Dr. N. Penchalaiah, Associate Professor, AI&ML, Annamacharya University

Operating System

Unitl OPERATING SYSTEMS OVERVIEW

Computer System Overview - Basic Elements, Instruction Execution, Interrupts,
Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and
Multicore Organization. Operating system overview - objectives and functions,
Evolution of Operating System - Computer System Organization - Operating System
Structure and Operations - System Calls, System Programs, OS Generation and System
Boot.

Unit Il PROCESS MANAGEMENT

Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess
Communication; Threads- Overview, Multicore Programming, Multithreading Models;
Windows 7 - Process Synchronization - Critical Section Problem, Mutex Locks,
Semaphores, Monitors; CPU Scheduling and Deadlocks.

Unit III STORAGE MANAGEMENT

Main Memory-Contiguous Memory Allocation, Segmentation, Paging, 32 and 64 bit
architecture Examples; Virtual Memory- Demand Paging, Page Replacement,
Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UnitIVI/0 SYSTEMS

Mass Storage Structure- Overview, Disk Scheduling and Management; File System
Storage-File Concepts, Directory and Disk Structure, Sharing and Protection; File
System Implementation- File System Structure, Directory Structure, Allocation
Methods, Free Space Management; I/0 Systems.

Unit V CASE STUDY

Linux System Design Principles, Kernel Modules, Process Management, Scheduling,
Memory Management, Input-Output Management, File System, Inter-process
Communication;Mobile OS iOS and Android Architecture and SDK Framework, Media
Layer, Services Layer, Core OS Layer, File System.

TEXT BOOK :

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, —Operating System
Concepts||,

9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES :

1. Ramaz Elmasri, A. Gil Carrick, David Levine, —Operating Systems - A Spiral
Approach]||,

Tata McGraw Hill Edition, 2010.

2. Achyut S.Godbole, Atul Kahate, —Operating Systems||, McGraw Hill Education, 2016.
3. Andrew S. Tanenbaum, —Modern Operating Systems||, Second Edition, Pearson
Education, 2004.

4. Gary Nutt, —Operating Systems||, Third Edition, Pearson Education, 2004.

5. Harvey M. Deitel, —Operating Systems||, Third Edition, Pearson Education, 2004.

6. Daniel P Bovet and Marco Cesati, —Understanding the Linux kernel||, 3rd edition,
O'Reilly,

2005.

otk W

7. Neil Smyth, —iPhone i0OS 4 Development Essentials - Xcode||, Fourth Edition,
Payload media,2011.

COURSE OBJECTIVE

To understand the basic concepts, functions of OS .

1. Learn about process, threads & scheduling algorithms.

2. Understand the principles of concurrency & deadlock.

3. Learn various memory management schemes. 5. Learn the basics of Linux
systems & mobile OS.

COURSE OUTCOMES

Understand the basic concepts and functions of Operating Systems

Delineate various threading models, process synchronization and deadlocks

Compare the performance of various CPU scheduling algorithms

Understand the basic concepts of memory management systems

Expound I/0 management and file systems

Understand the model of Linux multifunction server and utilize local network services

UNIT-I

Introduction to OS & Their Classifications

An OS is an intermediary between the user of the computer & the computer hardware.
It provides a basis for application program & acts as an intermediary between user of
computer & computer hardware.

The purpose of an OS is to provide a environment in which the user can execute the
program in a convenient & efficient manner.

0S is an important part of almost every computer systems.

A computer system can be roughly divided into four components

The Hardware

The OS

The application Program

The user

The Hardware consists of memory, CPU, ALU, 1/O devices, peripherals devices &
storage devices.

The application program mainly consisted of word processors, spread sheets,
compilers & web browsers defines the ways in which the resources are used to solve
the problems of the users.

The OS controls & co-ordinates the use of hardware among various application
program for various users.

The following figure shows the conceptual view of a computer system

user user user user
1 2 3 A n
A h h A
A 4 A 4 A A 4
compiler assembler text editor azuie database
system

system and application programs

operating system

computer hardware

Views of OS

1. User Views:- The user view of the computer depends on the interface used.

Some users may use PCts.)n this the system is designed so that only one user can
utilize the resources and mostly for ease of use where the attention is mainly on
performances and not on the resource utilization.

Some users may use a terminal connected to a mainframe or minicomputers.

Other users may access the same computer through other terminals. These users may
share resources and exchange information. In this case the OS is designed to maximize
resource utilization- so that all available CPU time, memory & I/0 are used efficiently.
Other users may sit at workstations, connected to the networks of other workstation
and servers. In this case OS is designed to compromise between individual visibility &
resource utilization.

2. System Views:-

We can view system as resource allocator i.e. a computer system has many resources
that may be used to solve a problem. The OS acts as a manager of these resources. The
OS must decide how to allocate these resources to programs and the users so that it
can operate the computer system efficiently and fairly.

A different view of an OS is that it need to control various [/0 devices & user programs
i.e. an OS is a control program used to manage the execution of user program to
prevent errors and improper use of the computer.

Resources can be either CPU Time, memory space, file storage space, /0 devices and
SO on.

The OS must support the following tasks

Provide the facility to create, modification of programs & data files using on editors.
Access to compilers for translating the user program from high level language to
machine language.

Provide a loader program to move the compiled program code to computers memory
for execution.

Provides routines that handle the details of /0 programming.

I. Mainframe System:-

Mainframe systems are mainly used for scientific & commercial applications.

An OS may process its workload serially where the computer runs only one

application or concurrently where computer runs many applications.

S A

Batch Systems:-

Early computers where physically large machines.

The common I/P devices are card readers & tape drives.

The common O/P devices are line printers, tape drives & card punches.

The user do not interact directly with computers but we use to prepare a job with the
program, data & some control information & submit it to the computer operator.

The job was mainly in the form punched cards.

At later time the O/P appeared and it consisted of result along with dump of memory
and register content for debugging.

The OS of these computers was very simple. Its major task was to transfer control
from one job to the next. The OS was always resident in the memory. The processing of
job was very slow. To improve the processing speed operators batched together the
jobs with similar needs and processed it through the computers. This is called Batch
Systems.

In batch systems the CPU may be idle for some time because the speed of the
mechanical devices slower compared to the electronic devices.

Later improvement in technology and introduction of disks resulted in faster 1/0
devices.

The introduction of disks allowed the OS to store all the jobs on the disk. The OS could
perform the scheduling to use the resources and perform the task efficiently. @ The

memory layout of simple batch system is shown below

0S
User
prograt
area

Disadvantages of Batch Systems:-

Turnaround time can be large from user.
Difficult to debug the program.

A job can enter into infinite loop.

Ajob could corrupt the monitor.

Due to lack of protection scheme, one job may affect the pending jobs.

Multi programmed System:-
If there are two or more programs in the memory at the same time sharing the

processor, this is referred as multi programmed OS.

[t increases the CPU utilization by organizing the jobs so that the CPU will always have
one job to execute.

Jobs entering the systems are kept in memory.

0S picks the job from memory & it executes it.

Having several jobs in the memory at the same time requires some form of memory
management.

Multi programmed systems monitors the state of all active program and system
resources and ensures that CPU is never idle until there are no jobs.

While executing a particular job, if the job has to wait for any task like I/0 operation to
be complete then the CPU will switch to some other jobs and starts executing it and

when the first job finishes waiting the CPU will switch back to that.

O

operating system

job 1

job 2

jobb 3

job 4

This will keep the CPU & I/0 utilization busy.

The following figure shows the memory layout of multi programmed OS

Time sharing Systems:-

Time sharing system or multi tasking is logical extension of multi programming
systems. The CPU executes multiple jobs by switching between them but the switching
occurs so frequently that user can interact with each program while it is running.

An interactive & hands on system provides direct communication between the user
and the system. The user can give the instruction to the OS or program directly
through key board or mouse and waits for immediate results.

A time shared system allows multiple users to use the computer simultaneously. Since
each action or commands are short in time shared systems only a small CPU time will
be available for each of the user.

A time shared systems uses CPU scheduling and multi programming to provide each

user a small portion of time shared computers. When a process executes it will be

executing for a short time before it finishes or need to perform I/0. I/0 is interactive
i.e. O/P is to a display for the user and the I/0 is from a keyboard, mouse etc.

Since it has to maintain several jobs at a time, system should have memory
management & protection.

Time sharing systems are complex than the multi programmed systems. Since several
jobs are kept in memory they need memory management and protection. To obtain
less response time jobs are swapped in and out of main memory to disk. So disk will
serve as backing store for main memory. This can be achieved by using a technique
called virtual memory that allows for the execution of job i.e. not complete in memory.
Time sharing system should also provide a file system & file system resides on
collection of disks so this need disk management. It supports concurrent execution,
job synchronization & communication.

I DESKTOP SYSTEMS:-

Pcts appeared in % 9 [£&+s and during this they lacked the feature needed to
protect an OS from user program & they even lack multi user nor multi tasking.

The goals pf those OS changed later with the time and new systems includes Microsoft
Windows & Apple Macintosh.

The Apple Macintosh OS ported to more advanced hardware & includes new features
like virtual memory & multi tasking.

Micro computers are developed for single user in % 9 [£&+s & they can
accommodate software with large capacity & greater speeds.

MS-DOS is an example for micro computer OS & are used by commercial, educational,

government enterprises.

IL Multi Processor Systems:-

Multi processor systems include more than one processor in close communication.
They share computer bus, the clock, m/y & peripheral devices.

Two processes can run in parallel.

Multi processor systems are of two types

Symmetric Multi processors (SMP)

Asymmetric Multi processors.

In symmetric multi processing, each processors runs an identical copy of OS and they
communicate with one another as needed. All the CPU shares the common memory.

In asymmetric multi processing, each processors is assigned a specific task. It uses a
master slave relationship. A master processor controls the system. The master
processors schedules and allocates work to slave processors. The following figure

shows asymmetric multi processors.

SMP means al processors are peers i.e. no master slave relationship exists between
processors. Each processors concurrently runs a copy of OS.

The differences between symmetric & asymmetric multi-processing may be result of
either H/w or S/w. Special H/w can differentiate the multiple processors or the S/w

can be written to allow only master & multiple slaves.

Advantages of Multi Processor Systems:-

Increased Throughput:- By increasing the Number of processors we can get more

work done in less time. When multiple process co operate on task, a certain amount of
overhead is incurred in keeping all parts working correctly.

Economy Of Scale:- Multi processor system can save more money than multiple single

processor, since they share peripherals, mass storage & power supplies. If many
programs operate on same data, they will be stored on one disk & all processors can
share them instead of maintaining data on several systems.

Increased Reliability:- If a program is distributed properly on several processors, than

the failure of one processor will not halt the system but it only slows down.

I1I. Distributed Systems:-

A distributed system is one in which H/w or S/w components located at the
networked computers communicate & co ordinate their actions only by passing
messages.

A distributed systems looks to its user like an ordinary OS but runs on multiple,

)ndependent CPU+s.

Distributed systems depends on networking for their functionality which allows for
communication so that distributed systems are able to share computational tasks and
provides rich set of features to users.

N/w may vary by the protocols used, distance between nodes & transport media.
Protocols->TCP/IP, ATM etc.

Network-> LAN, MAN, WAN etc.
Transport Media-> copper wires, optical fibers & wireless transmissions

Client-Server Systems:-

Since PCts are faster, power full, cheaper etc. designers have shifted away from the
centralized system architecture.

User-interface functionality that used to be handled by centralized system is handled
by PCts. So the centralized system today act as server program to satisfy the requests

of client.

A T o A

Server system can be classified as follows

. Computer-Server System:- Provides an interface to which client can send requests to

perform some actions, in response to which they execute the action and send back

result to the client.

. File-Server Systems:- Provides a file system interface where clients can create, update,

read & delete files.

Peer-to-Peer Systems:-

PC+s are introduced in %2 9 (£ E+s they are considered as standalone computers i.e.
only one user can use it at a time.

With wide spread use of internet PCts were connected to computer networks.

With the introduction of the web in mid % 99 £+s N/w connectivity became an
essential component of a computer system.

All modern PC+s & workstation can run a web. Os also includes system software that
enables the computer to access the web.

In distributed systems or loosely coupled couple systems, the processor can
communicate with one another through various communication lines like high speed
buses or telephones lines.

A N/w OS which has taken the concept of N/w & distributed system which provides
features fir file sharing across the N/w and also provides communication which allows

different processors on different computers to share resources.

Advantages of Distributed Systems:-

Resource sharing.

Higher reliability.

Better price performance ratio.

Shorter response time.

Higher throughput.

Incremental growth

IV. Clustered Systems:-

Like parallel systems the clustered systems will have multiple CPU but they are
composed of two or more individual system coupled together.

Clustered systems share storage & closely linked via LAN N/w.

Clustering is usually done to provide high availability.

Clustered systems are integrated with H/w & S/w. H/w clusters means sharing of
high performance disk. S/w clusters are in the form of unified control of a computer

system in a cluster.

A layer of S/w cluster runs on the cluster nodes. Each node can monitor one or more
of the others. If the monitored M/c fails the monitoring M/c take ownership of its
storage and restart the application that were running on failed M/c.

Clustered systems can be categorized into two groups

Asymmetric Clustering &

Symmetric clustering.

In asymmetric clustering one M/c is in hot standby mode while others are running the
application. The hot standby M/c does nothing but it monitors the active server.

If the server fails the hot standby M/c becomes the active server.

In symmetric mode two or more hosts are running the Application & they monitor
each other. This mode is more efficient since it uses all the available H/w.

Parallel clustering and clustering over a LAN is also available in clustering. Parallel
clustering allows multiple hosts to access the same data on shared storage.

Clustering provides better reliability than the multi processor systems.

It provides all the key advantages of a distributed systems.

Clustering technology is changing & include global clusters in which M/c could be
anywhere in the world.

V. Real- Time Systems :-

Real time system is one which were originally used to control autonomous systems
like satellites, robots, hydroelectric dams etc.

Real time system is one that must react to I/p & responds to them quickly.

A real time system should not be late in response to one event.

A real time should have well defined time constraints.

Real time systems are of two types

a. Hard Real Time Systems

b. Soft Real Time Systems
A hard real time system guarantees that the critical tasks to be completed on time.
This goal requires that all delays in the system be bounded from the retrieval of stored
data to time that it takes the OS to finish the request.
In soft real time system is a less restrictive one where a critical real time task gets
priority over other tasks & retains the property until it completes. Soft real time
system is achievable goal that can be mixed with other type of systems. They have
limited utility than hard real time systems.
Soft real time systems are used in area of multimedia, virtual reality & advanced
scientific projects. It cannot be used in robotics or industrial controls due to lack of

deadline support.

Real time OS uses priority scheduling algorithm to meet the response requirement of a
real time application.

Soft real time requires two conditions to implement, CPU scheduling must be priority
based & dispatch latency should be small.

The primary objective of file management in real time systems is usually speed of
access, rather than efficient utilization of secondary storage.

VL Computing Environment:-

Different types of computing environments are:-

Traditional Computing,.

Web Based Computing,.

Embedded Computing.

Traditional Computing:- Typical office environment uses traditional computing.
Normal PC is used in traditional computing environment. N/w computers are essential
terminals that understand web based computing. In domestic application most of the
user had a single computer with internet connection. Cost of accessing internet is high.
Web Based Computing has increased the emphasis on N/w. Web based computing
uses PC, handheld PDA & cell phones. One of the feature of this type is load balancing.
In load balancing, N/w connection is distributed among a pool of similar servers.
Embedded computing uses real time OS. Application of embedded computing is car
engines, manufacturing robots, microwave ovens. This type of system provides limited

features.

System Components :-

Modern OS supports all system components. The system components are,

o

Process Management.

Main M/y Management.

File Management.

Secondary Storage Management.
[/0 System management.
Networking.

Protection System.

Command Interpreter System.

Process Management:-

A process is a program in execution.
A process abstraction is a fundamental OS mechanism for the management of

concurrent program execution.

The OS responds by creating process.

Process requires certain resources like CPU time, M/y, [/O devices. These resources
are allocated to the process when it created or while it is running.

When process terminates the process reclaims all the reusable resources.

Process refers to the execution of M/c instructions.

A program by itself is not a process but is a passive entity.

The OS is responsible for the following activities of the process management,
Creating & destroying of the user & system process .

Allocating H/w resources among the processes.

Controlling the progress of the process.

Provides mechanism for process communication.

Provides mechanism for deadlock handling.

Main Memory Management:-

Main M/y is the centre to the operation of the modern computer.

Main M/y is the array of bytes ranging from hundreds of thousands to billions. Each
byte will have their own address.

The central processor reads the instruction from main M/y during instruction fetch
cycle & it both reads & writes the data during the data-fetch cycle. The 1/0 operation
reads and writes data in main M/y.

The main M/y is generally a large storage device in which a CPU can address & access
directly.

When a program is to be executed it must be loaded into memory & mapped to
absolute address. When it is executing it access the data & instruction from M/y by
generating absolute address. When the program terminates all available M/y will be
returned back.

To improve the utilization of CPU & the response time several program will be kept in
M/y.

Several M/y management scheme are available & selection depends on the H/w
design of the system.

The OS is responsible for the following activities.

Keeping track of which part of the M/y is used & by whom.

Deciding which process are to be loaded into M/y.

Allocating & de allocating M/y space as needed.
File Management:-

File management is one of the most visible component of an OS.
Computer stores data on different types of physical media like Magnetic Disks,

Magnetic tapes, optical disks etc.

4 3 4 &

For convenient use of the computer system the OS provides uniform logical view of
information storage.
The OS maps file on to physical media & access these files via storage devices.
A file is logical collection of information.
File consists of both program & data. Data files may be numeric, alphabets or
alphanumeric.
Files can be organized into directories.
The OS is responsible for the following activities,

= Creating & deleting of files.

Creating & deleting directories.

Supporting primitives for manipulating files & directories.

Maping files onto secondary storage.

Backing up files on stable storage media.

Secondary Storage management :-

Is a mechanism where the computer system may store information in a way that it can
be retrieved later.

They are used to store both data & programs.

The programs & data are stored in main memory.

Since the size of the M /y is small & volatile Secondary storage devices is used.
Magnetic disk is central importance of computer system.

The OS is responsible for the following activities, & Free space management.

Storage allocation.

Disk scheduling.

The entire speed of computer system depends on the speed of the disk sub system.
1/0 System Management:-

Each I/o device has a device handler that resides in separate process associated with
that device.

The I/0 management consists of,

A M/y management component that include buffering, caching & spooling.

General device-driver interface.
Drivers for specific H/w device.

Networking :-

Networking enables users to share resources & speed up computations.

The process communicates with one another through various communication lines
like high speed buses or N/w.

Following parameters are considered while designing the N/w, @ Topology of N/w.
Type of N/w.

Physical media.

Communication protocol, @ Routing algorithms.

Protection system:-

Modern computer system supports many users & allows the concurrent execution
of multiple processes organization rely on computers to store information. It
necessary that the information & devices must be protected from unauthorized
USers or processors.

The protection is a mechanism for controlling the access of program, processes or
users to the resources defined by a computer system.

Protection mechanism are implemented in OS to support various security policies.
The goal of security system is to authenticate their access to any object.
Protection can improve reliability by detecting latent errors at the interface B/w
component sub system.

Protection domains are extensions of H/w supervisor mode ability.

Command Interpreter System:-

Command interpreter system between the user & the OS. It is a system program to
the OS.

Command interpreter is a special program in UNIX & MS DOS OS i.e. running when
the user logs on.

Many commands are given to the OS through control statements when the user logs
on, a program that reads & interprets control statements is executed automatically.
This program is sometimes called the control card interpreter or command line
interpreter and is also called as shell.

The command statements themselves deal with process creation & management,
I/0 handling, secondary storage management, main memory management, file

system access, protection & N/w.

OPERATING SYSTEM SERVICES:-

An OS provides services for the execution of the programs and the users of such
programs. The services provided by one OS may be different from other 0S. OS makes
the programming task easier. The common services provided by the OS are

Program Execution:- The OS must able to load the program into memory & run that

program. The program must end its execution either normally or abnormally.

1/0 Operation:- A program running may require any I/0. This I/O may be a file or a

specific device users cant control the /0 device directly so the OS must provide a means
for controlling 1/0 devices.

File System Interface:- Program need to read or write a file. The OS should provide

permission for the creation or deletion of files by names.

. Communication:- In certain situation one process may need to exchange information
with another process. This communication May takes place in two ways.

Between the processes executing on the same computer.

Between the processes executing on different computer that are connected

by a network.

This communication can be implemented via shared memory or by OS.

Error Detection:- Errors may occur in CPU, I/0 devices or in M/y H/w. The OS constantly

needs to be aware of possible errors. For each type of errors the OS should take
appropriate actions to ensure correct & consistent computing. OS with multiple users
provides the following services,

Resource Allocation:- When multiple users logs onto the system or when multiple jobs
are running, resources must be allocated to each of them. The OS manages different
types of OS resources. Some resources may need some special allocation codes & others
may have some general request & release code.

Accounting:- We need to keep track of which users use how many & what kind of
resources. This record keeping may be used for accounting. This accounting data may be
used for statistics or billing. It can also be used to improve system efficiency.

Protection:- Protection ensures that all the access to the system are controlled. Security
starts with each user having authenticated to the system, usually by means of a
password. External /0 devices must also be protected from invalid access. In multi
process environment it is possible that one process may interface with the other or with
the OS, so protection is required.

SYSTEM CALLS

System provides interface between the process & the OS.

The calls are generally available as assembly language instruction & certain system allow
system calls to be made directly from a high level language program.

Several language have been defined to replace assembly language program.

A system call instruction generates an interrupt and allows OS to gain control of the
processors.

System calls occur in different ways depending on the computer. Some time more
information is needed to identify the desired system call. The exact type & amount of
information needed may vary according to the particular OS & call.

PASSING PARAMETERS TO 0S
— X

register

X: parameters
for call

4

load address X from table X system
system call 13 — > call 13

use parameters }code for

user program

operating system

Three general methods are used to pass the parameters to the OS.
The simplest approach is to pass the parameters in registers. In some there can be more
parameters than register. In these the parameters are generally in a block or table in
m/y and the address of the block is passed as parameters in register. This approach used
by Linux.
Parameters can also be placed or pushed onto stack by the program & popped off the
stack by the OS.
Some OS prefer the block or stack methods, because those approaches do not limit the
number or length of parameters being passed.
System calls may be grouped roughly into 5 categories

1. Process control.

2. File management.

3. Device management.

4. Information maintenance.

5. Communication.

FILE MANAGEMENT

System calls can be used to create & deleting of files. System calls may require the name
of the files with attributes for creating & deleting of files.

Other operation may involve the reading of the file, write & reposition the file after it is
opened.

o Finally we need to close the file.

o For directories some set of operation are to be performed. Sometimes we require to
reset some of the attributes on files & directories. The system call get file attribute & set
file attribute are used for this type of operation.

DEVICE MANAGEMENT:-
The system calls are also used for accessing devices.
Many of the system calls used for files are also used for devices.

In multi user environment the requirement are made to use the device. After using
the device must be released using release system call the device is free to be used by,
another user. These function are similar to open & close system calls of files.

Read, write & reposition system calls may be used with devices.

MS-DOS & UNIX merge the /0 devices & the files to form file services structure. In file

device structure 1/0 devices are identified by file names.

INFORMATION MAINTAINANCE:-

Many system calls are used to transfer information between user program & OS
Example:- Most systems have the system calls to return the current time & date, number
of current users, version number of OS, amount of free m/y or disk space & so on.

In addition the OS keeps information about all its processes & there are system calls
to access this information.
COMMUNICATION:-

There are two modes of communication,

Message Passing Models:-

In this information is exchanged using inter-process communication facility provided
by OS.

Before communication the connection should be opened.

The name of the other communicating party should be known, it ca be on the same
computer or it can be on another computer connected by a computer network.

Each computer in a network may have a host name like IP name similarly each
process can have a process name which can be translated into equivalent identifier by
OS.

The get host id & process id system call do this translation. These identifiers are then|
passed to the open & close connection system calls.

The recipient process must give its permission for communication to take place with
an accept connection call.

Most processes receive the connection through special purpose system progran
dedicated for that purpose called daemons. The daemon on the server side is calleq
server daemon & the daemon on the client side is called client daemon.

Shared Memory:-

In this the processes uses the map m/y system calls to gain access to m/y owned by
another process.

The OS tries to prevent one process from accessing another process m/y.

In shared m/y this restriction is eliminated and they exchange information by reading
and writing data in shared areas. These areas are located by these processes and nof
under OS control.

They should ensure that they are not writing to same m/y area.
Both these types are commonly used in OS and some even implement both.

Message passing is useful when small number of data need to be exchanged since nc
conflicts are to be avoided and it is easier to implement than in shared m/y. Shared m/y
allows maximum speed and convenience of communication as it is done at m/y speec
when within a computer.

PROCESS CONTROL & JOB CONTROL

A system call can be used to terminate the program either normally or abnormally.

Reasons for abnormal termination are dump of m/y, error message generated etc.

Debugger is mainly used to determine problem of the dump & returns back the dumy
to the OS.

In normal or abnormal situations the OS must transfer the control to the commancd
interpreter system.

In batch system the command interpreter terminates the execution of job & continue:
with the next job.

Some systems use control cards to indicate the special recovery action to be taken ir
case of errors.

Normal & abnormal termination can be combined at some errors level. Error level is
defined before & he command interpreter uses this error level to determine next actior
automatically.

MS-DOS:-

MS-DOS is an example of single tasking system, which has command interpreter systen
i.e. invoked when the computer is started. To run a program MS-DOS uses simpl¢
method. It does not create a process when one process is running MS-DOS the progran
into m/y & gives the program as much as possible. It lacks the general multitasking
capabilities.

free memory
free memory
process

command
interpreter command

interpreter

kernel kernel
@))

BSD:-
Free BSD is an example of multitasking system. In free BSD the command interpreter
may continue running while other program is executing. FORK is used to create new

process.

pPprocess D

free mMmemo LIV

pProcess

iNnterpreter

Process B

Kermel

SYSTEM STRUCTURES
Modern OS is large & complex.
OS consists of different types of components.

These components are interconnected & melded into kernel.

For designing the system different types of structures are used. They are,

a. Simple structures.
b. Layered structured.
C. Micro kernels. Simple Structures

Simple structure OS are small, simple & limited systems.
The structure is not well defined
MS-DOS is an example of simple structure OS. MS-DOS layer structure is shown

below

application program

P Z

resident system program

MS-DOS device drivers

ROM BIOS device drivers

UNIX consisted of two separate modules

Kernel

The system programs.

Kernel is further separated into series of interfaces & device drivers which were added
& expanded as the UNIX evolved over years.

The kernel also provides the CPU scheduling, file system, m/y management & other OS
function through system calls.

System calls define API to UNIX and system programs commonly available defines the
user interface. The programmer and the user interface determines the context that the
kernel must support.

New versions of UNIX are designed to support more advanced H/w. the OS can be
broken down into large number of smaller components which are more appropriate

than the original MS-DOS.

Layered Approach

layer N
user interface

.
layer 1

layer O "‘
| hardware | “

In this OS is divided into number of layers, where one layer is built on the top of another
layer. The bottom layer is hardware and higher layer is the user interface.

An OS is an implementation of abstract object i.e. the encapsulation of data & operation to
manipulate these data.

The main advantage of layered approach is the modularity i.e. each layer uses the services
& functions provided by the lower layer. This approach simplifies the debugging &
verification. Once first layer is debugged the correct functionality is guaranteed while
debugging the second layer. If an error is identified then it is a problem in that layer
because the layer below it is already debugged.

Each layer is designed with only the operations provided by the lower level layers.

Each layer tries to hide some data structures, operations & hardware from the higher level
layers.

A problem with layered implementation is that they are less efficient then the other types.

Micro Kernels:-

Micro kernel is a small Os which provides the foundation for modular extensions.

The main function of the micro kernels is to provide communication facilities between
the current program and various services that are running in user space.

This approach was supposed to provide a high degree of flexibility and modularity.

This benefits of this approach includes the ease of extending OS. All the new services are
added to the user space & do not need the modification of kernel.

This approach also provides more security & reliability.

Most of the services will be running as user process rather than the kernel process.

This was popularized by use in Mach OS.

UNIT 11
PROCESS MANAGEMENT

Processes & Programs:-
Process is a dynamic entity. A process is a sequence of instruction execution process

exists in a limited span of time. Two or more process may execute the same program by
using its own data & resources.

A program is a static entity which is made up of program statement. Program contains
the instruction. A program exists in a single space. A program does not execute by itself.
A process generally consists of a process stack which consists of temporary data & data
section which consists of global variables.

It also contains program counter which represents the current activities.

A process is more than the program code which is also called text section.

Process State:-
The process state consist of everything necessary to resume the process execution if it is

somehow put aside temporarily. The process state consists of at least following:

Code for the program.

Program's static data.

Program's dynamic data.

Program's procedure call stack.
Contents of general purpose registers.
Contents of program counter (PC)
Contents of program status word (PSW).
Operating Systems resource in use.

Process operations
Process Creation

In general-purpose systems, some way is needed to create processes as needed during
operation. There are four principal events led to processes creation.

System initialization.

Execution of a process Creation System calls by a running process.

A user request to create a new process.

Initialization of a batch job.

Foreground processes interact with users. Background processes that stay in

background sleeping but suddenly springing to life to handle activity such as email,
webpage, printing, and so on. Background processes are called daemons. This call
creates an exact clone of the calling process.

A process may create a new process by some create process such as 'fork’. It choose to
does so, creating process is called parent process and the created one is called the child

processes. Only one parent is needed to create a child process. Note that unlike plants

and animals that use sexual representation, a process has only one parent. This creation
of process (processes) yields a hierarchical structure of processes like one in the figure.
Notice that each child has only one parent but each parent may have many children.
After the fork, the two processes, the parent and the child, have the same memory image,
the same environment strings and the same open files. After a process is created, both
the parent and child have their own distinct address space. If either process changes a
word in its address space, the change is not visible to the other process. Following are
some reasons for creation of a process

User logs on.

User starts a program.

Operating systems creates process to provide service, e.g., to manage printer.
Some program starts another process, e.g., Netscape calls xv to display a picture.
Process Termination

A process terminates when it finishes executing its last statement. Its resources are
returned to the system, it is purged from any system lists or tables, and its process
control block (PCB) is erased i.e., the PCB's memory space is returned to a free memory
pool. The new process terminates the existing process, usually due to following reasons:
Normal Exist Most processes terminates because they have done their job. This call is
exist in UNIX.

Error Exist When process discovers a fatal error. For example, a user tries to compile a
program that does not exist.

Fatal Error An error caused by process due to a bug in program for example, executing
an illegal instruction, referring non-existing memory or dividing by zero.

Killed by another Process A process executes a system call telling the
Operating Systems to terminate some other process. In UNIX, this call is kill. In

some systems when a process Kills all processes it created are killed as well (UNIX does
not work this way).

Process States :A process goes through a series of discrete process states.

- >

admitted interrupt terminated

g

scheduler dispatch

170 or event completion I/0 or event wait

waiting

New State The process being created. Terminated State The process has finished
execution.

Blocked (waiting) State When a process blocks, it does so because logically it cannot
continue, typically because it is waiting for input that is not yet available. Formally, a
process is said to be blocked if it is waiting for some event to happen (such as an [/0
completion) before it can proceed. In this state a process is unable to run until some
external event happens.

Running State A process is said t be running if it currently has the CPU, that is,
actually using the CPU at that particular instant.

Ready State A process is said to be ready if it use a CPU if one were available. It is
runable but temporarily stopped to let another process run.

Logically, the 'Running' and 'Ready’ states are similar. In both cases the process is
willing to run, only in the case of 'Ready’ state, there is temporarily no CPU available for
it. The 'Blocked’ state is different from the 'Running' and 'Ready’ states in that the
process cannot run, even if the CPU is available. Process Control Block

A process in an operating system is represented by a data structure known as a process
control block (PCB) or process descriptor. The PCB contains important information
about the specific process including

o The current state of the process i.e., whether it is ready, running, waiting, or whatever.

o Unique identification of the process in order to track "which is which" information.
o A pointer to parent process.

o Similarly, a pointer to child process (if it exists).

o The priority of process (a part of CPU scheduling information).

o Pointers to locate memory of processes.

o A register save area.

o The processor it is running on.

The PCB is a certain store that allows the operating systems to locate key information
about a process. Thus, the PCB is the data structure that defines a process to the

operating systems.

o The following figure shows the process control block.

process state
process number

program counter

registers

memory limits

list of open files

PROCESS SCHEDULING QUEUES

The following are the different types of process scheduling queues.

Job queue - set of all processes in the system

Ready queue - set of all processes residing in main memory, ready and waiting to
execute

Device queues - set of processes waiting for an [/O device

Processes migrate among the various queues

Ready Queue And Various I/0 Device Queues

queue header PCB., PCB,
ready head - > - T
queue tail ~ registers registers
- -
tape = -
unit O tail T =
:nag head T =
urﬁ?? tail] = PCB; PCB,,4 PCBg
/) | |
disk head /
unit O tail <
PCBs
erminal head > — =
unit O tail 11—

Ready Queue-

The process that are placed in main m/y and are already and waiting to executes are
placed in a list called the ready queue. This is in the form of linked list. Ready queue
header contains pointer to the first & final PCB in the list. Each PCB contains a pointer
field that points next PCB in ready queue.

Device Queue:-

The list of processes waiting for a particular [/0 device is called device. When the CPU is

allocated to a process it may execute for some time & may quit or interrupted or wait for
the occurrence of a particular event like completion of an /0 request but the I/0 may
be busy with some other processes. In this case the process must wait for I/0. This will
be placed in device queue. Each device will have its own queue.

The process scheduling is represented using a queuing diagram. Queues are represented
by the rectangular box & resources they need are represented by circles. It contains two
queues ready queue & device queues.

Once the process is assigned to CPU and is executing the following events can occur,

a. [t can execute an [/0 request and is placed in [/0 queue.
b. The process can create a sub process & wait for its termination.
C. The process may be removed from the CPU as a result of interrupt and can be

put back into ready queue.

Schedulers:-

The following are the different type of schedulers

Long-term scheduler (or job scheduler) - selects which processes should be brought
into the ready queue.

Short-term scheduler (or CPU scheduler) - selects which process should be executed
next and allocates CPU.

3. Medium-term schedulers

-> Short-term scheduler is invoked very frequently (milliseconds) @ (must be fast)

-> Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)
-> The long-term scheduler controls the degree of multiprogramming ->Processes can be
described as either:

[/0-bound process - spends more time doing I/0 than computations, many short CPU
bursts

CPU-bound process - spends more time doing computations; few very long CPU bursts

Context Switch:-

When CPU switches to another process, the system must save the state of the old
process and load the saved state for the new process.
Context-switch time is overhead; the system does no useful work while switching.

Time dependent on hardware support

Cooperating Processes & Independent Processes

Independent process: one that is independent of the rest of the universe.

Its state is not shared in any way by any other process.

Deterministic: input state alone determines results.

Reproducible.

Can stop and restart with no bad effects (only time varies). Example: program that sums

the integers from 1 to i (input).

There are many different ways in which a collection of independent processes might be
executed on a processor:

Uniprogramming: a single process is run to completion before anything else can be run
on the processor.

Multiprogramming: share one processor among several processes. If no shared state,
then order of dispatching is irrelevant.

Multiprocessing: if multiprogramming works, then it should also be ok to run processes
in parallel on separate processors.

A given process runs on only one processor at a time.
A process may run on different processors at different times (move state, assume

processors are identical).

Cannot distinguish multiprocessing from multiprogramming on a very fine grain.
Cooperating processes:

Machine must model the social structures of the people that use it. People cooperate, so
machine must support that cooperation. Cooperation means shared state, e.g. a single
file system.

Cooperating processes are those that share state. (May or may not actually be
"cooperating")

Behavior is nondeterministic: depends on relative execution sequence and cannot be
predicted a priori.

Behavior is irreproducible.
Example: one process writes "ABC", another writes "CBA". Can get different outputs,

cannot tell what comes from which. E.g. which process output first "C" in "ABCCBA"?
Note the subtle state sharing that occurs here via the terminal. Not just anything can

happen, though. For example, "AABBCC" cannot occur.

Process 1

println{”abc™)

CB Aabc abCcBA abcCBA

Independent process cannot affect or be affected by the execution of another process
Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation

Information sharing

Computation speed-up

Modularity

Convenience

Interprocess Communication (IPC)

Mechanism for processes to communicate and to synchronize their actions
Message system - processes communicate with each other without resorting to shared

variables

IPC facility provides two operations:
send(message) - message size fixed or variable
receive(message)

1. If P and Q wish to communicate, they need to: establish a communication
link between them

exchange messages via send/receive

2. Implementation of communication link
physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties)
Communications Models

there are two types of communication models

1. Multi programming

2. Shared Memory
process A | M process A 1
shared e
2
process B | M process B —

kernel | M kernel

(2) (b)

Direct Communication
Processes must name each other explicitly:
. send (P, message) - send a message to process P
. receive(Q, message) - receive a message from process Q
Properties of communication link
. Links are established automatically
. Alink is associated with exactly one pair of communicating processes
. Between each pair there exists exactly one link
. The link may be unidirectional, but is usually bi-directional
Indirect Communication

Messages are directed and received from mailboxes (also referred to as ports)

Each mailbox has a unique id
Processes can communicate only if they share a mailbox

Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication links

Link may be unidirectional or bi-direction

Operations

o create a new mailbox o send and receive messages through mailbox o destroy a

mailbox

Primitives are defined as: send(4, message) - send a message to mailbox A
receive(4, message) - receive a message from mailbox A

Mailbox sharing

P1, P2, and P3 share mailbox A

P1, sends; P2 and P3 receive Who gets the message?

Solutions

Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive operation
Allow the system to select arbitrarily the receiver. Sender is notified who the receiver
was.

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

->Blocking send has the sender block until the message is received.
->Blocking receive has the receiver block until a message is available.

Non-blocking is considered asynchronous
->Non-blocking send has the sender send the message and continue.

->Non-blocking receive has the receiver receive a valid message or null.

Buffering

->Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity - 0 messages sender must wait for receiver (rendezvous) 2.
Bounded capacity - finite length of n messages

Sender must wait if link full

3. Unbounded capacity - infinite length sender never waits

THREADS:-
Despite of the fact that a thread must execute in process, the process and its associated

threads are different concept. Processes are used to group resources together and
threads are the entities scheduled for execution on the CPU.

A thread is a single sequence stream within in a process. Because threads have some of
the properties of processes, they are sometimes called lightweight processes. In a
process, threads allow multiple executions of streams. In many respect, threads are
popular way to improve application through parallelism. The CPU switches rapidly back
and forth among the threads giving illusion that the threads are running in parallel. Like
a traditional process i.e., process with one thread, a thread can be in any of several
states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since
thread will generally call different procedures and thus a different execution history.
This is why thread needs its own stack. An operating system that has thread facility, the
basic unit of CPU utilization is a thread. A thread has or consists of a program counter

(PC), a register set, and a stack space. Threads are not independent of one other like

N o ok W

processes as a result threads shares with other threads their code section, data section,
OS resources also known as task, such as open files and signals.

Processes Vs Threads

As we mentioned earlier that in many respect threads operate in the same way as that of
processes. Some of the similarities and differences are:

Similarities

Like processes threads share CPU and only one thread active (running) at a time.

Like processes, threads within a processes, threads within a processes execute
sequentially.

Like processes, thread can create children.
And like process, if one thread is blocked, another thread can run.

Differences

Unlike processes, threads are not independent of one another.
Unlike processes, all threads can access every address in the task.
Unlike processes, thread are design to assist one other. Note that processes might or

might not assist one another because processes may originate from different users.

Why Threads?

Following are some reasons why we use threads in designing operating systems.

A process with multiple threads make a great server for example printer server.

Because threads can share common data, they do not need to use interprocess
communication.

Because of the very nature, threads can take advantage of multiprocessors.
Responsiveness

Resource Sharing

Economy

Utilization of MP Architectures Threads are cheap in the sense that

They only need a stack and storage for registers therefore, threads are cheap to create.
Threads use very little resources of an operating system in which they are working. That
is, threads do not need new address space, global data, program code or operating
system resources.

Context switching are fast when working with threads. The reason is that we only have
to save and/or restore PC, SP and registers.

But this cheapness does not come free - the biggest drawback is that there is no

protection between threads.

Single and Multithreaded Processes

| code | | data | | files l | code l | data | | files |
| registers l I registers | | registers |
| stack | I stack | | stack l
thread —> ; ; ; 34—— thread|
single-threaded process multithreaded process

User-Level Threads

Thread management done by user-level threads library

Three primary thread libraries:

-> POSIX Pthreads

-> Win32 threads

-> Java threads

User-level threads implement in user-level libraries, rather than via systems calls, so
thread switching does not need to call operating system and to cause interrupt to the
kernel. In fact, the kernel knows nothing about user-level threads and manages them as
if they were single-threaded processes.

Advantages:

The most obvious advantage of this technique is that a user-level threads package can be
implemented on an Operating System that does not support threads. Some other
advantages are

User-level threads does not require modification to operating systems.

Simple representation:

Each thread is represented simply by a PC, registers, stack and a small control block, all
stored in the user process address space.

Simple Management:

This simply means that creating a thread, switching between threads and
synchronization between threads can all be done without intervention of the kernel.

Fast and Efficient:

Thread switching is not much more expensive than a procedure call.

Disadvantages:

* There is a lack of coordination between threads and operating system kernel.
Therefore, process as whole gets one time slice irrespective of whether process has
one thread or 1000 threads within. It is up to each thread to relinquish control to
other threads.

* User-level threads requires non-blocking systems call i.e., a multithreaded kernel.
Otherwise, entire process will blocked in the kernel, even if there are runnable
threads left in the processes. For example, if one thread causes a page fault, the
process blocks.

Kernel-Level Threads

1. Supported by the Kernel
2. Examples

->Windows XP/2000

->Solaris

->Linux

->Tru64 UNIX ->Mac 0OS X

In this method, the kernel knows about and manages the threads. No runtime

system is needed in this case. Instead of thread table in each process, the kernel
has a thread table that keeps track of all threads in the system. In addition, the
kernel also maintains the traditional process table to keep track of processes.
Operating Systems kernel provides system call to create and manage threads.
Advantages:

* Because kernel has full knowledge of all threads, Scheduler may decide to give
more time to a process having large number of threads than process having small
number of threads.

* Kernel-level threads are especially good for applications that frequently block.
Disadvantages:

* The kernel-level threads are slow and inefficient. For instance, threads operations
are hundreds of times slower than that of user-level threads.

* Since kernel must manage and schedule threads as well as processes. It require a
full thread control block (TCB) for each thread to maintain information about
threads. As a result there is significant overhead and increased in kernel

complexity.

Advantages of Threads over Multiple Processes
it is much faster to switch between threads. In other words, it is relatively easier for a

context switch using threads.

Sharing Treads allow the sharing of a lot resources that cannot be shared in process,
for example, sharing code section, data section, Operating System resources like open
file etc.

Disadvantages of Threads over Multiprocesses

Blocking The major disadvantage if that if the kernel is single threaded, a system call
of one thread will block the whole process and CPU may be idle during the blocking
period.

Security Since there is, an extensive sharing among threads there is a potential
problem of security. It is quite possible that one thread over writes the stack of another
thread (or damaged shared data) although it is very unlikely since threads are meant to
cooperate on a single task.

Application that Benefits from Threads

A proxy server satisfying the requests for a number of computers on a LAN would be
benefited by a multi-threaded process. In general, any program that has to do more than
one task at a time could benefit from multitasking. For example, a program that reads
input, process it, and outputs could have three threads, one for each task.

Application that cannot Benefit from Threads

Any sequential process that cannot be divided into parallel task will not benefit from
thread, as they would block until the previous one completes. For example, a program
that displays the time of the day would not benefit from multiple threads.

Multithreading Models
Many-to-One One-to-One Many-to-Many

Many-to-One

Many user-level threads mapped to single kernel thread ->Examples:
->Solaris Green Threads

->GNU Portable Threads

e 33

%4— user thread

K —~ kernel thread

One-to-One

Each user-level thread maps to kernel thread

. Examples
<> Windows NT/XP/2000
<> Linux

D Solaris 9 and later

«—user thread

T
060 6-—

Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads.
Allows the operating system to create a sufficient number of kernel threads.
Solaris prior to version 9.

4. Windows NT/2000 with the ThreadFiber package. Resources used in Thread
Creation and Process Creation

B

gc— user thread

\U <«— kemel thread

Othread

When a new thread is created it shares its code section, data section and operating
system resources like open files with other threads. But it is allocated its own stack,
register set and a program counter.

The creation of a new process differs from that of a thread mainly in the fact that all the
shared resources of a thread are needed explicitly for each process. So though two
processes may be running the same piece of code they need to have their own copy of
the code in the main memory to be able to run. Two processes also do not share other
resources with each other. This makes the creation of a new process very costly
compared to that of a new thread.

Thread Pools

Create a number of threads in a pool where they await work

Advantages:

Usually slightly faster to service a request with an existing thread than create a new
thread

Allows the number of threads in the application(s) to be bound to the size of the pool
Context Switch

To give each process on a multiprogrammed machine a fair share of the CPU, a hardware
clock generates interrupts periodically. This allows the operating system to schedule all
processes in main memory (using scheduling algorithm) to run on the CPU at equal
intervals. Each time a clock interrupt occurs, the interrupt handler checks how much
time the current running process has used. If it has used up its entire time slice, then the
CPU scheduling algorithm (in kernel) picks a different process to run. Each switch of the
CPU from one process to another is called a context switch. Major Steps of Context
Switching

The values of the CPU registers are saved in the process table of the process that was
running just before the clock interrupt occurred.

The registers are loaded from the process picked by the CPU scheduler to run next. In a
multiprogrammed uniprocessor computing system, context switches occur frequently
enough that all processes appear to be running concurrently. If a process has more than
one thread, the Operating System can use the context switching technique to schedule
the threads so they appear to execute in parallel. This is the case if threads are
implemented at the kernel level. Threads can also be implemented entirely at the user
level in run-time libraries. Since in this case no thread scheduling is provided by the
Operating System, it is the responsibility of the programmer to yield the CPU frequently

enough in each thread so all threads in the process can make progress.

w o

X/
°e

X/
°e

Action of Kernel to Context Switch Among Threads

The threads share a lot of resources with other peer threads belonging to the same
process. So a context switch among threads for the same process is easy. It involves
switch of register set, the program counter and the stack. It is relatively easy for the
kernel to accomplished this task.

Action of kernel to Context Switch Among Processes

Context switches among processes are expensive. Before a process can be switched its
process control block (PCB) must be saved by the operating system. The PCB consists of
the following information:

The process state.

The program counter, PC.

The values of the different registers.

The CPU scheduling information for the process.

Memory management information regarding the process.

Possible accounting information for this process.

/0 status information of the process.

When the PCB of the currently executing process is saved the operating system loads the

PCB of the next process that has to be run on CPU. This is a heavy task and it takes a lot

of time.

CPU /Process Scheduling:-

The assignment of physical processors to processes allows processors to accomplish
work. The problem of determining when processors should be assigned and to which
processes is called processor scheduling or CPU scheduling.

When more than one process is runable, the operating system must decide which one
first. The part of the operating system concerned with this decision is called the
scheduler, and algorithm it uses is called the scheduling algorithm.

CPU Scheduler

Selects from among the processes in memory that are ready to execute, and allocates the
CPU to one of them

CPU scheduling decisions may take place when a process:
Switches from running to waiting state

Switches from running to ready state
Switches from waiting to ready
Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Dispatcher
1. Dispatcher module gives control of the CPU to the process selected by the shortterm

scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that program

2. Dispatch latency - time it takes for the dispatcher to stop one process and start another
running.
Scheduling Criteria

1. CPU utilization - keep the CPU as busy as possible
. Throughput - # of processes that complete their execution per time unit
. Turnaround time - amount of time to execute a particular process

. Waiting time - amount of time a process has been waiting in the ready queue

N R~ W

. Response time - amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment)
General Goals
Fairness
Fairness is important under all circumstances. A scheduler makes sure that each process
gets its fair share of the CPU and no process can suffer indefinite postponement. Note
that giving equivalent or equal time is not fair. Think of safety control and payroll at a
nuclear plant. Policy Enforcement
The scheduler has to make sure that system's policy is enforced. For example, if the local
policy is safety then the safety control processes must be able to run whenever they want
to, even if it means delay in payroll processes.
Efficiency
Scheduler should keep the system (or in particular CPU) busy cent percent of the time
when possible. If the CPU and all the Input/Output devices can be kept running all the
time, more work gets done per second than if some components are idle.
Response Time
A scheduler should minimize the response time for interactive user.
Turnaround
A scheduler should minimize the time batch users must wait for an output.
Throughput
A scheduler should maximize the number of jobs processed per unit time. A little
thought will show that some of these goals are contradictory. It can be shown that any

scheduling algorithm that favors some class of jobs hurts another class of jobs.

The amount of CPU time available is finite, after all.

Preemptive Vs Nonpreemptive Scheduling

The Scheduling algorithms can be divided into two categories with respect to how they
deal with clock interrupts.

Nonpreemptive Scheduling

A scheduling discipline is nonpreemptive if, once a process has been given the CPU, the
CPU cannot be taken away from that process.

Following are some characteristics of nonpreemptive scheduling

In nonpreemptive system, short jobs are made to wait by longer jobs but the overall
treatment of all processes is fair.

In nonpreemptive system, response times are more predictable because incoming high
priority jobs can not displace waiting jobs.

In nonpreemptive scheduling, a schedular executes jobs in the following two situations.

. When a process switches from running state to the waiting state.

. When a process terminates.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has been given the CPU can
taken away.

The strategy of allowing processes that are logically runable to be temporarily
suspended is called Preemptive Scheduling and it is contrast to the "run to completion”
method.

Scheduling Algorithms
CPU Scheduling deals with the problem of deciding which of the processes in the ready

queue is to be allocated the CPU.

Following are some scheduling algorithms we will study

«* FCFS Scheduling.

% Round Robin Scheduling.
%+ SJF Scheduling.
«* SRT Scheduling.

% Priority Scheduling.

«» Multilevel Queue Scheduling.

«» Multilevel Feedback Queue Scheduling.

First-Come-First-Served (FCFS) Scheduling Other names of this algorithm are:

* First-In-First-Out (FIFO)
* Run-to-Completion

* Run-Until-Done

Perhaps, First-Come-First-Served algorithm is the simplest scheduling algorithm is the
simplest scheduling algorithm. Processes are dispatched according to their arrival time
on the ready queue. Being a nonpreemptive discipline, once a process has a CPU, it runs
to completion. The FCFS scheduling is fair in the formal sense or human sense of
fairness but it is unfair in the sense that long jobs make short jobs wait and
unimportant jobs make important jobs wait.

FCFS is more predictable than most of other schemes since it offers time. FCFS scheme
is not useful in scheduling interactive users because it cannot guarantee good response
time. The code for FCFS scheduling is simple to write and understand. One of the major
drawback of this scheme is that the average time is often quite long.

The First-Come-First-Served algorithm is rarely used as a master scheme in modern

operating systems but it is often embedded within other schemes.

Example:-

Process Burst Time
P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the
schedule is:

Py P B

0 24 27 30

Waiting time for P1 =0; P2 = 24; P3 =27
Average waiting time: (0 + 24 +27)/3=17

Suppose that the processes arrive in the order P2, P3, P1 The Gantt chart for the
~ schedule is:

0 3 6 30

Waiting time for P1 =6, P2=0; P3=3

Average waiting time: (6 +0+3)/3=3

Much better than previous case

Convoy effect short process behind long process

Round Robin Scheduling

One of the oldest, simplest, fairest and most widely used algorithm is round robin (RR).
In the round robin scheduling, processes are dispatched in a FIFO manner but are given
a limited amount of CPU time called a time-slice or a quantum.

If a process does not complete before its CPU-time expires, the CPU is preempted and
given to the next process waiting in a queue. The preempted process is then placed at
the back of the ready list.

Round Robin Scheduling is preemptive (at the end of time-slice) therefore it is effective
in time-sharing environments in which the system needs to guarantee reasonable
response times for interactive users.

The only interesting issue with round robin scheme is the length of the quantum. Setting
the quantum too short causes too many context switches and lower the CPU efficiency.
On the other hand, setting the quantum too long may cause poor response time and
appoximates FCFS.

In any event, the average waiting time under round robin scheduling is often quite long.
Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
After this time has elapsed, the process is preempted and added to the end of the ready
queue.

If there are n processes in the ready queue and the time quantum is g, then each process
gets 1/n of the CPU time in chunks of at most g time units at once. No process waits
more than (n-1)q time units.

Performance
->q large @ FIFO

->q small @ g must be large with respect to context switch, otherwise overhead is too
high.

Example:-
Proces: Burst
Time

P1 53

P2 17
P3 68
P4 24
The Gantt chart is:
F P P P P P P P P P
1 2 3 4 1 3 4 1 3 3
0 20 37 57 77 97117 121 134 154 162

->Typically, higher average turnaround than SJF, but better response

C._Shortest-Job-First (S]F) Scheduling

Other name of this algorithm is Shortest-Process-Next (SPN).

Shortest-Job-First (SJF) is a non-preemptive discipline in which waiting job (or process)
with the smallest estimated run-time-to-completion is run next. In other words, when
CPU is available, it is assigned to the process that has smallest next CPU burst.

The SJF scheduling is especially appropriate for batch jobs for which the run times are
known in advance. Since the SJF scheduling algorithm gives the minimum average time
for a given set of processes, it is probably optimal.

The SJF algorithm favors short jobs (or processors) at the expense of longer ones. The
obvious problem with SJF scheme is that it requires precise knowledge of how long a job
or process will run, and this information is not usually available. The best SJF algorithm
can do is to rely on user estimates of run times.

In the production environment where the same jobs run regularly, it may be possible to
provide reasonable estimate of run time, based on the past performance of the process.
But in the development environment users rarely know how their program will execute.
Like FCFS, SJF is non preemptive therefore, it is not useful in timesharing environment
in which reasonable response time must be guaranteed.

. Associate with each process the length of its next CPU burst. Use these lengths to

schedule the process with the shortest time

. Two schemes:

nonpreemptive - once CPU given to the process it cannot be preempted until completes
its CPU burst

preemptive - if a new process arrives with CPU burst length less than remaining time of
current executing process, preempt. This scheme is know as the ShortestRemaining-
Time-First (SRTF)

SJF is optimal - gives minimum average waiting time for a given set of processes

Process Arrival Time Burst Time

P1

0.0 7
P2 2.0 4 P3 4.0 1 P4
5.0 4
->SJF (preemptive)
P1 P2 P3 P> Py P1
0 2 4 5 7 11 16

->Average waiting time=(9+ 1+ 0 +2)/4 =3

D. Shortest-Remaining-Time (SRT) Scheduling

The SRT is the preemtive counterpart of SJF and useful in time-sharing environment.

In SRT scheduling, the process with the smallest estimated run-time to completion is
run next, including new arrivals.

In SJF scheme, once a job begin executing, it run to completion.
In SJF scheme, a running process may be preempted by a new arrival process with

shortest estimated run-time.

The algorithm SRT has higher overhead than its counterpart SJF.
The SRT must keep track of the elapsed time of the running process and must handle

occasional preemptions.
In this scheme, arrival of small processes will run almost immediately. However, longer
jobs have even longer mean waiting time.
E. Priority Scheduling
1. A priority number (integer) is associated with each process
2. The CPU is allocated to the process with the highest priority (smallest integer

highest priority) ->Preemptive

->nonpreemptive

3. SJF is a priority scheduling where priority is the predicted next CPU burst time
4. Problem [Starvation - low priority processes may never execute

5. Solution @ Aging - as time progresses increase the priority of the process

The basic idea is straightforward: each process is assigned a priority, and priority is
allowed to run. Equal-Priority processes are scheduled in FCFS order. The shortest-

JobFirst (SJF) algorithm is a special case of general priority scheduling algorithm.

An SJF algorithm is simply a priority algorithm where the priority is the inverse of the
(predicted) next CPU burst. That is, the longer the CPU burst, the lower the priority and
vice versa.

Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities or qualities to compute priority of a process. Examples of
Internal priorities are

+ Time limits.
« Memory requirements.
- File requirements,
for example, number of open files.

«CPU Vs I/0 requirements.
Externally defined priorities are set by criteria that are external to operating system

such as

The importance of process.

Type or amount of funds being paid for computer use.

The department sponsoring the work.

Politics.

Priority scheduling can be either preemptive or non preemptive

« A preemptive priority algorithm will preemptive the CPU if the priority of the newly
arrival process is higher than the priority of the currently running process.

« A non-preemptive priority algorithm will simply put the new process at the head of the
ready queue.
A major problem with priority scheduling is indefinite blocking or starvation. A solution
to the problem of indefinite blockage of the low-priority process is aging. Aging is a
technique of gradually increasing the priority of processes that wait in the system for a

long period of time.

F. Multilevel Queue Scheduling

[Pighest priority

':'Pl Interactive processes. I:>
'3‘ interactive editing processes I:>

C :b‘ batch processes |]
‘:3»{ student processes I:_»

lowest priority

A multilevel queue scheduling algorithm partitions the ready queue in several separate
queues, for instance

In a multilevel queue scheduling processes are permanently assigned to one queues.
The processes are permanently assigned to one another, based on some property of the
process, such as

« Memory size

 Process priority

 Process type

Algorithm choose the process from the occupied queue that has the highest priority, and

run that process either

« Preemptive or
« Non-preemptively
Each queue has its own scheduling algorithm or policy.

Possibility I

If each queue has absolute priority over lower-priority queues then no process in the
queue could run unless the queue for the highest-priority processes were all empty. For
example, in the above figure no process in the batch queue could run unless the queues
for system processes, interactive processes, and interactive editing processes will all
empty.

Possibility II

If there is a time slice between the queues then each queue gets a certain amount of

CPU times, which it can then schedule among the processes in its queue. For
instance; 80% of the CPU time to foreground queue using RR.
20% of the CPU time to background queue using FCFS.
Since processes do not move between queue so, this policy has the advantage of low

scheduling overhead, but it is inflexible.

X/
L X4

X/
L X4

G. Multilevel Feedback Queue Scheduling

Multilevel feedback queue-scheduling algorithm allows a process to move between
queues. It uses many ready queues and associate a different priority with each queue.
The Algorithm chooses to process with highest priority from the occupied queue and
run that process either preemptively or unpreemptively. If the process uses too much
CPU time it will moved to a lower-priority queue. Similarly, a process that wait too long
in the lower-priority queue may be moved to a higher-priority queue may be moved to a
highest-priority queue. Note that this form of aging prevents starvation.

A process entering the ready queue is placed in queue 0.

If it does not finish within 8 milliseconds time, it is moved to the tail of queue 1.

If it does not complete, it is preempted and placed into queue 2.

Processes in queue 2 run on a FCFS basis, only when 2 run on a FCFS basis queue, only

when queue 0 and queue 1 are empty. Example:-
1. Three queues:

Q0 - RR with time quantum 8 milliseconds
Q1 - RR time quantum 16 milliseconds
Q2 - FCFS

2. Scheduling
A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8
milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
At Q1 job is again served FCFS and receives 16 additional milliseconds.

If it still does not complete, it is preempted and moved to queue Q2.

5

4»1 quantum = 8

= 4
quantum = 16]/4—

Process Synchronization & Deadlocks Interprocess Communication

Since processes frequently needs to communicate with other processes therefore, there
is a need for a well-structured communication, without using interrupts, among

processes.

Race Conditions

In operating systems, processes that are working together share some common storage

(main memory, file etc.) that each process can read and write. When two or more

processes are reading or writing some shared data and the final result depends on who
runs precisely when, are called race conditions. Concurrently executing threads that
share data need to synchronize their operations and processing in order to avoid race
condition on shared data. Only one fcustomert thread at a time should be allowed to
examine and update the shared variable.

Race conditions are also possible in Operating Systems. If the ready queue is
implemented as a linked list and if the ready queue is being manipulated during the
handling of an interrupt, then interrupts must be disabled to prevent another interrupt
before the first one completes. If interrupts are not disabled than the linked list could
become corrupt.

count++ could be implemented as registerl = count registerl = registerl + 1

count = registerl

count-- could be implemented as register2 = count register2 = register2 - 1
count = register2

3. Consider this execution interleaving with {count = @1
initially:
S0 producer execute registerl = count 3 5)
{registerl
S1i producer execute registerl = registerl + 1 {n 3 6}
S2i consumer execute register2 = count 3 5]
{register2
S3; consumer execute register2 = register2 - 1 {n 3 4}
S4; producer execute count = registerl {count 6 }

S5: consumer execute count = register2 {count =4}

Solution to Critical-Section Problem

1.Mutual Exclusion - If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections

2.Progress - If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of the processes
that will enter the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of times that other processes
are allowed to enter their critical sections after a process has made a request to enter its
critical section and before that request is granted

Assume that each process executes at a nonzero speed

No assumption concerning relative speed of the N processes

A. Critical Section

http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/criticalSec.htm
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/criticalSec.htm

Wait s

- enter

Critical Section

Signal § = exit

The key to preventing trouble involving shared storage is find some way to prohibit
more than one process from reading and writing the shared data simultaneously. That
part of the program where the shared memory is accessed is called the Critical Section.
To avoid race conditions and flawed results, one must identify codes in Critical Sections
in each thread. The characteristic properties of the code that form a Critical Section are
Codes that reference one or more variables in a {read-update-write} fashion while any
of those variables is possibly being altered by another thread.

Codes that alter one or more variables that are possibly being referenced in +
readupdata-write+ fashion by another thread.

Codes use a data structure while any part of it is possibly being altered by another
thread.

Codes alter any part of a data structure while it is possibly in use by another thread.
Here, the important point is that when one process is executing shared modifiable data
in its critical section, no other process is to be allowed to execute in its critical section.
Thus, the execution of critical sections by the processes is mutually exclusive in time.

B. Mutual Exclusion

A way of making sure that if one process is using a shared modifiable data, the other
processes will be excluded from doing the same thing.
Formally, while one process executes the shared variable, all other processes desiring to

do so at the same time moment should be kept waiting; when that process has finished

executing the shared variable, one of the processes waiting; while that process has
finished executing the shared variable, one of the processes waiting to do so should be
allowed to proceed. In this fashion, each process executing the shared data (variables)
excludes all others from doing so simultaneously. This is called Mutual Exclusion.
Note that mutual exclusion needs to be enforced only when processes access shared
modifiable data - when processes are performing operations that do not conflict with
one another they should be allowed to proceed concurrently.

Mutual Exclusion Conditions

If we could arrange matters such that no two processes were ever in their critical
sections simultaneously, we could avoid race conditions. We need four conditions to

hold to have a good solution for the critical section problem (mutual exclusion).

= No two processes may at the same moment inside their critical sections.

= No assumptions are made about relative speeds of processes or number of CPUs.
= No process should outside its critical section should block other processes.

= No process should wait arbitrary long to enter its critical section.

C. Proposals for Achieving Mutual Exclusion

The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a
postprotocol (or exist protocol) to keep two or more threads from being in their
critical sections at the same time. Tanenbaum examine proposals for critical-section
problem or mutual exclusion problem.

Problem

When one process is updating shared modifiable data in its critical section, no other
process should allowed to enter in its critical section.

Proposal 1 -Disabling Interrupts (Hardware Solution)

Each process disables all interrupts just after entering in its critical section and
reenable all interrupts just before leaving critical section. With interrupts turned off
the CPU could not be switched to other process. Hence, no other process will enter its
critical and mutual exclusion achieved. Conclusion

Disabling interrupts is sometimes a useful interrupts is sometimes a useful technique
within the kernel of an operating system, but it is not appropriate as a general mutual
exclusion mechanism for users process. The reason is that it is unwise to give user
process the power to turn off interrupts.

Proposal 2 - Lock Variable (Software Solution)

In this solution, we consider a single, shared, (lock) variable, initially 0. When a
process wants to enter in its critical section, it first test the lock. If lock is 0, the
process first sets it to 1 and then enters the critical section. If the lock is already 1, the

process just waits until (lock) variable becomes 0. Thus, a 0 means that no process in

its critical section, and 1 means hold your horses - some process is in its critical
section.

Conclusion

The flaw in this proposal can be best explained by example. Suppose process A sees
that the lock is 0. Before it can set the lock to 1 another process B is scheduled, runs,
and sets the lock to 1. When the process A runs again, it will also set the lock to 1, and
two processes will be in their critical section simultaneously.

Proposal 3 - Strict Alteration

In this proposed solution, the integer variable 'turn' keeps track of whose turn is to
enter the critical section. Initially, process A inspect turn, finds it to be 0, and enters in
its critical section. Process B also finds it to be 0 and sits in a loop continually testing
'turn’ to see when it becomes 1.Continuously testing a variable waiting for some value

to appear is called the Busy-Waiting.

Conclusion

Taking turns is not a good idea when one of the processes is much slower than the
other. Suppose process 0 finishes its critical section quickly, so both processes are
now in their noncritical section. This situation violates above mentioned condition 3.

Using Systems calls 'sleep' and 'wakeup'

Basically, what above mentioned solution do is this: when a processes wants to enter
in its critical section, it checks to see if then entry is allowed. If it is not, the process
goes into tight loop and waits (i.e., start busy waiting) until it is allowed to enter. This
approach waste CPU-time.

Now look at some interprocess communication primitives is the pair of steep-wakeup.

= Sleep

It is a system call that causes the caller to block, that is, be suspended
until some other process wakes it up.

= Wakeup

It is a system call that wakes up the process.

Both 'sleep’ and 'wakeup' system calls have one parameter that represents a memory
address used to match up 'sleeps’ and 'wakeups'.

The Bounded Buffer Producers and Consumers

The bounded buffer producers and consumers assumes that there is a fixed buffer size
i.e., a finite number of slots are available.

Statement

To suspend the producers when the buffer is full, to suspend the consumers when the
buffer is empty, and to make sure that only one process at a time manipulates a buffer so
there are no race conditions or lost updates.

As an example how sleep-wakeup system calls are used, consider the producer
consumer problem also known as bounded buffer problem.

Two processes share a common, fixed-size (bounded) buffer. The producer puts
information into the buffer and the consumer takes information out. Trouble arises
when

The producer wants to put a new data in the buffer, but buffer is already full. Solution:
Producer goes to sleep and to be awakened when the consumer has removed data.

The consumer wants to remove data the buffer but buffer is already empty. Solution:
Consumer goes to sleep until the producer puts some data in buffer and wakes
consumer up.

Conclusion

This approaches also leads to same race conditions we have seen in earlier approaches.
Race condition can occur due to the fact that access to 'count' is unconstrained. The
essence of the problem is that a wakeup call, sent to a process that is not sleeping, is lost.

D. Semaphores

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of
semaphores.

Definition

A semaphore is a protected variable whose value can be accessed and altered only by
the operations P and V and initialization operation called 'Semaphoiinitislize'.

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores

also called general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S),
operates as follows:

P(S): IF S>0

THEN S:= S-1

ELSE (waitonS)

The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or signal

(S), operates as follows:

V(S): IF (one or more process are waiting on S)

THEN (let one of these processes proceed) ELSE S:=S+1

Operations P and V are done as single, indivisible, atomic action. It is guaranteed that
once a semaphore operations has stared, no other process can access the semaphore
until operation has completed. Mutual exclusion on the semaphore, S, is enforced within
P(S) and V(S).

If several processes attempt a P(S) simultaneously, only process will be allowed to
proceed. The other processes will be kept waiting, but the implementation of P and V
guarantees that processes will not suffer indefinite postponement.

Semaphores solve the lost-wakeup problem.

Semaphore as General Synchronization Tool

p—

. Counting semaphore - integer value can range over an unrestricted domain.

[\

. Binary semaphore - integer value can range only between 0

and 1; can be simpler to implement Also known as mutex locks.

(98]

. Can implement a counting semaphore S as a binary semaphore.

N

. Provides mutual exclusion

Semaphore S; // initialized to 1

wait (S);
Critical Section signal (S);

Semaphore Implementation

1. Must guarantee that no two processes can execute wait () and signal () on the same
semaphore at the same time

2. Thus, implementation becomes the critical section problem where the wait and signal
code are placed in the crtical section.

= Could now have busy waiting in critical section implementation
= But implementation code is short
= Little busy waiting if critical section rarely occupied

3. Note that applications may spend lots of time in critical sections and therefore this is not

a good solution.

Semaphore Implementation with no Busy waiting

1. With each semaphore there is an associated waiting queue. Each entry in a waiting queue
has two data items:
value (of type integer)

pointer to next record in the list
2. Two operations:

= block - place the process invoking the operation on the appropriate waiting queue.
= wakeup - remove one of processes in the waiting queue and place it in the ready queue.

->Implementation of wait:

wait (S){ value--; if (value < 0) {
add this process to waiting queue block(); }

}

->Implementation of signal:

Signal (S){ value++; if (value <= 0) {
remove a process P from the waiting queue wakeup(P); }

}

Svnchronization Hardware

1. Many systems provide hardware support for critical section code
2. Uniprocessors - could disable interrupts
* Currently running code would execute without preemption

* Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable
3. Modern machines provide special atomic hardware instructions ->Atomic = non-
interruptable
Either test memory word and set value
Or swap contents of two memory words
Classical Problems of Synchronization
1. Bounded-Buffer Problem
2. Readers and Writers Problem
3. Dining-Philosophers Problem
Bounded-Buffer Problem
1. N buffers, each can hold one item

. Semaphore mutex initialized to the value 1
. Semaphore full initialized to the value 0

2
3
4. Semaphore empty initialized to the value N.
5

. The structure of the producer process while (true) {
// produce an item wait (empty); wait (mutex);

4.
//
}
5.

while (true) {
if (readcount == 1) wait (wrt) ;

// add the item to the buffer
signal (full);
}

6. The structure of the consumer process
wait (mutex);

// remove an item from buffer

signal (mutex); signal (empty);

// consume the removed item

}

signal (mutex);

while (true) { wait (full);

Readers-Writers Problem

. A data set is shared among a number of concurrent processes @ Readers - only read the

data set; they do not perform any updates @ Writers - can both read and write.
Problem - allow multiple readers to read at the same time. Only one single writer can
access the shared data at the same time.

Shared Data

Data set

Semaphore mutex initialized to 1. @ Semaphore wrt initialized to 1.
Integer readcount initialized to 0.

The structure of a writer process
writing is performed

while (true) {
signal (wrt) ;

wait (wrt) ;

The structure of a reader process
wait (mutex) ; readcount ++ ;
signal (mutex)

readcount - -;

// reading is performed
wait (mutex) ;

if (readcount == 0) signal (wrt);
signal (mutex) ;

}

Dining-Philosophers Problem

N\ /S

P

O

Shared data

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1
The structure of Philosopher i:

While (true) {

oW

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat signal (chopstick][i]);

signal (chopstick[(i + 1) % 5]);

// think

}

Problems with Semaphores

1. Correct use of semaphore operations:
signal ¥ mutex & ... wait B mutex &
wait ¥ mutex & .. wait B mutex &
Omitting of wait (mutex) or signal (mutex) (or both)
Monitors

entry queue

shared data

~

operations

initialization
code

high-level abstraction that provides a convenient and effective mechanism for process
synchronization

Only one process may be active within the monitor at a time

a. monitor monitor-name

i.{

// shared variable declarations

procedure P %% ¥ ... & { ...}

i ...

d. procedure Pn wp ... & {......}

)nitialization code ® ...& {...}

}

}
5. Solution to Dining Philosophers monitor DP
{
enum { THINKING; HUNGRY, EATING) state [5]; condition self [5];
void pickup (int i) { state[i] = HUNGRY; test(i);
if (state[i] != EATING) self [i].wait;
}

void putdown (int i) {

state[i] = THINKING;

// testleft and right neighbors test((i +4) % 5); test((i+ 1) % 5);
}

void test (int i) {

if ((state[(i + 4) % 5] != EATING) && (state[i] == HUNGRY) &&
(state[(i + 1) % 5] '= EATING)) {

state[i] = EATING; self[i].signal () ;

}

}

initialization_code() { for (inti=0;i<5;i++)

state[i] = THINKING;

}

}

->Each philosopher I invokes the operations pickup() and putdown() in the following
sequence:

dp.pickup (i) EAT

dp.putdown (i)

Monitor Implementation Using Semaphores
Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)

int next-count = 0;

2.Each procedure F will be replaced by
wait(mutex);

body of F;

if (next-count > 0) o signal(next)
else o signal(mutex);
Mutual exclusion within a monitor is ensured.

For each condition variable x, we have:
semaphore x-sem; // (initially =0)

int x-count = 0;

The operation x.wait can be implemented as:
X-count++;

if (next-count > 0)

signal(next);

else

signal(mutex);

wait(x-sem);

x-count--;

The operation x.signal can be implemented as:
if (x-count > 0) {

next-count++;

signal(x-sem);

wait(next);

next-count--;

}

Producer-Consumer Problem Using Semaphores

The Solution to producer-consumer problem uses three semaphores, namely, full,
empty and mutex.

The semaphore 'full’ is used for counting the number of slots in the buffer that are
full. The 'empty' for counting the number of slots that are empty and semaphore
'mutex’ to make sure that the producer and consumer do not access modifiable
shared section of the buffer simultaneously.

Initialization

Set full buffer slots to 0.

i.e.,, semaphore Full = 0.

Set empty buffer slots to N.

i.e, semaphore empty = N.

For control access to critical section set mutex to 1.

i.e.,, semaphore mutex = 1.

Producer ()

WHILE (true) produce-Item ();

P (empty); P (mutex); enter-Item ()
V (mutex)

V (full);

Consumer ()

WHILE (true)
P (full) P (mutex); remove-Item (); V (mutex); V (empty);
consume-Item (Item)

. When processes request a resource and if the resources are not available at that time the
process enters into waiting state. Waiting process may not change its state because the resources they
are requested are held by other process. This situation is called deadlock.

. The situation where the process waiting for the resource i.e., not available is called deadlock.

System Model:-

= A system may consist of finite number of resources and is distributed among number of
processes. There resources are partitioned into several instances each with identical instances.

= A process must request a resource before using it and it must release the resource after using
it. It can request any number of resources to carry out a designated task. The amount of resource
requested may not exceed the total number of resources available. @ A process may utilize the
resources in only the following sequences:-

1. Request:- If the request is not granted immediately then the requesting process must
wait it can acquire the resources.

2. Use:- The process can operate on the resource.

3. Release:- The process releases the resource after using it.

> Deadlock may involve different types of resources.

For eg:- Consider a system with one printer and one tape drive. If a process Pi currently holds a
printer and a process Pj holds the tape drive. If process Pi request a tape drive and process Pj request
a printer then a deadlock occurs.

Multithread programs are good candidates for deadlock because they compete for shared resources.

Deadlock Characterization:-

Necessary Conditions:-

A deadlock situation can occur if the following 4 conditions occur simultaneously in a system:-

1. Mutual Exclusion:-
Only one process must hold the resource at a time. If any other process requests for the resource, the

requesting process must be delayed until the resource has been released.

2. Hold and Wait:-
A process must be holding at least one resource and waiting to acquire additional resources that are
currently being held by the other process.

3. No Preemption:-

Resources cantt be preempted i.e., only the process holding the resources must release it after the
process has completed its task.

4. Circular Wait:-
Aset {P &P 7i......Pn} of waiting process must exist such that P & is waiting for a resource i.e., held
by P1, P1 is waiting for a resource i.e., held by P2. Pn-1 is waiting for resource held by process Pn and
Pn is waiting for the resource i.e., held by P1.

All the four conditions must hold for a deadlock to occur.

Resource Allocation Graph:-

=>» Deadlocks are described by using a directed graph called system resource allocation graph. The
graph consists of set of vertices (v) and set of edges (e).

=> The set of vertices (v) can be described into two different types of nodes P={P 7P [Z......Pn} ie,
set consisting of all active processes and R={R 7%,R [Z......... Rn}i.e, set consisting of all resource types
in the system.

=> A directed edge from process Pi to resource type Rj denoted by Pil@ Ri indicates that Pi requested an
instance of resource Rj and is waiting. This edge is called Request edge.

=> A directed edge Rild Pj signifies that resource Rj is held by process Pi. This is called Assignment

edge.
Eg:- R1 R3
~— ~

—
\/ :

R2 R4
=> [f the graph contain no cycle, then no process in the system is deadlock. If the graph contains a cycle

then a deadlock may exist.
=> If each resource type has exactly one instance than a cycle implies that a deadlock has occurred. If
each resource has several instances then a cycle do not necessarily implies that a deadlock has

occurred.

Methods for Handling Deadlocks:-

There are three ways to deal with deadlock problem

We can use a protocol to prevent deadlocks ensuring that the system will never enter into the
deadlock state.

We allow a system to enter into deadlock state, detect it and recover from it.

We ignore the problem and pretend that the deadlock never occur in the system.
This is used by most OS including UNIX.

> To ensure that the deadlock never occur the system can use either deadlock avoidance or a
deadlock prevention.
> Deadlock prevention is a set of method for ensuring that at least one of the necessary

conditions does not occur.

> Deadlock avoidance requires the OS is given advance information about which resource a
process will request and use during its lifetime.

> If a system does not use either deadlock avoidance or deadlock prevention then a deadlock
situation may occur. During this it can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and algorithm to recover from deadlock.

> 4 Undetected deadlock will result in deterioration of the system performance.

Deadlock Prevention:-

= For a deadlock to occur each of the four necessary conditions must hold. If at least one of the there

condition does not hold then we can prevent occurrence of deadlock.

1. Mutual Exclusion:-

This holds for non-sharable resources.

Eg:- A printer can be used by only one process at a time.

Mutual exclusion is not possible in sharable resources and thus they cannot be involved in deadlock.
Read-only files are good examples for sharable resources. A process never waits for accessing a
sharable resource. So we cannot prevent deadlock by denying the mutual exclusion condition in non-
sharable resources.

2. Hold and Wait:-

This condition can be eliminated by forcing a process to release all its resources held by it when it
request a resource i.e., not available.
* One protocol can be used is that each process is allocated with all of its resources before its start

execution.

Eg:- consider a process that copies the data from a tape drive to the disk, sorts the file and then prints
the results to a printer. If all the resources are allocated at the beginning then the tape drive, disk files
and printer are assigned to the process. The main problem with this is it leads to low resource
utilization because it requires printer at the last and is allocated with it from the beginning so that no
other process can use it.

* Another protocol that can be used is to allow a process to request a resource when the process has
none. i.e., the process is allocated with tape drive and disk file. It performs the required operation and
releases both. Then the process once again request for disk file and the printer and the problem and
with this is starvation is possible.

3. No Preemption:-

To ensure that this condition never occurs the resources must be

preempted. The following protocol can be used.
* If a process is holding some resource and request another resource that cannot be immediately

allocated to it, then all the resources currently held by the requesting process are preempted and
added to the list of resources for which other processes may be waiting. The process will be restarted
only when it regains the old resources and the new resources that it is requesting.

* When a process request resources, we check whether they are available or not. If they are available
we allocate them else we check that whether they are allocated to some other waiting process. If so
we preempt the resources from the waiting process and allocate them to the requesting process. The
requesting process must wait.

4. Circular Wait:-

The fourth and the final condition for deadlock is the circular wait

condition. One way to ensure that this condition never, is to impose ordering on all resource types and
each process requests resource in an increasing order.

Let R={R ZZ,R [Z,......... Rn} be the set of resource types. We assign each

resource type with a unique integer value. This will allows us to compare two resources and
determine whether one precedes the other in ordering. Eg:-we can define a one to one function
F:REN as follows :- F(disk drive)=5

F(printer)=12

F(tape drive)=1

* Deadlock can be prevented by using the following protocol:-

* Each process can request the resource in increasing order. A process can request any number of
instances of resource type say Ri and it can request instances of resource type Rj only F(Rj) > F(Ri).

« Alternatively when a process requests an instance of resource type Rj, it has released any resource
Ri such that F(Ri) >= F(Rj).

+)fthese two protocol are used then the circular wait cantt hold.

Deadlock Avoidance:-
=>» Deadlock prevention algorithm may lead to low device utilization and reduces system throughput.
=» Avoiding deadlocks requires additional information about how resources are to be requested. With
the knowledge of the complete sequences of requests and releases we can decide for each requests
whether or not the process should wait.
=>» For each requests it requires to check the resources currently available, resources that are currently
allocated to each processes future requests and release of each process to decide whether the current
requests can be satisfied or must wait to avoid future possible deadlock.
=>» A deadlock avoidance algorithm dynamically examines the resources allocation state to ensure that
a circular wait condition never exists. The resource allocation state is defined by the number of
available and allocated resources and the maximum demand of each process.
Safe State:-

> 4 A state is a safe state in which there exists at least one order in which all the process will run
completely without resulting in a deadlock.

> 4 A system is in safe state if there exists a safe sequence.

> 4 A sequence of processes <P 7&,P IZ,.......... Pn> is a safe sequence for the current allocation
state if for each Pi the resources that Pi can request can be satisfied by the currently available
resources.

> 4 If the resources that Pi requests are not currently available then Pi can obtain all of its
needed resource to complete its designated task.

> A safe state is not a deadlock state.

-> Whenever a process request a resource i.e., currently available, the system must decide
whether resources can be allocated immediately or whether the process must wait. The request is
granted only if the allocation leaves the system in safe state.

> In this, if a process requests a resource i.e., currently available it must still have to wait. Thus
resource utilization may be lower than it would be without a deadlock avoidance algorithm.

Resource Allocation Graph Algorithm:-

=>» This algorithm is used only if we have one instance of a resource type. In addition to the request
edge and the assignment edge a new edge called claim edge is used. For eg:- A claim edge PiZRj
indicates that process Pi may request Rj in future. The claim edge is represented by a dotted line.

=>» When a process Pi requests the resource Rj, the claim edge is converted to a request edge.

= When resource Rj is released by process Pi, the assignment edge Rj@Pi is replaced by the claim edge
PilZR;j.

=> When a process Pi requests resource Rj the request is granted only if converting the request edge

PilIRj to as assignment edge RjEPi do not result in a cycle. Cycle detection algorithm is used to detect

the cycle. If there are no cycles then the allocation of the resource to process leave the system in safe

state

Banker’s Algorithm:-

> This algorithm is applicable to the system with multiple instances of each resource types, but
this is less efficient then the resource allocation graph algorithm.

> When a new process enters the system it must declare the maximum number of resources
that it may need. This number may not exceed the total number of resources in the system. The
system must determine that whether the allocation of the resources will leave the system in a safe
state or not. If it is so resources are allocated else it should wait until the process release enough
resources.

> Several data structures are used to implement the bankerts algorithm. Let int be the
number of processes in the system and 1mt be the number of resources types. We need the following
data structures:-

*Available:- A vector of length m indicates the number of available resources. If Available[i]=k, then
k instances of resource type Rj is available.

*Max:- An n*m matrix defines the maximum demand of each process if Max[i,j]=k, then Pi may
request at most k instances of resource type R;j.

*Allocation:- An n*m matrix defines the number of resources of each type currently allocated to each
process. If Allocation[i,j]=k, then Pi is currently k instances of resource type Rj.

*Need:- An n*m matrix indicates the remaining resources need of each process. If Need[i,j]=k, then Pi

may need k more instances of resource type Rj to compute its task. So Need[i,j]=Max[i,j]-Allocation[i]

Safety Algorithm:-

=> This algorithm is used to find out whether or not a system is in safe state or not.
Step 1. Let work and finish be two vectors of length M and N respectively.
Initialize work = available and

Finish[i]=false for i=7%%,|Z,83,......n

Step 2. Find i such that both

Finish[i]=false

Need i <= work

If no such i exist then go to step 4

Step 3. Work = work + Allocation

Finish[i]=true

Go to step 2

Step 4. If finish[i]=true for all i, then the system is in safe state.

This algorithm may require an order of m*n*n operation to decide whether a state

is safe.

Resource Request Algorithm:-

Let Request(i) be the request vector of process Pi. If Request(i)[j]=k, then process
Pi wants K instances of the resource type Rj. When a request for resources is made
by process Pi the following actions are taken.

If Request(i) <= Need(i) go to step 2 otherwise raise an error condition since the
process has exceeded its maximum claim.

If Request(i) <= Available go to step 3 otherwise Pi must wait. Since the resources
are not available.

If the system want to allocate the requested resources to process Pi then

modify the state as follows.

Available = Available - Request(i)

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) - Request(i)

If the resulting resource allocation state is safe, the transaction is complete

and Pi is allocated its resources. If the new state is unsafe then Pi must wait for

Request(i) and old resource allocation state is restored.

Deadlock Detection:-

If a system does not employ either deadlock prevention or a deadlock avoidance
algorithm then a deadlock situation may occur. In this environment the system
may provide

An algorithm that examines the state of the system to determine whether a
deadlock has occurred.

" An algorithm to recover from the deadlock.

Single Instances of each Resource Type:-

() (=)

R2 4 RS

R1 R4

A

¢)

Several Instances of a Resource Types:-

= The wait for graph is applicable to only a single instance of a resource type. The following algorithm applies

if there are several instances of a resource type. The following data structures are used:-

Available:-Is a vector of length m indicating the number of available resources of each type.
Allocation:-Is an m*n matrix which defines the number of resources of each type currently allocated

to each process.

Request:-Is an m*n matrix indicating the current request of each process. If request[i,j]=k then Pi is
requesting k more instances of resources type Rj.

Step 1. let work and finish be vectors of length m and n respectively. Initialize Work =
available/expression

Fori=&, %512 nifallocation ¥ i &!=¢& then Finish[i]=& else
Finish[i]=true

Step 2. Find an index(i) such that both

Finish[i] = false

Request(i)<=work

If no such I exist go to step 4.

Step 3. Work = work + Allocation(i)

Finish[i] = true Go to step 2.

Step 4. If Finish[i] = false for some [where m>=i>=1.

When a system is in a deadlock state.

This algorithm needs an order of m*n square operations to detect whether the system is in deadlock

state or not.

Example Problem:-

1. For the following snapshot of the system find the safe sequence ® using Banker+ts algorithm).

Process| Allocation Max Available
R1 R2 |R3 R1 (R2 R3 |R1 |[R2 R3
P1 0 1 |0 7 5 B 3 3 (2
P2 2 0 0 13 2 P

P3 3 Q2 9 0 (2

P4 2 1 i 2 2

PS5 0 Q_ 12 Ia 3 2

Calculate the need of each process?
To find safe sequence?

2. Consider the following snapshot of the system and answer the following questions using Banker+s
algorithm?

a. Find the need of the allocation?

b. Is the system is in safe state?

c. If the process P1 request (0,4,2,0) resources cam the request be granted immediately?

Process Allocation Max Available

A B |C [DA B ¢ D C|D]|P10 0 1 |2 0 0
1 21 5 2 |
0O P21 [0 0 0 1 7 5
0
P | 1| 315 |4]2 315 |6
P4 g "6 13 ' 210 6' §5 2
P5 0 0—1 0 6—5 6

3. The operating system contains three resources. The numbers of instances of each resource type are
(7,7,10). The current allocation state is given below.

a. Is the current allocation is safe?

b. find need?

c. Can the request made by the process P1(1,1,0) can be granted?

Process Allocation Max
R1 R2 Rl RZ RS
R3
P1 2 2| 3 3 6 | 8
P2 2 0 314 3 13
P3 1 2 4 3 4 4

4. Explain different methods to recover from deadlock?
5. Write advantage and disadvantage of deadlock avoidance and deadlock prevention?

UNIT II1

STORAGE MANAGEMENT
. Memory management is concerned with managing the primary memory.
. Memory consists of array of bytes or words each with their own address.
. The instructions are fetched from the memory by the cpu based on the value program

counter.

Functions of memory management:-

*Keeping track of status of each memory location..

*Determining the allocation policy.

*Memory allocation technique.

*De-allocation technique.
Address Binding:-

*Programs are stored on the secondary storage disks as binary executable files.

*When the programs are to be executed they are brought in to the main memory and placed within a
process.

*The collection of processes on the disk waiting to enter the main memory forms the input queue.

*One of the processes which are to be executed is fetched from the queue and placed in the main
memory.

*During the execution it fetches instruction and data from main memory. After the process
terminates it returns back the memory space.

*During execution the process will go through different steps and in each step the address is
represented in different ways.

*In source program the address is symbolic.

*The compiler converts the symbolic address to re-locatable address.

*The loader will convert this re-locatable address to absolute address. Binding of instructions and
data can be done at any step along the way:-
Compile time:-
If we know whether the process resides in memory then absolute code can be generated. If the static
address changes then it is necessary to re-compile the code from the beginning.

Load time:-
)f the compiler doesntt know whether the process resides in memory then it generates the re-

locatable code. In this the binding is delayed until the load time.

Execution time:-

If the process is moved during its execution from one memory segment to another then the binding is
delayed until run time. Special hardware is used for this. Most of the general purpose operating

system uses this method.

Source
Program

A 4

Compiler
Or
Assembler

A 4

Object
Module

v

Logical versus physical address:-

*The address generated by the CPU is called logical address or virtual address.

*The address seen by the memory unit i.e., the one loaded in to the memory register is called the

physical address.

*Compile time and load time address binding methods generate some logical and physical address.

*The execution time addressing binding generate different logical and physical address.

*Set of logical address space generated by the programs is the logical address space.

Set of physical address corresponding to these logical addresses is the physical address space.

*The mapping of virtual address to physical address during run time is done by the hardware device
called memory management unit (MMU).

*The base register is also called re-location register.

*Value of the re-location register is added to every address generated by the user process at the time
it is sent to

memory.

Relocation register

A 4

CpPU

A 4

Memory

O

MMU
Dynamic re-location using a re-location registers

* The above figure shows that dynamic re-location which implies mapping from virtual addresses
space to physical address space and is performed by the hardware at run time.
* Re-location is performed by the hardware and is invisible to the user dynamic relocation makes it

possible to move a partially executed process from one area of memory to another without affecting.

Dynamic Loading:-

. For a process to be executed it should be loaded in to the physical memory. The size of the

process is limited to the size of the physical memory.

. Dynamic loading is used to obtain better memory utilization.
. In dynamic loading the routine or procedure will not be loaded until it is called.
. Whenever a routine is called, the calling routine first checks whether the called routine is

already loaded or not. If it is not loaded it cause the loader to load the desired program in to the
memory and updates the programs address table to indicate the change and control is passed to

newly called routine.

Advantage:-
*Gives better memory utilization.
*Unused routine is never loaded.
*Do not need special operating system support.
*This method is useful when large amount of codes are needed to handle in frequently occurring

cases.

Dynamic linking and Shared libraries:-

Some operating system supports only the static linking.

In dynamic linking only the main program is loaded in to the memory. If the main program requests a
procedure, the procedure is loaded and the link is established at the time of references. This linking is
postponed until the execution time.

With dynamic linking a {stubt} is used in the image of each library referenced routine. A {stubt is a
piece of code which is used to indicate how to locate the appropriate memory resident library routine

or how to load library if the routine is not already present.

When {stubt is executed it checks whether the routine is present is memory or not. If not it loads the
routine in to the memory.

This feature can be used to update libraries i.e., library is replaced by a new version and all the
programs can make use of this library.

More than one version of the library can be loaded in memory at a time and each program uses its
version of the library. Only the program that are compiled with the new version are affected by the
changes incorporated in it. Other programs linked before new version is installed will continue using

older libraries this type of system is called +shared library-

Overlays:-

The size of the process is limited to the size of physical memory. If the size is more than the size of
physical memory then a technique called overlays is used.

The idea is to load only those instructions and data that are needed at any given time. When other
instructions are needed, they are loaded in to memory apace that was previously occupied by the
instructions that are no longer needed.

Eg:-

Consider a 2-pass assembler where pass-1 generates a symbol table and pass-2 generates a machine
code.

Assume that the sizes of components are as follows:

Pass-1 =70k

Pass-2 = 80k

Symbol table = 20k

Common routine = 30k

To load everything at once, it requires 200k of memory. Suppose if 150k of memory is available, we

cantt run all the components at same time.

Thus we define 2 overlays, overlay A which consist of symbol table, common routine and pass-1 and
overlay B which consists of symbol table, common routine and pass-2.

We add an overlay driver and start overlay A in memory. When we finish pass-1 we jump to overlay
driver, then the control is transferred to pass-2.

Thus we can run assembler in 150k of memory.

The code for overlays A and B are kept on disk as absolute memory images. Special re-location and
linking algorithms are needed to construct the overlays. They can be implemented using simple file
structures.

Swapping:-

=>» Swapping is a technique of temporarily removing inactive programs from the memory of the

system.

=>» A process can be swapped temporarily out of the memory to a backing store and then brought back
in to the memory for continuing the execution. This process is called swapping.
Eg:- In a multi-programming environment with a round robin CPU scheduling whenever the time
quantum expires then the process that has just finished is swapped out and a new process swaps in to
the memory for execution.
> A variation of swap is priority based scheduling. When a low priority is executing and if a
high priority process arrives then a low priority will be swapped out and high priority is allowed for

execution. This process is also called as Roll out and Roll in.

> 4 Normally the process which is swapped out will be swapped back to the same memory space
that is occupied previously. This depends upon address binding.

> If the binding is done at load time, then the process is moved to same memory location.

> If the binding is done at run time, then the process is moved to different memory location.
This is because the physical address is computed during run time.

> Swapping requires backing store and it should be large enough to accommodate the copies of
all memory images.

> The system maintains a ready queue consisting of all the processes whose memory images
are on the backing store or in memory that are ready to run.

> 4 Swapping is constant by other factors:-

. To swap a process, it should be completely idle.

. A process may be waiting for an i/o operation. If the i/o is asynchronously accessing the user
memory for i/o buffers, then the process cannot be swapped.

Contiguous Memory Allocation:-

*One of the simplest method for memory allocation is to divide memory in to several fixed partition.
Each partition contains exactly one process. The degree of multiprogramming depends on the number
of partitions.

*In multiple partition method, when a partition is free, process is selected from the input queue and
is loaded in to free partition of memory.

*When process terminates, the memory partition becomes available for another process.

*Batch OS uses the fixed size partition scheme.

*The OS keeps a table indicating which part of the memory is free and is occupied.

*When the process enters the system it will be loaded in to the input queue. The OS keeps track of the
memory requirement of each process and the amount of memory available and determines which
process to allocate the memory.

*When a process requests, the OS searches for large hole for this process, hole is a large block of free

memory available.

«[f the hole is too large it is split in to two. One part is allocated to the requesting process and other is
returned to the set of holes.
*The set of holes are searched to determine which hole is best to allocate. There are three strategies
to select a free hole:-
o First bit:- Allocates first hole that is big enough. This algorithm scans memory from the
beginning and selects the first available block that is large enough to hold the process.
o Best bit:- It chooses the hole i.e., closest in size to the request. It allocates the smallest hole
i.e., big enough to hold the process.
e Worst fit:- It allocates the largest hole to the process request. It searches for the largest hole
in the entire list.
> First fit and best fit are the most popular algorithms for dynamic memory allocation. First fit
is generally faster. Best fit searches for the entire list to find the smallest hole i.e., large enough. Worst
fit reduces the rate of production of smallest holes.
> All these algorithms suffer from fragmentation.

Memory Protection:-

. Memory protection means protecting the OS from user process and protecting process from
one another.

. Memory protection is provided by using a re-location register, with a limit register.

. Re-location register contains the values of smallest physical address and limit register
contains range of logical addresses. (Re-location = 100040 and limit = 74600).

. The logical address must be less than the limit register, the MMU maps the logical address
dynamically by adding the value in re-location register.

. When the CPU scheduler selects a process for execution, the dispatcher loads the re-location
and limit register with correct values as a part of context switch.

. Since every address generated by the CPU is checked against these register we can protect
the OS and other users programs and data from being modified.

Fragmentation:-

Memory fragmentation can be of two types:-

. Internal Fragmentation
. External Fragmentation
> In Internal Fragmentation there is wasted space internal to a portion due to the fact that

block of data loaded is smaller than the partition.

Eg:- If there is a block of 50kb and if the process requests 40kb and if the block is allocated to the
process then there will be 10kb of memory left.

> External Fragmentation exists when there is enough memory space exists to satisfy the

request, but it not contiguous i.e., storage is fragmented in to large number of small holes.

> External Fragmentation may be either minor or a major problem.
> One solution for over-coming external fragmentation is compaction. The goal is to move all
the free memory together to form a large block. Compaction is not possible always. If the re-location is
static and is done at load time then compaction is not possible. Compaction is possible if the re-
location is dynamic and done at execution time.
= Another possible solution to the external fragmentation problem is to permit the logical
address space of a process to be non-contiguous, thus allowing the process to be allocated physical
memory whenever the latter is available.
Paging:-
. Paging is a memory management scheme that permits the physical address space of a
process to be non-contiguous. Support for paging is handled by hardware.
. It is used to avoid external fragmentation.
. Paging avoids the considerable problem of fitting the varying sized memory chunks on to the
backing store.
. When some code or date residing in main memory need to be swapped out, space must be

found on backing store.

Basic Method:-

. Physical memory is broken in to fixed sized blocks called frames (f).

. Logical memory is broken in to blocks of same size called pages (p).

. When a process is to be executed its pages are loaded in to available frames from backing
store.

. The blocking store is also divided in to fixed-sized blocks of same size as memory frames.

. The following figure shows paging hardware:-

. Logical address generated by the CPU is divided in to two parts: page number (p) and page
offset (d).

. The page number (p) is used as index to the page table. The page table contains base address
of each page in physical memory. This base address is combined with the page offset to define the
physical memory i.e., sent to the memory unit.

* The page size is defined by

the 7 hardware. The size of a power of 2,
e —— r varying between 512 bytes and
10Mb e =] ’ poer= per page.
i 7:5:_99 - 1 3 ; B
Page 3 : Do

7| pape 3

(S8 = T

*If the size of logical address space is 2”m address unit and page size is 2”n, then high order m-n

designates the page number and n low order bits represents page offset.

logical physical
add

o
CPU —{ p | d

ess addre
1 d
‘ LARRR NN ER |
I
!

10000 ... 0000

Eg:- To show how to map logical memory in to physical memory consider a page size of 4 bytes and
physical memory of 32 bytes (8 pages).

a) Logical address 0 is page 0 and offset 0. Page 0 is in frame 5. The logical address 0 maps to physical
address 20. [(5*4) + 0].

b) Logical address 3 is page 0 and offset 3 maps to physical address 23 [(5*4) +
3].

c) Logical address 4 is page 1 and offset 0 and page 1 is mapped to frame 6. So logical address 4 maps
to physical address 24 [(6*4) + 0].

d) Logical address 13 is page 3 and offset 1 and page 3 is mapped to frame 2. So logical address 13
maps to physical address 9 [(2*4) + 1].

Hardware Support for Paging:-

The hardware implementation of the page table can be done in several ways:-

1. The simplest method is that the page table is implemented as a set of dedicated registers. These
registers must be built with very high speed logic for making paging address translation. Every
accessed memory must go through paging map. The use of registers for page table is satisfactory if

the page table is small.

If the page table is large then the use of registers is not visible. So the page table is kept in the main
memory and a page table base register [PTBR] points to the page table. Changing the page table
requires only one register which reduces the context switching type. The problem with this
approach is the time required to access memory location. To access a location [i] first we have to

index the page table using PTBR offset.

logical
address

CPU

page frame
number number

TLB hit

physical
address

f [d —

LB

p {
TLB miss

f

e physical
memory

page table

3. It gives the frame number which is combined with the page offset to produce the actual

address. Thus we need two memory accesses for a byte.

4, The only solution is to use special, fast, lookup hardware cache called translation look aside

buffer [TLB] or associative register.

. TLB is built with associative register with high speed memory. Each register contains two

paths a key and a_value.

. When an associative register is presented with an item, it is compared with all the key values,
if found the corresponding value field is return and searching is fast. @ TLB is used with the page table
as follows:- @ TLB contains only few page table entries.

. When a logical address is generated by the CPU, its page number along with the frame
number is added to TLB. If the page number is found its frame memory is used to access the actual
memory.

. If the page number is not in the TLB (TLB miss) the memory reference to the page table is

made. When the frame number is obtained use can use it to access the memory.

. [f the TLB is full of entries the OS must select anyone for replacement.
. Each time a new page table is selected the TLB must be flushed [erased] to ensure that next

executing process do not use wrong information.
. The percentage of time that a page number is found in the TLB is called HIT ratio.

Protection:-

Memory protection in paged environment is done by protection bits that are associated with

each frame these bits are kept in page table.

One bit can define a page to be read-write or read-only.

To find the correct frame number every reference to the memory should go through page

table. At the same time physical address is computed.

pages.

The protection bits can be checked to verify that no writers are made to read-only page.

Any attempt to write in to read-only page causes a hardware trap to the OS.

This approach can be used to provide protection to read-only, read-write or executeonly

One more bit is generally added to each entry in the page table: a valid-invalid bit.

2| page O
00000 frame number valid—invalid bit
page O \ / 3| page 1
oj2]|v|
page 1 113l vj 4| page 2
2[a|v|
age 2 —4
== 3[7]v]|
page 3 4(8v 6
r 5|9 |v
page 4 eloli ‘ 7| page 3
= - s
10468 | page 5 7 i M|
12,287 page table
9| page 5

page n

A valid bit indicates that associated page is in the processes logical address space and thus
itis a legal or valid page.

If the bit is invalid, it indicates the page is not in the processes logical addressed space and
illegal. Illegal addresses are trapped by using the valid-invalid bit.

The OS sets this bit for each page to allow or disallow accesses to that page.

Structure of the Page Table:-

a. Hierarchical paging:-

Recent computer system support a large logical address apace from 2”32 to 2*64. In this
system the page table becomes large. So it is very difficult to allocate contiguous main
memory for page table. One simple solution to this problem is to divide page table in to
smaller pieces. There are several ways to accomplish this division.

One way is to use two-level paging algorithm in which the page table itself is also paged.
Eg:- In a 32 bit machine with page size of 4kb. A logical address is divided in to a page
number consisting of 20 bits and a page offset of 12 bit. The page table is further divided

since the page table is paged, the page number is further divided in to 10 bit page number
and a 10 bit offset. So the logical address is

b. Hashed page table -
=» Hashed page table handles the address space larger than 32 bit. The virtual page number is

used as hashed value. Linked list is used in the hash table which contains a list of elements that hash
to the same location.

=» Each element in the hash table contains the following three fields:-

* Virtual page number

* Mapped page frame value

* Pointer to the next element in the linked list

Working:-

* Virtual page number is taken from virtual address.

* Virtual page number is hashed in to hash table.

* Virtual page number is compared with the first element of linked list.

* Both the values are matched, that value is (page frame) used for calculating the physical
address.

* If not match then entire linked list is searched for matching virtual page number.
* Clustered pages are

similar to hash table but one difference

is that each entity in the hash table refer
hysical

to logical address gdé?tlacsas Several pages.

/ﬁ \\ —— physical
:Q:?:?igy_' . R IQISI’TI—TIPI’IilT"‘ memory

hash table

c. Inverted Page Tables:-

» Since the address spaces have grown to 64 bits, the traditional page tables become a problem.
Even with two level page tables. The table can be too large to handle.

* Aninverted page table has only entry for each page in memory.

* Each entry consisted of virtual address of the page stored in that read-only location with
information about the process that owns that page.

» Each virtual address in the Inverted page table consists of triple <process-id , page number, offset
>,

* The inverted page table entry is a pair <process-id , page number>. When a memory reference is
made, the part of virtual address i.e., <process-id , page number> is presented in to memory sub-
system.

* The inverted page table is searched for a match.

* If a match is found at entry I then the physical address <i , offset> is generated. If no match is
found then an illegal address access has been attempted.

* This scheme decreases the amount of memory needed to store each page table, it increases the
amount of time needed to search the table when a page reference occurs. If the whole table is to be

searched it takes too long.

logical

address physical
c i address physical

\

search l

pos
a
o

page table

Advantage:-

*Eliminates fragmentation.

*Support high degree of multiprogramming.
*Increases memory and processor utilization.

*Compaction overhead required for the re-locatable partition scheme is also eliminated.

Disadvantage:-

*Page address mapping hardware increases the cost of the computer.

*Memory must be used to store the various tables like page tables, memory map table etc.

*Some memory will still be unused if the number of available block is not sufficient for the address
space of the jobs to be run.

Shared Pages:-

=>» Another advantage of paging is the possibility of sharing common code. This is useful in time-
sharing environment.

Eg:- Consider a system with 40 users, each executing a text editor. If the text editor is of 150k and data
space is 50k, we need 8000k for 40 users. If the code is reentrant it can be shared. Consider the
following figure

=> If the code is reentrant then it never changes during execution. Thus two or more processes can
execute same code at the same time. Each process has its own copy of registers and the data of two
processes will vary.

=> Only one copy of the editor is kept in physical memory. Each users page table maps to same physical
copy of editor but date pages are mapped to different frames.

=>» So to support 40 users we need only one copy of editor (150Kk) plus 40 copies of 50k of data space
i.e, only 2150k instead of 8000k.

ed 1 o
3
ed 2 =7 1 data 1
od 3 g 2 data 3
1
data 1 page table 3 ed 1
or £, ed 1
process P, = 4 od 2
3
ed 2 a s
ed 3 S
7 € »dd 3
data 2 page table »
— for P, Z data 2
- process F,
3 8
ed 2 A
i=}
ed 3 235
2 10
data 3 page table
for ~, 11
process F.,

Segmentation:-

Basic method:-
Most users do not think memory as a linear array of bytes rather the users thinks memory as a
collection of variable sized segments which are dedicated to a particular use such as code, data,
stack, heap etc.

Alogical address is a collection of segments. Each segment has a name and length.

The address specifies both the segment name and the offset within the segments.
The users specifies address by using two quantities: a segment name and an offset.
For simplicity the segments are numbered and referred by a segment number. So the logical

address consists of <segment number, offset>.

Hardware support:-

We must define an implementation to map 2D user defined address in to 1D physical address.
This mapping is affected by a segment table. Each entry in the segment table has a segment base
and segment limit.

The segment base contains the starting physical address where the segment resides and limit

specifies the length of the segment.

7

—— SY

— limit |base

segment
table

CPU s

no

)
trap: addressing error physical memory

The use of segment table is shown in the above figure:-
Logical address consists of two parts: segment numbertst and an offsettd+t to that segment.

The segment number is used as an index to segment table.
The offset t+d+ must bi in between & and limit, if not an error is reported to OS.
If legal the offset is added to the base to generate the actual physical address.

The segment table is an array of base limit register pairs.

Protection and Sharing:-

A particular advantage of segmentation is the association of protection with the segments.
The memory mapping hardware will check the protection bits associated with each segment table

entry to prevent illegal access to memory like attempts to write in to read-only segment.

Another advantage of segmentation involves the sharing of code or data. Each process has a
segment table associated with it. Segments are shared when the entries in the segment tables of

two different processes points to same physical location.

Sharing occurs at the segment table. Any information can be shared at the segment level. Several

segments can be shared so a program consisting of several segments can be shared.

We can also share parts of a program.

Advantages:-
Eliminates fragmentation.
Provides virtual growth.

Allows dynamic segment growth.
Assist dynamic linking.

Segmentation is visible.

Differences between segmentation and paging:-

Segmentation:-

Program is divided in to variable sized segments.

User is responsible for dividing the program in to segments.
Segmentation is slower than paging.

Visible to user.

Eliminates internal fragmentation.

Suffers from external fragmentation.

Process or user segment number, offset to calculate absolute address.
Paging:-

Programs are divided in to fixed size pages.

Division is performed by the OS.

Paging is faster than segmentation.

Invisible to user.

Suffers from internal fragmentation.

No external fragmentation.

Process or user page number, offset to calculate absolute address.

Virtual memory

Virtual memory is a technique that allows for the execution of partially loaded process.
There are many advantages of this:-
A program will not be limited by the amount of physical memory that is available user can able to

write in to large virtual space.

Since each program takes less amount of physical memory, more than one program could be run
at the same time which can increase the throughput and CPU utilization.

Less i/o operation is needed to swap or load user program in to memory. So each user program
could run faster.

Virtual memory is the separation of users logical memory from physical memory. This separation
allows an extremely large virtual memory to be provided when these is less physical memory.
Separating logical memory from physical memory also allows files and memory to be shared by
several different processes through page sharing.

Virtual memory is implemented using Demand Paging.

Demand Paging:-

A demand paging is similar to paging system with swapping when we want to execute a process
we swap the process the in to memory otherwise it will not be loaded in to memory.

A swapper manipulates the entire processes, where as a pager manipulates individual pages of the

process.

Basic concept:-
Instead of swapping the whole process the pager swaps only the necessary pages in to memory.
Thus it avoids reading unused pages and decreases the swap time and amount of physical memory

needed.

The valid-invalid bit scheme can be used to distinguish between the pages that are on the disk and
that are in memory.
If the bit is valid then the page is both legal and is in memory.

If the bit is invalid then either page is not valid or is valid but is currently on the disk.

Marking a page as invalid will have no effect if the processes never access to that page. Suppose

if it access the page which is marked invalid, causes a page fault trap. This may result in failure of

OS to bring the desired page in to memory.

The step for handling page fault is straight forward and is given below:-

We check the internal table of the process to determine whether the reference made is valid or

invalid.

If invalid terminate the process,. If valid, then the page is not yet loaded and we now page it in.

We find a free frame.

We schedule disk operation to read the desired page in to newly allocated frame.

When disk reed is complete, we modify the internal table kept with the process to indicate that

the page is now in memory.

We restart the instruction which was interrupted by illegal address trap. The process can now

access the page.

In extreme cases, we start the process without pages in memory. When the OS points to the

instruction of process it generates a page fault. After this page is brought in to memory the

process continues to execute, faulting as necessary until every demand paging i.e., it never brings
the page in to memory until it is

required.

/3\ page is on
\&/ backing store

\\\, ——

operating
system /2\
&
reference
trap
©)
/ 3
load M N L

L ®
restart page table
instruction
free frame | = Do
(1 P o e
® ®
reset page bring in

table missing page
physical
memory

Hardware support:-

For demand paging the same hardware is required as paging and swapping.

* Page table:- Has the ability to mark an entry invalid through valid-invalid bit.

* Secondary memory:- This holds the pages that are not present in main memory.

)tts a high speed disk.
Performance of demand paging:-
Demand paging can have significant effect on the performance of the computer system.
Let P be the probability of the page fault (0<=P<=1) Effective access time = (1-P) * ma + P * page fault.
Where P = page fault and ma = memory access time.
Effective access time is directly proportional to page fault rate. It is

important to keep page fault rate low in demand paging.

A page fault causes the following sequence to occur:- @ Trap to the OS.
* Save the user registers and process state.
* Determine that the interrupt was a page fault.
* Checks the page references were legal and determine the location of page on disk.
* Issue aread from disk to a free frame.
* If waiting, allocate the CPU to some other user.
* Interrupt from the disk.
» Save the registers and process states of other users.
* Determine that the interrupt was from the disk.
* Correct the page table and other table to show that the desired page is now in memory.
» Wait for the CPU to be allocated to this process again.
* Restore the user register process state and new page table then resume the interrupted
instruction.
Comparison of demand paging with segmentation:-

Segmentation:-

* Segment may of different size.

* Segment can be shared.

* Allows for dynamic growth of segments.

* Segment map table indicate the address of each segment in memory.

* Segments are allocated to the program while compilation.
Demand Paging:-

* Pages are of same size.

+ Pages cantt be shared.

* Page size is fixed.

* Page table keeps track of pages in memory.

* Pages are allocated in memory on demand.
Process creation:-

a. Copy-on-write:-

>

Demand paging is used when reading a file from disk in to memory. Fork () is used to create a
process and it initially bypass the demand paging using a technique called page sharing. Page
sharing provides rapid speed for process creation and reduces the number of pages allocated
to the newly created process.

Copy-on-write technique initially allows the parent and the child to share the same pages.
These pages are marked as copy-on-write pages i.e., if either process writes to a shared page, a
copy of shared page is created.

Eg:- If a child process try to modify a page containing portions of the stack; the OS recognizes
them as a copy-on-write page and create a copy of this page and maps it on to the address
space of the child process. So the child process will modify its copied page and not the page
belonging to parent.

The new pages are obtained from the pool of free pages.

b. Memory Mapping:-

Standard system calls i.e., open (), read () and write () is used for sequential read of a file.
Virtual memory is used for this. In memory mapping a file allows a part of the virtual address
space to be logically associated with a file. Memory mapping a file is possible by mapping a
disk block to page in memory.

Page Replacement

Demand paging shares the 1/0 by not loading the pages that are never used.
Demand paging also improves the degree of multiprogramming by allowing more process to

run at the some time.

frame valid—invalid bit

swap out
change victim
0 i to invalid @ page ’D
t |v /
@ f| victim 9

reset page \
table for
page table
new page @ swap
desired

page in

physical
memory

Working of Page Replacement Algorithm

Page replacement policy deals with the solution of pages in memory to be replaced by a new

page that must be brought in. When a user process is executing a page fault occurs.

> The hardware traps to the operating system, which checks the internal table to see that this
is a page fault and not an illegal memory access.

> The operating system determines where the derived page is residing on the disk, and this
finds that thee are no free frames on the list of free frames.

> 4 When all the frames are in main memory, it is necessary to bring a new page to satisfy the
page fault, replacement policy is concerned with selecting a page currently in memory to be replaced.

> 4 The page i,e to be removed should be the page i,e least likely to be referenced in future.

1. Find the location of derived page on the disk.

2. Find a free frame

. If there is a free frame, use it.

. Otherwise, use a replacement algorithm to select a victim.

. Write the victim page to the disk; change the page and frame tables accordingly.
3. Read the desired page into the free frame; change the page and frame tables.

4, Restart the user process.

Victim Page

The page that is supported out of physical memory is called victim page.

. If no frames are free, the two page transforms come (out and one in) are read. This will see
the effective access time.

. Each page or frame may have a dirty (modify) bit associated with the hardware. The modify
bit for a page is set by the hardware whenever any word or byte in the page is written into, indicating
that the page has been modified.

. When we select the page for replacement, we check its modify bit. If the bit is set, then the
page is modified since it was read from the disk.

. If the bit was not set, the page has not been modified since it was read into memory.
Therefore, if the copy of the page has not been modified we can avoid writing the memory page to the
disk, if it is already there. Sum pages cannot be modified.

. We must solve two major problems to implement demand paging: we must develop a frame
allocation algorithm and a page replacement algorithm. If we have multiple processors in memory, we

must decide how many frames to allocate and page replacement is needed.

Page replacement Algorithms FIFO Algorithm:

. This is the simplest page replacement algorithm. A FIFO replacement algorithm associates
each page the time when that page was brought into memory.

. When a Page is to be replaced the oldest one is selected.

. We replace the queue at the head of the queue. When a page is brought into memory, we

insert it at the tail of the queue.
Example: Consider the following references string with frames initially empty.

. The

first three

reference string

7 0 1 2
|| 0
Il 1

references

71 (7,0,1) cases
n u 0 page faults

and are
page frames brought
into the
empty frames.
. The next references 2 replaces page 7 because the page 7 was brought in first.
. Since 0 is the next references and 0 is already in memory e has no page faults.
. The next references 3 results in page 0 being replaced so that the next references to 0 causer
page fault.

This will continue till the end of string.

There are 15 faults all together.

Belady’s Anamoly

For some page replacement algorithm, the page fault may increase as the number of allocated

frames increases. FIFO replacement algorithm may face this problem.

Optimal Algorithm

reference string
7 0 1 2 0

age frames

o Optimal page replacement algorithm is mainly to solve the problem of Beladyts Anamoly.

. Optimal page replacement algorithm has the lowest page fault rate of all algorithms.

. An optimal page replacement algorithm exists and has been called OPT.
. The working is simple $Replace the page that will not be used for the longest period of time

Example: consider the following reference string

. The first three references cause faults that fill the three empty frames.

. The references to page 2 replaces page 7, because 7 will not be used until reference

18.

. The page 0 will be used at 5 and page 1 at 14.

. With only 9 page faults, optimal replacement is much better than a FIFO, which had 15 faults.

This algorithm is difficult t implement because it requires future knowledge of reference strings.

Least Recently Used (LRU) Algorithm

If the optimal algorithm is not feasible, an approximation to the optimal algorithm is possible.
The main difference b/w OPTS and FIFO is that;

* FIFO algorithm uses the time when the pages was built in and OPT uses the time when a page
is to be used.

» The LRU algorithm replaces the pages that have not been used for longest period of time.

» The LRU associated its pages with the time of that pages last use.

. This strategy is the optimal page replacement algorithm looking backward in time
rather than forward.

* The first 5 faults are similar to optimal replacement.
* When reference to page 4 occurs, LRU sees that of the three frames, page 2 as used least

recently. The most recently used page is page 0 and just before page 3 was used. The LRU

policy is often used as a page replacement algorithm and considered to be good. The main

p Ex: consider the following reference string

freference string

page frames

to how to implement LRU is the LRU requires additional h/w assistance.

Two implementations are possible:

Counters: In this we associate each page table entry a time -of -use field, and add to the cpu
a logical clock or counter. The clock is incremented for each memory reference. When a
reference to a page is made, the contents of the clock register are copied to the time-of-use
field in the page table entry for that page.

In this way we have the time of last reference to each page we replace the page with smallest

time value. The time must also be maintained when page tables are changed.

Stack: Another approach to implement LRU replacement is to keep a stack of page numbers
when a page is referenced it is removed from the stack and put on to the top of stack. In this
way the top of stack is always the most recently used page and the bottom in least recently
used page. Since the entries are removed from the stack it is best implement by a doubly
linked list. With a head and tail pointer.

Neither optimal replacement nor LRU replacement suffers from Belady+s Anamoly.

These are called stack algorithms.

LRU Approximation

* An LRU page replacement algorithm should update the page removal status information after
every page reference updating is done by software, cost increases.

* But hardware LRU mechanism tend to degrade execution performance at the same time, then
substantially increases the cost. For this reason, simple and efficient algorithm that
approximation the LRU have been developed. With h/w support the reference bit was used.
A reference bit associate with each memory block and this bit automatically set to 1 by the
h/w whenever the page is referenced. The single reference bit per clock can be used to
approximate LRU removal.

» The page removal s/w periodically resets the reference bit to 0, write the execution of the
users job causes some reference bit to be set to 1.

» If the reference bit is 0 then the page has not been referenced since the last time the

reference bit was set to 0.

Count Based Page Replacement

There is many other algorithms that can be used for page replacement, we can keep a
counter of the number of references that has made to a page.

a) LFU (least frequently used) :

This causes the page with the smallest count to be replaced. The reason for this selection is that

actively used page should have a large reference count.

This algorithm suffers from the situation in which a page is used heavily during the initial phase
of a process but never used again. Since it was used heavily, it has a large count and remains
in memory even though it is no longer needed.

b) Most Frequently Used(MFU) :

This is based on the principle that the page with the smallest count was probably just brought in and
has yet to be used.
Allocation of Frames

. The allocation policy in a virtual memory controls the operating system decision regarding
the amount of real memory to be allocated to each active process.

. In a paging system if more real pages are allocated, it reduces the page fault frequency and
improved turnaround throughput.

. If too few pages are allocated to a process its page fault frequency and turnaround times may
deteriorate to unacceptable levels.

. The minimum number of frames per process is defined by the architecture, and the
maximum number of frames. This scheme is called equal allocation.

. With multiple processes competing for frames, we can classify page replacement into two
broad categories

a) Local Replacement: requires that each process selects frames from only its own sets of
allocated frame.

b). Global Replacement: allows a process to select frame from the set of all frames. Even if the
frame is currently allocated to some other process, one process can take a frame from another.

In local replacement the number of frames allocated to a process do not change but with global
replacement number of frames allocated to a process do not change global replacement results in
greater system throughput.

Other consideration

There is much other consideration for the selection of a replacement algorithm and allocation

policy.

1) Preparing: This is an attempt to present high level of initial paging. This strategy is to bring
into memory all the pages at one time.

2) TLB Reach: The TLB reach refers to the amount of memory accessible from the TLB and is
simply the no of entries multiplied by page size.

3) Page Size: following parameters are considered

a) page size us always power of 2 (from 512 to 16k)

b) Internal fragmentation is reduced by a small page size.

c) Alarge page size reduces the number of pages needed.

4) Invented Page table: This will reduces the amount of primary memory i,e. needed to track
virtual to physical address translations.

5) Program Structure: Careful selection of data structure can increases the locality and hence
lowers the page fault rate and the number of pages in working state.

6) Real time Processing: Real time system almost never has virtual memory. Virtual memory is
the antithesis of real time computing, because it can introduce unexpected long term delay in the

execution of a process.

Thrashing

= If the number of frames allocated to a low-priority process falls below the minimum number
required by the computer architecture then we suspend the process execution.

= Aprocess is thrashing if it is spending more time in paging than executing.

=> Ifthe processes do not have enough number of frames, it will quickly page fault. During this it
must replace some page that is not currently in use. Consequently it quickly faults again and again.
The process continues to fault, replacing pages for which it then faults and brings back. This high
paging activity is called thrashing. The phenomenon of excessively moving pages back and forth b/w

memory and secondary has been called thrashing.

Cause of Thrashing

. Thrashing results in severe performance problem.

. The operating system monitors the cpu utilization is low. We increase the degree of multi
programming by introducing new process to the system.

. A global page replacement algorithm replaces pages with no regards to the process to which
they belong.

The figure shows the thrashing
= As the degree of multi programming increases, more slowly until a maximum is reached. If

the degree of multi programming is increased further thrashing sets in and the cpu utilization drops

sharply.

thrashing

CPU utilization

degree of multiprogramming

> At this point, to increases CPU utilization and stop thrashing, we must increase degree of
multi programming. We can limit the effect of thrashing by using a local replacement algorithm. To
prevent thrashing, we must provide a process as many frames as it needs.

Locality of Reference:

*As the process executes it moves from locality to locality.

*A locality is a set of pages that are actively used.

*A program may consist of several different localities, which may overlap.

Locality is caused by loops in code that find to reference arrays and other data structures by indices.

The ordered list of page number accessed by a program is called reference string. Locality is of two

types
1) spatial locality
2) temporal locality

Working set model
Working set model algorithm uses the current memory requirements to determine the number of

page frames to allocate to the process, an informal definition is

+the collection of pages that a process is working with and which must be resident if the process to
avoid thrashingt.

The idea is to use the recent needs of a process to predict its future reader.

The working set is an approximation of programs locality.

Ex: given a sequence of memory reference, if the working set window size to memory references,
then working set at time t1 is {1,2,5,6,7} and at t2 is changed to {3,4}

*At any given time, all pages referenced by a process in its last 4 seconds of execution are considered
to compromise its working set.

*A process will never execute until its working set is resident in main memory.
*Pages outside the working set can be discarded at any movement.

Working sets are not enough and we must also introduce balance set.

a) If the sum of the working sets of all the run able process is greater than the size of memory
the refuse some process for a while.

b) Divide the run able process into two groups, active and inactive. The collection of active set is
called the balance set. When a process is made active its working set is loaded.

C) Some algorithm must be provided for moving process into and out of the balance set.

As a working set is changed, corresponding change is made to the balance set. Working set presents
thrashing by keeping the degree of multi programming as high as possible. Thus if optimizes the CPU

utilization. The main disadvantage of this is keeping track of the working set.

File System Interface

*A file is a collection of similar records.

*The data cantt be written on to the secondary storage unless they are within a file.

*Files represent both the program and the data. Data can be numeric, alphanumeric, alphabetic or
binary.

*Many different types of information can be stored on a file ---Source program, object programs,
executable programs, numeric data, payroll recorder, graphic images, sound recordings and so on.

*A file has a certain defined structures according to its type:-

*Text file:- Text file is a sequence of characters organized in to lines.

*Object file:- Object file is a sequence of bytes organized in to blocks understandable by the systems
linker.

*Executable file:- Executable file is a series of code section that the loader can bring in to memory and

execute.

*Source File:- Source file is a sequence of subroutine and function, each of which are further

organized as declaration followed by executable statements.

UNIT IV FILE SYSTEMS AND I0 SYSTEMS
File Attributes:-

o File attributes varies from one OS to other. The common file attributes are:

* Name:- The symbolic file name is the only information kept in human readable form.

» Identifier:- The unique tag, usually a number, identifies the file within the file system. It is the
non-readable name for a file.

* Type:- This information is needed for those systems that supports different types.

* Location:- This information is a pointer to a device and to the location of the file on that device.

» Size:- The current size of the file and possibly the maximum allowed size are included in this
attribute.

* Protection:-Access control information determines who can do reading, writing, execute and so
on.

* Time, data and User Identification:- This information must be kept for creation, last modification

and last use. These data are useful for protection, security and usage monitoring.

File Operation:-

File is an abstract data type. To define a file we need to consider the operation that can be
performed on the file. Basic operations of files are:-

Creating a file:- Two steps are necessary to create a file. First space in the file system for file is

found. Second an entry for the new file must be made in the directory. The directory entry
records the name of the file and the location in the file system.

Writing a file:- System call is mainly used for writing in to the file. System call specify the name
of the file and the information i.e., to be written on to the file. Given the name the system search
the entire directory for the file. The system must keep a write pointer to the location in the file
where the next write to be taken place.

Reading a file:- To read a file system call is used. It requires the name of the file and the memory
address. Again the directory is searched for the associated directory and system must maintain a
read pointer to the location in the file where next read is to take place.

Delete a file:- System will search for the directory for which file to be deleted. If entry is found it
releases all free space. That free space can be reused by another file.

Truncating the file:- User may want to erase the contents of the file but keep its attributes.

Rather than forcing the user to delete a file and then recreate it, truncation allows all attributes
to remain unchanged except for file length.

Repositioning within a file:- The directory is searched for appropriate entry and the current file

position is set to a given value. Repositioning within a file does not need to involve actual i/o.
The file operation is also known as file seeks.

In addition to this basis 6 operations the other two operations include appending new
information to the end of the file and renaming the existing file. These primitives can be
combined to perform other two operations.

Most of the file operation involves searching the entire directory for the entry associated with
the file. To avoid this OS keeps a small table containing information about an open file (the open
table). When a file operation is requested, the file is specified via index in to this table. So
searching is not required.

Several piece of information are associated with an open file:-

File pointer:- on systems that does not include offset an a part of the read and write system calls,
the system must track the last read-write location as current file position pointer. This pointer is
unique to each process operating on a file.

File open count:- As the files are closed, the OS must reuse its open file table entries, or it could

run out of space in the table. Because multiple processes may open a file, the system must wait
for the last file to close before removing the open file table entry. The counter tracks the number

of copies of open and closes and reaches zero to last close.

Disk location of the file:- The information needed to locate the file on the disk is kept in memory

to avoid having to read it from the disk for each operation.

Access rights:- Each process opens a file in an access mode. This information is stored on per-
process table the OS can allow OS deny subsequent i/o request.

Access Methods:-

The information in the file can be accessed in several ways.

Different file access methods are:-

Sequential Access:-

Sequential access is the simplest access method. Information in the file is processed in order, one
record after another. Editors and compilers access the files in this fashion. Normally read and
write operations are done on the files. A read operation reads the next portion of the file and
automatically advances a file pointer, which track next i/I track.

Write operation appends to the end of the file and such a file can be next to the beginning.

Sequential access depends on a tape model of a file.

current position

beginning end

= rewind :l: .
read or write ==

Direct Access:-

Direct access allows random access to any file block. This method is based on disk model of a
file.A file is made up of fixed length logical records. It allows the program to read and write
records rapidly in any order.A direct access file allows arbitrary blocks to be read or written.
Eg:-User may need block 13, then read block 99 then write block 12.

For searching the records in large amount of information with immediate result, the direct
access method is suitable. Not all OS support sequential and direct access. Few OS use sequential
access and some OS uses direct access. It is easy to simulate sequential access on a direct access

but the reverse is extremely inefficient.

Indexing Method:-

The index is like an index at the end of a book which contains pointers to various blocks.

To find a record in a file, we search the index and then use the pointer to access the file directly
and to find the desired record.

With large files index file itself can be very large to be kept in memory. One solution to create an
index to the index files itself. The primary index file would contain pointer to secondary index

files which would point to the actual data items.

Two types of indexes can be used:-

a. Exhaustive index:- Contain one entry for each of record in the main file.

An index itself is organized as a sequential file.

b. Partial index:- Contains entries to records where the field of interest exists with records of
variable length, soma record will not contain an fields. When a new record is added to the main

file, all index files must be updated.

Directory Structure:-

The files systems can be very large. Some systems stores millions of files on the disk. To manage
all this data we need to organize them. This organization is done in two parts:-

1. Disks are split in to one or more partition also known as minidisks.

2. Each partition contains information about files within it. This information is kept in entries in a
device directory or volume table of contents.
The device directory or simple directory records information as name, location, size, type for all
files on the partition.
The directory can be viewed as a symbol table that translates the file names in to the directory
entries. The directory itself can be organized in many ways.
When considering a particular directory structure, we need to keep in mind the operations that
are to be performed on a directory.

» Search for a file:- Directory structure is searched for finding particular file in the directory. Files

have symbolic name and similar name may indicate a relationship between files, we may want to
be able to find all the files whose name match a particular pattern.

* Create a file:- New files can be created and added to the directory.

* Delete a file:- when a file is no longer needed, we can remove it from the directory.

» List a directory:- We need to be able to list the files in directory and the contents of the directory

entry for each file in the list.

* Rename a file:- Name of the file must be changeable when the contents or use of the file is

changed. Renaming allows the position within the directory structure to be changed.

» Traverse the file:- it is always good to keep the backup copy of the file so that or it can be used

when the system gets fail or when the file system is not in use.

1. Single-level directory:-

This is the simplest directory structure. All the files are contained in the same directory which is

easy to support and understand.

Disadvantage:-

Not suitable for a large number of files and more than one user.

Because of single directory files, files require unique file names.

Difficult to remember names of all the files as the number of files increases.

MS-DOS OS allows only 11 character file name where as UNIX allows 255 character

master file
directory | 4S€r 1 l user2| userS‘ user4‘
user file 1
directory | & ’ bo ’ a | test H a]data‘ a ’ test H X Adata’ a

00000000000

2. Two-level directory:-

A single level directory often leads to the confusion of file names between different users. The
solution here is to create separate directory or each user.

In two level directories each user has its own directory. It is called User File Directory (UFD). Each
UFD has a similar structure, but lists only the files of a single user.

When a user job starts or users logs in, the systems Master File Directory (MFD) is searched. The
MFD is indexed by the user name or account number and each entry points to the UFD for that user.
When a user refers to a particular file, only his own UFD is searched. Thus different users may have
files with the same name.

To create a file for a user, OS searches only those users UFD to as certain whether another file of that

name exists.

To delete a file checks in the local UFD so that accidentally delete another user+s file with the same

name.Although two-level directories solve the name collision problem but it still has some

disadvantage.

This structure isolates one user from another. This isolation is an advantage. When the users are
independent but disadvantage, when some users want to co-operate on some table and to access
one another file.

3. Tree-structured directories:-

MS-DOS use Tree structure directory. It allows users to create their own subdirectory and to
organize their files accordingly. A subdirectory contains a set of files or subdirectories. A directory is
simply another file, but it is treated in a special way. The entire directory will have the same internal
format. One bit in each entry defines the entry as a file (0) and as a subdirectory (1). Special system

calls are used to create and delete directories.

In normal use each uses has a current directory. Current directory should contain most of the files
that are of the current interest of users. When a reference to a file is needed the current directory is
searched. If file is needed i.e., not in the current directory to be the directory currently holding that
file.

Path name can be of two types:-

Absolute path name:- Begins at the root and follows a path down to the specified file, giving the

directory names on the path.

Relative path name:- Defines a path from the current directory.

One important policy in this structure is low to handle the deletion of a directory.
If a directory is empty, its entry can simply be deleted.

If a directory is not empty, one of the two approaches can be used.

In MS-DOS, the directory is not deleted until it becomes empty.

In UNIX, RM command is used with some options for deleting directory.

4. Acyclic graph directories:-

It allows directories to have shared subdirectories and files.

Same file or directory may be in two different directories.

A graph with no cycles is a generalization of the tree structure subdirectories scheme.

Shared files and subdirectories can be implemented by using links.

Alink is a pointer to another file or a subdirectory.

Alink is implemented as absolute or relative path.

An acyclic graph directory structure is more flexible then is a simple tree structure but some times it

is more complex.

root dict spell

/

list | all | w |count| |count|words| list

&S

A
list Iradel w7 I

e
S O O

File System Mounting:-

The file system must be mounted before it can be available to processes on the system The

procedure for mounting the file is:

o The OS is given the name of the device and the location within the file structure at which to attach the
file system (mount point).A mount point will be an empty directory at which the mounted file
system will be attached.

Eg:- On UNIX a file system containing users home directory might be mounted as /home then to
access the directory structure within that file system. We must precede the directory names as
/home/jane.

o Then OS verifies that the device contains this valid file system. OS uses device drivers for this
verification.

o Finally the OS mounts the file system at the specified mount point.

File System Structure:-

Disks provide bulk of secondary storage on which the file system is maintained. Disks have two
characteristics:-

* They can be rewritten in place i.e,, it is possible to read a block from the disk to modify the block and
to write back in to same place.

» They can access any given block of information on the disk. Thus it is simple to access any file either
sequentially or randomly and switching from one file to another.
The lowest level is the i/o control consisting of device drivers and interrupt handless to transfer the
information between memory and the disk system. The device driver is like a translator. Its input is
a high level command and the o/p consists of low level hardware specific instructions, which are
used by the hardware controllers which interface [/0 device to the rest of the system.
The basic file system needs only to issue generic commands to the appropriate device drivers to
read and write physical blocks on the disk.
The file organization module knows about files and their logical blocks as well as physical blocks. By
knowing the type of file allocation used and the location of the file, the file organization module can
translate logical block address to the physical block address. Each logical block is numbered 0 to N.
Since the physical blocks containing the data usually do not match the logical numbers, So a
translation is needed to locate each block. The file allocation modules also include free space
manager which tracks the unallocated blocks and provides these blocks when requested.
The logical file system uses the directory structure to provide the file organization module with the
information, given a symbolic file name. The logical file system also responsible for protection and
security.
Logical file system manages metadata information. Metadata includes all the file system structures

excluding the actual data.

The file structure is maintained via file control block (FCB). FCB contains information about the file

including the ownership permission and location of the file contents.

File System Implementation:-

File system is implemented on the disk and the memory.

The implementation of the file system varies according to the OS and the file system, but there are
some general principles.

If the file system is implemented on the disk it contains the following information:-

a. Boot Control Block:- can contain information needed by the system to boot an OS from that
partition. If the disk has no OS, this block is empty. It is the first block of the partition. In UFS@boot
block, In NTFSEpartition boot sector.

b. Partition control Block:- contains partition details such as the number of blocks in partition, size
of the blocks, number of free blocks, free block pointer, free FCB count and FCB pointers. In
NTFSEmaster file tables, In UFSEsuper block.

c. Directory structure is used to organize the files.

d. An FCB contains many of the files details, including file permissions, ownership, size, location of
the data blocks. In UFSEinode, In NTFS this information is actually stored within master file table.

e. Structure of the file system management in memory is as follows:-

An in-memory partition table containing information about each mounted information.

. An in-memory directory structure that holds the directory information of recently accessed
directories.

The system wide open file table contains a copy of the FCB of each open file as well as other
information.
The per-process open file table contains a pointer to the appropriate entry in the system wide

open file table as well as other information.

File System Organization:-

application programs

To provide efficient and convenient access to the disks, the OS provides
the file system to allow the data to be stored, located and retrieved.
A logical file system file system has two design problems:-
@ a. How the file system should look to the user.
file-organization module])
@ b. Selecting algorithms and data structures that must be

| — created to map logical file system on to the physical secondary

@ storage devices.

1/O control

{

devices

The file system itself is composed of different levels. Each level uses the feature of the lower levels
to create new features for use by higher levels. The following structures shows an example of

layered design

The lowest level is the i/o control consisting of device drivers and interrupt handless to transfer
the information between memory and the disk system. The device driver is like a translator. Its
input is a high level command and the o/p consists of low level hardware specific instructions,
which are used by the hardware controllers which interface I/0 device to the rest of the system.
The basic file system needs only to issue generic commands to the appropriate device drivers to
read and write physical blocks on the disk.

The file organization module knows about files and their logical blocks as well as physical blocks.
By knowing the type of file allocation used and the location of the file, the file organization module
can translate logical block address to the physical block address. Each logical block is numbered 0
to N. Since the physical blocks containing the data usually do not match the logical numbers, So a
translation is needed to locate each block. The file allocation modules also include free space
manager which tracks the unallocated blocks and provides these blocks when requested.

The logical file system uses the directory structure to provide the file organization module with
the information, given a symbolic file name. The logical file system also responsible for protection
and security.

Logical file system manages metadata information. Metadata includes all the file system structures
excluding the actual data.

The file structure is maintained via file control block (FCB). FCB contains information about the

file including the ownership permission and location of the file contents.

File System Implementation:-

File system is implemented on the disk and the memory.

The implementation of the file system varies according to the OS and the file system, but there are
some general principles.

If the file system is implemented on the disk it contains the following information:-

Boot Control Block:- can contain information needed by the system to boot an OS from that
partition. If the disk has no OS, this block is empty. It is the first block of the partition. In UFS@boot
block, In NTFSEpartition boot sector.

Partition control Block:- contains partition details such as the number of blocks in partition, size
of the blocks, number of free blocks, free block pointer, free FCB count and FCB pointers. In
NTFSEmaster file tables, In UFSEsuper block.

Directory structure is used to organize the files.

An FCB contains many of the files details, including file permissions, ownership, size, location of
the data blocks. In UFSEinode, In NTFS this information is actually stored within master file table.
Structure of the file system management in memory is as follows:-

An in-memory partition table containing information about each mounted information.

An in-memory directory structure that holds the directory information of recently accessed
directories.

The system wide open file table contains a copy of the FCB of each open file as well as other
information.

The per-process open file table contains a pointer to the appropriate entry in the system wide
open file table as well as other information.

A typical file control blocks is shown below

File permission

File dates (create, access
write)
File owner, group, Acc

File size

File data blocks

Partition and Mounting:-

A disk can be divided in to multiple partitions. Each partition can be either raw i.e., containing no

file system and cooked i.e., containing a file system.

Raw disk is used where no file system is appropriate. UNIX swap space can use a raw partition
and do not use file system.

Some db uses raw disk and format the data to suit their needs. Raw disks can hold information
need by disk RAID (Redundant Array of Independent Disks) system.

Boot information can be stored in a separate partition. Boot information will have their own
format. At the booting time system does not load any device driver for the file system. Boot
information is a sequential series of blocks, loaded as an image in to memory.

Dual booting is also possible on some Pcts, more than one OS are loaded on a system. A boot
loader understands multiple file system and multiple OS can occupy the boot space once loaded it
can boot one of the OS available on the disk. The disks can have multiple portions each containing
different types of file system and different types of OS. Root partition contains the OS kernel and
is mounted at a boot time. Microsoft window based systems mount each partition in a separate

name space denoted by a letter and a colon. On UNIS file system can be mounted at any directory.

Directory Implementation:-

Directory is implemented in two ways:-
1. Linear list:-

Linear list is a simplest method.

It uses a linear list of file names with pointers to the data blocks.
Linear list uses a linear search to find a particular entry.

Simple for programming but time consuming to execute.

For creating a new file, it searches the directory for the name whether same name already exists.

Linear search is the main disadvantage.
Directory implementation is used frequently and uses would notice a slow

implementation of access to it.

2. Hash table:-

Hash table decreases the directory search time.

Insertion and deletion are fairly straight forward.

Hash table takes the value computed from that file name.
Then it returns a pointer to the file name in the linear list.

Hash table uses fixed size.

o directory

L
M I
count file start length
SN 2 1 a3l count o 2
= = tr 14 3
a1 s e[7[] mail 19 6
is 28
a1 o[J1ol 111] it =8 b
f 6 2

tr

12(J13[J1alJ1s]

1611718 l19l]
mail

20021 [CJ22023(]
242526271

28|:]29[j§6[:|31 (-

—_— —

Allocation Methods:-
The space allocation strategy is closely related to the efficiency of the file accessing and of logical
to physical mapping of disk addresses.
A good space allocation strategy must take in to consideration several factors such as:- 1.
Processing speed of sequential access to files, random access to files and allocation and de-
allocation of blocks.

. Disk space utilization.

. Ability to make multi-user and multi-track transfers.

. Main memory requirement of a given algorithm.
Three major methods of allocating disk space is used.
1. Contiguous Allocation:-
A single set of blocks is allocated to a file at the time of file creation. This is a preallocation
strategy that uses portion of variable size. The file allocation table needs just a single entry for
each file, showing the starting block and the length of the file.

The figure shows the contiguous allocation method.

If the file is n blocks long and starts at location b, then it occupies blocks b, b+1, b+IZ
................ b+n-1. The file allocation table entry for each file indicates the address of starting block
and the length of the area allocated for this file.

Contiguous allocation is the best from the point of view of individual sequential file. It is easy to
retrieve a single block. Multiple blocks can be brought in one at a time to improve [/0
performance for sequential processing. Sequential and direct access can be supported by
contiguous allocation.

Contiguous allocation algorithm suffers from external fragmentation. Depending on the amount
of disk storage the external fragmentation can be a major or minor problem.

Compaction is used to solve the problem of external fragmentation.

The following figure shows the contiguous allocation of space after compaction. The original disk
was then freed completely creating one large contiguous space.

If the file is n blocks long and starts at location b, then it occupies blocks b, b+1, b+IZ
................ b+n-1. The file allocation table entry for each file indicates the address of starting block
and the length of the area allocated for this file. Contiguous allocation is the best from the point of
view of individual sequential file. It is easy to retrieve a single block. Multiple blocks can be
brought in one at a time to improve [/0 performance for sequential processing. Sequential and

direct access can be supported by contiguous allocation. Contiguous allocation algorithm suffers

from external fragmentation. Depending on the amount of disk storage the external
fragmentation can be a major or minor problem. Compaction is used to solve the problem of
external fragmentation. The following figure shows the contiguous allocation of space after
compaction. The original disk was then freed completely creating one large contiguous space.
Another problem with contiguous allocation algorithm is pre-allocation, i.e., it is necessary to
declare the size of the file at the time of creation.

Characteristics:-
* Supports variable size portion.

* Pre-allocation is required.
* Requires only single entry for a file.

* Allocation frequency is only once.

Advantages:-
* Supports variable size problem.
» Easy to retrieve single block.
* Accessing afile is easy.

* Provides good performance
Disadvantage:-
* Pre-allocation is required.

» It suffers from external fragmentation.

2. Linked Allocation:-

» It solves the problem of contiguous allocation. This allocation is on the basis of an individual
block. Each block contains a pointer to the next block in the chain.

* The disk block can be scattered any where on the disk.

* The directory contains a pointer to the first and the last blocks of the file.

* The following figure shows the linked allocation. To create a new file, simply create a new entry

in the directory.

* There is no external fragmentation since only one block is needed at a time.
*The size of a file need not be declared when it is created. A file can continue to grow as long as free
blocks are available.
Advantages:-
o No external fragmentation.

o Compaction is never required.
o Pre-allocation is not required.

Disadvantage:-

*Files are accessed sequentially.
*Space required for pointers.
*Reliability is not good.

*Cannot support direct access.

3. Indexed Allocation:-

The file allocation table contains a separate one level index for each file. The index has one entry for

each portion allocated to the file. The i th entry in the index block points to the i th block of the file.

The indexes are not stored as a part of file allocation table rather than the index is kept as a separate

block and the entry in the file allocation table points to that block.
Allocation can be made on either fixed size blocks or variable size blocks. When the file is created all

pointers in the index block are set to nil. When an entry is made a block is obtained from free space

manager.

Allocation by fixed size blocks eliminates external fragmentation where as allocation by variable size

blocks improves locality.

Indexed allocation supports both direct access and sequential access to the file.

The following figure shows indexed allocation.

directory
file index block
jeep 19
1

|

28 Jeo[130131 []

s

Advantages:-

* Supports both sequential and direct access.
* No external fragmentation.

e Faster then other two methods.

* Supports fixed size and variable sized blocks.

Disadvantage:-
Suffers from wasted space.
Pointer overhead is generally greater.

Mass Storage Structure Disk Structure:-

Disks provide a bilk of secondary storage. Disks come in various sizes, speed and information can
be stored optically or magnetically.

Magnetic tapes were used early as secondary storage but the access time is less than disk.
Modern disks are organized as single one-dimensional array of logical blocks.

The actual details of disk i/o open depends on the computer system, OS, nature of i/o channels
and disk controller hardware.

The basic unit of information storage is a sector. The sectors are stored on flat, circular, media
disk. This disk media spins against one or more read-write heads. The head can move from the
inner portion of the disk to the outer portion.

When the disk drive is operating the disks is rotating at a constant speed.

To read or write the head must be positioned at the desired track and at the beginning if the
desired sector on that track.

Track selection involves moving the head in a movable head system or electronically selecting
one head on a fixed head system.

These characteristics are common to floppy disks, hard disks, CD-ROM and DVD.

Disk Performance Parameters:-

Seek Time:- Seek time is the time required to move the disk arm to the required track.
Seek time can be given by Ts =m *n +s. Where Ts = seek time

n = number of track traversed.
m = constant that depends on the disk drive s = startup time.

Rotational Latency:-Rotational latency is the additional addition time for waiting for the disk to

rotate to the desired sector to the disk head.

Rotational Delay:-_Disks other than the floppy disk rotate at 3600 rpm which is one revolution

per 16.7ms.

Disk Bandwidth:- Disk bandwidth is the total number of bytes transferred divided by total time

between the first request for service and the completion of last transfer. Transfer time =T =b /

rN

Where b = number of bytes transferred.
T = transfer time.
r = rotational speed in RpS. N = number of bytes on the track. Average

accesstime=Ta=Ts+1/2r+b/rN Where Ts = seek time.

Total capacity of the disk:- It is calculated by using following formula.

Number of cylinders * number of heads * number of sector/track * number of bytes/sector.

Disk Scheduling:-

The amount of head movement needed to satisfy a series of i/o request can affect the
performance. If the desired drive and the controller are available the request can be serviced
immediately. If the device or controller is busy any new requests for service will be placed on the
queue of pending requests for that drive when one request is complete the OS chooses which
pending request to service next. Different types of scheduling algorithms are as follows:-

1. FCFS scheduling algorithm:-

This is the simplest form of disk scheduling algorithm. This services the request in the order they
are received. This algorithm is fair but do not provide fastest service.

It takes no special time to minimize the overall seek time.
Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,

65, 67

If the disk head is initially at 53, it will first move from 53 to 98 then to 183 and then to 37, 122,
14, 124, 65, 67 for a total head movement of 640 cylinders.
The wild swing from 122 to 14 and then back to 124 illustrates the problem with this schedule.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
I[| | 1l | 1l | {
>
ot
»o
<
>o
od
b4

If the requests for cylinders 37 and 14 could be serviced together before or after 122 and 124 the

total head movement could be decreased substantially and performance could be improved.

2. SSTF (Shortest seek time first) algorithm:-

This selects the request with minimum seek time from the current head position. Since seek time
increases with the number of cylinders traversed by head, SSTF chooses the pending request
closest to the current head position.

Eg:- :- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,
65, 67

If the disk head is initially at 53, the closest is at cylinder 65, then 67, then 37 is closer then 98 to
67.So it services 37, continuing we service 14, 98, 122, 124 and finally 183.

The total head movement is only 236 cylinders. SSTF is essentially a form of SJF and it may cause
starvation of some requests. SSTF is a substantial improvement over FCFS, it is not optimal.

3. SCAN algorithm:-

In this the disk arm starts at one end of the disk and moves towards the other end, servicing the
request as it reaches each cylinder until it gets to the other end of the disk. At the other end, the
direction of the head movement is reversed and servicing continues.

Eg:- :- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,
65, 67

If the disk head is initially at 53 and if the head is moving towards 0, it services 37 and then 14. At
cylinder 0 the arm will reverse and will move towards the other end of the disk servicing 65, 67,

98,122,124 and 183.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
O 14 37 536567 98 122124 183199
} | 1 | Ll | 1Ll 1 i
_
)
b 8
e
=
h 3
e e
A.
A.
'A
.A
»o
8
“he
2o
y
[2
>e

If a request arrives just in from of head, it will be serviced immediately and the request just
behind the head will have to wait until the arms reach other end and reverses direction.

The SCAN is also called as elevator algorithm.

4. C-SCAN (Circular scan) algorithm:-

C-SCAN is a variant of SCAN designed to provide a more uniform wait time. Like SCAN, CSCAN
moves the head from end of the disk to the other servicing the request along the way. When the
head reaches the other end, it immediately returns to the beginning of the disk, without servicing
any request on the return.

The C-SCAN treats the cylinders as circular list that wraps around from the final cylinder to the
first one.

Eg:-

4.Look Scheduling algorithm:-

Both SCAN and C-SCAN move the disk arm across the full width of the disk. In practice neither of

the algorithms is implemented in this way.
The arm goes only as far as the final request in each direction. Then it reverses, without going all

the way to the end of the disk. These versions of SCAN and C-SCAN are called Look and C-Look

Eg:-

queue 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53
0 14 37 536567 98 122124 183199
} | | |11 | [| {

o
3
1 N
The
.

scheduling because they look for a request before continuing to move in a given direction.

Selection of Disk Scheduling Algorithm:-

SSTF is common and it increases performance over FCFS.
SCAN and C-SCAN algorithm is better for a heavy load on disk.

SCAN and C-SCAN have less starvation problem.
SSTF or Look is a reasonable choice for a default algorithm.

UNIT V CASE STUDY

Basic Concepts

. Linux looks and feels much like any other UNIX system; indeed, UNIX compatibility has been
a major design goal of the Linux project. However, Linux is much younger than most UNIX systems. Its
development began in1991, when a Finnish university student, Linus Torvalds, began developing a
small but self-contained kernel for the 80386 processor, the first true 32bitprocessor in)ntelts range

of PC-compatible CPUs. of arbitrary files (but only read-only memory mapping was implemented in
1.0).

A range of extra hardware support was included in this release. Although still restricted to
the Intel PC platform, hardware support had grown to include floppy-disk and CD-ROM devices, as

well as sound cards, a range of mice, and international keyboards. Floating-point emulation was
provided in the kernel for 80386 users who had no 80387 math coprocessor. System V UNIX-style
interprocess communication (IPC), including shared memory, semaphores, and message queues, was
implemented.

. At this point, development started on the 1.1 kernel stream, but numerous bug-fix patches
were released subsequently for 1.0. A pattern was adopted as the standard numbering convention for
Linux kernels. Kernels with an odd minor-version number, such as 1.1 or 2.5, are development
kernels; even numbered minor-version numbers are stable production kernels. Updates for the stable
kernels are intended only as remedial versions, whereas the development kernels may include newer
and relatively untested functionality.

. As we will see, this pattern remained in effect until version 3.was given a major version-
number increment because of two major new capabilities: support for multiple architectures,
including a 64-bit native Alpha port, and symmetric multiprocessing (SMP) support. Additionally, the
memory management code was substantially improved to provide a unified cache for file-system data
independent of the caching of block devices.

. As a result of this change, the kernel offered greatly increased file-system and virtual
memory performance. For the first time, file-system caching was extended to networked file systems,
and writable memory-mapped regions were also supported. Other major improvements included the
addition of internal kernel threads, a mechanism exposing dependencies between loadable modules,
support for the automatic loading of modules on demand, file-system quotas, and POSIX-compatible
real-time process-scheduling classes.

. Improvements continued with the release of Linux 2.2 in 1999. A port to Ultra SPARC
systems was added. Networking was enhanced with more flexible firewalling, improved routing and
traffic management, and support for TCP large window and selective acknowledgement. Acorn, Apple,
and NT disks could now be read, and NFS was enhanced with a new kernel-mode NFS daemon. Signal
handling, interrupts, and some [/O were locked at a finer level than before to improve symmetric
multiprocessor (SMP) performance.

The Linux System

. Linux kernel is composed entirely of code written from scratch specifically for the Linux
project, much of the supporting software that makes up the Linux system is not exclusive to Linux but
is common to a number of UNIX-like operating systems. In particular, Linux uses many tools
developed as part of Berkeleyts BSD operating system, M)T+s X Window System, and the Free

Software Foundationts GNU project.

. This sharing of tools has worked in both directions. The main system libraries of Linux were
originated by the GNU project, but the Linux community greatly improved the libraries by addressing
omissions, inefficiencies, and bugs. Other components, such as the GNU C compiler (gcc), were already
of sufficiently high quality to be used directly in Linux. The network administration tools under Linux
were derived from code first developed for 4.3 BSD, but more recent BSD derivatives, such as

FreeBSD, have borrowed code from Linux in return. Examples of this sharing include the Intel
floating-point-emulation math library and the PC sound-hardware device drivers.

. The Linux system as a whole is maintained by a loose network of developers collaborating
over the Internet, with small groups or individuals having responsibility for maintaining the integrity
of specific components.

. A small number of public Internet file-transfer-protocol (FTP) archive sites act as de facto
standard repositories for these components. The File System Hierarchy Standard document is also
maintained by the Linux community as a means of ensuring compatibility across the various system
components.

. This standard specifies the overall layout of a standard Linux file system; it determines under
which directory names configuration files, libraries, system binaries, and run-time data files should be
stored.

Linux Distributions

. In theory, anybody can install a Linux system by fetching the latest revisions of the necessary
system components from the FTP sites and compiling them.)n Linuxts early days, this is precisely
what a Linux user had to do. As Linux has matured, however, various individuals and groups have
attempted to make this job less painful by providing standard, precompiled sets of packages for easy
installation.

. These collections, or distributions, include much more than just the basic Linux system. They
typically include extra system-installation and management utilities, as well as precompiled and
ready-to-install packages of many of the common UNIX tools, such as news servers, web browsers,
text-processing and editing tools, and even games.

. The first distributions managed these packages by simply providing a means of unpacking all
the files into the appropriate places. One of the important contributions of modern distributions,
however, is advanced package management. Todayts Linux distributions include a package-tracking
database that allows packages to be installed, upgraded, or removed painlessly.

Linux Licensing

. The Linux kernel is distributed under version 2.0 of the GNU General Public License (GPL),
the terms of which are set out by the Free Software Foundation. Linux is not public-domain software.
Public domain implies that the authors have waived copyright rights in the software, but copyright
rights in Linux code are still held by the codets various authors. Linux is free software, however, in
the sense that people can copy it, modify it, use it in any manner they want, and give away (or sell)
their own copies.

. The main implication of Linuxts licensing terms is that nobody using Linux, or creating a
derivative of Linux (a legitimate exercise), can distribute the derivative without including the source
code. Software released under the GPL cannot be redistributed as a binary-only product.

. If you release software that includes any components covered by the GPL, then, under the
GPL, you must make source code available alongside any binary distributions. (This restriction does
not prohibit making—or even selling—binary software distributions, as long as anybody who

receives binaries is also given the opportunity to get the originating source code for a reasonable
distribution charge.)
SYSTEM ADMINISTRATION

. In its overall design, Linux resembles other traditional, nonmicrokernel UNIX
implementations. It is a multiuser, preemptively multitasking system with a full set of UNIX-
compatible tools. Linuxfs file system adheres to traditional UNIX semantics, and the standard UNIX
networking model is fully implemented. The internal details of Linuxts design have been influenced
heavily by the history of this operating systemts development.

. Although Linux runs on a wide variety of platforms, it was originally developed exclusively
on PC architecture. A great deal of that early development was carried out by individual enthusiasts
rather than by wellfunded development or research facilities, so fromthe start Linux attempted to
squeeze as much functionality as possible from limited resources. Today, Linux can run happily on a
multiprocessor machine with many gigabytes of main memory and many terabytes of disk space, but
it is still capable of operating usefully in under 16 MB of RAM.

1. Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most traditional UNIX
implementations:

Kernel. The kernel is responsible for maintaining all the important abstractions of the operating
system, including such things as virtualmemory and processes.

System libraries. The system libraries define a standard set of functions through which applications
can interact with the kernel. These functions implement much of the operating-system functionality
that does not need the full privileges of kernel code. The most important system library is the C
library, known as libc. In addition to providing the standard C library, libc implements the user mode
side of the Linux system call interface, as well as other critical systemlevel interfaces.

System utilities. The system utilities are programs that perform individual, specializedmanagement
tasks. Some system utilities are invoked just once to initialize and configure some aspect of the
system. Others —known as daemons in UNIX terminology—run permanently, handling such tasks as
responding to incoming network connections, accepting logon requests from terminals, and updating
log files.

2. Kernel Modules

The Linux kernel has the ability to load and unload arbitrary sections of kernel code on demand.
These loadable kernel modules run in privileged kernel mode and as a consequence have full access to
all the hardware capabilities of the machine on which they run. In theory, there is no restriction on
what a kernel module is allowed to do. Among other things, a kernel module can implement a device
driver, a file system, or a networking protocol.

Kernel modules are convenient for several reasons. Linuxts source code is free, so anybody wanting
to write kernel code is able to compile a modified kernel and to reboot into that new functionality.
However, recompiling, relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver. If you use kernel modules, you do not have to make a new

kernel to test a new driver—the driver can be compiled on its own and loaded into the already
running kernel. Of course, once a new driver is written, it can be distributed as a module so that other
users can benefit from it without having to rebuild their kernels.

The module support under Linux has four components:

1. The module-management system allows modules to be loaded into memory and to
communicate with the rest of the kernel.

2. The module loader and unloader, which are user-mode utilities, work with the module-
management system to load a module into memory.

3. The driver-registration system allows modules to tell the rest of the kernel that a new driver
has become available.

4. A conflict-resolution mechanism allows different device drivers to reserve hardware
resources and to protect those resources from accidental use by another driver.

1. Module Management

Loading a module requires more than just loading its binary contents into kernel memory. The
system must also make sure that any references the correct locations in the kernelts address space.
Linux deals with this reference updating by splitting the job of module loading into two separate
sections: the management of sections of module code in kernel memory and the handling of symbols
that modules are allowed to reference.

Linux maintains an internal symbol table in the kernel. This symbol table does not contain the full
set of symbols defined in the kernel during the latterts compilation; rather, a symbol must be
explicitly exported. The set of exported symbols constitutes a well-defined interface by which a
module can interact with the kernel.

2. Driver Registration

Once a module is loaded, it remains no more than an isolated region of memory until it lets the rest
of the kernel know what new functionality it provides. The kernel maintains dynamic tables of all
known drivers and provides a set of routines to allow drivers to be added to or removed from these
tables at any time. The kernel makes sure that it calls a modulets startup routine when that module is
loaded and calls the modulefs cleanup routine before that module is unloaded. These routines are
responsible for registering the modulets functionality.

A module may register many types of functionality; it is not limited to only one type. For example, a
device driver might want to register two separate mechanisms for accessing the device. Registration
tables include, among others, the following items:

e Device drivers. These drivers include character devices (such as printers, terminals, and mice),
block devices (including all disk drives), and network interface devices.
File systems. The file system may be anything that implements

Linuxts virtual file system calling routines. It might implement a format for storing files on a disk,
but it might equally well be a network file system, such as NFS, or a virtual file system whose contents
are generated on demand, such as Linuxts /proc file system.

Network protocols. A module may implement an entire networking protocol, such as TCP or simply
a new set of packet-filtering rules for a network firewall.

Binary format. This format specifies a way of recognizing, loading, and executing a new type of
executable file.

(3) Conflict Resolution

Commercial UN)X implementations are usually sold to run on a vendorfs own hardware. One
advantage of a single-supplier solution is that the software vendor has a good idea about what
hardware configurations are possible. PC hardware, however, comes in a vast number of
configurations, with large numbers of possible drivers for devices such as network cards and video
display adapters. The problem of managing the hardware configuration becomes more severe when
modular device drivers are supported, since the currently active set of devices becomes dynamically
variable.

Linux provides a central conflict-resolution mechanism to help arbitrate access to certain hardware
resources. Its aims are as follows:

To prevent modules from clashing over access to hardware resources

To prevent autoprobes—device-driver probes that auto-detect device configuration— from
interfering with existing device drivers

To resolve conflicts among multiple drivers trying to access the same hardware—as, for example,
when both the parallel printer driver and the parallel line IP (PLIP) network driver try to talk to the
parallel port.

REQUIREMENTS FOR LINUX SSYTEM ADMINISTRATOR

Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware chipset differences from upper levels of the
operating system. The HAL exports a virtual hardware drivers. Only a single version of each device
driver is required for each CPU architecture, no matter what support chips might be present. Device
drivers map devices and access them directly, but the chipset-specific details of mapping memory,
configuring 1/0 buses, setting up DMA, and coping with motherboard-specific facilities are all
provided by the HAL interfaces.

Kernel

The kernel layer ofWindows has four main responsibilities: thread scheduling, lowlevel processor
synchronization, interrupt and exception handling, and switching between user mode and kernel
mode. The kernel is implemented in the C language, using assembly language only where absolutely
necessary to interface with the lowest level of the hardware architecture.

Kernel Dispatcher

The kernel dispatcher provides the foundation for the executive and the subsystems. Most of the
dispatcher is never paged out of memory, and its execution is never preempted. Its main
responsibilities are thread scheduling and context switching, implementation of synchronization
primitives, timer management, software interrupts (asynchronous and deferred procedure calls), and
exception dispatching.

Threads and Scheduling

Like many other modern operating systems, Windows uses processes and threads for executable
code. Each process has one or more threads, and each thread has its own scheduling state, including
actual priority, processor affinity, and CPU usage information.

There are six possible thread states: ready, standby, running, waiting, transition, and terminated.
Ready indicates that the thread is waiting to run. The highestpriority ready thread is moved to the
standby state, which means it is the next thread to run. In a multiprocessor system, each processor
keeps one thread in a standby state. A thread is running when it is executing on a processor. It runs
until it is preempted by a higher-priority thread, until it terminates, until its allotted execution time
(quantum) ends, or until it waits on a dispatcher object, such as an event signaling I/O completion. A
thread is in the waiting state when it is waiting for a dispatcher object to be signaled. A thread is in
the transition state while it waits for resources necessary for execution; for example, it may be
waiting for its kernel stack to be swapped in from disk. A thread enters the terminated state when it
finishes execution.

Implementation of Synchronization Primitives

Key operating-system data structures are managed as objects using common facilities for allocation,
reference counting, and security. Dispatcher objects control dispatching and synchronization in the
system. Examples of these objects include the following:

The event object is used to record an event occurrence and to synchronize this occurrence with
some action. Notification events signal all waiting threads, and synchronization events signal a single
waiting thread.

The mutant provides kernel-mode or user-mode mutual exclusion associated with the notion of
ownership.

The mutex, available only in kernel mode, provides deadlock-free mutual exclusion.

The semaphore object acts as a counter or gate to control the number of threads that access a
resource.

The thread object is the entity that is scheduled by the kernel dispatcher. It is associated with a
process object, which encapsulates a virtual address space. The thread object is signaled when the
thread exits, and the process object, when the process exits.

The timer object is used to keep track of time and to signal timeouts when operations take too long
and need to be interrupted or when a periodic activity needs to be scheduled.
SETTING UP A LINUX MULTIFUNCTION SERVER

Follow the steps below to avoid any complications during the hardware installation:

1. Confirm that the printer you will use to connect to the DPR-1020 is operating correctly.
2. When you have confirmed that the printer is operating correctly, switch its power OFF.
3. Confirm that your network is operating normally.

4, Using a CAT 5 Ethernet cable, connect the DPR-1020 Ethernet Port (labelled LAN) to the
network.

5. While the printer is turned OFF, connect the USB printer cable to the printer and then to the
USB port on the Print Server.

6. Switch on the printer.

7.)nsert the power adapter+ts output plug into the DC 5V power socket on the rear panel of the
Print Server.

8. Connect the other end of the power adapter into a power outlet. This will supply power to
the Print Server. The blue LED on the Print Server+s front panel should turn on and the Print Serverts
self-test will proceed.

Power ON Self-Test

When the DPR-1020 is powered ON, it automatically performs a Self-Test on each of its major
components. The final result of the Self-Test is signaled by the state of the USB LED indicator
following the Self-Test. Preliminary to the actual component tests, the three LED indicators are tested
to confirm their operation.

Immediately after power-up, all three of the blue LEDs should illuminate steadily for several
seconds. Then the USB LED should light OFF simultaneously. Irregularity of any of the three LEDs
during these LED tests may mean there is a problem with the LEDs themselves.

The actual component tests immediately follow the LED tests. A normal (no fault) result is signaled
by simultaneous flashing of the LEDs three times, followed by a quiescent state with all three LEDs
dark.

If the Self-Test routine traps any component error, then following the LED tests the Self-Test will
halt and the LEDs will continuously signal the error according to the following table. In the event of
any such error signal, contact your dealer for correction of the faulty unit.

Getting Started

Below is a sample network using the DPR-1020. The DPR-1020 has a built- in web configurator that
allows users to easily configure the Print Server and manage multiple print queues through TCP/IP.

% Computer 2

Cable/DSL Modem

\

Router
3 N ' Network
* Printer
“~ e USB
Computer 1 g
DPR-1020
MFP Print Server

Auto-Run Installation

Insert the included installation CD into your computer+s CD-ROM drive to initiate the auto-run
program. If auto-run does not start, click My Computer > [CD ROM Drive Letter].

The content of the installation CD-ROM includes:

e Install PS Software - click this to install the PS Software, which contains PS-Link and PS-Wizard
that can configure more settings for the MFP Server, such as:
0 Change the IP address

p Support the multi-functions (Print/Scan/Copy/Fax) of a MFP printer, GDI printing, and
other software from any MFP/GDI printer.

*- Easily add a printer to your computer.

View Quick Installation Guide - click this to preview the Quick Installation Guide in PDF format for
step-by-step instructions of the MFP Server Installation.

View Manual - click this to preview the User Manual in PDF format for detailed information
regarding the MFP Server.

Install Acrobat Reader - click this to install Acrobat Reader for the viewing and printing of PDF files
found in this Installation CD-ROM.

Exit - click to close the Auto-Run program.
DOMAIN NAME SYSTEM

The domain name, or network name, is a unique name followed by a standard Internet suffixes such
as .com, .org, .mil, .net, etc. You can pretty much name your LAN anything if it has a simple dial-up
connection and your LAN is not a server providing some type of service to other hosts directly. In
addition, our sample network is considered private since it uses IP addresses in the range of
192.168.1.x. Most importantly, the domain name of choice should not be accessible from the Internet
if the above constraints are strictly enforced. Lastly, to obtain an "official" domain name you could
register through InterNIC, Network Solutions or Register.com. See the Resources section later in this
article for the Web sites with detailed instructions for obtaining official domain names.

Hostnames

Another important step in setting up a LAN is assigning a unique hostname to each computer in
the LAN. A hostname is simply a unique name that can be made up and is used to identify a unique
computer in the LAN. Also, the name should not contain any blank spaces or punctuation. For
example, the following are valid hostnames that could be assigned to each computer in a LAN
consisting of 5 hosts: hostname 1 - Morpheus; hostname 2 - Trinity; hostname 3 - Tank; hostname 4 -
Oracle; and hostname 5 - Dozer. Each of these hostnames conforms to the requirement that no blank
spaces or punctuation marks are present. Use short hostnames to eliminate excessive typing, and
choose a name that is easy to remember.

Every host in the LAN will have the same network address, broadcast address, subnet mask,
and domain name because those addresses identify the network in its entirety. Each computer in the
LAN will have a hostname and IP address that uniquely identifies that particular host. The network
address is 192.168.1.0, and the broadcast address is 192.168.1.128. Therefore, each host in the LAN
must have an IP address between 192.168.1.1 to 192.168.127.

IP address Example Same/unique
Network address 192.168.1.0 Same for all hosts
Domain name www.yourcompanyname.com Same for all hosts
Broadcast address 192.168.1.128 Same for all hosts
Subnet mask 255.255.255.0 Same for all hosts
Hostname Any valid name Unique to each host
Host addresses 192.168.1.x x must be unique to each host

SETTING UP LOCAL NETWORK SERVICES

Linux is increasingly popular in the computer networking/telecommunications industry. Acquiring
the Linux operating system is a relatively simple and inexpensive task since virtually all of the source
code can be downloaded from several different FTP or HTTP sites on the Internet. In addition, the
most recent version of Red Hat Linux can be purchased from computer retail stores for between $25
and $50, depending on whether you purchase the standard or full version. The retail brand is indeed a
worthwhile investment (vs. the free FTP or HTTP versions) since valuable technical support is
included directly from the Red Hat Linux engineers for at least a year. This can be very helpful if, for
instance, you can not resolve an installation/configuration problem after consulting the Red Hat Linux
manuals.

This article describes how to put together a Local Area Network (LAN) consisting of two or more
computers using the Red Hat Linux 6.2 operating system. A LAN is a communications network that
interconnects a variety of devices and provides a means for exchanging information among those
devices. The size and scope of a LAN is usually small, covering a single building or group of buildings.
In a LAN, modems and phone lines are not required, and the computers should be close enough to run
a network cable between them.

For each computer that will participate in the LAN, you'll need a network interface card (NIC) to
which the network cable will be attached. You will also need to assign a unique hostname and IP
address to each computer in the LAN (described later in this article), but this requires a basic
understanding of TCP/IP (Transmission Control Protocol/Internet Protocol).

Introduction to TCP/IP

TCP/IP is the suite of protocols used by the Internet and most LANs throughout the world. In
TCP/IP, every host (computer or other communications device) that is connected to the network has
a unique IP address. An IP address is composed of four octets (numbers in the range of 0 to 255)
separated by decimal points. The IP address is used to uniquely identify a host or computer on the
LAN. For example, a computer with the hostname Morpheus could have an IP address of
192.168.7.127. You should avoid giving two or more computers the same I[P address by using the
range of IP addresses that are reserved for private, local area networks; this range of IP addresses
usually begins with the octets 192.168.

LAN network address The first three octets of an IP address should be the same for all computers in
the LAN. For example, if a total of 128 hosts exist in a single LAN, the [P addresses could be assigned
starting with 192.168.1.x, where x represents a number in the range of 1 to 128. You could create
consecutive LANs within the same company in a similar manner consisting of up to another 128
computers. Of course, you are not limited to 128 computers, as there are other ranges of IP addresses
that allow you to build even larger networks.

There are different classes of networks that determine the size and total possible unique IP
addresses of any given LAN. For example, a class A LAN can have over 16 million unique IP addresses.
A class B LAN can have over 65,000 unique IP addresses. The size of your LAN depends on which
reserved address range you use and the subnet mask (explained later in the article) associated with
that range (see Table 1.).

Address range Subnet mask Provides Addresses per LAN
10.0.0.0 - 10.255.255.255.255 255.0.0.0 1 class A LAN 16,777,216
172.16.0.0 - 172.31.255.255 25525500 16classBLANs 65,536
192.168.0.0 - 192.168.255.255 25.255.255.0 256 class C LANs 256

Address ranges and LAN sizes
Network and broadcast addresses

Another important aspect of building a LAN is that the addresses at the two extreme ends of the
address range are reserved for use as the LAN's network address and broadcast address. The network
address is used by an application to represent the overall network. The broadcast address is used by
an application to send the same message to all other hosts in the network simultaneously.

. For example, if you use addresses in the range of 192.168.1.0 to 192.168.1.128, the first
address (192.168.1.0) is reserved as the network address, and the last address (192.168.1.128) is
reserved as the broadcast address. Therefore, you only assign individual computers on the LAN IP
addresses in the range of 192.168.1.1 to 192.168.1.127:

Network address: 192.168.1.0
Individual hosts: 192.168.1.1 to 192.168.1.127
Broadcast address: 192.168.1.128

Subnet masks

Each host in a LAN has a subnet mask. The subnet mask is an octet that uses the number 255 to
represent the network address portion of the IP address and a zero to identify the host portion of the
address. For example, the subnet mask 255.255.255.0 is used by each host to determine which LAN or
class it belongs to. The zero at the end of the subnet mask represents a unique host within that
network.

Assigning IP addresses in a LAN

There are two ways to assign IP addresses in a LAN. You can manually assign a static IP address to
each computer in the LAN, or you can use a special type of server that automatically assigns a
dynamic IP address to each computer as it logs into the network.

Static IP addressing

Static [P addressing means manually assigning a unique IP address to each computer in the LAN.
The first three octets must be the same for each host, and the last digit must be a unique number for
each host. In addition, a unique hostname will need to be assigned to each computer. Each host in the
LAN will have the same network address (192.168.1.0), broadcast address (192.168.1.128), subnet
mask (255.255.255.0), and domain name (yourcompanyname.com). It's a good idea to start by
visiting each computer in the LAN and jotting down the hostname and IP address for future reference.

Dynamic I[P addressing

Dynamic [P addressing is accomplished via a server or host called DHCP (Dynamic Host
Configuration Program) that automatically assigns a unique IP address to each computer as it
connects to the LAN. A similar service called BootP can also automatically assign unique IP addresses
to each host in the network. The DHCP/ BootP service is a program or device that will act as a host
with a unique IP address. An example of a DHCP device is a router that acts as an Ethernet hub (a
communications device that allows multiple host to be connected via an Ethernet jack and a specific
port) on one end and allows a connection to the Internet on the opposite end. Furthermore, the DHCP
server will also assign the network and broadcast addresses. You will not be required to manually
assign hostnames and domain names in a dynamic IP addressing scheme.

SETTING UP Xen, Vmare ON LINUX HOST AND ADDING GUEST OS

What [s VMware Player?

VMware Player is a free desktop application that lets you run virtual machines on a Windows or
Linux PC.

VMware Player is the only product on the market that lets you run virtual machines without
investing in virtualization software, making it easier than ever to take advantage of the security,
flexibility, and portability of virtual machines. VMware Player lets you use host machine devices, such
as CD and DVD drives, from the virtual machine.

VMware Player provides an intuitive user interface for running preconfigured virtual machines
created with VMware Workstation, ESX Server, VMware Server, and GSX Server. On Windows host
machines, VMware Player also opens and runs Microsoft Virtual PC and Virtual Server virtual
machines and Symantec Backup Exec System Recovery (formerly LiveState Recovery) system images.
VMware Player makes VMware virtual machines accessible to colleagues, partners, customers, and

clients, whether or not they have purchased VMware products. Anyone who downloads VMware
Player can open and run compatible virtual machines.
What You Can Do with VMware Player

With VMware Player, you can:

Use and evaluate prebuilt applications-Download and safely run prebuilt application environments
in virtual machines that are available from the Virtual Appliance Marketplace at
http://vam.vmware.com.The Virtual Appliance Marketplace includes virtual machines from leading
software vendors, including Oracle, Red Hat, Novell, BEA, SpikeSource, IBM, and MySQL, as well as
virtual machines that are preconfigured with popular open source software.

Transform software distribution-Simplify software distribution by shipping preconfigured software
in virtual machines. End users can experience the benefits of your products immediately, without
setup hassles. VMware Player is ideal for shipping evaluation copies or beta software. You can
package complex, sophisticated applications, complete with a full working environment, in a virtual
machine that can be used by anyone who downloads VMware Player.

Collaborate with colleagues-VMware Player makes it easy for support, development, and QA to
share customer scenarios in virtual machines.

Features in VMware Player

VMware Player is a free desktop application for running virtual machines. VMware Player does not
include features found in other VMware products, such as the ability to create virtual machines.

VMware Player provides the following features:

You can connect, disconnect, and use configured host devices, including USB devices, in the
virtualmachine.

You can set preferences, such as how devices are displayed in VMware Player.

You can change the amount of memory allocated to the virtual machine.

You can drag and drop files between a Linux or Windows host and a Linux, Windows, or Solaris
guest.(Linux hosts and Linux and Solaris guests must be running X Windows.) You can use this feature

if theperson who created the virtual machine you are running also installed VMware Tools in it.

You can copy and paste text between a Windows or Linux host and a Windows, Linux, or Solaris
guest.

You can use this feature if the person who created the virtual machine you are running also installed
VMware Tools in it.

You can copy and paste files between a Windows or Linux host and a Windows, Linux, or Solaris
guest.

You can use this feature if the person who created the virtual machine you are running also installed
VMware Tools in it.

To install VMware Player on a Linux host

http://vam.vmware.com.the/
http://vam.vmware.com.the/

1 Log on to your Linux host with the user name you plan to use when running VMware Player.
2 In a terminal window, become root so you can perform the initial installation steps:

3 Mount the VMware Player CD ROM.

4 Change to the Linux directory on the CD.

5 To use the RPM installer, skip to Step 6. To use the tar installer, follow these steps:

a. If you have a previous tar installation, delete the VMware Player distribution directory before
installing from a tar file again. The default location of this directory is:

/tmp/vmware-player-distrib
b Copy the tar archive to a temporary directory on your hard drive, for example,

/tmp:
cp VMware-<xxxx>.tar.gz /tmp

VMware-<xxxx>.tar.gz is the installation file. (In the filename, <xxxx-xxxx> is a series of numbers
representing the version and build numbers.)

C Change to the directory to which you copied the file: cd /tmp
d Unpack the archive:
tar zxpf VMware-<xxxx>.tar.gz

e Change to the installation directory:

cd vmware-player-distrib
f Run the installation program:

./vmware-install.pl

g Press return to accept the default values at the prompts.

h Press return (Yes) when prompted to run vmware-config.pl.

i Skip to Step 7.

Adding Guest OS

To install the OS from an ISO image in a virtual machine:

1. Save the ISO image file in any location accessible to your host. For example:
Windows: C:\Temp or % TEMP%

Linux: /tmp or /usr/tmp

Note: For best performance, place this image on the host computer's hard drive. However, to make
the ISO image accessible to multiple users, you can also place the ISO image on a network share drive

(Windows) or exported filesystem (Linux). If your OS install spans multiple discs, you need to use an
[SO image of each disc and place them all of them in a location accessible to the host.

2. Create a new virtual machine. Go to File > New > Virtual Machine.

3. Select Typical to accept Workstation's recommendations for various settings (such as
processors, RAM, and disk controller type). Select Custom if you want to select these options yourself.

4, On the Guest Operating System Installation screen, when prompted where to install from,
select Installer disc image file (iso).

5. Click Browse, and navigate to the location where you saved the ISO image file.
6. Click next, and proceed through the new virtual machine wizard.
7. Before you click Finish, to create the virtual machine, deselect Power on this virtual machine

after creation.

8. Edit the virtual machine settings so that its virtual CD/DVD device is configured to use the
[SO image rather than the physical CD/DVD drive:

a.Select the tab for the virtual machine you just created.

b.Click Edit virtual machine settings.

c.0On the Hardware tab, select the CD/DVD drive.

d.On the right side:

i.Select Connect at power on.

ii.Use ISO image file.

iii.Click Browse and navigate to where you saved the ISO image file.

e.Click OK.

9. Power on the virtual machine.

When you are finished installing the guest OS, you can edit the virtual machine settings so that it is

once more set to use the host computer's physical drive. You do not need to leave the drive set to
connect at power on.

