
and other tasks within the IoT infrastructure
based on temporal and space constraints.

Fig shows the block diagram of a typical IoT
device, an IoT device may consist of several
interfaces for connections to other devices, both
wired and wireless, these include 1. I/O interfaces
for sensors, 2) interfaces for Internet connectivity,
3) memory and storage interfaces, 4) audio/video
interfaces.

An IoT device can collect various types of data
and the sensed data can be communicated either
to other devices or cloud based storage. IoT
devices can be connected to actuators that allow
them to interact with other physical entities in the
vicinity of the device (ex: relay switch connected
to IoT device can turn an appliance on/off based
on the commands sent to the IoT Device over the
internet.)

Physical Design of IoT

Connectivity Processor Audio/Video
Interfaces
USB Host CPU HDMI
RJ45/Ethernet bl
RCA video
Memory Interfaces Graphics Storage Interfaces
NAND/NOR GPU 30
MMC
DDR1/DDR2/DDR3
SDIO

1/O Interfaces
(for sensors,
actuators, etc.)

UART

SPI

12C

CAN

UART- universal asynchronous receiver- transmitter
HDMI-high definition
multimedia interface RCA-root

cause analysis

RJ45-registered jack

SPI-serial peripheral interface

CAN- controller area network
SD- secure digital

MMC-multimedia car
SDIO-secure digital input output
DDR- Double data rate

Physical Design of IoT

“oos | Amar

B6LOWPAN

802.3 - Ethernet 802.16 - WiMax 2G/3G/LTE —
Cellular

802.11 - WiFi 802.15.4 — LR-WPAN

Physical Design of IoT

loT protocols:

1. Link layer protocols

2. Network layer protocols

3. Transport layer protocols

4. Application layer protocols
Application Layer Protocols:

Application layer protocols define how the applications
interface with the lower layer protocols to send the data
over the network.

Application layer protocols enable process to process
connections using ports.

1. HTTP: Hypertext Transfer protocol is the application
layer protocols that forms the foundation of the world
wide web, HTTP includes commands such as GET,
PUT, POST, DELETE, HEAD, TRACE and
OPTIONS etc. the protocol follows a request-
response model where a client sends requests to a
server using the HTTP commands. HTTP is a
stateless protocol and each HTTP request is
independent of the other requests. HTTP uses
Universal Resource Identifiers to identify HTTP
resources. HTTP client can be a browser or an
application running on the client.

Physical Design of IoT

2. CoAP: Constrained Application protocol is an
application layer protocol for machine to machine
applications, meant for constrained environments
with constrained devices and constrained networks.

CoAP protocol uses a request-response model
however it runs on top of UDP instead of

TCP,
CoAP uses a cljent server architecture where cliepts
communicate with Servers using

connectionless datagrams.

CoAP supports methods such as GET.,PUT,POST and
DELETE.

3. WebSocket: WebSocket protocol allows full-duplex
communication over a single socket connection for
sending messages between client and server.

WebSocket is based on TCP and allows streams of
messages to be sent back and forth between the client
and server while keeping the TCP connection open.

4. MQTT: Message Queue Telemetry Transport is a
light weight messaging protocol based on the
publish-subscribe model. MQTT uses a client-server
architecture where the client connects to the server
and publishes messages to topics on the server. The
broker forwards the messages to the clients
subscribed to topics. MQTT is well suited for
constrained environments where the devices have
limited processing and memory resources and the
network bandwidth is low.

Physical Design of IoT

5. XMPP: Extensible Messaging and Presence
Protocol is a protocol for real time communication
and streaming XML data between network entities.
XMPP powers wide ranges of applications including
messaging, presence, data syndication, gaming,
multi party chat and voice/video calls. XMPP
allows sending small chunks of XML data from one
network entity to another in near real time. XMPP is a
decentralized protocol and wuses a client-server
architecture. (CLIENT-TO-SERVER AND SERVER-
TO-SERVER Communication will be supported here)

XMPP allows real time communication between [oT
DEVICES.

6. DDS: Data Distribution service is a data centric
middleware standard for device to device or
machine to machine communication. DDS uses a
Publish- subscribe model where publishers create
topics to which subscribers can subscribe. Publisher
is an object responsible for data distribution and the
subscriber is responsible for receiving published data.

7. AMQP: Advanced message queuing protocol is an
open application layer protocol for business
messaging. AMQP supports both point-to-point and
publisher/subscriber models, routing and queuing.
AMQP brokers receive messages from publishers and
route them over connections to consumer.

Physical Design of IoT

Publishers publish the messages to exchanges which
then distribute message copies to queues. Messages
are either delivered by the broker to the consumers
which have subscribed to the queues or the
consumers can pull the messages from the queues.

ﬁMQP Broker Quiauss \
D:H:[)« Subscriber

:
mi i

/]
\ mme-~;

-1|[

]ml ish K
Temperature sensor \ .
| S|

S lwmahe it Mo [ine vivoa | macking) 10 &nvise (machim)

https://www.google.co.in/url?sa=i&rct=j&q&esrc=s&source=images&cd&cad=rja&uact=8&ved=2ahUKEwjnsKHH2r_mAhVC9nMBHYZjAmIQjRx6BAgBEAQ&url=https://1sheeld.com/mqtt-protocol/&psig=AOvVaw17pioF0jDH-IAuauu6KO3H&ust=1576775952083428

Physical Design of IoT

Transport Layer:

Transport layer protocols provide end to-end message
transfer capability independent of the underlying
network.

The transport layer is responsible for providing functions
such as error control, segmentation, flow control and
congestion control.

TCP: Transmission control protocol is the most widely
used transport layer protocol that is used by web
browsers, email programs and file transfers.

TCP is a connection oriented and stateful protocol, TCP
ensures reliable transmission of packets in-order.

TCP also provides error detection capability so that
duplicate packets can be discarded and lost packets are
retransmitted.

TCP also provides flow control capability of TCP
ensures that rate at which the sender sends the data is
no too high for the receiver to process.

The congestion control capability of TCP helps in
avoiding network congestion and congestion collapse
which can lead to degradation of network
performance.

Physical Design of IoT

UDP:

Unlike TCP which requires carrying out an initial setup
procedure, UDP is a connectionless protocol.

UDP is useful for time sensitive applications that have very
small data units to exchange and do not want the
overhead of connection setup.

UDP is a transaction oriented and stateless protocol.

UDP does not provide guaranteed delivery, ordering of
messages and duplicate elimination.

Network/Internet Laver:

Network layers are responsible for sending of 1P
datagrams from the source network to the destination
network.

This layer perform the host addressing and packet routing.

The datagram contain the source and destination addresses
which are used to route them from the source to
destination across multiple networks.

Host Identification is done using IP addressing schemes such
as IPv4, IPv6

Physical Design of IoT

IPv4:

Internet Protocol version 4 is used to identify the devices on a
network.

IPv4 uses a 32 bit address scheme that allows a total of
2%2 or 4,294,967,296 addresses.

As more and more devices introduced into the network 1Pv4
addresses becomes exhausted which is succeeded by IPv6.

IPv6:

Internet Protocol version 6 is the newest version of
internet protocol and successor to IPv4.

IPv6 uses 128bit address scheme that allows a total of 2'* or
3.4*%10°® addresses.

6LoWPAN: IPv6 over low power wireless personal
area networks brings IP protocol to the low power
devices which have limited processing capability.

6LoWPAN operates in the 2.4GHz frequency range and
provides data transfer rates of 250kb/s.

Physical Design of IoT

LINK LAYER PROTOCOLS:

Link layer protocols determine how the data is physically
sent over the networks physical layer or medium.

Protocols:
802.3-Ethernet:

IEEE 802.3 is a collection of wired ethernet
standards for the link layer. Ex
802.3 standard for 10BASES which uses COAXIAL CABLE

as a shared medium
802.3.1 standard for 10BASE-T which uses COPPER
TWISTED PAIR as a shared

medium

802.3.j standard for 10BASE-F which uses FIBER OPTICS
as a shared medium 802.3ae is the standard for 10Gbits/s
Ethernet over fiber.

These standards provide data rates from 10Mb/s to 40Gb/s.

Physical Design of IoT

802.11-WiFi:

IEEE 802.11 is a collection of wireless local area networks
802.11a operates at SGHz band

802.11b & 802.11g operate at 2.4GHz band 802.11n operates
at 2.4/5GHz bands 802.11ac operates at 5GHz band and
802.11ad operates at 60GHz band

These standards provide data rates from 1 Mb/s to upto 6.75
Gb/s.

802.16- WiMax:

IEEE 802.16 is a collection of wireless broadband standards
These standards provide data rates 1.5Mb/s to 1 Gb/s
802.15.4-LR-WPAN:

IEEE 802.15.4 1s a collection of standards for low-rate
wireless personal area networks

These standards form the basis of specifications for high
level communication protocols such as ZigBee.

These standards provide data rates from 40Kb/s to 250Kb/s

These standards provide low-cost and low-speed communication

for power constrained devices.

Physical Design of IoT

2G/3G/4G-Mobile Communication:

There are different generations of mobile
communication standards like 2G,3G.,4G.

IoT devices based on these standards can communicate
over cellular networks Data rates for these standards
range from 9.6Kb/s to upto 100Mb/s

IoT levels and Deployment Templates

An |oT system comprises of the following components:

* Device: An loT device allows identification, remote sensing, actuating and
remote monitoring capabilities. You learned about various examples of loT
devices in section

* Resource: Resources are software components on the loT device for
accessing, processing, and storing sensor information, or controlling
actuators connected to the device. Resources also include the software
components that enable network access for the device.

» Controller Service: Controller service is a native service that runs on the
device and interacts with the web services. Controller service sends data
from the device to the web service and receives commands from the
application (via web services) for controlling the device.

» Database: Database can be either local or in the cloud and stores the data
generated by the loT device.

IoT levels and Deployment Templates

* Web Service: Web services serve as a link between the loT device,
application, database and analysis components. Web service can be either
implemented using HTTP and REST principles (REST service) or using
WebSocket protocol (WebSocket service).

* Analysis Component: The Analysis Component is responsible for analyzing
the loT data and generate results in a form which are easy for the user to
understand.

* Application: |oT applications provide an interface that the users can use to
control and monitor various aspects of the loT system. Applications also
allow users to view the system status and view the processed data.

Comparison between REST and Websocket

Stateless/stateful: ~ REST services are stateless in
nature. Each request contains all the information
needed to process it. Requests are independent of
each other.

WebSocket on the other hand 1s stateful in nature
where the server maintains the state and is aware of
all the open connections.

Uni-directional/bi-directional: REST services operate
over HTTP and are unidirectional request is always
sent by a client and the sever responds to the request.

on the other hand websocket is a bidirectional
protocol and allows both client and server to send
messages to each other.

Request-response/full duplex: REST services follow a
request-response communication model where the
client sends request and the server responds to the
request.

WebSocket on the other hand allow full-duplex
communication between client and server i.e. Both
client and server can send messages to each other
independently.

Comparison between REST and Websocket

TCP connections: for Rest services, each HTTP request
involves setting up a new TCP connection.

WebSocket on the other hand involves a single TCP
connection over which the client and server
communicate in a full-duplex mode

Header overhead: REST services operate over HTTP and
each request is independent of other. Thus each request
carries HTTP headers which is an overhead. due to the
overhead of HTTP headers, REST is not suitable for real
time applications.

WebSocket on the other hand does not involve overhead
of headers. After the initial handshake the client and
server exchange messages with minimal frame
information. Thus WebSocket is suitable for real time
applications.

Scalability: scalability is easier in the case of REST
services as requests are independent and no state
information needs to be maintained by the server thus
horizontal and vertical scaling solutions are possible for
REST services.

websockets horizontal scaling can be cumbersome due to
the stateful nature of the communication. Since the
server maintains the state of a connection. Vertical
scaling is easier for websockets than horizontal scaling.

IoT levels and Deployment Templates

IoT LEVELI:
loT Level-1

+ Alevel-110T system has a)
single node/device that .
performs sensing and/or / |
actuation, stores data, HEST MelSoce j
performs analysis and hosts i |
the application > W

* Level-1 loT systems are e |
suitable for modeling low- o |
cost and low-complexity [|
solutions where the data > e
involved is not big and the 1: |
analysis requirements are oo~
not computationally ! |
intensive. we

0

Monitoring Node
performs analysls, stores data

IoT levels and Deployment Templates

Example:
Consider an [oT system for home automation

The system consists of a single node that allows
controlling the lights and appliances in a home remotely

The device used in this system interfaces with the lights
and appliances using electronic relay switches.

The status information of each light or appliance is
maintained in a local database.

The controller service continuously monitors the state of
each light or appliance and triggers the relay switch
accordingly.

The application which is deployed locally has a user
interface for controlling the lights or appliances.

Since the device is connected to the internet the
application can be accessed remotely.

IoT levels and Deployment Templates

IoT LEVEL-2 loT Level-2
* Alevel-2 loT system has a '
single node that performs Local , Cloud
sensing and/or actuation and :
local analysis. |
| App
» Data is stored in the cloud and } ,
' ' ' - |
Epphganon is usually cloud | ——
dsedq. REST/W("bSock('r Communicatton
* Level-2 loT systems are e i T
suitable fpr solutpns where (nolersnie <> e
the data involved is big, } |
however, the primary analysis | ,
: . Resource ' e
requirement is not | gl
! - - | . .
computationally intensive and ! l —
can be done locally itself. evie |
Monitoring Node
performs analysis

Cloud Storage

IoT levels and Deployment Templates

Example:
Consider an [oT system for smart irrigation

The system consists of a single node that monitors the soil
moisture level and controls the irrigation system

The device used in this system collects soil moisture data
from sensors.

The controller service continuously monitc

For controlling the irrigation system actuators such as
solenoid valves can be used.

The controller also sends the moisture data to the computing
cloud

A cloud based REST web service is used for storing and
retrieving moisture data which is stored in the cloud
database

A cloud based application is used for visualizing the
moisture levels over a period of time.

IoT levels and Deployment Templates

IoT LEVEL-3 loT Level-3

Local Cloud

|
|
|
|

v Alevel-3 10T system has a
single node. Data is stored

| App

and analyzed in the cloud i

and application s clouo- R

based. _ Commum:canon REST/WebSocket
level-3 loTsystemsare | e

suitable for solutions S

where the data involved is -~ * B

big and the analysis -

requirements are

computationally intensive, ()———

Monitoring Node

Cloud Storage & Analysis

IoT levels and Deployment Templates

Example:
Consider an 10T system for tracking package handling

The system consists of a single node that monitors the
vibration levels for a package being shipped.

The device in this system uses accelerometer and
gyroscope sensors for monitoring vibration levels.

The controller service sends the sensor data to the cloud
in real time using a WebSocket service.

The data is stored in the cloud and also visualized
using a cloud based application.

The analysis components in the cloud can trigger alerts
if the vibration levels become greater than a threshold.

The cloud based applications can subscribe to the
sensor data feeds for viewing the real time data.

IoT levels and Deployment Templates

IoT LEVEL-4

* hleve4 1T sstem pas mulle . 'mevelclud

n0des that perfomlocalanal :

Data| tored nthe doug ang | -
applicaton i cloud-based - ‘”’L
* Level- containslocaland clouc: i j
hased bsenve nodes Whih ¢n — |

SUbscribetoand receve o [e o
nfomationcolectedinthedod 1 -
fom o devies =l [&
ek Tsptemsaresutatle e i
0rSoltions heremul tnl

N00es e require), the dat —
Miobedishigand teanahls — seniins.

requirements are computationally g~

Intensive,

IoT levels and Deployment Templates

Example:
Consider noise monitoring

The system consists of multiple nodes placed n
different locations for monitoring noise levels in an
area

The nodes in this example are equipped with sound
sensors. Nodes are independent of each other.

Each node runs its own controller service that sends

the data to the cloud. The data stored in a cloud
database.

The analysis of data collected from a number of nodes is
done in the cloud.

A cloud based application is used for visualizing the
aggregated data.

JoT levels and Deployment Templates

IoT LEVEL-5
loT Level-5

Cloud

Routers/End Points

Cloud Storage &
Analysis

IoT levels and Deployment Templates

IoT LEVEL-5

A level-5 |oT system has multiple end
nodes and one coordinator node.

The end nodes that perform sensing
and/or actuation.

Coordinator node collects data from
the end nodes and sends to the cloud

Data is stored and analyzed in the
cloud and application is cloud-based.

Level-5 loT systems are suitable for
solutions based on wireless sensor
networks, in which the data involved
is big and the analysis requirements
are computationally intensive.

IoT levels and Deployment Templates

Example:
Consider forest fire detection:

System consists of multiple nodes placed in different
locations for monitoring temperature, humidity and
carbon dioxide levels in a forest.

The end nodes in this example are equipped with various
Sensors

The coordinator node collects the data from the end
nodes and acts as a gateway that provides internet
connectivity to the IoT SYSTEM

The controller service on the coordinator device sends the
collected data to the cloud.

The data is stored in a cloud database.

The analysis of data is done in the computing cloud to
aggregate the data and make predictions.

A cloud based application is used for visualizing the data.

JoT levels and Deployment Templates

IoT LEVEL-6
loT Level-6

Local

Cloud

N

|
|
|
|
|
|
l
|

REST/WebSocket
Communication

Multiple Monitoring Nodes

Centralized
Controller Cloud Storage &

Analysis

IoT levels and Deployment Templates

IoT LEVEL-6

A level-6 |oT system has multiple
independent end nodes that
perform sensing and/or actuation
and send data to the cloud.

Data is stored in the cloud and
application is cloud-based.

The analytics component analyzes
the data and stores the results in
the cloud database.

The results are visualized with the
cloud-based application.

The centralized controller is aware
of the status of all the end nodes
and sends control commands to
the nodes.

IoT levels and Deployment Templates

IoT LEVEL-6
Let us consider an example of weather monitoring system
The system consists of multiple

nodes placed in different

locations for monitoring temperature,
humidity and pressure in an area.

The end nodes are equipped with various sensors(such as

The end nodes send the data to the cloud in the real time
using a Websocket service.

The data is stored in a cloud database.

The analysis of data is done in the cloud to
aggregate the data and make predictions.

A cloud based application is used for visualizing the data.

IoT Enabling Technologies

IoT 1is enabled by several technologies including
wireless sensor networks, cloud computing, big data
analytics, embedded systems, security protocols and
architectures, communication protocols, web services,
mobile internet and semantic search engines,

Wireless Sensor Networks:

a wireless sensor network comprises of distributed
devices with sensors which are used to monitor the
environmental and physical conditions.

A wireless sensor networks will be consists of a number
of end nodes and routers and a coordinators.

End nodes have several sensors attached to them, end
nodes can act as routers where routers are responsible
for routing the data packets from end nodes to the
coordinator.

The coordinator collects the data from all the nodes.

Coordinator also acts as a gateway that connects the
wireless sensor networks to the internet.

IoT Enabling Technologies

Example:

Weather monitoring system uses WSNs in which the nodes
collect temperature, humidity and other data, which is
aggregated and analyzed.

Indoor air quality monitoring systems use WSNs to collect
data on the indoor air quality and concentration of various
gases

Soil moisture monitoring systems use WSNs to monitor soil
moisture at various locations

Surveillance systems use WSNs for
collecting surveillance data Smart
grids use WSNs for monitoring the
grid at various points

Structural health monitoring systems use WSNs to
monitor the health of structures by collecting
vibration data from sensor nodes deployed at various
points in the structure.

WSNs are enabled by wireless communication
protocol such as IEEE 802.15.4. ZigBee is one of
the most popular Wireless technologies used by
WSNE.

ZigBee operates at 2.4GHz frequency and offers data
rate upto 250kb/s and range from 10-100 meters
depending on the power output and environmental
conditions.

IoT Enabling Technologies

Cloud Computing:

Cloud Computing involves provisioning of computing,

networking and storage resources on demand and
providing these resources as metered services to the
users, in a pay as you go model.

Cloud computing services are

1.

INFRASTRUCTURE AS A SERVICE
provides the users the ability to provision
computing and storage resources.

PLATFORM AS A SERVICE provides the
users the ability to develop and deploy
application in the cloud using the development
tools, application programming interfaces,
software libraries and services provided by the
cloud service provider.

SOFTWARE AS A SERVICE, provides the
users a complete software application or the user
interface to the application itself.

IoT Enabling Technologies

Big Data Analytics:

Big data is defined as collections of data sets whose
volume, velocity or variety is so large that its difficult
to store, manage, process and analyze the data using
traditional databases and data processing tools.

Example:
Sensors data generated by IoT systems such as weather
monitoring stations Machine sensor data collected from
sensors embedded in industrial and energy

systems for monitoring their health and detecting failures.
Health and fitness data generated by IoT devices such as
wearable fitness bands Data generated by IoT systems for
location and tracking of vehicles
Data generated by retail inventory monitoring systems

Volume: big data is used for massive scale data that is
difficult to store, manage and process using
traditional ~ databases and data processing
architectures.

Velocity: velocity is another important characteristic of
big data which refers to how fast the data is generated
and how frequently it varies.

Variety: variety refers to the forms of the data. Big data
comes 1n different forms such as structured or
unstructured data, including text data, image, audio,
video and sensor data.

IoT Enabling Technologies

Communication Protocols:

Communication protocols form the backbone of IoT
systems and enable network connectivity and coupling
to applications.

Communication protocols allow devices to exchange data
over the network.

Embedded systems:

An embedded system is a computer system that has
computer hardware and software embedded to perform
specific tasks.

Key components of an embedded Syst

Embedded systems run embedded operatir

Applications

Home Automation

1.Smart Lighting

Smart Lighting solutions for home achieve energy
savings by sensing the human movements and their
environments and controlling the lights accordingly.

Wireless enabled and internet connected lights can be
controlled remotely from IoT applications such as a
mobile or web application

Smart lights with sensors for occupancy, temperature,
lux level etc can be configured to adapt the lighting
based on the ambient conditions sensed in order to
provide a good ambiance.

2. Smart Appliances:

Smart refrigerators can keep track of the items stored
and send updates to the users when an item is low on
stock.

Smart TVs allows users to search and stream videos
and movies from the internet on a local storage drive,
search TV channel schedules and fetch news and
other content from the internet.

Applications

Home Automation

3. Intrusion Detection:

Home Intrusion Detection systems use security cameras
and sensors to detect intrusions and raise alerts. Alerts
can be in the form of an SMS or an email sent to the
user.

4. Smoke/Gas Detectors:

Smoke detectors are installed in homes and buildings to
detect smoke that is typically an early sign of fire.
Smoke detectors use optical detection, ionization or
air sampling techniques to detect smoke.

Alert raised by smoke detectors can be in the form of
signals to a fire alarm
system.

Gas detectors can detect the presence of harmful gases
such as carbon monoxide, liquid petroleum gas etc.

Applications
CITIES
1. Smart Parking:

smart parking make the search for parking
space easier and convenient for drivers.

Smart parking's are powered by IoT SYSTEMS that
detect the number of empty parking slots and send the
information over the internet to smart parking
application back-ends.

These applications can be accessed by the drivers from
smart-phones,tablets and in-car navigation systems.

In smart parking sensors are used for each parking slot,
to detect the whether the slot is empty or occupied. This
information is aggregated by a local controller and then
sent over the internet to the database.

2. Smart lighting:

smart lighting allows lighting to be
dynamically controlled and also adaptive to the ambient
conditions. Smart lights connected to the internet can be
controlled remotely to configure lighting schedules and
lighting intensity.

Smart lights equipped with sensors can communicate
with other lights and exchange information on the
sensed ambient conditions to adapt the lighting.

Applications

CITIES
3. Smart roads:

Smart roads equipped with sensors can provide
information on driving conditions, travel time
estimates and alerts In case of poor driving
conditions, traffic congestions and accidents,

Such information can help in making the roads safer and
help in reducing traffic jams

Information sensed from the roads can be
communicated via internet to cloud based applications
and social media and disseminated to the drivers who
subscribe to such applications.

4. Structural Health Monitoring:

This system uses a network of sensors to monitor the
vibration levels in the structures such as bridges and
buildings.

The data collected from those sensors is analyzed to
assess the health of the structures.

By analyzing the data its possible to detect cracks and
mechanical breakdowns, locate the damages to a
structure and also calculate the remaining life of the
structure,

Using such systems, advance warnings can be given in
the case of imminent failures of the structure.

Applications
CITIES

5. Surveillance

Surveillance of infrastructure, public transport and event in
cities is required to ensure safety and security.

City wide surveillance infrastructure comprising of
large number of distributed and internet connected
video surveillance cameras can be created.

The video feeds from surveillance cameras can be
aggregated in cloud based scalable storage solutions.

Cloud based video analytics
applications can be

6. Emergency Response

IoT systems can be used for monitoring the critical
infrastructure in cities such as buildings, gas and
water pipelines, public transport and power
substations.

IoT systems for fire detection, gas and water leakage
detection can help in generating alerts and minimizing
their effects on the infrastructure.

Applications

Environment:

1. Weather Monitoring

IoT based weather Monitoring systems can
collect data from a number of sensors attached(such as
temp, humidity & pressure etc) and send the data to
cloud based applications and storage back ends.

The data collected in the cloud can then be analyzed and
visualized by cloud based applications.

Weather alerts can be sent to the subscribed users from such
applications.

2. Air Pollution Monitoring:

IoT based air lgl)ollutlon monitoring systems
can monitor emission of harmful gases by factories and
automobiles using gaseous and meteorological sensors.

The collected data can be analyzed to make informed
decision on pollutions control approaches.

3. Noise Pollution Monitoring:

IoT based noise pollution monitoring systems use a number
of noise monitoring stations that are deployed at different
places in a city.

The data on noise levels from the stations is collected on
servers or in the cloud. The collected data is then aggregated
to generate noise maps.

Applications

Environment:

4. Forest fire detection:

Early detection of forest fires can help in minimizing
the damage. IoT based forest fire detection systems
use a number of monitoring nodes deployed at
different locations in a forest.

Each monitoring node collects measurements on
ambient conditions including temperature, humidity,
light levels etc.

5. River Floods Detection:

River Floods can cause extensive damage to the natural
and human resources and human life.

Early warning of floods can be given by monitoring
the water level and flow rate.

IoT based river flood monitoring system use a number of
sensor nodes that monitor the water level and flow rate

Data from a number of such sensor nodes is aggregated
in a server or in the cloud.

Monitoring applications raise alerts when rapid increase in
water level and flow rate is detected.

Applications
ENERGY:

SMART GRIDS, One of the definitions for the smart
grid is that the smart grid is a communication network
on top of the electricity grid to gather and analyze
data from different components of a power grid to
predict power supply and demand which can be used
for power management

1. In electricity generation, IoT can be used to monitor
electricity generation of different kinds of power
plants (such as coal, wind, solar, biomass), gas
emissions, energy storage, energy consumption, and
predict necessary power to supply consumers.

2. 10T can be used to acquire electricity consumption,
dispatch, monitor and protect transmission lines,
substations, and towers, manage and control
equipment.

3. ToT can be used in customer side in smart meters to
measure different types of parameters, intelligent
power consumption, interoperability = between
different networks, charging and discharging of
electric vehicles, manage energy efficiency and
power demand.

Applications
2.RENEWABLE ENERGY SYSTEMS

Due to the variability in the output from renewable
energy sources integrating them into the grid can
cause grid stability and reliability problems. Variable
output produces local voltage swings that can impact
power quality.

3.PROGNOSTICS

Energy systems have a large number of critical
components that must function correctly so that the
systems can perform their operations correctly.

Applications

Retail:
Inventory Management,

Over stocking of products can result in additional
storage expenses and risk, under-stocking can lead to
loss of revenue. IoT systems using RFID tags can
help in inventory management and maintaining the
right inventory levels.

RFID tags attached to the products allow them to be
tracked in real time so that the inventory levels can be
determined accurately and products which are low on
stock can be replenished.

Tracking can be done using RFID readers attached to
the retail store shelves or in the warehouse. IoT
systems enable remote monitoring of inventory using
the data collected by the RFID readers.

Smart Payments: Customers can store the credit card
information in their NFC enabled smart phones and
make payments by bringing the smart phones near the
point of sale terminals.

Smart Vending Machines

Smart vending machines connected to the internet allow
remote monitoring of inventory levels, elastic pricing
of products, promotions and contact less payments
using NFC.

Applications

Smart phone applications that communicate with smart
vending machines allow user preferences to be
remembered and learned with time.

Applications

Logistics:
Route Generation and scheduling
It generates end-to-end routes using

Fleet tracking, this system uses GPS technology to
track the locations of the vehicles in real time.

Alerts can be generated in case of deviations in planned
routes.

The vehicle locations and routes data can be aggregated
and analyzed for detecting bottlenecks in the supply
chain such as traffic congestions on routes,
assignments and generation of alternative routes and
supply chain optimization.

Shipment monitoring, this system allow monitoring
the conditions inside containers, for ex: containers
carrying fresh food produce can be monitored to
prevent spoilage of food.

IoT based shipment monitoring systems use Sensors
such as temperature, pressure, humidity for instance
to monitor the conditions inside the containers and
send the data to the cloud, where it can be analyzed to
detect food spoilage.

The analysis and interpretation of data on the
environmental conditions in the container and food
truck positioning can enable more effective routing
decisions in real time.

con

Applications

Remote vehicle diagnostics:

Remote vehicle diagnostic systems can detect faults in the
vehicles or warn of impending faults.

These diagnostic systems use on-board IoT devices for
collecting data on vehicle operation and status of various
vehicle sub-systems.

Such data can be captured by integrating on board diagnostic
systems with IoT devices using protocols such as CAN
bus.

Applications

Agriculture:

1. Smartirrigation:

Smart irrigation systems can improve crop yields while
saving water. Smart irrigation systems use [oT Devices
with soil moisture sensors to determine the amount of
moisture in the soil and releases the flow of water
through the irrigation pipes only when the moisture
levels go below a predefined threshold.

Smart irrigation systems also collect moisture level
measurements on a server or in the cloud where the
collected data can be analyzed to plan watering
schedules.

2. Green house control:

Green houses are structures with glass or plastic roofs
that provide conducive environment for growth of
plants.

The climatological conditions inside a green house can
be monitored and controlled to provide the best
conditions for growth of plants.

The humidity, temperature, soil moisture, light and
carbon dioxide levels are monitored using sensors and
the climatological conditions are controlled
automatically using actuation devices.

Applications

Industry:

1. Machine Diagnosis and Prognosis:

Machine prognosis refers to predicting the performance
of a machine by analyzing the data on the current
operating conditions and how much deviations exists
from the normal operating conditions.

Machine diagnosis refers to determining the cause of a
machine fault.

IoT plays a major role in both prognosis and diagnosis
of industrial machines. Industrial machines have a
large number of components that must function
correctly for the machine to perform its operations.

Sensors in machines can monitor the operating
conditions such as temperature, vibration levels etc.

IoT based systems integrated with cloud based storage
and analytics back ends can help in storage,
Collection and analysis of such massive scale
machine sensor data.

Applications

2. Indoor Air Quality Monitoring:

Monitoring indoor air quality in factories is important
for health and safety of the workers.

Harmful and toxic gases such as carbon monoxide, nitrogen
monoxide, nitrogen dioxide etc can cause serious health
problems.

IoT based gas monitoring systems can help in monitoring
the indoor air quality using various gas sensors.

Applications
HEALTH AND LIFESTYLE:

1.Health and Fitness monitoring:

Wearable devices from a type of wireless sensor
networks called body area networks in which the
measurements from a number of wearable devices
are continuous sent to a master node(such as smart
phone) which then sends the data to a server or a
cloud based back end for analysis and archiving .

Health care providers can analyze the collected health
care data to determine any health conditions or
anomalies.

Commonly used sensors include: body temperature,
heart rate, pulse oximeter oxygen saturation, blood
pressure, electrocardiogram, @ movement and
electroencephalogram.

2. Wearable electronics:

Wearable electronics such as wearable gadgets provide
various functions and features to assist us in our daily
activities and making us lead healthy lifestyles.

Dr. N. Penchalaiah, Associate Professor, Department of AI& ML, Annamacharya University

UNIT 2 Prototyping IoT Objects using Microprocessor/Microcontroller

What Is Prototyping in IoT?

[0T prototyping 1s the action of experimenting and implementing design
1deas 1nto preliminary versions of a finished product.

Essentially, it involves trying out and testing different ways to bring
something from the planning phase to reality.

In the world of 10T, a prototype could be:

* A user interface (UI)

* A hardware device

e Backend software

* Connectivity of a system

Working principles of sensors and actuators :
SENSOR: Sensors are such devices which are used to convert physical quantities,
events or characteristics into the electrical signals for the purpose of monitoring and
controlling. So sensor takes input from environment and converts into electrical form
then fed to the system or controller. Sensor works as an input device.
Example- Thermocouple, photo cell, RTD, LVDT, strain gauge, Load cell etc.

/")
» _— Sensor
Change in its surrounding or environment - - Electrical Output

I.e. Physical Quantity (With Signal Conditioning Element)

. J

Figure- Block Diagram of a Sensor

ACTUATOR :Actuators are such devices which deliver physical quantity (like force or
motion) to the environment by converting source energy according to control signal
received that can be in electrical form. Here source energy can be pneumatic, hydraulic
or electric type and motion produced (by actuator) can be either linear or rotary.
Actuator acts as output device. For examples- different types of electric motor actuator,
heaters, electro pneumatic actuator, electro-hydraulic actuator, magnetic actuator etc.

Energy Input

{Pneumatic, Hydraulic, or Electrical)

108

Control Signal Environmental change or change in

Actuator
from controller ELtia Physical Quantity such as motion

Figure- Block diagram of an actuator

SENSOR

Sensor converts physical quantities and
characteristics into electrical signals.

It acts as an input device in any control system
and placed in input port

Sensor takes input from environment and
senses surroundings condition.

Sensor gives output to input signal
conditioning unit of system to convert into
electrical form.

It gives information to the system about
environment condition to monitor and
control.

Sensors are often used to measure process
pressure, temperature, fluid levels, flow,
vibration, speed etc.

Sensor examples- Thermocouple, photo cell,
RTD, LVDT, strain gauge, Load cell, hall
sensors, differential flow meters, speed
probes, PH meter etc

ACTUATOR

Actuator converts electrical signals into physical
action such as force and motion.

It acts as an output device in a control system and
placed in output port

Actuator takes input from output signal conditioning
unit of system.

It gives output to environment and makes
impact on load to control parameters.

It accepts command from system to deliver physical
action.

Actuators are often used to operate control
valves, dampers, guide vanes, and to move
objects from one place to another, to move
conveyor belts in robotic arms movement etc..

Actuator examples- motor actuator, servo motor,
stepper motor, heaters, electro pneumatic actuator,
electro- hydraulic

actuator, magnetic actuator etc

[[
i) - - 1
i) A !
' Sensor " Controller Actuator ‘ I
’ | [> '
: . (Measure process variable) l (Desicion Making) (Takes action to control) } :
1 < = . T _4_,-‘ \ i . T 7_/‘ 1
[1
[1

SENSOR AND ACTUATORS IN IOT : The Internet of Things is defined as a
paradigm in which objects equipped with sensor, actuator and processor communicate
with each other to serve a meaningful purpose. IoT can also be seen simply as an
interaction between the physical and digital worlds. Once a stand-alone device and
application now has the ability to connect to the network via sensors, actuators,
processors and transceivers.

An IoT device 1s basically made up of a Physical object (things) + Controller (brain) +
Networks (Internet) along with sensor and actuator. Sensor and Actuators are devices
that enable interaction with the physical world in IoT technology. The following diagram
shows how a sensor and actuators works together.

Figure- Sensor and actuator in a system

Here in basic form, sensors in the device sense the environment and fed to the
controller, then based on set value, control signal 1s generated for the actuator to
perform actions required to maintain set value. Such control signal 1s sent to actuator
that moves or controls the mechanism or the system. It is to be noted that an actuator
needs external energy to perform action.

Sensor Control Center Actuator

§55 @) O)>> c = <".’\'\> .
@iy — > [B] — &

Temperature Sends this Control center Sprinkler turns
sensor detects detect signal to sends command on and puts
heat. the control to sprinkler. out flame.
center.

From Sensor to Actuator in loT

A diagram for Sensor to actuator flow in IoT is shown. Sensors, actuators, computer servers, and the
communication network form the core infrastructure of an IoT Framework. Data collection, handling,
communication, and processing of the data are done under IoT technology. The IoT device collects a
high amount of information from various sensors, and it is being decided through decision making
which data 1s relevant for their condition and which places it is to be processed or stored, as well as

which 1s desired communication level, while actuators enable the automation of the system for
relevant information processing.

1 0 |

PIR Scecnsor Accelerometer Potentio- Ir- SeIlSO ‘
rmcter
LIOR ! Rain Sensor
TIICI"II"IJ.SIIOI‘
— — — - o m
IR IPhotodiode I N335 Nicro-— IIall

I ransmitter (R Receiver) D b b prPhone Scecnsor

SETTING UP THE BOARD : we will learn about the different components on the Arduino board.
We will study the Arduino UNO board because it is the most popular board in the Arduino board
family. In addition, it is the best board to get started with electronics and coding. Some boards look
a bit different from the one given below, but most Arduinos have majority of these components in
common.

Here are the components that make up an Arduino board and what each of their functions are.

* Reset Button — This will restart any code that 1s loaded to the Arduino board

* AREF - Stands for “Analog Reference” and is used to set an external reference voltage

* Ground Pin — There are a few ground pins on the Arduino and they all work the same

* Digital Input/Output — Pins 0-13 can be used for digital input or output

* PWM — The pins marked with the (~) symbol can simulate analog output

* USB Connection — Used for powering up your Arduino and uploading sketches

 TX/RX — Transmit and receive data indication LEDs

* ATmega Microcontroller — This is the brains and is where the programs are stored

* Power LED Indicator — This LED lights up anytime the board is plugged in a power source
* Voltage Regulator — This controls the amount of voltage going into the Arduino board
 DC Power Barrel Jack — This is used for powering your Arduino with a power supply

* 3.3V Pin — This pin supplies 3.3 volts of power to your projects

* S5V Pin — This pin supplies 5 volts of power to your projects

* Ground Pins — There are a few ground pins on the Arduino and they all work the same

* Analog Pins — These pins can read the signal from an analog sensor and convert it to digital

Step 1: First you must have your Arduino board (you can choose your favorite board) and a USB cable.

Step 2: Download Arduino IDE Software. You can get different versions of Arduino IDE from the Download
page on the Arduino Official website. You must select your software, which 1s compatible with your operating
system (Windows, IOS, or Linux). After your file download is complete, unzip the file.

Step 3: Power up your board.

The Arduino Uno, Mega, Duemilanove and Arduino Nano automatically draw power from either, the USB
connection to the computer or an external power supply. If you are using an Arduino Diecimila, you have to
make sure that the board is configured to draw power from the USB connection. The power source is selected
with a jumper, a small piece of plastic that fits onto two of the three pins between the USB and power jacks.
Check that it 1s on the two pins closest to the USB port.

Step 4: Launch Arduino IDE.

After your Arduino IDE software 1s downloaded, you need to unzip the folder. Inside the folder, you can find
the application icon with an infinity label (application.exe). Double-click the icon to start the IDE.

Step 5: Open your first project.

Once the software starts, you have two options: Create a new project.

Open an existing project example.

Step 6: Select your Arduino board.

To avoid any error while uploading your program to the board, you must select the correct Arduino board
name, which matches with the board connected to your computer.

Arduino Software

Upload Code to Arduino Board

Compile and Check
if Code is OK

Creates a New Code Window

An be downloaded for free:

www.arduino.cc

In this window

you create your
Program

Open existing Code

Open Serial Monitor

Error Messages
can be seen here

Programming for IoT :
Every Arduino sketch has two main parts to the program:

void setup() — Sets things up that have to be done once and then don’t happen again.

void loop() — Contains the instructions that get repeated over and over until the board 1is

turned off. Arduino Programs

All Arduino programs must follow the following main structure:
/7 Initialization, define wariables, &ebtc.

volid setup ()
{

L/ LIEnadatializatiob

}

vold Jloopi()
{

//Main Program

void setup ()

{
pinMode (pin-number, OUTPUT); // set the ‘pin-number’ as output pinMode (pin-
number, INPUT); // set the ‘pin-number’ as output

}

After the setup () function is executed, the execution block runs next. The execution block hosts statements
like reading inputs, triggering outputs, checking conditions etc..

In the above example loop () function is a part of execution block. As the name suggests, the loop() function
executes the set of statements (enclosed in curly braces) repeatedly.

Void loop ()

{
digitalWrite (pin-number,HIGH); // turns ON the component connected to ‘pin-number’
delay (1000); // wait for 1 sec

digitalWrite (pin-number, LOW); // turns OFF the component connected to ‘pin-number’
delay (1000); //wait for 1sec

}

Note: Arduino always measures the time duration in millisecond. Therefore, whenever you mention the delay, keep it in
milli seconds. Now, let’s take a giant leap and do some experiments with Arduino

Blinking the LED
Fade-in and fade-out the LED

Reading from Sensors :
Sensors are used for sensing things and devices etc.
A device that provides a usable output in response to a specified measurement. The sensor
attains a physical parameter and converts it into a signal suitable for processing (e.g.
electrical, mechanical, optical) the characteristics of any device or material to detect the
presence of a particular physical quantity. The output of the sensor 1s a signal which 1is
converted to a human-readable form like changes in characteristics, changes in resistance,
capacitance, impedance, etc.

input output

————— SENSOR — — PROCESSOR —— ACTUATOR —

Transducer's Transducer's
input output

— ' g

Transducer

Transducer

A transducer converts a signal from one physical structure to another.

It converts one type of energy into another type.

It might be used as actuator in various systems.

Sensors characteristics :

Static
Dynamic

Static characteristics :

It is about how the output of a sensor changes in response to an input change after steady state condition.
Accuracy: Accuracy is the capability of measuring instruments to give a result close to the true value of
the measured quantity. It measures errors. It is measured by absolute and relative errors. Express the
correctness of the output compared to a higher prior system. Absolute error = Measured value — True
value

Relative error = Measured value/True value
Range: Gives the highest and the lowest value of the physical quantity within which the sensor can
actually sense. Beyond these values, there is no sense or no kind of response.

e.g. RTD for measurement of temperature has a range of -200 ¢ to 800 c.
Resolution: Resolution is an important specification for selection of sensors. The higher the resolution,
better the precision. When the accretion is zero to, it is called the threshold.

Provide the smallest changes in the input that a sensor is able to sense.

Precision: It is the capacity of a measuring instrument to give the same reading when repetitively
measuring the same quantity under the same prescribed conditions.

* Itimplies agreement between successive readings, NOT closeness to the true value.

* [Itis related to the variance of a set of measurements.

* Itis a necessary but not sufficient condition for accuracy.
Sensitivity: Sensitivity indicates the ratio of incremental change in the response of the system with
respect to incremental change in input parameters. It can be found from the slope of the output
characteristics curve of a sensor. It 1s the smallest amount of difference in quantity that will change the
instrument’s reading.
Linearity: The deviation of the sensor value curve from a particularly straight line. Linearity is
determined by the calibration curve. The static calibration curve plots the output amplitude versus the
input amplitude under static conditions.

A curve’s slope resemblance to a straight line describes linearity.
Drift: The difference in the measurement of the sensor from a specific reading when kept at that value
for a long period of time.
Repeatability: The deviation between measurements in a sequence under the same conditions. The
measurements have to be made under a short enough time duration so as not to allow significant long-
term drift.

Dynamic Characteristics :

Properties of the systems
Zero-order system: The output shows a response to the input signal with no delay. It does not
include energy-storing elements.

Ex. potentiometer measure, linear and rotary displacements.
First-order system: When the output approaches its final value gradually. Consists of an
energy storage and dissipation element.
Second-order system: Complex output response. The output response of the sensor oscillates
before steady state.

Communication through Bluetooth, Wi-Fi :

Initial Configuration of the HCOS modules

This is the additional step required to connect two HCOS5 modules together. We need to change
some settings inside the HC05 Bluetooth Module, to do this, we have to go into the HC05 module’s
AT Command Mode and send commands to it through the Arduino IDE’s serial monitor. To do
this, we need to write an Arduino code to send commands through the serial monitor to the HCOS.

The code to configure the HC05 module can be found at the bottom of this page, the explanation
of the code is as follows

Add the Software Serial library to this code. #include <SoftwareSerial.h>

Define the transmit (Tx) and Receive (Rx) pin numbers. I’m using pin 2 for Tx and pin 3 for Rx
#define tx 2

#define rx 3

Give the Bluetooth connection some name (here I am using configBt), then tell the SoftwareSerial
library which pin 1s Tx and which pin 1s Rx.

The syntax is bluetoothName(Rx, Tx);

SoftwareSerial configBt(rx, tx); / RX, TX

In order to configure the Bluetooth module, the Arduino needs to send commands to it at a baud
rate of 38400 baud. Similarly, we set the baud rate of the Bluetooth connection as well to 38400
baud. Set the Transmit (Tx) to the output pin and Receive (Rx) to the input pin

void setup()

{

Serial.begin(38400);

configBt.begin(38400);

pinMode(tx, OUTPUT);

pinMode(rx, INPUT);

}

Inside the forever loop, we have the main chunk of the code. The idea here is to send whatever is
typed in the textbox in the serial monitor to the HCOS through the Arduino’s Tx pin. Then display
whatever 1s output by the HCOS in the serial monitor.

void loop()

{
if(configBt.available()) // if the HCOS is sending something. ..

{

Serial.print(configBt.readString()); // print in serial monitor

}

if(Serial.available()) // if serial monitor is outputting something. ..

{

configBt.write(Serial.read()); // write to Arduino’s TX pin

1

Upload this code into the Arduino connected to the master HCO5 module first. After uploading the code, plug out the
Arduino power cable. Press and hold the button on the HCOS. Now plug in the Arduino power cable while still holding
the button on the HCOS. Alright, now you can release the button on the HCOS. This 1s how you go into the AT mode of the
HCO05. To check if you have done this right, make sure the red light on the HCO0S is blinking approximately
every one second (slow blinking!). Normally before the HCOS5 is connected to any Bluetooth device, it’s red light blinks
at a very high frequency (fast blinking!).

Next, open the serial monitor (the serial monitor button is at the top right of the Arduino IDE). At the bottom right corner
of the Serial monitor window, if you haven’t already done so, make sure that you set the line ending setting to “Both NL
and CL” and baud rate to 38400. Now, type in AT in the serial monitor, if all goes well, you’ll get an “OK” from the
HCO5 displayed in the serial monitor window. Congratulations! You are have successfully logged into the HCO5 module’s
AT command mode.

WIFI: Select your board type and port

You'll need to select the entry in the Tools > Board menu that corresponds to your Arduino Uno WiFi1 board.

@ sketch_rmarl&Sle | Srduaimo

File=

Echit

Sketchkh Tool=s

=s=ketch__rmiarl =

-

—
=

=

" A Tl =se1ang

A

He=lp
Lt Forrmat
Lrchireses Shketch
Fiz«e Emncoeding & Relacad

Se=erral PhMomnmiitor

EBcard
FPort

Prograrmrmer

Eurmn Bococtload=r

—Etrl+— T

—Etrl+— Shaft+ A

A

AL

Sarcl o

s

SR BEoarc=s

Avrcorimo W lam

Arclurimo o PRl

Lirmirmnoc Chree

Srcluaimoc
Sarcorimc
Lrcdirimnoc
Lrcduaimc
Aorcduimno
SAarcoarimc
Sarcdoarimc
LSrcduaimnc
SArduarimc
SArcdouaimnc
Lrcdoirimc
Lraduaimnc
Larcduaimnc

Srcdouaimnc

Limnao “WiFi

Lirmnoc

Crarerrmiillancwe or Ciecirmila
Flarmnc

Plega or PRMega 2560
Flega A2
Lecormarcd- ETH
Lecormnarcd o

FAAicr—

E=plcra

Pt

Ethermaet

Fic

BT

LilwPFPad Ardurm o LISE
LilwFPad Sardurimo

LArcduaimc
Sarcd oo
Lrcdirimnoc
Lrcduaimc
Srcluarmo
SArduarimc
LArcdoaimnc
Syrcluaimo
Larcoarimc
Sraduaimnc

Aarcluimo

FPro or Pr—= PRAind

NS or older

Fobot Contrcld

FRolbhet PRIt or

SR (2 -bit=) BEcard=s

Choaae (FPrograrmrrmiing Pori]
e (lativee LISE Port])

SR (S22 -bitsl) Boards

10 Pre (Programirming Port)
P Pro [Natine-= LISE Portl

Py B]
-

https://docs.arduino.cc/static/988ca79365e0c0136e2a858ff0ed28eb/9fc4b/Arduino_UNO_WiFi_board_menu.png

Select the serial device of the board from the Tools | Serial Port menu. This is likely to be COM3 or higher
(COM1 and COM2 are usually reserved for hardware serial ports). To find out, you can disconnect your
board and re-open the menu; the entry that disappears should be the Arduino Uno WiFi board. Reconnect the
board and select that serial port.

@ sketch_marib | Arduino 1.7.9
| File Edit Skeich 7Tools Help
LAuto Format Cirl=T
Archive Sketch
Fix Encoding 8 Relcad
S | S, ff‘ff“’f Serial Monitor Ctri=Shift=M 5 l

skeich_mari s

Board >

_ Port

Ay

Serial ports

COMI17 (Arduino Uno WiFi1)
Programmer -

Burmn Bootloader Network ports
} arduinounowifi at 192.168.680.118 (Arduino Uno WiFi)

SArduinoe Uno WHiFi on COMST

https://docs.arduino.cc/static/78f72a08904e5c31cfd78f41ead5acf9/d67fd/Uno_WiFi_serialport.png

Upload the program N T T
. . . . L = L :
Now, simply click the "Upload" button in the environment. ,;_rf_ i} = —|E £

¥
FL -

| Bt

Wait a few seconds - you should see the RX and TX LEDs on the board flashing. If the upload 1s successful,
the message "Done uploading.” will appear in the status bar.

Elimk | Srduairmo

File Eddirt S k=t T = =1 =

=]
J A== Txn s oL 3 3 = <L = Y =~ =01 =1

a4 "= == = o e T F i o =cyr=1— a1 <1

ad =3 3 3

1 =

A =

a = -~ = = == i Lag— FTrarac- 0 T e B o Lo T o B el — B e Nk ' e L P BT o= = == = = === 1= e e e T = T

A = B - e B - B =su—T_ unmgw= L] i€

a = - Araa a3 s A GO = e A e e e R B o A = =i =5 P e B Lol B By ety ol B By el

— i I A 32T Tl = £ 1 = - O I LI 3 -

=1 i3

== 5 o it o B] e By] Fraxao- - 3 T TN = (o B g — B] =l e P Wy g B B o B X o 3— == 3

= =3 BT e B B - H o wea=g= I E B

— ey SlEa cya sl Rl G e] L= FEITEEETEEY = - b e M= Bha Saalic Spu N T = IT.F—Ix Coe Bu g C EX X =X a4 = =i = _

== sl 1 == C L OO 3 = = T = 1T = e x— =L = e = Al

= - AT i Ea ATl G ee [L3S T. Ol 3 = e T LT — k= T.=-T™ e 1 I = b n B el B npe B — i =

—= 3 e 1 == C L 0 3 - - T = A 1T = e 32— =1 === - X al

== i3 e

- e

o rsAd i Limno WwiFi o 0 Pt 17

https://docs.arduino.cc/static/0bd943210336ba4022b1b4e493775d82/008e2/UNO_Upload.png
https://docs.arduino.cc/static/22d80ee0ef511f6cd4fd70c32fb1af43/d024a/Arduino_UNO_WiFi_sketch_completed.png

A few seconds after the upload finishes, you should see the on-board LED start to blink. If it does,
congratulations! You've gotten your Uno WiFi board up-and-running for the USB programming. If you have
problems, please see the troubleshooting suggestions.

Programming via OTA

This board allows you to upload your sketches over the air (OTA) using the WiF1 connection. To get this
method working, you need that your board is already connected to the same WiFi network to which your PC
1s connected. Please refer to the First Configuration chapter below to configure and connect the Arduino Uno
WiFi1 to your WiFi network.

Power the board using the USB cable and a 5V USB power supply or use an external power supply connected
to the power connector.. Now the procedure to program the board via OTA is the same of that shown above
but it differs only when you select the port. Here are all the steps..

Select your board type and port

You'll need to select the entry in the Tools > Board menu that corresponds to your Arduino Uno WiFi1 board.

https://arduino.cc/en/Guide/Troubleshooting

@ sketch_rmarlZb | Saorduinc

File Edit S-l-f.E_tCl"l__TClDlS-

=ketch_rmarl =

n o il =eitangy
= o 11t =
=1 L

=

= e e B B W= Yy]
- D1l =
= L

_I—I_EI|::|

Aoutce Forrmmat

Aorchiwvs Sketch

Fizxed Emncoding & Relocad

Serial PRMonitor

BEoard
Port

pngrEl“f‘ll“f‘lEr

BEurm BEcotlcader

—trli+T

Ctrl+ Shift+ Ml

A

T

Aorcluaimo

oy

A%WE BEocarcl=s

Arcdurrmoe % am
Arcdurmm o Yuoamn PRl

Limninc e

Arcuimno
Ardorimno
Ardurimno
Arduimno
Srduino
Ardorimno
SArduimno
Arduimno
Arduino
Ardorimno
Ardourimno
Arduimno
Arduino

Aorcdurmo

Ll Wik

L

Drasrmiilancws or Diecirmila
rNamnc

FPMega or PMaega 25640
Fl=ga Sk
Lecrnardoc ETH
Lecrnardc

FATcrc

Esplcra

¥ T T

Etherm=t

Fic

BT

LilvwPFPad A rduimno LISE
LilbwPad SAordwuinoc

Arduino
SArduimnoc
Ardourimno
Ardouaimno
Sorclhuimo
Arduino
Ardorimno
Sorcluaimo
Sorduaimno
Arduimno
Aarduinc

Pro or Proc Bini

MNES or older

Robot Control

FRoboct RMotor

SRR (22-bats) BEoards

D= (Programrming Port])
Cuese (Natie=s LISE Port)

SR (F2-bat=s]l Boards

D Pro (Programrming P ort]
P Pro (HRNatiwe LISE Port)

P
w

https://docs.arduino.cc/static/988ca79365e0c0136e2a858ff0ed28eb/9fc4b/Arduino_UNO_WiFi_board_menu.png

Select the board from Tool>Port>Network ports menu it will appear a device as shown in the
below image:

S Blink | Arduinoc —_ — >
File Edit Sketch Tocols Help

o8 I, 5;‘ T
- .

Auto Fornmat Citrl=T
Arschive Sketch
Fix Encoding & Relcad

;f - . Senal Monitor Citrl=Shift=nh1 o
13 Dy Scoctt Board >
‘ . Po:rt = Serial ports
= d COMI7 (Arduinc Uno)
= Sy - Programmer =
- 4 — 1= —
1 wvoid Setup Burn Bootioader Network ports
1S inictiali== Iigital pin 13 as an outputc. arduinounowif: at 1282.168.60.711&8 (Arduino Uno WiFs)

callcpengate at 182.168.60.102 (Arduinoc Ydan)

= } lininc at 192.1628.60.112 (Arduinoc Yan)
= che Joopr EFunNCcCTion rruns ovelr arncd over again forevexr

=<3 voricdd Loop () {

=3 AigictalWric=(13, HIGH) - 4 curn the LED on (HIGH 31is the v

=& t=lav(lLO00O) 7. wAalT fox T smeconcc

=7 AilgitalWric= (13, LOW) - / turn the LED off Dy making the

= - Al av(1LO00O)y - WAl T | s : Seconcd

g, = }

SN

| < >

1 Arduinoe Uno WiFi on 192 168 80 112

https://docs.arduino.cc/static/7b0135a1e57abe4c415aeca218242aae/d67fd/Arduino_UNO_WiFi_OTA_port_menu.png

Note: Be sure that the PC and the board are connected to the same network and that the board is in

STA MODE, for more information see First Configuration below.

Upload the program

Now, simply click the "Upload" button in the environment. bile Edit Sketch Tools Help

Wait a few seconds - you should see the RX and TX LEDs on the board flashing. If the upload is

successful, the message "Done uploading.” will appear in the status bar.

https://docs.arduino.cc/static/0bd943210336ba4022b1b4e493775d82/008e2/UNO_Upload.png

Elimk | Srduimno —_— — e
File E it S ket ac b Tl el =

a1]
J a1 = Tnscld £ 3 = cl = T ==~ —O1 =31

A= I = = e T FiTc-=cgexral ol

o

A=

B P ko= == AT Fraxacs T T LAY == P e coe Bl — Rl e B o SR T e == == == T e X B Rl e g — T

A = W A oCl = uEgw L] I

a1 = - dryad —d &1 3 == Ccld ord sl o Bos R e i 1 = = ST [B B ety fo B By el

=L I A 12T T cle= [1L = - OTrrrPriri g =

= 1= 3

=3 -~ —ta= A ey Fraxac- =3 «x =L AT = e = I =axracl T = X (= Mo g B e e B oo === 31—

= = wreoe ol TH o aowaegw L R

= =3 CAlAd crd EalWra = [1L 3E - T =KL = 11T T=—Fa= I.FT>» X CEL I =1 d == =i = =
== =1 sm= 1L OO0 33 = r o e b sl e e =1 = e e aaxracl

="x i gd Taldl Wi = 1L 3= - T.i 3 3 - o —ii1I—x1 —Fa= I.FTI>» — = = Io= mmale dxacy =t =
= B clee= 1 s~ ¢ L OO0 73 = = M B = o 1o =1 === AL

-

= rdaimns Limgss Wi Fi oo

A few seconds after the upload finishes, you should see the on-board LED start to blink. If it does, congratulations!
You've gotten your Uno WiFi board up-and-running for the USB programming. If you have problems, please see the

troubleshooting suggestions.

https://arduino.cc/en/Guide/Troubleshooting
https://docs.arduino.cc/static/22d80ee0ef511f6cd4fd70c32fb1af43/d024a/Arduino_UNO_WiFi_sketch_completed.png

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

UNIT III : IOT ARCHITECTURE and PROTOCOLS

Architecture = Reference = Model-Introduction, Reference @~ Model and Architecture,
IoT reference model - Domain model - Information model - Functional model - Communication

model — Protocols- 6LowPAN, RPL, CoAP, MQTT, IoT Frameworks- Thing Speak.

Architecture Reference Model:
Introduction:

The Internet of Things (IoT) has seen an increasing interest in adaptive frameworks and
architectural designs to promote the correlation between IoT devices and IoT systems.
This is because IoT systems are designed to be categorized across diverse application
domains and geographical locations. It, therefore, creates extensive dependencies across
domains, platforms and services. Considering this interdependency between 10T devices
and IoT systems, an intelligent, connection-aware framework has become a necessity,
this is where IoT architecture comes into play.

In essence, an IoT architecture is the system of numerous elements that range from
sensors, protocols, actuators, to cloud services, and layers. Besides, devices and sensors
the Internet of Things (IoT) architecture layers are distinguished to track the consistency
of a system through protocols and gateways. Different architectures have been proposed
by researchers and we can all agree that there is no single consensus on architecture for
IoT.

State of the art

IoT architecture varies from solution to solution, based on the type of solution which we
intend to build. IoT as a technology majorly consists of four main components, over
which an architecture is framed.

1) Sensors

2) Devices

3) Gateway
4) Cloud

Sensor/Actuators

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

Stages of IoT Architecture:
The 4 Stage loT Solutions Architecture

[End. Prosctve. Opas, Edarnas R Advise. Tramatoerr
e P e EJ] omreie, Oporsms, Menegs
| v Security @’Em.y....,. Services]
Stage 1 Stage 2 Stage 3 Stage 4

Internet Gateways,

Data Acquisition Edge IT Data Center / Cloud

'
Y
s
The “Things” Sensors/Actuators .
* Systems I (analytics, pre- (analytics,
(wired, wireless) p = $ ¥ S
S A (data aggregation, A/D | processing) management, archive)
Primarily measurement, control) !
analog data ;
[
sources
— ')
- /‘// (“ =yl M S ——
Devices, % | _ -
machines, e <-‘-> l. ! <.—>_
peopie, tools, ’ " 'F
cars, animals, ; : e e
clothes, toys. 4 T - 3 B 5, Cob o Sa2400 14,0
environment, v) - &
buildings, etc / : e i =
R ; l] foady ek
i | Visualization — " '§
Amalptics - Analytics —
SW Stacks: Managoment - Uanagement -
Data Flow: Controf Contro

Control Flow:

Figure 3.1: Stages of IoT Architecture

1. Sensors/actuators

Sensors collect data from the environment or object under measurement and turn it into useful
data. Think of the specialized structures in your cell phone that detect the directional pull of
gravity and the phone's relative position to the —thing} we call the earth and convert it into data
that your phone can use to orient the device.

Actuators can also intervene to change the physical conditions that generate the data. An actuator
might, for example, shut off a power supply, adjust an air flow valve, or move a robotic gripper
in an assembly process.

The sensing/actuating stage covers everything from legacy industrial devices to robotic camera
systems, water level detectors, air quality sensors, accelerometers, and heart rate monitors. And
the scope of the IoT is expanding rapidly, thanks in part to low-power wireless sensor network
technologies and Power over Ethernet, which enable devices on a wired LAN to operate without
the need for an A/C power source.

2. The Internet gateways

The data from the sensors starts in analog form. That data needs to be aggregated and converted
into digital streams for further processing downstream. Data acquisition systems (DAS) perform
these data aggregation and conversion functions. The DAS connects to the sensor network,
aggregates outputs, and performs the analog-to-digital conversion. The Internet gateway receives
the aggregated and digitized data and routes it over Wi-Fi, wired LANS, or the Internet, to Stage
3 systems for further processing. Stage 2 systems often sit in close proximity to the sensors and
actuators.

For example, a pump might contain a half-dozen sensors and actuators that feed data into a data

aggregation device that also digitizes the data. This device might be physically attached to the
pump. An adjacent gateway device or server would then process the data and forward it to the

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

Stage 3 or Stage 4 systems. Intelligent gateways can build on additional, basic gateway
functionality by adding such capabilities as analytics, malware protection, and data management
services. These systems enable the analysis of data streams in real time.

3. Edge IT

Once IoT data has been digitized and aggregated, it's ready to cross into the realm of IT.
However, the data may require further processing before it enters the data centre. This is where
edge IT systems, which perform more analysis, come into play. Edge IT processing systems may
be located in remote offices or other edge locations, but generally these sit in the facility or
location where the sensors reside closer to the sensors, such as in a wiring closet. Because IoT
data can easily eat up network bandwidth and swamp your data centre resources, it's best to have
systems at the edge capable of performing analytics as a way to lessen the burden on core IT
infrastructure. You'd also face security concerns, storage issues, and delays processing the data.
With a staged approach, you can pre-process the data, generate meaningful results, and pass only
those on. For example, rather than passing on raw vibration data for the pumps, you could
aggregate and convert the data, analyse it, and send only projections as to when each device will
fail or need service.

4. The data centre and cloud

Data that needs more in-depth processing, and where feedback doesn't have to be immediate,
gets forwarded to physical data centre or cloud-based systems, where more powerful IT systems
can analyse, manage, and securely store the data. It takes longer to get results when you wait
until data reaches Stage 4, but you can execute a more in-depth analysis, as well as combine your
sensor data with data from other sources for deeper insights. Stage 4 processing may take place
on-premises, in the cloud, or in a hybrid cloud system, but the type of processing executed in this
stage remains the same, regardless of the platform.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

IoT Reference architecture
» Architecture Reference Model (ARM) consists of two main parts:
1. aReference model
2. aReference Architecture.
» The foundation of an IoT Reference Architecture description is an IoT reference model.
» A System Architecture is a communication tool for different stakeholders of the system.
» Developers, component and system managers, partners, suppliers, and customers have
different views of a single system based on their requirements and their specific
interactions with the system.
» The high-level abstraction is called Reference Architecture as it serves as a reference for

generating concrete architectures and actual systems, as shown in the Figure 3.2.
Architect design, engineer, build, test

/_\m/;\ & e

i - Vg mﬂﬂl
Sredys and

— &Y (5
= 33 . o jmammmonum é . g
. \ 2
/@ a Intemetg &:‘\ a .
a5 | ias 0!70) 9,0} o
\ - e tabCdc netle) Gk Cded Guperdie)

\V) \V)

extract essentials provide feedback, constraints, opportunities

=

Reference Architecture Concrete Architecture(s) Actual systems

Figure 3.2: Reference to Concrete Architectures and Actual Systems

» Concrete architectures are instantiations of rather abstract and high-level Reference
Architectures.

» A Reference Architecture captures the essential parts of an architecture, such as design
principles, guidelines, and required parts (such as entities), to monitor and interact with
the physical world for the case of an IoT Reference Architecture.

» A concrete architecture can be further elaborated and mapped into real world components
by designing, building, engineering, and testing the different components of the actual
system.

» The general essentials out of multiple concrete architectures can then are aggregated, and
contribute to the evolution of the Reference Architecture.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

Application Eusiness layer
lagrer
Application layer
Metwork 5 e
Fer rocessing laver
Transport layer
Perception
layer Perceptionlayer

<

Figure 3.3: Architecture of IoT a). Three layers b). Five layers

e It has two types of Architecture:
Three Layer Architectures
Five-Layer Architectures

Three Layer Architectures

» It has three layers, namely, the perception, network, and application layers.

(i) The perception layer is the physical layer, which has sensors for sensing and
gathering information about the environment. It senses some physical parameters or
identifies other smart objects in the environment.

(i) The network layer is responsible for connecting to other smart things, network
devices, and servers. Its features are also used for transmitting and processing sensor
data.

(iii) The application layer is responsible for delivering application specific services to
the user. It defines various applications in which the Internet of Things can be deployed,
for example, smart homes, smart cities, and smart health.

» The three-layer architecture defines the main idea of the Internet of Things, but it is not
sufficient for research on IoT because research often focuses on finer aspects of the
Internet of Things.

Five Layer Architectures

» The five layers are perception, transport, processing, application, and business layers

(seeThe role of the perception and application layers is the same as the architecture with

threelayers. We outline the function of the remaining three layers.

(1) The transport layer transfers the sensor data from the perception layer to the

processing layer and vice versa through networks such as wireless, 3G, LAN, Bluetooth,
RFID, and NFC.

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

(i1) The processing layer is also known as the middleware layer. It stores, analyzes, and
processes huge amounts of data that comes from the transport layer. It can manage and
provide a diverse set of services to the lower layers. It employs many technologies such
as databases, cloud computing, and big data processing modules.

(ii1) The business layer manages the whole 10T system, including applications, business
and profit models, and users’ privacy.

YWieb f Portal Drashbaard AP Managerment

cess Management

Communications
MQTT S HTTP

=
(|

Devices Manager

Figure 3.4: Reference Architecture for IoT

» The layers are :
v" Client/external communications - Web/Portal, Dashboard, APIs
v Event processing and analytics (including data storage)
v Aggregation/bus layer — ESB and message broker
v’ Relevant transports - MQTT/HTTP/XMPP/CoAP/AMQP, etc.
v" Devices
» The cross-cutting layers are :
v" Device manager
v' Identity and access management

The Device Layer

» The bottom layer of the architecture is the device layer.
» Devices can be of various types, but in order to be considered as IoT devices, they must
have some communications that either indirectly or directly attaches to the Internet.
» Examples of direct connections are :
* Arduino with Arduino Ethernet connection
* Arduino Yun with a Wi-Fi connection
* Raspberry Pi connected via Ethernet or Wi-Fi

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

* Intel Galileo connected via Ethernet or Wi-Fi Examples of indirectly connected device
include
« ZigBee devices connected via a ZigBee gateway
* Bluetooth or Bluetooth Low Energy devices connecting via a mobile phone
* Devices communicating via low power radios to a Raspberry Pi
» Each device typically needs an identity.
» The identity may be one of the following:
* A unique identifier (UUID) burnt into the device
* A UUID provided by the radio subsystem (e.g. Bluetooth identifier, Wi-Fi MAC
address)
* An OAuth2 Refresh/Bearer Token
* An identifier stored in nonvolatile memory such as EEPROM

The Communications Layer

* The communication layer supports the connectivity of the devices.
* There are multiple potential protocols for communication between the devices and the
cloud.
» The most well known three potential protocols are :

* HTTP/HTTPS (and RESTful approaches on those)
* MQTT 3.1/3.1.1
* Constrained application protocol (CoAP)

» HTTP supports many libraries. Because it is a simple textbased protocol, many small
devices such as 8-bit controllers can only partially support the .

» The larger 32-bit based devices can utilize full HTTP client libraries that properly
implement the whole protocol.

» MQTT solve issues in embedded systems and SCADA.

» MQTT is a publish-subscribe messaging system based on a broker model. The protocol
has a very small overhead.

» Itis designed to support lossy and intermittently connected networks.

» MQTT was designed to flow over TCP.

» In addition there is an associated specification designed for ZigBee-style networks called
MQTT-SN (Sensor Networks).

» CoAP is a protocol from the IETF that is designed to provide a RESTful application
protocol modeled on HTTP semantics. CoAP is a more traditional client-server approach

» CoAP is designed to be used over UDP.

The Aggregation/Bus Layer

» This layer aggregates and brokers communications.
» This is an important layer for three reasons:

1. The ability to support an HTTP server and/or an MQTT broker to talk to the devices

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

2.The ability to aggregate and combine communications from different devices and to
route communications to a specific device (possibly via a gateway)

3.The ability to bridge and transform between different protocols, e.g. to offer HTTP
based APIs that are mediated into an MQTT message going to the device.

» The bus layer may also provide some simple correlation and mapping from different
correlation models (e.g. mapping a device ID into an owner’s ID or vice-versa).

» It must be able to act as an OAuth2 Resource Server (validating Bearer Tokens and
associated resource access scopes).

» It must also be able to act as a policy enforcement point (PEP) for policy-based access.

The Event Processing And Analytics Layer

» This layer takes the events from the bus and provides the ability to process and act upon
these events.

» A core capability here is the requirement to store the data into a database.

» It has the following approaches:
* Highly scalable, column-based data storage for storing events
* Map-reduce for long-running batch-oriented processing of data
» Complex event processing for fast in-memory processing and near real-time reaction
and autonomic actions based on the data and activity of devices and other systems

Client/External Communications Layer

» The reference architecture needs to provide a way for these devices to communicate
outside of the device-oriented system.
» This includes three main approaches.
» Firstly, we need the ability to create web-based front-ends and portals that interact
with devices and with the event-processing layer.

» Secondly, we need the ability to create dashboards that offer views into analytics
and event processing.
* Finally, we need to be able to interact with systems outside this network using
machine-to-machine communications (APIs).
» The API management layer provides three main functions:
» The first is that it provides a developer-focused portal where developers can find,
explore, and subscribe to APIs from the system. There is also support for publishers to
create, version, and manage the available and published APIs;
* The second is a gateway that manages access to the APIs, performing access control
checks (for external requests) as well as throttling usage based on policies. It also
performs routing and load-balancing;
 The final aspect is that the gateway publishes data into the analytics layer where it is
stored as well as processed to provide insights into how the APIs are used.

Device Management

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

A\

Device management (DM) is handled by two components.
A server-side system (the device manager) communicates with devices via various

A\

protocols and provides both individual and bulk control of devices.

It also remotely manages software and applications deployed on the device.

It can lock and/or wipe the device if necessary.

The device manager works in conjunction with the device management agents.
There are multiple different agents for different platforms and device types.

YV YV VYV

The device manager also needs to maintain the list of device identities and map these into
owners.

Y

It must also work with the identity and access management layer to manage access

controls over devices.

» There are three levels of device: non-managed, semi-managed and fully managed (NM,
SM, FM).

» A full DM agent supports:

* Managing the software on the device

* Enabling/disabling features of the device (e.g. camera, hardware, etc.)

* Management of security controls and identifiers

* Monitoring the availability of the device

» Maintaining a record of the device’s location if available

Identity and Access Management

» The final layer is the identity and access management layer.
» This layer needs to provide the following services:

* OAuth?2 token issuing and validationOther identity services including SAML2
SSO and OpenID Connect support for

identifying inbound requests from the Web layer
* XACML PDP
* Directory of users (e.g. LDAP)

* Policy management for access control (policy control point)

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

10T Reference Model

The IoT Reference Model aims at establishing a common grounding and a common

language for IoT architectures and IoT systems.

A reference model describes the domain using a number of sub-models (Figure 7.1).

The domain model of an architecture model captures the main concepts or entities in the

domain, the domain model adds descriptions about the relationship between the concepts.

These concepts and relationships serve the basis for the development of an information

model because a working system needs to capture and process information about its main

entities and their interactions.

» A working system that captures and operates on the domain and information model
contains concepts and entities of its own, and these need to be described in a separate
model, the functional model.

» An M2M and IoT system contain communicating entities, and therefore the

corresponding communication model needs to capture the communication interactions of

these entities.

Y VV V

10T
Communication
Model

: Communication !
“+ 1 Functional Group | «eeseessrsssnennens
' (FG) 1

|aT Functional Model

Information handled ky
functional components

|aT Infarmation
Model Concepts as
. - foundations of
Concepts explicitly Functional Groups
modelled and represented

inloT systems

‘ |oT Domain M odel ‘

Figure 3.5: IoT Reference Model

» The foundation of the IoT Reference Model is the IoT Domain Model, which introduces
the main concepts of the Internet of Things like Devices, IoT Services and Virtual
Entities (VE), and it also introduces relations between these concepts.

» Based on the IoT Domain Model, the IoT Information Model has been developed. It
defines the structure (e.g. relations, attributes) of IoT related information in an IoT
system on a conceptual level without discussing how it would be represented.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» The information pertaining to those concepts of the IoT Domain Model is modelled,
which is explicitly gathered, stored and processed in an IoT system, e.g. information
about Devices, IoT Services and Virtual Entities.

» The IoT Functional Model identifies groups of functionalities, of which most are
grounded in key concepts of the IoT Domain Model.

» A number of these Functionality Groups (FG) build on each other, following the relations
identified in the IoT Domain Model.

» The Functionality Groups provide the functionalities for interacting with the instances of
these concepts or managing the information related to the concepts, e.g. information
about Virtual Entities or descriptions of IoT Services.

» The functionalities of the FGs that manage information use the IoT Information Model as
the basis for structuring their information.

» A key functionality in any distributed computer system is the communication between the
different components.

» The IoT Communication Model introduces concepts for handling the complexity of
communication in heterogeneous IoT environments. Communication also constitutes one
FG in the IoT Functional Model.

IoT domain model

Domain model as a description of concepts belonging to a particular area of interest.

The domain model also defines basic attributes of these concepts, such as name and
identifier.

The domain model defines relationships between concepts, for instance
<Services expose Resources=.

Domain models also help to facilitate the exchange of data between domains.

The main purpose of a domain model is to generate a common understanding of the
target domain in question.

The domain model is an important part of any reference model since it includes a
definition of the main abstract concepts (abstractions), their responsibilities, and their
relationships.

» The domain model captures the basic attributes of the main concepts and the relationship

between these concepts.
Model notation and semantics

» Class diagrams in order to present the relationships between the main concepts of the IoT

domain model.

» The Class diagrams consist of boxes that represent the different classes of the model
connected with each other through typically continuous lines or arrows, which represent
relationships between the respective classes.

Each class is a descriptor of a set of objects that have similar structure, behavior, and
relationships.

A class contains a name and a set of attributes and operations.

Notation-wise this is represented as a box with two compartments, one containing the
class name and the other containing the attributes.

The Generalization/Specialization relationship is represented by an arrow with a solid

line and a hollow triangle head.

YV VYV V VYV

YV VYV 'V

» Depending on the starting point of the arrow, the relationship can be viewed as a
generalization or specialization.For example, in Figure 7.4, Class A is a general case of
Class B or Class B is special caseor specialization of Class A.

» Generalization is also called an <is-a= relationship. For example, in Figure 7.4 Class B

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

<is-a= Class A. A specialized class/subclass/child class inherits the attributes and the
operations from the general/super/parent class, respectively, and also contains its own
attributes and operations.

» The Aggregation relationship is represented by a line with a hollow diamond in one end
and represents a whole-part relationship or a containment relationship and is often called
a <has-a= relationship.

Class A K—1 Class B Class A KS>— Class B
Generalization or “is-a” relationship Aggregation
3ssociation
name
Class A Class B Class A o Class B
s 1
Association Composition
3ssociation
name
Class A Class B Class A SRR Class B
’ 1
Directed Association Realization
Class A —:I Class A ;]
Reflexive Directed Reflexive Aggregation
Association

Figure 3.6: UML Class Diagram main modeling concepts

» The class that touches the hollow diamond is the whole class while the other class is the
part class.

» For example, in Figure 3.6, class B represents a part of the whole Class A, or in other
words, an object of Class A <contains= or <has-a= object of Class B.

» When the line with the hollow diamond starts and ends in the same class, then this
relationship of one class to itself is called Reflexive Aggregation, and it denotes that
objects of a class (e.g. Class A in Figure 3.6) contain objects of the same class.

» The Composition relationship is represented by a line with a solid black diamond in one

end, and also represents a whole-part relationship or a containment relationship.

» The class that touches the solid black diamond is the whole class while the other class is
the part class. For example, in Figure 3.6, Class B is part of Class A. Composition and
Aggregation are very similar, with the difference being the coincident lifetime to the
objects of classes related with composition.

In other words, if an object of Class B is part of an object of Class A (composition), when
the object of Class A disappears, the object of Class B also disappears.
A plain line without arrowheads or diamonds represents the Association relationship.

Directed Association that is represented with a line with a normal arrowhead.
An Association (Directed or not) contains an explicit association name. The Directed

VVY 'V

Association implies navigability from a Class B to a Class A in Figure 3.6.

Navigability means that objects of Class B have the necessary attributes to know that they
relate to objects of Class A while the reverse is not true: objects of Class A can exist

Y

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

without having references to objects of Class B.

> When the arrow starts and ends at the same class, then the class is associated to itself with
a Reflexive Directed Association, which means that an object of this class is associated
with objects of the same class with the specific named association.

» An arrow with a hollow triangle head and a dashed line represents the Realization
relationship. This relationship represents a association between the class that specifies the
functionality and the class that realizes the functionality.

» For example, Class A in Figure 3.6 specifies the functionality while Class B realizes it.
Contain multiplicity information such as numbers (e.g <1=), ranges (e.g. <0_1=, open
ranges <1..._=), etc. in one or the other end of the relationship line/arrow.

» These multiplicities denote the potential number of class objects that are related to the
other class object.

» For example, in Figure 3.6, a plain association called <association name,= relates one (1)
object of Class B with zero (0) or more objects from Class A. An asterisk <_= denotes
zero (0) or more

Main concepts

» The IoT is a support infrastructure for enabling objects and places in the physical world

to have a corresponding representation in the digital world.

Physical World ! Digital World

- Parking spot #16
Parking spot #1 |+

| Availability Sign l

{ Payment Station l

Figure 3.7:| Physical Vs Virtual World

Y

Monitoring a parking lot with 16 parking spots.

» The parking lot includes a payment station for drivers to pay for the parking spot after
they park their cars.The parking lot also includes an electronic road sign on the side of
the street that shows in real-time the number of empty spots.

» Frequent customers also download a smart phone application that informs them about the
availability of a parking spot before they even drive on the street where the parking lot is
located.

» The relevant physical objects as well as their properties need to be captured and

translated to digital objects such as variables, counters, or database objects so that

software can operate on these objects and achieve the desired effect.

In the digital world, a parking spot is a variable with a binary value (<available= or

<occupied=).

The parking lot payment station also needs to be represented in the digital world in order

to check if a recently parked car owner actually paid the parking fee.

Internet serves a rather virtual world of content and services (although these services are

hosted on real physical machines)

IoT is all about interaction through the Internet with physical Things.

Y V VYV V¥V

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» As interaction with the physical world is the key for the [oT; it needs to be captured in the
domain model.

» A User and a Physical Entity are two concepts that belong to the domain model.

» A User can be a Human User, and the interaction can be physical (e.g. parking the car in
the parking lot). The physical interaction is the result of the intention of the human to
achieve a certain goal (e.g. park the car).

» The objects, places, and things represented as Physical Entities are the same as Assets.

» A Physical Entity is represented in the digital world as a Virtual Entity.

» A Virtual Entity can be a database entry, a geographical model (mainly for places), an
image or avatar, or any other Digital Artifact.

» Each Virtual Entity also has a unique identifier for making it addressable among other
Digital Artifacts.

» A Virtual Entity representation contains several attributes that correspond to the Physical
Entity current state (e.g. the parking spot availability).

» The Virtual Entity representation and the Physical Entity actual state should be
synchronized.

» For example, a remotely controlled light (Physical Entity) represented by a memory
location (Virtual Entity) in an application could be switched on/off by the User by
changing the Virtual Entity representation, or in other words writing a value in the
corresponding memory location.

» A Digital Artifact is an artifact of the digital world, and can be passive (e.g. a database
entry) or active (e.g. application software).

» The model captures human-to-machine, application (active digital artifact)-to-machine,
and M2M interaction when a digital artifact, and thus a User, interacts with a Device that
is a Physical Entity.

» Physical Entities or their surrounding environment needs to be instrumented with certain
kinds of Devices, or certain Devices need to be embedded/attached to the environment.

» 1oT Domain Model, three kinds of Device types are the most important:

1. Sensors:

» These are simple or complex Devices that typically involve a transducer that
converts physical properties such as temperature into electrical signals.

» These Devices include the necessary conversion of analog electrical signals into
digital signals, e.g. A video camera can be example of a complex sensor that could detect
and recognize people.

2. Actuators:

» These are also simple or complex Devices that involve a transducer that converts
electrical signals to a change in a physical property (e.g. turn on a switch or move a
motor).

» These Devices also include potential communication capabilities, storage of
intermediate commands, processing, and conversion of digital signals to analog electrical
signals.

3. Tags:

» Tags in general identify the Physical Entity that they are attached to.

» In reality, tags can be Devices or Physical Entities but not both, as the domain
model shows.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» An example of a Tag as a Device is a Radio Frequency Identification (RFID) tag,
while a tag as a Physical Entity is a paper-printed immutable barcode or Quick Response
(QR) code.

» Either electronic Devices or a paper-printed entity tag contains a unique
identification that can be read by optical means (bar codes or QR codes) or radio signals
(RFID tags).

» The reader Device operating on a tag is typically a sensor, and sometimes a sensor
and an actuator combined in the case of writable RFID tags.

» Any type of IoT Device needs to
(a) have energy reserves (e.g. a battery)
(b) be connected to the power grid
(c) perform energy scavenging (e.g. converting solar radiation to energy).
» The Device communication, processing and storage, and energy reserve capabilities
determine several design decisions such as if the resources should be on-Device or not.
» Resources are software components that provide data for, or are endpoints for, controlling

Physical Entities.

» Resources can be of two types, on-Device resources and Network Resources.

» An on-Device Resource is typically hosted on the Device itself and provides information,
or is the control point for the Physical Entities that the Device itself is attached to.

» An example is a temperature sensor on a temperature node deployed in a room that hosts
a software component that responds to queries about the temperature of the room.

» The Network Resources are software components hosted somewhere in the network or
cloud.A Virtual Entity is associated with potentially several Resources that provide
informationor control of the Physical Entity represented by this Virtual Entity.

» Resources can be of several types: sensor resources that provide sensor data, actuator
resources that provide actuation capabilities or actuator state (e.g. <on=/<off=), processing
resources that get sensor data as input and provide processed data as output, storage
resources that store data related to Physical Entities, and tag resources that provide
identification data of Physical Entities.

» JoT Services can be classified into three main classes according to their level of

abstraction:

1. Resource-Level Services typically expose the functionality of a Device by exposing
the on-Device Resources. In addition, these services typically handle quality aspects such
as security, availability, and performance issues. An example of such a Network
Resource is a historical database of measurements of a specific resource on a specific
Device.

2. Virtual Entity-Level Services provide information or interaction capabilities about
Virtual Entities, and as a result the Service interfaces typically include an identity of the
Virtual Entity.

3. Integrated Services are the compositions of Resource-Level and Virtual Entity-Level
services, or any combination of both service classes.

Further considerations

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» Identification of Physical Entities is important in an IoT system in order for any User to
interact with the physical world though the digital world.

» Two ways to describe :

(a) primary identification that uses natural features of a Physical Entity, and
(b) secondary identification when using tags or labels attached to the Physical Entity.

» Both types of identification are modeled in the IoT Domain Model.

» Extracting natural features can be performed by a camera Device (Sensor) and relevant
Resources that produce a set of features for specific Physical Entities.

» In physical spaces, a GPS Device or another type of location Device (e.g. an indoor
location Device) can also be used to record the GPS coordinates of the space occupied by
the Physical Entity.

» With respect to secondary identification, tags or labels attached to Physical Entities are
modeled in the IoT Domain model, and there are relevant RFID or barcode technologies
to realize such identification mechanisms.

» Apart from identification, location and time information are important for the annotation
of the information collected for specific Physical Entities and represented in Virtual
Entities.

» Information without one or the other (i.e. location or time) is practically useless apart from
the case of Body Area Networks (BAN, networks of sensors attached to a human body

for live capture of vital signals, e.g. heart rate); that location is basically fixed and associated with
the identification of the Human User.

» Nevertheless, in such cases, sometimes the location of the whole BAN or Human User is
important for correlation purposes (e.g. upon moving outdoors, the Human User heart
rate increases in order to compensate for the lower temperature than indoors).

» Therefore, the location, and often the timestamp of location, for the Virtual Entity can be
modeled as an attribute of the Virtual Entity that could be obtained by location sensing
resources (e.g. GPS or indoor location systems).

Communication model

» The communication model for an IoT Reference Model consists of the identification of
the endpoints of interactions, traffic patterns (e.g. unicast vs. multicast), and general
properties of the underlying technologies used for enabling such interactions.

» It is used to identification of the endpoints of the communication paths.

» The potential communicating endpoints or entities are the Users, Resources, and Devices
from the IoT Domain Model.

» Users include Human Users and Active Digital Artifacts (Services, internal system
components, external applications).

> Devices with a Human_Machine Interface mediate the interactions between a Human
User and the physical world (e.g. keyboards, mice, pens, touch screens, buttons,
microphones, cameras, eye tracking, and brain wave interfaces, etc.), and therefore the
Human User is not a communication model endpoint.

» The User (Active Digital Artifact, Service)-to-Service interactions include the User-to-
Service and Service-to-Service interactions as well as the Service_Resource Device

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

interactions.

» The User-to-Service and Service-to-Service communication is typically based on Internet
protocols and one or both Services are hosted in Service-to-Service interactions on
constrained/low-end Devices such as embedded systems.

» The communication model for these interactions includes several types of gateways (e.g.
network, application layer gateways) to bridge between two or more disparate
communication technologies.

» The Devices may be so constrained that they cannot host the Services, while the
Resources could be hosted or not depending on the Device capabilities.

» This inability of the Device to host Resources or Services results in moving the
corresponding Resources and/or Services out of the Device and into more powerful
Devices or machines in the cloud.

» Then the Resource-to-Device or the Service-to-Resource communication needs to
involve multiple types of communication stacks.

Functional model

» The IoT Functional Model aims at describing mainly the Functional Groups (FG) and
their interaction with the ARM.

» Functional View of a Reference Architecture describes the functional components of an
FG, interfaces, and interactions between the components.

» The Functional View is typically derived from the Functional Model in conjunction with
high level requirements.

Application
: : f : -
'u'SENiCE _'L 0T i} Virtual —LL 0T
Qrganization Process Entity Service
Management |
Managerment 2 Security
"r

Communication

Device

Figure 3.8: IoT-A Functional Model

» The Application, Virtual Entity, IoT Service, and Device FGs are generated by starting
from the User, Virtual Entity, Resource, Service, and Device classes from the IoT
Domain Model.

» The need to compose simple IoT services in order to create more complex ones, as well

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

as the need to integrate IoT services (simple or complex) with existing Information and
Communications Technology (ICT) infrastructure, is the main driver behind the
introduction of the Service Organization and IoT Process Management FGs respectively.

» All the above-mentioned FGs need to be supported by management and security
functionality captured by the corresponding FGs.

Device functional group
» The Device FG contains all the possible functionality hosted by the physical Devices that
are used for instrumenting the Physical Entities.
» This Device functionality includes sensing, actuation, processing, storage, and
identification components, the sophistication of which depends on the Device capabilities.

Communication functional group
» The Communication FG abstracts all the possible communication mechanisms used by
the relevant Devices in an actual system in order to transfer information to the digital world
components or other Devices.
» Examples of such functions include wired bus or wireless mesh technologies through
which sensor Devices are connected to Internet Gateway Devices.
» Communication technologies used between Applications and other functions such as
functions from the IoT Service FG are out of scope because they are the typical Internet
technologies.

IoT Service functional group
» The IoT Service FG corresponds mainly to the Service class from the IoT Domain
Model, and contains single 10T Services exposed by Resources hosted on Devices or in the
Network (e.g. processing or storage Resources).
» Support functions such as directory services, which allow discovery of Services and
resolution to Resources, are also part of this FG.

Virtual Entity functional group
» The Virtual Entity FG corresponds to the Virtual Entity class in the IoT Domain Model,
and contains the necessary functionality to manage associations between Virtual Entities
with themselves as well as associations between Virtual Entities and related IoT Services,
1.e. the Association objects for the [oT Information Model.
» Associations between Virtual Entities can be static or dynamic depending on the mobility
of the Physical Entities related to the corresponding Virtual Entities.
An example of a static association between Virtual Entities is the hierarchical inclusion
relationship of a building, floor, room/corridor/open space, i.e. a building contains
multiple floors that contain rooms, corridors, and open spaces.
An example of a dynamic association between Virtual Entities is a car moving from one
block of a city to another (the car is one Virtual Entity while the city block is another).
A major difference between IoT Services and Virtual Entity Services is the semantics of
the requests and responses to/from these services.
The parking lot example, the Parking Sensor Service provides as a response only a
number <0= or <1= given the identifier of a Loop Sensor (e.g. #11).
The Virtual Entity Parking Spot #01 responds to a request about its occupancy status as
<free.= The IoT Service provides data or information associated to specific Devices or
Resources, including limited semantic information (e.g. Parking sensor #11, value5<0=,
units 5 none); the Virtual IoT Service provides information with richer semantics
(<Parking spot #01 is free=), and is closer to being human-readable and understandable.

A\

vV V VYV V

IoT Service Organization functional group

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» The purpose of the IoT Service Organization FG is to host all functional components that
support the composition and orchestration of IoT and Virtual Entity services.

» This FG acts as a service hub between several other functional groups such as the IoT
Process Management FG when, for example, service requests from Applications or the
IoT Process Management are directed to the Resources implementing the necessary
Services.

» Therefore, the Service Organization FG supports the association of Virtual Entities with
the related IoT Services, and contains functions for discovery, composition, and
choreography of services.

» Simple IoT or Virtual Entity Services can be composed to create more complex services,
e.g. a control loop with one Sensor Service and one Actuator service with the objective to
control the temperature in a building.

» Choreography is the brokerage of Services so that Services can subscribe to other
services in a system.

IoT Process Management functional group

» The IoT Process Management FG is a collection of functionalities that allows smooth
integration of IoT-related services (IoT Services, Virtual Entity Services, Composed
Services) with the Enterprise (Business) Processes.

Management functional group

» The Management FG includes the necessary functions for enabling fault and performance
monitoring of the system, configuration for enabling the system to be flexible to changing
User demands, and accounting for enabling subsequent billing for the usage of the
system.

» Support functions such as management of ownership, administrative domain, rules and
rights of functional components, and information stores are also included in the
Management FG.

Security functional group

» The Security FG contains the functional components that ensure the secure operation of
the system as well as the management of privacy.

» The Security FG contains components for Authentication of Users (Applications,
Humans), Authorization of access to Services by Users, secure communication (ensuring
integrity and confidentiality of messages) between entities of the system such as Devices,
Services, Applications, assurance of privacy of sensitive information relating to Human
Users.

» These include privacy mechanisms such as anonymization of collected data,
anonymization of resource and Service accesses (Services cannot deduce which Human
User accessed the data), and un-linkability (an outside observer cannot deduce the
Human User of a service by observing multiple service requests by the same User).

Application functional group
» The Application FG is just a placeholder that represents all the needed logic for creating
an loT application.
» The applications typically contain custom logic tailored to a specific domain such as a
Smart Grid.
» An application can also be a part of a bigger ICT system that employs IoT services such

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

as a supply chain system that uses RFID readers to track the movement of goods within a
factory in order to update the Enterprise Resource Planning (ERP) system.
Modular IoT functions
» It is important to note that not all the FGs are needed for a complete actual IoT system.

» The Functional Model, as well as the Functional View of the Reference Architecture,
contains a complete map of the potential functionalities for a system realization.

» The functionalities that will eventually be used in an actual system are dependent on the
actual system requirements.

» FGs are organized in such a way that more complex functionalities can be built based on
simpler ones, thus making the model modular.

Information model

» Information is defined as the enrichment of data (raw values without relevant or usable
context) with the right context, so that queries about who, what, where, and when can be
answered.

» loT information model captures the details of a Virtual Entity centric model.

Yalue
£
|
. Yalue
Virtual Entity 5 Attribute . Container
-entity Type -attribute Name
-identi fer -gttribute Type
0= T [4)
associgtion _"»_‘
o.* S 1
Service 1 1 i n.=
Description Association
MetaData
-service Typs
-metadata Name
| 0. -metadata Type
exposure -metadata \alus]
lo.= hosting - 0.=
Resource 0.* 0.1 Device
Description Description

Figure 3.9: High-Level IoT Information Model
» Association class in Figure 3.9 contains information about the specific association

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

between a Virtual Entity and a related Service.

» On a high-level, the [oT Information Model maintains the necessary information about
Virtual Entities and their properties or attributes.

» These properties/attributes can be static or dynamic and enter into the system in various
forms, e.g. by manual data entry or reading a sensor attached to the Virtual Entity.

» Virtual Entity attributes can also be digital synchronized copies of the state of an
actuator.

» In the presentation of the high-level IoT information model, we omit the attributes that
are not updated by an IoT Device (sensor, tag) or the attributes that do not affect any IoT
Device (actuator, tag), with the exception of essential attributes such as names andidentifiers.

» Examples of omitted attributes that could exist in a real implementation are room names
and floor numbers, in general, context information that is not directly related to IoT
Devices, but that is nevertheless important for an actual system.

» The IoT Information Model describes Virtual Entities and their attributes that have one or
more values annotated with meta-information or metadata.

» The attribute values are updated as a result of the associated services to a Virtual Entity.

» The associated services are related to Resources and Devices as seen from the IoT
Domain Model.

» A Virtual Entity object contains simple attributes/properties:

(a) entityType to denote the type of entity, such as a human, car, or room (the entity type
can be a reference to concepts of a domain ontology, e.g. a car ontology);

(b) a unique identifier; and

(c) zero or more complex attributes of the class Attributes.

» The class Attributes should not be confused with the simple attributes of each class.

» This class Attributes is used as a grouping mechanism for complex attributes of the
Virtual Entity.

» Objects of the class Attributes, in turn, contain the simple attributes with the self
descriptive names attributeName and attributeType.

» The attribute type is the semantic type of the value (e.g. that the value is a temperature
value), and can refer to an ontology such as the NASA quantities and units SWEET
ontology (NASA JPL 2011).

» The Attribute class also contains a complex attribute ValueContainer that is a container
of the multiple values that an attribute can take.

» The container includes complex attributes of the class Value and the class MetaData.

» The container contains exactly one value and meta-information (modeled as the class
MetaData), such as a timestamp, describing this single value.

» Objects of the MetaData class can contain MetaData objects as complex attributes, as
well as the simple attributes with the self-descriptive namesmetadataName,
metadataType, and metadataValue.

» a Virtual Entity is associated with Resources that expose Services about the specific
Virtual Entity.

» This association between a Virtual Entity and its Services is captured in the Information
Model with the explicit class called Association.

» Objects of this class capture the relationship between objects of the complex Attribute

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

class (associated with a Virtual Entity) and objects of the Service Description class.

» The class Association describes the relationship between a Virtual Entity and Service
Description through the Attribute class, there is a dashed line between Association class
and the line between the Virtual Entity and Service Description classes.

» The attribute serviceType can take two values:

(a) <INFORMATION,= if the associated service is a sensor service (i.e. allows
reading of the sensor), or
(b) KACTUATION,= if the associated serviceis an actuation service (i.e. allows an
action executed on an actuator).
» In both cases, the eventual value of the attribute will be a result of either reading a sensor
or controlling an actuator.

Example
Information Model: Information Model::
Virtual Entity 0= Attribute
-ergity Typ=s -attnbute Name
-identifer -attnbute Type

¢

isins@ance of

Information Model:: \ Information Model: \
Service Description Association L]
isinstance of 1
W . R !
it Parking Spot #01: | hasOcoupancy:
f
e Virtual Ertity N Attribute

T is instance of

Parking Lot

Coocupancy Ococupancy
Service: Assacation
Service As=sociation

Description

Figure 3.10: IoT information Model example

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

» Not show all the possible Virtual Entities, but only one corresponding to one parking
spot.

» This Virtual Entity is described with one Attribute (among others) called hasOccupancy.

» This Attribute is associated with the Parking Lot Occupancy Service Description through
the Occupancy Association.

» The Occupancy Association is the explicit expression of the association (line) between
the Parking Spot #1 Virtual Entity and the Parking Lot Occupancy Service.

» The dashed arrows with hollow arrowheads represent the relationship <is instance of= for
the information model, as opposed to the Realization relationship for the IoT Domain
Model.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

“alue
' Mirtual Entity E
_ - = S L S it
S et > i Mitual Entity [—grof Aribune %»:»1— sl
Easocardy [evtnyType StoVE tame
s abieType i
: : LT N e SR e VAT B B L& Eep A
Senice [o.:
AseBtby [oo
[mmanscsts. ,.[.]_'.'.._......_l:\. . 1 .
i i [o.: 8
exposes Eeoiomine s s voacnas DeS:crr?p‘:ieon e pssnciation ' :
‘ = e [Reaaas MetaDam | |
hoste 0 : | ! o6 wke Type - ;
Resource < Device i 0% | [meoEEEme |
: 5 i | MmetadataT -y
:>. exmlm e 1 | memaaNe |
_ i 0.
i [Resource | Y3 pajice :
|| Descrpton DX O Description
i

Figure 3.11: Relationship between core concepts of IoT domain Model and IoT
Information Model

» Figure 3.11 presents the relationship between the core concepts of the IoT Domain Model
and the IoT Information Model.

» The Information Model captures the Virtual Entity in the Domain Model being the
<Thing= in the Internet of Things as several associated classes (Virtual Entity, Attribute,
Value, MetaData, Value Container) that basically capture the description of a Virtual
Entity and its context.

» The Device, Resource, and Service in the IoT Domain Model are also captured in the IoT
Information Model because they are used as representations of the instruments and the
digital interfaces for interaction with the Physical Entity associated with the Virtual
Entity.

» The Information Model is a very high-level model, and omits certain details that could
potentially be required in a concrete architecture and an actual system.

» These details could be derived by specific requirements from specific use cases
describing the target actual system.

» Several other attributes or properties that could exist in a Virtual Entity description:

1. Location and its temporal information are important because Physical Entities
represented by Virtual Entities exist in space and time. These properties are extremely
important when the interested Physical Entities are mobile (e.g. a moving car).A mobile
Physical Entity affects the associations between Attributes and related Services, e.g. a
person moving close to a camera (sensor) is associated with the Device, Resource, and
Services offered by the camera for as long as she stays within the field of view of the
camera. In such cases, the temporal availability of the associations between Attributes

and Services need to be captured, as availability denotes also temporal observability of the
Virtual Entity.

2. Even non-moving Virtual Entities contain properties that are dynamic with time,
and therefore their temporal variations need to be modeled and captured by an
information model.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

3. Information such as ownership is also important in commercial settings because it
may determine access control rules or liability issues. It is important to note that the
Attribute class is general enough to capture all the interested properties of a Physical
Entity, and thus provides an extensible model whose details can only be specified by the
specific actual system in mind.

» The Services in the IoT Domain Model are mapped to the Service Description in the IoT
Information Model.

» The Service Description contains the following :
1. Service type, which denotes the type of service, such as Big Web Service or RESTful
Web Service. The interfaces of a service are described based on the description language
for each service type, for example, Web Application Description Language (WADL) for
RESTful Web Services, Web Services Description Language (WSDL) for Big Web
Services, Universal Service Description Language (USDL). The interface description
includes, among other information, the invocation contact information, e.g. a Uniform
Resource Locator (URL).
2. Service area and Service schedule are properties of Services used for specifying the
geographical area of interest for a Service and the potential temporal availability of a
Service, respectively. For sensing services, the area of interest is equivalent to the
observation area, whereas for actuation services the area of interest is the area of
operation or impact.
3. Associated resources that the Service exposes.
4. Metadata or semantic information used mainly for service composition. This is
information such as the indicator of which resource property is exposed as input or
output, whether the execution of the service needs any conditions satisfied before
invocation.

» The IoT Information Model also contains Resource descriptions because Resources are
associated with Services and Devices in the IoT Domain model.

> A Resource description contains the following information:
1. Resource name and identifier for facilitating resource discovery.
2. Resource type, which specifies if the resource is
(a) a sensor resource, which provides sensor readings;
(b) an actuator resource, which provides actuation capabilities (to affect the physical
world) and actuator state;

(c) a processor resource, which provides processing of sensor data and output of
processed data; a storage resource, which provides storage of data about a Physical
Entity;

(d) a tag resource, which provides identification data for Physical Entities.

3. Free text attributes or tags used for capturing typical manual input such as <fire alarm,

ceiling.=

4. Indicator of whether the resource is an on-Device resour ce or network resource.

5. Location information about the Device that hosts this resource in case of an on-Device

resource.

6. Associated Service information.

7. Associated Device description information.
» A Device is a Physical Entity that could have a sensor, actuator, or tag instantiation.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

> Protocols:

Internet protocol (IP) is a set of rules that dictates how data gets sent to the internet. IoT
protocols ensure that information from one device or sensor gets read and understood by
another device, a gateway, a service. Protocols they are :
1. 6LowPAN
2. RPL
3. CoAP
4. MQTT

>

» 6LoWPAN:(Internet Protocol version 6 (IPv6) over low-power wireless networks):
While the Internet Protocol is key for a successful Internet of Things, constrained nodes and
constrained networks mandate optimization at various layers and on multiple protocols of the
IP architecture. Some optimizations are already available from the market or under
development by the IETF. Figure below highlights the TCP/IP layers where optimization is

applied.
Transport TCP/UDP l
Layer
Network |
Layer | IPv6/IPv4 ; ’
—»l Adaptation Layer —
Data Link | : ’
Layer | Including 802.14.4g, 802.15.4¢e
Physical : ;
Layer Wired/Wireless ’

3.12: Optimizing IP for IoT Using an Adaptation Layer

In the IP architecture, the transport of IP packets over any given Layer 1 (PHY) and Layer 2 (MAC)
protocol must be defined and documented. The model for packaging IP into lower- layer protocols is
often referred to as an adaptation layer.

Unless the technology is proprietary, IP adaptation layers are typically defined by an IETF working group
and released as a Request for Comments (RFC). An RFC is a publication from the IETF that officially
documents Internet standards, specifications, protocols, procedures, and events. For example, RFC
864 describes how an IPv4 packet gets encapsulated over an Ethernet frame, and RFC 2464 describes
how the same function is performed for an IPv6 packet.

IoT-related protocols follow a similar process. The main difference is that an adaptation layer designed
for IoT may include some optimizations to deal with constrained nodes and networks. The main
examples of adaptation layers optimized for constrained nodes or “things” are the ones under the
6LoWPAN working group and its successor, the 6L.o working group.

The initial focus of the 6LoWPAN working group was to optimize the transmission of IPv6 packets
over constrained networks such as IEEE 802.15.4. Figure below shows an example of an IoT protocol
stack using the 6LoWPAN adaptation layer beside the well-known IP protocol stack for reference.

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

loT Protocol Stack with

IP Protocol Stack 6LoWPAN Adaptation Layer
HTTP RTP Application Application Protcols
TCP UDP ICMP Transport UDP ICMP
IP Network IPvé
Eth MAC Data Link rohidied.
gl L IEEE 802.15.4 MAC
Ethernet PHY Physical IEEE 802.15.4 PHY

Figure 3.13: Comparison of an IoT Protocol Stack Utilizing 6LoWPAN and an IP Protocol Stack

The 6LoWPAN working group published several RFCs, but RFC 4994 is foundational because it
defines frame headers for the capabilities of header compression, fragmentation, and mesh addressing.
These headers can be stacked in the adaptation layer to keep these concepts separate while enforcing a
structured method for expressing each capability. Depending on the implementation, all, none, or any
combination of these capabilities and their corresponding headers can be enabled. Figure below
shows some examples of typical 6LoWPAN header stacks.

802.15.4 IPv6 Header <
Header Compression i
802.15.4 IPv6 Header {

Fragment Header

Header IPv6 Payload |

Compression

802.154 | Mesh Addressing IPv6 Header |
Kociras e Fragment Header Compreesi IPv6 Payload‘

Figure 3.14: 6LoWPAN Header Stack

Header Compression

IPv6 header compression for 6LOWPAN was defined initially in RFC 4944 and subsequently updated by
RFC 6282. This capability shrinks the size of IPv6’s 40-byte headers and User Datagram Protocol’s
(UDP’s) 8-byte headers down as low as 6 bytes combined in some cases. Note that header
compression for 6LOWPAN is only defined for an IPv6 header and not IPv4.

The 6LoWPAN protocol does not support IPv4, and, in fact, there is no standardized IPv4 adaptation
layer for IEEE 802.15.4. 6LoWPAN header compression is stateless, and conceptually it is not too
complicated. However, a number of factors affect the amount of compression, such as implementation
of RFC 4944 versus RFC 6922, whether UDP is included, and various IPv6 addressing scenarios.

At a high level, 6LoOWPAN works by taking advantage of shared information known by all nodes
from their participation in the local network. In addition, it omits some standard header fields by
assuming commonly used values. Figure below highlights an example that shows the amount of
reduction that is possible with 6LoWPAN header compression.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

6LoWPAN Without Header Compression

127 Byte IEEE 802.15.4 Frame
1B 40B 8B 53B

802.15.4 IPv6 UuDP ‘} Payload FCS
— — | | | L

6LOWPAN Header

A

Y

6LoWPAN With IPv6 and UDP Header Compression
127 Byte IEEE 802.15.4 Frame
2B 4B 108B

802154 | o
Hanser | UDP Payload FCS

6LOWPAN Header
with Compressed
IPv6 Header

A

Y

Figure 3.15: 6LoWPAN Header Compression

At the top of Figure above, you see a 6LoOWPAN frame without any header compression enabled: The
full 40- byte IPv6 header and 8-byte UDP header are visible. The 6LoWPAN header is only a single
byte in this case. Notice that uncompressed [IPv6 and UDP headers leave only 53 bytes of data
payload out of the 127- byte maximum frame size in the case of IEEE 802.15.4.

The bottom half of Figure above shows a frame where header compression has been enabled for a best-
case scenario. The 6LoWPAN header increases to 2 bytes to accommodate the compressed [Pv6
header, and UDP has been reduced in half, to 4 bytes from 8. Most importantly, the header
compression has allowed the payload to more than double, from 53 bytes to 108 bytes, which is
obviously much more efficient. Note that the 2-byte header compression applies to intra-cell
communications, while communications external to the cell may require some field of the header to
not be compressed.

Mesh Addressing

The purpose of the 6LoWPAN mesh addressing function is to forward packets over multiple hops. Three
fields are defined for this header: Hop Limit, Source Address, and Destination Address. Analogous to
the IPv6 hop limit field, the hop limit for mesh addressing also provides an upper limit on how many
times the frame can be forwarded. Each hop decrements this value by 1 as it is forwarded. Once the
value hits 0, it is dropped and no longer forwarded.

The Source Address and Destination Address fields for mesh addressing are IEEE 802.15.4 addresses

indicating the endpoints of an IP hop. Figure below details the 6LoOWPAN mesh addressing header
fields.

6LOWPAN Mesh Addressing Header

1B 2B 2B
802.15.4 Header Source Address Destination Address FCS

|

6LOWPAN Mesh
Addressing Header
Including Hop Count

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

Note that the mesh addressing header is used in a single IP subnet and is a Layer 2 type of routing known
as mesh-under. RFC 4944 only provisions the function in this case as the definition of Layer 2 mesh
routing specifications was outside the scope of the 6LoOWPAN working group, and the IETF doesn’t
define “Layer 2 routing.” An implementation performing Layer 3 IP routing does not need to
implement a mesh addressing header unless required by a given technology profile.

IoT Application Layer Protocols (COAP ANS MQTT)

When considering constrained networks and/or a large-scale deployment of constrained nodes,
verbose web-based and data model protocols, may be too heavy for IoT applications. To address this
problem, the IoT industry is working on new lightweight protocols that are better suited to large
numbers of constrained nodes and networks. Two of the most popular protocols are CoAP and
MQTT. Figure below highlights their position in a common IoT protocol stack.

CoAP MQTT

UDP TCP

1. CoAP (Constrained Application Protocol (CoAP)):

Constrained Application Protocol (CoAP) resulted from the IETF Constrained RESTful Environments
(CoRE) working group’s efforts to develop a generic framework for resource-oriented applications
targeting constrained nodes and networks. The CoAP framework defines simple and flexible ways to
manipulate sensors and actuators for data or device management.

The CoAP messaging model is primarily designed to facilitate the exchange of messages over UDP

between endpoints, including the secure transport protocol Datagram Transport Layer Security
(DTLS).
From a formatting perspective, a CoAP message is composed of a short fixed- length Header field (4
bytes), a variable-length but mandatory Token field (0—8 bytes), Options fields if necessary, and the
Payload field. Figure below details the CoAP message format, which delivers low overhead while
decreasing parsing complexity.

4 Bytes
B

Ver| T | TKL Code Message 1D

Token (Optional, Length Assigned by TKL)

11111111 Payload (Optional)

CoAP Message Format

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

The CoAP message format is relatively simple and flexible. It allows CoAP to deliver low overhead,
which is critical for constrained networks, while also being easy to parse and process for constrained
devices.

CoAP Message Fields

Ver: It is a 2 bit unsigned integer indicating the version

T: it is a 2 bit unsigned integer indicating the message type: O confirmable, 1 non-confirmable
TKL: Token Length is the token 4 bit length

Code: It is the code response (8 bit length)

Message ID: It is the message ID expressed with 16 bit

Token :With a length specified by TKL, correlates request and responses

Option : specifies the option number, length and option value.

Payload :carries the COAP application data.

CoAP can run over IPv4 or IPv6. However, it is recommended that the message fit within a single IP
packet and UDP payload to avoid fragmentation. For IPv6, with the default MTU size being 1280
bytes and allowing for no fragmentation across nodes, the maximum CoAP message size could be up
to 1152 bytes, including 1024 bytes for the payload. In the

case of IPv4, as IP fragmentation may exist across the network, implementations should limit themselves
to more conservative values and set the [Pv4 Don’t Fragment (DF) bit.

CoAP communications across an IoT infrastructure can take various paths. Connections can be
between devices located on the same or different constrained networks or between devices and
generic Internet or cloud servers, all operating over IP. Proxy mechanisms are also defined, and RFC
7252 details a basic HTTP mapping for CoAP. As both HTTP and CoAP are IP-based protocols, the
proxy function can be located practically anywhere in the network, not necessarily at the border
between constrained and non-constrained networks.

HTTP-CoAP

P(oxy
o s b
" bAP)
B . “. T
= — /"\»‘

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

Just like HTTP, CoAP is based on the REST architecture, but with a “thing” acting as both the client and
the server. Through the exchange of asynchronous messages, a client requests an action via a method
code on a server resource. A uniform resource identifier (URI) localized on the server identifies this

resource. The server responds with a response code that may include a resource representation. The
CoAP request/response semantics include the methods GET, POST, PUT, and DELETE.

Message Queuing Telemetry Transport ((MQTT):

At the end of the 1990s, engineers from IBM and Arcom (acquired in 2006 by Eurotech) were looking for
a reliable, lightweight, and cost-effective protocol to monitor and control a large number of sensors
and their data from a central server location, as typically used by the oil and gas industries. Their
research resulted in the development and implementation of the Message Queuing Telemetry
Transport (MQTT) protocol that is now standardized by the Organization for the Advancement of
Structured Information Standards (OASIS).

The selection of a client/server and publish/subscribe framework based on the TCP/IP architecture, as
shown in Figure below.

Application
Temperature/Relative

Humidity Sensor w8 MQTT Client
A (Subscriber)
(| i” “i” - .

r I 2 -
g | Message £~ I--! MQTT Client
~ L4

—_—>
Broker (Subscriber)

4 B MQTT Client
(Subscriber)
Ed

An MQTT client can act as a publisher to send data (or resource information) to an MQTT server acting
as an MQTT message broker. In the example illustrated in Figure 2.22, the MQTT client on the left
side is a temperature (Temp) and relative humidity (RH) sensor that publishes its Temp/RH data. The
MQTT server (or message broker) accepts the network connection along with application messages,
such as Temp/RH data, from the publishers. It also handles the subscription and un-subscription
process and pushes the application data to MQTT clients acting as subscribers.

The application on the right side of Figure above is an MQTT client that is a subscriber to the Temp/RH
data being generated by the publisher or sensor on the left. This model, where subscribers express a
desire to receive information from publishers, is well known. A great example is the collaboration and
social networking application Twitter.

MQTT Client
(Publisher)

With MQTT, clients can subscribe to all data (using a wildcard character) or specific data from the
information tree of a publisher. In addition, the presence of a message broker in MQTT decouples the
data transmission between clients acting as publishers and subscribers. In fact, publishers and
subscribers do not even know (or need to know) about each other. A benefit of having this decoupling
is that the MQTT message broker ensures that information can be buffered and cached in case of
network failures. This also means that publishers and subscribers do not have to be online at the same
time. MQTT control packets run over a TCP transport using port 1883. TCP ensures an ordered,
lossless stream of bytes between the MQTT client and the MQTT server. Optionally, MQTT can be
secured using TLS on port 8883, and WebSocket (defined in RFC 6455) can also be used.

MQTT is a lightweight protocol because each control packet consists of a 2-byte fixed header with
optional variable header fields and optional payload. You should note that a control packet can
contain a payload up to 256 MB. Figure 2.23 provides an overview of the MQTT message format.

Dr. N. Penchalaiah, Associate professor, Department of AI&ML, Annamacharya University

1 Byte

Message Type QoS Retain

Fixed Header, Present
in all MQTT Control
Packets

DUP

Remaining Length

Payload, Prosenl n
Some MQTT Control

Payload tional
ayload (Optional)

MQTT Message Format

Compared to the CoAP message format, MQTT contains a smaller header of 2 bytes compared to 4
bytes for CoAP. The first MQTT field in the header is Message Type, which identifies the kind of
MQTT packet within a message. Fourteen different types of control packets are specified in MQTT
version 3.1.1. Each of them has a unique value that is coded into the Message Type field. Note that
values 0 and 15 are reserved. MQTT message types are summarized in Table.

Message Type Value | Flow Description

CONNECT 1 Client to server Request to connect
CONNACK 2 Server to client Connect acknowledgement
PUBLISH 3 Client to server / Server to client | Publish message

PUBACK 4 Client to server / Server to client | Publish acknowledgement
PUBREC 5 Client to server / Server to client | Publish received

PUBREL 6 Client to server / Server to client | Publish release

PUBCOMP 7 Client to server / Server to client | Publish complete
SUBSCRIBE 8 Client to server Subscribe request

SUBACK 9 Server to client Subscribe acknowledgement
UNSUBSCRIBE | 10 Client to server Unsubscribe request
UNSUBACK 11 Server to client Unsubscribe acknowledgement
PINGREQ 12 Client to server Ping request

PINGRESP 13 Server to client Ping response
DISCONNECT 14 Client to server Client disconnecting

The next field in the MQTT header is DUP (Duplication Flag). This flag, when set, allows the client to
notate that the packet has been sent previously, but an acknowledgement was not received. The QoS
header field allows for the selection of three different QoS levels. The next field is the Retain flag.
Only found in a PUBLISH message, the Retain flag notifies the server to hold onto the message data.
This allows new subscribers to instantly receive the last known value without having to wait for the
next update from the publisher.

The last mandatory field in the MQTT message header is Remaining Length. This field specifies the
number of bytes in the MQTT packet following this field.

MQTT sessions between each client and server consist of four phases: session establishment,
authentication, data exchange, and session termination. Each client connecting to a server has a
unique client ID, which allows the identification of the MQTT session between both parties. When
the server is delivering an application message to more than one client, each client is treated
independently.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

Subscriptions to resources generate SUBSCRIBE/SUBACK control packets, while un- subscription is
performed through the exchange of UNSUBSCRIBE/UNSUBACK control packets. Graceful
termination of a connection is done through a DISCONNECT control packet, which also offers the
capability for a client to reconnect by re-sending its client ID to resume the operations.

A message broker uses a topic string or topic name to filter messages for its subscribers. When
subscribing to a resource, the subscriber indicates the one or more topic levels that are used to
structure the topic name. The forward slash (/) in an MQTT topic name is used to separate each level
within the topic tree and provide a hierarchical structure to the topic names.

Comparison of CoAP and MQTT

Factor CoAP MQTT
Main transport | UDP TCP
protocol
Typical Request/response Publish/subscribe
messaging
Effectiveness in | Excellent Low/fair (Implementations pairing
LLNs UDP with MQTT are better for
LLNs.)
Security DTLS SSL/TLS
Communication | One-to-one Many-to-many
model
Strengths Lightweight and fast, with low overhead, | TCP and multiple QoS options
and suitable for constrained networks; uses provide robust communications;
a RESTful model that is easy to code to; simple management and
easy to parse and process for constrained scalability using a broker
devices; support for multicasting; architecture
asynchronous and synchronous messages
Weaknesses Not as reliable as TCP-based MQTT, so | Higher overhead for constrained
the application must ensure reliability. devices and networks; TCP
connections can drain low-power
devices; no multicasting support

RPL:(RPL (IPv6 Routing protocol):

RPL stands for Routing Protocol for Low Power and Lossy Networks for heterogeneous traffic networks.
It is a routing protocol for Wireless Networks. This protocol is based on the same standard as by
Zigbee and 6 Lowpan is IEEE 802.15.4 It holds both many-to-one and one-to- one communication. It
is a Distance Vector Routing Protocol that creates a tree-like routing topology called the Destination
Oriented Directed Acyclic Graph (DODAG), rooted towards one or more nodes called the root node
or sink node.

The Directed Acyclic Graphs (DAGs) are created based on user-specified specific Objective
Function (OF). The OF defines the method to find the best-optimized route among the number of
sensor devices.

SN\

10
2 3
b e

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

The IETF chartered the ROLL (Routing Over Low power and Lossy networks) working group to evaluate
all three routing protocols and determine the needs and requirements for developing a routing solution
for IP smart objects. After the study of various use cases and a survey of existing protocols, the
consensus was that a new routing protocol should be developed for IP smart objects, given the
characteristics and requirements of the constrained network. This new Distance Vector Routing
Protocol was named the IPv6 Routing Protocol for Low power and Lossy networks(RPL). The RPL
specification was published as RFC 6550 by the ROLL working group.

In an RPL Network, each node acts as a router and becomes part of a mesh network. Routing is
performed at the I[P Layer. Each node examines every received IPv6 packet and determines the next-
hop destination based on the information contained in the IPv6 header. No information from the MAC
layer header is needed to perform the next determination.

Modes of RPL:
This protocol defines two modes:

Storing mode: All modes contain the entire routing table of the RPL domain. Every node knows how to
reach every other node directly.

Non-Storing mode: Only the border router(s) of the RPL. domain contain(s) the full routing table. All
other nodes in the domain maintain their list of parents only and use this as a list of default routes
towards the border router. The abbreviated routing table saves memory space and CPU. When
communicating in non-storing mode, a node always forwards its packet to the border router, which
knows how to ultimately reach the final destination.

RPL is based on the concept of a Directed Acyclic Graph (DAG). A DAG is Directed Graph where no
cycle exists. This means that from any vertex or point in the graph, we cannot follow an edge or a line
back to this same point. All of the edges are arranged in a path oriented toward and terminating at one
or more root nodes.

A basic RPL process involves building a Destination Oriented Directed Acyclic Graph (DODAG). A
DODAG is a DAG rooted in one destination. In RPL this destination occurs at a border router known
as the DODAG root. In a DODAG, three parents maximum are maintained by each node that
provides a path to the root. Typically one of these parents is the preferred parent, which means it is
the preferred next hop for upward roots towards the root. The routing graph created by the set of
DODAG parents across all nodes defines the full set of upwards roots. RPL protocol information
should ensure that routes are loop-free by disallowing nodes from selected DODAG parents
positioned further away from a border router.

Implementation of RPL Protocol:

The RPL protocol is implemented using the Contiki Operating system. This Operating System majorly
focuses on 10T devices, more specifically Low Power Wireless IoT devices. It is an Open source
Model and was first bought into the picture by Adam Dunkel’s.

The RPL protocol mostly occurs in wireless sensors and networks. Other similar Operating Systems
include T-Kernel, EyeOS, LiteOS, etc.

I0OT FRAMEWORK-THING SPEAK:

The Internet of Things(IoT) is a system of ‘connected things’. The things generally comprise of an
embedded operating system and an ability to communicate with the internet or with the neighbouring
things. One of the key elements of a generic [oT system that bridges the various ‘things’ is an [oT
service. An interesting implication from the ‘things’ comprising the IoT systems is that the things by
themselves cannot do anything. At a bare minimum, they should have an ability to connect to other
‘things’. But the real power of [oT is harnessed when the things connect to a ‘service’ either directly
or via other ‘things’. In such systems, the service plays the role of an invisible manager by providing
capabilities ranging from simple data collection and monitoring to complex data analytics. The below
diagram illustrates where an IoT service fits in an IoT ecosystem:

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

End User
Application

What is Thing Speak:

Thing Speak is a platform providing various services exclusively targeted for building IoT applications. It
offers the capabilities of real-time data collection, visualizing the collected data in the form of charts,
ability to create plugins and apps for collaborating with web services, social network and other APIs.
We will consider each of these features in detail below.

The core element of Thing Speak is a ‘Thing Speak Channel’. A channel stores the data that we

send to Thing Speak and comprises of the below elements:

o 8 fields for storing data of any type - These can be used to store the data from a sensor or from an
embedded device.

e 3 location fields - Can be used to store the latitude, longitude and the elevation. These are very
useful for tracking a moving device.

e 1 status field - A short message to describe the data stored in the channel.

To use Thing Speak, we need to signup and create a channel. Once we have a channel, we can send
the data, allow Thing Speak to process it and also retrieve the same. Let us start exploring Thing
Speak by signing up and setting up a channel.

=

DATA AGGREGATION

% AND ANALYTICS

- LIThingSpeak

S MATLAB
-

o — { i,

-— T ¢ v | Z%nl

o

e SMART CONNECTED DEVICES _3_5

| ALGORITHM DEVELOPMENT
- SENSOR ANALYTICS

Thing Speak allows for IoT analytics with its cloud supportive features that make it easier for you to
analyse the live data. It supports MATLAB code that a developer can write and perform actions on
the live data streams. It includes different functions like data visualization, pre- processing, analysis,

and more.

Dr. N. Penchalaiah, Associate professor, Department of AI& ML, Annamacharya University

The functions included in Thing Speak are:

Location Tracing

Information distribution through public channels and gathering through a private channel
Includes cloud support

Online analytics of data to identify patterns and relations

device executions supported through command schedule

Social sharing support through Twilio and Twitter

Alerts for every reaction

It allows one to prototype an IoT system in advance before they start the development. The analytics
and data generated through Thing Speak are incredibly reliable as the tool enables performing the best
operations and delivers excellent results to make your IoT system full proof.

