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UNIT I

INTRODUCTION TO SIGNALS :

1.1 INTRODUCTION

Anything that carries information can be called a signal. Signals constitute an important part of
our daily life. A Signal is defined as a single- valued function of one or more independent
variables which contain some information. A signal may also be defined as any physical quantity
that varies with time, space or any other independent variable. A signal may be represented in
time domain or frequency domain. Human speech is a familiar example of a signal. Electric
current and voltage are also examples of signals. A signal can be a function of one or more
independent variables. A signal can be a function of time, temperature, position, pressure,
distance etc. If a signal depends on only one independent variable, it is called a one-dimensional
signal, and if a signal depends on two independent variable, it is called a two-dimensional signal.

1.2 REPRESENTATION OF DISCRETE TIME SAIGNALS

Discrete-time signals are signals which are defined only at discrete instants of time. For those
signals, the amplitude between the two time instants is just not defined. For discrete time signal
the independent variable is time 7, and it is represented by x(n).

There are following four ways of representing discrete-time signals:

1. Graphical representation

2. Functional representation

3. Tabular representation

4. Sequence representation

1.2.1 Graphical Representation
Consider a signal x(n) with values

x(2)=-—3, x(-1)=2, x(0)=0, x(1)=3, x(2)=1 and x3)=2
This discrete-time signal can be represented graphically as shown in Figure 1.1.

x(n)e 3

Figure 1.1 Graphical representation of discrete-time signal.




1.2.2 Functional Representation

In this, the amplitude of the signal is wrilten against the values of n. The signal given in 1.2.1
can be represented using functional representation as given below.

-3 forn=-2
2 forn=-1
0 forn=0
x(n)=
3 forn=1
1 forn=2
2 forn=3
Another example is
2" forn=0
xin)=

0 forn<O

1.2.3 Tabular Representation

In this, the sampling instant # and the magnitude of the signal at the sampling instant are
represented in tabular form. The signal given in 1.2.1 can be represented in tabular form as
shown below.

n =2 |=-1]10]|11|2]|3
x(m |3 2031 ]2

1.2.4 Sequence Representation

A [linite duration sequence given in 1.2.1 can be represented as:

i {—3. 2.0,31,2 }
i

{ 2,3,0,1,-2, }
x(n) = 1

The arrow mark T denotes the n = 0 term. When no arrow is indicated, the first term
corresponds to n = 0

So a finite duration sequence, that satisfies the condition x(n) = 0 for n < 0 can be
represented as x(n) = {3, 5, 2, 1, 4, 7}.

Another example is




1.3 ELEMENTARY SIGNALS

There are several elementary signals which play vital role in the study of signals and systems.
These elementary signals serve as basic building blocks for the construction of more complex
signals. Infact, these elementary signals may be used to model a large number of physical
signals which occur in nature. These elementary signals are also called standard signals.

The standard signals are:

I. Unit step function 2. Unit ramp function

3. Unit parabolic function 4. Unit impulse function

5. Sinusoidal function 6. Real exponential function
7. Complex exponential function, etc.

1.3.1 Unit Step Function

The step function is an important signal used for analysis of many systems. The step function
is that type of elementary function which exists only for positive time and is zero for negative
time. It is equivalent to applying a signal whose amplitude suddenly changes and remains
constant forever after application.

If a step function has unity magnitude, then it is called unit step function. The
usefulness of the unit-step function lies in the fact that if we want a signal to start at 1 = 0, so
that it may have a value of zero for r < 0, we only need to multiply the given signal with unit
step function u(7). A unit step function is useful as a test signal because the response of the
system for a unit step reveals a great deal about how quickly the system responds to a sudden
change in the input signal.

The continuous-time unit step function u(r) is defined as:

1 forez0
uir)=
0 fort<0

From the above equation for u(7), we can observe that when the argument 7 in u(i) is
less than zero, then the unit step function is zero, and when the argument f in u(f) is greater
than or equal to zero, then the unit step function is unity.

The shifted unit step [unction u(r — a) is defined as:

1 forrza

n(t—a)=
0 fort<a

It is zero if the argument (t — a) < 0 and equal to 1 if the argument (1 — a) 2 0.
The graphical representations of (1) and u(r — @) are shown in Figure 1.2[(a) and (b)].




& ult) u(t —a)
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(a) (b)
Figure 1.2 (a) Unit step function, (b) Delayed unit step [unction,

The discrete-time unit step sequence w1 (n) is defined as:
1 for nz0
uin)=
0

The shifted version of the discrete-time unit step sequence u(n — k) is delined as

for n<0

1
0

for n=2k

for n< k

un—k)= Jl

The graphical representations of u(n) and u(n — k) are shown in Figure 1.3[(a) and (b)].

uln—-k)
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(a) (b)
Figure 1.3 Discrete-time (a) Unit step function, (b} Shifted unit step function.

1.3.2 Unit Ramp Function
The continuous-time unit ramp function r(r) is that function which starts at r = 0 and

increases linearly with time and is deflined as:

r forr=z0
r(ny=
0 forr<0
or r(t)y=ru(r)

The unit ramp function has unit slope. It is a signal whose amplitude varies linearly.
It can be obtained by integrating the unit step function. That means, a unit step signal can be
obtained by differentiating the unit ramp signal.

ie. rl’.f]z_l-u(.f}ﬂ'f=jdf=.' for r=0
uir) = i.ﬂ{f)
dr
The delayed unit ramp signal r(r — a) is given by
r—a fortza
rir—a)=
0 for 1 <a

or rr—a)=((—a)ulr —a)




The graphical representations of r(f) and r(+ — a) are shown in Figure 1.4[(a) and (b)].

A r(t) & r(r—a)
5|0pE‘.’ =1 Siﬂpc =1
0 r 0 = r
(a) (b)

Figure 1.4 (a) Unit ramp signal, (b) Delayed unit ramp signal.

The discrete-time unit ramp sequence r(n) is defined as

n forn=0
r(n)=
0 forn<0

or rin) =nu(n)

The shifted version of the discrete-time unit-ramp sequence r(n — k) is defined as

n—-k forn=zk
rin—k)=
0 for n<k

rin=ky=n=Kkutn-=k)

The graphical representations of r(n) and r(n — 2) are shown in Figure 1.5[(a) and (b)].

4 4
r(n) 3 rin-2) 3
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Figure 1.5 Discrete-time (a) Unit-ramp sequence, (b) Shifted-ramp sequence.




1.3.3 Unit Parabolic Function

The continuous-time unit parabolic function p(r), also called unit acceleration signal starts at
t = 0, and is defined as:

|'2
— for 120
plr)=
0 forr<0O
r2
or plr) = E nu(r)
The shifted version of the unit parabolic sequence p(r — a) is given by
2
=) for t=za
p(t—a)= 2
0 for t<a
(1 — a}z
or plr—a)= e u(r — a)

The graphical representations of p(r) and p(r — @) are shown in Figure 1.6[(a) and (b)].

A plr) A plt—a)
0 T 0 a T
(a) (b)

Figure 1.6 (a) Unit parabolic signal, (b) Delayed parabolic signal,

The unit parabolic function can be obtained by integrating the unit ramp function or

double integrating the unit step function.
2

p() = IJ u(t)de :Ir{.‘)d.' = J!d: s % for t=0




The ramp function is derivative of parabolic function and step function is double
derivative of parabolic function
d’ 0
o P
dr”
The discrete-time unit parabolic sequence p(n) is defined as:

d
r(t)=—p(1), wu(t)=
dt

2
for n=20

pn)=1 2
0 for n<0

2

or pn)= % u(n)

The shifted version of the discrete-time unit parabolic sequence p(n — k) is defined as:

2
u for n=2k
p(n—k)= 2
0 for n<k
— k)2
or pn—k)= u u(n — k)

-

The graphical representations of p(n) and p(n — 3) are shown in Figure 1.7[(a) and (b)].
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Figure 1.7 Discrete-time (a) Parabolic sequence, (b) Shifted parabolic sequence.

1.3.4 Unit Impulse Function

The unit impulse function is the most widely used elementary function used in the analysis of
signals and systems. The continuous-time unit impulse function 6(r), also called Dirac delta
function, plays an important role in signal analysis. It is delined as:

T o) dr =1

—




and a(r)=0 forr#0
1 for =0
i.e. as o) =

That is. the impulse function has zero amplitude everywhere except at 1 = 0. At 1 = 0,
the amplitude is infinity so that the area under the curve is unity. §(7) can be represented as a
limiting case ol a reclangular pulse function.

As shown in Figure 1.8(a),

x(r) = ]E [2e(t) —2e(r — A)]
d(t)= Lt x(r)= Lt l[hrU}— u(r — A)]
A0 A—=0 A

A delayed unit impulse function (7 — a) is defined as:

1 forr=a
d(r—a)=
0 forr#a

The graphical representations of 8(r) and 8(t — a) are shown in Figure 1.8[(b) and (¢)].
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(a) (b} (c)
Figure 1.8 (a) &(s) as limiting case of a pulse. (b) Unit impulse. (¢) Delayed unit impulse.
If unit impulse function is assumed in the form of a pulse, then the following points
may be observed about a unit impulse function.

(i) The width of the pulse is zero. This means the pulse exists only at t = 0.
(ii) The height of the pulse goes to infinity.
(ii1) The area under the pulse curve is always unity.
(iv) The height of arrow indicates the total area under the impulse.

The integral of unit impulse function is a unit step function and the derivate of unit step
function i1s a unit impulse function.

u(t) = J a(r) dt

d
and ()= —ult
AN (1) drH[J




Properties of continuous-time unit impulse function

1. It is an even function of time r, i.e. 6(r) = &(—1)

o e

2. _[.r(rJ:S(:)fa'e':x(DJ; _[x(r):?u—rr,}a'r=.r(rn)

—ca —n

6[::1)=Lc5(r]

a

4. xX(NF—1y)=x(1y) 61 —1y) = x(ty); x(1) (1) = x(0) (1) = x(0)

5 x(n= I MT)S(r—-1)dr

—i

The discrete-time unit impulse function &(n), also called unit sample sequence, is defined as:

1 for n=0
d(n)=
0 fornz0

The shifted unit impulse function &(n — k) is defined as:

1 forn=k

5[rl-k]={
0 fornzk

The graphical representations of é(n) and é(n — 3) are shown in Figure 1.9[(a) and (b)].

| T5(u) o(n-3) I 1
*—0 * o >

-2 -1 0 1 2 n 2 -1 0 | 2 3 4 n
(a) (b)

Figure 1.9 Discrete-time (a) Unit sample sequence. (b) Delayed unit sample sequence.

Properties of discrete-time unit sample sequence

1 forn=k
1. d(n)=u(n)—un-1) 2. O(n=k)=

0 form#k
3. x(n)= z x(k) &(n—k) 4. z x(n) 8(n—ny) = x(ngy)

k— - H=-oco

1.3.5 Sinusoidal Signal

A continuous-time sinusoidal signal in its most general form is given by

x(1) = Asin (@1 + ¢)




where

A = Amplitude

@ = Angular frequency in radians
¢ = Phase angle in radians

Figure 1.10 shows the waveform of a sinusoidal signal. A sinusoidal signal is an example of
a periodic signal. The time period of a continuous-time sinusoidal signal is given by
, 2rx
T
[
b x(r) = A sin (@1 + @)

ta

> ¢

=

T=

el

Figure 1.10 Sinusoidal waveform.

The discrete-time sinusoidal sequence is given by
x(n) = Asin (wn + @)
where A is the amplitude, @ is angular frequency, ¢ is phase angle in radians and n is an
integer.
The period of the discrete-time sinusoidal sequence is:

2r
N=—m

@
where N and m are integers.

All continuous-time sinusoidal signals are periodic but discrefe-time sinusoidal
sequences may or may not be periodic depending on the value of .

For a discrete-time signal o be periodic, the angular Irequency @ must be a rational
multiple of 2.

The graphical representation of a discrete-time sinusoidal signal is shown in Figure 1.11.

L vl = A sin (eer + @)

Figure 1.11

Discrete-time sinusoidal signal.




1.3.6 Real Exponential Signal

A continuous-time real exponential signal has the general form as:
x(1) = Ae™
where both A and o are real.

The parameter A is the amplitude of the exponential measured at 1 = 0. The parameter o
can be either positive or negative. Depending on the value of @, we get different
exponentials.

1. If @ = 0. the signal x(7) is of constant amplitude for all times.

2. If ais positive, i.e. @ > 0, the signal x(7) is a growing exponential signal.

3. If a is negative, i.e. o < 0, the signal x(7) is a decaying exponential signal.

These three waveforms are shown in Figure 1.12[(a), (b) and (c)].

X =Ae™ forax=10 xty=Ae™ fora>0 x(f)=Ae™ forax<0
b b 'y
A A
0 r 0 r 0 t
(a) i(b) (c)

Figure 1.12 Continuous-time real exponential signals x(r) = Ae™ for (a) ¢ =0, (b) x> 0, (¢) @ < 0,

The discrete-time real exponential sequence " is defined as:

x{n)=a" for all n

Figure 1.13 illustrates different types of discrete-time exponential signals.

x(n) =a” a=>1 xn)=a” D<a<l
11 T [ l { ‘ = I I I T1, =
-2-10 12 3 4 5 6 n -4 -3-2-10 2 n
(a) (b)
ximn) = a” —1l<a<0
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Figure 1.13 Discrete-time exponential signal «" for (a) a > 1, (b) 0 <= v < 1, (¢c) a < —1,
(d) =1 < o < 0.




When a > 1, the sequence grows exponentially as shown in Figure 1.13(a).
When 0 < @ < 1, the sequence decays exponentially as shown in Figure 1.13(b).
When a < 0, the sequence takes altermating signs as shown in Figure 1.13[(c) and (d)].

1.3.7 Complex Exponential Signal
The complex exponential signal has a general form as
x(1) = Ae”
where A is the amplitude and s is a complex variable defined as
§=0+ jo
Therefore, x(1) = Ae™ = Ae' T = AT oI
= Ae” [cos mt + j sin @]

Depending on the values of ¢ and @, we get different waveforms as shown in Figure 1.14.

x4 =0
A
0 0 T
(a) (c)
x(1)4 § =+ A g £=oja x(1) L;_ o
\l ﬂ m ﬂ P‘n i NIRY o NI S m ﬂ

U\/’{JU]\,? } o\ U VY 1 'UUV’UU\ t
(d) (e) ()

Figure 1.14 Complex exponential signals.

The discrete-time complex exponential sequence is defined as

.T(Fi‘:l o auejtmnrwm

=a" cos (wyn + @)+ ja" sin (wyn + P)

For |a| = 1, the real and imaginary parts of complex exponential sequence are sinusoidal.

For |a| > 1, the amplitude of the sinusoidal sequence exponentially grows as shown in
Figure 1.15(a).

For |a| < 1, the amplitude of the sinusoidal sequence exponentially decays as shown in
Figure 1.15(b)
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Figure 1.15 Complex exponential sequence x(n) = a’e for(a)a> 1. (b)a < 1.

1.3.8 Rectangular Pulse Function

The unit rectangular pulse function I1(#/7) shown in Figure 1.16 is defined as

n[i]= L for Jr|<

T
0 otherwise

It is an even [unction of r.
ATl D

)

—(7/2) {0 2

Figure 1.16 Rectangular pulse function.




1.3.10 Signum Function

The unit signum function sgn (7) shown in Figure 1.18 is defined as:
1 forr>0
sgn(r)= i
-1 for <0

4 sgn (1)

~Y

0

-1

Figure 1.18 Signum function.

The signum function can be expressed in terms of unit step function as:

sgn (1) ==1+2u(r)

1.3.11 Sinc Function
The sinc function sinc () shown in Figure 1.19 is defined as:
i sinr
sinc (f)=—— for —ee <t <oo
t

The sinc function oscillates with period 27 and decays with increasing 7. Its value is zero at
., n =1, £2, ... It is an even function of .

b sinc(f)

WAWA A A .
VMO MW

Figure 1.19 Sinc function.




1.4 BASIC OPERATIONS ON SIGNALS

When we process a signal, this signal may undergo several manipulations involving the
independent variable or the amplitude of the signal. The basic operalions on signals are as
follows:

1. Time shifting 2. Time reversal
3. Time scaling 4.  Amplitude scaling
5. Signal addition 6. Signal multiplication

The first three operations correspond to transformation in independent variable 1 or n of
a signal. The last three operations correspond Lo transformation on amplitude of a signal.

1.4.1 Time Shifting

Mathematically, the time shifting of a continuous-time signal x(r) can be represented by
) =xt-1)

The time shifting of a signal may result in time delay or time advance. In the above

T is negative the shift is to the left and then the shifting advances the signal. An arbitrary

signal x(r), its delayed version and advanced version are shown in Figure 1.21[(a), (b)
and (c)]. Shifting a signal in time means that a signal may be either advanced in the time axis
or delayed in the time axis.

4 x(t) xt-T dx(r+T)
A A A
0 6 1 07 T+6 T T 0 —T+6 1
(a) (b) (c)

Figure 1.21 (a) Sigmal, (b) Its delayed version, (c) Its time advanced version.

1.4.2 Time Reversal

The time reversal, also called time folding of a signal x(r) can be obtained by folding the
signal about ¢+ = 0. This operation is very useful in convolution. It is denoted by x(-r). It is
obtained by replacing the independent variable r by (-7). Folding is also called as the




reflection of the signal about the time origin + = 0. Figure 1.23(a) shows an arbitrary signal
x(1), and Figure 1.23(b) shows its reflection x(—r).

The signal x(—r + 3) obtained by shifting the reversed signal x(—7) to the right by 3 units
(delay by 3 units) is shown in Figure 1.23(c). The signal x(—t — 3) obtained by shifting the
reversed signal x(=r) to the left by 3 units (advance by 3 units) is shown in Figure 1.23(d).

x(1) p x(—1)
A
T 2 3 5 4 Jo ¢
(b)
4 x(~1+3) 3y x(~1-3)
A A
1 0 1 2 31 J <f -5 =4 =3 B = 0 1
(c) (d)

Figure 1.23 (a) An arbitrary signal x(r), (b) Time reversed signal x(=r), (¢) Time reversed

1.4.3 Amplitude Scaling

The amplitude scaling of a continuous-time signal x(r) can be represented by
y(r) = Ax(r)

where A is a constant.
The amplitude of y(r) at any instant is equal to A times the amplitude of x(r) at that

instant, but the shape of v(7) is same as the shape of x(z). If A > 1, it is amplification and if

A < 1, it is attenuation.
Here the amplitude is rescaled. Hence the name amplitude scaling. Figure 1.35(a) shows

an arbitrary signal x(t) and Figure 1.35(b) shows v(f) = 2x(1).
b y(1) = 2x(f)
2

AWAW/\ WA ,
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b x(1) 4

-

=2

(a) b)




1.4.4 Time Scaling

Time scaling may be time expansion or time compression. The time scaling of a signal x(r)
can be accomplished by replacing 7 by ar in it. Mathematically, it can be expressed as:

y(1) = x(ar)

It @ > 1, it results in time compression by a factor @ and if @ < 1, it results in time
expansion by a factor @ because with that transformation a point at “af’ in signal x(r) becomes
a point at ‘" in y(7).

Consider a signal shown in Figure 1.37(a). For a transformation y(r) = x(21). the time
compressed signal is as shown in Figure 1.37(b) and for a transformation y(7) = x(#/2) the
time expanded signal is as shown in Figure 1.37(c).

A x() A () =x(20)
4 4

~y
~Y

X 0510 115
(a) (b)
A1) =x(1/2)

-~y

(c)

Figure 1.37 (a) Original signal, (b) Compressed signal, (¢) Enlarged signal.

1.4.5 Signal Addition

The sum of two continuous-time signals x(r) and x,(r) can be obtained by adding their values
at every instant of time. Similarly, the subtraction of one continuous-time signal x,(7) from
another signal x;(f) can be obtained by subtracting the value of x,(7) from that of x,(r) at
every instant. Consider two signals x;(r) and x,(t) shown in Figure 1.39[(a) and (b)].




A x, () b x,(1)
2
14+ 14
0 2 3 t 0 2 3 4 1
(a) (b}
& &
3--
21 21
v x,(1) + x,(1) I X, (1) —x,(1)
0 2 3 t 0 2 3 ]
(c) @

1.4.6 Signal Multiplication

Figure 1.39 Addition and subtraction of continnous-time signals.

The multiplication of two continuous-time signals can be performed by multiplying their
values at every instant. Two continuous-time signals x () and x(f) shown in Figure 1.40[(a)
and (b)] are multiplied as shown below to obtain x,(r) x5(f) shown in Figure 1.40(c).

For0<r<1 xi(1)=2 and x,(¢) =1
Hence (D) x:(t) =2 x 1 =2
For1<r<2 x(nH=1andxy(t) =1+ (r—1)
Hence x (1) xo() = (D[1 + ¢ = D] =1 + (¢ = 1)
A& xyl(r) A& x5(1) ]
2 2 f 2
1+ 11 1
0 2 3 .F; 0 1 2 3 ? 0 1 2 3 -—-:
(a) (b) (c)

Figure 1.40

Multiplication of continuous-time signals.




1.5 CLASSIFICATION OF SIGNALS

Based upon their nature and characteristics in the time domain, the signals may be broadly
classified as under

(a) Continuous-time signals

(b) Discrete-lime signals

Continuous-time signals

The signals that are defined for every instant of time are known as continuous-time signals.
Continuous-time signals are also called analog signals. For continuous-time signals. the
independent variable is time. They are denoted by x(7). They are continuous in amplitude as
well as in time. Most of the signals available are continuous-time signals. Figure 1.57(a)
and (b) shows the graphical representation of continuous-time signals.

Discrete-time signals

The signals that are defined only at discrete instants of time are known as discrete-time
signals. The discrete-time signals are continuous in amplitude but discrete in time. For
discrete-time signals, the amplitude between two time instants is just not defined. For
discrete-time signals, the independent variable is time n. Since they are defined only at
discrete instants of time, they are denoted by a sequence x(nT) or simply by x(n) where n is
an integer.

The discrete-time signals may be inherently discrete or may be discrete versions of the
continuous-time signals. Figure 1.57(c) and (d) show the graphical representation of discrete-
time signals.

Both continuous-time and discrete-time signals may further be classified as under

1. Deterministic and random signals

2. Periodic and non-periodic signals
Energy and power signals

Causal and non-causal signals

W

Even and odd signals

N—de
|
h—
u—e

e Lt T
1

—2 —1 0 1 2 e J. J. l L &

<) ()

Figure 1.57 (a) and (b) Continuous-time signals. (c) and (d) Discrete-time signals.




1.5.1 Deterministic and Random Signals

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of lime is
called deterministic signal. A deterministic signal has a regular pattern and can be completely
represented by mathematical equation at any time. Its amplitude and phase at any time instant
can be predicted in advance.

Examples: Sine wave, x(f) = cos @1 or x(n) = cos @n, Exponential signals, square wave,
triangular wave, elc.

A signal characterized by uncertainty about its occurrence is called a random signal.
A random signal cannot be represented by any mathematical equation. The pattern of such a
signal is quite irregular. Its amplitude and phase at any time instant cannot be predicted in
advance.

A typical example of non deterministic signals is thermal noise generated in an electric
circuit. Such a noise has a probabilistic nature.

Figure 1.58 shows the graphical representation of deterministic and random signals.

NN AN/
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Figure 1.58 (a) and (b) Deterministic signals, (¢) and (d) Random signals.

1.5.3 Energy and Power Signals

Signals may also be classified as energy signals and power signals. However there are some
signals which can neither be classified as energy signals nor power signals.
o A signal is said to be an energy signal il and only if its total energy FE is [inite
(i.e. 0 < E < =). For an energy signal, average power P = 0. Non-periodic signals
are examples of energy signals.
e A signal is said to be a power signal if its average power P is finite
(i,e. 0 < P < o). For a power signal, total energy E = . Periodic signals are
examples of power signals.
e Both energy and power signals are mutually exclusive, i.e. no signal can be both
energy signal and power signal.
* The signals that do not satisfy the above properties are neither energy signals nor
power signals,




1.5.4 Causal and Non-causal Signals

A continuous-time signal x(1) is said to be causal if x(r) = 0 for 1 < 0, otherwise the signal is
non-causal. A continuous-time signal x(7) is said to be anti-causal if x(7) = 0 for 1 > 0.

A causal signal does not exist for negative time and an anti-causal signal does not exist
for positive time. A signal which exists in positive as well as negative time is neither causal
nor anti-causal. It is non-causal. u(r) is a causal signal and u(—r) is anti-causal signal.

Similarly, a discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise
the signal is non-causal. A discrete-time signal x(n) is said to be anti-causal il x(n) = 0 for
n>0.

Periodic and Non-Periodic Signals

Definition : A signal is said to be periodic if it repeats at regular intervals.
Non-periodic signals do not repeat at regular intervals.

1.5.5 Even and Odd Signals

Even (symmetric) signal

A continuous-time signal x(r) is said to be an even (symmetric) signal if it satisfies the
condition

x(1) = x(=1) for all t

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the
condition

x(n) = x(—n) for all n

Even signals are symmetrical about the vertical axis or time origin. Hence they are also

called symmetric signals: cosine wave is an example of an even signal. Some even signals are

shown in Figure 1.72(a).
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Odd (antisymmetric) signal

A continuous-time signal x(z) is said to be an odd (antisymmetric) signal if it satisfies the
condition
x(=t) = =x(1) for all ¢

A discrete-time signal x(n) is said to be an odd (antisymmetric) signal if it satisfies the
condition
x(=n) = =x(n) for all n

Odd signals are antisymmetrical about the vertical axis. Hence they are called
antisymmetric signals. Sine wave is an example of an odd signal. For an odd signal x(r) = 0,
x(n) = 0. Some odd signals are shown in Figure 1.72(b).

Any signal x(7) can be expressed as sum of even and odd components. That is
x(t)y=x,(f)+ x,(r)

where x.(#) is even components and x,(f) is odd components of the signal.

Evaluation of even and odd parts of a signal
‘We have x(r)=x.(t)+ x,(r)
(= =x (-0 +x,(—1)=x,()—x,(1)

x()+x(=)=x (D +x, )+ x () — x,(1)=2x,(1)
1
x ()= —[x(6)+ x(—1)]
2
E(I} b _l'{—.f} = i_'t'l_, (".] + _l'”(."jJ == ["lf’(") == -to('!j] e 2‘1..-;(:)

x‘,(l}=%l-t(-'}—x{—!)]

Similarly, the even and odd parts of a discrete-time signal. x.(n) and x,(n) are given by

x.(n)= % [x(r)y+ x(—n)]

and
x,(n)y= % [x(r) — x(—n)]

The product of twe even or odd signals is an even signal and the product of even signal
and odd signal is an odd signal.
We can prove this as follows:

Let x(r)=x,(1) x5(1)
(i) 1If xy(r) and x5(r) are both even. i.e.
xp(—1) = x, (1)
and X (=) = x5 (1)
Then x(—1) = xp(—1) x5 (—1) = x, (1) x5 () = x(1)

Therefore, x(r) is an even signal.




(i) If x,(r) and x,(r) are both even, ie.
x, (—1)=x; (1)
and Xy (—1) = x5(1)
Then x(—t) = x,(—1) x5 (—1) = x;, (1) x5(2) = x(t)
Therefore, x(f) is an even signal.
If xy(¢r) and x5(r) are both odd, i.e.
X (=) =—x; (1)
and Xy(—1)=—x,(1)
Then x(—t)=x (=) x5 (—0)=[—x (D] [—x; ()] = x (1) x5 (1) = x(1)

Therefore, x(r) is an even signal.

(i) I xy(r) is even and x,(r) is odd, ie.
x(=1) = x; ()
and Xy (=) ==x,(1)
Then X(=1) = x,(=1) Xy (=1) = =x; (1) X, (1) = = x(1)
Therefore x(r) is an odd signal.

Thus, the product of two even signals or of two odd signals is an even signal and the
product of even and odd signals is an odd signal.

Every signal need not be either purely even signal or purely odd signal, but every
signal can be decomposed into sum of even and odd parts.




FOURIER SERIES:

1. Continuous Time Fourier Series
Purpose
* Fourier series used to analyze periodic signals.
e The harmonic contant of the signals is analyzed with the help of fourier series.
e Fourier series can be developed for continuous time as well as discrete time
signals.

Types of Fourier series
Depending upon the representation, these are three types of fourier series

i) Trigonometric Fourier series.

ii) Compact trigonometric Fourier series or polar Fourier series.

iii) Exponential Fourier series.

which satisfy the square integrable condition,
f |z ()2t < oo,
i

or Dirichlet conditions (You may find more discussions in OW § 3.4):

1. Over any period x(t) must be absolutely integrable, that is,
f |=(#) |dt < oc.
-

2. In any finite interval of time x(¢) is of bounded variation; that is, there are no
more than a finite number of maxima and minima during any single period of

the signal.
3. In any finite interval of time. there are only a finite number of discontinuities.
For this class of signals, we are able to express it as a linear combination of complex

exponentials:
oG

z(t) = Z ape’ ot

k=—nc




Here, wy is the fundamental frequency
27
T b ]

and the coefficients a; are known as the Fourier Series coefficients.

Wwo =

Given a periodic signal z(t) that is square integrable, how do we determine the Fourier
Series coefficients a,? This is answered by the following theorem.

3.2.1 Continuous-time Fourier Series Coefficients

Theorem 8. The continuous-time Fourier series coefficients a;. of the signal

o0

z(t) = Z ape?* ot

hk=—nc

s given by

1 :
= .L.I(t)C—Jh‘,‘dt'

Fourier Series Representation

Existence of Fourier Series
In general, not every signal x(t) can be decomposed as a linear combination of complex
exponentials. However, such decomposition is still possible for an extremely large class
of signals. We want to study one class of signals that allows the decomposition. They
are the periodic signals

z(t + T) = z(t)

Trigonometric Fourier series

Defining equations

x(t) = a(o)+ i a(k}coskmgf-n-i b{k) sin koogé
k=1 k=1
1
where a(0) = 7 £ x(t)dt

alk) = 2 I a(t) cos kawot dt
T T =
2 .

b(k) = = [ x(f)sin koot dt
T <T >




1. Trigonometric Fourier Series
We know that any function f(t) can be expressed as (see equation 1.6.2),

£t = 2; Cn %n(t)

series
We have seen that the set,
{1, cosaxt, cos2aot, ..., cosnaxt, ... sinwpt, sin2wot , ... sinnwet, ...}

is orthogonal over the period Tp. Here oy is called fundamental frequency. And ney is
called n harmonic. There is DC component of cosnwot at n=0. i.e. cos(0wot)=1. This
signal set consists of sine and cosine terms. Hence it is called Trigonometric set.

For this set we can write equation as,

ere x,(t) represents orthogonal signal set. This equation is called generalized Fourier

f(t) = ag+a cos wot +az cos 2mgt +...
+ by sin wot +b3 sin2 wot + ...

a o
= @g+). @ycosnwot+y by sinnwgt
n=1 n=1

Values of a, and b, can be obtained from equation (1.5.5) i.e.,
uTo
[ F(t)yxa(t)at
U

'010

| x&(tyar

t+T
I f(t)cos nwot dt

HTo
I cos 2 nwot dt
[

.. (1.8.2)




Now consider denominator of above equation with cos? 6 = % (1+cos20) ie.,

“TO INTO
I cos®naptdt = 3 I (1 + cos 2n axt) dt
[ !
1+T t+T
LTI

Here note that second term is integration of full cycles of cosine wave over one period.
It is zero. Hence,

1Ty 1 T,
[ costnantat = 5,70 =2
!

Therefore equation (1.8.2) becomes,
t+T
2 0

= ! f(¥)cos nayt dt .. (183)

Similarly b, can be calculated as,
8Ty

[ f(tysinnetdt

loTo

I sin? nayt dt
t

b, = .. (1.84)

Trigonometric fourier series :
x(f) = ag+y. a.wa(nmof)+i by, sin (n wot)
n=1 n=1
1 1+Tp
and G = = Ix(t)dt
!
2 t+Tp
an = 3= | x(t)cos (nwot) dt
!
2 t+To
bu = £ | x(t)sin(nwot) dt
'




Compact Trigonometric Fourier Series

The trigonometric Fourier series can be represented in compact form. It is also called
compact or polar Fourier series.

Defining equations

D(0)+ 3 D(K) cos (kanot + §(K))

k=1

x(t)

where D(0) = ap =% j; >.1(t)dt
D) = Ja(k)Z +b(k)2 = —tan-1[ 20
= Ja(k)? +b(k)* and ¢(k) = —tan o)

Exponential Fourier Series
Defining equations

x(t) = Z X(k) e/*=0'  (synthesis equation)
k=-m

where X(k) = ?l.- I e /f0tdt  (analysis equation)
<T>




Convergence of Fourier Series - Dirichlet Conditions

The Fourier series is convergerit if the signal x(t) satisfies some conditions. These
conditions are called Dirichlet conditions.

i) Single valued property : x(1) must have only one value at any time instant within
the interval Tj.

ii) Finite discontinuities : x(f) should have at the most finite number of
discontinuities in the interval Ty. Because of this, the signal can be represented
mathematically.

iii) Finite peaks : The signal x(#) should have finite number of maxima and minima
in the interval T,.

iv) Absolute integrability : The signal x(t) should be absolutely integrable, ie.
I | x(f) | <ec. This is because the analysis equation integrates x(1).
<Ip>

Explanation of Dirichlet’s conditions:

The function x(7) is a single-valued function, i.e. the function x(r) must have a single value at
any instant of time.

For example, consider Figure 4.1{a) which is not single-valued, because it has two values
at time f;.

Figure 4.1(b) represents a single-valued function as it has only one value at time 1.

xir) & xit) &

ta) ih)

Figure 4.1 (a) Double-valued and (b) single-valued functions at .

o  The function x(r) has a finite number of discontinuities.

Consider Figure 4.2(a). It has no finite number of discontinuities and it is not possible
to find the value of the function x(f) at such a number of a discontinuities. Hence, it
cannot be represented by a Fourier series.

The function shown in Figure 4.2(b) has a finite number of discontinuities and the
value of x(r) at the discontinuity can be calculated by using the formula

T+ x(TT)

=‘?- -
x{t )] 2
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Figure 4.2 Function having (a) no finite number of discontinuities (b) finite number of discontinuities.

o The function x(f) has a finite number of minima and maxima.
The function shown in Figure 4.3(a) has no fixed number of minima and maxima. So,
it cannot be represented by Fourier series.
Whereas, the funciton shown in Figure 4.3(b) has one minimum and one maximum
(finite number of minima and maxima). So, it can be represented by a Fourier series.

xin xnt
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(a) (h}

—

Figure 4.3 TFunction having (a) no fixed number of minima and maxima (b) fixed number of minima and
MAX .

¢ The function x(¢) is absolutely integrable in the interval (1), f5).
The function shown in Figure 4.4(a) is not absolutely integrable within the interval
(1, 1;) considered. Hence, it cannot be represented by a Fourier series. But the function
shown in Figure 4.4(b) is absolutely integrable over (0, T, i.e.

T
[be(0)ldt < o
L]

and hence can be represented by a Fourier series,




and hence can be represented by a Fourer series.

K, A A

(&) (b

Figure 4.4 (a) Absolutely not integrable and (b} absolutely integrable function.

Properties of Fourier Series

Linearity

If x() 2 X(k) and y(t) > Y(K)

then | z(t) = ax(t) + bylt) s Z (k) = aX(k) +bY(k)

Proof : From equation (1.5.3) we can write Z(k) as,




Z(k) -;- [ aAtye-itwt at

<T>

7 | faxt)+by®le-ikeet at

<T>

1 ~-jk 1 ~jku
aTéLx(t)el “!dt+b o [ we-itet ar

<T>

aX(k) +bY(k)

Significance : This property is used to analyze signals which are represented as linear
combination of other signals.

Time Shift or Translation

If x(f) <L X(k) then,

2t) = x(t—t,) L2y Z (k) = e ¥D0 0 (k)

Proof : Fourier coefficients of x(t —ty) will be,

Z() = % [ x(t-to)eikent dt
<T>

Put t-ty = m. Limits of integration will shift by o. But again the integration is over
one period. Hence limits can be kept same. i.e.,

Z(k) = ’lr' [ xtmye-Trovimio

<T>

= % j x(m)e-ikoom |.p-jkagto

<T>
The quantity inside the square brackets is X(k). Hence,
Z(k) = e-ikw=0toX(k)




Frequency Shift

If x(t) (F—$> X(k) then,

2At) = et 0t x(t) 25 Z(k) =X(k -ko)

200 = 7 [/ dt by definition

<T>

7 | fe/0wt xgp)e-ikedt by putting for z(t)
<T>

% J' x(t)] e~itk-ko)eot
<T>
= X(k-ko)

Scaling _
If x(t)23X(K)

then, | ) = x(at) <2 Z(k) = X(k)

Proof :
X(k) = %l x(t)]e-i%e0t dt

e Since x(t) is periodic, then z(t) = x(at) is also periodic. And if T' is the period of
x(t), then period of z(t) will be %.

e Similarly if frequency of x(t) is wg. The frequency of z(t) = x(at) will be amy,
since 't' is multiplied by factor ‘a'.




Time Differentiation

If x(h) <55 X(k)
then, 1‘# 5 ikan XMk
Proof :

x(t) = ZX(k) e/k«0t By definition of exponential fourier series...

k=-w

Differentiating with respect to 't

jd;ii:) = kaj'mx(k)jkm""“m'
d x(t) x )
dr k woX(k)) e/ k0!
dt k_zwll woX(k))e
We know that x(t) < FS X(h),
dx(t) _Fs

_ ik k
ge & woX(k)

Convolution in Time

If x(t) 2> X(K) and y(t) s Y(K)
then, At = x(t) » y(t) 2 Z(K) = TX(K) Y(K)

Proof : We know that,
Z(k)

% [ (ye-iteot dy
<>

T | s yolerteot ar
<>

x(t)*u(t) = Ix(r) y(t-1)dx. This convolution is performed over one period for periodic
<>
signals. Putting this convolution in equation




1 :
Z(k) = Tf [ x9y(t-r)dre-ikwot at
I> <>

Interchanging the order of integrations,
1 :
Zk) = T}:(r)(!g(:-z)e ikeot dedt

Put t - t = m. Therefore dt = dm. Since integration is over one period, this substitution
will just shift the integrating limits. But it will be again over one period only. Hence we
can write,

200 = 2 [x(0) [ yome-skeots +m dxdm
a> >
= % Ix(t) Iy(m)e"l*"o' ce-Tkeom dvdm
<> <>
Multiplication or Modulation Theorem

IF x(t—2—s X(k) and y(t) > Y(k)

then, | =(t) = x(t) y() o Z(K) = X(k)*Y(K)

Proof :

Z(k)

7 e 1" dt By definition

<>

% I [x(t) t)]e /*=0t dt  putting for z(t)
<>

By synthesis equation, x(t) = i X(k)e*=0t, Putting this expression for x(t) in above

k=-x
equation,
= -_%,- Ix{-r)rf""ﬂ' dt Iy(m}f‘f"“ﬂ"dm
<> T

%[TX(k}}-[T-Y(k)] = T X(k) Y(k)

1 - ' ,
Z(k) = .T(L ,;.x("')"m'w)‘_'m'd‘

Note that index of summation is changed in above equation to differentiate between
two indices of 'k’ and 'm’. Interchanging the order of integration and summation,




zZk = 3 X(m)[-.}-. | y(t)e-i(*-mm'dt]

me-w 0y

The quantity inside the bracket indicates fourier coefficients y(k — m). Hence above
equation will be,

Zk) = Y X(m)yk-m)
ie. Z(k) = X(k)* Y(k)

Parseval's Theorem
If x(t) is the periodic power signal with fourier coefficients X(k), then average power in

the signal is given by 3 |X(K)[2. ie.,

k==

x0

P= ) Xk

k===

Power,

Proof : The power in the signal is given as,
1 p
lim v j x(t)2 dt By definition

Tom in

P

T2
| 1x(®)]2 dt for periodic signal
-T2

-
T

72
= % [ |x(®)|? dt for periodic signal
-T2
7?2

[ *0)x*(t)at
-n

L3
T

i X(k) e/kwot by synthesis equation

ku-m

We have, x(t)

= -0

x*(t) = [ Z X(k) el“'o'] by taking conjugates of both sides
¢

3 X+ (k) e-iket

kn-m




Putting above expression of x*(f) in equation (1.5.14),

1P e
B - . ~j ket
P=x[x0)3 X Ke dt
-T2 k=-w
72
Here I =I i.e. integration over one period of x(t). Interchanging the order of
-Tj2 <>

summation and integration,

P

3 X ()% [xte-iteot dr
<>

k--—m

3 X mx®= 3 |Xk)2
ks-x

ku-o

Significance : Power of the signal can be obtained by squaring and adding the
magnitudes of fourier coefficients.

Symmetry Properties
If x(t) is real then X* (k) = X(-k)

If x(t) is imaginary then, X* (k) = -X(-k)
If x(t) is real and even then, Im {X(k)] = 0
If x(t) is real and odd then, Re{X(k)} = 0

- Example 1 : Find trigonometric fourier series for the periodic signal shown in
Fig.: .l

T




Solution : Here period T = 0.5. And x(t) = ¢’ over one period.
Step 1 : To calculate a(0).

]
a0) = = [ xp)ae,
<>

0.5
os]e'm

= 0 sgle'l’ = 07869

Step 2 : To calculate a(k)
2
a(k) = Tl)x(l)coskwotdtl

Here wy = %3%3411'1("&,

a(k)

2 0s
Z_ [ x(t)cos(k-4nt)dt
5

05
= 4] e~! cos(4nkt)dt
0

Here we will use Ic" cosbxdx = (acosbx+bsinbx) with a = - 1 and b = 4nk.

2h2

Here we will use Ic" cosbxdx = ————(acosbx+bsinbx) with a = - 1 and b = 4nk.

z b’
Then above equation will be,

0.5

ak) = 4 (- 1)cos(4xk)t+(4uk)sm(4xk)t]}

{l +(4nk)?

e-o

e .
" Te@nn? [—cos(4xk)0+4xksm(4xk).0]}

- -l—+—(:‘—k)z-{0.606[-cos(2xk)+4:ksin(21rk)l




~[~cos(0) + 4 nk sin (0)]}

4
- m{-o.w&wnm}

1.576
1+(4 nk)?

Step 3 : To calculate b(k)
2 ;
b(k) = Té[:(f)sm kot dt

5 05
= — | e sin(k-4xt)dt
ey

0.5
4 ].,--r sin (4 ek f) dt
0

6.32nk
1+(4nk)?

Step 4 : To obtain fourier series
Putting the expressions for a(0), a(k) and b(k) in equation (1.5.1),

S 57 = ;
x(t) = 0.7869+Z kO coskmot+z et

- e e sinkegt
& 1+ (k)2 “T+@rh? T




Example Periodic Rectangular Wave

Let us determine the Fourier series coeflicients of the following signal

x{t}:{ 1 | =T,

] T|{|f|{%.

The Fourier series coefficients are (k # 0):

1 [T/ _ 1 M
U = 7 ./—'r,»fz x(t)e~Thuot gy — ?f g Ikt gy

=N
—1 ikt Tt
= T Lo
2 [edkenTi _ e—ikTi) Dsin kg Th)
kT [ 2j } T kT
If k£ =0, then
1 h Pl §)
i = T,[_-ndi: T

Example Periodic Impulse Train
Consider the signal z(t) = > 7 _ 4(t — kT). The fundamental period of z() is T
[Why?]. The F.S. coefficients are

1 /‘”2_ 1
Qg = — a(t)dt = =,
’ T,_Tﬁ,{ T

for any k.




Properties of Fourier Series Coefficients

There are a number of Fourier series properties that we encourage vou to read the
text. The following is a quick summary of these properties.

1. Linearity: If z;(t) +— ax and z3(t) +— by, then
.."1..1'] (f} + Bmgif} L] Iiﬂk -+ Bhk.
For DT case, we have if x,[n] +— ax and z2[n] +— by, then

Az [n] + Bxs[n] «— Aay + Bb,.

2. Time Shaft:

ﬂ"{f’ _— tl.']} — akf_jmufn
z[n — ng] +— age™ i omo

To show the time shifting property, let us consider the F.S. coefficient by of the
signal y(t) = z(t — tp).

1 |
b= = ]; a(t — to)eI0dt.




Letting 7 =t — #p in the integral, we obtain

1 — sleasy| ¢ L 1 f am
et rlT)e Jhewpl T+ u]dr i Jhugty — e j “rd‘T
EC L[+
where z(t) +— ai. Therefore,

z(t — tg) +—— aj e~ Tkt

3. Time Reversal:
x(—t) — a_,
z[=n] & a_;

The proof is simple. Consider a signal y(t) = x(—t). The F.S. representation
of z(—t) is

O
z(—t) = Z e
be=—oc
Letting & = —m, we have
o
yt)y=z(=t)= ) a_me™™T.
M=—=o0

Thus, x(—t) +— a_,.
4. Conjugation:
x*(t) +— a’,
z*[n] «— a’,

5. Multiplication: If x(f) +— ag and y(t) +— b, then
z(t)y(t) +— Z by
l=—nc
fi. Parseval Equality:

1 Fog - 2
fj’r j2(£)?dt = ) |l

h=—nc

= 3 kllP= Y laP

1"|:={_"'u"} E=(N)}




UNIT Il

FOURIER TRANSFORMS & SAMPLING

2.1. Deriving Fourier transform from Fourier Series.

2.2. Fourier transform of arbitrary signal.

2.3. Fourier transform of standard signals.

2.4. Properties of Fourier Transforms.

2.5. Sampling Theorem — Graphical and analytical proof for Band Limited Signals,
2.6 .Types of Sampling- impulse sampling, Natural and Flat top Sampling,

2.7. Reconstruction of signal from its samples,

2.8.Effect of under sampling — Aliasing.




UNIT II
FOURIER TRANSFORMS:

Fourier Transforms

Periodic signals which extend over the interval (-, ec) can be effectively represented
with the help of fourier series. A periodic signals which are strictly time limited can also
be represented by fourier series. A time limited signal means it has zero value outside the
specified interval. And asymptotically time limited means as time approaches to infinity
(=), the value of signal becomes zero [ie. x(f) = 0as|t| = =] Such time limited signals can
be more conveniently represented by fourier transform in frequency domain. These signals
are aperiodic because their period T — .

Fourier transform can also be found for periodic signals. It provides effective reversible
transformation link between frequency domain and time domain representation of the
signal. We have seen previously that for nonperiodic signals Ty —» . As the period of the
signal Ty =, fop =0. Therefore the spacing between the spectral components becomes
" .nitesimal and hence the frequency spectrum appears to be continuous. Whereas periodic

signals has fixed period Tp. Therefore their frequency spectrum is discontinuous as we
have seen in the examples in the last section.

2.2.1 Definition of Fourier Transform

Let x () be the signal which is function of time t. The fourier transform of x(f) is given
as

Fourier Transform : X(w) = I x(t) e/t dt or

=

X(f)=I x(f)e12=f" dt since w=2=xnf




Similarly x (f) can be recovered from its fourier transform X (f) by using inverse fourier
transform.

Inverse Fourier Transform : x(f) = 2—1’; I X(we' * do

x= [ X(fyeiz=ft df

I
g8

soo RBd)

The functions x(f) and X(f) form a fourier transform pair is written by a shorthand
symbol as shown below,

x() o X(f) . (223)

Other shorthand notation for fourier transform is as shown below,
X(f) = Flx(®) . (22.49)
and x() = F1IX(N ... (2.25)

Fourier transform thus can be considered as a linear operator as shown in Fig. 2.2.1.

X(n x(t)

(a) Fourier transformation and (b) Inverse fourier transformation

Fig. 2.2.1




2 Fourier Transform
Purpose
¢ Non-periodic signals can be represented with the help of Fourier transform.

e Fourier transform provides effective reversible link between frequency
domain and time domain representation of the signal.

» For non-periodic signals Ty — «. Hence wg = 0. Therefore spacing between the
spectral components becomes infinitesimal and hence the spectrum appears
to be continuous.

.1 Definition of Fourier Transform
The Fourier transform of x(t) is defined as,

T:::;::m: X(e)= L W XU‘)=_L Wit ra % D

Here 'x(t) is time domain representation of the signal and 'X(w) or 'X(f)' is
frequency domain representation of the signal ' is the frequency.

Sometimes X(w) is also written as X(jw).

Similarly x(f) can be obtained from X(w) by inverse Fourier transform. i.e.,

Inverse Fourier _ 17 . 2 I |
e x(f) = ﬁ_j_ X(w)e do = _jm X(f)e 12 df 20 2)

A Fourier transform pair is represented as,

x(t) s X() or x(t) <1 X(p)




.2 Existence of Fourier Transform - Dirichlet Conditions

Following conditions should be satisfied by the function x(f) for Fourier transform
to exist.

i) Single valued properly : x(f) must have only value at any time instant over a finite
time interval T.

ii) Finite discontinuities : x(f) should have at the most finite number of discontinuities
over a finite time interval T.

ili) Finite peaks : The signal x(f) should have finite number of maxima and minima
over a finite time interval T.

iv) Absolute integrability : x(t) should be absolutely integrable. i.e.,
[ xp))dt <

e These conditions are sufficient, but not necessary for the signal to be Fourier
transformable.

.3 Properties of Fourier Transform

3.1 Linearity
I af)—2sXw) and  y(f) 1 Y(o)

then,




2(t) = ax(t) +by(t) s Z(w) = aX(w) + bY(0)

Meaning :

The Fourier transform of linear combination of the signals is equal to linear
combination of their Fourier transforms. It is also called superposition.

Proof :

T z(t) e/t dt

-0

Z(w)

o«

[ [ax(t) +by(t)] et dt

-0

a [ x(tye-iotdt+b [ y(t) e at

1}

aX(w)+bY(w)

.2 Time Shift

If x(t) «——» X(w), then

Y(b) = x(t-to) 2 V(o) =0l X(w)

Meaning : A shift of 'ty' in time domain is equivalent to introducing a phase shift of
—-wty. But amplitude remains same.

Proof :

Y(0) T y(t) e/t dt

| w(t-to)erotar
Putt-ty =1t thent=r1+,.
:.dt =dt and integration limits will remain same.

Y() = T y(t) eio(x+to)dy

- 0




I 5;(1:) g-iot . g-juts e

= e-iwh I y(1) et dr

= et Y(w)

3 Frequency Shift

I x(t) s X(w), then

y() = ™ x(t) 1o Y(w) = X(0-B)

Meaning :

It states that by shifting the frequency by B' in frequency domain is equivalent to
multiplying the time domain signal by e/*.

Proof :
Y(w)

T y(t)e /e dt

[ e xtye-iotat

= [ x(t)eiteP)at

-0

= X(o-P)




4 Time Scaling

If  x(t) 11— X(w), then

v() = xat) 1 Y(w) = l—fl'—lx(g)

Meaning :
Compression of a signal in time domain is equivalent to expansion in frequency
domain and vice-versa.

Proof :
Y(w) = Ty(t)e'f“”dt

[ x(at)e-retat

- o

Put at = 1, then t =

R~

dt

%dt and limits will remain same.

«©

Y@ = [ q()e™s L

: f x(r)e"(%)'dt

3




.5 Frequency-Differentiation

If x(t) < X(e), then

it 2(t) s L x()

Meaning :
Differentiating the frequency spectrum is equivalent to multiplying the time
domain signal by complex number - jt.

Proof :
X(w) = T x(t)e-/t dt
i@ = [ gl
= fx(z) (=jt) e/t dt
= —jt]E x(t)e~1 dt

= —jt X(o)




.6 Time-Differentiation

If x(f) ¢ X(w) then,

d x(t)

oy joX(w)

Meaning : Differentiation in time domain corresponds to multiplying by jo in
frequency domain. It accentuates high frequency components of the signal.

() = 5 [ X(@)er do

0. & xoftem]e

o -
= 57:_[0 X(w) jo e/ dw

'21_1: T [jo X(w)]e* do

.7 Convolution
if )i X(@) and  y(t) 2 Y(w).
then,
2(t) = 2(t)*y(t) > Z(@) = X(0) ()
Meaning :

A convolution operation is transformed to modulation in frequency domain.
Proof :

Z(w) T z(t) e/t dt

[ e v®)eoar




T [ T x(t)y(t-1) dt}e""‘" dt

T x(7) []? y(t—t)e o dt} dt

Putt-t=aqa, then t=1t+a.

dt = d a, limits of integration will remain same.

2@ = [0 y(a)e-~<"°>da] i

T x(t) T y(a)eror -e“"““do.} dt

T x(t)efor dr T y(a)e " da

X(@)-Y(w)




.8 Integration

I x(t) <l X(w), then

-j; x(t) dt L}%X(m)

Meaning :
- Integration in time represents smoothing in time domain. This smoothing in time
corresponds to de-emphasizing the high frequency components of the signal.

Proof :
Let x(f) be expressed as,

) = ,—‘,‘;[_'I ) dr]

F)] = F{di,[_] x(r)dr”

By differentiation property right hand side of above equation becomes,

Flx)] = i«‘{F[_j; ) d]}

i.e. X(w) = jo F[j' x(1) d‘t]
-}.}(BX(w) = F[j x(1) dt}

or F[j' x(t)dt] = ].lmX(m)




9 Modulation
If x(f) 1 X(w) and y(f) < Y(w) then,

2(t) = (t) ¥(t) <> Z(0) = 5= [X(©)* Y(®)]

Meaning :
Modulation in time domain corresponds to convolution of spectrums in frequency
domain.

Proof
j z(f) e~/ doy

-

J ) ye do

n

Z(w)

Inverse Fourier transform states that,
xO) = o | X0)eMan
Zﬂ_w

Putting for x(f) in equation 2.4.12,

o

Z() = | [zl—,: T X(A)el’“dx] y(t)e ' do

-0

L [ X0 [ yye-ico> aran

2n

5 [ X0Y(@-n)dr

1
= - [X(@*Y(@)]




10 Duality

If x{t) <1 X(w) then,

X(t) «E5s 27 x(- w)

Proof :
Inverse Fourier transform is given as,

_ 17 :
x(f) = 5= _jo X(w)ei do
Interchanging t by © we get,
@) = o= [ X(0) et
Interchanging t by © we get,

@) = o [ Xty emtat

Interchanging ® by - © we get,
17 i
(- w) = Z_“.I.,x(t) e~iot d

ie. 2ex(-w) = [ X(t) efotat

-

Right handside of above equation is Fourier transform of X(f). i.e.,

X() s 2nf- w)
11 Symmetry
Let x(t) be real signal and

X{m) = Xg(m)+jx:(m}




then xe(t) <1 Xg(0)
and xo(t) (-i-) J X1 (w)
Here x. () and x,(f) are even and odd parts of x(t).

Proof
We have,

x(t) s Xp (@) + X (©)
Since x(t) is real, ¥(—£) <1 X* () =X g () - jX1 ()
Even part is given as,
xe(t) = 5[t) +q(-b)]
xe(t) o 3 [X@) + X @)

(.E_,%[xk(m) +jX1(0) + Xg (@) - jX1(w)]

FT 1

Odd part is given as,
x(t) = 5[) - (1]
%) < 2[X@-X@)]

«— jX;(0)




12 Parseval's Theorem or Rayleigh's Theorem

If x{t) <1 X(w) then,

E= | [xf dt= L | [X@[ do= [ [X()[ &f

Meaning
Energy of the signal can be obtained by interchanging its energy spectrum.
Proof :

E= [ |xf a

2.2.2 Existence of Fourier Transform
We defined fourier transform in the last subsection. Now we will see what are the
conditions to be satisfied by the signal to obtain its fourier transform. In section 1.5.4 we
studied Dirichlet conditions. These conditions also apply to the signals to obtain fourier
transform. For the nonperiodic signals, the integration is extended to (-, »). For periodic
signals the integration is over one period as we have seen earlier. The following conditions
should by satisfied by the signal to obtain its fourier transform.
i) The function x(f) should be single valued in any finite time interval T.
ii) The function x(f) should have at the most finite number of discontinuities in any
finite time interval T.
iii) The function x(f) should have finite number of maxima and minima in any finite
time interval T.
iv) The function x (f) should be absolutely integrable i.e.

[ 1x(] dt<wo - (2.2.10)

The condition follows from definition of fourier transform given by equation 2.2.1.
The above conditions are apolied to periodic as well as nonperiodic sienals. The same




immp Example 2.2.1 Find the fourier transform of the decaying exponential as shown in
Fig. 2.2.2.

Solution :

x(1) &

1.0

_?t = Ea{ﬂﬂ}
=0.3678

Fig. 2.2.2 Truncated decaying exponential pulse

Normally to show time delays in the function and sign of time, use of unit
step function u[(H)] is made. The value of unit step function is always unity i.e.

u(t) = 1 fortz 0
The exponential pulse in Fig. 2.2.2 is represented as,

x(y = e u(t) Here u(ty =1 . (2.2.12)

By definition of fourier transform (equation 2.2.1) we have,

X(f)

l

f x(t) e 111 dy

]

j e~ yu(t)-ei2=ft di
0

j e-lari2ef)t gy .. (22.13)
1]




The lower limit is taken 0" since x (1) =0, fort <0. And «{t) = 1

1 -
B i (a+j2r flI
X(f) ~(a+j2nf) [p ]“
-, 1
a+j2nf
Thus the fourier transform pair becomes,
Decaying exponential pulse : ¢=*" u(t) & ﬁ}-

To calculate magnitude and phase spectrum :
The function X (f ) is expressed as,

X(f) = A(f)+jB(f)

Here A(f) is real part of X(f) and B(f) is imaginary part of X (f).

Here A (f) is real part of X(f) and B(f) is imaginary part of X (f ).

Therefore magnitude spectrum of X (f) is given as,
IX(F)| = JA2(f)+B2(f)

And phase spectrum is given as,

B(f)
A(f)

6(f) = tan?

for t 20

- (22.14)

.. (22.15)

o (2.2.16)

o (22.18)




Consider the equation 2.2.14,

Multiply and divide RHS by a~j2xf,

1 a-j2nf
a+j2af 2 a-j2nf

X(f)

a-j2xnf
at +(2nf)?

B a . =2nf
T oAt +(2nf)? g +(2nf)? e
a
Here real part A(f) = aZr@nf)?
s . (2.2.20)

and imaginary part B(f) a?+(2nf)?

From equation 2.2.17 magnitude of X (f) will be,

@ 2af)
[ +@rf)?)  [a® +@xf)2)

1
- ﬂ al+(2nf)? - 2221)

From equation 2.2.18 phase spectrum will be,

tan-" {“2"” [+* *[Z“ﬂI]}
a/ [a? +[2::f}3]

]

XN

"

0(f)

tan-1 {:Zﬂ]

a
\




11Xl

—f 0

Fig. 2.2.3 (a) Amplitude spectrum of decaying exponential pulse of Fig. 2.2.2.

Here a=1 (assumed). It is even function of frequency.

4 o(f)

------ 2

L4
o

N . Epp———

Fig. 2.2.3 (b) Phase spectrum. It is odd function of frequency.

mmp Example 2.2.7 : Obtain the fourier transform of rectangular pulse of duration T and

amplitude "A" as shown in Fig. 2.2.11 below.

§ x(t)

-1 -T2 0 Tiz

Fig. 2.2.11 Rectangular pulse




Solution : This rectangular pulse is defined as,

= AT

a4
x(f)

FTof x(t)  X(f)

A

7 sin (nfT)

sin(n fT)
nfT

AT sinc(fT)

0 elsewhere

=0

I x(t) e 120 dt

-

T T
iﬂfﬂf —E<*‘:i

T/2
[ Aeimt a
-T/2
A [rihﬁ T/2
-j2=f -T/r2

A [f"l"'ﬂ' —fﬂﬂ']

-j2nf

A ,_,;l)'T _l.-p:,r'T
nf 2]

.. (2.2.40)

by equation 2.2.1

by equation 2.2.40 above.

By Euler’s theorem.

By rearranging the equation.

Since sinc x =

sin (11x)

nx




Fig. 22.12 shows the amplitude spectrum in (a) and phase spectrum in (b). In the
spectrum shown below, the negative values of amplitude | X (f)| are made positive by
phase shift of +180 in the phase spectrum 8(f ).

A (X0
AT
- -
- 3T 2 <m0 T 2T am f
)
MNegative amplitude of this
pulse is made positive by
phase shift of 180°

Fig. 2.2.12 (a) Amplitude spectrum of rectangular pulse

4 o(n
180°t====

LA

Phase shift of 180° 1o
..... —{gQe ™Make [Xif) posithe

Fig. 2.2.12 (b) Phase spectrum of rectangular pulse
The fourier transform pair of sinc and rectangular function is,

Arect [%) e AT sinc(fT)

ie. Rectangular pulse «>sinc pulse. . (2.2.41)




mmp Example 2.2.11 : Obtain the fourier transform of the impulse function shown in
Fig. 2.2.15 below.

x(t) = 5(t)

Fig. 2.2.15 Delta function

Solution : By definition of FT,

X(f) = | x0 eizeft at

of

[ 8@ e-izest at .. (22.58)

The sifting property of impulse function is given as,
fto)

u

[ fee) 8(t-to)

E 4l

Here f) = e-f2nR and t, =0
X(f) = [ewzw 3 (t-0) dt
By rearranging equation 2.2.58,
= g=2xf-0 By applying sifting property.
= ]
Delta Function : 5(f) 1 e (2.2.59)

Fig. 2.2.16 shows the amplitnde spectrum of delta function. It shows that delta function
or unit impulse contains all the frequencies with same amplitude in its spectrum.




§ XN
1

—f 0

-

Fig. 2.2.16 Amplitude spectrum of impulse (delta) function is unity &
independent of frequency. All frequencies are present with equal amplitudes

2.2.4 Fourier Transform of a Periodic Function

Fourier transform is the limiting case of fourier series if period of a periodic function
becomes infinite. Then the spectrum given by fourier series will be the same as that of
fourier transform, that is continuous. The reverse way is also possible that the fourier
series is first a limiting case of fourier transform. Thus fourier transform of both periodic
and non-periodic signals can be obtained. This is extremely useful in signal analysis. We
know that fourier transform of a periodic function extending from —= to +% cannot be
obtained by using direct principles studied in the last section. This is because such
function is not absolutely integrable. i.e.,

f |x(#)] dt = = for a periodic function.

But for periodic functions fourier transform can be obtained over the interval
(-T/2,T/2); ie. one time period. Such periodic function can be expressed by fourier
series. The fourier transform of the function is given by summing fourier transforms of the
individual components of fourier series.

The exponential fourier series of a periodic function of period Ty can also be expressed

as,

1

*xp) = ) Cuei?**/D and C, = £

L“m X, (t)e'l!ant/To

. X, (t) indicates the periodic signal with period T.
x(t) indicates nonperiodic signal in this section.




Since T‘; = fo, the above equations will be,

and

Here we have written x,, (f) to indicate that it is periodic with period Tp.

Exponential fourier series : x,, (f) = zn: C, el2xnfot
1

t+7p
= e HELL f
C, = T L Xp(f) e-1ex 1ot dt

By taking fourier transform of both sides of x (f) in above equation,

Thus,

Flx®)

F[ i C. ej2nnfot]

- -

o

- I i C, el2snfot g-j2zft gy

- n=-x

= i Ca fe"/z"(f'WIO)' dt

]

i Cn 6 (f-nfy) from equation 2.2.61

L EE- ]

. (22.73)

w (2.2.74)

.. (22.75)

Fourier transform of a periodic signal x(t): X (f) = i Cu 8 (f-nfi)

N= =0

t+To

Here, C, = [ x @) eizenrer ay

... (2.2.76)

Thus, from this result we can state that the fourier transform of a periodic function
consists of impulses weighed by C,. These impulses are located at harmonic frequencies of
fundamental frequency fo. This result clearly resembles with our discussion at the start of
this section that periodic function has discrete frequency spectrum.

The signal in time domain can be obtained from its fourier transform given by
equation 2.2.73. By definition of IFT,

. L

e i)

x @ = F1 [X(f)]

Z Cn O(f-nfo) ¢/ 2=F dt




> & f 3 (f-nfo) ef22P dt

fi=-m

3 Cu eirenfor

A=s—m

The result is obtained i.e. sifting property of delta function.

Thus,

)

Inverse fourier transform x(0= Y C, eitnfot
of periodic signal x(t) a=-=

Here C, is the coefficient of 8(f —n fo) in the given fourier transform equation.

.. (22.77)

Thus the equation 2.2.76 and equation 2.2.77 represent fourier transforms and inverse
fourier transforms of a periodic signal x, (f). Since x, (f) is periodic, its fourier transform
X (f) is defined only at n f;; i.e. harmonics of fundamental frequency f;. Hence spectrum is
not continuous.




D Find the fourier transform of the signum function shown in Fig. 2.2.9

4 x(t)

+1

-1

Fig. 2.2.9 Signum function

Here, ' {e-*I'l sgn(h)} = sgn(t
ere, —>U{ e sgn(f)} = sgn
. The same limit can be applied to X (f).
lim
— -alt]
F {sgn ()} FL’ Lole sgn{t}]}

_ lim -j4=f  -j4nf -j
T a-0a2+(2xf)?  4nrif?  af

This forms a fourier transform pair,

Signum function : sgn(f) < -_:—f-

1
| X ()| 7!7 and

o) = ~tant () - -3 Jorf>0

¢ ; for f<0

Fig. 2.2.10 (a) and (b) shows the amplitude and phase spectrum of signum function.




§ IX(D)

(a) Amplitude spectrum of signum function
do(f)

n/2

-1

L
=)

(b) Phase spectrum of signum function
Fig. 2.2.10

iy Obtain the fourier transform of rectangular pulse of duration T and
amplitude A’ as shown in Fig. 2.2.11 below.

x(t)

-T2 0 T2 !

L

Fig. 2.2.11 Rectangular pulse




Solution : This rectangular pulse is defined as,

I

T T
rect(%) _ A for —-2-<t <-i
0 elsewhere
M) = A red(%)
FT of x(t) X(f) = I x(t) e /=" dt by equation 2.2.1

-m

I A e i dt by equation 2.2.40 above.

A _raaqT/2
-j2n [" -~ -T/2

A 7

~INT . pinfT
~j2=nf [r i
A [ei=fT —e-izfT]
nf 2j d
% sin (n fT) By Euler’s theorem.
AT gansl) By rearranging the equation.
nfT
: S sin (7x)

AT sinc(fT) Since sinc x =

nXx




Fig. shows the amplitude spectrum in (a) and phase spectrum in (b). In the
spectrum shown below, the negative values of amplitude |X(f)| are made positive by
phase shift of + 180 in the phase spectrum 0 (f).

A X0
AT
b AT 2w <im0 T 2T, anm T
Negative amplitude of this
puise is made positive by
phase shift of 180°
4 o(n

L4

I I s el f
Phase shift of 180 o
...... -180° make [ X(0)| positive

Fig. 2.2.12 (b) Phase spectrum of rectangular pulse
The fourier transform pair of sinc and rectangular function is,

Ared(-.;.-)ﬂ AT sinc(fT)

ie. Rectangular pulse «»sinc pulse.




SAMPLING:

The first operation in digital communications is the sampling. Almost all the
natural signals exist in analog form. For example voice, any moving scene,
environmental data etc. exist in analog or continuous form. Such information can be
transmitted from one place to another by continuous modulation of the suitable
carrier. Then this type of communication is called Analog Communication. In digital
communication, the data to be transmitted is sampled at regular intervals. Such
samples are then transmitted directly or through the modulation of some carrier.
There are various sampling techniques discussed in this chapter. The sampling
techniques affect spectral content of the signal.

Sampling Theorem

Sampling of the signals is the fundamental operation in digital communication. A
continuous time signal is first converted to discrete time signal by sampling process.
The sufficient number of samples of the signal should be taken so that the original
signal is represented in its samples completely. Also it should be possible to recover
or reconstruct the signal completely from its samples. The number of samples to be
taken depends on maximum signal frequency present. Sampling theorem gives the
complete idea about the sampling of signals. Different types of samples are also taken
ie. Flat top samples, regular samples, instantaneous samples etc. Let us first discuss
the sampling theorem and then we will see different types of sampling processes.

Sampling Theorem For Low Pass Signals In Time Domain

1) A band limited signal of finite energy, which has no frequency components higher
than W Hertz, is completely described by specifying the values of the signal at

instants of time separated by %\‘T seconds and

2) A band limited signal of finite energy, which has no frequency components higher
than W Hertz, may be completely recovered from the knowledge of its samples taken
at the rate of 2W samples per second.

The above statement of sampling theorem stated in two parts can be combined.
The first part represents the representation of the signal in its samples and minimum
sampling rate required to represent a continuous time signal into its samples. The
second part of the theorem represents reconstruction of the original signal from its
samples. It gives sampling rate required for satisfactory reconstruction of signal from
its samples. The theorem can be combined and alternately stated as follows :




“A continuous time signal can be completely represented in its samples and -ecovered
back if the sampling frequency f 22 W. Here f is sampling frequency and W is the
maximum frequency present in the signal”.

Proof of sampling theorem :

Let x(f) be the continuous time signal as shown in Fig. 5.1.1 (a). Let this signal be
of finite energy and infinite duration. And suppose that x(t) is strictly band limited.
ie, x(f) does not contain any frequency components higher than ‘W’ Hertz. A
sampling function samples this signal regularly at the rate of f, samples per second.

x(t)
(a) -
‘ 1] ¢
8(t-nT,)
8(t - nT,)
i
® T O] T, 2T ATATEY, e T

f&(') T' = fl
s

b N

()

Fig. 5.1.1 (a) Continuous time signal x(t)
(b) A unit impulse train used as a sampling function
(c) Sampled version of signal in ( a)




1
T
The time space between any two successive samples is T, scconds. Fig. 5.1.1 (b)

shows the impulse train of frequency equal to sampling frequency f,, and Fig. 5.1.1 (c)
shows an instantaneously sampled version of signal x(f).

= represents sampling period wos (8.1.3)

The impulse train of pulses in Fig. 5.1.1 (b) can be expressed as,
§(t) = ) 8(t-nT) +(5.1.2)

n=—m

Let x(nT,) represent the instantaneous amplitude of signal x(f) at instant t=T,.
This amplitude is shown by encircled dots in Fig. 5.1.1 (a). Each impulse in Fig.5.1.1(b)
has amplitude equal to 1. Therefore we can say that the waveform in Fig. 5.1.1 (c) is
obtained by multiplying unit impulse with instantaneous value of x(t) ie. x(nT).
Therefore waveform of Fig. 5.1.1 (c) can be represented mathematically as,

a0
xg(6) =) 8(t-nT,)x(nT,) e (5.1.3)
Fi= =0
Thus x; (f) is represented by multiplying equation 5.1.2 by x(nT,). Since the width
of the impulse in x; (f) approaches to zero, it represents only instantaneous value.
Therefore this method is called instantaneous sampling. It is also called ideal sampling.

Here x; (f) represents the sampled version of continuous time signal x(f). The
Fourier transform of impulse train of equation 5.1.2 is given as

XN =, iﬁ{f-nf,),l-!ere fs=}l_

= -2 §

Therefore Fourier transform of waveform of Fig. 5.1.1 (c) can be written from
above equation as,

X, (0 = f, 3 X(F-nf) (5.1.4)

Here X (f) is the Fourier transform of the original signal x(f). This equation shows
that a process of uniformly sampling a continuous time signal results in a periodic
spectrum with period equal to simply rate f. That is in the equation 5.1.4. Fourier
transform of signal x(t) results in X (f - n f).
ie. X(f-nf) = X(Nat f=0,2f, £2f , +3f,....

Thus the same spectrum X (f) appears at f=0,f=%f , f=12f etc. This means
that a periodic spectrum with period equal to f is generated in frequency domain
because of sampling x(f) in time domain. Otherwise if x(f) would not have been
sampled, then there would be only one spectrum X (f) around f =0.




Equation 5.1.4 can be written as,
Xs () =L XN+LXE )+ X(f£2f)
+f, X(f£3f)+f, X(f£4f)+... o (5.1:5)
This expansion shows that every term in the sum is the same spectrum at
multiple of sampling frequency f,.
Equation 5.1.4 can also be written as,

X, = LX(N+ 3 L X(F-nf) (5.1.6)

N= -t
nz0

In this equation, first term represents spectrum that would have been obtained
without sampling and rest of the terms under summation represents spectrums
repeating at multiple frequencies of sampling frequency f,.

By definition of a Fourier transform we know that, Fourier transform of
continuous time signal x (f) is given as,

FT[x(®))] = [ x()e”™*¥ dt By definition of FT.

-0

If x(f) in the above equation becomes discontinuous in time ‘t’, then integration
becomes summation. Fourier transform of equation 5.1.3 becomes,

FTlxg O] = 3 x(nT,)e” %% . (517)

n=-0

The above equation gives Fourier transform of discrete time signal. Hence it is
also called Discrete Fourier Transform. In the above equation t is replaced by nT,.

Let us consider that signal x(f) is strictly bandlimited, with no frequency
components higher than W Hertz. That is, the Fourier transform X (f) of x(f) has the
property that,

[X(f)l] =0 for |f|2W ... (5.1.8)
The spectrum of such signal is shown in Fig. 5.1.2 (a). The shape of the spectrum

is just arbitrary and is taken because it is convenient for explanation. Let the sampling
frequency be exactly equal to twice of the maximum frequency in x(f) i.e.,

1
j; =2mes=2W

Here W is maximum frequency in x(f).
Consider the spectrum of x; (f) given by equation 5.16 ie.,

X, (0 =f,X(N+ 3 £, X(f-nf,) .. (519)

n=-wx
n#0




This equation shows that same X (f) will be reproduced at f=0,f=+f and-f,
f = +2f, and -2f etc.

Sincefs=2W i.e.};-W=Wand
fs+W =3W ;

(@)

- »
af f
Xy(ffor , = 2W
I ! |
i w |
(b) l i :
1 ! '
i i |
| i |
| . H : -
f' 2 W -, - , W W 2 f
=-3W =+3W

Fig. 5.1.2 (a) Spectrum of bandlimited signal x (t)
(b) Spectrum of sampled version of x (t)
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Thus we see that the periodic spectrums X(f) just touch each other at
+W,3W, £5W,... etc. It is shown in Fig. 5.1.2 (b).

Now let us see whether the sampled signal completely represents x(t). This will
be true if the sample values x(nT,) are specified not only at t =T, but for all the time.
We know from equation 5.1.9 that,

o0

Xe (N = XN+ 2 L X(F-nf) s (S1.10)
ne0
We have made two assumptions at the start of this discussion.
2 X(f) =0 for|f|2W by equation 5.1.8
2. f, = 2W Sampling rate.

Equation 5.1.10 can be written as,

LX) =X, (0- 3 £X(-nf)

n=0

X(f) = f-l—xﬁm— S X(f-nf)
: -

f, = 2W, above equation will be,

This equation can also be expanded like equation 5.1.17. Therefore we get,
x(t) = x(0) sinc (2WH) + x (£ T,) sinc 2W (£ £T))

+x(+2T,) sinc 2W (¢ £ 2T, ) + x(+ 3T ) sinc 2W (¢ £ 3T))
+x(+4T,) sinc2W (t £ 4T ) +.... ... (5.1.18)

This equation is similar to equation 5.1.17 but written in other form. A sinc
function given by sinc [2Wt] is multiplied by sample value x(nT,). Therefore amplitude
of the sinc pulse changes in accordance with the sample value x(nT).

Fig. 5.1.3 (a) shows the sampled version of signal i.e. x5 () and Fig. 513 (b)
shows the sinc pulses of varying amplitude located at the sampling instants. The
peaks of the sinc pulses represent the amplitudes of samples. This signal given by
equation 5.1.18 can be passed through a low-pass reconstruction filter to get smooth
x(f). Here we have assumed that minimum sampling frequency should be equal to
2W; ie. twice of maximum sampling frequency. Thus the statement of sampling
theorem is proved here that a signal can be completely represented and recovered
from its samples if the sampling frequency is twice the maximum signal frequency i.e.
f. 2 2W.




(a)

X5(t)

| -
JT, 3T 2T, -Tg 0 Ty 2T, 3T, 47, t
l E 1 Reconstructed |
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sinc function at Sample of x(t) at
(b)
»
t
4T, 3T, -21, -T, © Ty 2T0 Sy 4

Fig. 5.1.3 (a) Sampled version of signal x (t)
(b) Reconstruction of x (t) from its samples




5.1.2 Aliasing

In the discussion of proof of sampling theorem we assumed that the signal x () is
strictly bandlimited. However in practice an information signal can contain wide range
of Arequencies and cannot be strictly bandlimited. Therefore the maximum frequency
‘W’ in the signal x(f) cannot be predictable. Hence it is not possible to select suitable
sampling frequency f,.

Sampling theorem states that, f 2 2W

Let us see the two conditions such that sampling frequency is selected to be less
than 2W and greater than 2W.

When f <2W :
We know that spectrum of a sampled signal is given by equation 5.1.10 as,
X, (D =£X(N+ X fX(f-nf) .. (5.1.19)
==
nz0

Let us assume that f is slightly less than 2W. According to equation 5.1.19, the
spectrums X (f) are pnla\r:eds at

f=0,%f,x2f,%3f,,%.....
That is X (f) is periodic in f,. The spectrum shown in Fig. 5.1.2 will be changed as
shown in Fig. 5.1.4 (b).

A xn
(a)
- -
> Rxam for fy < 2W f
d—f’-—.-n
™ Aliasing
(b)
-f -21, -fs W 0o tWw f, 2fg f

Fig. 5.1.4  (a) Spectrum of continuous time signal x ()
(b) Spectrum of sampled version of x (t) with f, < 2W

Fig. 5.1.4 (b) shows an effect of taking sampling rate less than twice of maximum
sampling frequency. The spectrum of a sampled signal consists of spectrums repeating
at £nf. As can be seen from Fig. 5.14 (b), each spectrum extends to W Hz around
the sampling frequency.




Since f, <2W

or W}'f’—
2

The spectrums interfere with each other. This is called aliasing. Because of aliasing
high frequency component in the spectrum of the signal takes identity of -lower

[

frequency in the spectrum of its sampled version. This is illustrated in Fig. 5.1.5.

The signal x, (f) actually has higher frequency F, but it is sampled at lower rate,
i.e, f,<2W. When the samples are reconstructed, we get a signal x, (f) which is of
lower frequency F,. This happens because of aliasing. This shows how high frequency
signal takes an identity of low frequency because of aliasing. In the Fig. 5.1.5, the

signal x, (f) has maximum frequency equal to F, =% Hz. Therefore

Fz-%‘HZ /F1‘%—
/\ ﬁ /‘ {\4— x4(t)
E
g 0/ T T T T
1 2 3 4 6 8 time, sec
VUV IR AR
X,(1)

Fig. 5.1.5 lllustration of allasing

7

W = F1=—Hz
8




Sampling frequency f, =1Hz
f, <2Wor

1Hz < ZxZ
8

Hence aliasing occurs in the sampling process and high frequency components are
converted to low frequencies. Therefore because of aliasing, the signal is not
represented properly with all its contents in its sampled version. Therefore sampling
theorem needs to be satisfied.

When f, >2W :

Now we will consider when sampling frequency is more than twice the maxifnum
signal frequency. Here again we recall equation 5.1.19

easy to decide sampling frequency, since maximum frequency is fixed at "W’ Hz. The
low-pass filter is then called prealias filter, since it is used to prevent aliasing effect. In
other words we can say that to overcome aliasing :

1. Prealias filter should be used to limit band of frequencies of the signal to"W'Hz.

2. Sampling frequency 'f," should be selected such that,
f > W
Nyquist Rate : When the sampling rate becomes exactly equal to "2W’ samples

per second, for a signal bandwidth of W Hertz, then it is called Nyquist rate. The
Nyquist interval is then obtained as,

- 1
N t interval = — d o (9.1.22
yquist interva - seconds ( )

Nyquist rate = 2W Hz. _ .. (5.1.23)




5.1.3 Reconstruction filter (lowpass filter or interpolation filter)

This is also called interpolation filter. This filter is used to recover original signal
from its sampled version. Let us consider that the signal x(f) is passed through a

X(f)
(a)
3 W 0 W ™
X;(f) Guard band
or gap
(b}
1w A
A
Amplitude
(c)
i W W 0 W W [l

Fig. 51.7 (a) Spectrum of information signal after passing signal through prealias filter
(b) Spectrum of sampled version of signal i.e. X; () Here f_>2W
(c) Required amplitude response of the reconstruction filter

prealias filter of cutoff frequency ‘W’ Hz. Then x(f) will have maximum frequency of
‘W’ Hz. Let the sampling frequency be selected higher than Nyquist rate i.e.,

f, > 2W
The spectrums of x(t) and sampled signal x(t) are shown in Fig. 5.1.7 (a) and (b).

Fig. 5.1.7 (a) and (b) shows the spectrums, the shapes of which are different from
that we have considered previously. This is also an arbitrary shape we have assumed.
Normally for an information signal, the spectrum slowly reduces and becomes
minimum at tW Hz. In the Fig. 5.1.7 (a) and (b) it is assumed to be zero. Now since
sampling frequency is greater than Nyquist rate (f, >2W), a guard band or Gap is
produced between neighbouring spectrums as shown in Fig. 5.1.7 (b). That is in the
overall spectrum of sampled signal, the spectrums X(f) are periodic in f,. Because of
the guard band there is no chance of aliasing,




A Amplitude

-W 0 w f

Fig. 5.1.8 Ideal low-pass filter

A reconstruction filter is basically a low-pass filter. This filter should pass all the
frequencies between (-W, W), since original signal was having maximum frequency of
‘W’ Hz. Therefore cut-off frequency of this low-pass reconstruction filter will be "W’
Hz.

Therefore expected frequency response of the reconstruction filter is as shown in
Fig. 5.1.8 . That is, it is an ideal low-pass filter. Fig. 5.1.8 shows frequency response of
an ideal low pass filter. As we have seen that an ideal low-pass filter having
frequency response given in Fig. 5.1.8 is not physically realizable. Therefore the
frequency response of reconstruction filter is as shown in Fig. 5.1.7 (c). That is from W
to (f, -W) Hz a transition band is required.

5.14 Sampling Theorem in Frequency Domain

We have seen that if the bandlimited signal is sampled at the rate of (f, >2W) in
time domain, then it can be fully recovered from its samples. This is sampling
theorem in time domain. A dual of this also exists and it is called sampling theorem
in frequency domain. It states that, “A timelimited signal which is zero for |¢|>T is
uniquely determined by the samples of its frequency spectrum at intervals less than

2 Hertz apart”.
2T

Thus the spectrum is sampled at fs‘:‘;? in the frequency domain. T is the

maximum time limit above which signal x(t) goes to zero. 'f' represents the sampling
frequency interval in the frequency spectrum of the signal. Note that here f does not




represent number of samples taken per second. But it represents the frequency interval
at which the samples are separated in frequency domain.

Fig. 5.1.9 illustrates the sampling theorem in frequency domain. We can see from
519 (a) that a rectangular pulse is time limited to ti seconds i.e, x{f)=A for

—gs t<§. The spectrum of rectangular pulse is shown in Fig. 5.1.9 (b). This

spectrum X(f) of Fig. 5.1.9 (b) is sampled at the uniform intervals less than -;7 Hz. The

sampled version of this spectrum is shown in Fig. 519 (c) and called X; (f). Thus
each frequency sample of x,(f) is separated by 'f' Hz with respect to the

neighbouring frequency samples.

A x(t)
Time domain
A
e = (72 ) B 77 o
'4-——T——-D'
AX(H
AT

= 3T 21 1m0 1T 27 T

- . (b)




X0 Frequency domain

P

—

-4
=

'.’.“ f'<

1
T

Fig. 5.1.9 (a) Signal x(t) time lllﬁnod to :1:12'-
(b) Continuous spectrum of x(t)
(c) Sampled spectrum X ; ()

The spectrum is centered around frequency f . The bandwidth is 2W. Thus the
frequencies in the bandpass signal are from f -W to f +W. That is the highest
frequency present in the bandpass signal is f +W. Normally the centre frequency
f.>W.

This bandpass signal is first represented in terms of its inphase and quadrature
components.

Let X, (f) = Inphase component of x(f)
and Xq () = Quadrature component of x(f)
Then we can write x(f) in terms of inphase and quadrature components as,
x(t) = x, (8) cos (2nf, 1) - x,, (1) sin (2xf 1) ... (5.1.25)

The inphase and quadrature components are obtained by multiplying x(f) by
cos(2nf t) and sin(2nff) and then suppressing the sum frequencies by means of
low-pass filters. Thus inphase x, () and quadrature x, (f) components contain only low
frequency components. The spectrum of these components is limited between -W to
+W. This is shown in Fig. 5.1.11.




A X(f) & Xqff)
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Fig. 5.1.11 Spectrum of inphase and quadrature components of bandpass signal x(t)

After some mathematical manipulations, on equation 5.1.25. We obtain the
reconstruction formula as,

xf) = "2{4%}.'":{2Wt-§)ws[ 2nfc(t-#)] ... (5.1.26)

Compare this reconstruction formula with that of low-pass signals given by

equation (5.1.16). It is clear that x{t) is represented by {4LW) completely. Here,
x[i%] = x(nT,) = Sampled version of bandpass signal

and T =L
’ 4W

Thus if 4W samples per second are taken, then the bandpass signal of band-width
2W can be completely recovered from its samples.

Thus, for bandpass signals of bandwidth 2W,
Minimum sampling rate = Twice of bandwidth

= 4W samples per second




m;e, above equation becomes,

Since sinc 8 =

xl) = ng.x[%Jsim(ZWt—n} ~w<N<®

Reconstruction of signal from samples :
Consider equation 5.1.36,

1 < n o\ -mfm/W
f) = IFT{— — |
0 = i $ o)™
By definition of Inverse Fourier Transform (IFT) the above equation becomes,
w

1 < n \ -jrfa/W _j2zft
) = | — Y x(—)e e/ dt
—'[v W o \2W
Interchanging the order of summation of integration,

ZX( - ) : weih’(‘-fﬁ)m

22 W 3

x(t) W

n )sin(Zan—mt) '
2W ) 2xWt-nn)
n )sinn(ZWt—n)
W) n(2Wt-n)

. ;;x[
) g’(z




Since sinc 6 = sml;:ﬁr above equation becomes,
n

xt) = i I[E%Jsinﬂ(?.wr—n} ~W NS X

= =0

This is interpolation formula to reconstruct x{t) from its samples x(nT).

Thus the above discussion shows that the signal can be completeiy represented

into and recovered from its samples if the spacing between the successive samples is
ZLW seconds. i.e. f; =2W samples per second.
Sampling frequency for bandpass signal :

The spectral range of the bandpass signal is 20 to 82 kHz.

Bandwidth = 2W = 82 kHz - 20 kHz = 62 kHz
Minimum Sampling rate = 2x Bandwidth
= 2x 62 kHz
= 124 kHz

Normally the range of minimum sampling frequencies is specified for bandpass
signals. It lies between 4 W to 8 W samples per second.

Range of minimum sampling frequencies
= (2 x Bandwidth) to (4 x Bandwidth)
= 2x 62 kHz to 4 x 62 kHz

= 124 kHz to 248 kHz
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UNIT III:

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

Systems

Definition :

A system is a set of elements or functional blocks that are connected together
and produce an output in response to an input signal.

Classification

¢ There are two types of systems : (i) continuous time and (ii) discrete time
systems.

¢ Continuous time (CT) systems handle continuous time signals. Analog filters,
amplifiers, attenuators, analog transmitters and receivers etc are examples of
continuous time systems.

» Discrete time (DT) systems handle discrete time signals. Fig. 1.6.1 (b) shows
such system. Computers, printers, microprocessors, memories, shift registers
etc are examples of discrete time systems. They operate only on discrete time

sionals.
CT input Continuous CT output
signal ———{ time (CT) |——— signal (a)
x(t) systems y(t)
DT input Discrete DT output
signal ———{ time (DT) }———= signal (b)
x(n) - systems y(n)

Fig. 1 Two types of systems based on signals they handle



Continuous as well as discrete time systems can be further classified based on
their properties. These properties are as follows :

i) Dynamicity property : Static and dynamic systems.

ii) Shift invariance : Time invariant and time variant systems.
iii) Linearity property : Lincar and non-linear systems.

iv) Causality property : Causal and non-causal systems.

v) Stability property : Stable and unstable systems.

vi) Invertibility property : Inversible and non-inversible systems.

1 Static and Dynamic Systems (Systems with Memory or without
Memory)

Definition : The continuous time system is said to be static or (memoryless,
instantaneous) if its output depends upon the present input only.

The discrete time systems can also be static or dynamic. If output of the discrete
time system depends upon the present input sample only, then it is called static or
memoryless or instantaneous system. For example,

y(n) = 10- x(n)
or y(n) = 15-x2 (n) +10x(n)
are the static systems. Here the y(n) depends only upon n input sample. Hence

such systems do not need memory for its operation. A system is said to be dynamic if
the output depends upon the past values of input also. For example,

y(n) = x(n)+x(n-1)



2 Time Invariant and Time Variant Systems

Definition : A continuous time system is time invariant if the time shift in the
input signal results in corresponding time shift in the output.

Let y(t)=f[x(t)] i.e. y(t) is response for x(t). Then if x(t) is delayed by time f;,
then output y(t) will also be delayed by the same time. i.e.,
flx(t-t)] = y(t-t) - (1.6.1)
The time variant system do not satisfy above relation. The time invariant systems
are also called fixed systems.

Similarly if the input/output characteristics of the discrete time system do not
change with shift of time origin, such systems are called shift invariant or time
invariant systems. Let the system has input x(n) and corresponding output y(n), i.e.
y(n)=f[x(n)]. Then the system is shift invariant or time invariant if and only if,

f[x(n-k)] = y(n-k)

3 Linear and Non-linear Systems

Definition : A system is said to be linear if it satisfies the superposition principle.

Consider the two systems defined as follows :
yi (1) = f[xi(t)]ie. x (f) is input and y, () is output.
and ya (1) =f[x2(t)]ie. x2 (f) is input and y; () is output.
Then the continuous time system is linear if,
flavxi () +az x2 ()] =a yi () +a2 y2 (F)

Here a; and a, are arbitrary constants. This condition states that combined

response due to x; (f) and x; (f) together is same as the sum of individual responses
for a linear system.

Similarly, the discrete time system is said to be linear if it satisfies superposition
principle. Consider the two systems defined as follows :

y1 (1) = f[xi (n)]i.e. x; (n) is input and y; (n) is output.

vy (1) = f[x2 (n)]ie. xz(n) is input and y; (n) is output.

Then the discrete time system is linear if,

flay xy (n) + a3 xa (n)] = ay yy (n) + a3 y2 (n)



4 Causal and Non-causal Systems

Definition : The system is said to be causal if its output at any time depends
upon present and past inputs only.

Le.,

¥(to) = f[x(t);t <to]

Thus the output at time t;, depends on inputs before t5. The causal system is not
anticipatory. Similarly, a discrete time system is said to be causal if its output at any
instant depends upon present and past input samples only. i.e.,

v(n) = f [x(k); k < n]

Thus the output is the function of x(n), x(n-1),x(n-2),x(n-3) ... etc. For causal
system. The system is non-causal if its output depends upon future inputs also, ie.
x(n+1), x(n+2), x(n+3).. etc.

Normally all causal systems are physically realizable. There is no system which

can generate the output for inputs which will be available in future. Such systems are
non-causal, and they are not physically realizable.

.5 Stable and Unstable Systems

Definition :  When every bounded input produces bounded output, then the system
is called Bounded Input Bounded Output (BIBO) stable.

This criteria is applicable for both the continuous time and discrete time systems.
The input is said to be bounded if there exists some finite number M, such that,

CT input : |x(f) < M, < =
DT input: |x(n) s M, <= }
Similarly the output is said to be bounded if there exists some finite number M,
such that,
CT output : |y(t) < M, < =
DT output: |y(n) < M, < = }

If the system produces unbounded output for bounded input, then it is unstable.



6 Invertability and Inverse Systems

Definition : A system is said to be invertible if there is unique output for every
unique input.

Fig. 1.6.3 shows this concept.

| y(H| Final output
% ——=] System o [ )

Fig. 1.6.3 Invertible system
If the system is invertible, there exists an inverse system. If these two systems are
cascaded as shown in figure, then final output is same as input.

If the system is denoted by H, then its inverse system is denoted by H-!. Then
cascading the two systems gives,

HH! =1



Frequency Response of LTI Systems

The LTI systems form an important class in communication. The amplitude and
phase response, realizability, bandwidth, distortion during transmission of signal are
all very important concepts related to design and implementation of systems.

Frequency Response

The frequency response of the system gives the variation of magnitude and phase
of the system output with respect to frequency on application of input. We know that
the output y (t) of the system is given as,

y(t) = I x(t0)h(t-t)d=
This equation gives time response of the LTI system.

The RHS of the above equation represents convolution of input signal x (t) and
impulse response h (t). By applying fourier transform to above equation,

Fly()] = F[ T x(t)h(t—t)dt]

We know that convolution of two functions is transformed into multiplication of
their fourier transforms. By applying this to above equation,

y(t) = Kx(t—to)
Here, K = constant represents change in amplitude.
& f, = time delay in transmission of signal through a system.
By taking fourier transform of both sides of above equation
Y(f) = Fly®l = F { Kx(t-t))}
. From the time shifting property of FT,
Y(f) = KX(f) ¢ 2"/"0
Transfer function H (f) is given from equation 2.13.2
Y
H(f) = YO)
X(f)
Putting for RHS from equation 2.13.4 in above equation,
H(f) = K e /2™

This equation gives the transfer function for a distortionless system. It is clear
from above equation that, the magmtude of the transfer function is. ‘K’, which is
independent of frequency. That is the transfer function has constant amphtuda*at all .
frequencies. The phase shift of above equation is, !



0(f) = -2nf ty
; = (-2xt,) f
That is the phase shift is linearly proportional to frequency. Here the phase shift
is linear at all frequencies. This can be expressed with the example.
Let there be a signal in time domain as
x(t) = cos(2nft)
Now let the output signal be same in amplitude but shifted in time by ¢ seconds.
ie.
y() = cos[2nf(t-t,)]
This equation can also be written as, ;
y({t) = cos(2nft-2nft,)=cos(2rnft-06(f)]
Thus phase shift of y () is,
8(f) = -2=nft,
which is proportional to frequency “f".

rlf x(t)h(f-t)dtJ = X(f)H(f)

- o0

Here, H(f) is called transfer function of the system,

- Y(f) = H(f) X(f)
Thus for a Linear Time Invariant system fourier transform of the output is equal
to product of the transfer function of the system and fourier transform of the input.
The above equation gives frequency response of the system.

Distortionless Transmission Through System

A distortion less transmission means output of the system is an exact replica of
the input signal. The difference between input and output of such system is that,
1. Amplitude of the output signal may increase or decrease by some factor with
respect to input and
2. The output signal may be delayed in time with respect to input signal
because of system delay.
Therefore output signal y (t) can be written interms of input x (t) as,



Response of a Linear System

Impuise Response
Convolution relates input and output of LTI sytem.

It is given as, .
X(t) ——— = 1Y(1)
y(t) = x()* h(t) system h(
= Ix(l—t)h(t)d‘t "
- Fig. 1 Input and output of LTI
system

Here h (t) is called impulse response of the system.
It is characteristic of a particular system. Impulse response h (t) of the system is obtained
at the output by applying unit impulse §(t) at the input. i.e.,

when x(t) = 8(t)y(t)=ht)

Frequency Response

Frequency response analysis and differential equations etc. can be analyzed with the
help of Fourier representations. For example, the fourier transform X(w) gives frequency
spectrum of the signal. We know that output of the system is,

ut) = x(t)*h(t)



By convolution theorem above equation becomes
Y(w) = X@)Hw or Y(f) = X(f) -H(f)
and ) = [FTX(w) Hw)}

Thus output ¥/(t) can be obtained by taking the inverse fourier transform of the product
X(w). Let us now study these aspects.

The convolution is given as,

y® = [ h xt-1) dr

Let the input be ¢/®, i.e. sinusoid. Then above equation becomes,

y® = [ @@ efot-0 e

= e/ Ih(‘t) e~ dq

-

In the above equation the integral represents fourier transform of h(1). ie.,

In the above equation the integral represents fourier transform of h(1). ie.,
yt) = e/ Hlw)

Here H(w) is the Fourier transform of h(f). The above equation shows that output y()
contains the same signal as input ¢/ multiplied by H(w). This H(w) is called frequency

response of the system.
Again consider the convolution,

y#) = x(®) « h(®)
By convolution property of Fourier transform we can write above equation as,
Y = X(w H or Y(f) = X(f)-H(f)

Y (@) Y(f)
Hlw) = X ©°F H(j)=')—('(?)-

Here H(w) represent the frequency response of the LTI-CT system. These functions are
also called as system transfer functions.



imp Example .1:

The impulse response of the continuous time system is given as,

1
h(p) = RC e~t/RC y(p)

Determine the frequency response and plot the magnitude phase plots.

Solution : Take Fourier transform of the given impulse response. i.e.,

H(w)

| ne) e-1ot ar

| le e~t/RC u(f) el gt

1 T
-Rfl—' . J[e '("”F)J
](IH-E 0
1/RC 1
jo+1/RC ~ 1+joRC



Now let us determine the magnitude and phase of H(w). Let us rearrange above
equation as,

1 1-joRC 1-joRC
1+joRC * T-j@RC = ] (0RC)?

Hlw) =

_ 1 e - RC
B l-&-(ouRC)2 ]1+(mRC)2

Thus H(w) is expressed into its real and imaginary parts. Now magnitude can be
obtained as,

—— —— — 1

pof » {1

[l+(m RC)z]2 g [1+ (m RC)Z]2

1
i J1+(m RC)2

This is the magnitude response of the given system. And the phase response will be,

£ZH(w) = tan™ (-wRC) / 1+(aRC) )
1/01+(wRC)’]
= - tan~! (wRC)

Let RC =1, then magnitude and phase response will be,

H@) = ==




Fig. .2 shows the magnitude and phase response as given by above equations.
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Fig. 4.4.2 (a) Magnitude response (b) Phase response

In this figure observe that the magnitude response is symmetric but phase response is
antisymmetric. Magnitude response is monotonically decreasing. Hence this is a lowpass
filter.



nmp Example 2: The system produces the output of y(t)= e~‘tu(t) for an input of
x(t)= e~ u(t) Determine the impulse response and frequency response of the system.
Solution : Here y(t)=e"" u(t)
and x(t) = e 2 u(f)
Consider the standard Fourier transform pair,

et u(t) iy L
a+jw

Hence fourier transforms of y(t) and x(t) will be,

1
YW > riie
1
and X(w) = 316

From equation 4.5.3 we can obtain the transfer function as,

Putting the values of X (w) and Y (w),



Putting the values of X(w) and Y (w),

1/(1+j0) 2+jo
1/(2+jw) 1+jo

H(w) =

Let us multiply the numerator and denominator by 1-ja ie.,

_ 2+jo _ 1-j
ol 1+jo " 1-jo
2+(w)? . -0
= 7t 2
1+(w) 1+(w)
Hence magnitude of H(w) will be,

1
B EECHECES
) = [[1+(m)’] +[1+(m)2] ]

Simplifying the above equation we get,

4+ (w)°
1+(w)?

H(w) =

This is the magnitude response of the system. And the phase response will be,

ZH(w) = tan™! L LA L 2
2+(w)*]/ [1 +(w)?) 2+(w)?

Now consider the transfer function of equation 4.4.8. i.e.,

2+j0
e b 1+j0
Let us rearrange the above equation as,
1+jo+1 1
e 1+jo -1+l+jm

Inverse Fourier transform of above equation becomes,
h(t) = IFT {H(w)} =8(t)+ e~ u(t)
This is the impulse response of the given system.



1 ldeal Low Pass Filters

An ideal low-pass filter transmits (passes to output) all of the signals below certain
frequency ‘B’ Hz without any distortion. The range of frequencies from ‘0" Hz to ‘B’ Hz is
called passband of the lowpass filter. It rejects al! the signals which lie outside of the
passband. The frequency ‘B’ Hz is called cut-off frequency of the ideal lowpass filter.

Since the filter is ideal and distortionless the phase change should follow equation

Therefore transfer function of ideal lowpass filter can be written as,
H(f) = Ke-i2®fto; -B< f<B
=0 ; Ifl > B ¢ 1)

This equation is obtained from equation 4.5.3, we earlier derived for distortionless
transmission. Here the amplitude ‘K’ can be assumed to be unity for convenience. ... By
K = 1 in above equation, the transfer function will be,

H(f) = ei2®fto ; -B< f<B
=0 ; Ifl > B w2

We know that transfer function H (f) is the Fourier transform of impulse response h
(t). Therefore h (t) can be obtained for ideal lowpass filter by taking IFT of equation .2.
Therefore by definition of IFT,
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Fig. 1 (a) Magnitude response of ideal lowpass filter
(b) Phase response of ideal lowpass filter
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B
I e-i2nflo gj2nft df
B

j e/ 2x[(t-10) 4f

1 :
2 = B
J2x (t-to) ley2x/ (=101

- }—?.n(lt_ti [eiZRB('-'O) - e-iZlB(f—lo)]
~to
1 [ei2xB(t-to) _ p-j2xB(t-to)]
I 2] |
! :
= T(-fp) 50 [2 B(t—to)]
o sin [2—15 B(t-tg))
- 2x B(t-tp)

= 2Bsinc [2 B(t-tg)]

The above equation gives impulse response of an ideal lowpass filter.

Fig. .2 shows the impulse response h (t) of above equation of ideal lowpass filter.

 h(t)

~Y




The above figure shows that impulse response exists for negative values of ‘t’. But
actually unit impulse is applied at t = 0 always. Thus the response appears before the unit
impulse is applied. Practically it is impossible to implement such a system. And h (t) = 0
for t < 0 for causal system.

Therefore it is clear that although ideal lowpass filter is very desirable it cannot be physically
realizable. Practically unit impulse to the filter is applied at t = 0 [i.e. §(f)=1 applied at
t = 0], then impulse response of the filter should start at the most att 2 0, and not at t <,
0, i.e. negative values of ‘t'.

.2 Other Ideal Filters such as HPF, BPF etc.

In previous section we studied realizability
of ideal lowpass filter. But its response begins IH(w)]  HPF
before input is applied. This means ideal
lowpass filter is anticipatory. Hence it is not
physically realizable. Similarly other filters like
ideal highpass filters and ideal bandpass filters

have frequency response as shown in Fig. 4.6.3.
These filters have sharp transition at cut-off

frequencies. These sharp transition in frequency
response results in non-casual impulse response
(ie. it begins before input is applied.) This
means all ideal filters are physically not
realizable since their impulse response is
non-casual.




UNIT IV:

CONVOLUTION AND CORRELATION OF SIGNALS

4.1. Concept of convolution in time domain.

4.2. Cross correlation and auto correlation of functions.
4.3. Properties of correlation function.

4.4. Energy density spectrum.

4.5. Parseval’s theorem.

4.6. Power density spectrum, Relation between convolution and correlation.




UNIT IV:

CONVOLUTION AND CORRELATION OF SIGNALS

1 INTRODUCTION

Convolution is a mathematical way of combining two signals to form a third signal. Convolution
is important because it relates the input signal and impulse response of the system to the output
of the system. Correlation is again a mathematical operation that is similar to convolution.
Correlation also uses two signals to form a third signal. It is very widely used in practice,
particularly in communication engineering. Basically, it compares two signals in order to
determine the degree of similarity between them. Radar, Sonar and digital communications uses
correlation of signals very extensively. Correlation may be cross correlation or auto correlation.
When one signal is correlated with itself to form another signal, it is called auto correlation.

2. CONCEPT OF CONVOLUTION

Convolution is a mathematical operation the input - output relationship of an LTI system. It is
most important operation in LTI continuous-time systems. It relates the input and impulse
response of the system to output.

An arbitrary driving function x(t) can be expressed as a continuous sum of impulse functions.
The response y(t) is then given by the continuous sum of responses to various impulse
components. In fact , the convolution integral precisely expresses the response as a continuous
sum of responses to individual impulse components.



Consider an LTI system which is initially relaxed at ¢ = 0. If the input to the system is
an impulse, then the output of the system is denoted by A(r) and is called the impulse
response of the system.

The impulse response is denoted as:

h(r) = T[6(1)]
We know that any arbitrary signal x(7) can be represented as:

x0= [ x(0)¢-7)dr
The system output is given by -
YO =T = y@)= T[ I x(1)6(t-7) dt]

For a linear system,

W)= I XD TO¢ -1)dr

If the response of the system due to impulse &(f) is h(z), then the response of the system due
to delayed impulse is:

h(t, D = T[8(t - D]
Substituting this value of T[8(r — 7)] in the expression for y(f), we have

W= [ xxyh(t - 1) de
This is called convolution integral, or simply convolution. The convolution of two
signals x(f) and A(#) can be represented as:

@) = x() * h(r)

In general, the lower and upper limits of integration in the convolution integral depend
on whether the signal x(r) and the impulse response h(r) are causal or not. If A(z) is causal,
then A(fr — 7) = 0 for 7 > t. Therefore, the upper limit of integration is ¢ for a causal A(f). If
x(#) is causal, then x(f) = 0 for 7 < 0. Therefore, the lower limit of integration is 0 for a causal
x(7). Thus,



y@)= | x(r) h(t—7)d7  if both x(r) and h(r) are non-causal

- 00

!
= j x(7) h(t —7)d7r  if x(1) is non-causal and k(1) is causal

= Ix(r) hit = 7)dr ;if x(r) is causal and A(t) is non-causal
0

I
= jx(r) h(t—7)dzr  if both x(r) and h(r) are causal
0

.3 ~PROPERTIES OF CONVOLUTION

Let us consider two signals x;(#) and x,(z). The convolution of two signals x,(f) and x,(7) is
given by e o
5(0* 0= [ 5(0) x0-ndr= [ 50) x(t-1)dr

— -

The properties of convolution are as follows:
Commutative property The commutative property of convolution states that
x1(1) * xo(0) = x3(8) * x;(0)
Distributive property The distributive property of convolution states that
% (1) * [x5(1) + 3 (0] = [, (1) * x5 ()] + [x, (1) * x3(1)]
Associative property ~The associative property of convolution states that
x1 (1) * [x2 (1) * x3(0)] = [x;(1) * 22 (D] * x3(r)
Shift property The shift property of convolution states that if
X (1) * x5 (1) = z(r)

Then M *x(t=T)=2(t-T)
Similarly, @ =T)*x0)=2z2(t-=T)
and x|(l—7‘1).3’2('_7'2)=Z(t—rl-1‘2)

Convolution with an impulse > Convolution of a signal x(r) with a unit impulse is the signal
itself. That is,

x(0) * 8(1) = x(1)

Width property Let the duration of x,(r) and x,(r) be T, and T, respectively. Then the
duration of the signal obtained by convolving x;(f) and x,(f) is T} + T».



EXAMPLE 1 Find the convolution of the following signals:
(D) x(0) = e u(t); x(t) = e a(r)
() x() =ru(t);  x0) = tu@)
(iii) xy(r) = cos ru(); x(t) = u(r)
(v) () = e u(); x1) = ult + 3)
(V) x () = re); x(t) = € u(f)

Solution:
(i) Given x1(8) = e u(®); x:(0) = e u(e)

We know that o -
xO*x0 = [ x(0) x0-1)dr

— oo

(0 * x5 (f) = j e  u(n) eyt - 1) dr

ut)=1fort>0and u(t -1 =1for(t—7)=>0o0rfor r<t
Hence u(7) u(r — 7) = 1 only for 0 < 7 < ¢. For all other values of T, u(T) u(t — 1)

= 0.

!
O * @) = [ e Dy
0

1 2 T 2¢ -2 —41 -2t -4t
—4t 2r -4t | € P I anigee 3 | € i & e —¢
=e e dr=e — B = fort 20) =——u(z

(ii) Given xi(t) = tu(r); x)(1) = ru(r) /

We know that () * x,() = I x(7) x,(t — 1) d7

1O * 0= [ 7u(@) (= 1) ut — 1) dr
u(t) =1for 7> 0and u(t - 7) = 1 for (1 - 7)20orfor t<t.
Hence u(t) u(t — 1) = 1 only for 0 < 7 < t. For all other values of T, u(7) u(t — 1)
= (),



x,(t)*xz(t)=IT(l-t)d7 =
0

D S— ™

' 27" 3]
tTdT—JTzd‘r:tl:% —[t—J

0 3 0

2 3 3 3 3 3
oy B2 B (LS I A , -
_:(2 OJ [3 O} 273 T% (fort 20) .. x@O*x@0= e u(t)

(iii) Given x)(1) = cos 1 u(t); x(1) = u(r)
We know that - P % * = T o
n®O*n0= [ x@xne-dr.  H5O*xHO= [ costu@) ult—1)dr

u(t)=1fort>0and u(t-7)=1for (t-17) >0 or for T < 1.

Hence u(t) u(tr = 7) = 1 only for 0 < 7 < «. For all other values of T, u(T) u(t — 1)
= (.

xl(t)*xz(t)=fcosl'd7 =[sin r]:) =sint fort=0
0

X1(1) * x,(t) =sin tu(r)

(iv) Given
We know that

x(1) = e u(t); xo(t) = u(r + 3)

X, (t) * X2(t) = J. X (T) xz(t T t) dr

nM*x0)= _[ e wT)u(t+3-1)
In this case, u(t) =0 for r< 0 and u(t + 3 - 7) =0 for 7> ¢ + 3.

u(t) u(t + 3 - 7) =1 only for 0 < 7 < t + 3. For all other values of 7, u(7)
ut+3-7=0.

t+3
r+3 e e—Jf B e—3(:+3) | i e—3(x+3)
5O @)= [¥dr = i
0
1= —3(143)

wWr)=0 (fort<-3) = —3—-— (for t > =3)

(v) Given x,(0) = r() = tue); xx(1) = € u()

t o
We know tha x (t) * xz(t) = I X (7) Xg(t"r) dr

N *xn0= [ @) eV ui-1)dr



u(ty=1fort>0and u(f - =1for(t-720o0rfor 7<r.
Hence u(t) u(t — 7) = 1 only for 0 < 7 < r. For all other values of 7, u(7) u(t — 1)

=:0;
t t 27 & 28
xl(t)*xz(,)=]'1.e—2(t—t)d¢. =e’2’jfe2'dr=e'z‘ [7_9__] —J‘E—d‘t
0 0 B n 0 2
2 27 | 2 2 2
|| te e -2 | 1€ € 1 gy e
=g —=|—| |}=e| ==+ | =5-5+— (forz20
2 [4]0 2 [2 4 4) 53 - abey)

-2t
x(®)* x (1) = (% = % + eT} u()

4 CONVOLUTION THEOREMS

Convolution of signals may be done either in time domain or in frequency domain. So there
are following two theorems of convolution associated with Fourier transforms:

1. Time convolution theorem
2. Frequency convolution theorem

41 TFime Convolution Theorem

“The time convolution theorem states that convolution in time domain is equivalent to
multiplication of their spectra in frequency domain. Mathematically, if

.’c,(t) —> XI(G))

and X, (1) e X5 (@)
Then x,(1) * x5(r) e Xy (@) X (w)
Proof,- Flx,(1) * xz(r)] = J [xl(‘) * xa(1)] eI dt

-

oo

We have x (N * x,(1) = J x,(7) x,(t — 7) dT



— 00 -

Flx@*x,(n]= J { J [x;(7) (¢ — r)dr]} e dt

Interchanging the order of integration, we have

Flx;(1) * x,(0)] = I X (r)[ J x,(t —T)e I d::\ dt

Letting t — T = p, in the second integration, we have
t=p+ Tand dt = dp

Fla®* x01= [ x@) L | n(p)e‘f"""“’dp] dr

—a -—0a

I x (1) L J x5 (p) e'j‘”Pdp:\ e 1 dr

= ]: x(7) Xy (@) 7 dr = [ x(7) e dT X, (@)

. e

=X, (@) X, (w)

xl{f} *Iz{f}H X[(ﬂ)} Xz(m)
This is time convolution theorem.
4,2 Frequency Convolution Theorem

The frequency convolution theorem states that the multiplication of two functions in time
domain is equivalent to convolution of their spectra in frequency domain. Mathematically, if

x (1) e X,(w)

and X(0) ¢—— X>(@)
Then x (1) X, (2) ¢— # (X (@) * X, (@)]

Erovf: FIx, () %, (0] = [ [x(0) 2 (0] e dir *

- 1, ¢ : Y
= J [;le(l)elhdl}xz(f)e ™ dy .
Interchanging the order of integration, we get

Flx; (1) x (0] = i j X, (A) ( _[ X, (1) e I I¥ dt] dA

=0

i s

e —oa



-
= [ XWXy (0-1)ar

1
= ;;,}Xl (@) * X5 (w)]

X (1) x5 (1) —I—X, () * X, (@)
2r

or 27 x) (1) xp(2) e— X, (w) * X, (w)

This is frequency convolution theorem in radian frequency.
In terms of frequency, we get

Flx (1) x:(01= X, (/) * X,(f)

::ymE 2 Find the convolution of the signals x;() = e u(7); x,(1) = ¢ u(r) using
ourier transform.

Solution: Given xi(6) = e u(r) X (@)= 1 -
a+ jw
x(1) = e u(t) X5 (w) =
b+ jw
Flx, (1) * x,(0)] = X (@) X, (w) () F ()= F-llxl (@) X;(w)]

We know that

e B [ R
(a+ jw) (b+ jw) (b—a)\a+jwo b+ jo

-1 - [F" (a:jm)‘F_' [b +ljw)]

e i = [e“"’u(t) - e'b'u(t)]

EXAMPLE .3 Find the convolution of the signals x;(7) = 2¢ > u(t) and xx(f) = w(?) using
Fourier transform.

Solution: Given X () =2 u(r) X, (@) =
Jo+2
Xl8) =u(é) X, (w) = mé(w) + -l—-
jaw
X,(@) Xy(@) = —> [zrs(w) + .i) S, S L
jw+2 j@) jo(jo+2) jo+2

Since x;(7) * x(1) = F'[X,(®) Xo(w)]. we have
2 A 2n5(w)]=F_, [L_ 1 o, 2ﬁ(w)]
Jjo(jo+2) jo+2

D*x,(N=F"
X @*x0) [ jo  jw+2 jo+2

= 7o(W).

2N w)
Jjw+

Since d(w) = 1 for @ = 0 and 8(w) = O for w # 0, we have



.6 SIGNAL COMPARISON: CORRELATION OF FUNCTIONS

Concept of correlation

The signals may be compared on the basis of similarity of waveforms. Quantitatively, a

comparison may be based upon the gmount of the component of one waveform contained in.-
the other waveform. If x,(7) and x,(¢) are two waveforms, then the waveform x,(f) contains an

amount C 5 of that particular waveform x,(f) in the interval (1), t,), where
(3
J-xl (1) x, (1) dr The magnitude of the integral in the numerator
Ci3 ="’2‘ might be taken as an indication of similarity.
ngz(t)dt If this integral vanishes, i.e

4

f X (1) x5 (1) det =0

fn

then the two signals have no similarity over the interval (z,, 73). Such signals are said to be
orthogonal over the specified interval.

The integral j X () x,(2) dt forms the basis of comparison of the two signals x;(?) and
f
x2(7) over the interval (7, 1,).

In general we are interested in comparing the two signals over the interval (—e9, o). So
the test integral becomes

I x,(2) x5 (r) dr

However, there is a difficulty with this test integral which can be illustrated with the example
of radar pulse. Figure 7.36 shows a transmitted pulse and a received pulse which is delayed
W.r.t. transmitted pulse by 7 s. Obviously, the two waveforms are identical except that one

oo

is delayed w.r.t. the other. Yet the test integral J x(7) x5(¢) dt yields zero because the

product x,(z) x,(¢) is zero everywhere. This indicates that the two waveforms have no
measure of similarity which is obviously a wrong conclusion. Hence in order to search for a

LA
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~y

I N Ny
" r . ided b N gl o

Figure 6 Signal comparison.




similarity between the two waveforms, we must shift one waveform w.r.t. the other by
various amounts and see whether a similarity exists for some amount of shift of one function
w.r.t. the other. =

Therefore, the test integral is modified as j X,(0) X, (t — 7) dit

-

where s the searchin ning parameter. This integral is a function of 7. This integral

is known as the cross correlation function between 41(#) and x,(f) and is denoted by R;(7).
It is immaterial whether we shift the function x1(#) by an amount of 7 in the negative

direction or shift the function x(¢) by the same amount in the positive direction. Thus

Ry (2).= [ x(t +7) xy(t)dr
Thus the correlation of two functions or signals or waveforms is a measure of similarity
between those signals. The correlation is of two types: cross correlation and autocorrelation.
The autocorrelation and cross correlation are defined separately for senergy (or aperiodic)
signals and power (or periodic) signals. '

64 'Cross Correlation

The cross correlation between two different waveforms or,signals is a measure of similarity or
match or relatedness or coherence between one signal and the time delayed version of another
signal. That means the cross correlation between two signals indicates how much one signal
is related to the time delayed version of another signal.

Cross correlation of energy signals

Consider two general complex signals x(1) and x,(r) of finite energy. The cross correlation of
these two energy signals denoted by Ry(7) is given by

RoD)= [ x(1) Xy * (¢ — )t = | 54 9x, * @) ar

If the two signals x,(7) and x,(f) are real, then R,(7)= J' x(0) xo(t = 7) dt = jxl(f+ ) x, (1) dt

If x;(7) and x,(7) have some similarity, then the cross correlation R5(7) will have some finite
value over the range of 7. Also if '

[uS@di=0 ieif Ru0) =0

then the two signals x;(f) and x,(¢) are called orthogonal signals. That is the cross correlation

for orthogonal signals is zero. : %
Another form of cross correlation between x,(f) and x,(¢) is defined as: R,,(7)= J' X (1) x; (1 —7) dt

-



In the above equations, the cross correlation function R;(7) is a function of the
variable 7. The variable 7 is called the delay parameter or the scanning parameter or the
searching parameter. It is time delay or time shift of one of the two signals. The delay
parameter T determines the correlation between two signals. Two signals with no cross
correlation at 7 = 0 can have significant cross correlation by adjusting the parameter ‘7. Two
signals for which the cross correlation is zero for all values of 7 are called uncorrelated or
incoherent signals.

Properties of cross correlation function for energy signals

Following are the properties of cross correlation for energy signals:
1. The cross correlation functions exhibit conjugate symmetry, i.e.

Rip(7) = Ryy(~7)

That is unlike convolution, cross correlation is not in general commutative, i.e.

‘e RIZ(T) # Rz](f'r)
25/ E. R]z(O) =0
ie. if [ x® x50 dt=0

then the two signals are said to be orthogonal over the entire time interval.

3. The cross correlation ofstwo energy signals corresponds to the multiplication of the
Fourier transform of one signal by the complex conjugate of Fourier transform of
second signal. :

ie. Ri2(7) — X, (@)X, (@)

This is known as correlation theorem.

Cross correlation of power (periodic) signals

The cross correlation function Ry,(7) for two periodic signals x;(f) and x,(r) may be defined
with the help of average form of correlation. If the two periodic signals x,(t) and x,(f) have
the same time period 7, then cross correlation is defined as:
| 4
Rp(D=— [ x(0xy(t—7)dt
T 1

then the two signals x;(f) and x,(7) are called orthogonal signals. That is the cross correlation
for orthogonal signals is zero.
Another form of cross correlation between x»(f) and x,(¢) is defined as:

oo

Ry(@)= [ x;(0) x ¢ —7) ar

—a



In the above equations, the cross correlation function Rj(7) is a function of the
variable 7. The variable 7 is called the delay parameter or the scanning parameter or the
searching parameter. It is time delay or time shift of one of the two signals. The delay
parameter 7 determines the correlation between two signals. Two signals with no cross
correlation at 7 = 0 can have significant cross correlation by adjusting the parameter 7. Two
signals for which the cross correlation is zero for all values of T are called uncorrelated or
incoherent signals.

Properties of cross correlation function for energy signals

Following are the properties of cross correlation for energy signals:
1. The cross correlation functions exhibit conjugate symmetry, i.e.

Rlz(f) =Ry(-7)

That is unlike convolution, cross correlation is not in general commutative, i.e.

oy Rl 2(1) # R—“(r'-‘l')
2. If R12(0) = 0
ie. if [ x5 di=0

then the two signals are said to be orthogonal over the entire time interval.

3. The cross correlation ofstwo energy signals corresponds to the multiplication of the
Fourier transform of one signal by the complex conjugate of Fourier transform of
second signal. '

ie. Rio(7) ¢ X, (@)X; (@)
This is known as correlation theorem.

Cross correlation of power (periodic) signals

'he cross correlation function Ry5(7) for two periodic signals x,(r) and x,(r) may be defined
with the help of average form of correlation. If the two periodic signals x(t) and x,(f) have
the same time period 7, then cross correlation is defined as:

| A
Ro(=— [ x(xn@-1d
4
-T12
The cross correlation of two periodic functions is defined in another form as:

1% *
Ru(D=— [ xOxt—1)de
T -112



, P;operﬁes of cross correlation function for power (periodic) signals

Following are the properties of cross correlation for power signals:

1. The Fourier transform of the cross correlation of two signals is equal to the
multiplication of Fourier transform of one signal and complex conjugate of Fourier
transform of other signal.

Riz(7) = X (@) X; (@)

2.1 Ri20) =0,
1 n2 Y
i.e. if Lt ;_TIH x(6) x30) dt =0

then the signals are said to be orthogonal over the entire time interval.
3. The cross correlation exhibits conjugate symmetry, i.e.

Riy(7) = Ryy(~7)
4. Unlike convolution, the cross correlation is not commutative, i.e.
. " R0 # Ryl
EXAMPLE ..12 Prove that R)»(7) = R;,(—r) i.e. the cross correlation exhibits conjugate
symmetry.

Solution: The cross correlation of two signals x,(¢) and x,(¢) is given as:

Ry = [ x() X3¢ -1 ar

Let 1 — 7 = n in the above equation for R,,(7),

Ry ()= [ x(n+ 0)x5 () dn

Also we know that

Ryt = [ ) t—1)at

Let t = n in the above equation for R, (7).

o8

Ry(0) = [ x;(m) x{ (n—7) dn

—e

R (@) = [ x5 (m) xy(n—17) dn

Ry(-1)= [ 3 (mx(n+1)dn

Comparing the above two equations for R,,(7) and R;{ (—7), we can write
Rix(7) = Ry (—7)



.6:2 Autocorrelation

The autocorrelation function gives the measure of match or similarity or relatedness or
coherence between a signal and its time delayed version. This means that the autocorrelation

function is a special form of cross correlation function, It is defined as the correlation of a
signal with itself.

The autocorrelation is defined separately for energy signals and power signals.

Autocorrelation for energy signals

The autocorrelation of an energy signal x(7) is given by

Ry(D)=R(r)= [ x@) x"(t— 1) dt

where 7 is called the delay parameter and the signal x(7) is shifted by 7 in positive direction.
If x(?) is shifted by 7 in negativé direction, then

R(r)= j x(t+7)x (f) dt

Properties of autocorrelation function of energy signals

Following are the properties of autocorrelation for energy signals:
1. The autocorrelation function exhibits conjugate symmetry, i.e.

[RG=RCD)|

Thus, it states that the real part of k(f) is an even function of 7 and the imaginary
part of R(7) is an odd function of 7.

Proof: The autocorrelation of an energy signal x(¢) is given by

R(r)= [ x()x"(c - 7)dr

— oo

Taking the complex conjugate, we have

y
’

R (1) = j x"() x(t — 1) dr

R'(-1)= j x (£) x(t +7) dt = R(7)

R(1) = R~

2. The value of autocorrelation function of an energy signal at origin (i.e. at 7= 0) is
equal to the total energy of that signal. i.e.

RO)=E= [ |x() ar

Proof: We have



Proof: We have

R = [ x()x"(t 1) di

Putting 7 = 0 gives

RO)= [ xox" @) dr= [ |xf dt=E

-0

3. If tis increased in either direction, the autocorrelation R(7) reduces. As 7 reduces
autocorrelation, R(7) increases and it is maximum at T = 0, i.e. at the origin.

Therefore, :
A = N
{ |R(7)] < R(0) (forall 7) |
Proof: Consider the functions x(r) and x(t + 7). [x(r) + x(r + 7)])° is always greater
than or equal to zero since it is squared, i.e.

PO+ X2+ 1) £ 2x(0) x(t +7)20

or (1) + X2 (t + 1) 2 £2x(0) x(2 + 7)
Integrating both the sides, we get

J' L) dr + [lxt+o)f ar=2 [ x() xe + Dy ar

]

E + E = 2R(t) [If x(z) is real valued function]
& E 2 R(7)
or R(0) 2 |R(7)| (Since R(0) = E) 2

4. The autocorrelation function R(7) and energy spectral density function v(w) of
energy signal form a Fourier transform pair.

[ RS via)

Autocorrelation theorem

The autocorrelation theorem states that the Fourier transform of autocorrelation function R(7)
yields the energy density function of signal x(1), i.e.

FIR(D)]=|X(0) = y(@)

Proof: The Fourier transform of autocorrelation function R(7) is:

FI[R(T)]= j R(z) e /" dr = j _[ x(1) x(t = 7) e " dr dr

—o0—09

= I x(0) e dr j x(t—1)e" D dr

=X(@) [ x(t—1) /™ az



Letting 1 — 7 = n in the second integral, we have

F[R(D)]= X(®) J’ x(n)e’®" dn

= X(0) X(-0) = [X (@)

=y(®)
Autocorrelation function for power (periodic) signals
The autocorrelation function of a periodic signal with any period 7 is given by
72
R(7)= Lt & [ xox*t-v) a
T=+=T 5,

Preoperties of autocorrelation function for power signals
“Following are the properties of autocorrelation function for power signals:
1. The autocorrelation function exhibits conjugate symmetry, i.e.

R(1)=R*(-7)
Proof: We have
1 Tj} *
R(7t)= Lt — xt)yx (t—-1)dt
ToeT -T2
1 T/2
R*(7)= Lt -3 7j7 2x“(z) x(t —7) dt
1 T2
R'(-7)= Lt — j X(0) x(t+ 1) dt = R(7)
T doe T 172

R(D)=R"(~17)
2. The autocorrelation function at origin is equal to the average power of that signal,
- . 00 ’
i.e. [ , Th
RO=P _ & = ghﬁ(t Brak
. T=r /3
3. The autocorrelation function R(7) has maximum valué at the origin, i.e.
|R(7)| < R(0)

The value of autocorrelation reduces as 7 increases from origin.
4. The autocorrelation function R(7) and power spectral density S(®) form a Fourier

transform pair, i.e. —
R(7) & s(w)

5. The autocorrelation function is periodic with the same period as the periodic signal
itself, i.e.

R(T)=R(rtnT), n=1,2,3,...



.7 ENERGY DENSITY SPECTRUM

Spectral density It is the distribution of energy or power of a signal per unit bandwidth as a
function of frequency.

Energy signals Signals with finite energy and zero average power, i.e. 0 < E < and P = 0
are called energy signals, e.g. aperiodic signals like pulse.

Normalized energy The normalized energy, or simply energy of a signal x(7) is defined as
the energy dissipated by a voltage signal applied across 1-Q resistor (or by a current signal
flowing through 1-£ resistor). Mathematically,

The energy of a signal exists only if £ is finite, i.e. only if 0 < E < e,

Parseval’s theorem for energy signals (Rayleigh’s energy theorem) Parseval's theorem
defines the energy of a signal in terms of its Fourier transform. Using Parseval’s theorem, the
energy of a signal x(7) can be evaluated directly from its frequency spectrum X(w) without the
knowledge of its time domain version, i.e. x(1).

E= [ |x)f d::% [ 1x@)[ dw

or E=[|x(nf ar
Proof: Consider a function x(f) such that
x(t) — X(w)
Let x*(z) be the conjugate of x(7) such that
(0 e— X' (-o)

The energy of a signal x(7) is given by

&= f [xo)] ar = f x(0) xV () dr = f ) x) ar

Replacing x(#) by its inverse Fourier transform, we have

T Ix*(t)[%r- J X(a) oo da)}dt

lnterchanging the order of integration,

1= oo ’
E=E_‘[.X(m)[_f x*(’)eJad’de
=ij:X(a))x"‘(— Ydaw =L T 2
2= J @ (o—; f)X(w)[ dew
Let W= 2xf
dw = 254f
Normalily X(27xf) is written as X(f), then we have
( E= [ |xHPar )

This i < i
S 1s called Parseval’s theorem for energy signals (also called Rayleigh’s energy theorem)




Energy WeCh‘al den s ily
The ESD function

Then’ we have
w) =
The ESD of the input x(z) js: (@) = H(w) X(w)

Wx(w = 4
The ESD of the output y(7) is: ) 'X(w),

¥, (@) =r@)f
v, (@) =¥ =|H@ X@)
=|H@] |x@] =|[H@) v.(@

v, (@ =|Ho) v, (@)

Thus, the ESD of the output (response) of a linear system is the product of ESD of input
(excitation) and square of the magnitude of the transfer function.

Energy of the output signal E = I v, (f)df =% I v, (@) dw=-21—” J IH(a))I2 v (o) de

L Theppani? b 2
=52 { |H(@)| v (@) do = {lH(w)| v (@) do

If the LTI system is an ideal LPF with lower and upper cutoff frequencies f; and fy
respectively, then |H(@)| = 1 for fi < f < fy.
| fu
E =— j v (o) do
-
JL
1 Ty fu
or E,=— [ worf)2mdf =2 | v, (N df
. Jr



Properties of ESD: The following are the properties of ESD.

l¢ The total area under the energy density spectrum is equal to the total energy of the
signal.

. 1 T T
i.e. E= o —I“V/(a)) do = -LW(f) df

2. If x(¢) is the input to an LTI system with impulse response h(t), then the input and
output ESD functions are related as:

v, (@) =|Ho) v, (@)
or v,(N) =[HAF vl

3. The autocorrelation function R(7) and ESD y(w) form a Fourier transform pair, i.e.
R(7) — y(@)
or R(7) «—— y(f)

.8 POWER DENSITY SPECTRUM

Power signals Signals with finite average power and infinite energy, i.e. 0 < P < = and
E = = are called power signals, e.g. periodic signals.

Average power It is defined as the average power dissipated by a voltage x(7) applied across
1-Q resistor (or by a current signal flowing through 1-Q resistor). Mathematically,

— .

1 2 \
P=Lt — | |x(dr |

The power P defined above is actually the mean square value or the time average of the
squared signal. Thus, we may write

e o LT
P=x*()= Lt = —“;l.r(t)l dt

Parseval’s power theorem Parseval’s power theorem defines the power of a signal in terms
of its Fourier series coefficients, i.e. in terms of the harmonic components present in the
signal. Mathematically, it is given by

p=Y |cmf



Proof: Consider a function x(7). We know that
x| = x() x™ (1)

where x*(1) is the conjugate of x(1).
The average power of x(7) for one cycle is:
712

P= 1}2 k@ dt = [ 20 x @
T T

=7/2 =772

But, we have the exponential Fourier series,

x(t)= i Giel™

1 T2 oo_ .
P==[ Y Cex@a
T ~T/2 n==se

Interchanging the order of summation and integration, we get

» | ™ !
P= z C,— I x () ™ dt
ne—e Tlgp

- 3 aai= ylaf

- n=-—eo

mﬁ

et -
This is called Parseval’s power theorem. It states that the power of a signal is equal to the
sum of square of the magnitudes of various harmonics present in the discrete spectrum.



Power spectral density (PSD)

The distribution of average power of the signal in the frequency domain is called power
spectral density or power density or power density spectrum (PSD or PD).

To derive the PSD, assume the power signal as a limiting case of the energy signal.
Consider a power signal x(f), extending to infinity as shown in Figure 7.37.

x(1)

T T e e i
VB S YNTIRY NV VAV,

Figure 7.37 Power signal.

Let us truncate this signal so that it is zero outside the interval |7/2| as shown in Figure 7.38.
Let this truncated signal be x.(7).

-

T
Xo(t) = iR III(E

0, elsewhere
4 x (0

'
'
555

N AN N
=YY RV

3|

oo~ Ul .

Figure 7.38 Truncated power signal.

The signal x,(7) is of finite duration 7 and hence it is an energy signal with energy E given by

T 2 1 7 2
E= —J“Ix, Of di=5~ _UX‘ (@) dow
where X (1) — X (@)

. A 5 ) T .
As x(t) over the interval, [—E to E) is same as x.(f) over the interval —oo {0 e, we have

- r/2
“x,(t)|2d:= j lx(t)'zdt
—o0 -7/2
i B s 101 % 2
= [ |xte) dr=— = | X (@) dov
-7f2 —oa



oo 2
X
P:._l_ I Lt L_iti)l_dw
2z 3 o= T
If T — oo, |X (@)|*/7 approaches a finite value.
Let this finite value is denoted by S(w), i.e.

2
S(w)= Lt M
T=deo T

The average power P of the function x(f) is given by

P:%:% [ Sty do= [ s¢)ar

where x%(7) is the mean square value of x(r).
The average power is, therefore, given by

P=2-— [ S(0) do=" [5() dr=2 [scrrar
2 0 ¥ 0 0
The PSD of a periodic function is given by
S@=2x Y |C,[ 8@-nay)

oo

or alternately S(H =Y, |G 6¢F=nfy)

N=-—oo

The input and output relation of a linear system in terms of PSD is given by

S, (@)=|H(@) S, (@)

or S,(N=|HG 5.0

/
/

‘Prjo/em‘es of PSD The following are the properties of PSD:
1. The area under the PSD function is equal to the average power of that signal, i.e.

] o L
P=EiS(w)dw=£S(f)df
2. The input and output PSDs of an LTI system are related as:
S,(®) =|H(®) S, (@)

3. The autocorrelation function R(7) and PSD S(w) form a Fourier transform pair, i.e.
R(7) e S(w)

The comparison of ESD and PSD is given in Table 7.1



Table 1 Comparision of ESD and PSD

S.No. ESD PSD
It gives the distribution of energy of a signal in It gives the distribution of power of a signal
frequency domain, in frequency domain.
o 2 o 1X(@)]*
2. It is given by vl(w)=|X(a))| It is given by S(w)= Lt T
T
3. The total energy is given by The total power is given by
E=-— j V(@) do= J’w(f)df P=— jS(w)da) ]S(f)df
4. The autocom:laUOn for an ct;crgy signal and its The aulocorrclahon for a power signal and
ESD form a Fourier transform pair. its PSD form a Fourier transform pair
R(7) —— w(w) or R(r)e——w(f) R(7) & S(w) or R(7)+«—> 8(f)

9 RELATION BETWEEN AUTOCORRELATION FUNCTION AND
ENERGY/POWER SPECTRAL DENSITY FUNCTION

9.1 Relation between ESD and Autocorrelation Function R(7)

The autocorrelation function R(7) and energy spectral density function w(w) form a Fourier
transform pair, i.e.
R(7) e y(w)

Proof: The autocorrelation of a function x(1) is given as:

L)

R(r)= j x() X (t—1) dt

Replacing x™(r — 7) by its inverse transform, we have

*
R(r)= | x(t)[ j X(@w) /' da)] :_—— j’ x(l)[ [ X* (@) e dw]d

Interchanging the order of integration, we have

B r = :
R(z‘):E _[ X (m)[j x(H) e dl]e’m dw

2L jx (@) X(@) & da)-— j |X(@)” e’ dw

—s

=; I w(w)e’” dw  [since | X(@)| = w(w)]

=F '[y(o)]
w(w) = FIR(7)]

This proves that R(7) and y(®) form a Fourier transform pair.

R(7) «— y(w)



9.2 Relation between Autocorrelation Function R(7) and Power
Spectral Density (PSD)

The autocorrelation function R(7) and the power spectral density (PSD), S(@) of a power
signal form a Fourier transform pair, i.e.

R(7) > S(w)

Proof:  The autocorrelation function of a power (periodic) signal x(r) in terms of Fourier
series coefficients is given as:

R(7)= i C.C..e™"

n=-—oca

where C, and C_, are the exponential Fourier series coefficients.

R(z)= i [, [2 emene

Nn=w—oo

Taking Fourier transform on both sides. we have

FIR(7)] = j [ i IC’!|2 ei"wa]e-jmr dr

—so \ N=—00

Interchanging the order of integration and summation, we get

FIRDI= ¥ [c,f [ et gp

N==o0 —oa

=21 Y [C,[ S@-na)= 3 [c,[ 6 —nfy)

n=-—oso ne= —oo

The RHS is the PSD S(w) or S( f) of the periodic function x().
F[R(7)] =S(w) [or S(f)]

and F'[S(@)] {or F'[S()]} = R(7)
ie. R(7) & S(w) [or S(f)]

J1r0/ RELATION BETWEEN CONVOLUTION AND CORRELATION

There is a striking resemblance between the operation of convolution and correlation. Indeed
the two integrals are closely related. To obtain the cross correlation of x(#) and x(?)

according to the equation R,(7)= j X (1) X, (¢ = 7)dt, we multiply x,(¢) with function x»(f)



displaced by 7 sec. The area under the product curve is the cross correlation between x,(7)
and xy(#) at 7. On the other hand, the convolution of x,(f) and x(r) at 7 = 7 is obtained by
folding x,(r) backward about the vertical axis at the origin and taking the area under the
product curve of x,(f) and the folded function xy(—r) displaced by 7. It, therefore, follows that
the cross correlation of x,(f) and x,(r) is the same as the convolution of x,(f) and x5(—1).
The same conclusion can be arrived at analytically as follows:
The convolution of x,(r) and x,(-7) is given by

xO)* xy (1= [ () xy(r -1y dr

Replacing the dummy variable 7 in the above integral by another variable n, we have

x(t)* Xy (-0) = [ x,(n) xy(n~1) din

Changing the variable from 7 to 7, we get

x(@)* x,(-1)= [ x,(n) xy(n~7) dn = Ry, (7)

=00

Hence Ry () =x, (1) * x, (—t )I,.g
Similarly, Ry (D) =%y (0)* xy (1),

All of the techniques used to evaluate the convolution of two functions can be directly
applied in order to find the correlation of two functions. Similarly, all of the results derived
for convolution also apply to correlation.

If one of the function is an even function of ¢, let us say x,(z) is an even function of 7,
ie.

x(1) = xp(=1)

then the cross correlation and convolution are equivalent.
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UNIT:V

LAPLACE TRANSFORMS & Z-TRANSFORMS

Laplace Transforms

The Laplace transform is another mathematical tool used for analysis of signals and
systems. Laplace transform provides broader characterization of the signals and systems
compared to Fourier transform. Laplace transform can be used for the analysis of unstable
systems, where Fourier transform has limitations. There are two types of Laplace
transforms.

i) Bilateral or two-sided Laplace transform
ii) Unilateral or single-sided Laplace transform

1 Definition of Laplace Transform
The bilateral Laplace transform is defined as,

F(s) = ]:f(t) e~ dt

Here the integration is taken from —es to +. Hence it is called bilateral or two sided
laplace transform. Here f(f) is the time domain signal and F(s) is its Laplace transform.

1 Definition of Laplace Transform
The bilateral Laplace transform is defined as,

F(s) = :f fhe™ dt

Here the integration is taken from —e to +. Hence it is called bilateral or two sided
laplace transform. Here f(t) is the time domain signal and F(s) is its Laplace transform.

The unilateral Laplace transform is given as,

F(s) = ]. fi) e ™ dt
0-

Here observe that integration is taken from 0 to . The unilateral Laplace transform is
mainly useful for analysis of causal signals. The lower limit is taken as 0 - This is to
include the time just before zero. It can be taken as 0+ also. For continuous function
f(0=) =f(0+). Thus for a continuous function, integration is effectively taken from 0 to s,
since value of f(f) just before and after zero is same. The f(t) and F(s) is called Laplace
transform pair. It is written as,



f() © K(s)
The variable 's' is the complex frequency. It is given as,
§ = O+jo
Here o is the attenuation constant or damping factor and ® is the angular frequency.
With above value of 's' we can write equation 2.5.1 as,

F(s) = 'f St e~ (ot o) gy

Tf{f}e_m =1 gy

:f [fre=<Jeie at

The above equation shows that F(s) is basically the Fourier transform of f(t)e~. This

is the relationship between Laplace and Fourier transforms. The Fourier transform given
by above equation must exist, which is actually Laplace transform. Hence sufficient
condition for f(f) to be Laplace transformable is that

[y 1f e dt<es

for real and positive values of o
The inverse Laplace transform is given as,

Inverse Laplace Transform : f () = ZLIJ j::tj: F(s)e* ds




.2 Properties of Laplace Transform

A Linearity
Let f, () © F, (s) and f, () & F, (s) be the two Laplace transform pairs. Then linearity
property states that,

L [a, f O +ay f, (D)= a, F, (s) +a, F, (s)
Here a, and a, are constants.

Proof : Let us find the Laplace transform of a, f, (f) +4a, f, (1) by applying definition.
ie,

L (o f0+a O] = [ [0y fr O +ay f (0] ™ at
= I:_ A e dt +a, Il;_ f (He™ dt

= ﬂl Fl {'}+ﬂ: Fa [i}

.2 Shifting Theorem (Translation in Time Domain)

Let f(f) & F(s) be a Laplace transform pair. If f(f) is delayed by time t,, then its
Laplace transform is multiplied by ¢ 0. ie.,

L[fE-ty)] = e OF(s)

Here t, is a constant.
Proof : Consider the Laplace transform of f (t —¢,) by definition,

L [fe-ty)] = j"; flt=tg)e™ dt

Here lower limit of integration is taken as t,. This is because the function f (t -t,) is
shifted at t =t.

Let T = b=t
dt = dt
when t = t,, 1=0 and
at t = oo, =0

With this substitution equation 2.5.6 (a) becomes,

L [f(t-ty)] j‘;'_ f(9) e *t0)ge

e[ " flyye ™ d



e 0 E (5)

Since Jo. f@e™ dt = F(s) By definition of LT.

3 Complex Translation or Translation in Frequency Domain
Let f (f) ¢+ F (s) be a Laplace transform pair, then

Fis-a) = £ [e®f ]
Here a is a complex number.

Proof : Let us find the Laplace transform of e” f(f). By definition of Laplace
transform, we have,

L [e f0)] = [o e foye™ a
w [ ) e 0= gt

= F(i=d)

4 Differentiation Theorem (Differentiation in Time Domain)
Let f (1) & F(s) be a laplace transform pair. Then,

L [‘—f;f(t)] = sF(5)-£(09)

Here f (0-) is the value of f(f) att=0-
't = 0 -’ indicates the time just before t = 0. In other words, t = 0 - is equivalent to
lim t=-¢.

e=0

Proof :
Let us write ;-t f(® =f'(t). Consider Laplace transform of f’(f) by definition. i.e.,

L[fF®] = J‘;‘_ e~s f(tdi

Integrating RHS of above equation by parts we get,



Integrating RHS of above equation by parts we get,
L0 = [ f0) -f, (9e™fO at
= [ f(t)];_ +s [ fOe™at

= e " f()=e? fO)+s [ fOe™ at
= —f(0-)+sF(s) since e”™ =0ande® =1
s F(s)-f(0-) which is proved.

This theorem can be further expanded as follows :

2
£ [;—2 f(t)] = s[s F(s)~f (09)]-f(0-)
= $2 F(s)=s f(0-)-f (0-)

3
o [f?sf <"] = s3 F(s)—s2 f(0-)—s f'(0-) —f" (0-)



5 Integration Theorem
Let .£ [f{H]=F(s), then Laplace transform of integral of f (f) is given as,

Wy, [j;_ f(t}dt] = @

Proof : By definition of Laplace transform we have,
L [j;_ f® dt} = J, e [j; £ dt] dt

Integrating the above relation by parts we get,

L2l

-5l

L [J:J f dt] - [E_:ﬂ o F® dr] - [y = fOa

0=

In the above expression,
e —50ast— e and J‘[L f@ dtf,_o_ =0

.f[_[; f(t}dt} = U*':‘f.: e~ £ () dt

1 F(s)
3 T
This relation can be generalized for multiple integrals. i.e.,

v, [;‘ (',2 (')" £ dt,,dtz,...dt,,] = -TT’)

.6 Differentiation by 's'

Let £ [f()]=F(s). Then differentiation in complex frequency domain corresponds to
nultiplication by ¢ in the time domain. ie.,

LUFO) == F )

Proof : By definition of Laplace transform,
Fs) = [, fe™ at
Differentiate this equation with respect to s ie,

d - g .
5 F@ = [ SO eMa



[, tf®-eat

- L [tf())] By definition.

7 Initial Value Theorem
If £ [f(t)]=F (s), then initial value of f (f) is given as,

f04) = ‘mf(f) = m [s F(s)]

provided that first derivative of f () should be Laplace transformable.
Proof : We know that,
£ [% f(t)] = sF(s)-f(09) By equation 25.8

Let us take limit of the above equation as s tends to « ie.,

lim £ [a% f(t)] = lim {Is F)l-f (0}

Consider LHS of above equation. i.e.,
lim -‘1;’(:) = lim | if(t)e-" dt By definition of LT.
S0 dt sbw o dt

= 0 since lim e™* dt=0
s oo

Putting this value of l_l_.m- of [;7 £ (t)] in equation 2.5.11 (a) we get,
0 = ’l_i_r.\;\. {s Rs)-f(0-)}
f(0-) = lim [s F(s)]
§~hoo

f(0-) indicates the value of f(f) just before t =0 and f(0+) indicates the value of f(f)
just after t =0, If function f (f) is continuous at ¢ =0, then its value just before and just after
t =0 will be same. ie,,

f(0+) = f(0-) for f(t) continuous at { =0,
Putting this value of f(0-) in equation 2.5.11 (b) we get,



f(04) = ‘l__ix’n. [s F (s)]
This equation is used to determine the initial value of f (f) and its derivative.

.8 Final Value Theorem
If £ [f(H)]=F(s), then final value of f (f) is given as,

lim () = lim [s F(5)

Proof : We know that,
oL [—% 7 (t)] = s F(s)-f(0-) By equation 2.5.8.

Let us take limit of the above equation as s tends to zero ie.,

d
Jlim £ [E?f (f)]

lim {s F(s)-f(0}
s—0

sli_r:(\) [s F(s)]- £ (0-)]
Consider LHS of above equation i.e.,

o 1 - . - -i -st e
lim .l‘[dtf(t)] - ’h_%jo_ =; /(e dt By definition of LT.

o d . . -5t _
Io— Ef(t)dtsmce ‘h_%e =1

= [f(®)]o-
- ‘lim“ f®O-£(0-)

Putting this expression of h_x’no S [;—t f (t)] in equation 2.5.12 (a) we get,
s

‘lin.\. f®)=£(09) ’li_r’%{s F(s)}-£(0-)
‘lim £ h—?‘o s F(s) which is proved.
oo s
The final value theorem is useful in analysis and design of feedback control systems.



.10 Convolution Theorem
The convolution theorem of Laplace transforms states that,

If F, (s) is Laplace transform of f, (t) and F, (s) is Laplace transform of f, (t) then,
L[, « /L] = F(s)-F,(s)

That is, the Laplace transform of convolution of two functions is equivalent to multiplication of
their Laplace transforms.

Proof :

The convolution of two functions is represented as,

u(t-17) = 1 fort21

=0 fort<zt

Using this step function we can write,
AOH0 = [T fE-dut-9f, (@d1
0

Here we used step function to change integration limits from 0 to t to 0 to . Taking
Laplace transform of above equation we get,

LIO+£,0] = [| [TAE-Dut-0f, (@dt [e™ at
oL O

= I:f'“ﬁ.fl (t-Du(t-1f (Vddt

Put x=f-t, thent=x+1

et = pS(x+71) _-sx 8T
and dx = dt
LIAO+ 0] = [ [ AU f@e™ e dr-dx
00



]
D S 8

f@u@e™dx [ f(We T dt
0

In the above equation U (x) =1 for x 20 hence it can be dropped. Then we have,

Lf6 » £,0] I £ ()™ dx-j fr@Me™Tdr
0 0

}-'1 (s)-F; (s) By definition of LT

This is the proof of convolution theorem of equation

mmp Example 1 : Find out the Laplace transform of an exponential function which is given
as,

f@©) =

[The above function can also be written as e™ u(t) to indicate that e exists only for
t20since u(t)=1 for t 2 0].
Solution : By definition of Laplace transform we have

.l‘[e"] = ]:e“ e~ dt
0-

Here u(t) is dropped since integration is for t 20 and u(f) =1 for t 20.

= Jet-ata
0-

_L c"’("")‘ ]“
s—-a 0-

thus, £[] = =




For s <a, the laplace transform cannot be calculated since the integral is unbounded.
Therefore the region of convergence is s >a. This is shown in Fig. 1. The shaded area
shows the ROC. Thus the laplace transform pair is,

e u(t) «*— s—}_a , ROC s>a

jo

Fig. .1 ROC for e u(f)

mmp Example 2 : Find out the Laplace transform of unit step function. The unit step
function is given as,

u() =1 fort20 and
= 0  otherwise.
Solution : By definition of Laplace transform we have,

L@ = ]' 1.7 dt
0-

A

piv w |

Thus, L [u®)]



mmp Example 3 : Find out the Laplace transform of ramp function. The ramp function is

gwen as,
rt) =t for t20
=0 otherwise.
or r(t) = tu(t)

Solution : By definition of Laplace transform we have,
L@ = jo': t e~ dt

Integrating the above equation by parts we get,

-st ] ~st

e oo e
LEO = |t—| -[_1-—at
L Jo-
—‘e"sl ™ e-st o
- = | 2 o
e
s2
L tu(t) = ke
Thus 52

If the slope of the ramp is "K’, then it is given as,
f®

Kr(t K is slope.
= Kt
The Laplace transform of this function will be,

£ Kr@®) = sﬁz



If the unit ramp function is delayed by time {, it is given as,
r(t=ty) = t=t,  for t2t,
=0 otherwise.
By shifting property of L;aplaoe transform

-stp
L [rt-ty)] =
s
Similarly, g
-s‘o
L [Krt-ty)] = K:z

mp Example .5 : Find out the Laplace transform of sine wave. A sine wave is given as,

ft) = Asina, t
Solution : We know that sin @, t can be represented using Euler’s identity as,

; _ 1. jmgt _-jegt
sinwy t = % e/t a7 1'% ]
-.Equation 2.5.19 (a) becomes,
= A juogt —jugt
f(t}-z—j[ewﬂ—emﬂ]
Taking Laplace transform of both sides,
-2 jogt |_ =1
LIF®) = zj{.f[e ] ...'."[e “0“]}
By equation 2.5.15 the Laplace transform of e* is given as,

L [Eut] e 5_1:?"



J[cimo'] = :

s=] 0y
ol ‘{[e-i%l] = s+}m0
Putting these values in equation 2.5.19 (b) we get,
A 1 1
el = 57{5-1‘% -$+f“’o}
- B 21
2] s24af
- A%
s? + o}
: A
Thus, L [Asinogt] = 2 :ooqz)

mmp Example 8 : A damped cosine wave is given as,

f) = e cos wt

find out Laplace transform of this signal.
Solution : With the help of Euler’s identity,

o elot 4 - jwt
2

%.[e-(a—rm): se~tarion]

f@®

By taking Laplace transform of both sides,
£ £ = 5 L{eeion petarjon)



-

o & 1 & 1
st(@a-jo) s+(a+jo

. 2(s+a)

(s +a)? + 0?

(S]]

(S

s+a
(s +a)? + 0?

S+a

Lle*cos ] = —————
Thus, [ J (s+a)2 + o

mmp Example .2 : Determine the laplace transform and ROC for the signal

x(t) = —e* u(-)

Solution : Laplace transform is given as,

X(s) = [ x(t)eat
= T —e% u(t) e~ dt
We know that,
0 for t20
") - {1 for  t<0

Hence the integration limits of laplace transform will be changed as follows :

0
X(s) = [ -eme ot

0
= - I e~ (=9t 4t



e"(’-‘)‘ o
I BT
; [e‘("‘)’] : [e'(’“‘)']
lim | —— |- lim [ ———
=0 s—a t-»x| S—a
The second term will converge if power of exponent is negative. Note that 't' tends to

—. Hence (s-a) must be negative to make overall exponent negative. Therefore we can
write,

e~ (=90 o-(-a(-=)
X(S) s—-a - s—a

1 0
- ‘STG_-STII ‘ﬁ”' (5-“)(0

1
= — for s-a<0 or s<a
s—a

Thus the laplace transform will converge if s<a For s>a, the integration will be
unbounded. Fig. 2 shows the ROC of X(s)

Fig. 2 ROC for —e* u(-f)
The laplace transform pair can be written as,

—e"u(-l)«—J'—-b-—l—, ROC s<a ]
s—a



Relationship between Fourier Transform and Laplace Transform
We know that fourier transform is given as,

- X(jo) = Tx(t)e""" dt

-0

Fourier transform can be calculated only if x(f) is absolutely integrable. i.e.,

[ k@fdt < =
We know that s =0+ jw. Hence equation 2.3.1 can be written as,

X(s)

L}

[ x@) el ar

f x(t) e-°! e-/ot dt

[ -

I {x(t)e o'} e-iw! dt

Comparing above equation with equation 2.3.6 we find that, laplace transform of x(t)
is basically the fourier transform of x(t) e °'. If s=jw , i.e. 0=0, then above equation
becomes,

X(s) = [ x(t)eiotdt



X(s) = [ x(t)yeiotat
= X(jw)
Thus X(s) = X(jow) when s=jo

This means laplace transform is same as fourier transform when s=jw . Above
equation shows that fourier transform is special case of laplace transform. Thus laplace
transform provides broader characterization compared to fourier transform. s =j® indicates
imaginary axis in complex s-plane. Thus laplace transform is basically fourier transform on
imaginary (j w) axis in the s-plane.

Convergence of laplace transform

From equation 2.3.8 we know that laplace transform is basically the fourier transform
of x(t)e-°'. Hence if fourier transform of x(f)e-°' exists, then laplace transform of x(t)
exists. For fourier transform to exist, x(f)e~°' must be absolutely integrable. i.e.,

I lx(t)e-o!| dt <

-0

The z-Transform

The z-transform is a generalization of the discrete-time Fourier transform we learned
in Chapter 5. As we will see, z-transform allows us to study some system properties
that DTFT cannot do.

1 The z-Transform

Definition 21. The z-transform of a discrete-time signal x[n| is:

(= =)

X2}y = Z Tin 27" (.1)

M==C

We denote the z-transform operation as

z[n] +— X(2).

In general, the number z in ( .1) is a complex number. Therefore, we may write z as
z=re’",

where r € R and w € R. When r =1, ( 1) becomes



=)

X)) = Y znjeien,

n==o00

which is the discrete-time Fourier transform of z[n]. Therefore, DTFT is a special
case of the z-transform! Pictorially, we can view DTFT as the z-transform evaluated
on the unit circle:

ANTm

Figure 1: Complex z-plane. The z-transform reduces to DTFT for values of z on
the unit circle.

When r # 1, the z-transform is equivalent to

o 4]

X(re™) = Z z[n] (re’™) ™"



Example 1. Consider the signal z[n] = a™u[n], with 0 < a < 1. The z-transform of
x[n] is

o0
Xfz) = Zn"-u[n]: "
—0C
oo
3w
n=>0
Therefore, X(z) converges if Y > (az™')" < co. From geometric series, we know
that
=, _q\n 1
Z (") =—— =,
n=>0 1 —az”

with ROC being the set of z such that |z| > |al|

ATIm

Figure 2: Pole-zero plot and ROC of Example 1.



Example 2. Consider the signal z[n] = —a"™u[-n — 1] with 0 < a < 1. The
z-transform of z[n] is

X(z)=— Z a"u[-n —1]z7"

— _ E r_}.n:;“n

n=0

Therefore, X(z) converges when |a~!'z| < 1. or equivalently |z| < |a|. In this case.

R = Lo =

gl T—agz

11

with ROC being the set of 2z such that |z| < |a|. Note that the z-transform is the
same as that of Example 1. The only difference is the ROC. In fact, Example 2 is
just the left-sided version of Example 1!



Figure 3: Pole-zero plot and ROC of Example 2.

Example 3. Consider the signal

z[n] =7 (%)nu[n] 6 (%)u[‘n]

The z-transform is

_ v_io (%)n ufia]z B 6nio (l)n-u.[n]z—ﬂ



For X(z) to converge, both sums in X (z) must converge. So we need both |z| > ||
| > |

and |z| > |3|. Thus, the ROC is the set of z such that |z| > |3].

ATm

Figure .4: Pole-zero plot and ROC of Example 3.

Properties of ROC

Property 1. The ROC is a ring or disk in the z-plane center at origin.

Property 2. DTFT of x[n] exists if and only if ROC includes the unit circle.

Proof. By definition, ROC is the set of z such that X(z) converges. DTFT is the z-
transform evaluated on the unit circle. Therefore, if ROC includes the unit circle, then
X (z) converges for any value of 2 on the unit circle. That is, DTFT converges. [

‘ Property 3. The ROC contains no poles.

Property 4. If z[n] is a finite impulse response (FIR), then the ROC is the entire

z-plane.

Property 5. If z[n] is a right-sided sequence, then ROC extends outward from the
outermost pole.

Property 6. If z[n] is a left-sided sequence, then ROC extends inward from the
innermost pole.




Proof. Let’s consider the right-sided case. Note that it is sufficient to show that if a
complex number z with magnitude |z| = rp is inside the ROC, then any other complex
number 2’ with magnitude |z/| = r; > ry will also be in the ROC.
Now, suppose z[n] is a right-sided sequence. So, z[n] is zero prior to some values of
n, say Ny. That is

z[n] =0, n < N;.

Consider a point z with |z| = rg, and rg < 1. Then

oo

X(z) = Z #nlz

n=—0oo

= Z x[n|rg"

n ZIV]_

because ry < 1 guarantees that the sum is finite.
Now, if there is another point z’ with |2’| = 7y > rg, we may write r; = arg for some
a > 1. Then the series

(=] oo
Z zn]ry" = Z z[nla "ry"
n=MN n=N1
-
< aM Z z[n|rg™ < oo.
n=N,;
So, 2z’ is also in the ROC. O

Property 7. If X(z) is rational, i.e., X(z) = L— where A(z) and B(z) are poly-
nomials, and if z[n] is right-sided, then the ROC 1s ﬁn? region outside the outermost
pole.

Proof. If X(z) is rational, then by (Appendix, A.57) of the textbook

A(z) e éakz

B(2)  ITimi(1—p )

where py. is the k-th pole of the system. Using partial fraction, we have

ZZ

E
=1 = p*“)

X(z) =



Each of the term in the partial fraction has an ROC being the set of z such that
|z| > |pi| (because x[n] is right-sided). In order to have X(z) convergent, the ROC
must be the intersection of all individual ROCs. Therefore, the ROC is the region
outside the outermost pole. 1

For example, if

X{(2) = i1

then the ROC is the region |z| > é

Property 9. A discrete-time LTI system is stable if and only if ROC of H(z)

cludes the unit circle.

Proof. A system is stable if and only if h[n| is absolutely summable, if and only if
DTFT of h[n| exists. Consequently by Property 2, ROC of H(z) must include the
unit circle. |

Property 10. A causal discrete-time LTI system is stable if and only if all of its
poles are inside the unit circle.

Examples.

Causal, Stable Causal, Unstable Not causal, Stable



X(s) = [ x(t)yeitat
= X(jw)
Thus X(s) = X(jow) when s=jo

This means laplace transform is same as fourier transform when s=jw . Above
equation shows that fourier transform is special case of laplace transform. Thus laplace
transform provides broader characterization compared to fourier transform. s =j® indicates
imaginary axis in complex s-plane. Thus laplace transform is basically fourier transform on
imaginary (j w) axis in the s-plane.

Convergence of laplace transform

From equation 2.3.8 we know that laplace transform is basically the fourier transform
of x(t)e-°'. Hence if fourier transform of x(f)e-°' exists, then laplace transform of x(t)
exists. For fourier transform to exist, x(f)e~°' must be absolutely integrable. i.e.,

I lx(t)e-°!| dt <

-

Z-TRANSFORMS:

The z-transform is a generalization of the discrete-time Fourier transform we learned
in Chapter 5. As we will see, z-transform allows us to study some system properties
that DTFT cannot do.

1 The z-Transform

Definition 21. The z-transform of a discrete-time signal x[n| is:

[=. =]

X2y = Z Einz=". (.1)

n==0oC

We denote the z-transform operation as

r[n] «— X(2).

In general, the number z in ( .1) is a complex number. Therefore, we may write z as

z =re,

where r € R and w € R. When r =1, ( .1) becomes



=)

X)) = Y znjeien,

n==o00

which is the discrete-time Fourier transform of z[n]. Therefore, DTFT is a special
case of the z-transform! Pictorially, we can view DTFT as the z-transform evaluated
on the unit circle:

ANTm

Figure 1: Complex z-plane. The z-transform reduces to DTFT for values of z on
the unit circle.

When r # 1, the z-transform is equivalent to

o 4]

X(re™) = Z z[n] (re’™) ™"



Example 1. Consider the signal z[n] = a™u[n], with 0 < a < 1. The z-transform of
x[n] is

o0
Xfz) = Zn"-u[n]: "
—0C
oo
3w
n=>0
Therefore, X(z) converges if Y > (az™')" < co. From geometric series, we know
that
=, _q\n 1
Z (") =—— =,
n=>0 1 —az”

with ROC being the set of z such that |z| > |al|
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Figure 2: Pole-zero plot and ROC of Example 1.



Example 2. Consider the signal z[n] = —a"™u[-n — 1] with 0 < a < 1. The
z-transform of z[n] is

X(z)=— Z a"u[-n —1]z7"

— _ E r_}.n:;“n

n=0

Therefore, X(z) converges when |a~!'z| < 1. or equivalently |z| < |a|. In this case.

R = Lo =

gl T—agz

11

with ROC being the set of 2z such that |z| < |a|. Note that the z-transform is the
same as that of Example 1. The only difference is the ROC. In fact, Example 2 is
just the left-sided version of Example 1!



Figure 3: Pole-zero plot and ROC of Example 2.

Example 3. Consider the signal

z[n] =7 (%)nu[n] 6 (%)u[‘n]

The z-transform is
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For X(z) to converge, both sums in X (z) must converge. So we need both |z| > ||
| > |

and |z| > |3|. Thus, the ROC is the set of z such that |z| > |3].
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Properties of ROC

Property 1. The ROC is a ring or disk in the z-plane center at origin.

Property 2. DTFT of x[n] exists if and only if ROC includes the unit circle.

Proof. By definition, ROC is the set of z such that X(z) converges. DTFT is the z-
transform evaluated on the unit circle. Therefore, if ROC includes the unit circle, then
X (z) converges for any value of 2 on the unit circle. That is, DTFT converges. [

‘ Property 3. The ROC contains no poles.

Property 4. If z[n] is a finite impulse response (FIR), then the ROC is the entire

z-plane.

Property 5. If z[n] is a right-sided sequence, then ROC extends outward from the
outermost pole.

Property 6. If z[n] is a left-sided sequence, then ROC extends inward from the
innermost pole.




Proof. Let’s consider the right-sided case. Note that it is sufficient to show that if a
complex number z with magnitude |z| = rp is inside the ROC, then any other complex
number 2’ with magnitude |z/| = r; > ry will also be in the ROC.
Now, suppose z[n] is a right-sided sequence. So, z[n] is zero prior to some values of
n, say Ny. That is

z[n] =0, n < N;.

Consider a point z with |z| = rg, and rg < 1. Then

oo

X(z) = Z #nlz

n=—0oo

= Z x[n|rg"

n ZIV]_

because ry < 1 guarantees that the sum is finite.
Now, if there is another point z’ with |2’| = 7y > rg, we may write r; = arg for some
a > 1. Then the series

(=] oo
Z zn]ry" = Z z[nla "ry"
n=MN n=N1
-
< aM Z z[n|rg™ < oo.
n=N,;
So, 2z’ is also in the ROC. O

Property 7. If X(z) is rational, i.e., X(z) = L— where A(z) and B(z) are poly-
nomials, and if z[n] is right-sided, then the ROC 1s ﬁn? region outside the outermost
pole.

Proof. If X(z) is rational, then by (Appendix, A.57) of the textbook

A(z) e éakz

B(2)  ITimi(1—p )

where py. is the k-th pole of the system. Using partial fraction, we have

ZZ

E
=1 = p*“)

X(z) =



Each of the term in the partial fraction has an ROC being the set of z such that
|z| > |pi| (because x[n] is right-sided). In order to have X(z) convergent, the ROC
must be the intersection of all individual ROCs. Therefore, the ROC is the region
outside the outermost pole. 1

For example, if

X{(2) = i1

then the ROC is the region |z| > é

Property 9. A discrete-time LTI system is stable if and only if ROC of H(z)

cludes the unit circle.

Proof. A system is stable if and only if h[n| is absolutely summable, if and only if
DTFT of h[n| exists. Consequently by Property 2, ROC of H(z) must include the
unit circle. |

Property 10. A causal discrete-time LTI system is stable if and only if all of its
poles are inside the unit circle.

Examples.

Causal, Stable Causal, Unstable Not causal, Stable



