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 To Develop skills in making critical architectural decisions that influence the overall system 
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 2. Describe various process models for developing software. 

 3. Apply fundamental design concepts to create software solutions that are modular, scalable,      and 

maintainable.   
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 5. Apply project management and software cost estimation skills to real-world scenarios, considering 
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      UNIT-I 

SOFTWARE, SOFTWARE ENGINEERING, AND PROCESS: The nature of Software, The 

unique nature of WebApps, Software engineering- A layered technology, General principles of 

software engineering practice, Software myths, Agile development: What is an Agile Process?,  

Capability Maturity Model Integration (CMMI). 

 

1.1 The Nature of Software 

 

• Today, software takes on a dual role. It is a product, and at the same time, the vehicle for 

delivering a product .Whether it resides within a mobile phone or operates inside a 

mainframe computer, software is an information transformer—producing, managing, 

acquiring, modifying, displaying, or transmitting information that can be as simple as a 

single bit or as complex as a multimedia presentation derived from data acquired from 

dozens of independent sources.  

  

• As the vehicle is used to deliver the product, software acts as the basis for the control of the 

computer (operating systems), the communication of information (networks), and the 

creation and control of other programs (software tools and environments). Software delivers 

the most important product of our time—information.  

• The role of computer software has undergone significant change over the last half-century. 

The questions that were asked of the lone programmer are the same questions that are asked 

when modern computer-based systems are built: 

• Why does it take so long to get software finished? 

• Why are development costs so high? 

• Why can’t we find all errors before we give the software to our customers? 

• Why do we spend so much time and effort maintaining existing 

programs? 

• Why do we continue to have difficulty in measuring progress  as software is being developed 

and maintained? 
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• 1.1.1 Defining Software 

• 1.1.2 Software Application Domains 

• 1.1.3 Legacy Software 

 

1.1.1 Defining Software 

• Software is:  

(1) instructions (computer programs) that when executed provide desired features, 

function, and performance;  

(2) data structures that enable the programs to adequately manipulate information, and 

(3) descriptive information in both hard copy and virtual forms that describes the 

operation and use of the programs. 

•  It’s important to examine  the characteristics of software  that make it different from 

other things that human beings  build.  

• Software is a logical rather than a physical system element. Therefore, software has 

characteristics  that are  considerably different than those of hardware: 

1. Software is developed or engineered; it is not manufactured in the classical sense. 

• Although some similarities exist between software development and hardware 

manufacturing, the two activities are fundamentally different. 

•  In both activities, high quality is achieved through good design, but the manufacturing  

phase for hardware can introduce quality   problems that are non-existent (or easily 

corrected) for software. 

•  Both activities are dependent on people, but the relationship between people applied and 

work accomplished is entirely different   

• Both activities require the construction of a “product,” but the approaches are different. 

Software costs are concentrated in engineering. This means that software projects cannot be 

managed as if they were manufacturing projects. 
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2. Software doesn’t “wear out.” 

• Figure 1.1 depicts failure rate as a function of time for hardware. The relationship, often 

called the “bathtub curve,” indicates that hardware exhibits relatively high failure rates early 

in its life ,defects are corrected and the failure rate drops to a steady-state level for some 

period of time. 

•  As time passes, however, the failure  rate  rises  again  as hardware components suffer  from 

the cumulative effects of dust, vibration, abuse, temperature  extremes, and many other  

environmental  maladies. Stated simply, the  hardware begins to wear out. 

• Software is not susceptible to the environmental maladies that cause hardware to wear out. In 

theory, therefore, the failure rate curve for software should take the form of the “idealized 

curve” shown in Figure 1.2.  

• Software is not susceptible to the environmental maladies that cause hardware to wear out. In 

theory, therefore, the failure rate curve for software should take the form of the “idealized 

curve” shown in Figure 1.2.  
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• However, these are corrected and the curve flattens as shown. The idealized 

curve is a gross over-simplification of actual failure models for software. 

However, the implication is clear—software doesn’t wear out. But it does 

deteriorate! 

• This seeming contradiction can best be explained by considering the actual curve in Figure 

1.2. During its life, software will undergo change. As changes are made, it is likely that 

errors will be introduced, causing the failure rate curve to spike as shown in the “actual 

curve” (Figure 1.2).  

• Before the curve can return to the original steady-state failure rate, another change is 

requested, causing the curve to spike again. Slowly, the minimum failure rate level begins to 

rise—the software is deteriorating due to change. 

• Another aspect of wear illustrates the difference between hardware and   software. When a 

hardware component wears out, it is replaced by a spare part. There are no software spare 

parts. 

•  Every software failure indicates an error in design or in the process  through which design 

was translated into machine executable code.  Therefore, the software maintenance tasks that 

accommodate requests for change involve considerably more complexity than hardware 

maintenance. 
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2. Although the industry is moving toward component-based construction, most software 

continues to be custom built. 

 As an engineering discipline evolves, a collection of standard design components  is created.  

 The reusable components have been created so that the engineer  can concentrate  on the 

truly  innovative elements of a design, that is, the parts  of the design that represent 

something new.  

 In the hardware world, component reuse  is a natural part of the engineering  process. In the 

software world, it is something that has only  begun to be achieved on a broad scale. 

 A software component should be designed and implemented so that it can be reused in many 

different programs.  

 Modern reusable components encapsulate both data and the processing that is applied to the 

data, enabling the software engineer to create new applications from reusable parts. 

1.1.2 Software Application Domains 

Today, seven broad categories of computer software present continuing challenges  for software 

engineers: 

• System Software 

• Application Software 

• Engineering/Scientific Software 

• Embedded  Software 

• Product-line Software 

• Web Applications 

• Artificial Intelligence Software 

• Open-world Computing 

• NetSourcing 

• Open Source 

• System Software—a collection of programs written to service other programs.  
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• Some system software (e.g., compilers, editors, and file management utilities) processes 

complex, but determinate, information structures.  

• Other systems applications (e.g., operating system components, drivers, networking 

software, telecommunications processors) process largely indeterminate data. 

• Application software—stand-alone programs that solve a specific business need.  

• Applications in this area process business or technical data in a way that facilitates business 

operations or  management/ technical decision making. 

• Engineering/Scientific  Software—has been characterized by “number crunching” 

algorithms.  

• Applications range from astronomy (study of space) to volcanology(study of geology, 

geophysics, geochemistry), from automotive stress  analysis  to  space shuttle orbital 

dynamics, and from molecular biology to automated manufacturing.  

•  Computer-aided design, system simulation, and other interactive applications have  begun to 

take on real-time and even system software characteristics. 

• Embedded software—resides within a product or system and is used to implement and 

control features and functions for the end user and for the system itself.  

• Embedded software can perform limited and esoteric functions (e.g., key pad control for a 

microwave oven) or provide significant function and control capability. 

• Product-line  Software— 

• designed to provide a specific capability for use by many different customers. Product-line 

software can focus on a limited and esoteric   marketplace (e.g., inventory control products) 

or address mass consumer markets (e.g., word processing, spreadsheets, computer graphics, 

multimedia, entertainment, database management, and personal and business financial 

applications). 
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• Web Applications—called “WebApps,” this network-centric software category spans a 

wide array of applications. In their simplest form, WebApps can be little more than a set of 

linked hypertext files that present information using text and limited graphics. 

•  However, as Web 2.0 emerges, WebApps are evolving into sophisticated computing 

environments that not only   provide stand-alone features, computing functions, and content 

to the end user, but also are integrated with corporate databases and business applications. 

• Artificial Intelligence Software—makes use of non-numerical algorithms to  solve complex 

problems that are not amenable to computation or straightforward analysis.  

• Applications within this area include robotics, expert systems, pattern recognition (image 

and voice), artificial neural networks, theorem proving, and game playing. 

• Open-World Computing— 

• The rapid growth of wireless networking may soon lead to true pervasive, distributed 

computing.  

• The challenge for   software engineers will be to develop systems and application software 

that will allow mobile devices, personal computers, and enterprise systems to communicate 

across vast networks. 

• NetSourcing— 

• The World Wide Web is rapidly becoming a computing engine as well as a content provider.  

• The challenge for software engineers is to architect simple (e.g., personal financial planning) 

and sophisticated applications  that provide a benefit to targeted end-user markets 

worldwide. 

• Open Source— 

• A growing trend that results in distribution of source code for systems applications (e.g., 

operating systems, database, and development environments) so that many people can 

contribute to its development.  
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• The challenge for software engineers is to build source code that is self-descriptive, but more 

importantly, to develop techniques that will enable both customers and developers to know 

what changes have been made and how those changes manifest themselves within the 

software.  

1.1.3 Legacy Software 

• Hundreds of thousands of computer programs fall into one of the seven broad application 

domains discussed in the preceding subsection. 

•  Some of these are state of- the-art software—just released to individuals, industry, and 

government.  

• But other programs are older, in some cases much older. These older programs—often 

referred to as legacy software—have been the focus of continuous  attention and concern 

since the 1960s.  

• Dayani-Fard and his colleagues describe legacy software in the following way: 

• Legacy software systems . . . were developed decades ago and have been continually 

modified to meet changes in business requirements and computing platforms.  

• Unfortunately, there is sometimes one additional characteristic that is present in legacy 

software—poor quality. 

• The only reasonable  answer may be: Do nothing, at least until the legacy system must 

undergo  some significant change.  

• If the legacy software meets the needs of its users and runs reliably, it  isn’t  broken and does 

not need to be fixed. However, as time passes, legacy systems often evolve for one or more 

of the following reasons: 

 • The software must be adapted to meet the needs of new   computing environments    or 

technology. 

• The software must be enhanced to implement new business requirements. 

• The software must be extended to make it interoperable with other more  modern systems or 

databases. 

 • The software must be re-architected to make it viable within a network environment. When 
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these modes of evolution occur, a legacy system must be re-engineered  so that it remains viable 

into the future.  

1.2 The Unique Nature of WebApps 

• Today, WebApps have evolved into sophisticated computing tools that not only provide 

stand-alone function to the end user, but also have been integrated with corporate databases 

and business applications. 

•  WebApps are one of a number of distinct software categories. And yet, it can be argued that 

WebApps are different.  

• Powell [Pow98] suggests that Web-based systems and applications “involve a mixture 

between  print publishing and software development, between marketing and computing,  

between internal communications and external relations, and between art and technology.” 

• The following attributes are encountered in the  

• Network intensiveness. A WebApp resides on a network and must serve the needs of a diverse 

community of clients.  

•  The network may enable worldwide access and communication (i.e., the Internet) or more 

limited access  and communication (e.g., a corporate Intranet). 

•  Concurrency. A large number of users may access the WebApp at one time. In many cases, the 

patterns of usage among end users will vary greatly. 

•  Unpredictable load. The number of users of the WebApp may  vary by orders of magnitude 

from day to day. One hundred users may show up on Monday; 10,000 may use the system on 

Thursday. 

•  Performance. If a WebApp user must wait too long (for access, for server-side processing, for 

client-side formatting and display), he or she may decide to go elsewhere. 

• Availability. Although expectation of 100 percent availability is unreasonable, users of popular 

WebApps often demand access on a 24/7/365 basis. Users in Australia or Asia might demand 

access during times when traditional domestic software applications in North America might be 

taken off-line for maintenance. 
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• Data driven. The primary function of many WebApps is to use hypermedia to present text, 

graphics, audio, and video content to the end user. In addition, WebApps are commonly used to 

access information that exists on databases that are not an integral part of the Web-based 

environment (e.g., e-commerce or financial applications). 

•  Content sensitive. The quality and aesthetic nature of content remains an important 

determinant of the quality of a WebApp. 

•  Continuous evolution. Unlike conventional application software that evolves over a series 

of planned, chronologically spaced releases, Web applications evolve continuously. 

•  It is not unusual for some WebApps (specifically, their content) to be updated on a minute-

by-minute schedule or for content to be independently computed for each request. 

• Immediacy. Although immediacy—the compelling need to get software to market quickly—is a 

characteristic of many application domains, WebApps often exhibit a time-to-market that can be 

a matter of a few days or weeks.7 

• Security. Because WebApps are available via network access, it is difficult,if not impossible, to 

limit the population of end users who may access the application.  

In order to protect sensitive content and provide secure modesof data transmission, strong 

security measures must be implemented throughout the infrastructure that supports a WebApp 

and within the application itself. 

• Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel. When an 

application has been designed to market or sell products or ideas, aesthetics may have as much 

to do with success as technical design. 

• It can be argued that other application categories discussed in Section 1.1.2 can exhibit some 

of the attributes noted. However, WebApps almost always exhibit all of them. 

1.3 Software Engineering 

• Software has become deeply embedded in virtually every aspect of our lives, It follows that a 

concerted effort should be made to understand the problem before a software solution is 

developed. 
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• The information technology requirements demanded by individuals, businesses, and 

governments grow increasing complex with each passing year. Large teams of people now 

create computer programs that were once built by a single individual. It follows that design 

becomes a pivotal activity. 

• Individuals, businesses, and governments increasingly rely on software for strategic and 

tactical decision making as well as day-to-day operations and control. If the software fails, 

people and major enterprises can experience anything from minor inconvenience to catastrophic 

failures. It follows that software should exhibit high quality. 

• • As the perceived value of a specific application grows, the likelihood is that its user base and 

longevity will also grow. As its user base and time-in-use increase, demands for adaptation and 

enhancement will also grow. It follows that software should be maintainable. 

• These simple realities lead to one conclusion: software in all of its forms and across all of its 

application domains should be engineered. And that leads us to the topic of this book—

software engineering. 

• The IEEE (Institute of Electrical and Electronics Engineers,) has developed a more 

comprehensive definition when it states: 

• Software Engineering: (1) The application of a systematic, disciplined, quantifiable 

approach to the development, operation, and maintenance of software; that is, the application 

of engineering to software. (2) The study of approaches as in (1). 

• And yet, a “systematic, disciplined, and quantifiable” approach applied by one software team 

may be burdensome to another.  

• Software engineering is a layered technology. Referring to Figure 1.3, any engineering 

approach (including software engineering) must rest on an organizational commitment to 

quality.  

• Total quality management, Six Sigma, and similar philosophies foster a continuous process 

improvement culture, and it is this culture that ultimately leads to the development of 

increasingly more effective approaches to software engineering. The bedrock that supports 

software engineering is a quality focus. 
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• The foundation for software engineering is the process layer. The software engineering 

process is the glue that holds the technology layers together and enables rational and timely 

development of computer software 

 

Process defines a framework  that must be established for effective delivery of software 

engineering technology. The software process forms the basis for management control of 

software projects and establishes the context in which technical methods are applied, work 

products (models, documents, data, reports, forms, etc.) are produced, milestones are 

established, quality is ensured, and change is properly managed.  

• Software engineering methods provide the technical how-to’s for building software. Methods 

encompass a broad array of tasks that include communication, requirements analysis, design 

modeling, program construction, testing, and support.  

• Software engineering tools provide automated or semi-automated support for the process and 

the methods. When tools are integrated so that information created by one tool can be used 

by another, a system for the support of software development, called computer-aided 

software engineering, is established. 

1.4 The Software Process 

• A process is a collection of activities, actions, and tasks that are performed when some work 

product is to be created. 

•   An activity strives to achieve a broad objective 

(e.g., communication with stakeholders) and is applied regardless of the application domain, size 
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of the project, complexity of the effort, or degree of rigor with which software engineering is to 

be applied.  

 An action (e.g., architectural design) encompasses a set of tasks that produce a major work 

product (e.g., an architectural design model).  

 A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces 

a tangible outcome. 

•  In the context of software engineering, a process is not a rigid prescription for how to build 

computer software. Rather, it is an adaptable approach that enables the people doing the 

work (the software team) to pick and choose the appropriate set of work actions and tasks. 

The intent is always to deliver software in a timely manner and with sufficient quality to 

satisfy those who have sponsored its creation and those who will use it.  

• A process framework establishes the foundation for a complete software engineering process 

by identifying a small number of framework activities that are applicable to all software 

projects, regardless of their size or complexity. In addition, the process framework 

encompasses a set of umbrella activities that are applicable across the entire software 

process. A generic process framework for software engineering encompasses five activities: 

• Communication.  

• Planning 

• Modeling.  

• Construction 

• Deployment 

• These five generic framework activities can be used during the development of small, simple 

programs, the creation of large Web applications, and for the engineering of large, complex 

computer-based systems.  

• For many software projects, framework activities are applied iteratively as a project 

progresses. That is, communication, planning, modeling, construction,and deployment 

are applied repeatedly through a number of project iterations. 
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• Each project iteration produces a software increment that provides stakeholders with a subset 

of overall software features and functionality. As each increment is produced, the software 

becomes more and more complete. Software engineering process framework activities are 

complemented by a number of umbrella activities. 

• Typical umbrella activities include: 

• Software project tracking and control—allows the software team to assess progress 

against the project plan and take any necessary action to maintain the schedule. 

• Risk management—assesses risks that may affect the outcome of the project or the quality 

of the product. 

• Software quality assurance—defines and conducts the activities required to ensure 

software quality.  

• Technical reviews—assesses software engineering work products in an effort to uncover 

and remove errors before they are propagated to the next activity. 

• Measurement—defines and collects process, project, and product measures that assist the 

team in delivering software that meets stakeholders’ needs; can be used in conjunction with 

all other framework and umbrella activities. 

• Software configuration management—manages the effects of change       throughout the 

software process. 

• Reusability management—defines criteria for work product reuse (including software 

components) and establishes mechanisms to achieve reusable components. 

• Work product preparation and production—encompasses the activities required to create 

work products such as models, documents, logs, forms, and lists. 

• Prescriptive process models  

      Stress detailed definition, identification, and  application of process activities and tasks. 

Their intent is to improve system quality, make projects more manageable, make delivery dates 

and costs more predictable, and guide teams of software engineers as they perform the work 



18 
 

required to build a system. 

• Agile process models emphasize project “agility” and follow a set of principles that lead to a 

more informal (but, proponents argue, no less effective) approach to software process. These 

process models are generally characterized as “agile” because they emphasize 

maneuverability and adaptability.  

1.5 Software Engineering Practice 

1.5.1 The Essence of Practice 

In a classic book, How to Solve It, written before modern computers existed, George Polya 

[Pol45] outlined the essence of problem solving, and consequently, the essence of software 

engineering practice: 

 1. Understand the problem (communication and analysis). 

2. Plan a solution (modeling and software design). 

3. Carry out the plan (code generation). 

4. Examine the result for accuracy (testing and quality assurance). 

• Unfortunately, understanding isn’t always that easy. It’s worth spending a little time 

answering a few simple questions: 

• Who has a stake in the solution to the problem? That is, who are the stakeholders? 

• What are the unknowns? What data, functions, and features are required to properly solve the 

problem? 

• Can the problem be compartmentalized? Is it possible to represent smaller problems that may 

be easier to understand? 

• Can the problem be represented graphically? Can an analysis model be created? 

• Plan the solution. Now you understand the problem (or so you think) and you can’t wait to 

begin coding. Before you do, slow down just a bit and do a little design: 

• Have you seen similar problems before? Are there patterns that are recognizable in a potential 

solution? Is there existing software that implements the data, functions, and features that are 

required? 

• Has a similar problem been solved? If so, are elements of the solution reusable? 

• Can subproblems be defined? If so, are solutions readily apparent for the subproblems? 

• Can you represent a solution in a manner that leads to effective implementation? 
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• Can a design model be created? 

• Carry out the plan. The design you’ve created serves as a road map for the system you want to 

build. There may be unexpected detours, and it’s possible that you’ll discover an even better 

route as you go, but the “plan” will allow you to proceed without getting lost.  

• Does the solution conform to the plan? Is source code traceable to the design model? 

• Is each component part of the solution provably correct? Have the design and code been 

reviewed, or better, have correctness proofs been applied to the algorithm? 

• Examine the result. You can’t be sure that your solution is perfect, but you can be sure that 

you’ve designed a sufficient number of tests to uncover as many errors as possible. 

 • Is it possible to test each component part of the solution? Has a reasonable testing strategy 

been implemented? 

 • Does the solution produce results that conform to the data, functions, and features that are 

required? Has the software been validated against all stakeholder requirements? 

•  The dictionary defines the word principle as “an important underlying law or assumption 

required in a system of thought.” Regardless of their level of focus, principles help you 

establish a mind-set for solid software engineering practice. They are important for that 

reason.  

• David Hooker has proposed seven principles that focus on software engineering practice as 

a whole 

• The First Principle: The Reason It All Exists 

• A software system exists for one reason: to provide value to its users. All decisions should 

be made with this in mind, before determining the hardware platforms or development 

processes, ask yourself questions such as: “Does this add real value to the system?” If the 

answer is “no,” don’t do it. All other principles support this one. 

• The Second Principle: KISS (Keep It Simple, Stupid!) 

There are many factors to consider in any design effort. All design should be as simple as 

possible, but no simpler. Simple also does not mean “quick and dirty.” In fact, it often takes a lot 
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of thought and  work over multiple iterations to simplify.  

• The Third Principle: Maintain the Vision 

• A clear vision is essential to the success of a software project. Without one, a project almost 

unfailingly ends up being “of two [or more] minds” about itself. 

• Having an empowered architect who can hold the vision and enforce compliance helps 

ensure a very successful software project. 

• The Fourth Principle: What You Produce, Others Will Consume 

•  In some way or other, someone else will use, maintain, document, or otherwise depend on 

being able to understand your system.  

• So, always specify, design, and implement knowing someone else will have to understand 

what you are doing. Design, keeping the implementers in mind.  

• The Fifth Principle: Be Open to the Future 

• A system with a long lifetime has more value. In today’s computing environments, where 

specifications change on a moment’s notice and hardware platforms are obsolete just a few 

months old, software lifetimes are typically measured in months instead of years.  

• Never design yourself into a corner. Always ask “what if,” and prepare for all possible  

answers by creating systems that solve the general problem, not just the specific 

• The Sixth Principle: Plan Ahead for Reuse 

• Reuse saves time and effort. There are many techniques to realize reuse at every level of the 

system development process. . . . Planning ahead for reuse reduces the cost and increases 

the value of both the reusable components and the systems into which they are incorporated. 

 The Seventh principle: Think! 

This last principle is probably the most overlooked. Placing clear, complete thought before 

action almost always produces better results. When you think about something, you are more 

likely to do it right. You also gain knowledge about how to do it right again. If you do think 

about something and still do it wrong, it becomes a valuable experience. A side effect of 
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thinking is learning to recognize when you don’t know something, at which point you can 

research the answer. 

1.6 Software Myths (Common Beliefs) 

• Software myths—erroneous beliefs about software and the process that is used to  build it—can 

be traced to the earliest days of        computing. Myths have a number of  attributes that make 

them insidious (something unpleasant or dangerous. ) 

• Today, most knowledgeable software engineering professionals recognize myths for what 

they are—misleading attitudes that have caused serious problems for managers and 

practitioners alike.  

• Management myths.  

• Customer myths.  

• Practitioner’s myths.  

• Management myths 

•  Myth: We already have a book that’s full of standards and procedures for building software. 

Won’t that provide my people with everything they need to know? 

 Reality: The book of standards may very well exist, but is it used? Are software practitioners 

aware of its existence? Does it reflect modern software engineering practice? Is it complete? Is it 

adaptable? Is it streamlined to improve time-to-delivery while still maintaining a focus on 

quality? In many cases, the answer to all of these questions is “no.” 

 

 

•  Myth: If we get behind schedule, we can add more programmers and catch up (sometimes 

called the “Mongolian horde” concept). 

 Reality: Software development is not a mechanistic process like manufacturing. In the words of 

Brooks [Bro95]: “adding people to a late software project makes it later.” At first, this statement 

may seem counterintuitive. However, as new people are added, people who were working must 

spend time educating the newcomers, thereby reducing the amount of time spent on productive 

https://dictionary.cambridge.org/dictionary/english/unpleasant
https://dictionary.cambridge.org/dictionary/english/dangerous
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development effort. People can be added but only in a planned and well coordinated manner. 

• Myth: If I decide to outsource the software project to a third party, I can just relax and let 

that firm build it. 

• Reality: If an organization does not understand how to manage and control software projects 

internally, it will invariably struggle when it outsources software projects. 

• Customer myths 

• Myth: A general statement of objectives is sufficient to begin writing 

programs—we can fill in the details later. 

  

• Reality: Although a comprehensive and stable statement of requirements is not always 

possible, an ambiguous “statement of objectives” is a recipe for disaster. Unambiguous 

requirements (usually derived iteratively) are developed only through effective and 

continuous communication between customer and developer. 

 Myth: Software requirements continually change, but change can be easily 

accommodated because software is flexible. 

 Reality: It is true that software requirements change, but the impact of change varies with the 

time at which it is introduced. When requirements changes are requested early (before design or 

code has been started), the cost impact is relatively small.16 However, as time passes, the cost 

impact grows rapidly—resources have been committed, a design framework has been 

established, and change can cause upheaval that requires additional resources and major design 

modification.  

• Practitioner’s myths 

• Myth: Once we write the program and get it to work, our job is done. 

Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’ll take you 

to get done.” Industry data indicate that between 60 and 80 percent of all effort expended on 

software will be expended after it is delivered to the customer for the first time. 

• Myth: Until I get the program “running” I have no way of assessing its quality. 

Reality: One of the most effective software quality assurance mechanisms can be applied from 
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the inception of a project—the technical review. Software reviews (described in Chapter 15) are 

a “quality filter” that have been found to be more effective than testing for finding certain 

classes of software defects. 

•  Myth: The only deliverable work product for a successful project is the working program. 

 Reality: A working program is only one part of a software configuration that includes many 

elements. A variety of work products (e.g., models, documents, plans) provide a foundation for 

successful engineering and, more important, guidance for software support. 

 Myth: Software engineering will make us create voluminous (capacious,spacious) and 

unnecessary documentation and will invariably slow us down. 

 Reality: Software engineering is not about creating documents. It is about creating a quality 

product. Better quality leads to reduced rework. And reduced rework results in faster delivery 

times. Many software professionals recognize the fallacy of the myths just described. 

Regrettably, habitual attitudes and methods foster poor management and technical practices, 

even when reality dictates a better approach. Recognition of software realities is the first step 

toward formulation of practical solutions for software engineering. 

 

1.7 What is Agility? 

1.7.1 Agility in context of software engineering 

• Agility means effective (rapid and adaptive) response to change, effective communication 

among all stockholder. 

• Drawing the customer onto team and organizing a team so that it is in control of work 

performed. -The Agile process, light-weight methods are People-based rather than plan-

based methods. 

• The agile process forces the development team to focus on software itself rather than design 

and documentation. 

• The agile process believes in iterative method. 

• The aim of agile process is to deliver the working model of software quickly to the customer 

For example: Extreme programming is the best known of agile process. 
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An agile team recognizes that software is developed by individuals working in teams and that 

the skills of these people, their ability to collaborate is at the core for the success of the project. 

Agility can be applied to any software process 

1.7.2  Agility And The Cost Of Change 

• The conventional wisdom in software development (supported by decades of experience) is 

that the cost of change increases nonlinearly as a project progresses 

• (Figure 3.1, solid black curve). It is relatively easy to accommodate a change when a 

software team is gathering requirements (early in a project). A usage scenario might have to 

be modified, a list of functions may be extended, or a written specification can be edited. The 

costs of doing this work are minimal, and the time required will not adversely affect the 

outcome of the project. 

 

• Proponents of agility argue that a well-designed agile process “flattens” the cost of change 

curve (Figure 3.1, shaded, solid curve), allowing a software team to accommodate changes 

late in a software project without dramatic cost and time impact.  

1.7.3 What is Agile Process? 

• Any agile software process is characterized in a manner that addresses a number of key 

assumptions  about the majority of software projects: 
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• 1. It is difficult to predict in advance which software requirements will persist and which will 

change. It is equally difficult to predict how customer priorities will change as the project 

proceeds.  

• 2. For many types of software, design and construction are interleaved. That is, both activities 

should be performed in tandem so that design models are proven as they are created. It is 

difficult to predict how much design is necessary before construction is used to prove the 

design.  

• 3. Analysis, design, construction, and testing are not as predictable (from a planning point of 

view) as we might like. 

Given these three assumptions, an important question arises: How do we create a process that 

can manage unpredictability? The answer, as I have already noted, lies in process adaptability 

(to rapidly changing project and technical conditions). An agile process, therefore, must be 

adaptable. 

• But continual adaptation without forward progress accomplishes little. Therefore  an agile 

software process must adapt incrementally. To accomplish incremental adaptation, an agile 

team requires customer feedback . Hence, an incremental development strategy should be 

instituted. Software increments must be delivered in short time periods so that adaptation 

keeps pace with change (unpredictability).  

• 1.7.3.1 Agility Principles 

• The Agile Alliance  defines 12 agility principles for those who want to achieve agility: 

 1. Our highest priority is to satisfy the customer through early and continuous delivery of 

valuable software. 

 2. Welcome changing requirements, even late in development. Agile processes harness change 

for the customer’s competitive advantage. 

 3. Deliver working software frequently, from a couple of weeks to a couple of months, with a 

preference to the shorter timescale. 

 4. Business people and developers must work together daily throughout the project. 

 5. Build projects around motivated individuals. Give them the environment and support they 



26 
 

need, and trust them to get the job done. 

 6. The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation. 

7. Working software is the primary measure of progress. 

 8. Agile processes promote sustainable development. The sponsors, developers, and users 

should be able to maintain a constant pace indefinitely. 

 9. Continuous attention to technical excellence and good design enhances agility. 

 10. Simplicity—the art of maximizing the amount of work not done—is essential. 

11. The best architectures, requirements, and designs emerge from self– organizing teams. 

 12. At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behavior accordingly. 

• 1.7.3.2  The Politics of Agile Development 

• There is considerable debate (sometimes strident) about the benefits and applicability of 

agile software development as opposed to more conventional software engineering 

processes. Jim Highsmith [Hig02a] (facetiously) states the extremes when he characterizes 

the feeling of the pro-agility camp (“agilists”).  

• No one is against agility. The real question is: What is the best way to achieve it? As 

important, how do you build software that meets customers’ needs today and exhibits the 

quality characteristics that will enable it to be extended and scaled to meet customers’ needs 

over the long term? 

 There are no absolute answers to either of these questions. Even within the agile school itself, 

there are many proposed process models (Section 3.4), each with a subtly different approach to 

the agility problem. Within each model there is a set of “ideas” (agilists are loath to call them 

“work tasks”) that represent a significant departure from traditional software engineering. And 

yet, many agile concepts are simply adaptations of good software engineering concepts. Bottom 

line: there is much that can be gained by considering the best of both schools and virtually 

nothing to be  gained by denigrating either approach. 
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• 1.7.3.3 Human Factors 

• Proponents of agile software development take great pains to emphasize the importance of 

“people factors.” As Cockburn and Highsmith  state, “Agile development focuses on the 

talents and skills of individuals, molding the process to specific people and teams.” The key 

point in this statement is that the process molds to the needs of the people and team, not the 

other way around 

•       A number of key traits( distinguishing quality or characteristics)  

• 1)Competence. In an agile development (as well as software engineering) context, 

“competence” encompasses innate talent, specific software-related skills, and overall 

knowledge of the process that the team has chosen to apply.  

• 2) Common focus. Although members of the agile team may perform different tasks and 

bring different skills to the project, all should be focused on one  goal—to deliver a working 

software increment to the customer within the time promised. To achieve this goal, the team 

will also focus on continual adaptations (small and large) that will make the process fit the 

needs of the team. 

• 3)Collaboration. Software engineering (regardless of process) is about assessing, analyzing, 

and using information that is communicated to the software team; creating information that 

will help all stakeholders understand the work of the team; and building information 

(computer software and relevant databases) that provides business value for the customer. To 

accomplish these tasks, team members must collaborate—with one another and all other 

stakeholders. 

• 4)Decision-making ability. Any good software team (including agile teams) must be 

allowed the freedom to control its own destiny. This implies that the team is given 

autonomy—decision-making authority for both technical and project issues. 

• 5)Fuzzy problem-solving ability. Software managers must recognize that the agile team 

will continually have to deal with ambiguity (inexactness) and will continually be buffeted 

( strike repeatedly )by change. In some cases, the team must accept the fact that the problem 

they are solving today may not be the problem that needs to be solved tomorrow. However, 
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lessons learned from any problem-solving activity (including those that solve the wrong 

problem) may be of benefit to the team later in the project. 

• 6)Mutual trust and respect. The agile team must become what DeMarco and Lister 

[DeM98] call a “jelled” team (Chapter 24). A jelled team exhibits the trust and respect that 

are necessary to make them “so strongly knit that the whole is greater than the sum of the 

parts.” [DeM98]   

• 7)Self-organization. In the context of agile development, self-organization implies three 

things:   

• the agile team organizes itself for the work to be done, 

• the team organizes the process to best accommodate its local environment, 

• the team organizes the work schedule to best achieve delivery of the software increment.  

• Self-organization has a number of technical benefits, but more importantly, it serves to 

improve collaboration and boost team morale. In essence, the team serves as its own 

management. Ken Schwaber  addresses these issues when he writes: “The team selects how 

much work it believes it can perform within the iteration, and the team commits to the work. 

• 1.7.3.4 EXTREME PROGRAMMING (XP) 

• Extreme Programming (XP), the most widely used approach to agile software development. 

• More recently, a variant of XP, called Industrial XP (IXP) has been proposed . IXP refines 

XP and targets the agile process specifically for use within large organizations. 

• 1.7.3.4.1 XP Values 

• Beck  defines a set of five values that establish a foundation for all work performed as part of 

XP—communication, simplicity, feedback, courage, and respect. Each of these values is 

used as a driver for specific XP activities, actions, and tasks.  

• In order to achieve effective communication between software engineers and other 

stakeholders (e.g., to establish required features and functions for the software), XP 

emphasizes close, yet informal (verbal) collaboration between customers and developers. 

• To achieve simplicity, XP restricts developers to design only for immediate needs, rather 

than consider future needs. 

• Feedback is derived from three sources: the implemented software itself, the customer, and 

other software team members 
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• Beck  argues that strict adherence to certain XP practices demands courage. A better word 

might be discipline. Most software teams succumb, arguing that “designing for tomorrow” 

will save time and effort in the long run. 

• The agile team inculcates respect among it 

• members, between other stakeholders and team members, and indirectly, for the software 

itself.  

• 1.7.3.4.2 The XP Process 

• Extreme Programming uses an object-oriented approach (Appendix 2) as its preferred 

development paradigm and encompasses a set of rules and practices that 

• occur within the context of four framework activities: planning, design, coding, and testing. 

Figure 3.2 illustrates the XP process and notes some of the key ideas and tasks that are 

associated with each framework activity.  

 

• Planning. The planning activity (also called the planning game) begins with listening—a 

requirements gathering activity that enables the technical members of the XP team to 
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understand the business context for the software and to get a broad feel for required output 

and major features and functionality. 

• Design. XP design rigorously follows the KIS (keep it simple) principle. A simple design is 

always preferred over a more complex representation. In addition, the design provides 

implementation guidance for a story as it is written—nothing less, 

• nothing more. The design of extra functionality (because the developer assumes it will be 

required later) is discouraged. XP encourages the use of (Class-responsibility-collaboration) 

as an effective mechanism for 

  thinking about the software in an object-oriented context.  

• XP encourages refactoring—a construction    technique that is also a method for design 

optimization. 

• A central notion in XP is that design occurs both before and after coding commences 

• Coding 

• A key concept during the coding activity (and one of the most talked about aspects of XP) is 

pair programming. XP recommends that two people work together at one computer 

workstation to create code for a story.  

• This provides a mechanism for real-time problem solving (two heads are often better than 

one) and real-time quality assurance (the code is reviewed as it is created). It also keeps the 

developers focused on the problem at hand. As pair programmers complete their work, the 

code they develop is integrated with the work of others.  

• Testing The unit tests that are created should be implemented using a framework that 

enables them to be automated. XP acceptance tests, also called customer tests, are specified 

by the customer and focus on overall system features and functionality that are visible and 

reviewable by the customer. 

• 1.7.3.4.3 Industrial XP 

• Joshua Kerievsky  describes Industrial Extreme Programming (IXP) in the following 

manner: “IXP is an organic evolution of XP. It is imbued with XP’s  minimalist, customer-
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centric, test-driven spirit. IXP differs most from the original XP in its greater inclusion of 

management, its expanded role for customers, and its upgraded technical practices.” IXP 

incorporates six new practices that are designed to help ensure that an XP project works 

successfully for significant projects within a large organization. 

1) Readiness assessment 

• . The assessment ascertains whether 

•  (1) an appropriate development environment exists to support IXP, (2) the team will be 

populated by the proper set of stakeholders,  

• (3) the organization has a distinct quality program and supports continuous improvement, 

•  (4) the organizational culture will support the new values of an agile team, and  

• (5) the broader project community will be populated appropriately. 

• Project community 

•  A community may have a technologist and customers who are central to the success of a 

project as well as many other stakeholders (e.g., legal staff, quality auditors, manufacturing 

or sales types) who “are often at the periphery of an IXP project yet they may play important 

roles on the project”. 

• Project chartering. Chartering also examines the context of the project to determine how it 

complements, extends, or replaces existing systems or       processes. 

• Test-driven management. Test-driven management establishes a series of measurable 

“destinations”  and then defines mechanisms for determining whether or not       these 

destinations have been reached. 

• Retrospectives. An IXP team conducts a specialized technical review after a software 

increment is delivered. Called a retrospective, the review    examines “issues, events, and 

lessons-learned” across a software increment and/or the entire software release. 
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• Continuous learning. Because learning is a vital part of continuous process improvement, 

members of the XP team are encouraged (and possibly, incented) to learn new methods and 

techniques that can lead to a higher quality product. 

• In addition to the six new practices discussed, IXP modifies a number of existing XP 

practices.  

• Story-driven development (SDD) insists that stories for acceptance tests be written before a 

single line of code is generated.  

• Domain-driven design (DDD) is an improvement on the “system metaphor” concept used in 

XP. 

• Pairing extends the XP pair programming concept to include managers and other 

stakeholders. The intent is to improve knowledge sharing among XP team members who 

may not be directly involved in technical development. 

•  Iterative usability discourages front-loaded interface design in favor of usability design that 

evolves as software increments are delivered and users’ interaction with the software is 

studied. 

• 1.7.3.4.4 The XP Debate 

• Proponents counter that XP is continuously evolving and that many of the issues raised by 

critics have been addressed as XP practice matures. Among the issues that continue to 

trouble some critics of XP are: 

• Requirements volatility (liability to change rapidly and unpredictably) 

• Conflicting customer needs. 

• Requirements are expressed informally.  

• Lack of formal design. 

1.8 CMMI (Capability Maturity Model Integration) 

• The original CMM was developed and upgraded by the Software Engineering Institute 

throughout the 1990s as a complete SPI framework. Today, it has evolved into the Capability 
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Maturity Model Integration (CMMI) , a comprehensive process meta-model that is 

predicated on a set of system and software engineering capabilities that should be present as 

organizations reach different levels of process capability and maturity. 

• The CMMI represents a process meta-model in two different ways: (1) as a “continuous” 

model and (2) as a “staged” model. The continuous CMMI meta-model describes a process 

in two dimensions as illustrated in Figure 30.2. Each process area (e.g., project planning or 

requirements management) is formally assessed against specific goals and practices and is 

rated according to the following capability levels: 

  

 

• Level 0: Incomplete—the process area (e.g., requirements management) is either not 

performed or does not achieve all goals and objectives defined by the CMMI for level 1 

capability for the process area. 

• Level 1: Performed—all of the specific goals of the process area (as defined by the CMMI) 

have been satisfied. Work tasks required to produce defined work products are being 

conducted. 
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• Level 2: Managed—all capability level 1 criteria have been satisfied. In addition, all work 

associated with the process area conforms to an organizationally defined policy; all people 

doing the work have access to adequate resources to get the job done; stakeholders are 

actively involved in the process area as required; all work tasks and work products are 

“monitored, controlled, and reviewed; and are evaluated for adherence to the process 

description”. 

• Level 3: Defined—all capability level 2 criteria have been achieved. In addition, the process 

is “tailored from the organization’s set of standard processes according to the organization’s 

tailoring guidelines, and      contributes work products, measures, and other process-

improvement information to the organizational process assets”. 

• Level 4: Quantitatively managed—all capability level 3 criteria have been  achieved. In 

addition, the process area is controlled and improved using  measurement and quantitative 

assessment. “Quantitative objectives for quality and process performance are established and 

used as criteria in managing the process” . 

• Level 5: Optimized—all capability level 4 criteria have been achieved. In  addition, the 

process area is adapted and optimized using quantitative  (statistical) means to meet 

changing customer needs and to continually  improve the efficacy of the process area under 

consideration. 

• The CMMI defines each process area in terms of “specific goals” and the “specific practices” 

required to achieve these goals. Specific goals establish the characteristics that must exist if 

the activities implied by a process area are to be effective. Specific practices refine a goal 

into a set of process-related activities. 

•  For example, project planning is one of eight process areas defined by the CMMI for 

“project management” category.The specific goals (SG) and the associated specific practices 

(SP) defined for project planning are : 
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• SG 1 Establish Estimates 

• SP 1.1-1 Estimate the Scope of the Project 

• SP 1.2-1 Establish Estimates of Work Product and Task Attributes 

• SP 1.3-1 Define Project Life Cycle 

• SP 1.4-1 Determine Estimates of Effort and Cost 

• SG 2 Develop a Project Plan 

SP 2.1-1 Establish the Budget and Schedule 

SP 2.2-1 Identify Project Risks 

SP 2.3-1 Plan for Data Management 

SP 2.4-1 Plan for Project Resources 

SP 2.5-1 Plan for Needed Knowledge and Skills 

SP 2.6-1 Plan Stakeholder Involvement 

SP 2.7-1 Establish the Project Plan 

  

• SG 3 Obtain Commitment to the Plan 

SP 3.1-1 Review Plans That Affect the Project 

SP 3.2-1 Reconcile Work and Resource Levels 

SP 3.3-1 Obtain Plan Commitment 

 In addition to specific goals and practices, the CMMI also defines a set of five generic goals 

and related practices for each process area. Each of the five generic goals corresponds to one of 

the five capability levels. Hence, to achieve a particular capability level, the generic goal for that 

level and the generic practices that correspond to that goal must be achieved. To illustrate, the 

generic goals (GG) and practices (GP) for the project planning process area are : 

• GG 1 Achieve Specific Goals 

GP 1.1 Perform Base Practices 

• GG 2 Institutionalize a Managed Process 

GP 2.1 Establish an Organizational Policy 
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GP 2.2 Plan the Process 

GP 2.3 Provide Resources 

GP 2.4 Assign Responsibility 

GP 2.5 Train People 

GP 2.6 Manage Configurations 

GP 2.7 Identify and Involve Relevant Stakeholders 

GP 2.8 Monitor and Control the Process 

GP 2.9 Objectively Evaluate Adherence 

GP 2.10 Review Status with Higher-Level Management 

 GG 3 Institutionalize a Defined Process 

GP 3.1 Establish a Defined Process 

GP 3.2 Collect Improvement Information 

• GG 4 Institutionalize a Quantitatively Managed Process 

GP 4.1 Establish Quantitative Objectives for the Process 

GP 4.2 Stabilize Sub-process Performance 

  

• GG 5 Institutionalize an Optimizing Process 

GP 5.1 Ensure Continuous Process Improvement 

GP 5.2 Correct Root Causes of Problems 

 The staged CMMI model defines the same process areas, goals, and  practices as the continuous 

model. The primary difference is that the staged model defines five maturity levels, rather than 

five capability levels. To achieve a maturity level, the specific goals and practices associated 

with a set of process areas must be achieved. The relationship between maturity levels and 

process areas is shown in Figure 30.3. 
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The People CMM (Capability Maturity Model) 

• The People Capability Maturity Model “is a roadmap for implementing workforce practices 

that continuously improve the capability of an organization’s workforce”.  

• The goal of the People CMM is to encourage continuous improvement of generic workforce 

knowledge (called “core competencies”), specific software engineering and project 

management skills (called “workforce competencies”), and process-related abilities. 

• Like the CMM, CMMI, and related SPI frameworks, the People CMM defines a set of five 

organizational maturity levels that provide an indication of the relative sophistication of 

workforce practices and processes. These maturity levels  are tied to the existence (within an 

organization) of a set of key process areas (KPAs). An overview of organizational levels and 

related KPAs is shown in Figure 30.4 
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      UNIT-II 

PROCESS MODELS: A Generic process model (framework), Process assessment and 

improvement, Prescriptive process models: The waterfall model, Incremental process models, 

Evolutionary process models, The Unified process, SOFTWARE REQUIREMENTS: Functional 

and Non-functional requirements; User requirements, The software requirements document, 

Requirements Engineering Processes: Requirements elicitation and analysis, Requirements 

validation Requirements management, System Modeling: Context models, Behavioral models, Data 

models, Object models, Structured Methods. 

 

2.1.1 A Generic Process Model 

A process was defined as a collection of work activities, actions, and tasks that are performed when 

some work product is to be created. Each of these activities, actions, and tasks reside within a 

framework or model that defines their relationship with the process and with one another. 

  The software process is represented schematically in Figure 2.1. Referring to the figure, each 

framework activity is populated by a set of software engineering actions. Each software engineering 

action is defined by a task set that identifies the work tasks that are to be completed, the work 

products that will be produced, the quality assurance points that will be required, and the milestones 

that will be used to  indicate progress. 

A generic process framework for software engineering defines five framework activities—

communication, planning, modeling, construction, and deployment. In addition, a set of 

umbrella activities—project tracking and control, risk management, quality assurance, configuration 

management, technical reviews, and others—are applied throughout the process. 
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• One important aspect of the software process called process flow—describes how the 

framework activities and the actions and tasks that occur within each framework activity are 

organized with respect to sequence and time and is illustrated in Figure 2.2. 

• A linear process flow executes each of the five framework activities in sequence, beginning 

with communication and culminating with deployment (Figure 2.2a). An iterative process 

flow repeats one or more of the activities before proceeding to the next (Figure 2.2b). 

•  An evolutionary process flow executes the activities in a “circular” manner. Each circuit 

through the five activities leads to a more complete version of the software (Figure 2.2c).  

• A parallel process flow (Figure 2.2d) executes one or more activities in parallel with other 

activities (e.g., modeling for one aspect of the software might be executed in parallel with 

construction of another aspect of the software). 
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• 2.1.1 Defining a Framework Activity 

Although five framework activities and provided a basic definition , a software team would need 

significantly more information before it could properly execute any one of these activities as part of 

the software process. Therefore, you are faced with a key question:  

What actions are appropriate for a framework activity, given the nature of the problem to be 

solved, the characteristics of the people doing the work, and the stakeholders who are sponsoring 

the project? 

For a small software project requested by one person (at a remote location) with simple, 

straightforward requirements, the communication activity might encompass little more than a phone 

call with the appropriate stakeholder. Therefore, the only necessary action is phone conversation, 

and the work tasks (the task set) that this action encompasses are: 

• 1. Make contact with stakeholder via telephone. 

• 2. Discuss requirements and take notes. 

• 3. Organize notes into a brief written statement of requirements. 



42 
 

• 4. E-mail to stakeholder for review and approval. 

If the project was considerably more complex with many stakeholders, each with a different set of 

(sometime conflicting) requirements, the communication activity might have six distinct actions : 

inception, elicitation, elaboration ,negotiation, specification, and validation. Each of these 

software engineering actions would have many work tasks and a number of distinct work products. 

2.1.2 Identifying a Task Set 

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an action 

associated with the communication activity) can be represented by a number of different task sets—

each a collection of software engineering work tasks, related work products, quality assurance 

points, and project milestones. You should choose a task set that best  accommodates the needs of 

the project and the characteristics of your team. This implies that a software engineering action can 

be adapted to the specific needs of the software project and the characteristics of the project team. 
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• 2.1.3 Process Patterns 

•  A process pattern describes a process-related problem that is encountered during software 

engineering work, identifies the environment in which the problem has  been encountered, 

and suggests one or more proven solutions to the problem. Stated in more  general terms, a 

process pattern provides you with a template -a consistent method for describing problem 

solutions within the context of the software process. By combining patterns, a software team 

can solve problems and construct a process that best meets the needs of a project. 

• Patterns can be defined at any level of abstraction.2 In some cases, a pattern might be used to 

describe a problem (and solution) associated with a complete process model (e.g., 

prototyping). In other situations, patterns can be used to describe a problem (and solution) 

associated with a framework activity (e.g., planning) or an action within a framework 

activity (e.g., project estimating). 

•  Ambler  has proposed a template for describing a process pattern:  

Pattern Name. The pattern is given a meaningful name describing it within the context of the 

software process (e.g., TechnicalReviews).  

Forces. The environment in which the pattern is encountered and the 

issues that make the problem visible and may affect its solution. 

• Type. The pattern type is specified. Ambler suggests three types: 

 1. Stage pattern—defines a problem associated with a framework activity for the process. Since a 

framework activity encompasses multiple actions and work tasks, a stage pattern incorporates 

multiple task patterns (see the following) that are relevant to the stage (framework activity). An 

example of a 

stage pattern might be Establishing Communication. This pattern would incorporate the task 

pattern Requirements Gathering and others. 

 2. Task pattern—defines a problem associated with a software engineering action or work task and 

relevant to successful software engineering practice (e.g., Requirements Gathering is a task 

pattern). 

 3. Phase pattern—define the sequence of framework activities that occurs within the process, even 
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when the overall flow of activities is iterative in nature. An example of a phase pattern might be 

Spiral Model or Prototyping. 

• Initial context. Describes the conditions under which the pattern applies. Prior to the 

initiation of the pattern: (1) What organizational or team-related activities have already 

occurred? (2) What is the entry state for the process? 

(3) What software engineering information or project information already exists? 

 For example, the Planning pattern (a stage pattern) requires that (1) customers and software 

engineers have established a collaborative communication; 

(2) successful completion of a number of task patterns [specified] for the Communication pattern 

has occurred; and (3) the project scope, basic business requirements, and project constraints are 

known. 

• Problem. The specific problem to be solved by the pattern. 

Solution. Describes how to implement the pattern successfully. This section describes how the 

initial state of the process (that exists before the pattern is implemented) is modified as a 

consequence of the initiation of the pattern. It also describes how software engineering information 

or project information that is available before the initiation of the pattern is transformed as a 

consequence of the successful execution of the pattern. 

  

Resulting Context. Describes the conditions that will result once the pattern has been successfully 

implemented. Upon completion of the pattern:  

(1) What organizational or team-related activities must have occurred? 

(2) What is the exit state for the process? (3) What software engineering information or project 

information has been developed? 

 Related Patterns. Provide a list of all process patterns that are directly related to this one. This 

may be represented as a hierarchy or in some other  diagrammatic form.  

2.1.2 Process Assessment and Improvement 

The existence of a software process is no guarantee that software will be delivered on time, that it 

will meet the customer’s needs, or that it will exhibit the technical characteristics that will lead to 

long-term quality characteristics . Process patterns must be coupled with solid software engineering 

practice.  In addition, the process itself can be assessed to ensure that it meets a set of basic process 
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criteria that have been shown to be essential for a successful software engineering.  

Standard CMMI Assessment Method for Process Improvement 

• (SCAMPI)—provides a five-step process assessment model that incorporates five phases: 

initiating, diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI 

CMMI as the basis for assessment . CMM-Based Appraisal for Internal Process 

Improvement (CBA IPI)—provides a diagnostic technique for assessing the relative 

maturity of a software organization; uses the SEI CMM as the basis for the assessment. 

• SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process 

assessment. The intent of the standard is to assist organizations in developing an objective 

evaluation of the efficacy of any defined software process . 

• ISO 9001:2000 for Software—a generic standard that applies to any organization that wants 

to improve the overall quality of the products, systems, or services that it provides. 

Therefore, the standard is directly applicable to software organizations and companies . 

2.1.3 Perspective Process Models 

• Prescriptive process models were originally proposed to bring order to the chaos of software 

development. History has indicated that these traditional models have brought a certain 

amount of useful structure to software engineering work and have provided a reasonably 

effective road map for software teams.  

•  Called “prescriptive” because they prescribe a set of process elements—framework 

activities, software engineering actions, tasks, work products, quality assurance, and change 

control mechanisms for each project. Each process model also prescribes a process flow 

(also called a work flow)—that is, the manner in which the process elements are interrelated 

to one another.  

  

• All software process models can accommodate the generic framework activities described  , 

but each applies a different emphasis to these activities and defines a process flow that 

invokes each framework activity (as well as software engineering actions and tasks) in a 

different manner. 
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2.3.1 The Waterfall Model 

• There are times when the requirements for a problem are well understood—when work flows 

from communication through deployment in a reasonably linear fashion. This situation is 

sometimes encountered when well-defined adaptations or enhancements to an existing 

system must be made . 

• It may also occur in a limited number of new development efforts, but only when 

requirements are well defined and reasonably stable. 

• The waterfall model, sometimes called the classic life cycle, suggests a systematic, 

sequential approach to software development that begins with customer specification of 

requirements and progresses through planning, modeling, construction, and deployment, 

culminating in ongoing support of the completed software (Figure 2.3).  

 
• A variation in the representation of the waterfall model is called the V-model. Represented in 

Figure 2.4, the V-model  depicts the relationship of quality assurance actions to the actions 

associated with communication, modeling, and early construction activities. As a software 
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team moves down the left side of the V, basic problem requirements are refined into 

progressively more detailed and technical representations of the problem and its solution.  

• Once code has been generated, the team moves up the right side of the V, essentially 

performing a series of tests (quality assurance actions) that validate each of the models 

created as the team moved down the left side. 

•  In reality, there is no fundamental difference between the classic life cycle and the V-model. 

The V-model provides a way of visualizing how verification and validation actions are 

applied to earlier engineering work.  

 
• The waterfall model is the oldest paradigm for software engineering. However, over the past 

three decades, criticism of this process model has caused even ardent supporters to question 

its efficacy . Among the problems that are sometimes encountered when the waterfall model 

is applied are: 

1. Real projects rarely follow the sequential flow that the model proposes. 

• Although the linear model can accommodate iteration, it does so indirectly. 

• As a result, changes can cause confusion as the project team proceeds 

2. It is often difficult for the customer to state all requirements explicitly. The waterfall model 

requires this and has difficulty accommodating the natural uncertainty that exists at the beginning of 

many projects. 
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3. The customer must have patience. A working version of the program(s) will not be available until 

late in the project time span. A major blunder, if undetected until the working program is reviewed, 

can be disastrous. 

 

• 2.3.2 Incremental Process Models 

• There are many situations in which initial software requirements are reasonably well defined, 

but the overall scope of the development effort precludes a purely linear process. In addition, 

there may be a compelling need to provide a limited set of software functionality to users 

quickly and then refine and expand on that functionality in later software releases. In such 

cases, you can choose a process model that is designed to produce the software in 

increments. 

 
• The incremental model combines elements of linear and parallel process flows discussed . 

Referring to Figure 2.5, the incremental model applies linear sequences in a staggered 

fashion as calendar time  progresses.  
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• Each linear sequence produces deliverable “increments” of the software  in a manner that is 

similar to the increments produced by an evolutionary process flow . 

• For example, word-processing software developed using the incremental paradigm might 

deliver basic file management, editing, and document production functions in the first 

increment; more sophisticated editing and document production capabilities in the second 

increment; spelling and grammar checking in the third increment; and advanced page layout 

capability in the fourth increment. It should be noted that the process flow for any increment 

can  incorporate the prototyping paradigm.  

• When an incremental model is used, the first increment is often a core product. That is, basic 

requirements are addressed but many supplementary features (some known, others unknown) 

remain undelivered. The core product is used by the customer (or undergoes detailed 

evaluation). As a result of use and/or evaluation, a plan is developed for the next increment.  

2.3.3 Evolutionary Process Models 

• Software, like all complex systems, evolves over a period of time. Business and product 

requirements often change as development proceeds, making a straight line path to an end 

product unrealistic; tight market deadlines make completion of a comprehensive software 

product impossible, but a limited version must be introduced to meet competitive or business 

pressure; a set of core product or system requirements is well understood, but the details of 

product or system extensions have yet to be defined. Evolutionary models are iterative. They 

are characterized in a manner that 

      enables you to develop increasingly more complete versions of the software 

• Prototyping. Often, a customer defines a set of general objectives for software, but does not 

identify detailed requirements for functions and features. In other cases, the developer may 

be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the 

form that human-machine interaction should take. In these, and many other situations, a 

prototyping paradigm may offer the best approach. 

• Although prototyping can be used as a stand-alone process model, it is more commonly used 

as a technique that can be implemented within the context of any one of the process models     

understand  
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• The prototyping paradigm (Figure 2.6) begins with communication. You meet with other 

stakeholders to define the overall objectives for the software, identify whatever requirements 

are known, and outline areas where further definition is mandatory. A prototyping iteration is 

planned quickly, and modeling (in the form of a “quick design”) occurs.  

 
• Yet, prototyping can be problematic for the following reasons: 

1. Stakeholders see what appears to be a working version of the software, 

unaware that in the rush to get it working you haven’t considered overall software quality or long-

term maintainability. When informed that the product must be rebuilt so that high levels of quality 

can be maintained, stakeholders cry foul and demand that “a few fixes” be applied to make the 

prototype a working Product. 

2. As a software engineer, you often make implementation compromises in order to get a prototype 

working quickly. An inappropriate operating system or programming language may be used simply 

because it is available and known; an inefficient algorithm may be implemented simply to 

demonstrate capability. After a time, you may become comfortable with these choices and forget all 
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the reasons why they were inappropriate.  

Although problems can occur, prototyping can be an effective paradigm for software engineering. 

The key is to define the rules of the game at the beginning; that is, all stakeholders should agree that 

the prototype is built to serve as a mechanism for defining requirements. It is then discarded (at 

least in part), and the actual software is engineered with an eye toward quality. 

• The Spiral Model. Originally proposed by Barry Boehm , the spiral model is an 

evolutionary software process model that couples the iterative nature of prototyping with the 

controlled and systematic aspects of the waterfall model.  

• It provides the potential for rapid development of increasingly more complete versions of the 

software. Boehm  describes the model in the following manner: 

• The spiral development model is a risk-driven process model generator that is used to guide 

multi-stakeholder concurrent engineering of software intensive systems.  

• It has two main distinguishing features.  

• One is a cyclic approach for incrementally growing a system’s degree of definition and 

implementation while decreasing its degree of risk.  

• The other is a set of anchor point milestones for ensuring stakeholder commitment to 

feasible and mutually satisfactory system solutions. 

• During early iterations, the release might be a model or prototype. During later iterations, 

increasingly more complete versions of the engineered system are produced. 
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• A spiral model is divided into a set of framework activities defined by the software 

engineering team. Each of the framework activities represent one segment of the spiral path 

illustrated in Figure 2.7As this evolutionary process begins, the software team performs 

activities that are implied by a circuit around the spiral in a clockwise direction, beginning at 

the center.  

• Anchor point milestones—a combination of work products and conditions that are attained 

along the path of the spiral—are noted for each evolutionary pass. 

•  The first circuit around the spiral might result in the development of a product specification; 

subsequent passes around the spiral might be used to develop a prototype  and then 

progressively more sophisticated versions of the software.  

• Each pass through the planning region results in adjustments to the project plan. Cost and 

schedule are adjusted based on feedback derived from the customer after delivery. 

• In addition, the project manager adjusts the planned number of iterations required to 

complete the software. Unlike other process models that end when software is delivered, the 

spiral model can be adapted to apply throughout the life of the computer software.  

• The first circuit around the spiral might represent a “concept development project” that starts 

at the core of the spiral and continues for multiple iterations  until concept development is 

complete. 

•  If the concept is to be developed into an actual product, the process proceeds outward on the 

spiral and a “new product development project” commences. 

•  The new product will evolve through a number of iterations around the spiral. Later, a 

circuit around the spiral might be used to represent a “product enhancement project.”  

• The spiral model is a realistic approach to the development of large-scale systems and 

software.  

• The spiral model demands a direct consideration of technical risks at all stages of the project 

and, if properly applied, should reduce risks before they become problematic 

2.3.4 Concurrent Models 

The concurrent development model, sometimes called concurrent engineering, allows a software 

team to represent iterative and concurrent elements of any of the process models described . 

• Figure 2.8 provides a schematic representation of one software engineering activity within 

the modeling activity using a concurrent modeling approach.  
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• The activity—modeling—may be in any one of the states12 noted at any given time. 

Similarly, other activities, actions, or tasks (e.g., communication or construction) can be 

represented in an analogous manner. All software engineering activities exist concurrently 

but reside in different states. 

 
2.1.4 Unified Process Model 

• The Unified Process was developed by Jacobsen, Booch, and Rumbaugh, who were already 

some of the biggest names in OOA&D before they decided to collaborate on a unified 

version of their previously distinctive approaches. 

• A process model that was created 1997 to give a framework for Object-oriented Software 

Engineering  

• Iterative, incremental model to adapt to specific project needs 

• Risk driven development  Combining spiral and evolutionary models. 

In some ways the Unified Process is an attempt to draw on the best features and 
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•   characteristics of traditional software process models, but characterize them in a way that 

implements many of the best principles of agile software development. The Unified Process 

recognizes the importance of customer communication and streamlined methods for 

describing the customer’s view of a system. 

• A Brief History 

• During the early 1990s James Rumbaugh , Grady Booch , and Ivar Jacobson  began working 

on a “unified method” that would combine the best features of each of their individual 

object-oriented analysis and design methods and adopt additional features proposed by other 

experts  in object-oriented modeling. The result was UML—a unified modeling language 

that contains a robust notation for the modeling and development of object-oriented systems. 

• Jacobson, Rumbaugh, and Booch developed the Unified Process, a framework for object-

oriented software engineering using UML. Today, the Unified Process (UP) and UML are 

widely used on      object-oriented projects of all kinds. The iterative, incremental model    

proposed by the UP can and should be adapted to meet specific project needs. 

• Phases of the Unified Process Fig : 8.9 

 

•  
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• Advantages of UP 

• Rapid feedback from users and developers 

• Then adapt to changes in the next iteration (adaptive development) 

• Visible progress 

• Start with high risk 

• Manage complexity by dividing the problem into smaller ones 

Stages of the UP 

• Inception: Customer communication, project vision and planning activities (feasibility study) 

• Elaboration: multiple iterations that refines the requirements and models of the system  

• Construction: develop software code 

• Transition: user testing and installation 

• Production: operation 

• Inception Stage 

• The inception phase of the UP encompasses both customer communication and planning 

activities. By collaborating with stakeholders, business requirements for the software are 

identified; a rough architecture for the system is proposed; and a plan for the iterative, 

incremental nature of the ensuing project is developed. 

• Perform feasibility study ….. 

• Identify the project vision (vision document) 

• Identify general business requirements 

• Identify project and business risks 

• Produce initial use-case model (10-20%) 

• Plan the elaboration stages 

• Rough architecture of the software (subsystems) 

• Elaboration Stage 

• An iterative process where refinements are made on system requirements, system design, 

develop part of the code and test it. 

• Products from these iterations: 

• Refinements on use-case model 
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• Software architecture description 

• Executable prototypes 

• Initial design model 

• Refinement on project risks and plan  

• The elaboration phase encompasses the communication and modeling activities of the 

generic process model (Figure 2.9). Elaboration refines and expands the preliminary use 

cases that were developed as part of the inception phase and expands the architectural 

representation to include five different views of the  software— 

• the use case model, the requirements model, the design model, the implementation model, 

and the deployment model. 

• Construction Stage 

• The construction phase of the UP is identical to the construction activity defined for the 

generic software process.  

• Using the architectural model as input, the construction phase develops or acquires the 

software components that will make each use case operational for end users.  

• To accomplish this, requirements and design models that were started during the elaboration 

phase are completed to reflect the final version of the software increment 

• Translate the design into software components 

• Products of this stage are: 

• Design model 

• Integrated software components 

• Test plan and test cases 

• User documentation 

• Transition Stage 

• The transition phase of the UP encompasses the latter stages of the generic construction 

activity and the first part of the generic deployment (delivery and feedback) activity. 

Software is given to end users for beta testing and user feedback reports both defects and 

necessary changes. 

• Deliver the software and documentation 

• Get user feedback from Beta tests 

• Production Stage 
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• The production phase of the UP coincides with the deployment activity of the generic 

process. During this phase, the ongoing use of the software is monitored, support for the 

operating environment  (infrastructure) is provided, and defect reports and requests for 

changes are submitted and evaluated. 

• A software engineering workflow is distributed across all UP phases. In the context of UP, a 

workflow is analogous to a task set . That is, a workflow identifies the tasks required to 

accomplish an important software engineering action and the work products that are 

produced as a consequence of successfully completing the tasks. 

Changes in activities according to stages 
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Artifact Sets in the Unified Process 

 

 
2.2 System requirements 

Some of the problems that arise during the requirements engineering process are a result of failing 

to make a clear separation between these different levels of description. I distinguish between them 

by using the term ‘user requirements’ to mean the high-level abstract requirements and ‘system 

requirements’ to mean the detailed description of what the system should do. User requirements and 

system requirements may be defined as follows: 

 1. User requirements are statements, in a natural language plus diagrams, of what services the 

system is expected to provide to system users and the constraints under which it must operate. 

 2. System requirements are more detailed descriptions of the software system’s functions, services, 

and operational constraints. The system requirements document (sometimes called a functional  
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specification) should define exactly what is to be implemented. It may be part of the contract 

between the system buyer and the software developers. 

• Different levels of requirements are useful because they communicate information about the 

system to different types of reader. Figure 4.1 illustrates the distinction between user and 

system requirements. This example from a mental health care patient management system 

(MHC-PMS) shows how a user requirement may be expanded into several system 

requirements. You can see from Figure 4.1 that the user requirement is quite general. The 

system requirements provide more specific information about the services and functions of 

the system that is to be implemented. 

 

• Functional and Non-Functional requirements 

• Software system requirements are often classified as functional requirements or 

nonfunctional  requirements: 

• 1. Functional requirements These are statements of services the system should provide, how 

the system should react to particular inputs, and how the system should behave in particular 
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situations. In some cases, the functional requirements may also explicitly state what the 

system should not do. 

• 2. Non-functional requirements These are constraints on the services or functions offered 

by the system. They include timing constraints, constraints on the development process, and 

constraints imposed by standards. Non-functional requirements often apply to the system as 

a whole, rather than individual system features or services. 

• 3. Domain Requirements These are requirements that come from the application domain of 

the system and that reflect characteristics and constraints of that domain. They may be 

functional or non-functional requirements. 

• Requirements are not independent and that one requirement often generates or constrains 

other requirements. 

•  The system requirements therefore do not just specify the services or the features of the 

system that are required; they also specify the necessary functionality to ensure that these 

services/features are delivered properly. 

• You need to write requirements at different levels of detail because different readers use 

them in different ways. Figure 4.2 shows possible readers of the user and system 

requirements. The readers of the user requirements are not usually concerned with how the 

system will be implemented and may be managers who are not interested in the detailed 

facilities of the system. The readers of the system requirements need to know more precisely 

what the system will do because they are concerned with how it will support the business 

processes or because they are involved in the system implementation 



61 
 

 

 

• 1. Functional requirements 

• The functional requirements for a system describe what the system should do. These 

requirements depend on the type of software being developed, the expected users of the 

software, and the general approach taken by the organization when writing requirements. 

When expressed as user requirements, functional requirements are usually described in an 

abstract way that can be understood by system users. 

•  However, more specific functional system requirements describe the system  functions, its 

inputs and outputs, exceptions, etc., in detail. 
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• Functional system requirements vary from general requirements covering what the system 

should do to very specific requirements reflecting local ways of working or an organization’s 

existing systems.  

• For example, here are examples of functional requirements for the MHC-PMS system, used 

to maintain information about patients receiving treatment for mental health problems: 

• 1. A user shall be able to search the appointments lists for all clinics. 

• 2. The system shall generate each day, for each clinic, a list of patients who are expected to 

attend appointments that day. 

• 3. Each staff member using the system shall be uniquely identified by his or her eight-digit 

employee number. These functional user requirements define specific facilities to be 

provided by the system.  

• For example, the first example requirement for the MHC-PMS states that a user shall be able 

to search the appointments lists for all clinics. The rationale for this requirement is that 

patients with mental health problems are sometimes confused. They may have an 

appointment at one clinic but actually go to a different clinic. If they have an appointment, 

they will be recorded as having attended, irrespective of the clinic. 

• The medical staff member specifying this may expect ‘search’ to mean that, given a patient 

name, the system looks for that name in all appointments at all clinics. 

• However, this is not explicit in the requirement. System developers may interpret the 

requirement in a different way and may implement a search so that the user has to choose a 

clinic then carry out the search. This obviously will involve more user input and so take 

longer. 

• In principle, the functional requirements specification of a system should be both complete 

and consistent. 

•  Completeness means that all services required by the user should be defined.  

• Consistency means that requirements should not have contradictory definitions 
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• In practice, for large, complex systems, it is practically impossible to achieve requirements 

consistency and completeness.  

• One reason for this is that it is easy to make mistakes and omissions when writing 

specifications for complex systems. 

• Another reason is that there are many stakeholders in a large system. A stakeholder is a 

person or role that is affected by the system in some way. 

• 2. Non-functional requirements 

• Non-functional requirements, as the name suggests, are requirements that are not directly 

concerned with the specific services delivered by the system to its users. They may relate to 

emergent system properties such as reliability, response time, and store occupancy. 

Alternatively, they may define constraints on the system implementation such as the 

capabilities of I/O devices or the data representations used in interfaces with other systems. 

• Non-functional requirements, such as performance, security, or availability, usually specify 

or constrain characteristics of the system as a whole. Non-functional requirements are often 

more critical than individual functional requirements 

• Although it is often possible to identify which system components implement specific 

functional requirements (e.g., there may be formatting components that implement reporting 

requirements), it is often more difficult to relate components to non-functional requirements. 

The implementation of these requirements may be diffused throughout the system. There are 

two reasons for this: 

• 1. Non-functional requirements may affect the overall architecture of a system rather than the 

individual components. For example, to ensure that performance 

•  requirements are met, you may have to organize the system to minimize communications 

between components. 

• 2. A single non-functional requirement, such as a security requirement, may generate a 

number of related functional requirements that define new system services that are required. 
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In addition, it may also generate requirements that restrict existing requirements. Fig :4.3 is 

shown in next page 

•  

• Figure 4.3 is a classification of non-functional requirements. You can see from this diagram 

that the non-functional requirements may come from required characteristics of the software 

(product requirements), the organization developing the software (organizational 

requirements), or from external sources: 

• 1. Product requirements These requirements specify or constrain the behavior of the 

software. Examples include performance requirements on how fast the system must execute 

and how much memory it requires, reliability requirements that set out the acceptable failure 

rate, security requirements, and usability requirements. 

• 2. Organizational requirements These requirements are broad system requirements derived 

from policies and procedures in the customer’s and developer’s organization. 
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• 3. External requirements This broad heading covers all requirements that are derived from 

factors external to the system and its development process.  

• A common problem with non-functional requirements is that users or customers often 

propose these requirements as general goals, such as ease of use, the ability of the system to 

recover from failure, or rapid user response. 

• Figure 4.5 shows metrics that you can use to specify non-functional system properties.  

•  

• 3. Domain requirements 

• Domain requirements are derived from the application domain of the system rather than from 

the specific needs of system users. They may be new functional requirements in their own 

right, constrain existing functional requirements, or set out how particular computations must 

be carried out.  

•  The problem with domain requirements is that software engineers may not understand the 

characteristics of the domain in which the system operates. They often cannot tell whether or 

not a domain requirement has been missed out or conflicts with other requirements 

• Domain requirements are derived from the application domain of the system rather than from 

the specific needs of system users. They usually include specialized domain terminology or 

reference to domain concepts. 
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•  They may be new functional requirements in their own right, constrain existing functional 

requirements or set out how particular computations must be carried out. Because these 

requirements are specialized, software engineers often find it difficult to understand how 

they are related to other system requirements. 

• Domain requirements are important because they often reflect fundamentals of the 

application domain. If these requirements are not satisfied, it may be impossible to make the 

system work satisfactorily. 

• The LIBSYS system includes a number of domain requirements: 

• I. There shall be a standard user interface to all databases that shall be based on the Z39.50 

standard. 

• 2. Because of copyright restrictions, some documents must be deleted immediately on 

arrival. Depending on the user s requirements, these documents will either be printed locally 

on the system server for manual forwarding to the user or routed to a network printer. 

• The first requirement is a design constraint. It specifies that the user interface to the database 

must be implemented according to a specific library standard. 

• The second requirement has been introduced because of copyright laws that apply to material 

used in libraries. It specifies that the system must include an automatic delete-on-print 

facility for some classes of document. 

2.2.2 User Requirements 

•  The user requirements for  a system should describe the functional and non-functional 

requirements so that they are understandable by the system users without detailed technical 

knowledge.  

• Consequently, if you are writing user requirements, you should not use software jargon, 

structured notations or formal notations, or describe the requirement by describing the 

system implementation. 

• You should write user requirements in simple language, with simple tables and forms and 

intuitive diagrams. 
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• Various problems can arise when requirements are written in natural language sentences in a 

text document. 

• 1) Lack of clarity: It is sometimes difficult to use language in a precise and unambiguous 

way without making the document wordy and difficult to read. 

• 2)  Requirements confusion: Functional requirements, non-functional requirements, system 

goals and design information may not be clearly distinguished. 

• 3) Requirements amalgamation: Several different requirements may be expressed together 

as a single requirement. 

• As an illustration of some of these problems, consider one of the requirements for the library 

shown in Figure 6.8. 

• This requirement includes both conceptual and detailed information. It expresses the concept 

that there should be an accounting system as an inherent part of LIBSYS. 

• However, it also includes the detail that the accounting system should support discounts for 

regular LIBSYS users. This detail would have been better left to the system requirements 

specification 

• Fig 6.8 - LIBSYS shall provide a financial accounting system that maintains records of all 

payments made by users of the system. System managers may configure this system so that 

regular users may receive discounted rates. 

• 2.2.3 What is Software Requirement Specification - [SRS]? 

• A software requirements specification (SRS) is a document that captures complete 

description about how the system is expected to perform. It is usually signed off at the end of 

requirements engineering phase. 

• Qualities of SRS: 

• Correct 

• Unambiguous 
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• Complete 

• Consistent 

• Ranked for importance and/or stability 

• Verifiable 

• Modifiable 

• Traceable 

• Types of Requirements: 

• The below diagram depicts the various types of requirements that are captured during SRS. 

•  

• Software Requirements Specification document 

• A Software Requirements Specification (SRS) is a document that describes the nature of a 

project, software or application. In simple words, SRS document is a manual of a project 

provided it is prepared before you kick-start a project/application. This document is also 

known by the names SRS report, software document. A software document is primarily 

prepared for a project, software or any kind of application. 
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• There are a set of guidelines to be followed while preparing the software requirement 

specification document. This includes the purpose, scope, functional and nonfunctional 

requirements, software and hardware requirements of the project. In addition to this, it also 

contains the information about environmental conditions required, safety and security 

requirements, software quality attributes of the project etc. 

 

• What is a Software Requirements Specification document? 

• A Software requirements specification document describes the intended purpose, 

requirements and nature of a software to be developed. It also includes the yield and cost of 

the software. 

• In this document, flight management project is used as an example to explain few points. 

•  

https://krazytech.com/projects/sample-software-requirements-specificationsrs-report-airline-database/attachment/contents-in-software-requirements-specification-document
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• Fig 4.7 The structure of a requirements Document  

•  
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• 2.3.1  Requirements Engineering Process 

•  

• 2.3.2 Requirements elicitation and analysis 

• After an initial feasibility study, the next stage of the requirements engineering process is 

requirements elicitation and analysis.  

• Requirements elicitation and analysis may involve a variety of different kinds of people in an 

organization. A system stakeholder is anyone who should have some direct or indirect 

influence on the system requirements. 

• A process model of the elicitation and analysis process is shown in Figure 4.13. Each 

organization will have its own version or instantiation of this general model depending on 

local factors such as the expertise of the staff, the type of system being developed, the 

standards used, etc. 

• Figure 4.13 shows that requirements elicitation and analysis is an iterative process with 

continual feedback from each activity to other activities.  
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• 1. Requirements discovery This is the process of interacting with stakeholders of the system 

to discover their requirements. Domain requirements from stakeholders and documentation 

are also discovered during this activity.  

• 2. Requirements classification and organization This activity takes the unstructured 

collection of requirements, groups related requirements, and organizes them into coherent 

clusters. The most common way of grouping requirements is to use a model of the system 

architecture to identify sub-systems and to associate requirements with each sub-system. In 

practice, requirements engineering and architectural design cannot be completely separate 

activities. 

• 3. Requirements prioritization and negotiation Inevitably, when multiple stakeholders are 

involved, requirements will conflict. This activity is concerned with prioritizing requirements 

and finding and resolving requirements conflicts through negotiation. Usually, stakeholders 

have to meet to resolve differences and agree on compromise requirements. 

• 4. Requirements specification The requirements are documented and input into the next 

round of the spiral. Formal or informal requirements documents may be produced. 

• Eliciting and understanding requirements from system stakeholders is a difficult 
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• process for several reasons: 

• 1. Stakeholders often don’t know what they want from a computer system except in the most 

general terms; they may find it difficult to articulate what they want the system to do; they 

may make unrealistic demands because they don’t know what is and isn’t feasible. 

• 2. Stakeholders in a system naturally express requirements in their own terms and with 

implicit knowledge of their own work. Requirements engineers, without experience in the 

customer’s domain, may not understand these requirements. 

• 3. Different stakeholders have different requirements and they may express these in different 

ways. Requirements engineers have to discover all potential sources of requirements and 

discover commonalities and conflict. 

• 4. Political factors may influence the requirements of a system. Managers may demand 

specific system requirements because these will allow them to increase their influence in the 

organization. 

• 5. The economic and business environment in which the analysis takes place is dynamic. It 

inevitably changes during the analysis process. The importance of particular requirements 

may change. New requirements may emerge from new stakeholders who were not originally 

consulted. 

4.5.1 Requirements discovery 

• Requirements discovery (sometime called requirements elicitation) is the process of 

gathering information about the required system and existing systems. Sources of 

information during the requirements discovery phase include documentation, system 

stakeholders, and specifications of similar systems. Stakeholders range from system end-

users through managers and external stakeholders such as regulators who certify the 

acceptability of the system.  

 For example, system stakeholders for a bank ATM include: 

I. Current bank customers who receive services from the system  

2. Representatives from other banks who have reciprocal agreements that allow each other's ATMs 

to be used 
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3. Managers of bank branches who obtain management information from the system 

 4. Counter staff at bank branches who are involved in the day-to-day running of the system 

5. Database administrators who are responsible for integrating the system with the bank's customer 

database  

6. Bank security managers who must ensure that the system will not pose a security hazard 

7. The bank's marketing department who are likely be interested in using the system as a means of 

marketing the bank 

8. Hardware and software maintenance engineers who are responsible for maintaining and 

upgrading the hardware and software  

9. National banking regulators who are responsible for ensuring that the system conforms to 

banking regulations 

• These requirements sources (stakeholders, domain, systems) can all be represented as system 

viewpoints, where each viewpoint presents a sub-set of the requirements for the system. 

Each viewpoint provides a fresh perspective on the system, but these 

• perspectives are not completely independent--they usually overlap so that they have common 

requirements. 

• Viewpoints 

• Viewpoint-oriented approaches to requirements engineering organize both the elicitation 

process and the requirements themselves using viewpoints. A key strength of viewpoint-

oriented analysis is that it recognizes multiple perspectives and provides a framework for 

discovering conflicts in the requirements proposed by different stakeholders. 

• Viewpoints can be used as a way of classifying stakeholders and other sources of 

requirements. There are three generic types of viewpoint: 

• 1. Interactor viewpoints represent people or other systems that interact directly with the 

system. In the bank ATM system, examples of interactor viewpoints are the bank's customers 

and the bank's account database. 
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• 2. Indirect viewpoints represent stakeholders who do not use the system themselves but who 

influence the requirements in some way. In the bank ATM system, examples of indirect 

viewpoints are the management of the bank and the bank security staff. 

• 3. Domain viewpoints represent domain characteristics and constraints that influence the 

system requirements. In the bank ATM system, an example of a domain viewpoint would be 

the standards that have been developed for interbank communications. 

• The initial identification of viewpoints that are relevant to a system can sometimes be 

difficult. To help with this process, you should try to identify more specific viewpoint types: 

• l. Providers of services to the system and receivers of system services  

• 2. Systems that should interface directly with the system being specified 

• 3. Regulations and standards that apply to the system 

• 4. The sources of system business and non-functional requirements 

• 5. Engineering viewpoints reflecting the requirements of people who have to develop, 

manage and maintain the system 

• 6. Marketing and other viewpoints that generate requirements on the product features 

expected by customers and how the system should reflect the external image of the 

organization. 
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• Figure 7.4 Viewpoints in LIBSYS 

 

4.5.2 Interviewing 

• Formal or informal interviews with system stakeholders are part of most requirements 

engineering processes. In these interviews, the requirements engineering team puts questions 

to stakeholders about the system that they currently use and the system to be developed. 

Requirements are derived from the answers to these questions.  

• Interviews may be of two types: 

1. Closed interviews, where the stakeholder answers a pre-defined set of questions. 

2. Open interviews, in which there is no pre-defined agenda. The requirements engineering team 

explores a range of issues with system stakeholders and hence develop a better understanding of 

their needs. 

• Effective interviewers have two characteristics: 

1. They are open-minded, avoid pre-conceived ideas about the requirements, and are willing to 

listen to stakeholders. If the stakeholder comes up with surprising requirements, then they are 

willing to change their mind about the system. 
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2. They prompt the interviewee to get discussions going using a springboard question, a 

requirements proposal, or by working together on a prototype system. Saying to people ‘tell me 

what you want’ is unlikely to result in useful information. 

Interviews are good for getting an overall understanding of what stakeholders 

do, how they might interact with the system and the difficulties that they face with current systems. 

People like talking about their work and are usually happy to get involved in interviews. However, 

interviews are not so good for understanding the requirements from the application domain. 

It is hard to elicit domain knowledge during interviews for two reasons: 

1. All application specialists use terminology and jargon that is specific to a domain. It is 

impossible for them to discuss domain requirements without using this terminology. They normally 

use terminology in a precise and subtle way that is easy for requirements engineers to 

misunderstand. 

2. Some domain knowledge is so familiar to stakeholders that they either find it difficult to explain 

or they think it is so fundamental that it isn't worth mentioning. For example, for a librarian, it goes 

without saying that all acquisitions are catalogued before they are added to the library. However, 

this may not be obvious to the interviewer so it isn't taken into account in the requirements. 

• Interviews are not an effective technique for eliciting knowledge about organizational 

requirements and constraints because there are subtle power and influence relationships 

between the stakeholders in the organization. Published organizational structures rarely 

match the reality of decision making in an organization, but interviewees may not wish to 

reveal the actual rather than the theoretical structure to a stranger. In general, most people are 

reluctant to discuss political and organizational issues that may affect the requirements. 

4.5.3 Scenarios 

• Scenarios can be particularly useful for adding detail to an outline requirements description. 

They are descriptions of example interaction sessions. Each scenario usually covers one or a 

small number of possible interactions. Different forms of scenarios are developed and they 

provide different types of information at different levels of detail about the system. 

• A scenario starts with an outline of the   interaction. During the elicitation process, details are 

added to this to create a complete description of that interaction. At its most general, a 

scenario may include: 



78 
 

1. A description of what the system and users expects when the scenario starts. 

2. A description of the normal flow of events in the scenario. 

3. A description of what can go wrong and how this is handled. 

4. Information about other activities that might be going on at the same time. 

5. A description of the system state when the scenario finishes. 

4.5.4 Use cases 

• Use cases are a requirements discovery technique that were first introduced in the Objectory 

method (Jacobson et al., 1993). They have now become a fundamental feature of the unified 

modeling language. In their simplest form, a use case identifies the actors involved in an 

interaction and names the type of interaction. This is then supplemented by additional 

information describing the interaction with the system. 

• Use cases are documented using a high-level use case diagram. The set of use cases 

represents all of the possible interactions that will be described in the system requirements. 

•  Actors in the process, who may be human or other systems, are represented as stick figures. 

Each class of interaction is represented as a named ellipse.  

• Lines link the actors with the interaction. 

• Scenarios and use cases are effective techniques for eliciting requirements from stakeholders 

who interact directly with the system. 

•  Each type of interaction can be represented as a use case. However, because they focus on 

interactions with  the system, they are not as effective for eliciting constraints or high-level 

business and nonfunctional requirements or for discovering domain requirements. 

• Figure 7.6 illustrates the essentials of the use-case notation. Actors in the process are 

represented as stick figures, and each class of interaction is represented as a named ellipse. 

The set of use-cases represents all of the possible interactions to be represented in the system 

requirements. 
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• Figure 7.7 develops the LIBSYS example and shows other use-cases in that environment. 

•  
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•  

• 4.5.5 Ethnography 

• Ethnography is an observational technique that can be used to understand operational 

processes and help derive support requirements for these processes. The value of 

ethnography is that it helps discover implicit system requirements that reflect the actual ways 

that people work, rather than the formal processes defined by the organization. 

• Suchman (1987) pioneered the use of ethnography to study office work. She found that the 

actual work practices were far richer, more complex, and more dynamic than the simple 

models assumed by office     automation systems. The difference between the assumed and 

the actual work was the most important reason why these office systems had no significant 

effect on productivity 

• Ethnography is particularly effective for discovering two types of requirements: 

• 1. Requirements that are derived from the way in which people actually work, rather than the 

way in which process definitions say they ought to work. 
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• 2. Requirements that are derive d from cooperation and awareness of other people’s 

activities. 

• Ethnography can be combined with prototyping (Figure 4.16). The ethnography informs the 

development of the prototype so that fewer prototype refinement cycles are required. 

Furthermore, the prototyping focuses the ethnography by identifying problems and questions 

that can then be discussed with the ethnographer  

•  

• 2.3.3 Requirements validation 

• Requirements validation is the process of checking that requirements actually define the 

system that the customer really wants. Requirements validation is important because errors 

in a requirements document can lead to extensive rework costs when these problems are 

discovered during development or after the system is in service.  

• During the requirements validation process, different types of checks should be carried out 

on the requirements in the requirements document. These checks include: 

1. Validity checks A user may think that a system is needed to perform certain functions. 

• 2. Consistency checks Requirements in the document should not conflict. That is, there 

should not be contradictory constraints or different descriptions of the same system function. 

• 3. Completeness checks The requirements document should include requirements that define 

all functions and the constraints intended by the system user. 
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• 4. Realism checks Using knowledge of existing technology, the requirements should be 

checked to ensure that they can actually be implemented. These checks should also take 

account of the budget and schedule for the system development. 

• 5. Verifiability To reduce the potential for dispute between customer and contractor, system 

requirements should always be written so that they are verifiable. 

• There are a number of requirements validation techniques that can be used individually or in 

conjunction with one another: 

• 1. Requirements reviews The requirements are analyzed systematically by a team of 

reviewers who check for errors and inconsistencies. 

• 2. Prototyping In this approach to validation, an executable model of the system in question 

is demonstrated to end-users and customers. They can experiment with this model to see if it 

meets their real needs. 

• 3. Test-case generation Requirements should be testable. If the tests for the requirements are 

devised as part of the validation process, this often reveals requirements problems. If a test is 

difficult or impossible to design, this usually means that the requirements will be difficult to 

implement and should be reconsidered. 

• Requirements reviews 

• A requirements review is a manual process that involves people from both client and 

contractor organizations. They check the requirements document for anomalies and 

omissions. The review process may be   managed in the same way as program Inspections. 

• Requirements reviews can be informal or formal. 1)Informal reviews simply involve 

contractors discussing requirements with as many system stakeholders as possible. 

• 2) In a formal requirements review, the development team should 'walk' the client through 

the system requirements, explaining the implications of each requirement. 

• Reviewers may also check for: 

• 1. Verifiability Is the requirement as stated realistically testable? 
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• 2. Comprehensibility Do the procurers or end-users of the system properly understand the 

requirement? 

• 3. Traceability Is the origin of the requirement clearly stated? You may have to go back to 

the source of the requirement to assess the impact of a change 

• Traceability is important as it allows the impact of change on the rest of the system to be 

assessed. I discuss it in more detail in the following section. 

• 4. Adaptability Is the requirement adaptable? That is, can the requirement be changed 

without large-scale effects on other system requirements? 

• 2.3.4 Requirements management 

• The requirements for large software systems are always changing. One reason for this is that 

these systems are usually developed to address ‘wicked’ problems—problems that cannot be 

completely defined. Because the problem cannot be fully defined, the software requirements 

are bound to be incomplete. During the software process, the stakeholders’ understanding of 

the problem is constantly changing (Figure 4.17). The system requirements must then also 

evolve to reflect this changed problem view

 

• There are several reasons why change is inevitable: 

• 1. The business and technical environment of the system always changes after installation. 

New hardware may be introduced, it may be necessary to interface the system with other 

systems, business priorities may change (with consequent changes in the system support 

required), and new legislation and regulations may be introduced that the system must 

necessarily abide by. 
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• 2. The people who pay for a system and the users of that system are rarely the same people. 

System customers impose requirements because of organizational and budgetary constraints. 

These may conflict with end-user requirements and, after delivery, new features may have to 

be added for user support if the system is to meet its goals. 

• 3. Large systems usually have a diverse user community, with many users having different 

requirements and priorities that may be conflicting or contradictory. The final system 

requirements are inevitably a compromise between them and, with experience, it is often 

discovered that the balance of support given to different users has to be changed. 

•  Requirements management is the process of understanding and controlling changes to 

system requirements.  

• You need to keep track of individual requirements and maintain links between dependent 

requirements so that you can assess the impact of requirements changes. 

• a) Enduring and volatile requirements 

• Requirements evolution during the RE process and after a system has gone into service is 

inevitable. Developing software requirements focuses attention on software capabilities, 

business objectives and other business systems. As the  requirements definition is developed, 

you normally develop a better understanding of users needs. 

• This feeds information back to the user, who may then propose a change to the 

• requirements (Figure 4.17). Furthermore, it may take several years to specify and 

• develop a large system. 

• From an evolution perspective, requirements fall into two classes: 

• I. Enduring requirements These are relatively stable requirements that derive from the core 

activity of the organization and which relate directly to the domain of the system. For 

example, in a hospital, there will always be requirements concerned with patients, doctors, 

nurses and treatments. These requirements may be derived from domain models that show 

the entities and relations that characterize an application domain. 
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•  2. Volatile requirements These are requirements that are likely to change during the system 

development process or after the system has been become operational. An example would be 

requirements resulting from government healthcare policies 

• Harker and others  have suggested that volatile requirements fall into the classes. 

•  

• b)  Requirements management planning 

• Planning is an essential first stage in the requirements management process. The planning 

stage establishes the level of requirements management detail that is required. During the 

requirements management stage, you have to decide on: 

• 1. Requirements identification Each requirement must be uniquely identified so 

• that it can be cross-referenced with other requirements and used in traceability 

• assessments. 

• 2. A change management process This is the set of activities that assess the impact and cost 

of changes. I discuss this process in more detail in the following section. 
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• 3. Traceability policies These policies define the relationships between each requirement and 

between the requirements and the system design that should be recorded. The traceability 

policy should also define how these records should be maintained. 

• 4. Tool support Requirements management involves the processing of large amounts of 

information about the requirements. Tools that may be used range from specialist 

requirements management systems to spreadsheets and simple database systems. 

• There are three types of traceability information that may be maintained: 

• 1. Source traceability information links the requirements to the stakeholders who proposed 

the requirements and to the rationale for these requirements. When a change is proposed, you 

use this information to find and consult the stakeholders about the change. 

• 2. Requirements traceability information links dependent requirements within the 

requirements document. You use this information to assess how many requirements are 

likely to be affected by a proposed change and the extent of consequential requirements 

changes that may be necessary. 

• 3. Design traceability information links the requirements to the design modules where these 

requirements are implemented. You use this information to assess      the impact of proposed 

requirements changes on the system     design and implementation. 

• Traceability information is often represented using traceability matrices, which relate 

requirements to stakeholders, each other or design modules. In a requirements traceability 

matrix, each requirement is entered in a row and in a column in the  matrix. 

• Figure 7.12 shows a simple traceability matrix that records the dependencies between 

requirements. A 'D' in the row/column intersection illustrates that the requirement      in the 

row depends on the requirement named in the column; an 'R' means that there is some other, 

weaker relationship between the requirements. 

• Traceability matrices may be used when a small number of requirements have to be 

managed, but they become unwieldy and expensive to maintain for large systems with many 

requirements. 
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•  

• Requirements management needs automated support and the software tools for this should be 

chosen during the planning phase. You need tool support for: 

• 1. Requirements storage The requirements should be maintained in a secure, managed data 

store that is accessible to everyone involved in the requirements engineering process. 

• 2. Change management The process of change management (Figure 7.13) is simplified if 

active tool support is available. 

• 3. Traceability management As discussed above, tool support for traceability allows related 

requirements to be discovered. Some tools are available which use natural language 

processing techniques to help discover possible relationships between requirements. For 

small systems, it may not be necessary to use specialized requirements management tools. 

• 4.7.2 Requirements change management 

• Requirements change management (Figure 7.13) should be applied to all proposed changes 

to a system’s requirements after the requirements document has been approved. Change 

management is essential because you need to decide if the benefits of implementing new 

requirements are justified by the costs of implementation. The advantage of using a formal 
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process for change management is that all change proposals are treated consistently and 

changes to the requirements document are made in a controlled way. There are three 

principal stages to a change management process: 

• 1. Problem analysis and change specification The process starts with an identified 

requirements problem or, sometimes, with a specific change proposal. During this stage, the 

problem or the change proposal is analyzed to check that it is valid. This analysis is fed back 

to the change requestor who may respond with a more specific requirements change 

proposal, or decide to withdraw the request. 

• 2. Change analysis and costing The effect of the proposed change is assessed using 

traceability information and general knowledge of the system requirements. The cost of 

making the change is estimated both in terms of modifications to the requirements document 

and, if appropriate, to the system design and implementation. Once this analysis is 

completed, a decision is made whether or not to proceed with the requirements change. 

• 3. Change implementation The requirements document and, where necessary, the system 

design and implementation, are modified. You should organize the requirements document 

so that you can make changes to it without extensive rewriting or reorganization 

• Figure 4.18 Requirements Change Management 

•  

• 2.4.1 System Models 

• User requirements should be written in natural language because they have to be understood 

by people who are not technical experts. However, more detailed system requirements may 

be expressed in a more technical way.  
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• One widely used technique is to document the system specification as a set of system 

models. These models are graphical representations that describe business processes, the 

problem to be solved and the system that is to be developed. 

• You can use models in the analysis process to develop an understanding of the 

• existing system that is to be replaced or improved or to specify the new system that is 

required. You may develop different models to represent the system from different 

perspectives. For example:  

• 1. An external perspective, where the context or environment of the system is modeled  

• 2. A behavioral perspective, where the behavior of the system is modeled 

• 3. A structural perspective, where the architecture of the system or the structure of the data 

processed by the system is modeled 

• A system model is an abstraction of the system being studied rather than an alternative 

representation of that system. Ideally, a representation of a system should maintain all the 

information about the entity being represented. 

•  An abstraction deliberately simplifies and picks out the most salient characteristics.  

• Different types of system models are based on different approaches to abstraction. 

• A data-flow model (for example) concentrates on the flow of data and the functional 

transformations on that data. 

• Examples of the types of system models that you might create during the analysis process 

are: 

• 1. A data- flow model Data-flow models show how data is processed at different stages in the 

system. 

• 2. A composition model A composition or aggregation model shows how entities in the 

system are composed of other entities. 
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• 3. An architectural model Architectural models show the principal sub-systems that make up 

a system. 

• 4. A classification model Object class/inheritance diagrams show how entities have common 

characteristics. 

• 5. A stimulus-response model A stimulus-response model, or state transition diagram, shows 

how the system reacts to internal and external events. 

• 2.4.2 (1) Context models 

• At an early stage in the requirements elicitation and analysis process you should decide the 

boundaries of the system. This involves working with system stakeholders to distinguish 

what is the system and what is the system's environment. 

• You should make these decisions early in the process to limit the system costs and the time 

needed for analysis. 

• In some cases, the boundary between a system and its environment is relatively clear. 

•  For example, where an automated system is replacing an existing manual or computerized 

system, the environment of the new system is usually the same as the existing system's 

environment. In other cases, there is more flexibility, and you decide what constitutes the 

boundary between the system and its environment during the      requirements engineering 

process. 

• Figure 8.1 is an architectural model that illustrates the structure of the information system 

that includes a bank auto-teller network. High-level architectural models are usually 

expressed as simple block diagrams where each sub-system is represented by a named 

rectangle, and lines indicate associations between sub-systems. From Figure 8.1, we see that 

each ATM is connected to an account database, a local branch accounting system, a security 

system and a system to support machine maintenance. The system is also connected to a 

usage database that monitors how the network of ATMs is used and to a local branch counter 

system. This counter system provides services such as backup and printing. These, therefore, 

need not be included in the ATM system itself. 
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•  

• 2.4.3 (2) Behavioral models 

• Behavioral models are used to describe the overall behavior of the system. 

• Two types of behavioral model here: data-flow models, which model the data processing in 

the system, and state machine models, which model how the system reacts to events. These 

models may be used separately or together, depending on the type of system that is being 

developed. 

• A dataflow model may be all that is needed to represent the behavior of these systems. 

• A state machine model  is the most effective way to represent their behavior. 

• 2.1 Data flow models 

• Data-flow models are an intuitive way of showing how data is processed by a system. At the 

analysis level, they should be used to model the way in which data is processed in the 

existing system. 

•  The use of data-flow models for analysis became widespread after the publication of 

DeMarco's book on structured systems analysis. They are an intrinsic part of structured 

methods that have been developed from this work. 

•  The notation used in these models represents functional processing (rounded rectangles), 

data stores (rectangles) and data movements between functions (labelled arrows).  
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• Data-flow models are used to show how data flows through a sequence of processing steps. 

• Data-flow models show a functional perspective where each transformation represents a 

single function or process. They are particularly useful during the analysis of requirements as 

they can be used to show end-to-   end processing in a system. 

• That is, they show the entire sequence of actions that take place from an input being 

processed to the corresponding output that is the system's response. 

•  Figure 8.4 illustrates this use of data flow diagrams. It is a diagram of the processing that 

takes place in the insulin pump system. 

• Data-Model diagram of an insulin pump.Fig 8.4  

•  

• 2.2 State machine models 

• A state machine model describes how a system responds to internal or external events. 

• The state machine model shows system states and events that cause transitions from one state 

to another. It does not show the flow of data within the system.  
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• This type of model is often used for modeling real-time systems because these systems are 

often driven by stimuli from the system's environment. 

• This approach to system modeling is illustrated in Figure 8.5. This diagram shows a state 

machine model of a simple microwave oven equipped with buttons to set the power and the 

timer and to start the system.  

• Real microwave ovens are actually much more complex than the system described here. 

However, this model includes the essential features of the system. 

• Fig: 8.5 This diagram shows a state machine model of a simple microwave oven 

equipped with buttons to set the power and the timer and to start the system. 

•  

• To simplify the model, assume that the 

• sequence of actions in using the microwave is: 

• 1. Select the power level (either half-power or full-power). 

• 2. Input the cooking time. 
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• 3. Press Start, and the food is cooked for the given time. 

• For safety reasons, the oven should not operate when the door is open and, on completion of 

cooking, a buzzer is sounded. The oven has a very simple alphanumeric display that is used 

to display various alerts and warning messages 

• The UML notation  describe state machine models is designed for modeling the behavior of 

objects. However, it is a general-purpose notation that can be used for any type of state 

machine modeling. The rounded rectangles in a model represent system states. 

• Therefore, from Figure 8.5, we can see that the system responds initially to either the full-

power or the half-power button.  

• Users can change their mind after selecting one of these and press the other button. The time 

is set and, if the door is closed, the Start button is enabled. Pushing this button starts the oven 

operation and cooking takes place for the specified time. 

• In a detailed system specification, you have to provide more detail about both the stimuli and 

the system states (Figure 8.6). 

• Figure  8.6 

•  
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• The problem with the state machine approach is that the number of possible states increases 

rapidly. For large system models, therefore, some structuring of these state models is 

necessary. One way to do this is by using the notion of a super state that encapsulates a 

number of separate states. This super state looks like a single state on a high-level model but 

is then expanded in more detail on a separate diagram. 

• To illustrate this concept, consider the Operation state in Figure 8.5. This is a super state that 

can be expanded, as illustrated in Figure: 8.7. 

• The Operation state includes a number of sub-states. It shows that operation starts with a 

status check, and that if any problems are discovered, an alarm is indicated and operation is 

disabled. Cooking involves running the microwave generator for the specified time; on 

completion, a buzzer is sounded. If the door is opened during operation, the system moves to 

the disabled state, as shown in Figure 8.5. 

 

• 2.4.2 (3) Data Models 

• An important point of systems modeling is defining the logical form of the data processed by 

the system. These are sometimes called  semantic data models.  

• The most widely used data modeling technique is Entity-Relation-Attribute modeling (ERA 

modeling), which shows the data entities, their associated attributes and the relations 
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between these entities. This approach to modeling was first proposed in the mid-1970s by 

Chen. 

• Entity-relationship models have been widely used in database design. The relational database 

schemas derived from these models are naturally in third normal form, which is a desirable 

characteristic. 

• The UML does not include a specific notation for this database modeling, as it assumes an 

object-oriented development process and models data using objects and their relationships. 

However, you can use the UML to represent a semantic data model. 

• Figure 8.8 is an example of a data model that is part of the library system LIBSYS. Figure  

shows that an Article has attributes representing the title, the authors, the name of the PDF 

file of the article and the fee payable. This is linked to the Source, where the article was 

published, and to the Copyright Agency for the country of publication. Both Copyright 

Agency and Source are linked to Country. The country of publication is important because 

copyright laws vary by country. The diagram also shows that Buyers place Orders for 

Articles. 

 

• A data dictionary is. simplistically, an alphabetic list of the names included in the system 

models. As well as the name, the dictionary should include an associated description of the 

named entity and, if the name represents a composite object, a description of the 
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composition. Other information such as the date of creation. the creator and the 

representation of the entity may also be included depending on the type of model being 

developed. 

The advantages of using a data dictionary are: 

• 1. It is a mechanism for name management. Many people may have to invent names for 

entities and relationships when developing a large system model. These names should be 

used consistently and should not clash. The data dictionary software can check for name 

uniqueness where necessary and warn requirements analysts of name duplications. 

• 2. It serves as a store of organizational information. As the system is developed, 

information that can link analysis, design, implementation and evolution is added to the data 

dictionary, so that all information about an entity is in one place. 

• The data dictionary entries shown in Figure 8.9 define the names in the semantic data model 

for LIBSYS.  

• All system names, whether they are names of entities, relations, attributes or services. should 

be entered in the dictionary. Software is normally used    to  create, maintain and interrogate 

the dictionary. 
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• 2.4.5 (4) Object models 

• An object-oriented approach to the whole software development process is now commonly 

used, particularly for interactive systems  development. This means expressing the systems 

requirements using an object model,  designing using objects and developing the system in 

an object-oriented programming language such as Java or C++. 

• Object models that you develop during requirements analysis may be used to represent both 

system data and its processing. 

• Developing object models during requirements analysis usually simplifies the transition to 

object-oriented design and programming. 

• An object class is an abstraction over a set of objects that identifies common attributes (as in 

a semantic data model) and the services or operations that are provided by each object. 

•  Objects are executable entities with the attributes and services of the object class.  

• Objects are instantiations of the object class, and many objects may be created from a class.  

• Generally, the models developed using analysis focus on object classes and their 

relationships. 

• An object class in UML, as illustrated in the examples in Figure 8.10, is represented      as a 

vertically oriented rectangle with three    sections:  

• I. The name of the object class is in the top section. 

• 2. The class attributes are in the middle section. 

• 3. The operations associated with the object class are in the lower section of the rectangle. 
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a) Inheritance Models 

• Figure 8.10 illustrates part of a simplified class hierarchy for a model of a library. This 

hierarchy gives information about the items held in the library. The library holds various 

items, such as books, music, recordings of films, magazines and newspapers. 

• Figure 8.11 is an example of another inheritance hierarchy that might be part of the library 

model. In this case, the users of a library are shown. There are two classes of user: 

a) those who are allowed to borrow books, and  

b)those who may only read books in the library without taking them away. 

• In the UML notation, inheritance is shown upwards' rather than 'downwards‘ as it is in some 

other object-oriented notations or in languages such as Java, where sub-classes inherit from 

super-classes. 
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•  That is, the arrowhead (shown as a triangle) points from the classes that inherit attributes 

and  operations to the super-class. Rather than use the term inheritance, UML refers to the 

generalization relationship. 

• Figure 8.10 and Figure 8.11 show class inheritance hierarchies where every object class 

inherits its attributes and operations from a single parent class. Multiple inheritance models 

may also be constructed where a class has several parents. Its inherited attributes and 

services are a conjunction of those inherited from each super-class. 

 

• Figure 8.12 shows an example of a multiple inheritance model that may also be part of the 

library model. The main problem with multiple inheritance is designing an inheritance graph       

where objects do not inherit unnecessary attributes.  

• Other problems include the difficulty of reorganizing the inheritance graph when changes are 

required and resolving name clashes where attributes of two or more super-classes have the 

same name but different meanings. 
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•  

•  

b) Object aggregation 

Acquiring attributes and services through an inheritance relationship with other objects, some 

objects are groupings of other objects. That is, an object is an aggregate of a set of other objects. 

The classes representing these objects may be modeled using an object aggregation model, as 

shown in Figure 8.13. 

 

• Figure 8.13 could be maintained electronically and downloaded to the student's computer. In 

a sequence diagram (8.14), objects and actors are aligned along the top of the diagram. 

Labeled arrows indicate operations; the sequence of operations is from top to bot tom. In 

I:his scenario, the library user accesses the catalogue to see whether the item required is 

available electronically; if it is, the user requests the electronic issue of that item. 
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2.4.6 (5) Structured Methods 

•  A structured method is a systematic way of producing models of an existing system or 

of a system that is to be built.  

• They were first developed in the 1970s to support software analysis and design(Constantine 

and Yourdon, 1979; Gane and Sarson, 1979; Jackson, 1983) and evolved in the 1980s and 

1990s to support object-oriented development. 

• Structured methods provide a framework for detailed system modeling as part of 

requirements elicitation and analysis. Most structured methods have their own preferred set 

of system models.  

• They usually define a process that may be used to derive these models and a set of rules and 

guidelines that apply to the models. Standard documentation is produced for the system. 

CASE tools are usually available for method support.  

• These tools support model editing and code and report generation, and provide      some 

model-checking capabilities. 

• Structured methods have been applied successfully in many large projects. 

• However, structured methods suffer from a number of weaknesses: 
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I. They do not provide effective support for understanding or modeling nonfunctional system 

requirements. 

2. They are indiscriminate in that they do not usually include guidelines to help users decide 

whether a method is appropriate for a particular problem. Nor do they normally include advice on 

how they may be adapted for use in a particular environment. 

3. They often produce too much documentation. The essence of the system requirements may be 

hidden by the mass of detail that is included. 

4. The models that are produced are very detailed, and users often find them difficult to understand. 

These users therefore cannot check the realism of these models. 

• Analysis and design CASE tools support the creation, editing and analysis of the graphical 

notations used in structured methods. Figure 8.15 shows the components that may be 

included method support environment. 

 

• Comprehensive method support tools, as illustrated in Figure 8.15, normally include: 

1. Diagram editors used to create object models, data models, behavioral models, and so on. These 

editors are not just drawing tools but are aware of the types of entities in the diagram. They capture 

information about these entities and save this information in the central repository. 

2. Design analysis and checking tools that process the design and report on error and anomalies. 

These may be integrated with the editing system so that user errors are trapped at an early stage in 

the process. 
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3. Repository query languages that allow the designer to find designs and associated design 

information in the repository. 

4. A data dictionary that maintains information about the entities used in a system design. 

5. Report definition and generation tools that take information from the central store and 

automatically generate system documentation.  

6. Forms definition tools that allow screen and document formats to be specified. 

7. Import/export facilities that allow the interchange of information from the central repository with 

other development tools. 

8. Code generators that generate code or code skeletons automatically from the design captured in 

the central store. 
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UNIT – III 

Design concepts: Design Concepts, Architectural Design: Architectural design decisions, System 

organization, Modular decomposition styles. 

Object-Oriented design: Objects and Object Classes, An Object-Oriented design process, Design 

Evolution. 

 

3.1 (1) Software process designing concepts  

Introduction to design process  

• The main aim of design engineering is to generate a model which shows firmness, delight and 

commodity. 

• Software design is an iterative process through which requirements are translated into the 

blueprint for building the software. 

Software quality guidelines  

• A design is generated using the recognizable architectural styles and compose a good design 

characteristic of components and it is implemented in evolutionary manner for testing. 

• A design of the software must be modular i.e the software must be logically partitioned into 

elements. In design, the representation of data , architecture, interface and components should 

be distinct. 

• A design must carry appropriate data structure and recognizable data patterns. Design 

components must show the independent functional characteristic.  

• A design creates an interface that reduce the complexity of connections between the 

components. A design must be derived using the repeatable method. The notations should be 

use in design which can effectively communicates its meaning. 

Quality attributes  

The attributes of design name as 'FURPS' are as follows: 

1)Functionality: It evaluates the feature set and capabilities of the program.  

2)Usability: It is accessed by considering the factors such as human factor, overall aesthetics, 

consistency and documentation. 

3)Reliability: It is evaluated by measuring parameters like frequency and security of failure, output 

result accuracy, the mean-time-to-failure(MTTF), recovery from failure and the program 

predictability. 
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4)Performance: It is measured by considering processing speed, response time, resource 

consumption, throughput and efficiency. 

5)Supportability: It combines the ability to extend the program, adaptability, serviceability. These 

three term defines the maintainability. 

• Testability, compatibility and configurability are the terms using which a system can be easily 

installed and found the problem easily. 

• Supportability also consists of more attributes such as compatibility, extensibility, fault 

tolerance, modularity, reusability, robustness, security, portability, scalability. 

 

3.1(2) Design concepts  

The set of fundamental software design concepts are as follows: 

 

1. Abstraction  

• A solution is stated in large terms using the language of the problem environment at the highest 

level abstraction. 

• The lower level of abstraction provides a more detail description of the solution. 

• A sequence of instruction that contain a specific and limited function refers in a procedural 

abstraction. 

• A collection of data that describes a data object is a data abstraction. 

2. Architecture  

• The complete structure of the software is known as software architecture. 

• Structure provides conceptual integrity for a system in a number of ways. 

• The architecture is the structure of program modules where they interact with each other in a 

specialized way. 

• The components use the structure of data. 

• The aim of the software design is to obtain an architectural framework of a system. 

• The more detailed design activities are conducted from the framework. 

Shaw and Garlan  describe a set of properties that should be specified as part of an architectural 

design:   

• Structural properties. This aspect of the architectural design representation defines the 

components of a system (e.g., modules, objects, filters) and the manner in which those 
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components are packaged and interact with one another. For example, objects are packaged to 

encapsulate both data and the processing that manipulates the data and interact via the 

invocation of methods.  

• Extra-functional properties. The architectural design description should address how the 

design architecture achieves requirements for performance, capacity, reliability, security, 

adaptability, and other system characteristics.  

• Families of related systems. The architectural design should draw upon repeatable patterns 

that are commonly encountered in the design of families of similar systems. In essence, the 

design should have the ability to reuse architectural building blocks. 

3. Patterns 

A design pattern describes a design structure and that structure solves a particular design problem in 

a specified content. 

 4. Separation of Concerns  

Separation of Concerns is a design concept [Dij82] that suggests that any complex problem can be 

more easily handled if it is subdivided into pieces that can each be solved and/or optimized 

independently.  

• A concern is a feature or behavior that is specified as part of the requirements model for the 

software. By separating concerns into smaller, and therefore more manageable pieces, a 

problem takes less effort and time to solve. 

5. Modularity  

• A software is separately divided into name and addressable components. Sometime they are 

called as modules which integrate to satisfy the problem requirements. 

• Modularity is the single attribute of a software that permits a program to be managed easily. 

6. Information hiding 

Modules must be specified and designed so that the information like algorithm and data presented 

in a module is not accessible for other modules not requiring that information. 

 

7. Functional independence  

• The functional independence is the concept of separation and related to the concept of 

modularity, abstraction and information hiding. 

• The functional independence is accessed using two criteria i.e Cohesion and coupling. 
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 a)Cohesion  

• Cohesion is an extension of the information hiding concept. 

• A cohesive module performs a single task and it requires a small interaction with the other 

components in other parts of the program. 

b)Coupling 

Coupling is an indication of interconnection between modules in a structure of software. 

8. Refinement  

• Refinement is a top-down design approach. 

• It is a process of elaboration. 

• A program is established for refining levels of procedural details. 

• A hierarchy is established by decomposing a statement of  function in a stepwise manner till 

the programming language statement are reached. 

9.Aspect  

• An aspect is a representation of a crosscutting concern. 

  

10. Refactoring  

• It is a reorganization technique which simplifies the design of components without changing 

its function behaviour. 

• Refactoring is the process of changing the software system in a way that it does not change 

the external behaviour of the code still improves its internal structure. 

  

11.Object-Oriented Design Concepts The object-oriented (OO) paradigm is widely used in modern 

software engineering. Appendix 2 has been provided for those readers who may be unfamiliar with 

OO design concepts such as classes and objects, inheritance, messages, and polymorphism, among 

others. 

12. Design classes  

• The model of software is defined as a set of design classes. 

• Every class describes the elements of problem domain and that focus on features of the 

problem which are user visible. 

• Five different types of design classes, each representing a different layer of the design 

architecture, can be developed :  
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1) User interface classes define all abstractions that are necessary for human computer interaction 

(HCI). In many cases, HCI occurs within the context of a metaphor (e.g., a checkbook, an order form, 

a fax machine), and the design classes for the interface may be visual representations of the elements 

of the metaphor.  

•2)Business domain classes are often refinements of the analysis classes defined earlier. The classes 

identify the attributes and services (methods) that are required to implement some element of the 

business domain.  

3) Process classes implement lower-level business abstractions required to fully manage the business 

domain classes. 

 •4)Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of 

the software.  

•5)System classes implement software management and control functions that enable the system to 

operate and communicate within its computing environment and with the outside world. 

Arlow and Neustadt  suggest that each design class be reviewed to ensure that it is “well-formed.” 

They define four characteristics of a well-formed design class:  

1) Complete and sufficient. A design class should be the complete encapsulation of all attributes 

and methods that can reasonably be expected (based on a knowledgeable interpretation of the class 

name) to exist for the class. For example, the class Scene defined for video-editing software is 

complete only if it contains all attributes and methods that can reasonably be associated with the 

creation of a video scene. Sufficiency ensures that the design class contains only those methods that 

are sufficient to achieve the intent of the class, no more and no less.  

2) Primitiveness Methods associated with a design class should be focused on accomplishing one 

service for the class. Once the service has been implemented with a method, the class should not 

provide another way to accomplish the same thing. For example, the class VideoClip for video-editing 

software might have attributes start-point and end-point to indicate the start and end points of the clip 

(note that the raw video loaded into the system may be longer than the clip that is used). The methods, 

setStartPoint() and setEndPoint(), provide the only means for establishing start and end points for the 

clip. 

3)High cohesion. A cohesive design class has a small, focused set of responsibilities and single-

mindedly applies attributes and methods to implement those responsibilities. For example, the class 

VideoClip might contain a set of methods for editing the video clip. As long as each method focuses 
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solely on attributes associated with the video clip, cohesion is maintained. 

4) Low coupling.  Within the design model, it is necessary for design classes to collaborate with one 

another. However, collaboration should be kept to an acceptable minimum. If a design model is highly 

coupled (all design classes collaborate with all other design classes), the system is difficult to 

implement, to test, and to maintain over time. In general, design classes within a subsystem should 

have only limited knowledge of other classes. This restriction, called the Law of Demeter [Lie03], 

suggests that a method should only send messages to methods in neighboring classes. 

 

3.2 (1) Architectural design 

Large systems are always decomposed into sub-systems that provide some related set of services. 

The initial design process of identifying these sub-systems and establishing a framework for sub-

system control and communication is called architectural design. The output of this design process is 

a description of the software architecture. 

In the model presented, architectural design is the first stage in the design process and represents a 

critical link between the design and requirements engineering processes. The architectural design 

process is concerned  with establishing a basic structural framework that identifies the major 

components of a system and the communications between these components. 

• Bass et al. (Bass, et al., 2(03) discuss three advantages of explicitly designing 

and documenting a software architecture: 

I. Stakeholder communication The architecture is a high-level presentation of the system that may 

be used as a focus for discussion by a range of different stakeholders. 

2. System analysis Making the system architecture explicit at an early stage in the system 

development requires some analysis. Architectural design decisions have a profound effect on 

whether the system can meet critical requirements such as performance, reliability and 

maintainability. 

3. Large-scale reuse A system architecture model is a compact, manageable description of how a 

system is organized and how the components interoperate. 

• The system architecture is often the same for systems with similar requirements 

and so can support large-scale software reuse. It may be possible to develop product-line architectures 

where the same architecture is used across a range of related systems. 



111 
 

• The system architecture affects the performance, robustness, distributability and 

maintainability of a system (Bosch). The particular style and structure chosen for an 

application may therefore depend on the non-functional system requirements: 

1. Performance If performance is a critical requirement, the architecture should be designed to 

localize critical operations within a small number of subsystems, with as little communication as 

possible between these sub-systems. This may mean using relatively large-grain rather than fine-grain 

components to reduce component   

2. Security If security is a critical requirement, a layered structure for the architecture should be used, 

with the most critical assets protected in the innermost layers and with a high level of security 

validation applied to these layers. 

3. Safety If safety is a critical requirement, the architecture should be designed so that safety-related 

operations are all located in either a single sub-system or in a small number of sub-systems. This 

reduces the costs and problems of safety validation and makes it possible to provide related protection 

systems. 

4. Availability If availability is a critical requirement, the architecture should be designed to include 

redundant components and so that it is possible to replace and update components without stopping 

the system. Fault-tolerant system architectures for high-availability systems are covered . 

5. Maintainability If maintainability is a critical requirement, the system architecture should be 

designed using fine-grain, self-contained components that may  readily be changed. Producers of data 

should be separated from consumers and shared data structures should be avoided.  

• For example, Figure 11.1 is an abstract model of the architecture for a packing robot system 

that shows the sub-systems that have to be developed. This robotic system can pack different 

kinds of object. It uses a vision sub-system to pick out objects on a conveyor, identify the type 

of object and select the right kind of packaging. The system then moves objects from the 

delivery conveyor to be packaged. It places packaged objects on another conveyor. 
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3.2(2)Architectural design decisions 

• Architectural design is a creative process where you try to establish a system organization that 

will satisfy the functional and non-functional system requirements.  

• Because it is a creative process, the activities within the process differ radically depending on 

the type of system being developed, the background and experience of the system architect, 

and the specific requirements for the system.  

• It is therefore more useful to think of the architectural design process from a decision 

perspective rather than from an activity perspective. During the architectural design process, 

system architects have to make a number of fundamental decisions that profoundly affect the 

system and its development process. Based on their knowledge and experience, they have to 

answer the following fundamental questions: 

1. Is there a generic application architecture that can act as a template for the system 

that is being designed? 

2. How will the system be distributed across a number of processors? 

3. What architectural style or styles are appropriate for the system? 

4. What will be the fundamental approach used to structure the system? 

5. How will the structural units in the system be decomposed into modules? 

6. What strategy will be used to control the operation of the units in the system? 

7. How will the architectural design be evaluated? 
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8. How should the architecture of the system be documented? 

• Evaluating an architectural design is difficult because the true test of an architecture is in how 

well it meets its functional and non-functional requirements after it has been deployed 

•  However, in some cases, you can do some evaluation by comparing your design against 

reference or generic architectural models.  

• The graphical models of the system present different perspectives on the architecture. 

Architectural models that may be developed may include: 

• I. A static structural model that shows the sub-systems or components that are to be developed 

as separate units. 

• 2. A dynamic process model that shows how the system is organised into processes at run-

time. This may be different from the static model. 

• 3. An interface model that defines the services offered by each sub-system 

through its public interface. 

• 4. Relationship models that shows relationships, such as data flow, between the sub-systems. 

• 5. A distribution model that shows how sub-systems may be distributed across computers. 

 

3.2(3) System Organization 

• The organization of a system reflects the basic strategy that is used to structure a system. The  

system organization may be directly reflected in the sub-system structure.  

• However, it is  often the case that the sub-system model includes more detail than the 

organizational model, and there is not always a simple mapping from sub-systems to 

organizational structure 

1) The repository model 

• Sub-systems making up a system must exchange information so that they can work together 

effectively. There are two fundamental ways in which this can be done. 

1. All shared data is held in a central database that can be accessed by all subsystems. 

• A system model based on a shared database is sometimes called a repository model. 

2. Each sub-system maintains its own database. Data is interchanged with other sub-systems by 

passing messages to them. 
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• The majority of systems that use large  amounts of data are organized around a shared database 

or repository. This model is therefore suited to applications where data is generated by one 

sub-system and used by another.  

• Examples of this type of system include command and control systems, management 

information systems, CAD systems and CASE toolsets. 

• Figure 11.2 is an example of a CASE toolset architecture based on a shared repository. 

 

The advantages and disadvantages of a shared repository are as follows: 

1. It is an efficient way to share large amounts of data. There is no need to transmit data explicitly 

from one sub-system to another. 

2. However, sub-systems must agree on the repository data model. Inevitably, this is a compromise 

between the specific needs of each tool. Performance may be adversely affected by this compromise. 

It may be difficult or impossible to integrate new sub-systems if their data models do not fit the agreed 

schema. 

3. Sub-systems that produce data need not be concerned with how that data is used by other sub-

systems. 

4. However, evolution may be difficult as a large volume of information is generated according to an 

agreed data model. Translating this to a new model will certainly be expensive; it may be difficult or 

even impossible.  

5. Activities such as backup, security, access control and recovery from error are centralized. They 

are the responsibility of the repository manager. Tools can focus on their principal function rather 
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than be concerned with these issues. 

6. However, different sub-systems may have different requirements for security, recovery and backup 

policies. The repository model forces the same policy on all sub-systems. 

7. The model of sharing is visible through the repository schema. It is straightforward to integrate 

new tools given that they are compatible with the agreed data model. 

8. However, it may be difficult to distribute the repository over a number of machines. Although it is 

possible to distribute a logically centralized repository, there may be problems with data redundancy 

and inconsistency. 

2. The client-server model 

• The client-server architectural model is a system model where the system is organized as  set 

of services and associated servers and clients that access and use the services. The major 

components of this model are: 

I. A set of servers that offer services to other sub-systems. Examples of servers are print servers that 

offer printing services, file servers that offer file management services and a compile server, which 

offers programming language compilation services. 

2. A set of clients that call on the services offered by servers. These are normally sub- systems In 

their own right. There may be several instances of a client program executing concurrently. 

3. A network that allows the clients to access these services. This is not strictly necessary as both the 

clients and the servers could run on a single machine. In practice, however, most client-server systems 

are implemented as distributed systems. 

 

Clients may have to know the names of the available servers and the services 

that they provide. However, servers need not know either the identity of clients or 

how many clients there are. 

Figure 11.3 shows ,m example of a system that is based on the client-server model. 

This is a multi-user, web-based system to provide a film and photograph library.  In this  

system, several servers manage and display the different types of media. 



116 
 

 

• The catalogue must be able to deal with a variety of queries and provide links into the web 

information system that includes data about the film and video clip, and an e-commerce system 

that supports the sale of film and video clips. 

• The most important advantage of the client-server model is that it is a distributed  architecture. 

Effective use can be made of networked systems with many distributed processors. It is easy 

to add a new server and integrate it with the rest of the  system or to upgrade servers 

transparently without affecting other parts of the system. 

• However, changes to existing clients and servers may be required to gain the full benefits of 

integrating a new server. There may be no shared data model across servers and sub-systems 

may organize their data in different ways. This means that specific data models may be 

established on each server to allow its performance to  be optimized. 

3. The layered model  

• The layered model of an architecture  (sometimes called an abstract machine model) 

• organizes a system into layers, each of which provide a set of services. Each layer can be 

thought of as an abstract machine whose machine language is defined by the services provided 

by the layer. This 'language' is used to implement the next level of abstract machine. For 

example, a common way to implement a language is to define an ideal 'language machine' and 

compile the language into code for this machine. 

• An example of a layered model is the OSI reference model of network protocols 
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• Figure 11.4 reflects the APSE structure and shows how a configuration management system 

might be integrated using this abstract machine approach. 

• The configuration management system manages versions of objects and provides general 

configuration management facilities, To support these configuration management facilities, it 

uses an object management system that provides information storage and  management 

services for configuration items or objects. This system is built on top of a  database system to 

provide basic data storage and services such as transaction management, rollback and 

recovery, 

    and access control. The database management uses the     underlying operating system 

facilities and file store in its implementation. 

• The layered approach supports the incremental development of systems. As a layer is 

developed, some of the services provided by that layer may be made available to users. This 

architecture is also changeable and portable. So long as its interface is unchanged, a layer can 

be replaced by another, equivalent layer 

 

• As layered systems localize machine dependencies in inner layers, this makes it easier to 

provide multi-platform implementations of an application system. Only the inner, machine-

dependent layers need be re-implemented to take account of the facilities of a different 

operating system or Database 

• A disadvantage of the layered approach is that structuring systems in this way can be difficult. 

Inner layers may provide basic facilities, such as file management, that are required at all 

levels.  
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• Services required by a user of the top level may therefore have to 'punch through' adjacent 

layers to get access to services that are provided several levels beneath it. 

• Performance can also be a problem because of the multiple levels of command interpretation 

that are sometimes required. If there are many layers, a service request from a top layer may 

have to be interpreted several times in different layers before it is processed.  

• To avoid these problems, applications may have to communicate directly with inner layers 

rather than use the services provided by the adjacent layer. 

 

3.2(4) Modular decomposition styles 

• You need to make a decision on the approach to be used in decomposing sub-systems into 

modules. There is not a rigid distinction between system organization and modular 

decomposition. 

There is no clear distinction between sub-systems and modules, but I find it useful to think of them 

as follows: 

1. A sub-system is a system in its own right whose operation does not depend on the services provided 

by other sub-systems. Sub-systems are composed of modules and have defined interfaces, which are 

used for communication with other sub-systems. 

2. A module is normally a system component that provides one or more services to other modules. It 

makes use of services provided by other modules. It is not normally considered to be an independent 

system. Modules are usually composed from a number of other simpler system components. 

• There are two main strategies that you can use when decomposing a sub-system into modules: 

• I. Object-oriented decomposition where you decompose a system into a set of  communicating 

objects. 

• 2.Function-oriented pipelining where you decompose a system into functional modules that 

accept input data and transform it into output data. 

• In the object-oriented approach, modules are objects with private state and defined operations 

on that state.  

• In the pipelining model, modules are functional transformations. In both cases, modules may 

be implemented as sequential  components or as processes. 
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1. Object-oriented decomposition 

 An object-oriented, architectural model structures the system into a set of loosely 

coupled objects with well-defined interfaces. Objects call on the services offered by 

other objects“. 

 Figure 11.5 is an example of an object-oriented architectural model of an invoice 

processing system. This system can issue invoices to customers, receive payments, and 

issue  receipts for these payments and reminders for unpaid invoices. 

 An object-oriented decomposition is concerned with object classes, their attributes and 

their operations. When implemented, objects are created from these classes and some 

control model is used to coordinate object operations.  

 In this particular  example, the Invoice class has various associated operations that  

implement the system functionality. This class makes use of other classes representing 

customers, payments and receipts. 
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The advantages of the object-oriented approach are : 

 

• Are loosely coupled, the implementation of objects can be modified without affecting other 

objects.  

• Objects are often representations of real-world entities so the structure of the system is readily 

understandable.  

• Because these real-world entities are     used in different systems, objects can be reused.  

• Object-oriented programming languages have been developed that provide direct  

implementations of architectural components. 

The object-oriented approach does have disadvantages.  

• To use services, objects must explicitly reference the name and the interface of other objects.  

• If an interface change is required to satisfy proposed system changes, the effect of that change 

on all users of the changed object must be evaluated. 

•  While objects may map cleanly to small-scale real-world entities, more complex entities are 

sometimes difficult to represent as objects. 

2.Function-oriented pipelining 

• In a function-oriented pipeline or data-flow model, functional transformations process their 

inputs and produce outputs. Data flows from one to another and is transformed as it moves 

through the sequence. 

•  Each processing step is implemented as a transform. Input data flows through these transforms 

until converted to output. 

• The transformations may execute sequentially or in parallel. The data can be processed by 

each transform item by item or in a single batch. 

• When the transformations are represented as separate processes, this model is sometimes 

called the pipe and filter style after the terminology used in the Unix system.  

• The Unix system provides pipes that act as data conduits and a set of commands that are 

functional transformations. 

• The term filter is used because a transformation 'filters out the data it can process from its input 

data stream. 
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• Variants of this pipelining model have been in use since computers were first used for 

automatic data processing. When  transformations are sequential with data processed in 

batches, this architectural model is a batch sequential model. 

• An example of this type of system architecture is shown in Figure 11.6.  

• An organization has issued invoices to customers. Once a week, payments that have been made 

are reconciled with the invoices.  

• For those invoices that have been paid, a receipt is issued. For those invoices that have not 

been paid within the allowed payment time, a reminder is issued. 

• This is a model of only part of the invoice processing system; alternative transformations 

would be used for the issue of invoices. Notice the difference between this and its object-

oriented equivalent discussed in the previous section. 

• The object model is more abstract as it does not include information about the sequence of 

operations. 

• Fig : 11.6 A Pipeline model of an invoice processing system. 

The advantages of this architecture are: 

• I. It supports the reuse of transformations. 

• 2. It is intuitive in that many people think of their work in terms of input and output processing. 

• 3. Evolving the system by adding new transformations is usually straightforward. 

• 4. It is simple to implement either as a concurrent or a sequential system. 

 

• The principal problem with this style is that there has to be a common format for data transfer 

that can be recognized by all transformations.  
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• Each transformation must either agree with its communicating transformations on the format 

of the data that will be processed or with a standard format for all data communicated must be 

imposed. 

•  Interactive systems are difficult to write using the pipelining model because of the need for a 

stream of data to be processed. 

3.3(1) Object Oriented Design 

• An object-oriented system is made up of interacting objects that maintain their own local state 

and provide operations on that state (Figure 14.1). 

•  The representation of the state is private and cannot be accessed directly from outside the 

object.  

• Object-oriented design processes involve designing object classes and the relationships 

between these classes. These classes define the objects in    the system and their  interactions. 

• When the design is realized as an executing program, the objects are created dynamically from 

these class definitions. 
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• Object-oriented design is part of object-oriented development where an object-oriented 

strategy is used throughout the development process: 

• Object-oriented analysis is concerned with developing an object-oriented model of the 

application domain. The objects in that model reflect the entities and operations associated 

with the problem to be solved. 

• Object-oriented design is concerned with developing an object-oriented model of a software 

system to implement the identified requirements. The objects in an object-oriented design are 

related to the solution to the problem. There may be close relationships between some problem 

objects and some solution objects, but the designer inevitably has to add new objects and to 

transform problem objects to implement the solution. 

• Object-oriented programming is concerned with realizing a software design using an object-

oriented programming language, such as Java. An object-oriented programming language 

provides constructs to define object classes and a run-time system to create objects from these 

classes. 

• Object-oriented systems are easier to change than systems developed using other approaches 

because the objects are  independent. They may be understood and  modified as standalone 

entities. Changing the implementation of an object or adding services should not affect other 

system object 

• Because objects are associated with things, there is often a clear mapping between real-world 

entities (such as hardware components) and their controlling objects in the system. This 

improves the understandability and hence the maintainability of the design. 

• Objects are, potentially, reusable components because they are independent encapsulations of 

state and operations. Designs can be developed using objects that have been created in previous 

designs. This reduces design,  programming and validation costs. 

• Several object-oriented design methods have been proposed . 

• The UML is a unification of the notations used in these methods. 

 

 

3.3(2) 1. Objects and object classes 

•  The terms object and object-oriented are applied to different types of entity, design methods, 

systems and programming languages. There is a general acceptance that an object is an 
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encapsulation of information, and this is reflected in my definition of an object and an object 

class: 

• An object is an entity that has a state and a defined set of operations that operate on that state. 

The state is represented as a set of object attributes. The operations associated with the object 

provide services to other objects (clients) that request these services when some computation 

is required.  

• Objects are created according to an object class definition. An object class definition is both 

a type specification and a template for creating objects. It includes declarations of all the 

attributes and operations that should be associated with an object of that class.  

• Figure 14.2 (An Employee Object) illustrates this notation using an object class that models 

an employee in an organization.  

• The UML uses the term operation to mean the specification of an action; the term method is 

used to refer to the implementation of an    operation.  

 

• The class Employee defines a number of attributes that hold information about employees 

including their name and address, social security number, tax code, and so on.  

• The ellipsis (...) indicates that there are more attributes associated with the class than are 

shown.  

• Operations associated with the object are join (called when an employee joins the 

organization), leave (called when an employee leaves the organization), retire (called when 
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the employee becomes a pensioner of the organization)and changeDetails (called when some 

employee information needs to be modified).  

• Objects communicate by requesting services (calling methods) from other objects and, if 

necessary, by exchanging the information required for service provision. The copies of 

information needed to execute the service and the results of service execution are passed as 

parameters. 

• In service-based systems, object  communications are implemented directly as XML text 

messages that objects exchange. 

• When service requests are implemented in this way, communication between objects 

• is synchronous. That is, the calling object waits for the service request to be completed.  

• However, if objects are implemented as concurrent processes or threads, the object 

(communication may be asynchronous. The calling object may continue in operation while the 

requested service is executing. 

 

 

• Figure 14.3  

 

• Figure 14.3 shows an example of an object class hierarchy where different classes of 

employee are shown.  



126 
 

• Classes lower down the hierarchy have the same attributes and operations as their parent 

classes but may add new attributes and operations or modify some of those from their parent 

classes. 

•  This means that there is one-way interchangability. If the name of a parent class is used in a 

model, the object in the system may either be defined as of that class or of any of its 

descendants. 

• The class Manager in Figure 14.3 has all of the attributes and operations of the class 

Employee but has, in addition, two new attributes that record the budgets controlled by the 

manager and the date that the manager was appointed to a particular management role.  

• Similarly, the class Programmer adds new attributes that define 

• the project that the programmer is working on and the programming language skills that he 

or she has. Objects of class Manager or Programmer may therefore be used anywhere an 

object of class Employee is required. 

• Objects that are members of an object class participate in relationships with other objects. 

These relationships may be modeled by describing the associations between the object 

classes. 

•  In the UML, associations are denoted by a line between the object classes that may 

optionally be annotated with information about the association. 

• This is illustrated in Figure 14.4, which shows the association between objects of class 

Employee and objects of class Department, and between objects of class Employee and 

objects of class Manager. 

• Association is a very general relationship and is often used in the UML to indicate that either 

an attribute of an object is an associated object or the implementation of an object method 

relies on the associated object. 

• Fig: 14.4 An Association Model 

• One of the most common associations is aggregation, which illustrates how objects may be 

composed of other objects. 
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• 1.1 Concurrent Objects 

• All object requests a service from another object by sending a service request' message to 

that object. There is no requirement for serial execution where one object waits for 

completion of a requested service.  

• Consequently, the general model of object interaction allows objects to execute concurrently 

as parallel processes. These objects may execute on the same computer or as distributed 

objects on different machines. 

• In practice, most object-oriented programming languages have as their default a serial 

execution model where requests for object services are implemented in the same way as 

function calls. Therefore, when an object  called theList is created from a normal object 

class, you write in Java:  

         theList.append (17) 

• This calls the append method associated with theList object to add the element 17 to theList, 

and execution of the calling object is suspended until the append operation has been 

completed. However, Java includes a very simple mechanism 

• (threads) that lets you create objects that execute concurrently.  

• Threads are created in Java by using the built-in Thread class as a parent class in a class 

declaration. 

• Threads must include a method called run, which is started by the Java run-time system 

when objects that are defined as threads are created. 

• There are two kinds of concurrent object implementation: 

• 1. Servers where the object is realised as a parallel process with methods corresponding to 

the defined object operations. Methods start up in response to an external message and may 
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execute in parallel with methods associated with other objects. When they have completed 

their operation, the object suspends itself and waits for further requests for service. 

• 2. Active objects where the state of the object may be changed by internal operations 

executing within the object itself. The process representing the object 

continually executes these operations so never suspends itself. 

• Servers are most useful in a distributed environment where the calling and the called object 

may execute on different computers. The response time for the service that is requested is 

unpredictable, so, wherever possible, you should design the system so that the object that has 

requested a service does not have to wait for that service to be completed. may request the 

service. 

• Active objects are used when an object needs to update its own state at specified intervals. 

This is common in real-time systems where objects are associated with hardware devices that 

collect information about the system's environment.  

• The  object's methods allow other objects access to the state information. 

• Figure 14.5 shows how an active object may be defined and implemented in Java. 

• The object class represents a transponder on an aircraft. The transponder keeps track of the 

aircraft's position using a satellite navigation system. It can respond to messages from air 

traffic control computers.  

• It provides the current aircraft position in 

response to a request to the givePosition method. 
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3.3(3) 2.An object-oriented design process 

• There are several methods of object-oriented 

design with no definitive 'best' method or design process. 

• The process here is a general one that incorporates activities common to most OOD 

processes. 

• The general process that I use here for object-oriented design has a number of stages: 

1. Understand and define the context and the modes of use of the system. 

2. Design the system architecture. 

3. Identify the principal objects in the system. 

4. Develop design models. 

5. Specify object interfaces. 

• In fact all of the above activities are interleaved and so influence each other.  
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• Objects are identified and the interfaces fully or partially specified as the architecture of the 

system is defined. 

•  As object models are produced these individual object definitions may be refined which 

leads to changes to the system architecture. 

• We can illustrate the process activities by developing an example of an object-oriented 

design. 

•  This example is part of a system for creating weather maps using automatically collected 

meteorological data. The detailed requirements for such a weather mapping system would 

take up many pages. 

• A weather mapping system is required to generate weather maps on a regular basis using 

data collected from remote, unattended weather stations and other data sources such as 

weather observers, balloons and satellites. Weather stations transmit their data to the area 

computer in response   to a request from that machine.  

 

• The area computer system validates the collected data and integrates the data from different 

sources. The integrated data is archived and, using data from this archive and a digitized 

map database, a set of local weather maps is created. Maps may be printed for distribution 

on a special-purpose map printer or may be displayed in a number of different formats. 

• This description shows that part of the overall system is concerned with collecting data, part 

with integrating the data from different sources, part with archiving that data and part with 

creating weather maps. 

• This is a layered architecture that reflects the stages of processing in the system, namely data 

collection, data integration, data archiving and map generation. A layered architecture is 
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appropriate in this case because each stage relies only on the processing of the previous stage 

for its operation. 

• The layers and have included the layer name in a UML package symbol that has been 

denoted as a sub-system. 

• In Figure 14.7, we have expanded on this abstract architectural model by showing the 

components of the sub-systems. These are still abstract and have been derived from the 

information in the description of the system. 

 

2.1. System context and models of use 

• The first stage in any software design process is to develop an understanding of the 

relationships between the software that is being designed and its external environment. 

• The system context and the model of system use represent two complementary models of the 

relationships between a system and its environment: 

• 1. The system context is a static model that describes the other systems in that environment.  

• 2. The model of the system use is a dynamic model that describes how the system actually 

interacts with its environment. 

• The context model of a system may be represented using associations (see Figure 14.4) 

where a simple block diagram of the overall system architecture is produced. 

• You then develop this by deriving a sub-system model using UML packages as shown in 

Figure 14.7. This model shows that the context of the weather station system is within a sub-



132 
 

system concerned with data collection. It also shows other sub-systems that make up the 

weather mapping system. 

• When you model the interactions of a system with its environment you should use an 

abstract approach that does not include too much detail. 

• The use-case model for the weather station is shown in Figure 14.8. This shows that weather 

station interacts with external entities for startup and shutdown, for reporting the weather 

data that has been collected, and for instrument testing and calibration. 

• Each of these use-cases can  be described in structured natural language. This helps 

designers identify objects in the system and gives them an understanding of what the system 

is intended to do. 

 

• The use-case description helps to identify objects and operations in the system.  

• From the description of the Report use-case, it is obvious that objects representing  the 

instruments that collect weather data will be required, as will an object representing the 

summary of the weather data. Operations to request weather data and to send weather data 

are required. 
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2.2Architectural design 

• Once the interactions between the software system that is being designed and the system, 

environment have been defined, you can use this information as a basis for designing the 

system architecture. The automated weather station is a relatively simple system, and its 

architecture can again be represented as a layered model. 

• illustrated this in Figure 14.10 as three UML packages within the more general Weather 

station package. Notice how I have used UML annotations (text in boxes with a folded 

comer) to provide additional information here. 

• The three layers in the weather station software are: 

• 1. The interface layer that is concerned with all communications with other parts of the 

system and with providing the external interfaces of the system; 

• 2. The data collection layer that is concerned with managing the collection of data from the 

instruments and with summarizing the weather data before transmission to the mapping 

system; 

• 3. The instruments layer that is an encapsulation of all of the instruments used to collect raw 

data about the weather conditions.  
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2.3 Object identification 

In practice this process is actually concerned with identifying object classes. The design is 

described in terms of these classes. Inevitably, you have to refine the object classes that you 

initially identify and revisit this stage of the process as you develop a deeper understanding 

of the design. 

There have been various proposals made about how to identify object classes: 

• 1. Use a grammatical analysis of a natural language description of a system. Objects and 

attributes are nouns; operations or services are verbs. This approach has been embodied in 

the HOOD method for object-oriented design  that was widely used in the European 

aerospace industry. 

• 2. Use tangible entities (things) in the application domain such as aircraft, roles such as 

manager, events such as request, interactions such as meetings locations such as offices, 

organizational units such as companies, and so on Support this by identifying storage 

structures (abstract data structures) in the solution domain that might be required to support 

these objects.  

• 3. Use a behavioral approach where the designer first understands the overall behavior of the 

system. The various behaviors are assigned to different parts of the system and an 
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understanding is derived of who initiates and participates in these behaviors. Participants 

who play significant roles are recognized as 

     objects .  

• 4. Use a scenario-based analysis where various scenarios of system use are identified and 

analyzed in turn. As each scenario is analyzed, the team responsible for the analysis must 

identify the required objects, attributes and operations. A method of analysis called CRC 

cards where analysts and designers take on the role of objects is effective in supporting this 

scenario-based approach. 

• These approaches help you get started with object identification. In practice, you may have 

to use several knowledge sources to discover object classes. Object classes, attributes and 

operations that are initially identified from the informal system description can be a starting 

point for the design. 

• A hybrid approach here to identify the weather station objects  to describe all the objects, but 

shown five object classes in Figure 14.11. Ground thermometer, Anemometer and Barometer 

represent application domain objects, and WeatherStation and WeatherData have been 

identified from the system description and the scenario (use-case) description. 

These objects are related to the levels in the system architecture. 

1. The WeatherStation object class provides the basic interface of the weather station with its 

environment. Its operations therefore reflect the interactions shown in Figure 14.8. In this 

case, I use a single object class to encapsulate all of these interactions, but in other designs 

you may chose to design the system Interface  as several different classes. 

2. The WeatherData object class encapsulates the summarized data from the instruments in 

the weather station. Its associated operations are concerned with collecting and summarizing 

the data that is required. 

3. The Ground thermometer, Anemometer and Barometer object classes are directly related 

to instruments in the system. They reflect tangible hardware entities in the system and the 

operations are concerned with controlling that hardware. 
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• Fig: 14.11 Examples of object classes in the weather station system.  

 

• The objects associated with each instrument should not be active objects. The collect 

operation in WeatherData calls on instrument objects to make readings when required. 

Active objects include their own control and, in this case, it would mean that each instrument 

would decide when to make readings. 

• The disadvantage of this is that, if a decision was made to change the timing of the data 

collection or if different weather stations collected data differently, then new object classes 

would have to be introduced. By making the instrument objects make readings on request, 

any changes to collection strategy can be easily implemented without changing the objects 

associated with the instruments. 

2.4 Design models 

• Design models show the objects or object classes in a system and, where appropriate, the 

relationships between these entities. Design models essentially are the design. They are the 

bridge between the requirements for the system and the system implementation.  

• An important step in the design process, therefore, is to decide which design models that you 

need and the level of detail of these models. This depends on the type 

     of system that is being developed. A sequential data    processing system will be designed 

in a different way from an embedded real-time system, and different design models will 

therefore be used 
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• There are two types of design models that should normally be produced to describe an objen-

oriented design: 

• 1. Static models describe the static structure of the system using object classes and their 

relationships. Important relationships that may be documented at this stage are generalization 

relationships, uses/used-by relationships and composition relationships. 

• 2. Dynamic models describe the dynamic structure of the system and show the interactions 

between the system objects (not the object classes). Interactions that may be documented 

include the sequence of service requests made by objects and the way in which the state of 

the system is related to these object interactions. 

• The UML provides for 12 different static and dynamic models that may be produced to 

document a design. The models that we discuss in this section are:  

• 1. Subsystem models that show logical groupings of objects into coherent sub-systems. 

These are represented using a form of class diagram where each sub-system is shown as a 

package. Subsystem models are static models. 

• 2. Sequence models that show the sequence of object interactions. These are represented 

using a UML sequence or a collaboration diagram. Sequence models are dynamic: models. 

• 3. State machine models that show how individual objects change their state in response to 

,events. These are represented in the UML using statechart diagrams. State machine models 

are dynamic models. 

• Figure 14.12 shows the objects in the sub-systems in the weather station. I also show some 

associations in this model. For example, the CommsController object is associated with the 

WeatherStation object, and the WeatherStation object is associated with the Data collection 

package. This means that this object is associated with one or more objects in this package. 

A package model plus an object class model should describe the logical groupings in the 

system. 
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• A sub-system model is a useful static model as it shows how the design may be organized 

into logically related groups of objects. Sequence models are dynamic models that document, 

for each mode of interaction, the sequence of object interactions that take place. Figure 

14.13 is an example of a sequence model that shows the operations involved in collecting the 

data from a weather station. 

 

In a sequence model: 

1. The objects involved in the interaction are arranged horizontally with a vertical line linked 

to each object. 

2. Time is represented vertically so that time progresses down the dashed vertical lines. 

Therefore, the sequence of operations can be read easily from the mode1. 
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3. Labelled arrows linking the vertical lines represent interactions between objects. These are 

not data flows but represent messages or events that are fundamental to the interaction. 

4. The thin rectangle on the object lifeline represents the time when the object is the 

controlling object in the system. An object takes over control at the top of the rectangle and 

relinquishes control to another object at the bottom of the rectangle. If there is a hierarchy of 

calls, control is not relinquished until the lase return to the initial method call has been 

completed.  

You read sequence diagrams from top to bottom: 

1. An, object that is an instance of CommsController (:CommsController) receives 

a request from its environment to send a weather report. It acknowledges receipt 

of this request. The half-arrowhead on the acknowledge message indicates that 

the message sender does not expect a reply. 

 2. This object sends a message to an object that is an instance of WeatherStation 

to create a weather report. The instance of CommsController then suspends itself 

(its control box ends). The style of arrowhead used indicates that the 

CommsController object instance and the WeatherStation object instance are 

objects that may execute concurrently. 

3. The object that is an instance of WeatherStation sends a message to a 

WeatherData object to summarize the weather data. In this case, the squared off  

style of arrowhead indicates that the instance of WeatherStation waits for 

a reply. 

4. This summary is computed and control returns to the WeatherStation object. 

The dotted arrow indicates a return of control. 

5. This object sends a message to CommsController requesting it to transfer the 

data to the remote system. The WeatherStation object then suspends itself. 

6. The CommsController object sends the summarized data to the remote system, 

receives an acknowledgement, and then suspends itself waiting for the next request. 

• Figure 14.14 is a state-chart for the WeatherStation object that shows how it responds to 

requests for various services. 

• You can read this diagram as follows: 
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• 1. If the object state is Shutdown then it can only respond to a startup ( )message. It then 

moves into a state where it is waiting for further messages. The un-labelled arrow with the 

black blob indicates that the Shutdown state is the initial state. 

• 2. In the Waiting state, the system expects further messages. If a shutdown( ) message is 

received, the object returns to the shutdown state. 

• 3. If a reportWeather( ) message is received, the system moves to the Summarizing state. 

When the summary is complete, the system moves to a Transmitting state where the 

information is transmitted through the  

     CommsController. It then returns to the Waiting state.  

• 4. If a calibrate( ) message is received, the system moves to the Calibrating state, then the 

Testing state, and then the Transmitting state, before returning to the Waiting state If atest( ) 

message is received, the system moves directly to the Testing state. 

• 5. If a signal from the clock is received, the system moves to the Collecting state, 

where it is collecting data from the instruments. Each instrument is instructed 

in turn  collect its data. 

Figure 14.14  

 

2.5 Object interface Specification 

• An important part of any design process is the specification of the interfaces between the 

components in the design. You need to specify interfaces so that objects and sub-systems can 

be designed in parallel. 

• There is not necessarily a simple I: I relationship between objects and interfaces. 
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• The same object may have several interfaces, each of which is a viewpoint on the methods 

that it provides. This is supported directly in Java, where interfaces are declared separately 

from objects, and objects 'implement' interfaces. 

• Figure 14.15, which shows the interface specification in Java of the weather station. As 

interfaces become more complex, this approach becomes more effective because the syntax-

checking facilities in the compiler may be used to discover errors and inconsistencies in the 

interface description. The  

3.3(4) Design evolution 

• After a decision has been made to develop a system such as a weather data collection system, 

it is inevitable that proposals for system changes will be made. 

•  An important advantage of an object-oriented approach to design is that it simplifies the 

problem of making changes to the design. The reason for this is that object state 

representation does not influence the design. 

• To show how an object-oriented approach to design makes change easier, assume that 

pollution-monitoring capabilities are to be added to each weather station. 
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• This involves adding an air quality meter to compute the amount of various pollutants in the 

atmosphere. The pollution readings are transmitted at the same time as the weather data. 

• To modify the design, the following changes must be made: 

• 1. An object class called Air quality should be introduced as part of WeatherStation at the 

same level as WeatherData. 

• 2. An operation reportAirQuality should be added to WeatherStation to send the pollution 

information to the central computer. The weather station control software must be modified 

so that pollution readings are automatically collected when requested by the top-level 

WeatherStation object.  

• 3. Objects representing the types of pollution monitoring instruments should be added. In 

this case, levels of nitrous oxide, smoke and benzene can be 

     measured. 

• The pollution monitoring objects are encapsulated in a separate package called 

       Pollution monitoring instruments.  

• This has associations with Air quality and WeatherStation but not with any of the objects 

used to collect weather data.  

• Figure 14.16 shows WeatherStation and the new objects added to the system. Apart from at 

the highest level of the system (WeatherStation), no software changes are required in the 

original objects in the weather station.  
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UNIT – IV  

VERIFICATION AND VALIDATION: Planning verification and validation, Software 

inspections, Automated static analysis, Verification and formal methods.  

SOFTWARE TESTING: System testing, Component testing, Test case design, Test automation, 

Quality management: Software Quality Assurance. 

 

4.1(1) Verification and Validation 

• Testing a program is the most common way of checking that it meets its specification and 

does what the customer wants. However, testing is only one of a range of verification and 

validation techniques. 

Verification and validation (V &V) 

is the name given to these checking and analysis processes. Verification and validation activities 

take place at each stage of the software process. V & V starts with requirements reviews and 

continues through design reviews and code inspections to product testing. 

Verification and validation are not the same thing, although they are often confused. Boehm 

(1979) succinctly expressed the difference between them: 

'Validation: Are we building the right product?' 

'Verification: Are we building the product right?' 

• These definitions tell us that the role of verification involves checking that the software 

conforms to its specification.  

     You should check that it meets its specified functional and          non-functional requirements.  

• Validation, however, is a more  general process. The aim of validation is to ensure that the 

software system meets the customer s expectations. It goes beyond checking that the system 

conforms to its specification to showing that the software does what the customer expects it 

to do. 

• The ultimate goal of the verification and validation process is to establish confidence that 

the software system is 'fit for purpose' 

•  This means that the system must be good enough for its intended use.  
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• The level of required confidence depends 

On the system's purpose, the expectations of the system users and the current marketing 

environment for the system: 

1. Software function The level of confidence required depends on how critical the software is to an 

organization.  

2. User expectations It is a sad reflection on the software industry that many users have low 

expectations of their software and are not surprised when it fails during use. They are willing to 

accept these system failures when the benefits of use outweigh the disadvantages 

3. Marketing environment When a system is marketed, the sellers of the system must take into 

account competing programs, the price those customers are willing to pay for a system and the 

required schedule for delivering that system. Where a company has few competitors, it may decide 

to release a program before it has been fully tested and debugged because they want to be the first 

into the market. 

Where customers are not willing to pay high prices for software, they may be willing to tolerate 

more software faults  

• Within the V & V process, there are two complementary approaches to system checking and 

analysis: 

• 1. Software inspections or peer reviews analyze and check system representations such as 

the requirements document, design diagrams and the program source code. You can use 

inspections at all stages of the process. Inspections may be supplemented by some automatic 

analysis of the source text of a system or associated documents. Software inspections and 

automated analyses are static V & V techniques, as you don't need to run the software on a 

computer. 

• 2. Software  testing involves running an implementation of the software with test data. 

Testing is a dynamic technique of verification and validation. 

• Figure 22.1 shows that software inspections and testing play complementary roles in the 

software process. The arrows indicate the stages in the process where the techniques may be 
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used. Therefore, you can use software inspections at all stages of the software process. 

Starting with the requirements, any readable representations of the software can be inspected.  

 

• Inspection techniques include program inspections, automated source code analysis and 

formal verification. However, static techniques can only check the correspondence between a 

program and its specification (verification); they cannot demonstrate that the software is 

operationally useful. 

• Although software inspections are now widely used, program testing will always be the main 

software verification and validation technique. Testing involves exercising the program 

using data like the real data processed by the program. 

• There are two distinct types of testing that may be used    at different stages in the software 

process: 

• 1. Validation testing is intended to show that the software is what the customer wants-that it 

meets its requirements. As part of validation testing, you may use statistical testing to test the 

program s performance and reliability, and to check how it works under operational 

conditions. I discuss statistical testing and reliability estimation.  

• 2. Defect testing is intended to reveal defects in the system rather than to simulate its 

operational use. The goal of defect testing is to [md inconsistencies between a program and 

its specification. 
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• The processes of V & V and debugging are normally interleaved. As you discover faults in 

the program that you are testing, you have to change the program to correct these faults. 

However, testing (or, more generally verification and validation) and debugging have 

different goals: 

• 1. Verification and validation processes are intended to establish the existence of defects in a 

software system. 

• 2. Debugging is a process (Figure 22.2) that locates and corrects these defects. 

 

• There is no simple method for program debugging. Skilled debuggers look for patterns in the 

test output where the defect is exhibited and use their knowledge of the type of defect, the 

output pattern, the programming language and the programming process to locate the defect. 

When you are debugging, you can use your knowledge of common programmer errors (such 

as failing to increment a counter) and match these against the observed patterns. 

• Interactive debugging tools are generally part of a set of language support tools that are 

integrated with a compilation system. They provide a specialized run-time environment for 

the program that allows access to the compiler symbol table and, from there, to the values of 

program variables 

4.1(2) Planning verification and validation 

Verification and validation is an expensive process. For some systems, such as real-time systems 

with complex non-functional constraints, more than half the system development budget may be 

spent on V & V. Careful planning is needed to get the most out of inspections and testing and to 

control the costs of the verification and validation process. 
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Figure 22.3 Test plans as a link between development and testing  

 

• The software development process model shown in Figure 22.3 is sometimes called the V-

model. It is an instantiation of the generic waterfall model. 

•  This model also breaks down system V & V into a number of stages. Each stage is driven by 

tests that have been defined to check the conformance of the program with its design and 

specification. 

• As part of the V & V planning process, you should decide on the balance between static and 

dynamic approaches to verification and validation, draw up standards and procedures for 

software inspections and testing, establish checklists to drive program inspections  and 

define the software test plan. 

• Test planning is concerned with establishing standards for the testing process, not just with 

describing product tests. 

• The major components of a test plan for a large and complex system are shown in Figure 

22.4. As well as setting out the testing schedule and procedures, the test plan defines the 

hardware and software resources that are required.  

• This is useful for system managers who are responsible for ensuring that these resources are 

available to the testing team.  
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• Test plans should normally include significant amounts of contingency so that slippages in 

design and implementation can be accommodated and staff redeployed to  other activities. 

 

4.1.(3)  Software inspections 

• Software inspection is a static V & V process in which a software system is reviewed to find 

errors. omissions and anomalies. Generally, inspections focus on source code. but any 

readable representation of the software such as its requirements or a design model can be 

inspected. When you inspect a system, you use knowledge of the system, its application 

domain and the programming language or design model to discover errors. 

• There are three major advantages of inspection over testing: 

1. During testing, errors can mask (hide) other errors. Once one error is discovered, you can never 

be sure if other output anomalies are due to a new error or are side effects of the original error. 

Because inspection is a static process, you don't have to be concerned with interactions between 

errors. Consequently, a single inspection session can discover many errors in a system. 

2. Incomplete versions of a system can be inspected without additional costs. If a program is 
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incomplete, then you need to develop specialized test harnesses to test the parts that are available. 

This obviously adds to the system development costs. 

 

3. As well as searching for program defects, an inspection can also consider broader quality 

attributes of a program such as compliance with standards, portability and maintainability. You can 

look for inefficiencies, inappropriate algorithms and poor programming style that could make the 

system difficult to maintain and update.  

• Inspections are an old idea. There have been several studies and experiments that have 

demonstrated that inspections are more effective for defect discovery than program testing.  

• Fagan (Fagan, 1986) reported that more than 60% of the errors in a program can be detected 

using informal program inspections. 

•  Mills et al( 1987) suggest that a more formal approach to inspection based on correctness 

arguments can detect more than 90% of the errors in a program. This technique is used in the 

Cleanroom process. 

• Reviews and testing each have advantages and disadvantages and should be used together in 

the verification and validation process. 

• Gilb and Graham suggest that one of the most effective uses of reviews is to review the test 

cases for a system. Reviews can discover problems with these tests and can help design more 

effective ways to test the system. 

• In spite of the success of inspections, it has proven to be difficult to introduce formal 

inspections into many software development organizations. 

• There is no doubt that inspections 'front··load' software V & V costs and result in cost 

savings only after the development teams become  experienced in their use.  

a) The program inspection process 

• Program inspections are reviews whose objective is program defect detection. 

•  The notion of a formalized inspection process was first developed at IBM in the 1970s 

(Fagan. 1976; Fagan, 1986).  
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• It is now a fairly widely used method of program verification, especially in critical systems 

engineering. 

•  From Fagan's original method, a number of alternative approaches to inspection have been 

developed (Gilb and Graham, 1993). 

• The key difference between program inspections and other types of quality review is that the 

specific goal of inspections is to find program defects rather than to consider broader design 

issues. 

• Defects may be logical errors, anomalies in the code that might indicate an erroneous 

condition or noncompliance with organizational or project standards.  

• By contrast, other types of review may be more concerned with schedule costs., progress 

against defined milestones or assessing whether the software is likely to meet organizational 

goals. 

• The program Inspection is a formal process that is carried out by a team of at least four 

people. Team members systematically analyze the code and point out possible defects. 

•  Grady and Van Slack (Grady and Van Slack, 1994) suggest six roles, as shown in Fig 22.5.  

 

• The activities in the inspection process are shown in Figure 22.6. Before a program 

Inspection process begins, it is essential that: 

1. You have a precise specification of the code to be inspected. It is impossible to inspect a 
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component at the level of detail required to detect defects without a complete specification. 

2. The inspection team members are familiar with the organizational standards. 

3. An up-to-date, compilable version of the code has been distributed to all team members. There is 

no point in inspecting code that is 'almost complete' even if a delay causes schedule disruption. 

• The inspection team moderator is responsible for inspection planning. This involves 

selecting an inspection team, organizing a meeting room and ensuring that the material to be 

inspected and its specifications are complete. The program to be inspected is presented to the 

inspection team during the overview stage when the author of the code describes what the 

program is intended to do. This is followed by a period of individual preparation. Each 

inspection team member studies the specification and the program and looks for defects in 

the code. 

• The inspection itself should be fairly short (no more than two hours) and should       focus on 

defect detection, standards conformance and poor-quality programming.  

• Following the inspection, the program s author should make changes to it to correct the 

identified problems. In the follow-up stage, the moderator should decide whether a re-

inspection of the code is required. 

• During an inspection, a checklist of common programmer errors is often used 

to focus the discussion. This checklist can be based on checklist examples from books or from 

knowledge of defects that are common in a particular application domain. You need different 

checklists for different programming languages because each language has its own characteristic 

errors. 

• This checklist varies according to programming language because of the different 

levels of checking provided by the language compiler. For example, a Java compiler 

checks that functions have the correct number of parameters, a C compiler. Figure 22.6.  

 



152 
 

• Possible checks that might be made during the inspection process are shown 

• in Figure 22.7. Gilb and Graham (Gilb and Graham, 1993) emphasize that each organization 

should develop its own inspection checklist based on local standards and practices. 

Checklists should be regularly updated as new types of defects are found. 

• Figure 22.7  

 

• The time needed for an inspection and the amount of code that can be covered depends on 

the experience of the inspection team, the programming language and the application 

domain. 

•  Both Fagan at IBM and Barnard and Price (Barnard and Price, 1994), who assessed the 

inspection process for telecommunications software, came to similar conclusions:  

1. About 500 source code statements per hour can be presented during the overview stage.  

2. During individual preparation, about 125 source code statements per hour can be examined. 

3. From 90 to 125 statements per hour can be inspected during the inspection meeting. 
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• Some organizations (Gilb and Graham, 1993) have now abandoned component testing in 

favor of inspections. They have found that program inspections are so effective at finding 

errors that the costs of component testing are not justifiable. 

• The introduction of inspections has implications for project management. 

• Sensitive management is important if inspections are to be accepted by software 

development teams. Program inspection is a public process of error detection compared with 

the more private component testing process. 

 

4.1(4) Automated static analysis 

• Inspections are one form of static analysis--you examine the program without  executing it. 

• Inspections are often driven by checklists of errors and heuristics that identify common 

errors in different programming languages. 

•  For some errors and heuristics, it is possible to automate the process of checking programs 

against this list, which has resulted in the development of automated static analyzers for 

different programming languages. 

• Static analyzers are software tools that scan the source text of a program and detect possible 

faults and anomalies.  

• They parse the program text and thus recognize the types of statements in the program.   

•  They can then detect whether statements are well-formed. make inferences about the control 

flow in the program and, in many cases, compute the sell of all possible values for program 

data. 

•  They complement the error-detection facilities provided by the language compiler. They can 

be used as part of the inspection process or as a separate V & V process activity. 

• The Intention of automatic static analysis is to draw an inspector's attention to anomalies in 

the program, such as variables that are used without initialization, variables that are unused 
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or data whose value could go out of range. Some of the checks that can Je detected by static 

analysis are shown in Figure 22.8. 

• Anomalies are often a result of programming errors or omissions, so they highlight things 

that could go wrong when the program is executed. 

• The stages involved in static analysis include: 

1. Control flow analysis This stage identifies and highlights loops with multiple exit or entry points 

and unreachable code. Unreachable code is code that is surrounded by unconditional go to 

statements or that is in a branch of a conditional statement 'where the guarding condition can never 

be true. 

2. Data use analysis This stage highlights how variables in the program are used. It defects 

variables that are used without previous initialization, variables that are written twice without an  

 

intervening assignment and variables that are declared but never used. Data use analysis also 

discovers ineffective tests where the test condition is redundant. Redundant conditions are 

conditions that are either always true or always false. 

3. Interface analysis This analysis checks the consistency of routine and procedure declarations and 

their use. It is unnecessary if a strongly typed language such as Java is used for implementation as 

the compiler carries out these checks. Interface analysis can detect type errors in weakly typed 

languages like FORTRAN and C. Interface analysis can also detect functions and procedures that 

are declared and never called or function results that are never used. 

4. Information flow analysis This phase of the analysis identifies the dependencies between input 

and output variables. While it does not detect anomalies, it shows how the value of each program 

variable is derived from other variable values. With this information, a code inspection should be 

able to find values that have been wrongly computed. Information flow analysis can also show the 

conditions that affect a variable's value. 

5. Path analysis This phase of semantic analysis identifies all possible paths through the program 

and sets out the statements executed in that path. It essentially unravels the program s control and 

allows each possible predicate to be analysed  individually. 
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• Static analyzers are particularly valuable when a programming language such as C is used. C 

does not have strict type rules, and the checking that the C compiler can do is limited. 

• There is no doubt that, for languages such as C, static analysis is an effective technique for 

discovering program errors. It compensates for weaknesses in the programming language 

design. 

• All variables must be initialized there are no go to statements so unreachable code is less 

likely to be created accidentally, and storage management is automatic. 

• To illustrate static analysis I use a small C program rather than a Java 

• program. Unix and Linux systems include a static analyzer called LINT for C programs.  

• LINT provides static checking, which is equivalent to that provided by the compiler in a 

strongly typed language such as Java. An example of the output produced by LINT is shown 

in Figure 22.9. 
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• In this transcript of a Unix terminal session, commands are shown in italics. The first 

command (line 138) lists the (nonsensical) program. It defines a function with one 

parameter, called print array, and then calls this function with three parameters. Variables i 

and c are declared but are never assigned values. The value returned by the function  is never 

used. 

 

• The line numbered 139 shows the C compilation of this program with no errors reported by 

the C compiler. This is followed by a call of the LINT static analyzer, which detects  and 

reports program errors. 

• The static analyzer shows that the variables;: and i have been used but not initialized and that 

print array has been called with a different number of arguments than are declared. It also 

identifies the inconsistent use of the first argument in print array and the fact that the 

function value is never used. d reports program errors. 

• Tool-based analysis cannot replace inspections, as there are some types of error that static 

analyzers cannot detect. 

• To address some of these problems, static analyzers such as LCLint (Orcero, 2000; Evans 

anc Larochelle, 2002) support the use of annotations where users define constraints as 

stylized comments in the program. 
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4.1(5) Verification and formal methods 

• Formal methods of software development are based on mathematical representations of the 

software, usually as a formal specification. 

•  These formal methods are mainly concerned with a mathematical analysis of the 

specification; with transforming the specification to a more detailed, semantically equivalent 

representation; or with formally verifying that one representation of the system is 

semantically equivalent to another representation. 

• You can think of the use of formal methods as the ultimate static verification technique. 

They require very detailed analyses of the system specification and the program, and their 

use is often time consuming and expensive. 

• Formal methods may be . used at different stages in the V & V process: 

1. A formal specification of the system may be developed and mathematically analyzed for 

inconsistency. This technique is effective in discovering specification errors and omissions,  

2. You can formally verify, using mathematical arguments, that the code of a software system is 

consistent with its specification. This requires a formal specification and is effective in discovering 

programming and some design errors. A transformational development process where a formal 

specification is transformed through a series of more detailed representations or a Cleanroom  

 

process may be used to support the formal verification process.  

• The argument for the use of formal specification and associated program verification is  that 

formal specification forces a detailed analysis of the specification. 

• The argument against the use of formal specification is that it requires specialized notations. 

These can only be used by specially trained staff and cannot be understood by domain 

experts. Hence, problems with the system requirements can be concealed by formality. 

• Verifying a nontrivial software system takes a great deal of time and requires specialized 

tools such as theorem provers and mathematical expertise. It is therefore an extremely 

expensive process and, as the system size increases, the costs of formal verification increase 

disproportionately. Many people therefore think that formal verification is not cost-effective. 
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• It is sometimes claimed that the use of formal methods for system development leads to 

more reliable and safer systems. There is no doubt that a formal system specification is less 

likely to contain anomalies that must be resolved by the system designer.  

• However, formal specification and proof do not guarantee that the software will be reliable 

in practical use. 

• The reasons for this are: 

• 1. The specification may not reflect the real requirements of system users. Lutz (Lutz, 1993) 

discovered that many failures experienced by users were a consequence of specification 

errors and omissions that could not be detected by formal system specification. Furthermore, 

system users rarely understand formal notations so they cannot read the formal specification 

directly to find errors and omissions. 

• 2. The proof may contain errors. Program proofs are large and complex, so, like large and 

complex programs, they usually contain errors. 

• 3. The proof may assume a usage pattern which is incorrect. If the system is not used as 

anticipated, the proof may be invalid. 

• Cleanroom software development 

• A model of the Cleanroom process is shown in Figure 22.10. The objective of this approach 

to software development is zero-defect software.  

• The name 'Cleanroom was derived by analogy with semiconductor fabrication units where 

defects are avoided by manufacturing in an ultra-clean atmosphere.  

• Cleanroom development is particularly relevant to this chapter because it has replaced the 

unit testing of system components by inspections to check the consistency of these 

components with their specifications. 

• The Cleanroom approach to software development is based on five key strategies: 

1. Formal specification The software to be developed is formally specified. A state transition 

model that shows system responses to stimuli is used to express the specification. 
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2. Incremental development The software is partitioned into increments that are 

developed and validated separately using the Cleanroom process. These increments are specified, 

with customer input, at an early stage in the process. 

3. Structured programming Only a limited number of control and data abstraction constructs are 

used. The program development process is a process of stepwise refinement of the specification. A 

limited number of constructs are used and the aim is to systematically transform the specification to 

create the program code. 

 4.Static verification The developed software is statically verified using rigorous software 

inspections. There is no unit or module testing process for code components. 

5. Statistical testing of the system The integrated software increment is tested statistically, as 

discussed , to determine its reliability. These statistical tests are based on an operational profile, 

which is developed in parallel with the system specification as shown  in Figure 22.10. 

 

• There are three teams involved when the Cleanroom process is used for large system 

development: 

• 1. The specification team This group is responsible for developing and maintaining the 

system specification. This team produces customer-oriented specifications (the user 

requirements definition) and mathematical specifications for verification. In some cases, 

when the specification is complete, the specification team also takes responsibility for 

development. 

• 2. The development team This team has the responsibility of developing and verifying the 

software. The software is not executed during the development process. A structured, formal 
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approach to verification based on inspection of code supplemented with correctness 

arguments is used. 

• 3. The certification team This team is responsible for developing a set of statistical tests to 

exercise the software after it has been developed. These tests are based on the formal 

specification. Test case development is carried out in parallel with software development. 

The test cases are used to certify the software reliability. Reliability growth models  may be 

used to decide when to stop testing. 

• Use of the Cleanroom approach has generally led to software with very few errors. 

• Cobb and Mills discuss several successful Cleanroom development projects that had a 

uniformly low failure rate in delivered systems. 

• The approach to incremental development in the Cleanroom process is to deliver critical 

customer functionality in early increments. Less important system functions are included in 

later increments. 

• Rigorous program inspection is a fundamental part of the Cleanroom process. A state model 

of the system is produced as a system specification. The approach used for development is 

based on well-defined transformations that attempt to preserve the correctness at each 

transformation to a more detailed representation.  

• At each stage, the new representation is inspected, and mathematically rigorous arguments 

are developed that demonstrate that the output of the transformation is consistent with its 

input. 

• Inspection and formal analysis has been found to be very effective in the 

      Cleanroom process. The vast majority of defects are discovered before execution and are not 

introduced into the developed software 

4.2 (1) Software Testing 

• A general testing process that started with the testing of individual program units such as 

functions or objects. These were then integrated into sub-systems and systems, and the 

interactions of these units were tested. 
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• This model of the testing process is appropriate for large system development but for smaller 

systems, or for systems that are developed through scripting or reuse, there are often fewer 

distinct stages in the process. A more abstract view of software testing is shown in Figure 

23.1. 

• The two fundamental testing activities are component testing-testing the parts of the system-

and system testing-testing the system as a whole. 

• The aim of the component testing stage is to discover defects by testing individual program 

components. 

• During system testing, these components  are integrated to form sub-systems or the complete 

system. At this stage, system testing should focus on establishing that the system meets its 

functional and non-functional requirements, and does not behave in unexpected ways.  

• The software testing process has two distinct goals: 

1. To demonstrate to the developer and the customer that the software meets its requirements. For 

custom software, this means that there should be at least one test for every requirement in the user 

and system requirements documents.  

For generic software products, it means that there should be tests for all of the system features that 

will be incorporated in the product release. As discussed  some systems may have an explicit 

acceptance testing phase where the customer formally checks that the delivered system conforms to 

its specification. 

2. To discover faults or defects in the software where the behavior of the software is incorrect, 

undesirable or does not conform to its specification. Defect testing is concerned with rooting out all 

kinds of undesirable system behavior, such as system crashes, unwanted interactions with other 

systems, incorrect computations and data corruption. 

• The first goal leads to validation testing, where you expect the system to perform correctly 

using a given set of test cases that reflect the systems expected use.  

• The second goal leads to defect testing, where the test cases are designed to expose defects. 

The test cases can be deliberately obscure and need not reflect how the system is normally 

used. 
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• For validation testing, a successful test is one where the system performs correctly. For 

defect testing, a successful test is one that exposes a defect that causes the system to perform 

incorrectly.  

 

• A general model of the testing process is shown in Figure 23.2. Test cases are specifications 

of the inputs to the test and the expected output from the system plus a statement of what is 

being tested. Test data are the inputs that have been devised to test the system. 

• 

Exhaustive testing, where every possible program execution sequence is tested, is 

impossible. Testing, therefore, has to be based on a subset of possible test cases. Ideally, 

software companies should have policies for choosing this subset rather than leave this  to 

the development team.  
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• These policies might be based on general testing policies, such as a policy that all program 

statements should be executed at least once.  

• Alternatively. the testing policies may be based on  experience of system usage and may 

focus 011 testing the features of the operational system.  

• For example: 

    1 . All system functions that are accessed through menus should be tested. 

2. Combinations of functions (e.g., text formatting) that are accessed through the same menu must 

be tested. 

3. Where user input is provided, all functions must be tested with both correct and incorrect input. 

• It is clear from experience with major software products such as word processors or 

spreadsheets that comparable guidelines are normally used during product testing. When 

features of the software are used in isolation, they normally work. 

• Problems arise, as Whittaker explains , when combinations of features have not been tested 

together 

4.2 (2) System testing 

• System testing involves integrating two or more components that implement system 

functions or features and then testing this integrated system.  

• In an iterative development process, system testing is concerned with testing an increment to 

be delivered to the customer; in a waterfall process, system testing is concerned with testing 

the entire system. 

For most complex systems, there are two distinct phases to system testing: 

1. Integration testing. where the test team have access to the source code of the system. When 

a problem is discovered, the integration team tries to find the source of the problem and 

identify the components that have to be debugged. Integration testing is mostly concerned 

with finding defects in the system. 

2. Release testing, where a version of the system that could be released to users is tested. Here, the 

test team is concerned with validating that the system meets its requirements and with ensuring that 
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the system is dependable. 

 Release testing is usually 'black-box' testing where the test team is simply concerned with 

demonstrating that the system does or does not work properly. Problems are reported to the 

development team whose job is to debug the program. Where customers are involved in release 

testing, this is sometimes called acceptance testing.  

• Fundamentally, you can think of integration testing as the testing of incomplete systems 

composed of clusters or groupings of system components. Release testing is concerned with 

testing the system release that is intended for delivery to customers. 

 

1) Integration Testing 

• The process of system integration involves building a system from its components  and 

testing the resultant system for problems that arise from component interactions.  

• The components that are integrated may be off-the-shelf components, reusable components 

that have been adapted for a particular system or newly developed components. 

•  For many large systems, all three types of components are likely to be used. 

•  Integration testing checks that these components actually work together, are called correctly 

and transfer the right data at the right time across their interfaces.  

• System integration involves identifying clusters of components that deliver some system 

functionality and integrating these by adding code that makes them work together.  

• Sometimes, the overall skeleton of the system is developed first, and components are added 

to it. This is called top-down integration. 

• Alternatively, you may first integrate infrastructure components that provide common 

services, such as network and database access, then add the functional components. This is 

bottom-up integration. 

• A major problem that arises during integration testing is localizing errors. There are complex 

interactions between the system components and, when an anomalous output is discovered, 

you may find it hard to identify where the error occurred.  



165 
 

• To make it easier to locate errors, you should always use an incremental approach to system 

integration and testing. 

• Initially, you should integrate a minimal system configuration and test this system. You then 

add components to this minimal configuration and test after each added increment.  

• In the example shown in Figure 23.3, A, B, C and D are components and n to T5 are related 

sets of tests of the features incorporated in the system. n, T2 and T3 are first run on a system 

composed of component A and component B (the minimal system). If these reveal defects, 

they are corrected. 

 

• Component C is integrated and n, T2 and T3 are repeated to ensure that there have not been 

unexpected interactions with A and B.  

• If problems arise in these tests, this probably means that they are due to interactions with the 

new component. 

•  The source of the problem is localized, thus simplifying defect location and repair. Test set 

T4 is also run on the system. 

• Finally, component D is integrated and tested using existing and new tests (T5). 

• When planning integration, you have to decide the order of integration of components. 
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• In a process such as XP, the customer is involved in the development process and decides 

which functionality should be included in each system increment. Therefore, system 

integration is driven by customer priorities. 

• In such cases, a good rule of thumb is to integrate the components that implement the most 

frequently used functionality first.  

• This means that the components that are most used receive the most testing.  

• For example, in the library system, LIBSYS, you should start by integrating the search 

facility so that, in a minimal system, 

      users can search for documents that they need. You should then add the functionality to allow 

users to download a document, then progressively add the components that implement other system 

features. 

• The testing may reveal errors in the interactions between these individual components and 

other parts of the system.  

• Repairing errors may be difficult because a group of components that implement the system 

feature may have to be changed 

• These problems mean that when a new increment is integrated, it is important to rerun the 

tests for previous increments as well as the new tests that are required 

     to verify the new system functionality.  

•  Rerunning an existing set of tests is called regression testing. If regression testing exposes 

problems, then you have to check whether these are problems in the previous increment that 

the new increment has exposed or whether these are due to the added. 

• Regression testing is clearly an expensive process and is impractical without some automated 

support.  

2. Release testing 

• Release testing is the process of testing a release of the system that will be distributed to 

customers. The primary goal of this process is to increase the supplier's confidence that the 

system meets its requirements. 
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•  If so, it can be released as a product or delivered to the customer. To demonstrate that the 

system meets its requirements, you have to show that it delivers the specified functionality, 

performance and dependability, and that it does not fail during normal use. 

• Release testing is usually a black-box testing process where the tests are derived from the 

system specification. The system is treated as a black box whose behavior can only be 

determined by studying its inputs and the related outputs. 

• Another name for this is functional testing because the tester is only concerned with the 

functionality and not the implementation of the software  

• Figure 23.4 illustrates the model of a system that is assumed in black-box testing. The tester 

presents inputs to the component or the system and examines the corresponding outputs. If 

the outputs are not those predicted (i.e., if the outputs are in set 0,) then the test has detected 

a problem with the software. 

 

• When testing system releases, you should try to 'break' the software by choosing test cases 

that are in the set  in Figure 23.4. That is, your aim should be to select inputs that have a high 

probability of generating system failures (outputs in set Oe)' You use previous experience of 

what are likely to be successful defect tests and testing guidelines to help you make your 

choice. 
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• Authors such as Whittaker have encapsulated their testing experience in a set of guidelines 

that increase the probability that the defect tests will be successful.  

Some examples of these guidelines are: 

1. Choose inputs that force the system to generate all error messages. 

2. Design inputs that cause input buffers to overflow. 

3. Repeat the same input or series of inputs numerous times. 

4. Force invalid outputs to be generated. 

5. Force computation results to be too large or too small. 

• To validate that the system meets its requirements, the best approach to use is scenario-based 

testing, where you devise a number of scenarios and develop test cases from these scenarios. 

For example, the following scenario might describe how the library system LIBSYS. 

• A student in Scotland studying American history has been asked to write a paper on 

'Frontier mentality in the American West from 1840 to 1880'. To do this, she needs to find 

sources from a range of libraries. She logs on to the LIBSYS system and uses the search 

facility to discover whether she can access original documents from that time. She 

discovers sources in various US university libraries and downloads copies of some of 

these. However, for one document, she needs to have confirmation from her university 

that she is a genuine student and that use is for non- commercial purposes. The student 

then uses the facility in LIBSYS that can request such permission and registers her 

request. If granted, the document will be downloaded to the registered library's server and 

printed for her. She receives a message from LIBS YS telling her that she will receive an 

e-mail message when the printed document is available for collection.  

• From this scenario, it is possible to device a number of tests that can be applied to the 

proposed release of LIBSYS: 

1. Test the login mechanism using correct and incorrect logins to check that valid users are accepted 

and invalid users are rejected. 

2. Test the search facility using queries against known sources to check that the search mechanism 

is actually finding documents. 

3. Test the system presentation facility to check that information about documents is displayed 
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properly. 

4. Test the mechanism to request permission for downloading. 

5. Test the e-mail response indicating that the downloaded document is available. 

 

• For each of these tests, you should design a set of tests that include valid and invalid inputs 

and that generate valid and invalid outputs.  

• Figure 23.5 shows the sequence of operations in the weather station when it responds to a 

request to collect data for the mapping system. You can use this diagram to identify 

operations that will be tested and to help design the test cases to execute the test~. Therefore 

issuing a request for a report will result in the execution of the following thread of methods: 

CommsController:request --> WeatherStation:report --> WeatherData:summarise 

• The sequence diagram can also be used to identify inputs and outputs that have 

to be created for the test: 

1. An input of a request for a report should have an associated acknowledgement and a report 

should ultimately be returned from the request. During the testing. you should create summarized 

data that can be used to check that the report is correctly organized. 

2. An input request for a report to WeatherStation results in a summarized report being generated. 

You can test this in isolation by creating raw data corresponding to the summary that you have 

prepared for the test of CommsController and checking that the WeatherStation object correctly 

produces this summary.  

3. This raw data is also used to test the WeatherData object.  
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3) Performance testing 

• Performance tests have to be designed to ensure that the system can process its intended 

load. This usually involves planning a series of tests where the load is steadily increased until 

the system performance becomes unacceptable. 

• As with other types of testing, performance testing is concerned both with demonstrating that 

the system meets its requirements and discovering problems and defects in the system.  

• To test whether performance requirements are being achieved, you may have to construct an 

operational profile. An operational profile is a set of tests that reflect the actual mix of work 

that will be handled by the system. 

• Therefore, if 90% of the transactions in a system are of type A, 5% of type B and the 

remainder of types C, D, and E, then you have to design the operational profile so that the 

vast majority of tests are of type A. Otherwise, you will not get an accurate test of the 

operational performance of the system. 

• This approach, of course, is not necessarily the best approach for defect testing. In 

performance testing, this means stressing the system (hence the name stress testing) by 

making demands that are outside the design limits of the software.  

• For example, a transaction processing system may be designed to process up to 300 

transactions per second; an operating system may be designed to handle up to 1,000 separate 

terminals. Stress testing continues these tests beyond the maximum design load of the system 

until the system fails. This type of testing has two functions: 

I. It tests the failure behavior of the system. Circumstances may arise through 

an unexpected combination of events where the load placed on the system exceeds the maximum 

anticipated load. In these circumstances, it is important that system failure should not cause data 

corruption or unexpected loss of user services. Stress testing checks that overloading the system 

causes it to 'fail-soft‘  rather than collapse under its load.  

2. It stresses the system and may cause defects to come to light that would not normally be  

discovered. Although it can be argued that these defects are unlikely to cause system failures in 

normal usage, there may be unusual combinations of normal circumstances that the stress testing 
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replicates. 

4.2 (3) Component Testing 

Component Testing (sometimes called unit testing) is the process of testing individual 

components in the system. This is a defect testing process so its goal is to expose faults in these 

components, for most systems, the developers of components are responsible for component testing. 

There are different types of component that may be tested at this stage: 

l. Individual functions or methods within an object 

2. Object classes that have several attributes and methods 

3. Composite components made up of several different objects or functions. These composite 

components have a defined interface that is used to access their functionality. 

Individual functions or methods are the simplest type of component and your tests are a set of calls 

to these routines with different input parameters. You can use the approaches to test case design, 

discussed in the next section, to design the function or method tests.  

• When you are testing object classes, you should design your tests to provide coverage of all 

of the features of the object. Therefore, object class testing should include: 

1. The testing in isolation of all operations associated with the object 

2. The setting and interrogation of all attributes associated with the object 

3. The exercise of the object in all possible states. This means that all events that cause a state 

change in the object should be simulated. 

In Figure 23.6. It has only a single attribute, which is its identifier. This is a constant that is set 

when the weather station is installed. You therefore only need a test that checks whether it has been 

set up. You need to define test cases for reportWeather, calibrate, test, startup and shutdown. 

Ideally, you should test methods in isolation but, in some cases, some test sequences are necessary. 

For example, to test shutdown you need to have executed the startup method. 
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• To test the states of the weather station, you use a state model as shown in Figure 14.14. 

Using this model, you can identify sequences of state transitions that have to be tested and 

define event sequences to force these transitions. In principle, you should test every possible 

state transition sequence, although in practice this may be too expensive. Examples of state 

sequences that Should be tested in the weather station include: 

Shutdown -> Waiting -> Shutdown 

Waiting -> Calibrating -> Testing -> Transmitting -> Waiting 

Waiting -> Collecting -> Waiting -> Summarizing --> Transmitting -> Waiting 

 

• If you use: inheritance, this makes it more difficult to design object class tests. Where a 

superclass provides operations that are inherited by a number of subclasses, all of these 

subclasses should be tested with all inherited operations. 

1. Interface Testing 

• Many components in a system are not simple functions or objects but are composite 

components that are made up of several interacting objects. 

• Testing these composite components then is primarily concerned with testing that the 

component interface behaves according to its specification.  

• Figure 23.7 illustrates this process of interface testing. Assume that components A, Band C 

have been integrated to create a larger component or sub-system. The test cases are not 
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applied to the individual components but to the interface of the comp051te component 

created by combining these components. 

• Interface testing is particularly important for object-oriented and component-based 

development. Objects and components are defined by their interfaces and may be reused in 

combination with other components in different systems. Interface errors in the composite 

component cannot be detected by testing the individual objects or components. Errors in the 

composite component may arise because of interactions between its parts.  

 

• There are different types of interfaces between program components and, consequently, 

different types of interface errors that can occur: 

1. Parameter interfaces These are interfaces where data or sometimes function references 

are passed from one component to another. 

2. Shared memory interfaces These are interfaces where a block of memory is shared 

between components. Data is placed in the memory by one sub-system and retrieved from 

there by other sub-systems. 

3. Procedural interfaces These are interfaces where one component encapsulates a set of 

procedures that can be called by other components. Objects and reusable components have 

this form of interface. 

4. Message passing interfaces These are interfaces where one component requests a service 

from another component by passing a message to it. A return message includes the results of 
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executing the service. Some object-oriented systems have this form of interface, as do client-

server systems. 

• Interface errors are one of the most common forms of error in complex systems. These errors 

fall into three classes: 

1. Interface misuse A calling component calls some other component and makes an 

error in the use of its interface. This type of error is particularly common with 

parameter interfaces where parameters may be of the wrong type, may be passed in 

the wrong order or the wrong number of parameters may be passed. 

 

2. Interface misunderstanding A calling component misunderstands the specification of the 

interface of the called component and makes assumptions about the behavior of the called 

component. The called component does not behave as expected and this causes unexpected 

behavior in the calling component. For example, a binary search routine may be called with 

an unordered array to be searched. The search would then fail. 

3. Timing errors These occur in real-time systems that use a shared memory or a message-

passing interface. The producer of data and the consumer of data may operate at different 

speeds. Unless particular care is taken in the interface design, the consumer can access out-

of-date information because the producer of the information has not updated the shared 

interface information. 

• Some general guidelines for interface testing are: 

I. Examine the code to be tested and explicitly list each call to an external component. 

Design a set of tests where the values of the parameters to the external components are at the 

extreme ends of their ranges. These extreme values are most likely to reveal interface 

inconsistencies. 

2. Where pointers are passed across an interface, always test the interface with 

null pointer parameters. 

3. Where a component is called through a procedural interface, design tests that should cause 

the component to fail. Differing failure assumptions are one of the most common 

specification misunderstandings. 

4. Use stress testing, as discussed in the previous section, in message-passing system;. 
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Design tests that generate many more messages than are likely to occur in practice. Timing 

problems may be revealed in this way. 

5. Where several components interact through shared memory, design tests that 

Val) the order in which these components: are activated. These tests may reveal implicit 

assumptions made by the programmer about the order in which the shared data is produced 

and consumed. 

4.2 (4)Test case design 

• Test case design is a part of system and component testing where you design the test cases 

(inputs and predicted outputs) that test the system.  

• The goal of the test case design process is to create a set of test cases that are effective in 

discovering program defects and showing that the system meets its requirements.  

• To design a test case, you select a feature of the system or component that you are testing. 

•  You then select a set of inputs that execute that feature, document the expected outputs or 

output ranges and, where possible, design an automated check that tests that the actual and 

expected outputs are the same.  

• There are various approaches that you can take to test case design: 

1. Requirements-based testing where test cases are designed to test the system requirements. 

This is mostly used at the system-testing stage as system requirements are usually 

implemented by several components. For each requirement, you identify test cases that can 

demonstrate that the system meets that requirement. 

2. Partition testing where you identify input and output partitions and design tests so that the 

system executes inputs from all partitions and generates outputs in all partitions. Partitions 

are groups of data that have common characteristics such as all negative numbers. all names 

less than 30 characters, all events arising from choosing items on a menu, and so on. 

3. Structural testing where you use knowledge of the program's structure to design tests that 

exercise all parts of the program. Essentially, when testing a program, you should try to 

execute each statement at least once. Structural testing helps identify test cases that can make 

this possible. 

4. Path Testing Path testing is a structural testing strategy whose objective is to exercise 
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every independent execution path through a component or program. If every independent 

path is executed, then all statements in the component must have been executed at least once.  

1. Requirements-based testing 

• A general principle of requirements engineering,  is that requirements should be testable. 

That is, the requirement should be written in such a way that a test can be designed so that an 

observer can check that the requirement has been satisfied.  

• Requirements-based testing, therefore, is a systematic approach to test case design where you 

consider each requirement and derive a set of tests for it.  

• Requirements-based testing is validation rather than defect testing-you are trying to 

demonstrate that the system has properly implemented its requirements. 

• For example, consider the requirements for the LIBSYS system .  

1. The user shall be able to search either all of the initial set of  databases or select a subset 

from it. 

2. The system shall provide appropriate viewers for the user to read documents in the 

document store. 

3. Every order shall be allocated a unique identifier (ORDER_ID) that the user shall be able 

to copy to the account's permanent storage area.  

• Possible tests for the first of these requirements, assuming that a search function has been 

tested, are: 

a)Initiate user searches for items that are known to be present and known not to be present., 

where the set of databases includes one database. 

b)Initiate user searches for items that are known to be present and known not to be present., 

where the set of databases includes two databases.  

c)Initiate user searches for items that are known to be present and known not to be present 

where the set of databases includes more than two databases. 

d)Select one database from the set of databases and initiate user searches for items that are 

known to be present and known not to be present. 

e)Select more than one database from the set of databases and initiate searches for items that 
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are known to be present and known not to be present.  

2. Partition Testing  

• The input data and output results of a program usually fall into a number of different classes 

:that have common characteristics such as positive numbers, negative numbers and menu 

selections.  

• Programs normally behave in a comparable way for all members of a class. That is, if you 

test a program that does some computation 

and requires two positive numbers, then you would expect the     program to behave in the 

same way for all positive numbers. 

• Because of this equivalent behavior, these classes are sometimes called equivalence 

partitions or domains . 

•  One systematic approach to test case design is based on identifying all partitions for a 

system or component.  

• Test cases are designed so that the inputs or outputs lie within these partitions. Partition 

testing can be used to design test cases for both systems and components.  

• In Figure 2:3.8, each equivalence partition is shown as an ellipse. Input equivalence 

partitions are sets of data where all of the set members should be processed in an equivalent 

way. Output equivalence partitions are program outputs that have common characteristics, so 

they can be considered as a distinct class. Valid and invalid inputs also form equivalence 

partitions. 
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• Once you have identified a set of partitions, you can chose test cases from each of these 

partitions. 

•  A good rule of thumb for test case selection is to choose test cases on the boundaries of the 

partitions plus cases close to the mid-point of the partition. 

•  You identify partitions by using the program specification or user documentation and, from 

experience, where you predict the classes of input value that are likely to detect errors. 

•  For example, say a program specification states that the program accepts 4 to 8 inputs that 

are five-digit integers greater than 10,000. Figure 23.9 shows the partitions for this situation 

and possible test input values. 

• From this specification, you can see two equivalence partitions: 

1. Inputs where the key element is a member of the sequence 

      (Found =true) 

2. Inputs where the key element is not a sequence member (Found =false).  
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• To illustrate the derivation of test cases, we can  use the specification of a search component, 

shown in Figure 23.10.  

• This component searches a sequence of elements for a given element (the key). It returns the 

position of that element in the sequence. 

 

• When you are testing programs with sequences, arrays or lists, there are a number of 

guidelines that are often useful in designing test cases: 
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1. Test software with sequences that have only a single value. Programmers naturally think 

of sequences as made up of several values, and sometimes they embed this assumption in 

their programs. Consequently, the program may not work properly when presented with a 

single-value sequence. 

2. Use different sequences of different sizes in different tests. This decreases the chances that 

a program with defects will accidentally produce a correct output because of some accidental 

characteristics of the input. 

3. Derive tests so that the first, middle and last elements of the sequence are accessed. This 

approach reveals problems at partition boundaries. 

• From these guidelines, two more equivalence partitions can be identified: 

1. The input sequence has a single value. 

2. The number of elements in the input sequence is greater than 1.  

• You then identify further partitions by combining these partitions-for example, the partition 

where the number of elements in the sequence is greater than 1 and the element is not in the 

sequence. Figure 23.11 shows the partitions that have identified to test the search component. 

• A set of possible test cases based on these partitions is also shown in Figure 23.11. If the key 

element is not in the sequence, the value of L is undefined ('n'). The guideline that different 

sequences of different sizes should be used has been applied in these test cases 

• The set of input values used to test the search routine is not exhaustive. The routine may fail 

if the input sequence happens to include the elements 1, 2, 3 and 4. 
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3. Structural Testing 

• Structural testing is an approach to test case design where the tests are derived from 

knowledge of the software's structure and implementation.  

• This approach is sometimes called 'white-box', 'glass-box' testing, or "clear-box' testing to 

distinguish it from black-box testing. 

•  Understanding the algorithm used in a component can help you identify further partitions 

and test cases.  

• To illustrate this, the search routine specification (Figure 23.10) as a binary search routine 

(Figure 23.14) is implemented. 

•  Of course, this has stricter pre-conditions. The sequence is implemented as an array that 

array must be ordered and the value of the lower bound of the array must be less than 

     the value of the upper bound.  



182 
 

• By examining the code of the search routine, you can see that binary searching involves 

splitting the search space into three parts. Each of these parts makes up an equivalence 

partition (Figure 23.13). You then design test cases where the key lies at the boundaries of 

each of these partitions. 

 

•  
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• This leads to a revised set of test cases for the search routine, as shown in Figure 23.15. 

Notice that , modified the input array so that it is arranged in ascending order and have added 

further tests where the key element is adjacent to the midpoint of the array.  

4. 

Path Testing 

• Path testing is a structural testing strategy whose objective is to exercise every independent 

execution path through a component or program. If every independent path is executed, then 

all statements in the component must have been executed at least once. 

• The number of paths through a program is usually proportional to its size. Path testing 

techniques are therefore mostly used during component testing. 

• Path testing does not test all possible combinations of all paths through the program. 

• For any components apart from very trivial ones without loops, this is an impossible 

objective. There are an infinite number of possible path combinations in programs with 

loops. 

•  Even when all program statements have been executed at least once, program defects may 

still show up when particular paths are combined.  

• The starting point for path testing is a program flow graph. This is a skeletal model of all 

paths through the program. 
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•  A flow graph consists of nodes representing decisions and edges showing flow of control. 

The flow graph is constructed by replacing program control statements by equivalent 

diagrams.  

• If there are no goto statements in a program, it is a simple process to derive its flow graph. 

Each branch in a conditional statement (if-then-else or case) is shown as a separate path.  

• An arrow looping back to the condition node denotes a loop. I have drawn the flow graph for 

the binary search method in Figure 23.16.  

• To make the correspondence between this and the program in Figure 23.14 more obvious, it 

is shown  that each statement as a separate node where the node number corresponds to the 

line number in the program.  

• The objective of path testing is to ensure that each independent  path through the program is 

executed at least once. 

 

• The flow graph for the binary search procedure is shown in Figure 23.16 where each node 

represents a line in the program with an executable statement.  
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• By tracing the flow, therefore, you can see that the paths through the binary search flow 

graph are: 

1,2,3,4,5,6,7,8,9, 10, 14 

I, 2, 3, 4, 5, 14 

1,2,3,4,5,6,7, 11, 12,5, .. 

1,2,3,4,6,7,2,11,13,5, .. 

• If all of these paths are executed, we can be sure that every statement in the method has been 

executed at least once and that every branch has been exercised 

    for true and false conditions. 

• You can find the number of independent paths in a program by computing the cyclomatic 

complexity of the program flow graph. 

• A simple condition is logical expression without 'and' or 'or connectors. If the program 

includes compound conditions, which are logical expressions including 'and' or 'or' 

connectors, then you count the number of simple conditions in the compound  conditions 

when calculating the cyclomatic complexity. 

• Therefore, if there are six if-statements and a while loop and all conditional expressions are 

simple, the cyclomatic complexity is 8. If one conditional expression is a compound 

expression such as 'if A and B or C', then you count this as three simple conditions. The 

cyclomatic complexity is therefore 10. The cyclomatic complexity of the binary search 

algorithm (Figure 23.14) is 4 because there are three simple conditions at lines 5, 7 and 11. 

4.2 (5)Test Automation 

• Testing is an expensive and laborious phase of the software process. As a result, testing tools 

were among the first software tools to be developed.  

• These tools now offer a rouge of facilities and their use can significantly reduce the costs of 

testing. 

• One approach to test automation (Mosley and Posey, 2002) where a testing framework such 

as JUnit (Massol and  Husted, 2003)  
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• is used for regression testing. 

•  JUnit is a set of Java classes that the user extends to create an automated testing 

environment. Each individual test is implemented as an object and a test runner runs all of 

the tests.  

• The tests themselves should be written in such a way that they indicate whether the tested 

system has behaved as expected. 

• A software testing workbench is an integrated set of tools to support the testing process. In 

addition to testing frameworks that support automated test execution, a workbench may 

include tools to simulate other parts of the system and to generate system test data. 

Figure 23.17 shows some of the tools that might be included in such a testing 

workbench: 

1. Test manager Manages the running of program tests. The test manager keeps track of test 

data, expected results and program facilities tested. Test automation  frameworks such as 

JUnit are examples of test managers. 

2. Test data generator Generates test data for the program to be tested. This may be 

accomplished by selecting data from a database or by using patterns to generate random data 

of the correct form. 

3. Oracle Generates predictions of expected test results. Oracles may either be previous 

program versions or prototype systems. Back-ta-back testing  involves running the oracle 

and the program to be tested in parallel. Differences in their outputs are highlighted. 

4. File comparator Compares the results of program tests with previous test results and 

reports differences between them. Comparators are used in regression testing where the 

results of executing different versions are compared. Where automated tests are used, this 

may be called from within the tests themselves. 

• A software testing workbench is an integrated set of tools to support the testing process. In 

addition to testing frameworks that support automated test execution, a workbench may 

include tools to simulate other parts of the system and to generate system test data. 

Figure 23.17 shows some of the tools that might be included in such a testing 

workbench: 
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1. Test manager Manages the running of program tests. The test manager keeps 

track of test data, expected results and program facilities tested. Test automation  

frameworks such as JUnit are examples of test managers. 

2. Test data generator Generates test data for the program to be tested. This may be 

accomplished by selecting data from a database or by using patterns to generate random data 

of the correct form. 

3. Oracle Generates predictions of expected test results. Oracles may either be 

previous program versions or prototype systems. Back-ta-back testing  involves running the 

oracle and the program to be tested in parallel. 

Differences in their outputs are highlighted. 

4. File comparator Compares the results of program tests with previous test results and 

reports differences between them. Comparators are used in regression testing where the 

results of executing different versions are compared. Where automated tests are used, this 

may be called from within the tests themselves. 

• Figure 23.17  

 

4.3 (1) Software Quality Assurance 

• Quality control and assurance are essential activities for any business that produces products 

to be used by others.  

• The first formal quality assurance and control function was introduced at Bell Labs in 1916 

and spread rapidly throughout the manufacturing world. 
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•  During the 1940s, more formal approaches to quality control were suggested. These relied 

on measurement and continuous process improvement  as key elements of quality 

management. 

• Today, every company has mechanisms to ensure quality in its products. 

• The history of quality assurance in software development parallels the history of quality in 

hardware manufacturing.  

• Software quality assurance is a “planned and systematic pattern of actions”  that are required 

to ensure high quality in software.  

• The scope of quality assurance responsibility might best be  characterized by paraphrasing a 

once-popular automobile  commercial: “Quality Is Job #1.” 

• The implication for software is that many different constituencies have software quality 

assurance responsibility—software engineers, project managers, customers, salespeople, and 

the individuals who serve within an SQA group. 

• The SQA group serves as the customer’s in-house representative. That is, the people who 

perform SQA must look at the software from the customer’s point of view.  

• Does the software adequately meet the quality factors noted in Chapter 14?  

• Has software development been conducted according to pre-established standards? 

•  Have technical disciplines properly performed their roles as part of the SQA activity? 

•  The SQA group attempts to answer these and other questions to ensure that software quality 

is maintained. 

4.3 (2) Elements of Software Quality Assurance 

• Software quality assurance encompasses a broad range of concerns and activities that focus 

on the management of software quality. These can be summarized in the following manner: 

1) Standards. The IEEE, ISO, and other standards organizations have produced a broad 

array of software engineering standards and related documents. Standards may be adopted 

voluntarily by a software engineering organization or imposed by the customer or other 
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stakeholders. The job of SQA is to ensure that standards that have been adopted are followed 

and that all work products conform to them. 

2) Reviews and audits. Technical reviews are a quality control activity performed by 

software engineers for software engineers (Chapter 15). Their intent is to uncover errors. 

Audits are a type of review performed by SQA personnel with the intent of ensuring that 

quality guidelines are being followed for software engineering work. For example, an audit 

of the review process might be conducted to ensure that reviews are being performed in a 

manner that will lead to the highest likelihood of uncovering errors. 

3) Testing. Software testing  is a quality control function that has one primary goal—to find 

errors. The job of SQA is to ensure that testing is properly planned and efficiently conducted 

so that it has the highest likelihood of achieving its primary goal. 

 

4) Error/defect collection and analysis. The only way to improve is to measure how you’re 

doing. SQA collects and analyzes error and defect data to better understand how errors are 

introduced and what software engineering activities are best suited to eliminating them. 

5) Change management. Change is one of the most disruptive aspects of any software 

project. If it is not properly managed, change can lead to confusion, and confusion almost 

always leads to poor quality. SQA ensures that adequate change management practices  have 

been instituted. 

 

4.3 (3) SQA Tasks, Goals and Metrics 

• Software quality assurance is composed of a variety of tasks associated with two different 

constituencies—the software engineers who do technical work and an SQA group that has 

responsibility for quality assurance planning, oversight, record keeping, analysis, and 

reporting. 

• Software engineers address quality (and perform quality control activities) by applying solid 

technical methods and measures, conducting technical     reviews, and performing well-

planned software testing. 

SQA Tasks  

The Software Engineering Institute recommends a set of SQA 
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actions that address quality assurance planning, oversight, record keeping, analysis, and 

reporting. These actions are performed (or facilitated) by an independent SQA group that:  

1) Prepares an SQA plan for a project. 

•  The plan is developed as part of project planning and is reviewed by all stakeholders. 

Quality assurance actions performed by the software engineering team and the SQA group 

are governed by the plan. 

•  The plan identifies evaluations to be performed, audits and reviews to be conducted, 

standards that are applicable to the project, procedures for error reporting and tracking, work 

products that are produced by the SQA group, and feedback that will be provided to the 

software team. 

2) Participates in the development of the project’s software process 

     description. 

•  The software team selects a process for the work to be performed. The SQA group reviews 

the process description for compliance       with organizational policy, internal software 

standards, externally imposed standards (e.g., ISO-9001), and other parts of the    software 

project plan. 

3)Reviews software engineering activities to verify compliance with the defined 

software process. 

•  The SQA group identifies, documents, and tracks deviations from the process and verifies 

that corrections have been made. 

4) Audits designated software work products to verify compliance with those defined as 

part of the software process.  

• The SQA group reviews selected work products; identifies, documents, and tracks 

deviations; verifies that corrections have been made; and periodically reports the results  of 

its work to the project manager. 

5) Ensures that deviations in software work and work products are 

documented and handled according to a documented procedure. 

• Deviations may be encountered in the project plan, process description, 
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applicable standards, or software engineering work products. 

6) Records any noncompliance and reports to senior management. 

• Noncompliance items are tracked until they are resolved. 

Goals, Attributes, and Metrics 

The SQA actions described in the preceding section are performed to achieve a set of 

pragmatic goals: 

• Requirements quality. The correctness, completeness, and consistency of the requirements 

model will have a strong influence on the quality of all work products that follow. SQA must 

ensure that the software team has properly reviewed the requirements model to achieve a 

high level of quality. 

• Design quality. Every element of the design model should be assessed by the software team 

to ensure that it exhibits high quality and that the design itself conforms to requirements. 

SQA looks for attributes of the design that are indicators of quality. 

• Code quality. Source code and related work products (e.g., other descriptive information) 

must conform to local coding standards and exhibit characteristics that will facilitate 

maintainability. SQA should isolate those attributes that allow a reasonable analysis of the 

quality of code. 

• Quality control effectiveness. A software team should apply limited resources in a way that 

has the highest likelihood of achieving a high-quality result. SQA analyzes the allocation of 

resources for reviews and testing to assess whether they are being allocated in the most 

effective manner.  

• Figure 16.1  identifies the attributes that are indicators for the existence of quality for each of 

the goals discussed. Metrics that can be used to indicate the relative strength of an attribute 

are also shown. 
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4.3 (4) Formal Approaches to SQA 

• Software quality is everyone’s job and that it can be achieved through competent software 

engineering practice as well as through the application of technical reviews, a multi-tiered 

testing strategy, better control of software work products and the changes made to them, and 

the application of accepted software engineering standards.  

• In addition, quality can be defined in terms of a broad array of quality attributes and 

measured (indirectly) using a variety of indices and metrics. 

• Over the past three decades, a small, but vocal, segment of the software engineering 

community has argued that a more formal approach to software quality assurance is required. 

It can be argued that a computer program is a mathematical object.  

• A rigorous syntax and semantics can be defined for every programming language, and a 

rigorous approach to the specification of software requirements  is available. 

•  If the requirements model (specification) and the programming language can be represented 

in a rigorous manner, it should be possible to apply mathematic proof. 
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4.3 (5) Statistical Software Quality Assurance 

• Statistical quality assurance reflects a growing trend throughout industry to become more 

quantitative about quality. For software, statistical quality assurance implies the following 

steps: 

1. Information about software errors and defects is collected and categorized. 

2. An attempt is made to trace each error and defect to its underlying cause (e.g., 

nonconformance to specifications, design error, violation of standards, poor communication 

with the customer). 

3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all 

possible causes), isolate the 20 percent (the vital few). 

4. Once the vital few causes have been identified, move to correct the problems that have 

caused the errors and defects.  

1) Generic Example 

• To illustrate the use of statistical methods for software engineering work, assume that a 

software engineering organization collects information on errors and defects for a period of 

one year. Some of the errors are uncovered    as software is being developed. 

• Others (defects) are encountered after the software has been released to its end users. 

Although hundreds of different problems are uncovered, all can be tracked to one (or more) 

of the following causes: 

• Incomplete or erroneous specifications (IES) 

•  Misinterpretation of customer communication (MCC) 

• Intentional deviation from specifications (IDS) 

• Violation of programming standards (VPS) 

• Error in data representation (EDR) 

• Inconsistent component interface (ICI) 

• Error in design logic (EDL) 

• Incomplete or erroneous testing (IET) 

• Inaccurate or incomplete documentation (IID) 
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• Error in programming language translation of design (PLT) 

• Ambiguous or inconsistent human/computer interface (HCI) 

• Miscellaneous (MIS) 

• To apply statistical SQA, the table in Figure 16.2 is built. The table indicates that IES, MCC, 

and EDR are the vital few causes that account for 53 percent of all errors. 

•  It should be noted, however, that IES, EDR, PLT, and EDL would be selected as the vital 

few causes if only serious errors are considered. Once the vital few causes are determined, 

the software engineering organization can begin corrective action. 

• For example, to correct MCC, you might implement requirements gathering techniques  to 

improve the quality of customer communication and specifications.  

• To improve EDR, you might acquire tools for data modeling and perform more stringent 

data design reviews. 

• It is important to note that corrective action focuses primarily on the vital  few. As the vital 

few causes are corrected, new candidates pop to the top of the stack.  

• Statistical quality assurance techniques for software have been shown to provide substantial 

quality improvement . 

•  In some cases, software organizations have achieved a 50 percent reduction per year in 

defects after applying these techniques. 

• The application of the statistical SQA and the Pareto principle can be summarized 

in a single sentence: Spend your time focusing on things that really matter, but first be sure 

that you understand what really matters!  

2) Six Sigma for Software Engineering 

• Six Sigma is the most widely used strategy for statistical quality assurance in industry today.  

• Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and 

disciplined methodology that uses data and statistical analysis to measure and improve a 

company’s operational performance by identifying and eliminating defects’ in manufacturing 

and service-related processes” . The term Six Sigma is derived from six standard deviations. 
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The Six Sigma methodology defines three core steps: 

• Define customer requirements and deliverables and project goals via well-defined methods 

of customer communication. 

• Measure the existing process and its output to determine current quality performance 

(collect defect metrics). 

• Analyze defect metrics and determine the vital few causes.  

• If an existing software process is in place, but improvement is required, Six Sigma suggests 

two additional steps: 

• Improve the process by eliminating the root causes of defects. 

• Control the process to ensure that future work does not reintroduce the causes of defects. 

• These core and additional steps are sometimes referred to as the DMAIC (define, measure, 

analyze, improve, and control) method. 

• If an organization is developing a software process (rather than improving an existing 

process), the core steps are augmented as follows: 

• Design the process to (1) avoid the root causes of defects and (2) to meet customer 

requirements. 

• Verify that the process model will, in fact, avoid defects and meet customer requirements. 

This variation is sometimes called the DMADV (define, measure, analyze, design, and 

verify) method. 

 

4.3 (6)  Software Reliability 

• There is no doubt that the reliability of a computer program is an important element of its 

overall quality. If a program repeatedly and frequently fails to perform, it matters little 

whether other software quality factors are acceptable. 

• Software reliability, unlike many other quality factors, can be measured directly 

        and estimated using historical and developmental data.  

• Software reliability is defined in statistical terms as “the probability of failure-free operation 

of a computer program in a specified environment for a specified time”. To illustrate, 

program X is estimated to have a reliability of 0.999 over eight elapsed processing hours.  
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• In other words, if program X were to be executed 1000 times and require a total of eight 

hours of elapsed processing time (execution time), it is likely to operate correctly (without 

failure) 999 times. 

• Whenever software reliability is discussed, a pivotal question arises: What is meant by the 

term failure? In the context of any discussion of software quality and   reliability, failure is 

nonconformance to software requirements. Yet, even within this definition, there are 

gradations.  

• Failures can be only annoying or catastrophic. One failure can be corrected within seconds, 

while another requires weeks or even months to correct. Complicating the issue even further, 

the correction of one failure may in fact result in the introduction of other errors that 

ultimately result in other failures. 

1) Measures of Reliability and Availability 

• Software reliability attempted to extrapolate the mathematics of hardware 

reliability theory to the prediction of software reliability. Most hardware-related 

reliability models are predicated on failure due to wear rather than failure due to design 

defects. 

•  In hardware, failures due to physical wear (e.g., the effects of temperature, corrosion, shock) 

are more likely than a design-related failure. Unfortunately, the opposite is true for software. 

In fact, all software failures can be traced to design or implementation problems; wear (see 

Chapter 1) does not enter into the picture. 

• There has been an ongoing debate over the relationship between key concepts in hardware 

reliability and their applicability to software. Although an irrefutable link has yet to be 

established, it is worthwhile to consider a few simple concepts that apply to both system 

elements. 

• If we consider a computer-based system, a simple measure of reliability is meantime-

between-failure (MTBF): 
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    MTBF  MTTF  MTTR 

where the acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to repair, 

respectively.  

• Many researchers argue that MTBF is a far more useful measure than other quality-related 

software metrics Stated simply, an end user is concerned with failures, not with the total 

defect count. Because each defect contained within a program does not have the same failure 

rate, the total defect count provides little indication of the reliability of a system. 

• For example, consider a program that has been in operation for 3000 processor hours without 

failure. Many defects in this program may remain undetected for tens of thousand of hours 

before they are discovered.  

• The MTBF of such obscure errors might be 30,000 or even 60,000 processor hours. Other 

defects, as yet undiscovered, might have a failure rate of 4000 or 5000 hours. Even if every 

one of the first category of errors (those with long MTBF) is removed, the impact on 

software reliability is negligible. 

• However, MTBF can be problematic for two reasons: (1) it projects a time span between 

failures, but does not provide us with a projected failure rate, and (2) MTBF can be 

misinterpreted to mean average life span even though this is not what it implies.  

• An alternative measure of reliability is failures-in-time (FIT)—a statistical measure of how 

many failures a component will have over one billion hours of operation. 

• Therefore, 1 FIT is equivalent to one failure in every billion hours of operation. 

• In addition to a reliability measure, you should also develop a measure of availability. 

• Software availability is the probability that a program is operating according to requirements 

at a given point in time and is defined as 

 



198 
 

• The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availability 

measure is somewhat more sensitive to MTTR, an indirect measure of the maintainability of 

software. 

• 2) Software Safety 

• Software safety is a software quality assurance activity that focuses on the identification and 

assessment of potential hazards that may affect software negatively and cause an entire 

system to fail. If hazards can be identified early in the software process, software design 

features can be specified that will either eliminate or control potential hazards. 

• A modeling and analysis process is conducted as part of software safety. Initially, hazards 

are identified and categorized by criticality and risk.  

• For example, some of the hazards associated with a computer-based cruise control for an 

automobile might be: (1) causes uncontrolled acceleration that cannot be stopped, (2) does 

not respond to depression of brake pedal (by turning off), (3) does not engage when switch is 

activated, and (4) slowly loses or gains speed. Once these system-level hazards are 

identified, analysis techniques are used to assign severity and probability of occurrence.  

• To be effective, software must be analyzed in the context of the entire system. 

• Once hazards are identified and analyzed, safety-related requirements can be specified for 

the software. That is, the specification can contain a list of undesirable events and the desired 

system responses to these events.  

• The role of software in managing undesirable events is then indicated. Although software 

reliability and software safety are closely related to one another, it is important to understand 

the subtle difference between them.  

• Software reliability uses statistical analysis to determine the likelihood that a software failure 

will occur. However, the occurrence of a failure does not necessarily result in a hazard or 

mishap. 
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• Software safety examines the ways in which failures result in conditions that can lead to a 

mishap. That is, failures are not considered in a vacuum, but are evaluated in the context of 

an entire computer-based system and its environment.  

4.3 (7) The ISO 9000 Quality Standards 

• A quality assurance system may be defined as the organizational structure, responsibilities, 

procedures, processes, and resources for  implementing quality management. 

•  

•  Quality assurance systems are created to help organizations ensure their 

 products and services satisfy customer expectations by meeting their      specifications. 

• ISO 9000 describes quality assurance elements in generic terms that can be applied to any 

business regardless of the products or services offered. 

• To become registered to one of the quality assurance system models contained in ISO 9000, 

a company’s quality system and operations are scrutinized by third-party auditors for 

compliance to the standard and for effective operation.  

• Upon successful registration, a company is issued a certificate from a registration body 

represented by the auditors. 

• The requirements delineated by ISO 9001:2000 address topics such as management 

responsibility, quality system, contract review, design control, document and data control, 

product identification and traceability, process control, inspection and testing, corrective and 

preventive action, control of quality records, internal quality audits, training, servicing, and 

statistical techniques.  

• In order for a software organization to become registered to ISO 9001:2000, it must establish 

policies and procedures to address each of the requirements just noted (and others) and then 

be able to demonstrate that these policies and procedures are being followed. If you desire 

further information on ISO 9001:2000. 
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• The SQA Plan  

• The SQA Plan provides a road map for instituting software quality assurance. Developed by 

the SQA group (or by the software team if an SQA group does not exist), the plan serves as a 

template for SQA activities that are instituted for each software project. 

• A standard for SQA plans has been published by the IEEE. The standard recommends a 

structure that identifies:  

(1) the purpose and scope of the plan,  

(2) a description of all software engineering work products (e.g., models, documents, source 

code) that fall within the purview of SQA,  

(3) all applicable standards and practices that are applied during the software process,  

(4) SQA actions and  tasks(including reviews and audits) and their placement throughout the 

software process,  

(5) the tools and methods that support SQA actions and tasks,  

(6) software configuration management procedures,  

(7) methods for assembling, safeguarding, and maintaining all SQA-related records, and   

(8) organizational roles and responsibilities relative to product quality. 
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UNIT V 

Project Management: Management activities, Project planning, Project scheduling, Risk 

management.  Software Cost Estimation: Software Productivity, Estimation techniques- The 

COCOMO II Model, Project duration and staffing. 

 

5.1 (1) Project Management 

• Software project management is an essential part of software engineering. Good 

management cannot guarantee project success.  

• However, bad management usually results in project failure: The software is delivered late, 

costs more than originally estimated and fails to meet its requirements. 

• Software managers are responsible for planning and scheduling project development. They 

supervise the work to ensure that it is carried out to the required standards and monitor 

progress to check that the development is on time and within budget. 

•  We need software project management because professional software engineering is always 

subject to organizational budget and schedule constraints. 

•  The software project manager's job is to ensure that the software project meets these 

constraints and delivers software that contributes to the goals of the company developing the 

software. 

• Software managers do the same kind of job as other engineering project managers. However, 

software engineering is different from other types of engineering in a number of ways.  

• These distinctions make software management particularly difficult. Some of the differences 

are: 

• 1. The product is intangible The manager of a shipbuilding project or of a civil engineering 

project can see the product being developed. If a schedule slips, the 'effect on the product is 

visible-parts of the structure are obviously unfinished. Software is intangible. It cannot be 
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seen or touched. Software project managers cannot see progress. They rely on others to 

produce the documentation needed to review progress. 

 

• 2. There are no standard software processes In engineering disciplines with a long history, 

the process is tried and tested. The engineering process for some types of system, such as 

bridges and buildings is well understood. However, software processes vary dramatically 

from one organization to another. Although our understanding of these processes has 

developed significantly in the past few years, we still cannot reliably predict when a 

particular software process is likely to cause development problems.. This is especially true 

when the software project is part of a wider systems engineering project. 

 

• 3. Large software projects are often one-off projects Large software projects are usually 

different in some ways from previous projects. Therefore, even managers who have a large 

body of previous experience may find it difficult to anticipate problems. Furthermore, rapid 

technological changes in  computers and communications can make a manager s experience 

obsolete. Lessons learned from previous projects may not be transferable to new projects.  

• Because of these problems, it is not surprising that some software projects are late, over 

budget and behind schedule. Software systems are often new and technically innovative. 

Engineering projects (such as new transport systems) that are innovative often also have 

schedule problems. 

5.1 (2) Management activities 

• It is impossible to write a standard job description for a software manager. The job varies 

tremendously depending on the organization and the software product being developed. 

However, most managers take responsibility at some stage for some or all of the following 

activities: 

1) Proposal writing 

2) Project planning and scheduling 

3) Project cost 

4) Project monitoring and reviews 
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5) Personnel selection and evaluation 

6) Report writing and presentations 

1) Proposal writing 

• The first stage in a software project may involve writing a proposal to win a contract to carry 

out the work.  

• The proposal describes the objectives of the project and how it will be carried out. It usually 

includes cost and schedule estimates, and justifies why the project contract should be 

awarded to a particular organization or team. 

•  Proposal writing is a critical task as the existence of many software organizations depends 

on having enough proposals accepted and contracts awarded.  

There can be no set guidelines for this task; proposal writing is a skill that you acquire 

through practice and experience. 

 

2) Project planning and scheduling 

Project planning is concerned with identifying the activities. milestones and deliverables 

produced by a project. A plan is drawn up to guide the development towards the project 

goals.  

 

3) Project cost 

Cost estimation is a related activity that is concerned with estimating the resources required 

to accomplish the project plan.  

 

4) Project monitoring and reviews 

• Project monitoring is a continuing project activity. The manager must keep track of the 

progress of the project and compare actual and planned progress and costs. 

•  Although most organizations have formal mechanisms for monitoring, a skilled manager 

can often form a clear picture of what is going on through informal discussions with project 

staff.  
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• Informal monitoring can often predict potential project problems by revealing difficulties as 

they occur.  

• For example, daily discussions with project staff might reveal a particular problem in finding 

some software fault. Rather than waiting for a schedule slippage to be reported, the software 

manager might assign some expert to the problem or might decide that it should be 

programmed around. 

• During a project, it is normal to have a number of formal project management reviews. They 

are concerned with reviewing overall progress and technical development of the project and 

checking whether the project and the goals of the organization paying for the software are 

still aligned. 

• The outcome of a review may be a decision to cancel a project. The development time for a 

large software project may be several years. During that time, organizational objectives are 

almost certain to change. These changes may mean that the software is no longer required or 

that the original project requirements are inappropriate. 

• Management may decide to stop software development or to change the project to 

accommodate the changes to the organizational objectives. 

• Project managers usually have to select people to work on their project. Ideally, skilled staff 

with appropriate experience will be available to work on the project. 

• However, in most cases, managers have to settle for a less-than-ideal project team. The 

reasons for this are: 

 

1. The project budget may not cover the use of highly paid staff. Less experienced, less well-

paid staff may have to be used. 

2. Staff with the appropriate experience may not be available either within an organization or 

externally. It may be impossible to recruit new staff to the project. Within the organization, 

the best people may already be allocated to other projects. 

3. The organization may wish to develop the skills of its employees. Inexperienced staff may 

be assigned to a project to learn and to gain experience.  



205 
 

• The software manager has to work within these constraints when selecting project staff 

However, problems are likely unless at least one project member has some experience with 

the type of system being developed. Without this experience, many simple mistakes are 

likely to be made. 

• 5.1 (3) Project planning 

• Effective management of a software project depends on thoroughly planning the progress of 

the project.  

• Managers must anticipate problems that might arise and prepare tentative solutions to those 

problems.  

• A plan, drawn up at the start of a project, should be used as the driver for the project. This 

initial plan should be the best 

      possible plan given the available information.  

• It evolves as the project progresses and better information becomes available.   

• As well as a project plan, managers may also have to draw up other types of plans. These are 

briefly described in Figure 5.1 
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• The pseudo-code shown in Figure 5.2 sets out a project planning process for software 

development.  

• It shows that planning is an iterative process, which is only complete when the project itself 

is complete.  

• As project information becomes available during the project, the plan should be regularly 

revised.  

• The goals of the business are an important factor that must be considered when formulating 

the project plan.  

• As these change, the project's goals also change so changes to the project plan are necessary  

 

• At the beginning of a planning process, you should assess the constraints (required delivery 

date, staff available, overall budget, etc.) affecting the. project.  

• In conjunction with this, you should estimate project parameters such as its structure, size, 

and distribution of functions. You next define the progress milestones and deliverables. 

• The process then enters a loop. You draw up an estimated schedule for the project and the 

activities defined in the schedule are started or given permission to continue. 

•  After some time (usually about two to three weeks), you should review progress and note 

discrepancies from the planned schedule.  
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• Because initial estimates of project parameters are tentative, you will always have to modify 

the original plan. 

• As more information becomes available. you revise your original assumptions about the 

project and the project schedule.  

• If the project is delayed, you may have to renegotiate the project constraints, and deliverables 

with the customer.  

• If this renegotiation is unsuccessful and the schedule cannot be met, a project technical 

review may be held.  

The objective of this review is to find an alternative approach that falls within the project 

constraints and meets the schedule. 

 

1) The Project Plan 

• The project plan sets out the resources available to the project, the work breakdown and a 

schedule for carrying out the work. 

•  In some organizations, the project plan is a single document that includes the different types 

of plan (Figure 5.1).  

• In other cases, the project plan is solely concerned with the  development process.  

• References to other plans are included but the plans themselves are separate. 

• However, most plans should include the following sections: 

 

1. Introduction This briefly describes the objectives of the project and sets out the constraints 

(e.g., budget, time, etc.) that affect the project management. 

 

2. Project organization This describes the way in which the development     team is organized, the 

people involved and their roles in the team.  
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3. Risk analysis This describes possible project risks, the likelihood of these risks arising and the 

risk reduction strategies that are proposed.  

 

4. Hardware and software resource requirements This specifies the hardware and the support 

software required to carry out the development. If hardware has to be bought, estimates of the prices 

and the delivery schedule may be included. 

 

5. Work breakdown This sets out the breakdown of the project into activities and identifies the 

milestones and deliverables associated with each activity.  

 

6. Project schedule This shows the dependencies between activities, the estimated time required to 

reach each milestone and the allocation of people to activities. 

7. Monitoring and reporting mechanisms This defines the management reports that should be 

produced, when these should be produced and the project monitoring mechanisms used. 

 

2) Milestones and deliverables 

• When planning a project, you should establish a series of milestones. where a milestone is a 

recognizable end-point of a software process activity.  

• At each milestone, there should be a formal output, such as a report, that can be presented to 

management. Milestone reports need not be large documents. 

•  They may simply be a short report of what has been completed. Milestones should represent 

the end of a distinct, logical stage in the project.  

• Indefinite milestones such as 'Coding 80% complete' that can't be checked are useless for 

project management.  

You can't check whether this state has been achieved because the amount of code that still has to be 

developed is uncertain. 

• A deliverable is a project result that is delivered to the customer. It is usually delivered at the 

end of some major project phase such as specification or design.  

• Deliverables are usually milestones, but milestones need not be deliverables. 
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• Milestones may be internal project results that are used by the project manager to check 

project progress but which are not delivered to the customer. 

• To establish milestones, the software process must be broken down into basic activities with 

associated outputs. 

•  For example, Figure 5.3 shows possible activities involved in requirements specification 

when prototyping is used to help validate requirements. 

•  The milestones in this case are the completion of the outputs for each activity.  

• The project deliverables, which are delivered to the customer, are the requirements definition 

and the requirements specification. 

 

5.1 (4) Project scheduling 

• Project scheduling is one of the most difficult jobs for a project manager. Managers estimate 

the time and resources required to complete activities and organize them into a coherent 

sequence.  

• Unless the project being scheduled is similar to a previous project, previous estimates are an 

uncertain basis for new project scheduling. 

• Schedule estimation is further complicated by the fact that different projects may use 

different design methods and implementation languages. 
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• Project scheduling (Figure 5.4) involves separating the total work involved in a project into 

separate activities and judging the time required to complete these activities. Usually, some 

of these activities are carried out in parallel. 

Figure 5.4 The Project Scheduling Process 

 

• Project activities should normally last at least a week. Finer subdivision means that 

      a disproportionate amount of time must be spent on estimating and chart revision.  

• It is also useful to set a maximum amount of time for any activity of about 8 to 

10 weeks. If it takes longer than this, it should be subdivided for project planning and 

scheduling  

 

 

• When you are estimating schedules, you should not assume that every stage of the project 

will be problem free.  

• People working on a project may fall ill or may leave, hardware may break down, and 

essential support software or hardware may be delivered late.  

• If the project is new and technically advanced, certain parts of it may turn out to be more 

difficult and take longer than originally anticipated.  

• As well as calendar time, you also have to estimate the resources needed to complete each 

task. The principal resource is the human effort required. 

• A good rule of thumb is to estimate as if nothing will go wrong, then increase your estimate 

to cover anticipated problems.  
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• A further contingency factor to cover unanticipated problems may also be added to the 

estimate.  

• This extra contingency factor depends on the type of project, the process parameters 

(deadline, standards, etc.) and the quality and experience of the software engineers working 

on the project. 

• Project schedules are usually represented as a set of charts showing the work breakdown, 

activities dependencies and staff allocations. 

 

1) Bar charts and activity networks  

• Bar charts and activity networks are graphical notations that are used to illustrate the project 

schedule.  

• Bar charts show who is responsible for each activity and when the activity is scheduled to 

begin and end.  

• Activity networks show the dependencies between the different activities making up a 

project.  

• Bar charts and activity charts can be generated automatically from a database of project 

information using a project management tool.  

• To illustrate how these charts are used,  a hypothetical set of activities as shown in Figure 

5.5.  
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• This table shows activities, their duration, and activity interdependencies.  

• From Figure 5.5, you can see that Activity T3 is dependent on Activity Ti. This means that 

T1 must be completed before T3 starts.  

• For example, T1 might be the preparation of a component design and n, the implementation 

of that design.  

• Before implementation starts, the design should be complete. 

•  Given the dependencies and estimated duration of activities, an activity chart that shows 

activity sequences may be generated 

      (Figure 5.6).  

• This shows which activities can be carried out in parallel and which must be executed in 

sequence because of a dependency on an earlier activity.  

• Activities are represented as rectangles; milestones and project deliverables are shown with 

rounded comers.  

• Dates in this diagram show the start elate of the activity and are written in British style, 

where the day precedes the month.  

• You should read the chart from left to right and from top to bottom. 

• In the project management tool used to produce this chart, all activities must end in 

milestones. 

•  An activity may start when its preceding milestone (which may depend 

       on several activities) has been reached.  

• Therefore, in the third column in Figure 5.5 shows the corresponding milestone (e.g., M5) 

that is reached when the tasks finish 

      (see Figure 5.6). 

• Before progress can be made from one milestone to another, all paths leading to it must be 

complete.  
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• For example, when activities n and T6 are finished, then activity 

     T9, shown in Figure 5.6, can start.  

 

 

• The minimum time required to finish the project can be estimated by considering the longest 

path in the activity graph (the critical path). In this case, it is 11 weeks of elapsed time or 55 

working days. 

•  In Figure 5.6, the critical path is shown as a sequence of emboldened boxes. The critical 

path is the sequence of dependent activities that defines the time required to complete the 

project.  

• The overall schedule of the project depends on the critical path. Any slippage in the 

completion in any critical activity causes project delays because the following activities 

cannot start until the delayed activity has been completed. 

• For example, if T8 is delayed by two weeks, it will not affect the final completion date of the 

project because it does not lie on the critical path.  

• Most project management tools compute the allowed delays, as shown in the project bar 

chart. 
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• Managers also use activity charts when allocating project work. They can provide insights 

into activity dependencies that are not intuitively obvious. It may be possible to modify the 

system design so that the critical path is shortened. 

• Figure 5.7 is a complementary way of representing project schedule information. It is a bar 

chart showing a project calendar and the start and finish dates of activities. 

• Sometimes these are called Gantt charts, after their inventor. Reading from left to right, the 

bar chart clearly shows when activities start and end.  

• Some of the activities shown in l:he bar chart in Figure 5.7 are followed by a shaded bar 

whose length is computed by the scheduling tool. 

•  This highlights the flexibility in the completion date of these activities. If an activity does 

not complete on time, the critical path will not be affected until the end of the period marked 

by the shaded bar. 

•  Activities that lie on the critical path have no margin of error 

      and can be identified because they have no associated shaded bar 

 

 

• Large organizations usually employ a number of specialists who work on a project when 

needed.  
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• In Figure 5.8, you can see that Mary and Jim are specialists who work on only a single task 

in the project. This can cause  scheduling problems.  

• If one project is delayed while a specialist is working on it, this may have a knock on effect 

on other projects.  

• They may also be delayed because the specialist is not available. 

 

  

5.1(5) Risk Management 

 

• Risk management is increasingly seen as one of the main jobs of project managers.  

• It involves anticipating risks that might affect the project schedule or the quality of the 

software being developed and taking action to avoid these risks.  

• The results of the risk analysis should be documented in the project plan along with an 

analysis of the consequences of a risk occurring. 

•  Effective risk management makes it easier to cope with problems and to ensure that these do 

not lead to unacceptable budget or schedule slippage. 

• Simplistically, you can think of a risk as something that you'd prefer not to have happen. 

Risks may threaten the project, the software that is being developed or the organization. 

•  There are, therefore, three related categories of risk: 
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1. Project risks are risks that affect the project schedule or resources. An example might be the 

loss of an experienced designer.  

 

2. Product risks are risks that affect the quality or performance of   the software being developed. 

An example might be the failure of a purchased component 

to perform as expected.  

 

3. Business risks are risks that affect the organization developing or procuring the software. For 

example, a competitor introducing Ii new product is a business risk. 

 

• Of course, these risk types overlap. If an experienced programmer leaves a project, this can 

be a project risk because the delivery of the system may be delayed. 

•  It can also be a product risk because a replacement may not be as experienced and so may 

make programming errors. 

•  Finally, it can be a business risk because the programmer’s experience is not available for 

bidding for future business. 

• The risks that may affect a project depend on the project and the organizational environment 

where the software is being developed. 

•  However, many risks are universal- some of the most common risks are shown in Figure 

5.9. 
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• The process of risk management is illustrated in Figure 5.10. It involves several stages: 

 

1. Risk identification Possible project, product and business risks are identified. 

2. Risk analysis The likelihood and consequences of these risks are assessed. 

3. Risk planning Plans to address the risk either by avoiding it or minimizing its effects on the 

project are drawn up. 

4. Risk monitoring The risk is constantly assessed and plans for risk mitigation are revised as more 

information about the risk becomes available. 

• The risk management process, like all other project planning, is an iterative 

     process which continues throughout the project. Once an initial set of plans    are drawn up, the 

situation is monitored. As more information about the risks becomes available, the risks have to be 

reanalyzed and new priorities  established. 

• The risk avoidance and contingency plans may be modified as new risk information emerges. 
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1) Risk Identification 

• Risk identification is the first stage of risk management. It is concerned with discovering 

possible risks to the project 

• There are at least six types of risk that can arise: 

1. Technology risks Risks that derive from the software or hardware technologies that are used to 

develop the system. 

2. People risks Risks that are associated with the people in the development team. 

3. Organizational risks Risks that derive from the organizational environment where the software is 

being developed. 

4. Tools risks Risks that derive from the CASE tools and other support software used to develop the 

system. 

5. Requirements risks Risks that derive from changes to the customer requirements and the process 

of managing the requirements change. 

6. Estimation risks Risks that derive from the management estimates of the system characteristics 

and the resources required to build the system.  
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• Figure: 5.11 gives some examples of possible risks in each of these categories.  

 

 

 

2) Risk Analysis 

• During the risk analysis process, you have to consider each identified risk and make a 

judgement about the probability and the seriousness of it.  

• There is no easy way to do this-you must rely on your own judgement and experience, which 

is why experienced project managers are generally the best people to help with risk 

management.  

• These risk estimates should not generally be precise numeric assessments but should be 

based around a number of bands:  

• The probability of the risk might be assessed as very low  (<10%), low (l0-25%), moderate (25-

50%), high (50-75%) or very high (>75%). 

• The effects of the risk might be assessed as catastrophic, serious, tolerable or insignificant.  
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Figure 5.12 illustrates this for the risks identified in Figure 5.11. 

 

• Once the risks have been analyzed and ranked, you should assess which are most significant. 

In general, catastrophic risks should always be considered, as should all serious risks that 

have more than a moderate probability of occurrence. 

• Boehm (1988) recommends identify and monitoring the 'top 10' risks, but I think that this 

figure is rather arbitrary. The right number of risks to monitor must depend on the project. It 

might be 5 or it might be 15.  

• However, the number of risks chosen for monitoring should be manageable. A very large 

number of risks would simply require too much information to be collected. 

•  From the risks identified in Figure 5.12, it is appropriate to consider all 8 risks that have 

catastrophic or serious consequences. 
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3) Risk Planning 

• The risk planning process considers each of the key risks that have been identified and 

identifies strategies to manage the risk. Again. there is no simple process that can be 

followed to establish risk management plans. It relies on the judgement and experience of the 

project manager. Figure 5.13 shows possible strategies that have been identified for the key 

risks from Figure 5.12. These strategies fall into three categories: 

1. Avoidance strategies Following these strategies means that the probability that the risk will arise 

will be reduced. An example of a risk avoidance strategy is the strategy for dealing with defective 

components shown in Figure 5.13. 

2. Minimization strategies Following these strategies means that the impact of the risk will be 

reduced. An example of a risk minimization strategy is that for staff illness shown in Figure 5.13. 

3. Contingency plans Following these strategies means that you are prepared for the worst and have 

a strategy in place to deal with it An example of a contingency strategy is the strategy for 

organizational financial problems in Figure 5.13  
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4) Risk Monitoring 

• Risk monitoring involves regularly assessing each of the identified risks to decide whether or 

not that risk is becoming more or less probable and whether the effects of the risk have 

changed.  

• Of course, this cannot usually be observed directly, so you have to look at other factors that 

give you clues about the risk probability and its effects. 

•  These factors are obviously dependent on the types of risk. Figure 5.14 gives some 

examples of factors that may be helpful in assessing these risk types. 

• Risk monitoring should be a continuous process, and, at every management progress review, 

you should consider and discuss each of the key risks separately.  

 

 

5.2 (1) Software Cost Estimation 

• Estimation involves answering the following questions: 

1. How much effort is required to complete each activity? 

2. How much calendar time is needed to complete each activity? 

3. What is the total cost of each activity? 
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• Project cost estimation and project scheduling are normally carried out together. The costs of 

development are primarily the costs of the effort involved, so the effort computation is used 

in both the cost and the schedule estimate. 

• There are three parameters involved in computing the total cost of a software development 

project: 

1) Hardware and software costs including maintenance 

2) Travel and training costs  

3) Effort costs (the costs of paying software engineers). 

• For most projects, the dominant cost is the effort cost. Effort costs are not just the salaries of 

the software engineers who are involved in the project.  

• Organizations compute effort costs in terms of overhead costs where they take the total cost 

of running the organization and divide this by the number of productive staff. Therefore, the 

following costs are all part of the total effort cost: 

1. Costs of providing, heating and lighting office space 

2. Costs of support staff such as accountants, administrators, system managers, cleaners and 

technicians 

3. Costs of networking and communications. 

4. Costs of central facilities such as a library or recreational facilities 

5. Costs of Social Security and employee benefits such as pensions and health insurance. 

• Once a project is underway, project managers should regularly update their cost and schedule 

estimates.  

• This helps with the planning process and the effective use of resources. If actual expenditure 

is significantly greater than the estimates, then the project manager must take some action.  

• Software costing should be carried out objectively with the aim of accurately predicting the 

cost of developing the software. 

• Software pricing must take into account broader  organizational, economic, political and 

business considerations, such as those shown in Figure 26.1.  
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• Therefore, there may not be a simple relationship between the price to the customer for the 

software and the development costs. 

 

 

5.2 (2) Software Productivity 

• You can measure productivity in a manufacturing system by counting the number of units 

that are produced and dividing this by the number of person-hours required to produce them.  

• However, for any software problem, there are many different solutions, each of which has 

different attributes. 

•  One solution may execute more efficiently while another may be more readable and easier 

to maintain.  

• When solutions with different attributes are produced, comparing their production rates is 

not really meaningful. 

• Nevertheless, as a project manager, you may be faced with the problem of estimating the 

productivity of software engineers. 
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•  You may need these productivity estimates to help define the project cost or schedule, to 

inform investment decisions or to assess, whether process or technology improvements are 

effective. 

• Productivity estimates are usually based on measuring attributes of the software and dividing 

this by the total effort required for development. There are two types of metric that have 

been used: 

1. Size-related metrics These are related to the size of some output from an activity. The most 

commonly used size-related metric is lines of delivered source code. 

•  Other metrics that may be used are the number of delivered object code instructions or the 

number of pages of system documentation. 

 

2. Function-related metrics These are related to the overall functionality of the delivered software.  

• Productivity is expressed in terms of the  amount of useful functionality produced in some 

given time. Function points and object points are the best-known metrics of this type. 

• Lines of source code per programmer-month (LOC/pm) is a widely used software 

productivity metric. 

•  You can compute LOC/pm by counting the total number of lines of source code that are 

delivered, then divide the count by the total time in programmer-months required to 

complete the project. 

• This time therefore includes the time required for all other activities (requirements, design, 

coding, testing and documentation) involved in software development. 

• This approach was first developed when most programming was in FORTRAN, assembly 

language or COBOL.  

• Then, programs were typed on cards, with one statement on each card. The number of lines 

of code was easy to count: It  corresponded to the number of cards in the program deck. 

•  However, programs in languages such as Java or C++ consist of declarations, executable 

statements and commentary.  
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• They may include macro instructions that expand to several lines of code.  

• For example, consider an embedded real-time system that might be coded in 5,000 lines of 

assembly code or 1,500 lines of C. The development time for the various phases is shown in 

Figure 26.2. 

•  The assembler programmer has a productivity of 714 lines/month and the high-level 

language programmer less than half of this 300 lines/month. 

• Productivity is expressed as the number of function points that are implemented per person-

month. A function point is not a single characteristic but is computed by combining several 

different measurements or estimates.  

• You compute the total number of function points in a program by measuring or estimating 

the following program features: 

• external inputs and outputs; 

• user interactions; 

• external interfaces; 

• file:; used by the system.  

 

• Obviously, some inputs and outputs, interactions. and so on are more complex than others 

and take longer to implement. 
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•  The function-point metric takes this into account by multiplying the initial function-point 

estimate by a complexity-weighting factor.  

• You should assess each of these features for complexity and then assign the weighting factor 

that vanes from 3 (for simple external inputs) to 15 for complex internal files .  

• Either the weighting values proposed by Albrecht or values based on local experience may 

be used. 

• You can then compute the so-called unadjusted function-point count (UFC) by multiplying 

each initial count by the estimated weight and summing all values. 

       UFC = (number of elements of given type) x (weight) 

• You then modify this unadjusted function-point count by additional complexity factors that 

are related to the complexity of the system as a whole. 

•  This takes into account the degree of distributed processing, the amount of reuse, the 

performance, and so or. 

•  The unadjusted function-point count is multiplied by these project complexity factors to 

produce a final function-point count for the overall system. 

• Object points (Banker, et al., 1994) are an alternative to function points. They can be used 

with languages such as database programming languages or scripting languages.  

• Object points are not object classes that may be produced when an object-oriented approach 

is taken to software development. Rather, the number of object points in a program is a 

weighted estimate of: 

1. The number of separate screens that are displayed Simple screens count as 1 object point, 

moderately complex screens count as 2, and very complex screens count as 3 object points. 

2. The number of reports that are produced For simple reports, count 2 object points, for 

moderately complex reports, count 5, and for reports that are likely to be difficult to produce, count 

8 object points. 
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3. The number of modules in imperative programming languages such as Java or C++ that must 

be developed to supplement the database programming code Each of these modules counts as 10 

object points. 

• Object points are used in the COCOMO II estimation model (where they are called 

application points) The advantage of object points over function points is that they are easier 

to estimate from a high-level software specification.  

• Object points are only concerned with screens, reports and modules in conventional 

programming languages. They are not concerned with implementation details, and the 

complexity factor estimation is much simpler.  

• If function points or object points are used, they can be estimated at an early stage in the 

development process before decisions that affect the program size have been made.  

• Function-point and object-point counts can be used in conjunction with lines of code-

estimation models. The final code size is calculated from the number of function points.  

• Using historical data  analysis, the average number of lines of code, AVC, in a particular 

language required to implement a function point can be estimated.  

• Values of AVC vary from 200 to 300 LOCIFP in assembly language to 2 to 40 LOCIFP for 

a database programming language such as SQL. 

•  The estimated code size for a new application is then computed as follows: 

    Code size = AVC x Number of function points 

• The programming productivity of individuals working in an organization is  affected by a 

number of factors. Some of the most important of these are summarized in  

 

Figure 26.3. However, individual differences in ability are usually more significant than any of 

these factors. 



229 
 

 

• Software development productivity varies dramatically across application domains and 

organizations. 

•  For large, complex, embedded systems, productivity has been estimated to be as low as 30 

LOC/pm.  

• For straightforward, well-understood application systems, written in a language such as Java, 

it may be as high as 900 LOC/pm. 

•  The problem with measures that rely on the amount produced in a given time period is that 

they take no account of quality characteristics such as reliability and maintainability. 

• These measures also do not take into account the possibility of reusing the software 

produced, using code generators and other tools that help create the software. 

5.2 (3) Estimation Techniques 

 

• There is no simple way to make an accurate estimate of the effort required to develop a 

software system.  

• You may have to make initial estimates on the basis of a high-level user requirements 

definition. 
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•  Project cost estimates are often self-fulfilling. 

• The estimate is used to define the project budget, and the product is adjusted so that the 

budget figure is realized.  

• Nevertheless, organizations need to make software effort and cost estimates. To do so, one or 

more of the techniques described in Figure 26.4 may be used 

 

• However, there may be important differences between past and future projects. Many new 

development methods and techniques have been introduced in the last 10 years.  

• Some examples of the changes that may affect estimates based on experience include: 

1. Distributed object systems rather than mainframe-based systems 

2. Use of web services 

3. Use of ERP or database-centered systems 

4. Use of off-the-shelf software rather than original system development 

5. Development for and with reuse rather than new development of all parts of a system 
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6. Development using scripting languages such as TCL or Perl (Ousterhout, 1998) 

7. The use of CASE tools and program generators rather than unsupported software development  

• If project managers have not worked with these techniques, their previous experience may 

not help them estimate software project costs.  

• You can tackle the approaches to cost estimation shown in Figure 26.4 using either a top-

down or a bottom-up approach. A top-down approach starts at the system level. 

•  The bottom-up approach, by contrast, starts at the component level. The system is 

decomposed into components, and you estimate the effort required to develop each of  these 

components. 

• The disadvantages of the top-down approach are the advantages of the bottom-up approach 

and vice versa. Top-down estimation can underestimate the costs of solving difficult 

technical problems associated with specific components such as interfaces to nonstandard 

hardware.  

• By contrast, bottom-up estimation produces such a justification and considers each 

component.  

• However, this approach is more likely to underestimate the costs of system activities such as 

integration.  

• Bottom-up estimation is also more expensive. Each estimation technique has its own 

strengths and weaknesses.  

• Each uses different information about the project and the development team,  so if you use a 

single model and this information is not accurate, your final estimate will be wrong. 

• For large projects, therefore, you should use several cost estimation techniques and compare 

their results. 

• These estimation techniques are applicable where a requirements document for the system 

has been produced. This should define all users and system requirements.  

• However, in many cases, the costs of many projects must be estimated using only incomplete 

user requirements for the system.  
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• This means that the estimators have very little information with which to work. 

•  Requirements analysis and specification is expensive, and the managers in a company may 

need an initial cost estimate for the system before they can have a budget approved to 

develop more detailed requirements or a system prototype. 

•  Under these  circumstances, 'pricing to win" is a commonly used strategy. The notion of 

pricing to win may seem unethical and un-business like. 

•  However, it does have some advantages. A project cost is agreed on the basis of an outline 

proposal. Negotiations then take place between client and customer to establish the detailed 

project specification. 

 

5.2 (4) Algorithmic cost modeling 

• Algorithmic cost modeling uses a mathematical formula to predict project costs based on 

estimates of the project size, the number of software engineers, and other process and 

product factors.  

• An algorithmic cost model can be built by analyzing the costs and attributes of completed 

projects and finding the closest fit formula to actual experience.  

• Algorithmic cost models are primarily used to make estimates of software development 

costs, but Boehm (2000) discusses a range of other uses for algorithmic cost estimates, 

including estimates for investors in software companies, estimates of alternative strategies to 

help assess risks, and estimates to inform decisions about reuse, redevelopment or 

outsourcing. 

• In its most general form, an algorithmic cost estimate for software cost can be expressed as: 

 Effort = A x SizeB x M 

• A is a constant factor that depends on local organizational practices and the type of software 

that is developed.  

• Size may be either an assessment of the code size of the software or a functionality estimate 

expressed in function or object points. 
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•  The value of exponent B usually lies between 1 and 1.5. 

•  M is a multiplier made by combining process, product and development attributes, such as 

the dependability requirements for the software and the experience of the development team. 

• Most algorithmic estimation models have an exponential component (B in the above 

equation) that is associated with the size estimate. This reflects the fact that costs do not 

normally increase linearly with project size. 

• Unfortunately, all algorithmic models suffer from the same fundamental difficulties  

 

1. It is often difficult to estimate Size at an early stage in a project when only a specfication is 

available. Function-point and object-point estimates are easier to produce than estimates of code 

size but are often still inaccurate. 

2. The estimates of the factors contributing to B and M are subjective. Estimates vary from one 

person to another, depending on their background and experience with the type of system that is 

being developed. 

 

• The number of lines of source code in the delivered system is the basic metric used in many 

algorithmic cost models. 

•  Size estimation may involve estimation by analogy with other projects, estimation by 

converting function or object points to code size, estimation by ranking the sizes of system 

components and using a known reference component to estimate the component size, or it 

may simply be a question of engineering judgement 

• Accurate code size estimation is difficult at an early stage in a project because the code size 

is affected by design decisions that have not yet been made. 

• For example, an application that requires complex data management may either use a 

commercial database or implement its own data-management system.  

• If a commercial database is used, the code size will be smaller but additional effort may be 

needed to overcome the performance limitations of the commercial product. 
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• The programming language used for system development also affects the number of lines of 

code to be developed.  

• A language such as Java might mean that more  lines of code are necessary than if C (say) 

were used. However, this extra code allows more compile-time checking so validation costs 

are likely to be reduced.  

• If you use an algorithmic cost estimation model, you should develop a range of estimates 

(worst, expected and best) rather than a single estimate and apply the costing formula to all 

of them.  

• The accuracy of the estimates produced by an algorithmic model depends on the system 

information that is available. 

•  As the software process proceeds, more information becomes available so estimates become 

more and more accurate.  

• If the initial estimate of effort required is x months of effort, this range may be from O.25x to 

4x when the system is first proposed.  

• This narrows during the development process, as shown in Figure 26.5. This figure, adapted 

from Boehm's paper. 
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1) The COCOMO model 

• A number of algorithmic models have been proposed as the basis for estimating the effort, 

schedule and costs of a software project. These are conceptually similar but use different 

parameter values. 

•  The model that is discussed here is the COCOMO model. 

• The COCOMO model is an empirical model that was derived by collecting data from a large 

number of software projects. These data were analyzed to discover formulae  that were the 

best fit to the observations. These formulae link the size of the system and product, project 

and team factors to the effort to develop the system.  

•  

• Use the COCOMO model for several reasons:  

1. It is well documented, available in the public domain and supported by public domain and 

commercial tools. 

2. It has been widely used and evaluated in a range of organizations.  
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3. It has a long pedigree from its first instantiation in 1981 (Boehm, 1981), through a refinement 

tailored to Ada software development (Boehm and Royce, 1989). to its most recent version, 

COCOMO II, published in 2000 (Boehm,et al. 2000). 

• The COCOMO models are comprehensive. with a large number of parameters that can each 

take a range of values. They are so complex 

• The first version of the COCOMO model (COCOMO 81) was a three-level model where the: 

levels corresponded to the detail of the analysis of the cost estimate.  

• The first level (basic) provided an initial rough estimate; the second level modified this using 

a number of project and process multipliers; and the most detailed level produced estimates 

for different phases of the project.  

• Figure 26.6 shows the basic COCOMO formula for different types of projects. The 

multiplier M reflects product, project and team characteristics. 

• COCOMO 81 assumed that the software would be developed according to a waterfall 

process  using standard imperative programming languages such as C or FORTRAN.  

• Prototyping and incremental development are commonly used process models. Software is 

now often developed by assembling reusable components with off-the-shelf systems and 

'gluing' them together with scripting language. 
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• Existing software is re-engineered to create new software. CASE tool support for most 

software process activities is now available.  

• To take these changes into account, the COCOMO II model recognizes different approaches 

to software development such as prototyping, development by component composition and 

use of database programming. 

•  COCOMO II supports a spiral model of development and embeds several sub-models that 

produce increasingly detailed estimates.  

• These can be used in successive rounds of the development spiral. Figure 26.7 shows 

COCOMO II sub-models and where they are used. 

• Figure: 26.7 The COCOMO II Models  

 

• The sub-models that are part of the COCOMO II model are: 

1. An application-composition model  

• This assumes that systems are created from reusable components, scripting or database 

programming. It is 'designed to make estimates of prototype development.  

• Software size estimates are based on application points, and a simple size/productivity 

formula is used to estimate the effort required. Application points are the same as object 

points  but the name was changed to avoid confusion with objects in  object-oriented 

development.  
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2. An early design model  

• This model is used during early stages of the system design after the requirements have been 

established.  

Estimates are based on function points, which are then converted to number of lines of source code. 

The formula follows the standard form discussed above with a simplified set of seven multipliers. 

3. A reuse model  

• This model is used to compute the effort required to integrate reusable components and/or 

program code that is automatically generated by design or program translation tools. It is 

usually used in conjunction with the post-architecture model. 

4. A post-architecture model  

• Once the system architecture has been designed, a more accurate estimate of the software 

size can be made. Again this model uses the standard formula for cost estimation discussed 

above. 

•  However, it includes a more extensive set of 17 multipliers reflecting personnel capability 

and product and project characteristics. 

1) The application-composition model 

• The application-composition model was introduced into COCOMO II to support the 

estimation of effort required for prototyping projects and for projects where the software is 

developed by composing existing components.  

• It is based on an estimate of weighted application points (object points) divided by a standard 

estimate of application-point productivity.  

• Figure 26.8 shows the levels of object-point productivity suggested by the model developers. 
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• Application composition usually involves significant software reuse, and some of the total 

number of application points in the system may be implemented with reusable components . 

• Consequently, you have to adjust the estimate based on the total number of application 

points to take into account the percentage of reuse expected. 

• Therefore, the final formula for effort computation for system prototypes is: 

  PM = (NAP x (1 - %reuse/100) / PROD  

•  PM is the effort estimate in person-months. NAP is the total number of application points in 

the delivered system.  

•  %reuse is an estimate of the amount of reused code in the development.  

• PROD is the object-point productivity 

2) The early design model 

• This model is used once user requirements have been agreed and initial stages of the system 

design process are underway. However, you don't need a detailed architectural design to 

make these initial estimates.  

• Your goal at this stage should be to make an approximate estimate without undue effort. 

Early design estimates are most useful for option exploration where you need to compare 

different ways of implementing the user requirements. 

• The estimates produced at this stage are based on the standard formula for algorithmic 

models, namely: 

 Effort = A x SizeBx M  
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• Based on his own large data set, Boehm proposes that the coefficient A should be 2.94. 

•  The size of the system is expressed in KSLOC, which is the number of thousands of lines of 

source code. 

•  You calculate KSLOC by estimating the number of function points in the software.  

• You then use standard tables that relate software size to function points for different 

programming languages to compute an initial estimate of the system size in KSLOC. 

• The exponent B reflects the increased effort required as the size of the project increases.  

• This is not fixed for different types of systems, as in COCOMO 81, but can vary from 1.1 to 

1.24 depending on the novelty of the project, the development flexibility, the risk resolution 

processes used, the cohesion of the development team 

      and the process maturity level.  

• The multiplier M in COCOMO II is based on a simplified set of seven project and process 

characteristics that influence the estimate. These can increase or decrease the effort required.  

• These characteristics used in the early design model are product reliability and complexity 

(RCPX), reuse required (RUSE), platform difficulty (PDIF), personnel capability (PERS), 

personnel experience (PREX), schedule (SCED) and support facilities(FCIL). 

• You estimate values for these attributes using a six-point scale where 1 corresponds to very 

low values for these multipliers and 6 corresponds  to very high values. 

• This results in an effort computation as follows: 

     PM = 2.94x SizeB x M 

• where,  

M=PERS x RCPX x RUSE x PDIF x PREX x FCIL x SCED 

3) The reuse model 

• Software reuse is now common, and most large systems include a significant percentage of 

code that is reused from previous developments.  
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• The reuse model is used to estimate the effort required to integrate reusable or generated 

code. 

•  COCOMO II considers reused code to be of two types. Black-box code is code that can be 

reused without understanding the code or making changes to it.  

• The development effort for black-box code is taken to be zero. Code that has to be adapted to 

integrate it with new code or other reused components is called white-box code. 

• Some development effort is required to reuse this because it has to be understood and 

modified before it can work correctly in the system.  

• The COCOMO II reuse model includes a separate model to 

• estimate the costs associated with this generated code. 

• For cede that IS, automatically generated, the model estimates the number of person months 

required to integrate this code. The formula for effort estimation is:  

• PM Auto=(ASLOC x AT/100) / ATPROD / / Estimate for generated code 

• AT is the percentage of adapted code that is automatically generated and ATPROD is the 

productivity of engineers m integrating such code.  

• Boehm (2000)  have measured ATPROD to be about 2,400 source statements per month. 

Therefore. if there is a total of 20,000 lines of white-box reused code in a system and 30% of 

this is automatically generated, then the effort required to integrate this generated code is: 

• (20,000 x 30/100) / 2400 =2.5 person months //Generated code example  

• The other component of the reuse model is used when a system includes some new code and 

some reused white-box components that have to be integrated.  

• In this case, the reuse model does not compute the effort -directly. 

• Rather, based on the number of lines of code that are reused, it calculates a figure that 

represents the equivalent number of lines of new code. 
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• Therefore, if 30,000 lines of code are to be reused, the new equivalent size estimate might be 

6,000.  

• Essentially, reusing 30,000 lines of code is taken to be equivalent to writing 6,000 lines of 

new code. 

•  This calculated figure is added to the number of lines of new code to be developed in the 

COCOMO II post-architecture model. 

• The estimates in this reuse model are: 

• ASLOC-the number of lines of code in the components that have to be adapted; 

• ESLOC-the equivalent number of lines of new source code 

• The formula used to compute ESLOC takes into account the effort required for software 

understanding, for making changes to the reused code and for making changes to the system 

to integrate that code. 

•  It also takes into account the amount of code that is automatically generated where the 

development effort is calculated, as explained earlier in this section. 

• The following formula is used to calculate the number of equivalent lines of source code: 

  ESLOC=ASLOC x  (1-AT/100) x AAM 

• ASLOC is reduced according to the percentage of automatically generated code. 

• AAM is the Adaptation Adjustment Multiplier, which takes into account the effort required 

to reuse code  

• Simplistically, AAM is the sum of three components: 

1. An adaptation component (referred to as AAF) that represents the costs of making changes to 

the reused code. This includes components that take into account design, code and integration 

changes. 

2. An understanding component (referred to as SU) that represents the costs of understanding the 

code to be reused and the familiarity of the engineer with the code. SU ranges from 50 for complex 

unstructured code to 10 for well-written, 
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object-oriented code.  

3. An assessment factor (referred to as AA) that represents the costs of reuse decision making. That 

is, some analysis is always required to decide whether code can be reused, and this is included in 

the cost as AA. AA varies from 0 to 8depending  

on the amount of analysis effort required. 

The reuse model is a nonlinear model. 

 

4) The post-architecture level 

• The post-architecture model is the most detailed of the COCOMO II models. It is used one e 

an initial architectural design for the system is available so the sub-system  structure is 

known. 

• The estimates produced at the  post-architecture level are based on the same basic formula 

(PM == A X SizeB X M) used in the early design estimates.  

• However, the size estimate for the software should be more accurate by this stage in the 

estimation process.  

• In addition, a much more extensive set of product, process and organizational attributes (17 

rather than 7) are used to refine the initial effort computation.  

• It is possible to use more attributes at this stage because you have more information about 

the software to be  developed and the development process.  

• The estimate of the code size in the post-architecture model is computed using three 

components: 

• I. An estimate of the total number of lines of new code to be developed  

• 2. An estimate of the equivalent number of source lines of code (ESLOC) calculated using 

the reuse model 

• 3. An estimate of the number of lines of code that have to be modified because of changes to 

the requirements. 
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• These three estimates are added to give the total code size in KSLOC that you use in the 

effort computation formula. The final component in the estimate-the number of lines of 

modified code-reflects the fact that software requirements always change. 

• The exponent term (B) in the effort computation formula had three possible values in 

CDCOMO I. These were related to the levels of project complexity.  

• As projects become more complex, the effects of increasing system size become more 

significant.  

• However, good organizational practices and procedures can control this 'diseconomy of 

scale'. This is recognized in COCOMO II, where the range of values for the exponent B is 

continuous rather than discrete.  

• The exponent is based on five scale factors, as shown in Figure 26.9. These factors are rated 

on a six-point scale from Very low to Extra high (5 to 0). 

•  You should then add the ratings, divide them by 1100 and add the result to 1.01 to get the 

exponent that should be used. 

 

• The organization has recently put a process improvement programe in place and has been 

rated as a Level 2 organization according to the CMM model. 

•  Possible values for the ratings used in exponent calculation are: 

• Precedentedness This is a new project for the organization-rated Low (4) 
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• Development flexibility No client involvement-rated Very high (1) 

• Architecture/risk resolution No risk analysis carried out-rated Very low (5) 

• Team cohesion New team so no information-rated Nominal (3) 

• Process maturity Some process control in place-rated Nominal (3) 

• The sum of these values is 16, so you calculate the exponent by adding 0.16 to 1.01, getting a 

value of 1.17. 

• The attributes (Figure 26.10) that are used to adjust the initial estimates and create multiplier 

M in the post-architecture model fall into four classes: 

1. Product attributes are concerned with required  characteristics of the software product being 

developed. 

2. Computer attributes are constraints imposed on the software by the hardware platform. 

 3. Personnel attributes are multipliers that take the experience and capabilities of the people 

working on the project into account. 

4. Project attributes are concerned with the particular characteristics of the software development 

project. 



246 
 

 

• Figure 26.11 shows how these cost drivers influence effort estimates. 

• In Figure 26.11, I have assigned maximum and minimum values to the key cost  drivers to 

show how they influence the effort estimate. 

•  The values taken are those from the COCOMO II reference manual (Boehm, 1997).  

• You can see that high values for the cost drivers lead to an effort estimate that is more than 

three times the initial estimate, whereas low values reduce the estimate to about one third of 

the original. 

• This formulae proposed by the developers of the COCOMO II model reflects their 

experience and data, but it is an extremely complex model to understand and use.  

• There are many attributes and considerable scope for uncertainty in estimating their values. 

• Very large organizations may have the resources to employ a cost-modeling expert to adapt 

and use the COCOMO II models. 
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2) Algorithmic cost models in project planning 

• One of the most valuable uses of algorithmic cost modeling is to compare different ways of 

investing money to reduce project costs. 

• The algorithmic code model helps you assess the risks of each option. Applying the cost 

model reveals the financial exposure that is associated with different management decisions. 

• Consider an embedded system to control an experiment that is to be launched into space. 

Space-borne experiments have to be very reliable and are subject to stringent weight limits. 

•  The number of chips on a circuit board may have to be minimized. 

• In terms of the COCOMO model, the multipliers based on computer constraints and 

reliability are greater than 1. 

• There are three components to be taken into account in costing this project: 

1. The cost of the target hardware to execute the system 

2. The cost of the platform (computer plus software) to develop the system 

3. The cost of the effort required to develop the software.  
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• Figure 26.13 shows some possible options for this project. These include spending more on 

target hardware to reduce software costs or investing in better development tools. 

• Additional hardware costs may be acceptable because the system is a specialized system that 

does not have to be mass-produced.  

• Figure 26.13 shows the hardware, software and total costs for the options A-F shown in 

Figure 26.12.  

• Applying the COCOMO II model without cost drivers predicts an effort of 45 person-months 

to develop an embedded software system for this application. The average cost for one 

person-month of effort is $15,000. 

• The relevant multipliers are based on storage and execution time constraints (TIME and 

STOR), the availability of tool support (cross-compilers, etc.) for the development system 

(TOOL), and development team s experience platform experience (LTEX). 

•  In all options, the reliability multiplier (RELY) is 1.39, indicating that significant extra 

effort is needed to develop a reliable system. 

• The software cost (SC) is computed as follows: 

SC=Effort estimate X RELY X TIME X STOR X TOOL X EXP X$15,000 

• Option A represents the cost of building the system with existing support and staff. It 

represents a baseline for comparison.  

• All other options involve either more hardware expenditure or the recruitment (with 

associated costs and risks) of new staff.  

• Option B shows that upgrading hardware does not necessarily reduce costs.  

• The staff lack experience with the new hardware so the increase in the experience multiplier 

negates the reduction in the STOR and TIME multipliers.  

• It is actually more cost-effective to upgrade memory rather than the whole computer 

configuration.  
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Figure 26.13 Cost of Management options  

 

 

• Option D appears to offer the lowest costs for all basic estimates. No additional hardware 

expenditure is involved but new staff must be recruited onto the project.  

• If these are already available in the company, this is probably the best option to choose. 

•  If not, they must be recruited externally, which involves significant costs and risks.  
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• These may mean that the cost advantages of this option are much less significant than 

suggested by Figure 26.13. 

•  Option C offers a saving of almost $50,000 with virtually no associated risk. Conservative 

project managers would probably select this option rather than the riskier Option D. 

5.2 (5) Project Duration and Staffing 

• To develop a software system and the overall project costs., project managers must also 

estimate how long the software will take to develop and when staff will be needed to work 

on the project. 

•  The development Line for the project is called the project schedule The relationship between 

the number of staff working on a project, the total effort required and the development time 

is not linear.  

• As the number of staff increases, more effort may be needed. The reason for this is that 

people spend more time communicating and defining interfaces between the parts of the 

system developed by other people.  

• Doubling the number of staff (for example) therefore does not mean that the duration of the 

project will be halved. 

• The COCOMO model includes a formula to estimate the calendar time (TDEV) required to 

complete a project.  

• The time computation formula is the same for all COCOMO levels: 

• TDEV= 3 X (PM) (0.33+0.2*(B-1.01)) 

• PM is 1.he effort computation and 8 is the exponent computed, as discussed above (8 is 1for 

the early prototyping model). This computation predicts the nominal schedule for the project. 

• However the predicted project schedule and the schedule required by the project plan are not 

necessarily the same thing. 

•  The planned schedule may be shorter or longer than the nominal predicted schedule. 
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• However, there is obviously a limit to the extent of schedule changes, and the COCOMO II 

model predicts this: 

•       TDEV= 3 X (PM) (0.33+0.2*(B-1.01))X SCED Percentage / 100 

• SCED Percentage is the percentage increase or decrease in the nominal schedule. 

• If the predicted figure then differs significantly from the planned schedule, it suggests that 

there is a high risk of problems delivering the software as planned.  

• To illustrate the COCOMO development schedule computation, assume that 60 months 01 

effort are estimated to develop a software system (Option C in Figure 26.12).  

• Assume that the value of exponent B is 1.17. From the schedule equation, the time required 

to complete the project is:  

•        TDEV= 3 X (60) 0.36= 13 months 

• In this case, there is no schedule compression or expansion, so the last term in the formula 

has no effect on the computation. 

• An interesting implication of the COCOMO model is that the time required to complete the 

project is a function of the total effort required for the project. 

•  It does not depend on the number of software engineers working on the project.  

 


