
1

ANNAMACHARYA UNIVERSITY, RAJAMPET
(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016

RAJAMPET, Annamayya District, AP, INDIA

Course : Software Engineering

Course Code : 24FMCA23T

Branch : MCA

Prepared by : P. Kavitha

Designation : Assistant Professor

Department : MCA

2

ANNAMACHARYA UNIVERSITY, RAJAMPET
(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016

RAJAMPET, Annamayya District, AP, INDIA

Title of the Course : Software Engineering

Category : PC

Course Code : 24FMCA23T

Branch : MCA

Semester : II Semester

 Lecture Hours Tutorial Hours Practice Hours Credits

 3 0 0 3

COURSE OBJECTIVES:

 To Apply software engineering principles to real world scenarios and projects.

 To Enable students to understand and document both functional and non-functional requirements

various system modeling techniques effectively.

 To Develop skills in making critical architectural decisions that influence the overall system

structure.

 To Apply verification, validation, and testing concepts to real-world software projects through

hands-on exercises and projects.

 To Apply project management, planning, scheduling, risk management, and cost estimation concepts

to real-world software projects.

 COURSE OUTCOMES:

 The Student will be able to

 1. Comprehend the basic terminologies associated with software engineering.

 2. Describe various process models for developing software.

 3. Apply fundamental design concepts to create software solutions that are modular, scalable, and

maintainable.

 4. Apply various testing strategies for software quality assurance.

 5. Apply project management and software cost estimation skills to real-world scenarios, considering

industry best practices.

UNIT I 10

SOFTWARE, SOFTWARE ENGINEERING, AND PROCESS: The nature of Software, The unique

nature of WebApps, Software engineering- A layered technology, General principles of software engineering

practice, Software myths, Agile development: What is an Agile Process?, Capability Maturity Model

Integration (CMMI).

UNIT II 12

PROCESS MODELS: A Generic process model (framework), Process assessment and improvement,

Prescriptive process models: The waterfall model, Incremental process models, Evolutionary process models,

The Unified process, SOFTWARE REQUIREMENTS: Functional and Non-functional requirements; User

requirements, The software requirements document, Requirements Engineering Processes: Requirements

elicitation and analysis, Requirements validation Requirements management, System Modeling: Context

models, Behavioral models, Data models, Object models, Structured Methods.

3

UNIT III 8

DESIGN CONCEPTS: Design Concepts, ARCHITECTURAL DESIGN: Architectural design decisions,

System organization, Modular decomposition styles.

OBJECT-ORIENTED DESIGN: Objects and Object Classes, An Object-Oriented design process, Design

Evolution.

UNIT IV 10

VERIFICATION AND VALIDATION: Planning verification and validation, Software inspections,

Automated static analysis, Verification and formal methods.

SOFTWARE TESTING: System testing, Component testing, Test case design, Test automation, Quality

management: Software Quality Assurance.

UNIT V 8

PROJECT MANAGEMENT: Management activities, Project planning, Project scheduling, Risk

management. SOFTWARE COST ESTIMATION: Software Productivity, Estimation techniques- The

COCOMO II Model, Project duration and staffing.

PRESCRIBED TEXTBOOKS:

1. Roger S. Pressman. Software Engineering - A Practitioners approach, McGraw-Hill, 9th Edition

2020.

2. Ian Sommerville, Software Engineering, Pearson Education Publications, 10th Edition 2017.

REFERENCE BOOKS:

1. Shari Lawrence Pfleeger, Joanne M. Atlee, Software Engineering Theory and Practice, Pearson

Education, 4th Edition 2010.

2. Waman S Jawadekar. Software Engineering Principles and Practice, Tata McGraw Hill, 2012.

CO-PO MAPPING:

Course Outcomes

F
o
u
n
d
at

io
n

K
n
o
w

le
d
g
e

P
ro

b
le

m

A
n
al

y
si

s

D
ev

el
o
p
m

e

n
t

o
f

S
o
lu

ti
o
n
s

M
o
d

er
n

T
o
o
l

U
sa

g
e

In
d
iv

id
u
al

an
d

T
ea

m
w

o
rk

P
ro

je
ct

M
an

ag
em

en

t
an

d

F
in

an
ce

E
th

ic
s

L
if

e-
lo

n
g

L
ea

rn
in

g

24FMCA23T.1 2 2 1 - - - - -

24FMCA23T.2 2 2 1 - - - - -

24FMCA23T.3 3 2 1 - - - - -

24FMCA23T.4 3 2 1 - - - - -

24FMCA23T.5 3 2 1 - - - - -

4

 UNIT-I

SOFTWARE, SOFTWARE ENGINEERING, AND PROCESS: The nature of Software, The

unique nature of WebApps, Software engineering- A layered technology, General principles of

software engineering practice, Software myths, Agile development: What is an Agile Process?,

Capability Maturity Model Integration (CMMI).

1.1 The Nature of Software

• Today, software takes on a dual role. It is a product, and at the same time, the vehicle for

delivering a product .Whether it resides within a mobile phone or operates inside a

mainframe computer, software is an information transformer—producing, managing,

acquiring, modifying, displaying, or transmitting information that can be as simple as a

single bit or as complex as a multimedia presentation derived from data acquired from

dozens of independent sources.

• As the vehicle is used to deliver the product, software acts as the basis for the control of the

computer (operating systems), the communication of information (networks), and the

creation and control of other programs (software tools and environments). Software delivers

the most important product of our time—information.

• The role of computer software has undergone significant change over the last half-century.

The questions that were asked of the lone programmer are the same questions that are asked

when modern computer-based systems are built:

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can’t we find all errors before we give the software to our customers?

• Why do we spend so much time and effort maintaining existing

programs?

• Why do we continue to have difficulty in measuring progress as software is being developed

and maintained?

5

• 1.1.1 Defining Software

• 1.1.2 Software Application Domains

• 1.1.3 Legacy Software

1.1.1 Defining Software

• Software is:

(1) instructions (computer programs) that when executed provide desired features,

function, and performance;

(2) data structures that enable the programs to adequately manipulate information, and

(3) descriptive information in both hard copy and virtual forms that describes the

operation and use of the programs.

• It’s important to examine the characteristics of software that make it different from

other things that human beings build.

• Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.

• Although some similarities exist between software development and hardware

manufacturing, the two activities are fundamentally different.

• In both activities, high quality is achieved through good design, but the manufacturing

phase for hardware can introduce quality problems that are non-existent (or easily

corrected) for software.

• Both activities are dependent on people, but the relationship between people applied and

work accomplished is entirely different

• Both activities require the construction of a “product,” but the approaches are different.

Software costs are concentrated in engineering. This means that software projects cannot be

managed as if they were manufacturing projects.

6

2. Software doesn’t “wear out.”

• Figure 1.1 depicts failure rate as a function of time for hardware. The relationship, often

called the “bathtub curve,” indicates that hardware exhibits relatively high failure rates early

in its life ,defects are corrected and the failure rate drops to a steady-state level for some

period of time.

• As time passes, however, the failure rate rises again as hardware components suffer from

the cumulative effects of dust, vibration, abuse, temperature extremes, and many other

environmental maladies. Stated simply, the hardware begins to wear out.

• Software is not susceptible to the environmental maladies that cause hardware to wear out. In

theory, therefore, the failure rate curve for software should take the form of the “idealized

curve” shown in Figure 1.2.

• Software is not susceptible to the environmental maladies that cause hardware to wear out. In

theory, therefore, the failure rate curve for software should take the form of the “idealized

curve” shown in Figure 1.2.

7

• However, these are corrected and the curve flattens as shown. The idealized

curve is a gross over-simplification of actual failure models for software.

However, the implication is clear—software doesn’t wear out. But it does

deteriorate!

• This seeming contradiction can best be explained by considering the actual curve in Figure

1.2. During its life, software will undergo change. As changes are made, it is likely that

errors will be introduced, causing the failure rate curve to spike as shown in the “actual

curve” (Figure 1.2).

• Before the curve can return to the original steady-state failure rate, another change is

requested, causing the curve to spike again. Slowly, the minimum failure rate level begins to

rise—the software is deteriorating due to change.

• Another aspect of wear illustrates the difference between hardware and software. When a

hardware component wears out, it is replaced by a spare part. There are no software spare

parts.

• Every software failure indicates an error in design or in the process through which design

was translated into machine executable code. Therefore, the software maintenance tasks that

accommodate requests for change involve considerably more complexity than hardware

maintenance.

8

2. Although the industry is moving toward component-based construction, most software

continues to be custom built.

 As an engineering discipline evolves, a collection of standard design components is created.

 The reusable components have been created so that the engineer can concentrate on the

truly innovative elements of a design, that is, the parts of the design that represent

something new.

 In the hardware world, component reuse is a natural part of the engineering process. In the

software world, it is something that has only begun to be achieved on a broad scale.

 A software component should be designed and implemented so that it can be reused in many

different programs.

 Modern reusable components encapsulate both data and the processing that is applied to the

data, enabling the software engineer to create new applications from reusable parts.

1.1.2 Software Application Domains

Today, seven broad categories of computer software present continuing challenges for software

engineers:

• System Software

• Application Software

• Engineering/Scientific Software

• Embedded Software

• Product-line Software

• Web Applications

• Artificial Intelligence Software

• Open-world Computing

• NetSourcing

• Open Source

• System Software—a collection of programs written to service other programs.

9

• Some system software (e.g., compilers, editors, and file management utilities) processes

complex, but determinate, information structures.

• Other systems applications (e.g., operating system components, drivers, networking

software, telecommunications processors) process largely indeterminate data.

• Application software—stand-alone programs that solve a specific business need.

• Applications in this area process business or technical data in a way that facilitates business

operations or management/ technical decision making.

• Engineering/Scientific Software—has been characterized by “number crunching”

algorithms.

• Applications range from astronomy (study of space) to volcanology(study of geology,

geophysics, geochemistry), from automotive stress analysis to space shuttle orbital

dynamics, and from molecular biology to automated manufacturing.

• Computer-aided design, system simulation, and other interactive applications have begun to

take on real-time and even system software characteristics.

• Embedded software—resides within a product or system and is used to implement and

control features and functions for the end user and for the system itself.

• Embedded software can perform limited and esoteric functions (e.g., key pad control for a

microwave oven) or provide significant function and control capability.

• Product-line Software—

• designed to provide a specific capability for use by many different customers. Product-line

software can focus on a limited and esoteric marketplace (e.g., inventory control products)

or address mass consumer markets (e.g., word processing, spreadsheets, computer graphics,

multimedia, entertainment, database management, and personal and business financial

applications).

10

• Web Applications—called “WebApps,” this network-centric software category spans a

wide array of applications. In their simplest form, WebApps can be little more than a set of

linked hypertext files that present information using text and limited graphics.

• However, as Web 2.0 emerges, WebApps are evolving into sophisticated computing

environments that not only provide stand-alone features, computing functions, and content

to the end user, but also are integrated with corporate databases and business applications.

• Artificial Intelligence Software—makes use of non-numerical algorithms to solve complex

problems that are not amenable to computation or straightforward analysis.

• Applications within this area include robotics, expert systems, pattern recognition (image

and voice), artificial neural networks, theorem proving, and game playing.

• Open-World Computing—

• The rapid growth of wireless networking may soon lead to true pervasive, distributed

computing.

• The challenge for software engineers will be to develop systems and application software

that will allow mobile devices, personal computers, and enterprise systems to communicate

across vast networks.

• NetSourcing—

• The World Wide Web is rapidly becoming a computing engine as well as a content provider.

• The challenge for software engineers is to architect simple (e.g., personal financial planning)

and sophisticated applications that provide a benefit to targeted end-user markets

worldwide.

• Open Source—

• A growing trend that results in distribution of source code for systems applications (e.g.,

operating systems, database, and development environments) so that many people can

contribute to its development.

11

• The challenge for software engineers is to build source code that is self-descriptive, but more

importantly, to develop techniques that will enable both customers and developers to know

what changes have been made and how those changes manifest themselves within the

software.

1.1.3 Legacy Software

• Hundreds of thousands of computer programs fall into one of the seven broad application

domains discussed in the preceding subsection.

• Some of these are state of- the-art software—just released to individuals, industry, and

government.

• But other programs are older, in some cases much older. These older programs—often

referred to as legacy software—have been the focus of continuous attention and concern

since the 1960s.

• Dayani-Fard and his colleagues describe legacy software in the following way:

• Legacy software systems . . . were developed decades ago and have been continually

modified to meet changes in business requirements and computing platforms.

• Unfortunately, there is sometimes one additional characteristic that is present in legacy

software—poor quality.

• The only reasonable answer may be: Do nothing, at least until the legacy system must

undergo some significant change.

• If the legacy software meets the needs of its users and runs reliably, it isn’t broken and does

not need to be fixed. However, as time passes, legacy systems often evolve for one or more

of the following reasons:

 • The software must be adapted to meet the needs of new computing environments or

technology.

• The software must be enhanced to implement new business requirements.

• The software must be extended to make it interoperable with other more modern systems or

databases.

 • The software must be re-architected to make it viable within a network environment. When

12

these modes of evolution occur, a legacy system must be re-engineered so that it remains viable

into the future.

1.2 The Unique Nature of WebApps

• Today, WebApps have evolved into sophisticated computing tools that not only provide

stand-alone function to the end user, but also have been integrated with corporate databases

and business applications.

• WebApps are one of a number of distinct software categories. And yet, it can be argued that

WebApps are different.

• Powell [Pow98] suggests that Web-based systems and applications “involve a mixture

between print publishing and software development, between marketing and computing,

between internal communications and external relations, and between art and technology.”

• The following attributes are encountered in the

• Network intensiveness. A WebApp resides on a network and must serve the needs of a diverse

community of clients.

• The network may enable worldwide access and communication (i.e., the Internet) or more

limited access and communication (e.g., a corporate Intranet).

• Concurrency. A large number of users may access the WebApp at one time. In many cases, the

patterns of usage among end users will vary greatly.

• Unpredictable load. The number of users of the WebApp may vary by orders of magnitude

from day to day. One hundred users may show up on Monday; 10,000 may use the system on

Thursday.

• Performance. If a WebApp user must wait too long (for access, for server-side processing, for

client-side formatting and display), he or she may decide to go elsewhere.

• Availability. Although expectation of 100 percent availability is unreasonable, users of popular

WebApps often demand access on a 24/7/365 basis. Users in Australia or Asia might demand

access during times when traditional domestic software applications in North America might be

taken off-line for maintenance.

13

• Data driven. The primary function of many WebApps is to use hypermedia to present text,

graphics, audio, and video content to the end user. In addition, WebApps are commonly used to

access information that exists on databases that are not an integral part of the Web-based

environment (e.g., e-commerce or financial applications).

• Content sensitive. The quality and aesthetic nature of content remains an important

determinant of the quality of a WebApp.

• Continuous evolution. Unlike conventional application software that evolves over a series

of planned, chronologically spaced releases, Web applications evolve continuously.

• It is not unusual for some WebApps (specifically, their content) to be updated on a minute-

by-minute schedule or for content to be independently computed for each request.

• Immediacy. Although immediacy—the compelling need to get software to market quickly—is a

characteristic of many application domains, WebApps often exhibit a time-to-market that can be

a matter of a few days or weeks.7

• Security. Because WebApps are available via network access, it is difficult,if not impossible, to

limit the population of end users who may access the application.

In order to protect sensitive content and provide secure modesof data transmission, strong

security measures must be implemented throughout the infrastructure that supports a WebApp

and within the application itself.

• Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel. When an

application has been designed to market or sell products or ideas, aesthetics may have as much

to do with success as technical design.

• It can be argued that other application categories discussed in Section 1.1.2 can exhibit some

of the attributes noted. However, WebApps almost always exhibit all of them.

1.3 Software Engineering

• Software has become deeply embedded in virtually every aspect of our lives, It follows that a

concerted effort should be made to understand the problem before a software solution is

developed.

14

• The information technology requirements demanded by individuals, businesses, and

governments grow increasing complex with each passing year. Large teams of people now

create computer programs that were once built by a single individual. It follows that design

becomes a pivotal activity.

• Individuals, businesses, and governments increasingly rely on software for strategic and

tactical decision making as well as day-to-day operations and control. If the software fails,

people and major enterprises can experience anything from minor inconvenience to catastrophic

failures. It follows that software should exhibit high quality.

• • As the perceived value of a specific application grows, the likelihood is that its user base and

longevity will also grow. As its user base and time-in-use increase, demands for adaptation and

enhancement will also grow. It follows that software should be maintainable.

• These simple realities lead to one conclusion: software in all of its forms and across all of its

application domains should be engineered. And that leads us to the topic of this book—

software engineering.

• The IEEE (Institute of Electrical and Electronics Engineers,) has developed a more

comprehensive definition when it states:

• Software Engineering: (1) The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the application

of engineering to software. (2) The study of approaches as in (1).

• And yet, a “systematic, disciplined, and quantifiable” approach applied by one software team

may be burdensome to another.

• Software engineering is a layered technology. Referring to Figure 1.3, any engineering

approach (including software engineering) must rest on an organizational commitment to

quality.

• Total quality management, Six Sigma, and similar philosophies foster a continuous process

improvement culture, and it is this culture that ultimately leads to the development of

increasingly more effective approaches to software engineering. The bedrock that supports

software engineering is a quality focus.

15

• The foundation for software engineering is the process layer. The software engineering

process is the glue that holds the technology layers together and enables rational and timely

development of computer software

Process defines a framework that must be established for effective delivery of software

engineering technology. The software process forms the basis for management control of

software projects and establishes the context in which technical methods are applied, work

products (models, documents, data, reports, forms, etc.) are produced, milestones are

established, quality is ensured, and change is properly managed.

• Software engineering methods provide the technical how-to’s for building software. Methods

encompass a broad array of tasks that include communication, requirements analysis, design

modeling, program construction, testing, and support.

• Software engineering tools provide automated or semi-automated support for the process and

the methods. When tools are integrated so that information created by one tool can be used

by another, a system for the support of software development, called computer-aided

software engineering, is established.

1.4 The Software Process

• A process is a collection of activities, actions, and tasks that are performed when some work

product is to be created.

• An activity strives to achieve a broad objective

(e.g., communication with stakeholders) and is applied regardless of the application domain, size

16

of the project, complexity of the effort, or degree of rigor with which software engineering is to

be applied.

 An action (e.g., architectural design) encompasses a set of tasks that produce a major work

product (e.g., an architectural design model).

 A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces

a tangible outcome.

• In the context of software engineering, a process is not a rigid prescription for how to build

computer software. Rather, it is an adaptable approach that enables the people doing the

work (the software team) to pick and choose the appropriate set of work actions and tasks.

The intent is always to deliver software in a timely manner and with sufficient quality to

satisfy those who have sponsored its creation and those who will use it.

• A process framework establishes the foundation for a complete software engineering process

by identifying a small number of framework activities that are applicable to all software

projects, regardless of their size or complexity. In addition, the process framework

encompasses a set of umbrella activities that are applicable across the entire software

process. A generic process framework for software engineering encompasses five activities:

• Communication.

• Planning

• Modeling.

• Construction

• Deployment

• These five generic framework activities can be used during the development of small, simple

programs, the creation of large Web applications, and for the engineering of large, complex

computer-based systems.

• For many software projects, framework activities are applied iteratively as a project

progresses. That is, communication, planning, modeling, construction,and deployment

are applied repeatedly through a number of project iterations.

17

• Each project iteration produces a software increment that provides stakeholders with a subset

of overall software features and functionality. As each increment is produced, the software

becomes more and more complete. Software engineering process framework activities are

complemented by a number of umbrella activities.

• Typical umbrella activities include:

• Software project tracking and control—allows the software team to assess progress

against the project plan and take any necessary action to maintain the schedule.

• Risk management—assesses risks that may affect the outcome of the project or the quality

of the product.

• Software quality assurance—defines and conducts the activities required to ensure

software quality.

• Technical reviews—assesses software engineering work products in an effort to uncover

and remove errors before they are propagated to the next activity.

• Measurement—defines and collects process, project, and product measures that assist the

team in delivering software that meets stakeholders’ needs; can be used in conjunction with

all other framework and umbrella activities.

• Software configuration management—manages the effects of change throughout the

software process.

• Reusability management—defines criteria for work product reuse (including software

components) and establishes mechanisms to achieve reusable components.

• Work product preparation and production—encompasses the activities required to create

work products such as models, documents, logs, forms, and lists.

• Prescriptive process models

 Stress detailed definition, identification, and application of process activities and tasks.

Their intent is to improve system quality, make projects more manageable, make delivery dates

and costs more predictable, and guide teams of software engineers as they perform the work

18

required to build a system.

• Agile process models emphasize project “agility” and follow a set of principles that lead to a

more informal (but, proponents argue, no less effective) approach to software process. These

process models are generally characterized as “agile” because they emphasize

maneuverability and adaptability.

1.5 Software Engineering Practice

1.5.1 The Essence of Practice

In a classic book, How to Solve It, written before modern computers existed, George Polya

[Pol45] outlined the essence of problem solving, and consequently, the essence of software

engineering practice:

 1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality assurance).

• Unfortunately, understanding isn’t always that easy. It’s worth spending a little time

answering a few simple questions:

• Who has a stake in the solution to the problem? That is, who are the stakeholders?

• What are the unknowns? What data, functions, and features are required to properly solve the

problem?

• Can the problem be compartmentalized? Is it possible to represent smaller problems that may

be easier to understand?

• Can the problem be represented graphically? Can an analysis model be created?

• Plan the solution. Now you understand the problem (or so you think) and you can’t wait to

begin coding. Before you do, slow down just a bit and do a little design:

• Have you seen similar problems before? Are there patterns that are recognizable in a potential

solution? Is there existing software that implements the data, functions, and features that are

required?

• Has a similar problem been solved? If so, are elements of the solution reusable?

• Can subproblems be defined? If so, are solutions readily apparent for the subproblems?

• Can you represent a solution in a manner that leads to effective implementation?

19

• Can a design model be created?

• Carry out the plan. The design you’ve created serves as a road map for the system you want to

build. There may be unexpected detours, and it’s possible that you’ll discover an even better

route as you go, but the “plan” will allow you to proceed without getting lost.

• Does the solution conform to the plan? Is source code traceable to the design model?

• Is each component part of the solution provably correct? Have the design and code been

reviewed, or better, have correctness proofs been applied to the algorithm?

• Examine the result. You can’t be sure that your solution is perfect, but you can be sure that

you’ve designed a sufficient number of tests to uncover as many errors as possible.

 • Is it possible to test each component part of the solution? Has a reasonable testing strategy

been implemented?

 • Does the solution produce results that conform to the data, functions, and features that are

required? Has the software been validated against all stakeholder requirements?

• The dictionary defines the word principle as “an important underlying law or assumption

required in a system of thought.” Regardless of their level of focus, principles help you

establish a mind-set for solid software engineering practice. They are important for that

reason.

• David Hooker has proposed seven principles that focus on software engineering practice as

a whole

• The First Principle: The Reason It All Exists

• A software system exists for one reason: to provide value to its users. All decisions should

be made with this in mind, before determining the hardware platforms or development

processes, ask yourself questions such as: “Does this add real value to the system?” If the

answer is “no,” don’t do it. All other principles support this one.

• The Second Principle: KISS (Keep It Simple, Stupid!)

There are many factors to consider in any design effort. All design should be as simple as

possible, but no simpler. Simple also does not mean “quick and dirty.” In fact, it often takes a lot

20

of thought and work over multiple iterations to simplify.

• The Third Principle: Maintain the Vision

• A clear vision is essential to the success of a software project. Without one, a project almost

unfailingly ends up being “of two [or more] minds” about itself.

• Having an empowered architect who can hold the vision and enforce compliance helps

ensure a very successful software project.

• The Fourth Principle: What You Produce, Others Will Consume

• In some way or other, someone else will use, maintain, document, or otherwise depend on

being able to understand your system.

• So, always specify, design, and implement knowing someone else will have to understand

what you are doing. Design, keeping the implementers in mind.

• The Fifth Principle: Be Open to the Future

• A system with a long lifetime has more value. In today’s computing environments, where

specifications change on a moment’s notice and hardware platforms are obsolete just a few

months old, software lifetimes are typically measured in months instead of years.

• Never design yourself into a corner. Always ask “what if,” and prepare for all possible

answers by creating systems that solve the general problem, not just the specific

• The Sixth Principle: Plan Ahead for Reuse

• Reuse saves time and effort. There are many techniques to realize reuse at every level of the

system development process. . . . Planning ahead for reuse reduces the cost and increases

the value of both the reusable components and the systems into which they are incorporated.

 The Seventh principle: Think!

This last principle is probably the most overlooked. Placing clear, complete thought before

action almost always produces better results. When you think about something, you are more

likely to do it right. You also gain knowledge about how to do it right again. If you do think

about something and still do it wrong, it becomes a valuable experience. A side effect of

21

thinking is learning to recognize when you don’t know something, at which point you can

research the answer.

1.6 Software Myths (Common Beliefs)

• Software myths—erroneous beliefs about software and the process that is used to build it—can

be traced to the earliest days of computing. Myths have a number of attributes that make

them insidious (something unpleasant or dangerous.)

• Today, most knowledgeable software engineering professionals recognize myths for what

they are—misleading attitudes that have caused serious problems for managers and

practitioners alike.

• Management myths.

• Customer myths.

• Practitioner’s myths.

• Management myths

• Myth: We already have a book that’s full of standards and procedures for building software.

Won’t that provide my people with everything they need to know?

 Reality: The book of standards may very well exist, but is it used? Are software practitioners

aware of its existence? Does it reflect modern software engineering practice? Is it complete? Is it

adaptable? Is it streamlined to improve time-to-delivery while still maintaining a focus on

quality? In many cases, the answer to all of these questions is “no.”

• Myth: If we get behind schedule, we can add more programmers and catch up (sometimes

called the “Mongolian horde” concept).

 Reality: Software development is not a mechanistic process like manufacturing. In the words of

Brooks [Bro95]: “adding people to a late software project makes it later.” At first, this statement

may seem counterintuitive. However, as new people are added, people who were working must

spend time educating the newcomers, thereby reducing the amount of time spent on productive

https://dictionary.cambridge.org/dictionary/english/unpleasant
https://dictionary.cambridge.org/dictionary/english/dangerous

22

development effort. People can be added but only in a planned and well coordinated manner.

• Myth: If I decide to outsource the software project to a third party, I can just relax and let

that firm build it.

• Reality: If an organization does not understand how to manage and control software projects

internally, it will invariably struggle when it outsources software projects.

• Customer myths

• Myth: A general statement of objectives is sufficient to begin writing

programs—we can fill in the details later.

• Reality: Although a comprehensive and stable statement of requirements is not always

possible, an ambiguous “statement of objectives” is a recipe for disaster. Unambiguous

requirements (usually derived iteratively) are developed only through effective and

continuous communication between customer and developer.

 Myth: Software requirements continually change, but change can be easily

accommodated because software is flexible.

 Reality: It is true that software requirements change, but the impact of change varies with the

time at which it is introduced. When requirements changes are requested early (before design or

code has been started), the cost impact is relatively small.16 However, as time passes, the cost

impact grows rapidly—resources have been committed, a design framework has been

established, and change can cause upheaval that requires additional resources and major design

modification.

• Practitioner’s myths

• Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’ll take you

to get done.” Industry data indicate that between 60 and 80 percent of all effort expended on

software will be expended after it is delivered to the customer for the first time.

• Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from

23

the inception of a project—the technical review. Software reviews (described in Chapter 15) are

a “quality filter” that have been found to be more effective than testing for finding certain

classes of software defects.

• Myth: The only deliverable work product for a successful project is the working program.

 Reality: A working program is only one part of a software configuration that includes many

elements. A variety of work products (e.g., models, documents, plans) provide a foundation for

successful engineering and, more important, guidance for software support.

 Myth: Software engineering will make us create voluminous (capacious,spacious) and

unnecessary documentation and will invariably slow us down.

 Reality: Software engineering is not about creating documents. It is about creating a quality

product. Better quality leads to reduced rework. And reduced rework results in faster delivery

times. Many software professionals recognize the fallacy of the myths just described.

Regrettably, habitual attitudes and methods foster poor management and technical practices,

even when reality dictates a better approach. Recognition of software realities is the first step

toward formulation of practical solutions for software engineering.

1.7 What is Agility?

1.7.1 Agility in context of software engineering

• Agility means effective (rapid and adaptive) response to change, effective communication

among all stockholder.

• Drawing the customer onto team and organizing a team so that it is in control of work

performed. -The Agile process, light-weight methods are People-based rather than plan-

based methods.

• The agile process forces the development team to focus on software itself rather than design

and documentation.

• The agile process believes in iterative method.

• The aim of agile process is to deliver the working model of software quickly to the customer

For example: Extreme programming is the best known of agile process.

24

An agile team recognizes that software is developed by individuals working in teams and that

the skills of these people, their ability to collaborate is at the core for the success of the project.

Agility can be applied to any software process

1.7.2 Agility And The Cost Of Change

• The conventional wisdom in software development (supported by decades of experience) is

that the cost of change increases nonlinearly as a project progresses

• (Figure 3.1, solid black curve). It is relatively easy to accommodate a change when a

software team is gathering requirements (early in a project). A usage scenario might have to

be modified, a list of functions may be extended, or a written specification can be edited. The

costs of doing this work are minimal, and the time required will not adversely affect the

outcome of the project.

• Proponents of agility argue that a well-designed agile process “flattens” the cost of change

curve (Figure 3.1, shaded, solid curve), allowing a software team to accommodate changes

late in a software project without dramatic cost and time impact.

1.7.3 What is Agile Process?

• Any agile software process is characterized in a manner that addresses a number of key

assumptions about the majority of software projects:

25

• 1. It is difficult to predict in advance which software requirements will persist and which will

change. It is equally difficult to predict how customer priorities will change as the project

proceeds.

• 2. For many types of software, design and construction are interleaved. That is, both activities

should be performed in tandem so that design models are proven as they are created. It is

difficult to predict how much design is necessary before construction is used to prove the

design.

• 3. Analysis, design, construction, and testing are not as predictable (from a planning point of

view) as we might like.

Given these three assumptions, an important question arises: How do we create a process that

can manage unpredictability? The answer, as I have already noted, lies in process adaptability

(to rapidly changing project and technical conditions). An agile process, therefore, must be

adaptable.

• But continual adaptation without forward progress accomplishes little. Therefore an agile

software process must adapt incrementally. To accomplish incremental adaptation, an agile

team requires customer feedback . Hence, an incremental development strategy should be

instituted. Software increments must be delivered in short time periods so that adaptation

keeps pace with change (unpredictability).

• 1.7.3.1 Agility Principles

• The Agile Alliance defines 12 agility principles for those who want to achieve agility:

 1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

 2. Welcome changing requirements, even late in development. Agile processes harness change

for the customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

 4. Business people and developers must work together daily throughout the project.

 5. Build projects around motivated individuals. Give them the environment and support they

26

need, and trust them to get the job done.

 6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

 8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

 9. Continuous attention to technical excellence and good design enhances agility.

 10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self– organizing teams.

 12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

• 1.7.3.2 The Politics of Agile Development

• There is considerable debate (sometimes strident) about the benefits and applicability of

agile software development as opposed to more conventional software engineering

processes. Jim Highsmith [Hig02a] (facetiously) states the extremes when he characterizes

the feeling of the pro-agility camp (“agilists”).

• No one is against agility. The real question is: What is the best way to achieve it? As

important, how do you build software that meets customers’ needs today and exhibits the

quality characteristics that will enable it to be extended and scaled to meet customers’ needs

over the long term?

 There are no absolute answers to either of these questions. Even within the agile school itself,

there are many proposed process models (Section 3.4), each with a subtly different approach to

the agility problem. Within each model there is a set of “ideas” (agilists are loath to call them

“work tasks”) that represent a significant departure from traditional software engineering. And

yet, many agile concepts are simply adaptations of good software engineering concepts. Bottom

line: there is much that can be gained by considering the best of both schools and virtually

nothing to be gained by denigrating either approach.

27

• 1.7.3.3 Human Factors

• Proponents of agile software development take great pains to emphasize the importance of

“people factors.” As Cockburn and Highsmith state, “Agile development focuses on the

talents and skills of individuals, molding the process to specific people and teams.” The key

point in this statement is that the process molds to the needs of the people and team, not the

other way around

• A number of key traits(distinguishing quality or characteristics)

• 1)Competence. In an agile development (as well as software engineering) context,

“competence” encompasses innate talent, specific software-related skills, and overall

knowledge of the process that the team has chosen to apply.

• 2) Common focus. Although members of the agile team may perform different tasks and

bring different skills to the project, all should be focused on one goal—to deliver a working

software increment to the customer within the time promised. To achieve this goal, the team

will also focus on continual adaptations (small and large) that will make the process fit the

needs of the team.

• 3)Collaboration. Software engineering (regardless of process) is about assessing, analyzing,

and using information that is communicated to the software team; creating information that

will help all stakeholders understand the work of the team; and building information

(computer software and relevant databases) that provides business value for the customer. To

accomplish these tasks, team members must collaborate—with one another and all other

stakeholders.

• 4)Decision-making ability. Any good software team (including agile teams) must be

allowed the freedom to control its own destiny. This implies that the team is given

autonomy—decision-making authority for both technical and project issues.

• 5)Fuzzy problem-solving ability. Software managers must recognize that the agile team

will continually have to deal with ambiguity (inexactness) and will continually be buffeted

(strike repeatedly)by change. In some cases, the team must accept the fact that the problem

they are solving today may not be the problem that needs to be solved tomorrow. However,

28

lessons learned from any problem-solving activity (including those that solve the wrong

problem) may be of benefit to the team later in the project.

• 6)Mutual trust and respect. The agile team must become what DeMarco and Lister

[DeM98] call a “jelled” team (Chapter 24). A jelled team exhibits the trust and respect that

are necessary to make them “so strongly knit that the whole is greater than the sum of the

parts.” [DeM98]

• 7)Self-organization. In the context of agile development, self-organization implies three

things:

• the agile team organizes itself for the work to be done,

• the team organizes the process to best accommodate its local environment,

• the team organizes the work schedule to best achieve delivery of the software increment.

• Self-organization has a number of technical benefits, but more importantly, it serves to

improve collaboration and boost team morale. In essence, the team serves as its own

management. Ken Schwaber addresses these issues when he writes: “The team selects how

much work it believes it can perform within the iteration, and the team commits to the work.

• 1.7.3.4 EXTREME PROGRAMMING (XP)

• Extreme Programming (XP), the most widely used approach to agile software development.

• More recently, a variant of XP, called Industrial XP (IXP) has been proposed . IXP refines

XP and targets the agile process specifically for use within large organizations.

• 1.7.3.4.1 XP Values

• Beck defines a set of five values that establish a foundation for all work performed as part of

XP—communication, simplicity, feedback, courage, and respect. Each of these values is

used as a driver for specific XP activities, actions, and tasks.

• In order to achieve effective communication between software engineers and other

stakeholders (e.g., to establish required features and functions for the software), XP

emphasizes close, yet informal (verbal) collaboration between customers and developers.

• To achieve simplicity, XP restricts developers to design only for immediate needs, rather

than consider future needs.

• Feedback is derived from three sources: the implemented software itself, the customer, and

other software team members

29

• Beck argues that strict adherence to certain XP practices demands courage. A better word

might be discipline. Most software teams succumb, arguing that “designing for tomorrow”

will save time and effort in the long run.

• The agile team inculcates respect among it

• members, between other stakeholders and team members, and indirectly, for the software

itself.

• 1.7.3.4.2 The XP Process

• Extreme Programming uses an object-oriented approach (Appendix 2) as its preferred

development paradigm and encompasses a set of rules and practices that

• occur within the context of four framework activities: planning, design, coding, and testing.

Figure 3.2 illustrates the XP process and notes some of the key ideas and tasks that are

associated with each framework activity.

• Planning. The planning activity (also called the planning game) begins with listening—a

requirements gathering activity that enables the technical members of the XP team to

30

understand the business context for the software and to get a broad feel for required output

and major features and functionality.

• Design. XP design rigorously follows the KIS (keep it simple) principle. A simple design is

always preferred over a more complex representation. In addition, the design provides

implementation guidance for a story as it is written—nothing less,

• nothing more. The design of extra functionality (because the developer assumes it will be

required later) is discouraged. XP encourages the use of (Class-responsibility-collaboration)

as an effective mechanism for

 thinking about the software in an object-oriented context.

• XP encourages refactoring—a construction technique that is also a method for design

optimization.

• A central notion in XP is that design occurs both before and after coding commences

• Coding

• A key concept during the coding activity (and one of the most talked about aspects of XP) is

pair programming. XP recommends that two people work together at one computer

workstation to create code for a story.

• This provides a mechanism for real-time problem solving (two heads are often better than

one) and real-time quality assurance (the code is reviewed as it is created). It also keeps the

developers focused on the problem at hand. As pair programmers complete their work, the

code they develop is integrated with the work of others.

• Testing The unit tests that are created should be implemented using a framework that

enables them to be automated. XP acceptance tests, also called customer tests, are specified

by the customer and focus on overall system features and functionality that are visible and

reviewable by the customer.

• 1.7.3.4.3 Industrial XP

• Joshua Kerievsky describes Industrial Extreme Programming (IXP) in the following

manner: “IXP is an organic evolution of XP. It is imbued with XP’s minimalist, customer-

31

centric, test-driven spirit. IXP differs most from the original XP in its greater inclusion of

management, its expanded role for customers, and its upgraded technical practices.” IXP

incorporates six new practices that are designed to help ensure that an XP project works

successfully for significant projects within a large organization.

1) Readiness assessment

• . The assessment ascertains whether

• (1) an appropriate development environment exists to support IXP, (2) the team will be

populated by the proper set of stakeholders,

• (3) the organization has a distinct quality program and supports continuous improvement,

• (4) the organizational culture will support the new values of an agile team, and

• (5) the broader project community will be populated appropriately.

• Project community

• A community may have a technologist and customers who are central to the success of a

project as well as many other stakeholders (e.g., legal staff, quality auditors, manufacturing

or sales types) who “are often at the periphery of an IXP project yet they may play important

roles on the project”.

• Project chartering. Chartering also examines the context of the project to determine how it

complements, extends, or replaces existing systems or processes.

• Test-driven management. Test-driven management establishes a series of measurable

“destinations” and then defines mechanisms for determining whether or not these

destinations have been reached.

• Retrospectives. An IXP team conducts a specialized technical review after a software

increment is delivered. Called a retrospective, the review examines “issues, events, and

lessons-learned” across a software increment and/or the entire software release.

32

• Continuous learning. Because learning is a vital part of continuous process improvement,

members of the XP team are encouraged (and possibly, incented) to learn new methods and

techniques that can lead to a higher quality product.

• In addition to the six new practices discussed, IXP modifies a number of existing XP

practices.

• Story-driven development (SDD) insists that stories for acceptance tests be written before a

single line of code is generated.

• Domain-driven design (DDD) is an improvement on the “system metaphor” concept used in

XP.

• Pairing extends the XP pair programming concept to include managers and other

stakeholders. The intent is to improve knowledge sharing among XP team members who

may not be directly involved in technical development.

• Iterative usability discourages front-loaded interface design in favor of usability design that

evolves as software increments are delivered and users’ interaction with the software is

studied.

• 1.7.3.4.4 The XP Debate

• Proponents counter that XP is continuously evolving and that many of the issues raised by

critics have been addressed as XP practice matures. Among the issues that continue to

trouble some critics of XP are:

• Requirements volatility (liability to change rapidly and unpredictably)

• Conflicting customer needs.

• Requirements are expressed informally.

• Lack of formal design.

1.8 CMMI (Capability Maturity Model Integration)

• The original CMM was developed and upgraded by the Software Engineering Institute

throughout the 1990s as a complete SPI framework. Today, it has evolved into the Capability

33

Maturity Model Integration (CMMI) , a comprehensive process meta-model that is

predicated on a set of system and software engineering capabilities that should be present as

organizations reach different levels of process capability and maturity.

• The CMMI represents a process meta-model in two different ways: (1) as a “continuous”

model and (2) as a “staged” model. The continuous CMMI meta-model describes a process

in two dimensions as illustrated in Figure 30.2. Each process area (e.g., project planning or

requirements management) is formally assessed against specific goals and practices and is

rated according to the following capability levels:

• Level 0: Incomplete—the process area (e.g., requirements management) is either not

performed or does not achieve all goals and objectives defined by the CMMI for level 1

capability for the process area.

• Level 1: Performed—all of the specific goals of the process area (as defined by the CMMI)

have been satisfied. Work tasks required to produce defined work products are being

conducted.

34

• Level 2: Managed—all capability level 1 criteria have been satisfied. In addition, all work

associated with the process area conforms to an organizationally defined policy; all people

doing the work have access to adequate resources to get the job done; stakeholders are

actively involved in the process area as required; all work tasks and work products are

“monitored, controlled, and reviewed; and are evaluated for adherence to the process

description”.

• Level 3: Defined—all capability level 2 criteria have been achieved. In addition, the process

is “tailored from the organization’s set of standard processes according to the organization’s

tailoring guidelines, and contributes work products, measures, and other process-

improvement information to the organizational process assets”.

• Level 4: Quantitatively managed—all capability level 3 criteria have been achieved. In

addition, the process area is controlled and improved using measurement and quantitative

assessment. “Quantitative objectives for quality and process performance are established and

used as criteria in managing the process” .

• Level 5: Optimized—all capability level 4 criteria have been achieved. In addition, the

process area is adapted and optimized using quantitative (statistical) means to meet

changing customer needs and to continually improve the efficacy of the process area under

consideration.

• The CMMI defines each process area in terms of “specific goals” and the “specific practices”

required to achieve these goals. Specific goals establish the characteristics that must exist if

the activities implied by a process area are to be effective. Specific practices refine a goal

into a set of process-related activities.

• For example, project planning is one of eight process areas defined by the CMMI for

“project management” category.The specific goals (SG) and the associated specific practices

(SP) defined for project planning are :

35

• SG 1 Establish Estimates

• SP 1.1-1 Estimate the Scope of the Project

• SP 1.2-1 Establish Estimates of Work Product and Task Attributes

• SP 1.3-1 Define Project Life Cycle

• SP 1.4-1 Determine Estimates of Effort and Cost

• SG 2 Develop a Project Plan

SP 2.1-1 Establish the Budget and Schedule

SP 2.2-1 Identify Project Risks

SP 2.3-1 Plan for Data Management

SP 2.4-1 Plan for Project Resources

SP 2.5-1 Plan for Needed Knowledge and Skills

SP 2.6-1 Plan Stakeholder Involvement

SP 2.7-1 Establish the Project Plan

• SG 3 Obtain Commitment to the Plan

SP 3.1-1 Review Plans That Affect the Project

SP 3.2-1 Reconcile Work and Resource Levels

SP 3.3-1 Obtain Plan Commitment

 In addition to specific goals and practices, the CMMI also defines a set of five generic goals

and related practices for each process area. Each of the five generic goals corresponds to one of

the five capability levels. Hence, to achieve a particular capability level, the generic goal for that

level and the generic practices that correspond to that goal must be achieved. To illustrate, the

generic goals (GG) and practices (GP) for the project planning process area are :

• GG 1 Achieve Specific Goals

GP 1.1 Perform Base Practices

• GG 2 Institutionalize a Managed Process

GP 2.1 Establish an Organizational Policy

36

GP 2.2 Plan the Process

GP 2.3 Provide Resources

GP 2.4 Assign Responsibility

GP 2.5 Train People

GP 2.6 Manage Configurations

GP 2.7 Identify and Involve Relevant Stakeholders

GP 2.8 Monitor and Control the Process

GP 2.9 Objectively Evaluate Adherence

GP 2.10 Review Status with Higher-Level Management

 GG 3 Institutionalize a Defined Process

GP 3.1 Establish a Defined Process

GP 3.2 Collect Improvement Information

• GG 4 Institutionalize a Quantitatively Managed Process

GP 4.1 Establish Quantitative Objectives for the Process

GP 4.2 Stabilize Sub-process Performance

• GG 5 Institutionalize an Optimizing Process

GP 5.1 Ensure Continuous Process Improvement

GP 5.2 Correct Root Causes of Problems

 The staged CMMI model defines the same process areas, goals, and practices as the continuous

model. The primary difference is that the staged model defines five maturity levels, rather than

five capability levels. To achieve a maturity level, the specific goals and practices associated

with a set of process areas must be achieved. The relationship between maturity levels and

process areas is shown in Figure 30.3.

37

The People CMM (Capability Maturity Model)

• The People Capability Maturity Model “is a roadmap for implementing workforce practices

that continuously improve the capability of an organization’s workforce”.

• The goal of the People CMM is to encourage continuous improvement of generic workforce

knowledge (called “core competencies”), specific software engineering and project

management skills (called “workforce competencies”), and process-related abilities.

• Like the CMM, CMMI, and related SPI frameworks, the People CMM defines a set of five

organizational maturity levels that provide an indication of the relative sophistication of

workforce practices and processes. These maturity levels are tied to the existence (within an

organization) of a set of key process areas (KPAs). An overview of organizational levels and

related KPAs is shown in Figure 30.4

38

39

 UNIT-II

PROCESS MODELS: A Generic process model (framework), Process assessment and

improvement, Prescriptive process models: The waterfall model, Incremental process models,

Evolutionary process models, The Unified process, SOFTWARE REQUIREMENTS: Functional

and Non-functional requirements; User requirements, The software requirements document,

Requirements Engineering Processes: Requirements elicitation and analysis, Requirements

validation Requirements management, System Modeling: Context models, Behavioral models, Data

models, Object models, Structured Methods.

2.1.1 A Generic Process Model

A process was defined as a collection of work activities, actions, and tasks that are performed when

some work product is to be created. Each of these activities, actions, and tasks reside within a

framework or model that defines their relationship with the process and with one another.

 The software process is represented schematically in Figure 2.1. Referring to the figure, each

framework activity is populated by a set of software engineering actions. Each software engineering

action is defined by a task set that identifies the work tasks that are to be completed, the work

products that will be produced, the quality assurance points that will be required, and the milestones

that will be used to indicate progress.

A generic process framework for software engineering defines five framework activities—

communication, planning, modeling, construction, and deployment. In addition, a set of

umbrella activities—project tracking and control, risk management, quality assurance, configuration

management, technical reviews, and others—are applied throughout the process.

40

• One important aspect of the software process called process flow—describes how the

framework activities and the actions and tasks that occur within each framework activity are

organized with respect to sequence and time and is illustrated in Figure 2.2.

• A linear process flow executes each of the five framework activities in sequence, beginning

with communication and culminating with deployment (Figure 2.2a). An iterative process

flow repeats one or more of the activities before proceeding to the next (Figure 2.2b).

• An evolutionary process flow executes the activities in a “circular” manner. Each circuit

through the five activities leads to a more complete version of the software (Figure 2.2c).

• A parallel process flow (Figure 2.2d) executes one or more activities in parallel with other

activities (e.g., modeling for one aspect of the software might be executed in parallel with

construction of another aspect of the software).

41

• 2.1.1 Defining a Framework Activity

Although five framework activities and provided a basic definition , a software team would need

significantly more information before it could properly execute any one of these activities as part of

the software process. Therefore, you are faced with a key question:

What actions are appropriate for a framework activity, given the nature of the problem to be

solved, the characteristics of the people doing the work, and the stakeholders who are sponsoring

the project?

For a small software project requested by one person (at a remote location) with simple,

straightforward requirements, the communication activity might encompass little more than a phone

call with the appropriate stakeholder. Therefore, the only necessary action is phone conversation,

and the work tasks (the task set) that this action encompasses are:

• 1. Make contact with stakeholder via telephone.

• 2. Discuss requirements and take notes.

• 3. Organize notes into a brief written statement of requirements.

42

• 4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with a different set of

(sometime conflicting) requirements, the communication activity might have six distinct actions :

inception, elicitation, elaboration ,negotiation, specification, and validation. Each of these

software engineering actions would have many work tasks and a number of distinct work products.

2.1.2 Identifying a Task Set

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an action

associated with the communication activity) can be represented by a number of different task sets—

each a collection of software engineering work tasks, related work products, quality assurance

points, and project milestones. You should choose a task set that best accommodates the needs of

the project and the characteristics of your team. This implies that a software engineering action can

be adapted to the specific needs of the software project and the characteristics of the project team.

43

• 2.1.3 Process Patterns

• A process pattern describes a process-related problem that is encountered during software

engineering work, identifies the environment in which the problem has been encountered,

and suggests one or more proven solutions to the problem. Stated in more general terms, a

process pattern provides you with a template -a consistent method for describing problem

solutions within the context of the software process. By combining patterns, a software team

can solve problems and construct a process that best meets the needs of a project.

• Patterns can be defined at any level of abstraction.2 In some cases, a pattern might be used to

describe a problem (and solution) associated with a complete process model (e.g.,

prototyping). In other situations, patterns can be used to describe a problem (and solution)

associated with a framework activity (e.g., planning) or an action within a framework

activity (e.g., project estimating).

• Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the

software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the

issues that make the problem visible and may affect its solution.

• Type. The pattern type is specified. Ambler suggests three types:

 1. Stage pattern—defines a problem associated with a framework activity for the process. Since a

framework activity encompasses multiple actions and work tasks, a stage pattern incorporates

multiple task patterns (see the following) that are relevant to the stage (framework activity). An

example of a

stage pattern might be Establishing Communication. This pattern would incorporate the task

pattern Requirements Gathering and others.

 2. Task pattern—defines a problem associated with a software engineering action or work task and

relevant to successful software engineering practice (e.g., Requirements Gathering is a task

pattern).

 3. Phase pattern—define the sequence of framework activities that occurs within the process, even

44

when the overall flow of activities is iterative in nature. An example of a phase pattern might be

Spiral Model or Prototyping.

• Initial context. Describes the conditions under which the pattern applies. Prior to the

initiation of the pattern: (1) What organizational or team-related activities have already

occurred? (2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

 For example, the Planning pattern (a stage pattern) requires that (1) customers and software

engineers have established a collaborative communication;

(2) successful completion of a number of task patterns [specified] for the Communication pattern

has occurred; and (3) the project scope, basic business requirements, and project constraints are

known.

• Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section describes how the

initial state of the process (that exists before the pattern is implemented) is modified as a

consequence of the initiation of the pattern. It also describes how software engineering information

or project information that is available before the initiation of the pattern is transformed as a

consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been successfully

implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process? (3) What software engineering information or project

information has been developed?

 Related Patterns. Provide a list of all process patterns that are directly related to this one. This

may be represented as a hierarchy or in some other diagrammatic form.

2.1.2 Process Assessment and Improvement

The existence of a software process is no guarantee that software will be delivered on time, that it

will meet the customer’s needs, or that it will exhibit the technical characteristics that will lead to

long-term quality characteristics . Process patterns must be coupled with solid software engineering

practice. In addition, the process itself can be assessed to ensure that it meets a set of basic process

45

criteria that have been shown to be essential for a successful software engineering.

Standard CMMI Assessment Method for Process Improvement

• (SCAMPI)—provides a five-step process assessment model that incorporates five phases:

initiating, diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI

CMMI as the basis for assessment . CMM-Based Appraisal for Internal Process

Improvement (CBA IPI)—provides a diagnostic technique for assessing the relative

maturity of a software organization; uses the SEI CMM as the basis for the assessment.

• SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process

assessment. The intent of the standard is to assist organizations in developing an objective

evaluation of the efficacy of any defined software process .

• ISO 9001:2000 for Software—a generic standard that applies to any organization that wants

to improve the overall quality of the products, systems, or services that it provides.

Therefore, the standard is directly applicable to software organizations and companies .

2.1.3 Perspective Process Models

• Prescriptive process models were originally proposed to bring order to the chaos of software

development. History has indicated that these traditional models have brought a certain

amount of useful structure to software engineering work and have provided a reasonably

effective road map for software teams.

• Called “prescriptive” because they prescribe a set of process elements—framework

activities, software engineering actions, tasks, work products, quality assurance, and change

control mechanisms for each project. Each process model also prescribes a process flow

(also called a work flow)—that is, the manner in which the process elements are interrelated

to one another.

• All software process models can accommodate the generic framework activities described ,

but each applies a different emphasis to these activities and defines a process flow that

invokes each framework activity (as well as software engineering actions and tasks) in a

different manner.

46

2.3.1 The Waterfall Model

• There are times when the requirements for a problem are well understood—when work flows

from communication through deployment in a reasonably linear fashion. This situation is

sometimes encountered when well-defined adaptations or enhancements to an existing

system must be made .

• It may also occur in a limited number of new development efforts, but only when

requirements are well defined and reasonably stable.

• The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach to software development that begins with customer specification of

requirements and progresses through planning, modeling, construction, and deployment,

culminating in ongoing support of the completed software (Figure 2.3).

• A variation in the representation of the waterfall model is called the V-model. Represented in

Figure 2.4, the V-model depicts the relationship of quality assurance actions to the actions

associated with communication, modeling, and early construction activities. As a software

47

team moves down the left side of the V, basic problem requirements are refined into

progressively more detailed and technical representations of the problem and its solution.

• Once code has been generated, the team moves up the right side of the V, essentially

performing a series of tests (quality assurance actions) that validate each of the models

created as the team moved down the left side.

• In reality, there is no fundamental difference between the classic life cycle and the V-model.

The V-model provides a way of visualizing how verification and validation actions are

applied to earlier engineering work.

• The waterfall model is the oldest paradigm for software engineering. However, over the past

three decades, criticism of this process model has caused even ardent supporters to question

its efficacy . Among the problems that are sometimes encountered when the waterfall model

is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

• Although the linear model can accommodate iteration, it does so indirectly.

• As a result, changes can cause confusion as the project team proceeds

2. It is often difficult for the customer to state all requirements explicitly. The waterfall model

requires this and has difficulty accommodating the natural uncertainty that exists at the beginning of

many projects.

48

3. The customer must have patience. A working version of the program(s) will not be available until

late in the project time span. A major blunder, if undetected until the working program is reviewed,

can be disastrous.

• 2.3.2 Incremental Process Models

• There are many situations in which initial software requirements are reasonably well defined,

but the overall scope of the development effort precludes a purely linear process. In addition,

there may be a compelling need to provide a limited set of software functionality to users

quickly and then refine and expand on that functionality in later software releases. In such

cases, you can choose a process model that is designed to produce the software in

increments.

• The incremental model combines elements of linear and parallel process flows discussed .

Referring to Figure 2.5, the incremental model applies linear sequences in a staggered

fashion as calendar time progresses.

49

• Each linear sequence produces deliverable “increments” of the software in a manner that is

similar to the increments produced by an evolutionary process flow .

• For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first

increment; more sophisticated editing and document production capabilities in the second

increment; spelling and grammar checking in the third increment; and advanced page layout

capability in the fourth increment. It should be noted that the process flow for any increment

can incorporate the prototyping paradigm.

• When an incremental model is used, the first increment is often a core product. That is, basic

requirements are addressed but many supplementary features (some known, others unknown)

remain undelivered. The core product is used by the customer (or undergoes detailed

evaluation). As a result of use and/or evaluation, a plan is developed for the next increment.

2.3.3 Evolutionary Process Models

• Software, like all complex systems, evolves over a period of time. Business and product

requirements often change as development proceeds, making a straight line path to an end

product unrealistic; tight market deadlines make completion of a comprehensive software

product impossible, but a limited version must be introduced to meet competitive or business

pressure; a set of core product or system requirements is well understood, but the details of

product or system extensions have yet to be defined. Evolutionary models are iterative. They

are characterized in a manner that

 enables you to develop increasingly more complete versions of the software

• Prototyping. Often, a customer defines a set of general objectives for software, but does not

identify detailed requirements for functions and features. In other cases, the developer may

be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the

form that human-machine interaction should take. In these, and many other situations, a

prototyping paradigm may offer the best approach.

• Although prototyping can be used as a stand-alone process model, it is more commonly used

as a technique that can be implemented within the context of any one of the process models

understand

50

• The prototyping paradigm (Figure 2.6) begins with communication. You meet with other

stakeholders to define the overall objectives for the software, identify whatever requirements

are known, and outline areas where further definition is mandatory. A prototyping iteration is

planned quickly, and modeling (in the form of a “quick design”) occurs.

• Yet, prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software,

unaware that in the rush to get it working you haven’t considered overall software quality or long-

term maintainability. When informed that the product must be rebuilt so that high levels of quality

can be maintained, stakeholders cry foul and demand that “a few fixes” be applied to make the

prototype a working Product.

2. As a software engineer, you often make implementation compromises in order to get a prototype

working quickly. An inappropriate operating system or programming language may be used simply

because it is available and known; an inefficient algorithm may be implemented simply to

demonstrate capability. After a time, you may become comfortable with these choices and forget all

51

the reasons why they were inappropriate.

Although problems can occur, prototyping can be an effective paradigm for software engineering.

The key is to define the rules of the game at the beginning; that is, all stakeholders should agree that

the prototype is built to serve as a mechanism for defining requirements. It is then discarded (at

least in part), and the actual software is engineered with an eye toward quality.

• The Spiral Model. Originally proposed by Barry Boehm , the spiral model is an

evolutionary software process model that couples the iterative nature of prototyping with the

controlled and systematic aspects of the waterfall model.

• It provides the potential for rapid development of increasingly more complete versions of the

software. Boehm describes the model in the following manner:

• The spiral development model is a risk-driven process model generator that is used to guide

multi-stakeholder concurrent engineering of software intensive systems.

• It has two main distinguishing features.

• One is a cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk.

• The other is a set of anchor point milestones for ensuring stakeholder commitment to

feasible and mutually satisfactory system solutions.

• During early iterations, the release might be a model or prototype. During later iterations,

increasingly more complete versions of the engineered system are produced.

52

• A spiral model is divided into a set of framework activities defined by the software

engineering team. Each of the framework activities represent one segment of the spiral path

illustrated in Figure 2.7As this evolutionary process begins, the software team performs

activities that are implied by a circuit around the spiral in a clockwise direction, beginning at

the center.

• Anchor point milestones—a combination of work products and conditions that are attained

along the path of the spiral—are noted for each evolutionary pass.

• The first circuit around the spiral might result in the development of a product specification;

subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software.

• Each pass through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery.

• In addition, the project manager adjusts the planned number of iterations required to

complete the software. Unlike other process models that end when software is delivered, the

spiral model can be adapted to apply throughout the life of the computer software.

• The first circuit around the spiral might represent a “concept development project” that starts

at the core of the spiral and continues for multiple iterations until concept development is

complete.

• If the concept is to be developed into an actual product, the process proceeds outward on the

spiral and a “new product development project” commences.

• The new product will evolve through a number of iterations around the spiral. Later, a

circuit around the spiral might be used to represent a “product enhancement project.”

• The spiral model is a realistic approach to the development of large-scale systems and

software.

• The spiral model demands a direct consideration of technical risks at all stages of the project

and, if properly applied, should reduce risks before they become problematic

2.3.4 Concurrent Models

The concurrent development model, sometimes called concurrent engineering, allows a software

team to represent iterative and concurrent elements of any of the process models described .

• Figure 2.8 provides a schematic representation of one software engineering activity within

the modeling activity using a concurrent modeling approach.

53

• The activity—modeling—may be in any one of the states12 noted at any given time.

Similarly, other activities, actions, or tasks (e.g., communication or construction) can be

represented in an analogous manner. All software engineering activities exist concurrently

but reside in different states.

2.1.4 Unified Process Model

• The Unified Process was developed by Jacobsen, Booch, and Rumbaugh, who were already

some of the biggest names in OOA&D before they decided to collaborate on a unified

version of their previously distinctive approaches.

• A process model that was created 1997 to give a framework for Object-oriented Software

Engineering

• Iterative, incremental model to adapt to specific project needs

• Risk driven development Combining spiral and evolutionary models.

In some ways the Unified Process is an attempt to draw on the best features and

54

• characteristics of traditional software process models, but characterize them in a way that

implements many of the best principles of agile software development. The Unified Process

recognizes the importance of customer communication and streamlined methods for

describing the customer’s view of a system.

• A Brief History

• During the early 1990s James Rumbaugh , Grady Booch , and Ivar Jacobson began working

on a “unified method” that would combine the best features of each of their individual

object-oriented analysis and design methods and adopt additional features proposed by other

experts in object-oriented modeling. The result was UML—a unified modeling language

that contains a robust notation for the modeling and development of object-oriented systems.

• Jacobson, Rumbaugh, and Booch developed the Unified Process, a framework for object-

oriented software engineering using UML. Today, the Unified Process (UP) and UML are

widely used on object-oriented projects of all kinds. The iterative, incremental model

proposed by the UP can and should be adapted to meet specific project needs.

• Phases of the Unified Process Fig : 8.9

•

55

• Advantages of UP

• Rapid feedback from users and developers

• Then adapt to changes in the next iteration (adaptive development)

• Visible progress

• Start with high risk

• Manage complexity by dividing the problem into smaller ones

Stages of the UP

• Inception: Customer communication, project vision and planning activities (feasibility study)

• Elaboration: multiple iterations that refines the requirements and models of the system

• Construction: develop software code

• Transition: user testing and installation

• Production: operation

• Inception Stage

• The inception phase of the UP encompasses both customer communication and planning

activities. By collaborating with stakeholders, business requirements for the software are

identified; a rough architecture for the system is proposed; and a plan for the iterative,

incremental nature of the ensuing project is developed.

• Perform feasibility study …..

• Identify the project vision (vision document)

• Identify general business requirements

• Identify project and business risks

• Produce initial use-case model (10-20%)

• Plan the elaboration stages

• Rough architecture of the software (subsystems)

• Elaboration Stage

• An iterative process where refinements are made on system requirements, system design,

develop part of the code and test it.

• Products from these iterations:

• Refinements on use-case model

56

• Software architecture description

• Executable prototypes

• Initial design model

• Refinement on project risks and plan

• The elaboration phase encompasses the communication and modeling activities of the

generic process model (Figure 2.9). Elaboration refines and expands the preliminary use

cases that were developed as part of the inception phase and expands the architectural

representation to include five different views of the software—

• the use case model, the requirements model, the design model, the implementation model,

and the deployment model.

• Construction Stage

• The construction phase of the UP is identical to the construction activity defined for the

generic software process.

• Using the architectural model as input, the construction phase develops or acquires the

software components that will make each use case operational for end users.

• To accomplish this, requirements and design models that were started during the elaboration

phase are completed to reflect the final version of the software increment

• Translate the design into software components

• Products of this stage are:

• Design model

• Integrated software components

• Test plan and test cases

• User documentation

• Transition Stage

• The transition phase of the UP encompasses the latter stages of the generic construction

activity and the first part of the generic deployment (delivery and feedback) activity.

Software is given to end users for beta testing and user feedback reports both defects and

necessary changes.

• Deliver the software and documentation

• Get user feedback from Beta tests

• Production Stage

57

• The production phase of the UP coincides with the deployment activity of the generic

process. During this phase, the ongoing use of the software is monitored, support for the

operating environment (infrastructure) is provided, and defect reports and requests for

changes are submitted and evaluated.

• A software engineering workflow is distributed across all UP phases. In the context of UP, a

workflow is analogous to a task set . That is, a workflow identifies the tasks required to

accomplish an important software engineering action and the work products that are

produced as a consequence of successfully completing the tasks.

Changes in activities according to stages

58

Artifact Sets in the Unified Process

2.2 System requirements

Some of the problems that arise during the requirements engineering process are a result of failing

to make a clear separation between these different levels of description. I distinguish between them

by using the term ‘user requirements’ to mean the high-level abstract requirements and ‘system

requirements’ to mean the detailed description of what the system should do. User requirements and

system requirements may be defined as follows:

 1. User requirements are statements, in a natural language plus diagrams, of what services the

system is expected to provide to system users and the constraints under which it must operate.

 2. System requirements are more detailed descriptions of the software system’s functions, services,

and operational constraints. The system requirements document (sometimes called a functional

59

specification) should define exactly what is to be implemented. It may be part of the contract

between the system buyer and the software developers.

• Different levels of requirements are useful because they communicate information about the

system to different types of reader. Figure 4.1 illustrates the distinction between user and

system requirements. This example from a mental health care patient management system

(MHC-PMS) shows how a user requirement may be expanded into several system

requirements. You can see from Figure 4.1 that the user requirement is quite general. The

system requirements provide more specific information about the services and functions of

the system that is to be implemented.

• Functional and Non-Functional requirements

• Software system requirements are often classified as functional requirements or

nonfunctional requirements:

• 1. Functional requirements These are statements of services the system should provide, how

the system should react to particular inputs, and how the system should behave in particular

60

situations. In some cases, the functional requirements may also explicitly state what the

system should not do.

• 2. Non-functional requirements These are constraints on the services or functions offered

by the system. They include timing constraints, constraints on the development process, and

constraints imposed by standards. Non-functional requirements often apply to the system as

a whole, rather than individual system features or services.

• 3. Domain Requirements These are requirements that come from the application domain of

the system and that reflect characteristics and constraints of that domain. They may be

functional or non-functional requirements.

• Requirements are not independent and that one requirement often generates or constrains

other requirements.

• The system requirements therefore do not just specify the services or the features of the

system that are required; they also specify the necessary functionality to ensure that these

services/features are delivered properly.

• You need to write requirements at different levels of detail because different readers use

them in different ways. Figure 4.2 shows possible readers of the user and system

requirements. The readers of the user requirements are not usually concerned with how the

system will be implemented and may be managers who are not interested in the detailed

facilities of the system. The readers of the system requirements need to know more precisely

what the system will do because they are concerned with how it will support the business

processes or because they are involved in the system implementation

61

• 1. Functional requirements

• The functional requirements for a system describe what the system should do. These

requirements depend on the type of software being developed, the expected users of the

software, and the general approach taken by the organization when writing requirements.

When expressed as user requirements, functional requirements are usually described in an

abstract way that can be understood by system users.

• However, more specific functional system requirements describe the system functions, its

inputs and outputs, exceptions, etc., in detail.

62

• Functional system requirements vary from general requirements covering what the system

should do to very specific requirements reflecting local ways of working or an organization’s

existing systems.

• For example, here are examples of functional requirements for the MHC-PMS system, used

to maintain information about patients receiving treatment for mental health problems:

• 1. A user shall be able to search the appointments lists for all clinics.

• 2. The system shall generate each day, for each clinic, a list of patients who are expected to

attend appointments that day.

• 3. Each staff member using the system shall be uniquely identified by his or her eight-digit

employee number. These functional user requirements define specific facilities to be

provided by the system.

• For example, the first example requirement for the MHC-PMS states that a user shall be able

to search the appointments lists for all clinics. The rationale for this requirement is that

patients with mental health problems are sometimes confused. They may have an

appointment at one clinic but actually go to a different clinic. If they have an appointment,

they will be recorded as having attended, irrespective of the clinic.

• The medical staff member specifying this may expect ‘search’ to mean that, given a patient

name, the system looks for that name in all appointments at all clinics.

• However, this is not explicit in the requirement. System developers may interpret the

requirement in a different way and may implement a search so that the user has to choose a

clinic then carry out the search. This obviously will involve more user input and so take

longer.

• In principle, the functional requirements specification of a system should be both complete

and consistent.

• Completeness means that all services required by the user should be defined.

• Consistency means that requirements should not have contradictory definitions

63

• In practice, for large, complex systems, it is practically impossible to achieve requirements

consistency and completeness.

• One reason for this is that it is easy to make mistakes and omissions when writing

specifications for complex systems.

• Another reason is that there are many stakeholders in a large system. A stakeholder is a

person or role that is affected by the system in some way.

• 2. Non-functional requirements

• Non-functional requirements, as the name suggests, are requirements that are not directly

concerned with the specific services delivered by the system to its users. They may relate to

emergent system properties such as reliability, response time, and store occupancy.

Alternatively, they may define constraints on the system implementation such as the

capabilities of I/O devices or the data representations used in interfaces with other systems.

• Non-functional requirements, such as performance, security, or availability, usually specify

or constrain characteristics of the system as a whole. Non-functional requirements are often

more critical than individual functional requirements

• Although it is often possible to identify which system components implement specific

functional requirements (e.g., there may be formatting components that implement reporting

requirements), it is often more difficult to relate components to non-functional requirements.

The implementation of these requirements may be diffused throughout the system. There are

two reasons for this:

• 1. Non-functional requirements may affect the overall architecture of a system rather than the

individual components. For example, to ensure that performance

• requirements are met, you may have to organize the system to minimize communications

between components.

• 2. A single non-functional requirement, such as a security requirement, may generate a

number of related functional requirements that define new system services that are required.

64

In addition, it may also generate requirements that restrict existing requirements. Fig :4.3 is

shown in next page

•

• Figure 4.3 is a classification of non-functional requirements. You can see from this diagram

that the non-functional requirements may come from required characteristics of the software

(product requirements), the organization developing the software (organizational

requirements), or from external sources:

• 1. Product requirements These requirements specify or constrain the behavior of the

software. Examples include performance requirements on how fast the system must execute

and how much memory it requires, reliability requirements that set out the acceptable failure

rate, security requirements, and usability requirements.

• 2. Organizational requirements These requirements are broad system requirements derived

from policies and procedures in the customer’s and developer’s organization.

65

• 3. External requirements This broad heading covers all requirements that are derived from

factors external to the system and its development process.

• A common problem with non-functional requirements is that users or customers often

propose these requirements as general goals, such as ease of use, the ability of the system to

recover from failure, or rapid user response.

• Figure 4.5 shows metrics that you can use to specify non-functional system properties.

•

• 3. Domain requirements

• Domain requirements are derived from the application domain of the system rather than from

the specific needs of system users. They may be new functional requirements in their own

right, constrain existing functional requirements, or set out how particular computations must

be carried out.

• The problem with domain requirements is that software engineers may not understand the

characteristics of the domain in which the system operates. They often cannot tell whether or

not a domain requirement has been missed out or conflicts with other requirements

• Domain requirements are derived from the application domain of the system rather than from

the specific needs of system users. They usually include specialized domain terminology or

reference to domain concepts.

66

• They may be new functional requirements in their own right, constrain existing functional

requirements or set out how particular computations must be carried out. Because these

requirements are specialized, software engineers often find it difficult to understand how

they are related to other system requirements.

• Domain requirements are important because they often reflect fundamentals of the

application domain. If these requirements are not satisfied, it may be impossible to make the

system work satisfactorily.

• The LIBSYS system includes a number of domain requirements:

• I. There shall be a standard user interface to all databases that shall be based on the Z39.50

standard.

• 2. Because of copyright restrictions, some documents must be deleted immediately on

arrival. Depending on the user s requirements, these documents will either be printed locally

on the system server for manual forwarding to the user or routed to a network printer.

• The first requirement is a design constraint. It specifies that the user interface to the database

must be implemented according to a specific library standard.

• The second requirement has been introduced because of copyright laws that apply to material

used in libraries. It specifies that the system must include an automatic delete-on-print

facility for some classes of document.

2.2.2 User Requirements

• The user requirements for a system should describe the functional and non-functional

requirements so that they are understandable by the system users without detailed technical

knowledge.

• Consequently, if you are writing user requirements, you should not use software jargon,

structured notations or formal notations, or describe the requirement by describing the

system implementation.

• You should write user requirements in simple language, with simple tables and forms and

intuitive diagrams.

67

• Various problems can arise when requirements are written in natural language sentences in a

text document.

• 1) Lack of clarity: It is sometimes difficult to use language in a precise and unambiguous

way without making the document wordy and difficult to read.

• 2) Requirements confusion: Functional requirements, non-functional requirements, system

goals and design information may not be clearly distinguished.

• 3) Requirements amalgamation: Several different requirements may be expressed together

as a single requirement.

• As an illustration of some of these problems, consider one of the requirements for the library

shown in Figure 6.8.

• This requirement includes both conceptual and detailed information. It expresses the concept

that there should be an accounting system as an inherent part of LIBSYS.

• However, it also includes the detail that the accounting system should support discounts for

regular LIBSYS users. This detail would have been better left to the system requirements

specification

• Fig 6.8 - LIBSYS shall provide a financial accounting system that maintains records of all

payments made by users of the system. System managers may configure this system so that

regular users may receive discounted rates.

• 2.2.3 What is Software Requirement Specification - [SRS]?

• A software requirements specification (SRS) is a document that captures complete

description about how the system is expected to perform. It is usually signed off at the end of

requirements engineering phase.

• Qualities of SRS:

• Correct

• Unambiguous

68

• Complete

• Consistent

• Ranked for importance and/or stability

• Verifiable

• Modifiable

• Traceable

• Types of Requirements:

• The below diagram depicts the various types of requirements that are captured during SRS.

•

• Software Requirements Specification document

• A Software Requirements Specification (SRS) is a document that describes the nature of a

project, software or application. In simple words, SRS document is a manual of a project

provided it is prepared before you kick-start a project/application. This document is also

known by the names SRS report, software document. A software document is primarily

prepared for a project, software or any kind of application.

69

• There are a set of guidelines to be followed while preparing the software requirement

specification document. This includes the purpose, scope, functional and nonfunctional

requirements, software and hardware requirements of the project. In addition to this, it also

contains the information about environmental conditions required, safety and security

requirements, software quality attributes of the project etc.

• What is a Software Requirements Specification document?

• A Software requirements specification document describes the intended purpose,

requirements and nature of a software to be developed. It also includes the yield and cost of

the software.

• In this document, flight management project is used as an example to explain few points.

•

https://krazytech.com/projects/sample-software-requirements-specificationsrs-report-airline-database/attachment/contents-in-software-requirements-specification-document

70

• Fig 4.7 The structure of a requirements Document

•

71

• 2.3.1 Requirements Engineering Process

•

• 2.3.2 Requirements elicitation and analysis

• After an initial feasibility study, the next stage of the requirements engineering process is

requirements elicitation and analysis.

• Requirements elicitation and analysis may involve a variety of different kinds of people in an

organization. A system stakeholder is anyone who should have some direct or indirect

influence on the system requirements.

• A process model of the elicitation and analysis process is shown in Figure 4.13. Each

organization will have its own version or instantiation of this general model depending on

local factors such as the expertise of the staff, the type of system being developed, the

standards used, etc.

• Figure 4.13 shows that requirements elicitation and analysis is an iterative process with

continual feedback from each activity to other activities.

72

• 1. Requirements discovery This is the process of interacting with stakeholders of the system

to discover their requirements. Domain requirements from stakeholders and documentation

are also discovered during this activity.

• 2. Requirements classification and organization This activity takes the unstructured

collection of requirements, groups related requirements, and organizes them into coherent

clusters. The most common way of grouping requirements is to use a model of the system

architecture to identify sub-systems and to associate requirements with each sub-system. In

practice, requirements engineering and architectural design cannot be completely separate

activities.

• 3. Requirements prioritization and negotiation Inevitably, when multiple stakeholders are

involved, requirements will conflict. This activity is concerned with prioritizing requirements

and finding and resolving requirements conflicts through negotiation. Usually, stakeholders

have to meet to resolve differences and agree on compromise requirements.

• 4. Requirements specification The requirements are documented and input into the next

round of the spiral. Formal or informal requirements documents may be produced.

• Eliciting and understanding requirements from system stakeholders is a difficult

73

• process for several reasons:

• 1. Stakeholders often don’t know what they want from a computer system except in the most

general terms; they may find it difficult to articulate what they want the system to do; they

may make unrealistic demands because they don’t know what is and isn’t feasible.

• 2. Stakeholders in a system naturally express requirements in their own terms and with

implicit knowledge of their own work. Requirements engineers, without experience in the

customer’s domain, may not understand these requirements.

• 3. Different stakeholders have different requirements and they may express these in different

ways. Requirements engineers have to discover all potential sources of requirements and

discover commonalities and conflict.

• 4. Political factors may influence the requirements of a system. Managers may demand

specific system requirements because these will allow them to increase their influence in the

organization.

• 5. The economic and business environment in which the analysis takes place is dynamic. It

inevitably changes during the analysis process. The importance of particular requirements

may change. New requirements may emerge from new stakeholders who were not originally

consulted.

4.5.1 Requirements discovery

• Requirements discovery (sometime called requirements elicitation) is the process of

gathering information about the required system and existing systems. Sources of

information during the requirements discovery phase include documentation, system

stakeholders, and specifications of similar systems. Stakeholders range from system end-

users through managers and external stakeholders such as regulators who certify the

acceptability of the system.

 For example, system stakeholders for a bank ATM include:

I. Current bank customers who receive services from the system

2. Representatives from other banks who have reciprocal agreements that allow each other's ATMs

to be used

74

3. Managers of bank branches who obtain management information from the system

 4. Counter staff at bank branches who are involved in the day-to-day running of the system

5. Database administrators who are responsible for integrating the system with the bank's customer

database

6. Bank security managers who must ensure that the system will not pose a security hazard

7. The bank's marketing department who are likely be interested in using the system as a means of

marketing the bank

8. Hardware and software maintenance engineers who are responsible for maintaining and

upgrading the hardware and software

9. National banking regulators who are responsible for ensuring that the system conforms to

banking regulations

• These requirements sources (stakeholders, domain, systems) can all be represented as system

viewpoints, where each viewpoint presents a sub-set of the requirements for the system.

Each viewpoint provides a fresh perspective on the system, but these

• perspectives are not completely independent--they usually overlap so that they have common

requirements.

• Viewpoints

• Viewpoint-oriented approaches to requirements engineering organize both the elicitation

process and the requirements themselves using viewpoints. A key strength of viewpoint-

oriented analysis is that it recognizes multiple perspectives and provides a framework for

discovering conflicts in the requirements proposed by different stakeholders.

• Viewpoints can be used as a way of classifying stakeholders and other sources of

requirements. There are three generic types of viewpoint:

• 1. Interactor viewpoints represent people or other systems that interact directly with the

system. In the bank ATM system, examples of interactor viewpoints are the bank's customers

and the bank's account database.

75

• 2. Indirect viewpoints represent stakeholders who do not use the system themselves but who

influence the requirements in some way. In the bank ATM system, examples of indirect

viewpoints are the management of the bank and the bank security staff.

• 3. Domain viewpoints represent domain characteristics and constraints that influence the

system requirements. In the bank ATM system, an example of a domain viewpoint would be

the standards that have been developed for interbank communications.

• The initial identification of viewpoints that are relevant to a system can sometimes be

difficult. To help with this process, you should try to identify more specific viewpoint types:

• l. Providers of services to the system and receivers of system services

• 2. Systems that should interface directly with the system being specified

• 3. Regulations and standards that apply to the system

• 4. The sources of system business and non-functional requirements

• 5. Engineering viewpoints reflecting the requirements of people who have to develop,

manage and maintain the system

• 6. Marketing and other viewpoints that generate requirements on the product features

expected by customers and how the system should reflect the external image of the

organization.

76

• Figure 7.4 Viewpoints in LIBSYS

4.5.2 Interviewing

• Formal or informal interviews with system stakeholders are part of most requirements

engineering processes. In these interviews, the requirements engineering team puts questions

to stakeholders about the system that they currently use and the system to be developed.

Requirements are derived from the answers to these questions.

• Interviews may be of two types:

1. Closed interviews, where the stakeholder answers a pre-defined set of questions.

2. Open interviews, in which there is no pre-defined agenda. The requirements engineering team

explores a range of issues with system stakeholders and hence develop a better understanding of

their needs.

• Effective interviewers have two characteristics:

1. They are open-minded, avoid pre-conceived ideas about the requirements, and are willing to

listen to stakeholders. If the stakeholder comes up with surprising requirements, then they are

willing to change their mind about the system.

77

2. They prompt the interviewee to get discussions going using a springboard question, a

requirements proposal, or by working together on a prototype system. Saying to people ‘tell me

what you want’ is unlikely to result in useful information.

Interviews are good for getting an overall understanding of what stakeholders

do, how they might interact with the system and the difficulties that they face with current systems.

People like talking about their work and are usually happy to get involved in interviews. However,

interviews are not so good for understanding the requirements from the application domain.

It is hard to elicit domain knowledge during interviews for two reasons:

1. All application specialists use terminology and jargon that is specific to a domain. It is

impossible for them to discuss domain requirements without using this terminology. They normally

use terminology in a precise and subtle way that is easy for requirements engineers to

misunderstand.

2. Some domain knowledge is so familiar to stakeholders that they either find it difficult to explain

or they think it is so fundamental that it isn't worth mentioning. For example, for a librarian, it goes

without saying that all acquisitions are catalogued before they are added to the library. However,

this may not be obvious to the interviewer so it isn't taken into account in the requirements.

• Interviews are not an effective technique for eliciting knowledge about organizational

requirements and constraints because there are subtle power and influence relationships

between the stakeholders in the organization. Published organizational structures rarely

match the reality of decision making in an organization, but interviewees may not wish to

reveal the actual rather than the theoretical structure to a stranger. In general, most people are

reluctant to discuss political and organizational issues that may affect the requirements.

4.5.3 Scenarios

• Scenarios can be particularly useful for adding detail to an outline requirements description.

They are descriptions of example interaction sessions. Each scenario usually covers one or a

small number of possible interactions. Different forms of scenarios are developed and they

provide different types of information at different levels of detail about the system.

• A scenario starts with an outline of the interaction. During the elicitation process, details are

added to this to create a complete description of that interaction. At its most general, a

scenario may include:

78

1. A description of what the system and users expects when the scenario starts.

2. A description of the normal flow of events in the scenario.

3. A description of what can go wrong and how this is handled.

4. Information about other activities that might be going on at the same time.

5. A description of the system state when the scenario finishes.

4.5.4 Use cases

• Use cases are a requirements discovery technique that were first introduced in the Objectory

method (Jacobson et al., 1993). They have now become a fundamental feature of the unified

modeling language. In their simplest form, a use case identifies the actors involved in an

interaction and names the type of interaction. This is then supplemented by additional

information describing the interaction with the system.

• Use cases are documented using a high-level use case diagram. The set of use cases

represents all of the possible interactions that will be described in the system requirements.

• Actors in the process, who may be human or other systems, are represented as stick figures.

Each class of interaction is represented as a named ellipse.

• Lines link the actors with the interaction.

• Scenarios and use cases are effective techniques for eliciting requirements from stakeholders

who interact directly with the system.

• Each type of interaction can be represented as a use case. However, because they focus on

interactions with the system, they are not as effective for eliciting constraints or high-level

business and nonfunctional requirements or for discovering domain requirements.

• Figure 7.6 illustrates the essentials of the use-case notation. Actors in the process are

represented as stick figures, and each class of interaction is represented as a named ellipse.

The set of use-cases represents all of the possible interactions to be represented in the system

requirements.

79

• Figure 7.7 develops the LIBSYS example and shows other use-cases in that environment.

•

80

•

• 4.5.5 Ethnography

• Ethnography is an observational technique that can be used to understand operational

processes and help derive support requirements for these processes. The value of

ethnography is that it helps discover implicit system requirements that reflect the actual ways

that people work, rather than the formal processes defined by the organization.

• Suchman (1987) pioneered the use of ethnography to study office work. She found that the

actual work practices were far richer, more complex, and more dynamic than the simple

models assumed by office automation systems. The difference between the assumed and

the actual work was the most important reason why these office systems had no significant

effect on productivity

• Ethnography is particularly effective for discovering two types of requirements:

• 1. Requirements that are derived from the way in which people actually work, rather than the

way in which process definitions say they ought to work.

81

• 2. Requirements that are derive d from cooperation and awareness of other people’s

activities.

• Ethnography can be combined with prototyping (Figure 4.16). The ethnography informs the

development of the prototype so that fewer prototype refinement cycles are required.

Furthermore, the prototyping focuses the ethnography by identifying problems and questions

that can then be discussed with the ethnographer

•

• 2.3.3 Requirements validation

• Requirements validation is the process of checking that requirements actually define the

system that the customer really wants. Requirements validation is important because errors

in a requirements document can lead to extensive rework costs when these problems are

discovered during development or after the system is in service.

• During the requirements validation process, different types of checks should be carried out

on the requirements in the requirements document. These checks include:

1. Validity checks A user may think that a system is needed to perform certain functions.

• 2. Consistency checks Requirements in the document should not conflict. That is, there

should not be contradictory constraints or different descriptions of the same system function.

• 3. Completeness checks The requirements document should include requirements that define

all functions and the constraints intended by the system user.

82

• 4. Realism checks Using knowledge of existing technology, the requirements should be

checked to ensure that they can actually be implemented. These checks should also take

account of the budget and schedule for the system development.

• 5. Verifiability To reduce the potential for dispute between customer and contractor, system

requirements should always be written so that they are verifiable.

• There are a number of requirements validation techniques that can be used individually or in

conjunction with one another:

• 1. Requirements reviews The requirements are analyzed systematically by a team of

reviewers who check for errors and inconsistencies.

• 2. Prototyping In this approach to validation, an executable model of the system in question

is demonstrated to end-users and customers. They can experiment with this model to see if it

meets their real needs.

• 3. Test-case generation Requirements should be testable. If the tests for the requirements are

devised as part of the validation process, this often reveals requirements problems. If a test is

difficult or impossible to design, this usually means that the requirements will be difficult to

implement and should be reconsidered.

• Requirements reviews

• A requirements review is a manual process that involves people from both client and

contractor organizations. They check the requirements document for anomalies and

omissions. The review process may be managed in the same way as program Inspections.

• Requirements reviews can be informal or formal. 1)Informal reviews simply involve

contractors discussing requirements with as many system stakeholders as possible.

• 2) In a formal requirements review, the development team should 'walk' the client through

the system requirements, explaining the implications of each requirement.

• Reviewers may also check for:

• 1. Verifiability Is the requirement as stated realistically testable?

83

• 2. Comprehensibility Do the procurers or end-users of the system properly understand the

requirement?

• 3. Traceability Is the origin of the requirement clearly stated? You may have to go back to

the source of the requirement to assess the impact of a change

• Traceability is important as it allows the impact of change on the rest of the system to be

assessed. I discuss it in more detail in the following section.

• 4. Adaptability Is the requirement adaptable? That is, can the requirement be changed

without large-scale effects on other system requirements?

• 2.3.4 Requirements management

• The requirements for large software systems are always changing. One reason for this is that

these systems are usually developed to address ‘wicked’ problems—problems that cannot be

completely defined. Because the problem cannot be fully defined, the software requirements

are bound to be incomplete. During the software process, the stakeholders’ understanding of

the problem is constantly changing (Figure 4.17). The system requirements must then also

evolve to reflect this changed problem view

• There are several reasons why change is inevitable:

• 1. The business and technical environment of the system always changes after installation.

New hardware may be introduced, it may be necessary to interface the system with other

systems, business priorities may change (with consequent changes in the system support

required), and new legislation and regulations may be introduced that the system must

necessarily abide by.

84

• 2. The people who pay for a system and the users of that system are rarely the same people.

System customers impose requirements because of organizational and budgetary constraints.

These may conflict with end-user requirements and, after delivery, new features may have to

be added for user support if the system is to meet its goals.

• 3. Large systems usually have a diverse user community, with many users having different

requirements and priorities that may be conflicting or contradictory. The final system

requirements are inevitably a compromise between them and, with experience, it is often

discovered that the balance of support given to different users has to be changed.

• Requirements management is the process of understanding and controlling changes to

system requirements.

• You need to keep track of individual requirements and maintain links between dependent

requirements so that you can assess the impact of requirements changes.

• a) Enduring and volatile requirements

• Requirements evolution during the RE process and after a system has gone into service is

inevitable. Developing software requirements focuses attention on software capabilities,

business objectives and other business systems. As the requirements definition is developed,

you normally develop a better understanding of users needs.

• This feeds information back to the user, who may then propose a change to the

• requirements (Figure 4.17). Furthermore, it may take several years to specify and

• develop a large system.

• From an evolution perspective, requirements fall into two classes:

• I. Enduring requirements These are relatively stable requirements that derive from the core

activity of the organization and which relate directly to the domain of the system. For

example, in a hospital, there will always be requirements concerned with patients, doctors,

nurses and treatments. These requirements may be derived from domain models that show

the entities and relations that characterize an application domain.

85

• 2. Volatile requirements These are requirements that are likely to change during the system

development process or after the system has been become operational. An example would be

requirements resulting from government healthcare policies

• Harker and others have suggested that volatile requirements fall into the classes.

•

• b) Requirements management planning

• Planning is an essential first stage in the requirements management process. The planning

stage establishes the level of requirements management detail that is required. During the

requirements management stage, you have to decide on:

• 1. Requirements identification Each requirement must be uniquely identified so

• that it can be cross-referenced with other requirements and used in traceability

• assessments.

• 2. A change management process This is the set of activities that assess the impact and cost

of changes. I discuss this process in more detail in the following section.

86

• 3. Traceability policies These policies define the relationships between each requirement and

between the requirements and the system design that should be recorded. The traceability

policy should also define how these records should be maintained.

• 4. Tool support Requirements management involves the processing of large amounts of

information about the requirements. Tools that may be used range from specialist

requirements management systems to spreadsheets and simple database systems.

• There are three types of traceability information that may be maintained:

• 1. Source traceability information links the requirements to the stakeholders who proposed

the requirements and to the rationale for these requirements. When a change is proposed, you

use this information to find and consult the stakeholders about the change.

• 2. Requirements traceability information links dependent requirements within the

requirements document. You use this information to assess how many requirements are

likely to be affected by a proposed change and the extent of consequential requirements

changes that may be necessary.

• 3. Design traceability information links the requirements to the design modules where these

requirements are implemented. You use this information to assess the impact of proposed

requirements changes on the system design and implementation.

• Traceability information is often represented using traceability matrices, which relate

requirements to stakeholders, each other or design modules. In a requirements traceability

matrix, each requirement is entered in a row and in a column in the matrix.

• Figure 7.12 shows a simple traceability matrix that records the dependencies between

requirements. A 'D' in the row/column intersection illustrates that the requirement in the

row depends on the requirement named in the column; an 'R' means that there is some other,

weaker relationship between the requirements.

• Traceability matrices may be used when a small number of requirements have to be

managed, but they become unwieldy and expensive to maintain for large systems with many

requirements.

87

•

• Requirements management needs automated support and the software tools for this should be

chosen during the planning phase. You need tool support for:

• 1. Requirements storage The requirements should be maintained in a secure, managed data

store that is accessible to everyone involved in the requirements engineering process.

• 2. Change management The process of change management (Figure 7.13) is simplified if

active tool support is available.

• 3. Traceability management As discussed above, tool support for traceability allows related

requirements to be discovered. Some tools are available which use natural language

processing techniques to help discover possible relationships between requirements. For

small systems, it may not be necessary to use specialized requirements management tools.

• 4.7.2 Requirements change management

• Requirements change management (Figure 7.13) should be applied to all proposed changes

to a system’s requirements after the requirements document has been approved. Change

management is essential because you need to decide if the benefits of implementing new

requirements are justified by the costs of implementation. The advantage of using a formal

88

process for change management is that all change proposals are treated consistently and

changes to the requirements document are made in a controlled way. There are three

principal stages to a change management process:

• 1. Problem analysis and change specification The process starts with an identified

requirements problem or, sometimes, with a specific change proposal. During this stage, the

problem or the change proposal is analyzed to check that it is valid. This analysis is fed back

to the change requestor who may respond with a more specific requirements change

proposal, or decide to withdraw the request.

• 2. Change analysis and costing The effect of the proposed change is assessed using

traceability information and general knowledge of the system requirements. The cost of

making the change is estimated both in terms of modifications to the requirements document

and, if appropriate, to the system design and implementation. Once this analysis is

completed, a decision is made whether or not to proceed with the requirements change.

• 3. Change implementation The requirements document and, where necessary, the system

design and implementation, are modified. You should organize the requirements document

so that you can make changes to it without extensive rewriting or reorganization

• Figure 4.18 Requirements Change Management

•

• 2.4.1 System Models

• User requirements should be written in natural language because they have to be understood

by people who are not technical experts. However, more detailed system requirements may

be expressed in a more technical way.

89

• One widely used technique is to document the system specification as a set of system

models. These models are graphical representations that describe business processes, the

problem to be solved and the system that is to be developed.

• You can use models in the analysis process to develop an understanding of the

• existing system that is to be replaced or improved or to specify the new system that is

required. You may develop different models to represent the system from different

perspectives. For example:

• 1. An external perspective, where the context or environment of the system is modeled

• 2. A behavioral perspective, where the behavior of the system is modeled

• 3. A structural perspective, where the architecture of the system or the structure of the data

processed by the system is modeled

• A system model is an abstraction of the system being studied rather than an alternative

representation of that system. Ideally, a representation of a system should maintain all the

information about the entity being represented.

• An abstraction deliberately simplifies and picks out the most salient characteristics.

• Different types of system models are based on different approaches to abstraction.

• A data-flow model (for example) concentrates on the flow of data and the functional

transformations on that data.

• Examples of the types of system models that you might create during the analysis process

are:

• 1. A data- flow model Data-flow models show how data is processed at different stages in the

system.

• 2. A composition model A composition or aggregation model shows how entities in the

system are composed of other entities.

90

• 3. An architectural model Architectural models show the principal sub-systems that make up

a system.

• 4. A classification model Object class/inheritance diagrams show how entities have common

characteristics.

• 5. A stimulus-response model A stimulus-response model, or state transition diagram, shows

how the system reacts to internal and external events.

• 2.4.2 (1) Context models

• At an early stage in the requirements elicitation and analysis process you should decide the

boundaries of the system. This involves working with system stakeholders to distinguish

what is the system and what is the system's environment.

• You should make these decisions early in the process to limit the system costs and the time

needed for analysis.

• In some cases, the boundary between a system and its environment is relatively clear.

• For example, where an automated system is replacing an existing manual or computerized

system, the environment of the new system is usually the same as the existing system's

environment. In other cases, there is more flexibility, and you decide what constitutes the

boundary between the system and its environment during the requirements engineering

process.

• Figure 8.1 is an architectural model that illustrates the structure of the information system

that includes a bank auto-teller network. High-level architectural models are usually

expressed as simple block diagrams where each sub-system is represented by a named

rectangle, and lines indicate associations between sub-systems. From Figure 8.1, we see that

each ATM is connected to an account database, a local branch accounting system, a security

system and a system to support machine maintenance. The system is also connected to a

usage database that monitors how the network of ATMs is used and to a local branch counter

system. This counter system provides services such as backup and printing. These, therefore,

need not be included in the ATM system itself.

91

•

• 2.4.3 (2) Behavioral models

• Behavioral models are used to describe the overall behavior of the system.

• Two types of behavioral model here: data-flow models, which model the data processing in

the system, and state machine models, which model how the system reacts to events. These

models may be used separately or together, depending on the type of system that is being

developed.

• A dataflow model may be all that is needed to represent the behavior of these systems.

• A state machine model is the most effective way to represent their behavior.

• 2.1 Data flow models

• Data-flow models are an intuitive way of showing how data is processed by a system. At the

analysis level, they should be used to model the way in which data is processed in the

existing system.

• The use of data-flow models for analysis became widespread after the publication of

DeMarco's book on structured systems analysis. They are an intrinsic part of structured

methods that have been developed from this work.

• The notation used in these models represents functional processing (rounded rectangles),

data stores (rectangles) and data movements between functions (labelled arrows).

92

• Data-flow models are used to show how data flows through a sequence of processing steps.

• Data-flow models show a functional perspective where each transformation represents a

single function or process. They are particularly useful during the analysis of requirements as

they can be used to show end-to- end processing in a system.

• That is, they show the entire sequence of actions that take place from an input being

processed to the corresponding output that is the system's response.

• Figure 8.4 illustrates this use of data flow diagrams. It is a diagram of the processing that

takes place in the insulin pump system.

• Data-Model diagram of an insulin pump.Fig 8.4

•

• 2.2 State machine models

• A state machine model describes how a system responds to internal or external events.

• The state machine model shows system states and events that cause transitions from one state

to another. It does not show the flow of data within the system.

93

• This type of model is often used for modeling real-time systems because these systems are

often driven by stimuli from the system's environment.

• This approach to system modeling is illustrated in Figure 8.5. This diagram shows a state

machine model of a simple microwave oven equipped with buttons to set the power and the

timer and to start the system.

• Real microwave ovens are actually much more complex than the system described here.

However, this model includes the essential features of the system.

• Fig: 8.5 This diagram shows a state machine model of a simple microwave oven

equipped with buttons to set the power and the timer and to start the system.

•

• To simplify the model, assume that the

• sequence of actions in using the microwave is:

• 1. Select the power level (either half-power or full-power).

• 2. Input the cooking time.

94

• 3. Press Start, and the food is cooked for the given time.

• For safety reasons, the oven should not operate when the door is open and, on completion of

cooking, a buzzer is sounded. The oven has a very simple alphanumeric display that is used

to display various alerts and warning messages

• The UML notation describe state machine models is designed for modeling the behavior of

objects. However, it is a general-purpose notation that can be used for any type of state

machine modeling. The rounded rectangles in a model represent system states.

• Therefore, from Figure 8.5, we can see that the system responds initially to either the full-

power or the half-power button.

• Users can change their mind after selecting one of these and press the other button. The time

is set and, if the door is closed, the Start button is enabled. Pushing this button starts the oven

operation and cooking takes place for the specified time.

• In a detailed system specification, you have to provide more detail about both the stimuli and

the system states (Figure 8.6).

• Figure 8.6

•

95

• The problem with the state machine approach is that the number of possible states increases

rapidly. For large system models, therefore, some structuring of these state models is

necessary. One way to do this is by using the notion of a super state that encapsulates a

number of separate states. This super state looks like a single state on a high-level model but

is then expanded in more detail on a separate diagram.

• To illustrate this concept, consider the Operation state in Figure 8.5. This is a super state that

can be expanded, as illustrated in Figure: 8.7.

• The Operation state includes a number of sub-states. It shows that operation starts with a

status check, and that if any problems are discovered, an alarm is indicated and operation is

disabled. Cooking involves running the microwave generator for the specified time; on

completion, a buzzer is sounded. If the door is opened during operation, the system moves to

the disabled state, as shown in Figure 8.5.

• 2.4.2 (3) Data Models

• An important point of systems modeling is defining the logical form of the data processed by

the system. These are sometimes called semantic data models.

• The most widely used data modeling technique is Entity-Relation-Attribute modeling (ERA

modeling), which shows the data entities, their associated attributes and the relations

96

between these entities. This approach to modeling was first proposed in the mid-1970s by

Chen.

• Entity-relationship models have been widely used in database design. The relational database

schemas derived from these models are naturally in third normal form, which is a desirable

characteristic.

• The UML does not include a specific notation for this database modeling, as it assumes an

object-oriented development process and models data using objects and their relationships.

However, you can use the UML to represent a semantic data model.

• Figure 8.8 is an example of a data model that is part of the library system LIBSYS. Figure

shows that an Article has attributes representing the title, the authors, the name of the PDF

file of the article and the fee payable. This is linked to the Source, where the article was

published, and to the Copyright Agency for the country of publication. Both Copyright

Agency and Source are linked to Country. The country of publication is important because

copyright laws vary by country. The diagram also shows that Buyers place Orders for

Articles.

• A data dictionary is. simplistically, an alphabetic list of the names included in the system

models. As well as the name, the dictionary should include an associated description of the

named entity and, if the name represents a composite object, a description of the

97

composition. Other information such as the date of creation. the creator and the

representation of the entity may also be included depending on the type of model being

developed.

The advantages of using a data dictionary are:

• 1. It is a mechanism for name management. Many people may have to invent names for

entities and relationships when developing a large system model. These names should be

used consistently and should not clash. The data dictionary software can check for name

uniqueness where necessary and warn requirements analysts of name duplications.

• 2. It serves as a store of organizational information. As the system is developed,

information that can link analysis, design, implementation and evolution is added to the data

dictionary, so that all information about an entity is in one place.

• The data dictionary entries shown in Figure 8.9 define the names in the semantic data model

for LIBSYS.

• All system names, whether they are names of entities, relations, attributes or services. should

be entered in the dictionary. Software is normally used to create, maintain and interrogate

the dictionary.

98

• 2.4.5 (4) Object models

• An object-oriented approach to the whole software development process is now commonly

used, particularly for interactive systems development. This means expressing the systems

requirements using an object model, designing using objects and developing the system in

an object-oriented programming language such as Java or C++.

• Object models that you develop during requirements analysis may be used to represent both

system data and its processing.

• Developing object models during requirements analysis usually simplifies the transition to

object-oriented design and programming.

• An object class is an abstraction over a set of objects that identifies common attributes (as in

a semantic data model) and the services or operations that are provided by each object.

• Objects are executable entities with the attributes and services of the object class.

• Objects are instantiations of the object class, and many objects may be created from a class.

• Generally, the models developed using analysis focus on object classes and their

relationships.

• An object class in UML, as illustrated in the examples in Figure 8.10, is represented as a

vertically oriented rectangle with three sections:

• I. The name of the object class is in the top section.

• 2. The class attributes are in the middle section.

• 3. The operations associated with the object class are in the lower section of the rectangle.

99

a) Inheritance Models

• Figure 8.10 illustrates part of a simplified class hierarchy for a model of a library. This

hierarchy gives information about the items held in the library. The library holds various

items, such as books, music, recordings of films, magazines and newspapers.

• Figure 8.11 is an example of another inheritance hierarchy that might be part of the library

model. In this case, the users of a library are shown. There are two classes of user:

a) those who are allowed to borrow books, and

b)those who may only read books in the library without taking them away.

• In the UML notation, inheritance is shown upwards' rather than 'downwards‘ as it is in some

other object-oriented notations or in languages such as Java, where sub-classes inherit from

super-classes.

100

• That is, the arrowhead (shown as a triangle) points from the classes that inherit attributes

and operations to the super-class. Rather than use the term inheritance, UML refers to the

generalization relationship.

• Figure 8.10 and Figure 8.11 show class inheritance hierarchies where every object class

inherits its attributes and operations from a single parent class. Multiple inheritance models

may also be constructed where a class has several parents. Its inherited attributes and

services are a conjunction of those inherited from each super-class.

• Figure 8.12 shows an example of a multiple inheritance model that may also be part of the

library model. The main problem with multiple inheritance is designing an inheritance graph

where objects do not inherit unnecessary attributes.

• Other problems include the difficulty of reorganizing the inheritance graph when changes are

required and resolving name clashes where attributes of two or more super-classes have the

same name but different meanings.

101

•

•

b) Object aggregation

Acquiring attributes and services through an inheritance relationship with other objects, some

objects are groupings of other objects. That is, an object is an aggregate of a set of other objects.

The classes representing these objects may be modeled using an object aggregation model, as

shown in Figure 8.13.

• Figure 8.13 could be maintained electronically and downloaded to the student's computer. In

a sequence diagram (8.14), objects and actors are aligned along the top of the diagram.

Labeled arrows indicate operations; the sequence of operations is from top to bot tom. In

I:his scenario, the library user accesses the catalogue to see whether the item required is

available electronically; if it is, the user requests the electronic issue of that item.

102

2.4.6 (5) Structured Methods

• A structured method is a systematic way of producing models of an existing system or

of a system that is to be built.

• They were first developed in the 1970s to support software analysis and design(Constantine

and Yourdon, 1979; Gane and Sarson, 1979; Jackson, 1983) and evolved in the 1980s and

1990s to support object-oriented development.

• Structured methods provide a framework for detailed system modeling as part of

requirements elicitation and analysis. Most structured methods have their own preferred set

of system models.

• They usually define a process that may be used to derive these models and a set of rules and

guidelines that apply to the models. Standard documentation is produced for the system.

CASE tools are usually available for method support.

• These tools support model editing and code and report generation, and provide some

model-checking capabilities.

• Structured methods have been applied successfully in many large projects.

• However, structured methods suffer from a number of weaknesses:

103

I. They do not provide effective support for understanding or modeling nonfunctional system

requirements.

2. They are indiscriminate in that they do not usually include guidelines to help users decide

whether a method is appropriate for a particular problem. Nor do they normally include advice on

how they may be adapted for use in a particular environment.

3. They often produce too much documentation. The essence of the system requirements may be

hidden by the mass of detail that is included.

4. The models that are produced are very detailed, and users often find them difficult to understand.

These users therefore cannot check the realism of these models.

• Analysis and design CASE tools support the creation, editing and analysis of the graphical

notations used in structured methods. Figure 8.15 shows the components that may be

included method support environment.

• Comprehensive method support tools, as illustrated in Figure 8.15, normally include:

1. Diagram editors used to create object models, data models, behavioral models, and so on. These

editors are not just drawing tools but are aware of the types of entities in the diagram. They capture

information about these entities and save this information in the central repository.

2. Design analysis and checking tools that process the design and report on error and anomalies.

These may be integrated with the editing system so that user errors are trapped at an early stage in

the process.

104

3. Repository query languages that allow the designer to find designs and associated design

information in the repository.

4. A data dictionary that maintains information about the entities used in a system design.

5. Report definition and generation tools that take information from the central store and

automatically generate system documentation.

6. Forms definition tools that allow screen and document formats to be specified.

7. Import/export facilities that allow the interchange of information from the central repository with

other development tools.

8. Code generators that generate code or code skeletons automatically from the design captured in

the central store.

105

UNIT – III

Design concepts: Design Concepts, Architectural Design: Architectural design decisions, System

organization, Modular decomposition styles.

Object-Oriented design: Objects and Object Classes, An Object-Oriented design process, Design

Evolution.

3.1 (1) Software process designing concepts

Introduction to design process

• The main aim of design engineering is to generate a model which shows firmness, delight and

commodity.

• Software design is an iterative process through which requirements are translated into the

blueprint for building the software.

Software quality guidelines

• A design is generated using the recognizable architectural styles and compose a good design

characteristic of components and it is implemented in evolutionary manner for testing.

• A design of the software must be modular i.e the software must be logically partitioned into

elements. In design, the representation of data , architecture, interface and components should

be distinct.

• A design must carry appropriate data structure and recognizable data patterns. Design

components must show the independent functional characteristic.

• A design creates an interface that reduce the complexity of connections between the

components. A design must be derived using the repeatable method. The notations should be

use in design which can effectively communicates its meaning.

Quality attributes

The attributes of design name as 'FURPS' are as follows:

1)Functionality: It evaluates the feature set and capabilities of the program.

2)Usability: It is accessed by considering the factors such as human factor, overall aesthetics,

consistency and documentation.

3)Reliability: It is evaluated by measuring parameters like frequency and security of failure, output

result accuracy, the mean-time-to-failure(MTTF), recovery from failure and the program

predictability.

106

4)Performance: It is measured by considering processing speed, response time, resource

consumption, throughput and efficiency.

5)Supportability: It combines the ability to extend the program, adaptability, serviceability. These

three term defines the maintainability.

• Testability, compatibility and configurability are the terms using which a system can be easily

installed and found the problem easily.

• Supportability also consists of more attributes such as compatibility, extensibility, fault

tolerance, modularity, reusability, robustness, security, portability, scalability.

3.1(2) Design concepts

The set of fundamental software design concepts are as follows:

1. Abstraction

• A solution is stated in large terms using the language of the problem environment at the highest

level abstraction.

• The lower level of abstraction provides a more detail description of the solution.

• A sequence of instruction that contain a specific and limited function refers in a procedural

abstraction.

• A collection of data that describes a data object is a data abstraction.

2. Architecture

• The complete structure of the software is known as software architecture.

• Structure provides conceptual integrity for a system in a number of ways.

• The architecture is the structure of program modules where they interact with each other in a

specialized way.

• The components use the structure of data.

• The aim of the software design is to obtain an architectural framework of a system.

• The more detailed design activities are conducted from the framework.

Shaw and Garlan describe a set of properties that should be specified as part of an architectural

design:

• Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those

107

components are packaged and interact with one another. For example, objects are packaged to

encapsulate both data and the processing that manipulates the data and interact via the

invocation of methods.

• Extra-functional properties. The architectural design description should address how the

design architecture achieves requirements for performance, capacity, reliability, security,

adaptability, and other system characteristics.

• Families of related systems. The architectural design should draw upon repeatable patterns

that are commonly encountered in the design of families of similar systems. In essence, the

design should have the ability to reuse architectural building blocks.

3. Patterns

A design pattern describes a design structure and that structure solves a particular design problem in

a specified content.

 4. Separation of Concerns

Separation of Concerns is a design concept [Dij82] that suggests that any complex problem can be

more easily handled if it is subdivided into pieces that can each be solved and/or optimized

independently.

• A concern is a feature or behavior that is specified as part of the requirements model for the

software. By separating concerns into smaller, and therefore more manageable pieces, a

problem takes less effort and time to solve.

5. Modularity

• A software is separately divided into name and addressable components. Sometime they are

called as modules which integrate to satisfy the problem requirements.

• Modularity is the single attribute of a software that permits a program to be managed easily.

6. Information hiding

Modules must be specified and designed so that the information like algorithm and data presented

in a module is not accessible for other modules not requiring that information.

7. Functional independence

• The functional independence is the concept of separation and related to the concept of

modularity, abstraction and information hiding.

• The functional independence is accessed using two criteria i.e Cohesion and coupling.

108

 a)Cohesion

• Cohesion is an extension of the information hiding concept.

• A cohesive module performs a single task and it requires a small interaction with the other

components in other parts of the program.

b)Coupling

Coupling is an indication of interconnection between modules in a structure of software.

8. Refinement

• Refinement is a top-down design approach.

• It is a process of elaboration.

• A program is established for refining levels of procedural details.

• A hierarchy is established by decomposing a statement of function in a stepwise manner till

the programming language statement are reached.

9.Aspect

• An aspect is a representation of a crosscutting concern.

10. Refactoring

• It is a reorganization technique which simplifies the design of components without changing

its function behaviour.

• Refactoring is the process of changing the software system in a way that it does not change

the external behaviour of the code still improves its internal structure.

11.Object-Oriented Design Concepts The object-oriented (OO) paradigm is widely used in modern

software engineering. Appendix 2 has been provided for those readers who may be unfamiliar with

OO design concepts such as classes and objects, inheritance, messages, and polymorphism, among

others.

12. Design classes

• The model of software is defined as a set of design classes.

• Every class describes the elements of problem domain and that focus on features of the

problem which are user visible.

• Five different types of design classes, each representing a different layer of the design

architecture, can be developed :

109

1) User interface classes define all abstractions that are necessary for human computer interaction

(HCI). In many cases, HCI occurs within the context of a metaphor (e.g., a checkbook, an order form,

a fax machine), and the design classes for the interface may be visual representations of the elements

of the metaphor.

•2)Business domain classes are often refinements of the analysis classes defined earlier. The classes

identify the attributes and services (methods) that are required to implement some element of the

business domain.

3) Process classes implement lower-level business abstractions required to fully manage the business

domain classes.

 •4)Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of

the software.

•5)System classes implement software management and control functions that enable the system to

operate and communicate within its computing environment and with the outside world.

Arlow and Neustadt suggest that each design class be reviewed to ensure that it is “well-formed.”

They define four characteristics of a well-formed design class:

1) Complete and sufficient. A design class should be the complete encapsulation of all attributes

and methods that can reasonably be expected (based on a knowledgeable interpretation of the class

name) to exist for the class. For example, the class Scene defined for video-editing software is

complete only if it contains all attributes and methods that can reasonably be associated with the

creation of a video scene. Sufficiency ensures that the design class contains only those methods that

are sufficient to achieve the intent of the class, no more and no less.

2) Primitiveness Methods associated with a design class should be focused on accomplishing one

service for the class. Once the service has been implemented with a method, the class should not

provide another way to accomplish the same thing. For example, the class VideoClip for video-editing

software might have attributes start-point and end-point to indicate the start and end points of the clip

(note that the raw video loaded into the system may be longer than the clip that is used). The methods,

setStartPoint() and setEndPoint(), provide the only means for establishing start and end points for the

clip.

3)High cohesion. A cohesive design class has a small, focused set of responsibilities and single-

mindedly applies attributes and methods to implement those responsibilities. For example, the class

VideoClip might contain a set of methods for editing the video clip. As long as each method focuses

110

solely on attributes associated with the video clip, cohesion is maintained.

4) Low coupling. Within the design model, it is necessary for design classes to collaborate with one

another. However, collaboration should be kept to an acceptable minimum. If a design model is highly

coupled (all design classes collaborate with all other design classes), the system is difficult to

implement, to test, and to maintain over time. In general, design classes within a subsystem should

have only limited knowledge of other classes. This restriction, called the Law of Demeter [Lie03],

suggests that a method should only send messages to methods in neighboring classes.

3.2 (1) Architectural design

Large systems are always decomposed into sub-systems that provide some related set of services.

The initial design process of identifying these sub-systems and establishing a framework for sub-

system control and communication is called architectural design. The output of this design process is

a description of the software architecture.

In the model presented, architectural design is the first stage in the design process and represents a

critical link between the design and requirements engineering processes. The architectural design

process is concerned with establishing a basic structural framework that identifies the major

components of a system and the communications between these components.

• Bass et al. (Bass, et al., 2(03) discuss three advantages of explicitly designing

and documenting a software architecture:

I. Stakeholder communication The architecture is a high-level presentation of the system that may

be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the system

development requires some analysis. Architectural design decisions have a profound effect on

whether the system can meet critical requirements such as performance, reliability and

maintainability.

3. Large-scale reuse A system architecture model is a compact, manageable description of how a

system is organized and how the components interoperate.

• The system architecture is often the same for systems with similar requirements

and so can support large-scale software reuse. It may be possible to develop product-line architectures

where the same architecture is used across a range of related systems.

111

• The system architecture affects the performance, robustness, distributability and

maintainability of a system (Bosch). The particular style and structure chosen for an

application may therefore depend on the non-functional system requirements:

1. Performance If performance is a critical requirement, the architecture should be designed to

localize critical operations within a small number of subsystems, with as little communication as

possible between these sub-systems. This may mean using relatively large-grain rather than fine-grain

components to reduce component

2. Security If security is a critical requirement, a layered structure for the architecture should be used,

with the most critical assets protected in the innermost layers and with a high level of security

validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed so that safety-related

operations are all located in either a single sub-system or in a small number of sub-systems. This

reduces the costs and problems of safety validation and makes it possible to provide related protection

systems.

4. Availability If availability is a critical requirement, the architecture should be designed to include

redundant components and so that it is possible to replace and update components without stopping

the system. Fault-tolerant system architectures for high-availability systems are covered .

5. Maintainability If maintainability is a critical requirement, the system architecture should be

designed using fine-grain, self-contained components that may readily be changed. Producers of data

should be separated from consumers and shared data structures should be avoided.

• For example, Figure 11.1 is an abstract model of the architecture for a packing robot system

that shows the sub-systems that have to be developed. This robotic system can pack different

kinds of object. It uses a vision sub-system to pick out objects on a conveyor, identify the type

of object and select the right kind of packaging. The system then moves objects from the

delivery conveyor to be packaged. It places packaged objects on another conveyor.

112

3.2(2)Architectural design decisions

• Architectural design is a creative process where you try to establish a system organization that

will satisfy the functional and non-functional system requirements.

• Because it is a creative process, the activities within the process differ radically depending on

the type of system being developed, the background and experience of the system architect,

and the specific requirements for the system.

• It is therefore more useful to think of the architectural design process from a decision

perspective rather than from an activity perspective. During the architectural design process,

system architects have to make a number of fundamental decisions that profoundly affect the

system and its development process. Based on their knowledge and experience, they have to

answer the following fundamental questions:

1. Is there a generic application architecture that can act as a template for the system

that is being designed?

2. How will the system be distributed across a number of processors?

3. What architectural style or styles are appropriate for the system?

4. What will be the fundamental approach used to structure the system?

5. How will the structural units in the system be decomposed into modules?

6. What strategy will be used to control the operation of the units in the system?

7. How will the architectural design be evaluated?

113

8. How should the architecture of the system be documented?

• Evaluating an architectural design is difficult because the true test of an architecture is in how

well it meets its functional and non-functional requirements after it has been deployed

• However, in some cases, you can do some evaluation by comparing your design against

reference or generic architectural models.

• The graphical models of the system present different perspectives on the architecture.

Architectural models that may be developed may include:

• I. A static structural model that shows the sub-systems or components that are to be developed

as separate units.

• 2. A dynamic process model that shows how the system is organised into processes at run-

time. This may be different from the static model.

• 3. An interface model that defines the services offered by each sub-system

through its public interface.

• 4. Relationship models that shows relationships, such as data flow, between the sub-systems.

• 5. A distribution model that shows how sub-systems may be distributed across computers.

3.2(3) System Organization

• The organization of a system reflects the basic strategy that is used to structure a system. The

system organization may be directly reflected in the sub-system structure.

• However, it is often the case that the sub-system model includes more detail than the

organizational model, and there is not always a simple mapping from sub-systems to

organizational structure

1) The repository model

• Sub-systems making up a system must exchange information so that they can work together

effectively. There are two fundamental ways in which this can be done.

1. All shared data is held in a central database that can be accessed by all subsystems.

• A system model based on a shared database is sometimes called a repository model.

2. Each sub-system maintains its own database. Data is interchanged with other sub-systems by

passing messages to them.

114

• The majority of systems that use large amounts of data are organized around a shared database

or repository. This model is therefore suited to applications where data is generated by one

sub-system and used by another.

• Examples of this type of system include command and control systems, management

information systems, CAD systems and CASE toolsets.

• Figure 11.2 is an example of a CASE toolset architecture based on a shared repository.

The advantages and disadvantages of a shared repository are as follows:

1. It is an efficient way to share large amounts of data. There is no need to transmit data explicitly

from one sub-system to another.

2. However, sub-systems must agree on the repository data model. Inevitably, this is a compromise

between the specific needs of each tool. Performance may be adversely affected by this compromise.

It may be difficult or impossible to integrate new sub-systems if their data models do not fit the agreed

schema.

3. Sub-systems that produce data need not be concerned with how that data is used by other sub-

systems.

4. However, evolution may be difficult as a large volume of information is generated according to an

agreed data model. Translating this to a new model will certainly be expensive; it may be difficult or

even impossible.

5. Activities such as backup, security, access control and recovery from error are centralized. They

are the responsibility of the repository manager. Tools can focus on their principal function rather

115

than be concerned with these issues.

6. However, different sub-systems may have different requirements for security, recovery and backup

policies. The repository model forces the same policy on all sub-systems.

7. The model of sharing is visible through the repository schema. It is straightforward to integrate

new tools given that they are compatible with the agreed data model.

8. However, it may be difficult to distribute the repository over a number of machines. Although it is

possible to distribute a logically centralized repository, there may be problems with data redundancy

and inconsistency.

2. The client-server model

• The client-server architectural model is a system model where the system is organized as set

of services and associated servers and clients that access and use the services. The major

components of this model are:

I. A set of servers that offer services to other sub-systems. Examples of servers are print servers that

offer printing services, file servers that offer file management services and a compile server, which

offers programming language compilation services.

2. A set of clients that call on the services offered by servers. These are normally sub- systems In

their own right. There may be several instances of a client program executing concurrently.

3. A network that allows the clients to access these services. This is not strictly necessary as both the

clients and the servers could run on a single machine. In practice, however, most client-server systems

are implemented as distributed systems.

Clients may have to know the names of the available servers and the services

that they provide. However, servers need not know either the identity of clients or

how many clients there are.

Figure 11.3 shows ,m example of a system that is based on the client-server model.

This is a multi-user, web-based system to provide a film and photograph library. In this

system, several servers manage and display the different types of media.

116

• The catalogue must be able to deal with a variety of queries and provide links into the web

information system that includes data about the film and video clip, and an e-commerce system

that supports the sale of film and video clips.

• The most important advantage of the client-server model is that it is a distributed architecture.

Effective use can be made of networked systems with many distributed processors. It is easy

to add a new server and integrate it with the rest of the system or to upgrade servers

transparently without affecting other parts of the system.

• However, changes to existing clients and servers may be required to gain the full benefits of

integrating a new server. There may be no shared data model across servers and sub-systems

may organize their data in different ways. This means that specific data models may be

established on each server to allow its performance to be optimized.

3. The layered model

• The layered model of an architecture (sometimes called an abstract machine model)

• organizes a system into layers, each of which provide a set of services. Each layer can be

thought of as an abstract machine whose machine language is defined by the services provided

by the layer. This 'language' is used to implement the next level of abstract machine. For

example, a common way to implement a language is to define an ideal 'language machine' and

compile the language into code for this machine.

• An example of a layered model is the OSI reference model of network protocols

117

• Figure 11.4 reflects the APSE structure and shows how a configuration management system

might be integrated using this abstract machine approach.

• The configuration management system manages versions of objects and provides general

configuration management facilities, To support these configuration management facilities, it

uses an object management system that provides information storage and management

services for configuration items or objects. This system is built on top of a database system to

provide basic data storage and services such as transaction management, rollback and

recovery,

 and access control. The database management uses the underlying operating system

facilities and file store in its implementation.

• The layered approach supports the incremental development of systems. As a layer is

developed, some of the services provided by that layer may be made available to users. This

architecture is also changeable and portable. So long as its interface is unchanged, a layer can

be replaced by another, equivalent layer

• As layered systems localize machine dependencies in inner layers, this makes it easier to

provide multi-platform implementations of an application system. Only the inner, machine-

dependent layers need be re-implemented to take account of the facilities of a different

operating system or Database

• A disadvantage of the layered approach is that structuring systems in this way can be difficult.

Inner layers may provide basic facilities, such as file management, that are required at all

levels.

118

• Services required by a user of the top level may therefore have to 'punch through' adjacent

layers to get access to services that are provided several levels beneath it.

• Performance can also be a problem because of the multiple levels of command interpretation

that are sometimes required. If there are many layers, a service request from a top layer may

have to be interpreted several times in different layers before it is processed.

• To avoid these problems, applications may have to communicate directly with inner layers

rather than use the services provided by the adjacent layer.

3.2(4) Modular decomposition styles

• You need to make a decision on the approach to be used in decomposing sub-systems into

modules. There is not a rigid distinction between system organization and modular

decomposition.

There is no clear distinction between sub-systems and modules, but I find it useful to think of them

as follows:

1. A sub-system is a system in its own right whose operation does not depend on the services provided

by other sub-systems. Sub-systems are composed of modules and have defined interfaces, which are

used for communication with other sub-systems.

2. A module is normally a system component that provides one or more services to other modules. It

makes use of services provided by other modules. It is not normally considered to be an independent

system. Modules are usually composed from a number of other simpler system components.

• There are two main strategies that you can use when decomposing a sub-system into modules:

• I. Object-oriented decomposition where you decompose a system into a set of communicating

objects.

• 2.Function-oriented pipelining where you decompose a system into functional modules that

accept input data and transform it into output data.

• In the object-oriented approach, modules are objects with private state and defined operations

on that state.

• In the pipelining model, modules are functional transformations. In both cases, modules may

be implemented as sequential components or as processes.

119

1. Object-oriented decomposition

 An object-oriented, architectural model structures the system into a set of loosely

coupled objects with well-defined interfaces. Objects call on the services offered by

other objects“.

 Figure 11.5 is an example of an object-oriented architectural model of an invoice

processing system. This system can issue invoices to customers, receive payments, and

issue receipts for these payments and reminders for unpaid invoices.

 An object-oriented decomposition is concerned with object classes, their attributes and

their operations. When implemented, objects are created from these classes and some

control model is used to coordinate object operations.

 In this particular example, the Invoice class has various associated operations that

implement the system functionality. This class makes use of other classes representing

customers, payments and receipts.

120

The advantages of the object-oriented approach are :

• Are loosely coupled, the implementation of objects can be modified without affecting other

objects.

• Objects are often representations of real-world entities so the structure of the system is readily

understandable.

• Because these real-world entities are used in different systems, objects can be reused.

• Object-oriented programming languages have been developed that provide direct

implementations of architectural components.

The object-oriented approach does have disadvantages.

• To use services, objects must explicitly reference the name and the interface of other objects.

• If an interface change is required to satisfy proposed system changes, the effect of that change

on all users of the changed object must be evaluated.

• While objects may map cleanly to small-scale real-world entities, more complex entities are

sometimes difficult to represent as objects.

2.Function-oriented pipelining

• In a function-oriented pipeline or data-flow model, functional transformations process their

inputs and produce outputs. Data flows from one to another and is transformed as it moves

through the sequence.

• Each processing step is implemented as a transform. Input data flows through these transforms

until converted to output.

• The transformations may execute sequentially or in parallel. The data can be processed by

each transform item by item or in a single batch.

• When the transformations are represented as separate processes, this model is sometimes

called the pipe and filter style after the terminology used in the Unix system.

• The Unix system provides pipes that act as data conduits and a set of commands that are

functional transformations.

• The term filter is used because a transformation 'filters out the data it can process from its input

data stream.

121

• Variants of this pipelining model have been in use since computers were first used for

automatic data processing. When transformations are sequential with data processed in

batches, this architectural model is a batch sequential model.

• An example of this type of system architecture is shown in Figure 11.6.

• An organization has issued invoices to customers. Once a week, payments that have been made

are reconciled with the invoices.

• For those invoices that have been paid, a receipt is issued. For those invoices that have not

been paid within the allowed payment time, a reminder is issued.

• This is a model of only part of the invoice processing system; alternative transformations

would be used for the issue of invoices. Notice the difference between this and its object-

oriented equivalent discussed in the previous section.

• The object model is more abstract as it does not include information about the sequence of

operations.

• Fig : 11.6 A Pipeline model of an invoice processing system.

The advantages of this architecture are:

• I. It supports the reuse of transformations.

• 2. It is intuitive in that many people think of their work in terms of input and output processing.

• 3. Evolving the system by adding new transformations is usually straightforward.

• 4. It is simple to implement either as a concurrent or a sequential system.

• The principal problem with this style is that there has to be a common format for data transfer

that can be recognized by all transformations.

122

• Each transformation must either agree with its communicating transformations on the format

of the data that will be processed or with a standard format for all data communicated must be

imposed.

• Interactive systems are difficult to write using the pipelining model because of the need for a

stream of data to be processed.

3.3(1) Object Oriented Design

• An object-oriented system is made up of interacting objects that maintain their own local state

and provide operations on that state (Figure 14.1).

• The representation of the state is private and cannot be accessed directly from outside the

object.

• Object-oriented design processes involve designing object classes and the relationships

between these classes. These classes define the objects in the system and their interactions.

• When the design is realized as an executing program, the objects are created dynamically from

these class definitions.

123

• Object-oriented design is part of object-oriented development where an object-oriented

strategy is used throughout the development process:

• Object-oriented analysis is concerned with developing an object-oriented model of the

application domain. The objects in that model reflect the entities and operations associated

with the problem to be solved.

• Object-oriented design is concerned with developing an object-oriented model of a software

system to implement the identified requirements. The objects in an object-oriented design are

related to the solution to the problem. There may be close relationships between some problem

objects and some solution objects, but the designer inevitably has to add new objects and to

transform problem objects to implement the solution.

• Object-oriented programming is concerned with realizing a software design using an object-

oriented programming language, such as Java. An object-oriented programming language

provides constructs to define object classes and a run-time system to create objects from these

classes.

• Object-oriented systems are easier to change than systems developed using other approaches

because the objects are independent. They may be understood and modified as standalone

entities. Changing the implementation of an object or adding services should not affect other

system object

• Because objects are associated with things, there is often a clear mapping between real-world

entities (such as hardware components) and their controlling objects in the system. This

improves the understandability and hence the maintainability of the design.

• Objects are, potentially, reusable components because they are independent encapsulations of

state and operations. Designs can be developed using objects that have been created in previous

designs. This reduces design, programming and validation costs.

• Several object-oriented design methods have been proposed .

• The UML is a unification of the notations used in these methods.

3.3(2) 1. Objects and object classes

• The terms object and object-oriented are applied to different types of entity, design methods,

systems and programming languages. There is a general acceptance that an object is an

124

encapsulation of information, and this is reflected in my definition of an object and an object

class:

• An object is an entity that has a state and a defined set of operations that operate on that state.

The state is represented as a set of object attributes. The operations associated with the object

provide services to other objects (clients) that request these services when some computation

is required.

• Objects are created according to an object class definition. An object class definition is both

a type specification and a template for creating objects. It includes declarations of all the

attributes and operations that should be associated with an object of that class.

• Figure 14.2 (An Employee Object) illustrates this notation using an object class that models

an employee in an organization.

• The UML uses the term operation to mean the specification of an action; the term method is

used to refer to the implementation of an operation.

• The class Employee defines a number of attributes that hold information about employees

including their name and address, social security number, tax code, and so on.

• The ellipsis (...) indicates that there are more attributes associated with the class than are

shown.

• Operations associated with the object are join (called when an employee joins the

organization), leave (called when an employee leaves the organization), retire (called when

125

the employee becomes a pensioner of the organization)and changeDetails (called when some

employee information needs to be modified).

• Objects communicate by requesting services (calling methods) from other objects and, if

necessary, by exchanging the information required for service provision. The copies of

information needed to execute the service and the results of service execution are passed as

parameters.

• In service-based systems, object communications are implemented directly as XML text

messages that objects exchange.

• When service requests are implemented in this way, communication between objects

• is synchronous. That is, the calling object waits for the service request to be completed.

• However, if objects are implemented as concurrent processes or threads, the object

(communication may be asynchronous. The calling object may continue in operation while the

requested service is executing.

• Figure 14.3

• Figure 14.3 shows an example of an object class hierarchy where different classes of

employee are shown.

126

• Classes lower down the hierarchy have the same attributes and operations as their parent

classes but may add new attributes and operations or modify some of those from their parent

classes.

• This means that there is one-way interchangability. If the name of a parent class is used in a

model, the object in the system may either be defined as of that class or of any of its

descendants.

• The class Manager in Figure 14.3 has all of the attributes and operations of the class

Employee but has, in addition, two new attributes that record the budgets controlled by the

manager and the date that the manager was appointed to a particular management role.

• Similarly, the class Programmer adds new attributes that define

• the project that the programmer is working on and the programming language skills that he

or she has. Objects of class Manager or Programmer may therefore be used anywhere an

object of class Employee is required.

• Objects that are members of an object class participate in relationships with other objects.

These relationships may be modeled by describing the associations between the object

classes.

• In the UML, associations are denoted by a line between the object classes that may

optionally be annotated with information about the association.

• This is illustrated in Figure 14.4, which shows the association between objects of class

Employee and objects of class Department, and between objects of class Employee and

objects of class Manager.

• Association is a very general relationship and is often used in the UML to indicate that either

an attribute of an object is an associated object or the implementation of an object method

relies on the associated object.

• Fig: 14.4 An Association Model

• One of the most common associations is aggregation, which illustrates how objects may be

composed of other objects.

127

• 1.1 Concurrent Objects

• All object requests a service from another object by sending a service request' message to

that object. There is no requirement for serial execution where one object waits for

completion of a requested service.

• Consequently, the general model of object interaction allows objects to execute concurrently

as parallel processes. These objects may execute on the same computer or as distributed

objects on different machines.

• In practice, most object-oriented programming languages have as their default a serial

execution model where requests for object services are implemented in the same way as

function calls. Therefore, when an object called theList is created from a normal object

class, you write in Java:

 theList.append (17)

• This calls the append method associated with theList object to add the element 17 to theList,

and execution of the calling object is suspended until the append operation has been

completed. However, Java includes a very simple mechanism

• (threads) that lets you create objects that execute concurrently.

• Threads are created in Java by using the built-in Thread class as a parent class in a class

declaration.

• Threads must include a method called run, which is started by the Java run-time system

when objects that are defined as threads are created.

• There are two kinds of concurrent object implementation:

• 1. Servers where the object is realised as a parallel process with methods corresponding to

the defined object operations. Methods start up in response to an external message and may

128

execute in parallel with methods associated with other objects. When they have completed

their operation, the object suspends itself and waits for further requests for service.

• 2. Active objects where the state of the object may be changed by internal operations

executing within the object itself. The process representing the object

continually executes these operations so never suspends itself.

• Servers are most useful in a distributed environment where the calling and the called object

may execute on different computers. The response time for the service that is requested is

unpredictable, so, wherever possible, you should design the system so that the object that has

requested a service does not have to wait for that service to be completed. may request the

service.

• Active objects are used when an object needs to update its own state at specified intervals.

This is common in real-time systems where objects are associated with hardware devices that

collect information about the system's environment.

• The object's methods allow other objects access to the state information.

• Figure 14.5 shows how an active object may be defined and implemented in Java.

• The object class represents a transponder on an aircraft. The transponder keeps track of the

aircraft's position using a satellite navigation system. It can respond to messages from air

traffic control computers.

• It provides the current aircraft position in

response to a request to the givePosition method.

129

3.3(3) 2.An object-oriented design process

• There are several methods of object-oriented

design with no definitive 'best' method or design process.

• The process here is a general one that incorporates activities common to most OOD

processes.

• The general process that I use here for object-oriented design has a number of stages:

1. Understand and define the context and the modes of use of the system.

2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.

5. Specify object interfaces.

• In fact all of the above activities are interleaved and so influence each other.

130

• Objects are identified and the interfaces fully or partially specified as the architecture of the

system is defined.

• As object models are produced these individual object definitions may be refined which

leads to changes to the system architecture.

• We can illustrate the process activities by developing an example of an object-oriented

design.

• This example is part of a system for creating weather maps using automatically collected

meteorological data. The detailed requirements for such a weather mapping system would

take up many pages.

• A weather mapping system is required to generate weather maps on a regular basis using

data collected from remote, unattended weather stations and other data sources such as

weather observers, balloons and satellites. Weather stations transmit their data to the area

computer in response to a request from that machine.

• The area computer system validates the collected data and integrates the data from different

sources. The integrated data is archived and, using data from this archive and a digitized

map database, a set of local weather maps is created. Maps may be printed for distribution

on a special-purpose map printer or may be displayed in a number of different formats.

• This description shows that part of the overall system is concerned with collecting data, part

with integrating the data from different sources, part with archiving that data and part with

creating weather maps.

• This is a layered architecture that reflects the stages of processing in the system, namely data

collection, data integration, data archiving and map generation. A layered architecture is

131

appropriate in this case because each stage relies only on the processing of the previous stage

for its operation.

• The layers and have included the layer name in a UML package symbol that has been

denoted as a sub-system.

• In Figure 14.7, we have expanded on this abstract architectural model by showing the

components of the sub-systems. These are still abstract and have been derived from the

information in the description of the system.

2.1. System context and models of use

• The first stage in any software design process is to develop an understanding of the

relationships between the software that is being designed and its external environment.

• The system context and the model of system use represent two complementary models of the

relationships between a system and its environment:

• 1. The system context is a static model that describes the other systems in that environment.

• 2. The model of the system use is a dynamic model that describes how the system actually

interacts with its environment.

• The context model of a system may be represented using associations (see Figure 14.4)

where a simple block diagram of the overall system architecture is produced.

• You then develop this by deriving a sub-system model using UML packages as shown in

Figure 14.7. This model shows that the context of the weather station system is within a sub-

132

system concerned with data collection. It also shows other sub-systems that make up the

weather mapping system.

• When you model the interactions of a system with its environment you should use an

abstract approach that does not include too much detail.

• The use-case model for the weather station is shown in Figure 14.8. This shows that weather

station interacts with external entities for startup and shutdown, for reporting the weather

data that has been collected, and for instrument testing and calibration.

• Each of these use-cases can be described in structured natural language. This helps

designers identify objects in the system and gives them an understanding of what the system

is intended to do.

• The use-case description helps to identify objects and operations in the system.

• From the description of the Report use-case, it is obvious that objects representing the

instruments that collect weather data will be required, as will an object representing the

summary of the weather data. Operations to request weather data and to send weather data

are required.

133

2.2Architectural design

• Once the interactions between the software system that is being designed and the system,

environment have been defined, you can use this information as a basis for designing the

system architecture. The automated weather station is a relatively simple system, and its

architecture can again be represented as a layered model.

• illustrated this in Figure 14.10 as three UML packages within the more general Weather

station package. Notice how I have used UML annotations (text in boxes with a folded

comer) to provide additional information here.

• The three layers in the weather station software are:

• 1. The interface layer that is concerned with all communications with other parts of the

system and with providing the external interfaces of the system;

• 2. The data collection layer that is concerned with managing the collection of data from the

instruments and with summarizing the weather data before transmission to the mapping

system;

• 3. The instruments layer that is an encapsulation of all of the instruments used to collect raw

data about the weather conditions.

134

2.3 Object identification

In practice this process is actually concerned with identifying object classes. The design is

described in terms of these classes. Inevitably, you have to refine the object classes that you

initially identify and revisit this stage of the process as you develop a deeper understanding

of the design.

There have been various proposals made about how to identify object classes:

• 1. Use a grammatical analysis of a natural language description of a system. Objects and

attributes are nouns; operations or services are verbs. This approach has been embodied in

the HOOD method for object-oriented design that was widely used in the European

aerospace industry.

• 2. Use tangible entities (things) in the application domain such as aircraft, roles such as

manager, events such as request, interactions such as meetings locations such as offices,

organizational units such as companies, and so on Support this by identifying storage

structures (abstract data structures) in the solution domain that might be required to support

these objects.

• 3. Use a behavioral approach where the designer first understands the overall behavior of the

system. The various behaviors are assigned to different parts of the system and an

135

understanding is derived of who initiates and participates in these behaviors. Participants

who play significant roles are recognized as

 objects .

• 4. Use a scenario-based analysis where various scenarios of system use are identified and

analyzed in turn. As each scenario is analyzed, the team responsible for the analysis must

identify the required objects, attributes and operations. A method of analysis called CRC

cards where analysts and designers take on the role of objects is effective in supporting this

scenario-based approach.

• These approaches help you get started with object identification. In practice, you may have

to use several knowledge sources to discover object classes. Object classes, attributes and

operations that are initially identified from the informal system description can be a starting

point for the design.

• A hybrid approach here to identify the weather station objects to describe all the objects, but

shown five object classes in Figure 14.11. Ground thermometer, Anemometer and Barometer

represent application domain objects, and WeatherStation and WeatherData have been

identified from the system description and the scenario (use-case) description.

These objects are related to the levels in the system architecture.

1. The WeatherStation object class provides the basic interface of the weather station with its

environment. Its operations therefore reflect the interactions shown in Figure 14.8. In this

case, I use a single object class to encapsulate all of these interactions, but in other designs

you may chose to design the system Interface as several different classes.

2. The WeatherData object class encapsulates the summarized data from the instruments in

the weather station. Its associated operations are concerned with collecting and summarizing

the data that is required.

3. The Ground thermometer, Anemometer and Barometer object classes are directly related

to instruments in the system. They reflect tangible hardware entities in the system and the

operations are concerned with controlling that hardware.

136

• Fig: 14.11 Examples of object classes in the weather station system.

• The objects associated with each instrument should not be active objects. The collect

operation in WeatherData calls on instrument objects to make readings when required.

Active objects include their own control and, in this case, it would mean that each instrument

would decide when to make readings.

• The disadvantage of this is that, if a decision was made to change the timing of the data

collection or if different weather stations collected data differently, then new object classes

would have to be introduced. By making the instrument objects make readings on request,

any changes to collection strategy can be easily implemented without changing the objects

associated with the instruments.

2.4 Design models

• Design models show the objects or object classes in a system and, where appropriate, the

relationships between these entities. Design models essentially are the design. They are the

bridge between the requirements for the system and the system implementation.

• An important step in the design process, therefore, is to decide which design models that you

need and the level of detail of these models. This depends on the type

 of system that is being developed. A sequential data processing system will be designed

in a different way from an embedded real-time system, and different design models will

therefore be used

137

• There are two types of design models that should normally be produced to describe an objen-

oriented design:

• 1. Static models describe the static structure of the system using object classes and their

relationships. Important relationships that may be documented at this stage are generalization

relationships, uses/used-by relationships and composition relationships.

• 2. Dynamic models describe the dynamic structure of the system and show the interactions

between the system objects (not the object classes). Interactions that may be documented

include the sequence of service requests made by objects and the way in which the state of

the system is related to these object interactions.

• The UML provides for 12 different static and dynamic models that may be produced to

document a design. The models that we discuss in this section are:

• 1. Subsystem models that show logical groupings of objects into coherent sub-systems.

These are represented using a form of class diagram where each sub-system is shown as a

package. Subsystem models are static models.

• 2. Sequence models that show the sequence of object interactions. These are represented

using a UML sequence or a collaboration diagram. Sequence models are dynamic: models.

• 3. State machine models that show how individual objects change their state in response to

,events. These are represented in the UML using statechart diagrams. State machine models

are dynamic models.

• Figure 14.12 shows the objects in the sub-systems in the weather station. I also show some

associations in this model. For example, the CommsController object is associated with the

WeatherStation object, and the WeatherStation object is associated with the Data collection

package. This means that this object is associated with one or more objects in this package.

A package model plus an object class model should describe the logical groupings in the

system.

138

• A sub-system model is a useful static model as it shows how the design may be organized

into logically related groups of objects. Sequence models are dynamic models that document,

for each mode of interaction, the sequence of object interactions that take place. Figure

14.13 is an example of a sequence model that shows the operations involved in collecting the

data from a weather station.

In a sequence model:

1. The objects involved in the interaction are arranged horizontally with a vertical line linked

to each object.

2. Time is represented vertically so that time progresses down the dashed vertical lines.

Therefore, the sequence of operations can be read easily from the mode1.

139

3. Labelled arrows linking the vertical lines represent interactions between objects. These are

not data flows but represent messages or events that are fundamental to the interaction.

4. The thin rectangle on the object lifeline represents the time when the object is the

controlling object in the system. An object takes over control at the top of the rectangle and

relinquishes control to another object at the bottom of the rectangle. If there is a hierarchy of

calls, control is not relinquished until the lase return to the initial method call has been

completed.

You read sequence diagrams from top to bottom:

1. An, object that is an instance of CommsController (:CommsController) receives

a request from its environment to send a weather report. It acknowledges receipt

of this request. The half-arrowhead on the acknowledge message indicates that

the message sender does not expect a reply.

 2. This object sends a message to an object that is an instance of WeatherStation

to create a weather report. The instance of CommsController then suspends itself

(its control box ends). The style of arrowhead used indicates that the

CommsController object instance and the WeatherStation object instance are

objects that may execute concurrently.

3. The object that is an instance of WeatherStation sends a message to a

WeatherData object to summarize the weather data. In this case, the squared off

style of arrowhead indicates that the instance of WeatherStation waits for

a reply.

4. This summary is computed and control returns to the WeatherStation object.

The dotted arrow indicates a return of control.

5. This object sends a message to CommsController requesting it to transfer the

data to the remote system. The WeatherStation object then suspends itself.

6. The CommsController object sends the summarized data to the remote system,

receives an acknowledgement, and then suspends itself waiting for the next request.

• Figure 14.14 is a state-chart for the WeatherStation object that shows how it responds to

requests for various services.

• You can read this diagram as follows:

140

• 1. If the object state is Shutdown then it can only respond to a startup ()message. It then

moves into a state where it is waiting for further messages. The un-labelled arrow with the

black blob indicates that the Shutdown state is the initial state.

• 2. In the Waiting state, the system expects further messages. If a shutdown() message is

received, the object returns to the shutdown state.

• 3. If a reportWeather() message is received, the system moves to the Summarizing state.

When the summary is complete, the system moves to a Transmitting state where the

information is transmitted through the

 CommsController. It then returns to the Waiting state.

• 4. If a calibrate() message is received, the system moves to the Calibrating state, then the

Testing state, and then the Transmitting state, before returning to the Waiting state If atest()

message is received, the system moves directly to the Testing state.

• 5. If a signal from the clock is received, the system moves to the Collecting state,

where it is collecting data from the instruments. Each instrument is instructed

in turn collect its data.

Figure 14.14

2.5 Object interface Specification

• An important part of any design process is the specification of the interfaces between the

components in the design. You need to specify interfaces so that objects and sub-systems can

be designed in parallel.

• There is not necessarily a simple I: I relationship between objects and interfaces.

141

• The same object may have several interfaces, each of which is a viewpoint on the methods

that it provides. This is supported directly in Java, where interfaces are declared separately

from objects, and objects 'implement' interfaces.

• Figure 14.15, which shows the interface specification in Java of the weather station. As

interfaces become more complex, this approach becomes more effective because the syntax-

checking facilities in the compiler may be used to discover errors and inconsistencies in the

interface description. The

3.3(4) Design evolution

• After a decision has been made to develop a system such as a weather data collection system,

it is inevitable that proposals for system changes will be made.

• An important advantage of an object-oriented approach to design is that it simplifies the

problem of making changes to the design. The reason for this is that object state

representation does not influence the design.

• To show how an object-oriented approach to design makes change easier, assume that

pollution-monitoring capabilities are to be added to each weather station.

142

• This involves adding an air quality meter to compute the amount of various pollutants in the

atmosphere. The pollution readings are transmitted at the same time as the weather data.

• To modify the design, the following changes must be made:

• 1. An object class called Air quality should be introduced as part of WeatherStation at the

same level as WeatherData.

• 2. An operation reportAirQuality should be added to WeatherStation to send the pollution

information to the central computer. The weather station control software must be modified

so that pollution readings are automatically collected when requested by the top-level

WeatherStation object.

• 3. Objects representing the types of pollution monitoring instruments should be added. In

this case, levels of nitrous oxide, smoke and benzene can be

 measured.

• The pollution monitoring objects are encapsulated in a separate package called

 Pollution monitoring instruments.

• This has associations with Air quality and WeatherStation but not with any of the objects

used to collect weather data.

• Figure 14.16 shows WeatherStation and the new objects added to the system. Apart from at

the highest level of the system (WeatherStation), no software changes are required in the

original objects in the weather station.

143

UNIT – IV

VERIFICATION AND VALIDATION: Planning verification and validation, Software

inspections, Automated static analysis, Verification and formal methods.

SOFTWARE TESTING: System testing, Component testing, Test case design, Test automation,

Quality management: Software Quality Assurance.

4.1(1) Verification and Validation

• Testing a program is the most common way of checking that it meets its specification and

does what the customer wants. However, testing is only one of a range of verification and

validation techniques.

Verification and validation (V &V)

is the name given to these checking and analysis processes. Verification and validation activities

take place at each stage of the software process. V & V starts with requirements reviews and

continues through design reviews and code inspections to product testing.

Verification and validation are not the same thing, although they are often confused. Boehm

(1979) succinctly expressed the difference between them:

'Validation: Are we building the right product?'

'Verification: Are we building the product right?'

• These definitions tell us that the role of verification involves checking that the software

conforms to its specification.

 You should check that it meets its specified functional and non-functional requirements.

• Validation, however, is a more general process. The aim of validation is to ensure that the

software system meets the customer s expectations. It goes beyond checking that the system

conforms to its specification to showing that the software does what the customer expects it

to do.

• The ultimate goal of the verification and validation process is to establish confidence that

the software system is 'fit for purpose'

• This means that the system must be good enough for its intended use.

144

• The level of required confidence depends

On the system's purpose, the expectations of the system users and the current marketing

environment for the system:

1. Software function The level of confidence required depends on how critical the software is to an

organization.

2. User expectations It is a sad reflection on the software industry that many users have low

expectations of their software and are not surprised when it fails during use. They are willing to

accept these system failures when the benefits of use outweigh the disadvantages

3. Marketing environment When a system is marketed, the sellers of the system must take into

account competing programs, the price those customers are willing to pay for a system and the

required schedule for delivering that system. Where a company has few competitors, it may decide

to release a program before it has been fully tested and debugged because they want to be the first

into the market.

Where customers are not willing to pay high prices for software, they may be willing to tolerate

more software faults

• Within the V & V process, there are two complementary approaches to system checking and

analysis:

• 1. Software inspections or peer reviews analyze and check system representations such as

the requirements document, design diagrams and the program source code. You can use

inspections at all stages of the process. Inspections may be supplemented by some automatic

analysis of the source text of a system or associated documents. Software inspections and

automated analyses are static V & V techniques, as you don't need to run the software on a

computer.

• 2. Software testing involves running an implementation of the software with test data.

Testing is a dynamic technique of verification and validation.

• Figure 22.1 shows that software inspections and testing play complementary roles in the

software process. The arrows indicate the stages in the process where the techniques may be

145

used. Therefore, you can use software inspections at all stages of the software process.

Starting with the requirements, any readable representations of the software can be inspected.

• Inspection techniques include program inspections, automated source code analysis and

formal verification. However, static techniques can only check the correspondence between a

program and its specification (verification); they cannot demonstrate that the software is

operationally useful.

• Although software inspections are now widely used, program testing will always be the main

software verification and validation technique. Testing involves exercising the program

using data like the real data processed by the program.

• There are two distinct types of testing that may be used at different stages in the software

process:

• 1. Validation testing is intended to show that the software is what the customer wants-that it

meets its requirements. As part of validation testing, you may use statistical testing to test the

program s performance and reliability, and to check how it works under operational

conditions. I discuss statistical testing and reliability estimation.

• 2. Defect testing is intended to reveal defects in the system rather than to simulate its

operational use. The goal of defect testing is to [md inconsistencies between a program and

its specification.

146

• The processes of V & V and debugging are normally interleaved. As you discover faults in

the program that you are testing, you have to change the program to correct these faults.

However, testing (or, more generally verification and validation) and debugging have

different goals:

• 1. Verification and validation processes are intended to establish the existence of defects in a

software system.

• 2. Debugging is a process (Figure 22.2) that locates and corrects these defects.

• There is no simple method for program debugging. Skilled debuggers look for patterns in the

test output where the defect is exhibited and use their knowledge of the type of defect, the

output pattern, the programming language and the programming process to locate the defect.

When you are debugging, you can use your knowledge of common programmer errors (such

as failing to increment a counter) and match these against the observed patterns.

• Interactive debugging tools are generally part of a set of language support tools that are

integrated with a compilation system. They provide a specialized run-time environment for

the program that allows access to the compiler symbol table and, from there, to the values of

program variables

4.1(2) Planning verification and validation

Verification and validation is an expensive process. For some systems, such as real-time systems

with complex non-functional constraints, more than half the system development budget may be

spent on V & V. Careful planning is needed to get the most out of inspections and testing and to

control the costs of the verification and validation process.

147

Figure 22.3 Test plans as a link between development and testing

• The software development process model shown in Figure 22.3 is sometimes called the V-

model. It is an instantiation of the generic waterfall model.

• This model also breaks down system V & V into a number of stages. Each stage is driven by

tests that have been defined to check the conformance of the program with its design and

specification.

• As part of the V & V planning process, you should decide on the balance between static and

dynamic approaches to verification and validation, draw up standards and procedures for

software inspections and testing, establish checklists to drive program inspections and

define the software test plan.

• Test planning is concerned with establishing standards for the testing process, not just with

describing product tests.

• The major components of a test plan for a large and complex system are shown in Figure

22.4. As well as setting out the testing schedule and procedures, the test plan defines the

hardware and software resources that are required.

• This is useful for system managers who are responsible for ensuring that these resources are

available to the testing team.

148

• Test plans should normally include significant amounts of contingency so that slippages in

design and implementation can be accommodated and staff redeployed to other activities.

4.1.(3) Software inspections

• Software inspection is a static V & V process in which a software system is reviewed to find

errors. omissions and anomalies. Generally, inspections focus on source code. but any

readable representation of the software such as its requirements or a design model can be

inspected. When you inspect a system, you use knowledge of the system, its application

domain and the programming language or design model to discover errors.

• There are three major advantages of inspection over testing:

1. During testing, errors can mask (hide) other errors. Once one error is discovered, you can never

be sure if other output anomalies are due to a new error or are side effects of the original error.

Because inspection is a static process, you don't have to be concerned with interactions between

errors. Consequently, a single inspection session can discover many errors in a system.

2. Incomplete versions of a system can be inspected without additional costs. If a program is

149

incomplete, then you need to develop specialized test harnesses to test the parts that are available.

This obviously adds to the system development costs.

3. As well as searching for program defects, an inspection can also consider broader quality

attributes of a program such as compliance with standards, portability and maintainability. You can

look for inefficiencies, inappropriate algorithms and poor programming style that could make the

system difficult to maintain and update.

• Inspections are an old idea. There have been several studies and experiments that have

demonstrated that inspections are more effective for defect discovery than program testing.

• Fagan (Fagan, 1986) reported that more than 60% of the errors in a program can be detected

using informal program inspections.

• Mills et al(1987) suggest that a more formal approach to inspection based on correctness

arguments can detect more than 90% of the errors in a program. This technique is used in the

Cleanroom process.

• Reviews and testing each have advantages and disadvantages and should be used together in

the verification and validation process.

• Gilb and Graham suggest that one of the most effective uses of reviews is to review the test

cases for a system. Reviews can discover problems with these tests and can help design more

effective ways to test the system.

• In spite of the success of inspections, it has proven to be difficult to introduce formal

inspections into many software development organizations.

• There is no doubt that inspections 'front··load' software V & V costs and result in cost

savings only after the development teams become experienced in their use.

a) The program inspection process

• Program inspections are reviews whose objective is program defect detection.

• The notion of a formalized inspection process was first developed at IBM in the 1970s

(Fagan. 1976; Fagan, 1986).

150

• It is now a fairly widely used method of program verification, especially in critical systems

engineering.

• From Fagan's original method, a number of alternative approaches to inspection have been

developed (Gilb and Graham, 1993).

• The key difference between program inspections and other types of quality review is that the

specific goal of inspections is to find program defects rather than to consider broader design

issues.

• Defects may be logical errors, anomalies in the code that might indicate an erroneous

condition or noncompliance with organizational or project standards.

• By contrast, other types of review may be more concerned with schedule costs., progress

against defined milestones or assessing whether the software is likely to meet organizational

goals.

• The program Inspection is a formal process that is carried out by a team of at least four

people. Team members systematically analyze the code and point out possible defects.

• Grady and Van Slack (Grady and Van Slack, 1994) suggest six roles, as shown in Fig 22.5.

• The activities in the inspection process are shown in Figure 22.6. Before a program

Inspection process begins, it is essential that:

1. You have a precise specification of the code to be inspected. It is impossible to inspect a

151

component at the level of detail required to detect defects without a complete specification.

2. The inspection team members are familiar with the organizational standards.

3. An up-to-date, compilable version of the code has been distributed to all team members. There is

no point in inspecting code that is 'almost complete' even if a delay causes schedule disruption.

• The inspection team moderator is responsible for inspection planning. This involves

selecting an inspection team, organizing a meeting room and ensuring that the material to be

inspected and its specifications are complete. The program to be inspected is presented to the

inspection team during the overview stage when the author of the code describes what the

program is intended to do. This is followed by a period of individual preparation. Each

inspection team member studies the specification and the program and looks for defects in

the code.

• The inspection itself should be fairly short (no more than two hours) and should focus on

defect detection, standards conformance and poor-quality programming.

• Following the inspection, the program s author should make changes to it to correct the

identified problems. In the follow-up stage, the moderator should decide whether a re-

inspection of the code is required.

• During an inspection, a checklist of common programmer errors is often used

to focus the discussion. This checklist can be based on checklist examples from books or from

knowledge of defects that are common in a particular application domain. You need different

checklists for different programming languages because each language has its own characteristic

errors.

• This checklist varies according to programming language because of the different

levels of checking provided by the language compiler. For example, a Java compiler

checks that functions have the correct number of parameters, a C compiler. Figure 22.6.

152

• Possible checks that might be made during the inspection process are shown

• in Figure 22.7. Gilb and Graham (Gilb and Graham, 1993) emphasize that each organization

should develop its own inspection checklist based on local standards and practices.

Checklists should be regularly updated as new types of defects are found.

• Figure 22.7

• The time needed for an inspection and the amount of code that can be covered depends on

the experience of the inspection team, the programming language and the application

domain.

• Both Fagan at IBM and Barnard and Price (Barnard and Price, 1994), who assessed the

inspection process for telecommunications software, came to similar conclusions:

1. About 500 source code statements per hour can be presented during the overview stage.

2. During individual preparation, about 125 source code statements per hour can be examined.

3. From 90 to 125 statements per hour can be inspected during the inspection meeting.

153

• Some organizations (Gilb and Graham, 1993) have now abandoned component testing in

favor of inspections. They have found that program inspections are so effective at finding

errors that the costs of component testing are not justifiable.

• The introduction of inspections has implications for project management.

• Sensitive management is important if inspections are to be accepted by software

development teams. Program inspection is a public process of error detection compared with

the more private component testing process.

4.1(4) Automated static analysis

• Inspections are one form of static analysis--you examine the program without executing it.

• Inspections are often driven by checklists of errors and heuristics that identify common

errors in different programming languages.

• For some errors and heuristics, it is possible to automate the process of checking programs

against this list, which has resulted in the development of automated static analyzers for

different programming languages.

• Static analyzers are software tools that scan the source text of a program and detect possible

faults and anomalies.

• They parse the program text and thus recognize the types of statements in the program.

• They can then detect whether statements are well-formed. make inferences about the control

flow in the program and, in many cases, compute the sell of all possible values for program

data.

• They complement the error-detection facilities provided by the language compiler. They can

be used as part of the inspection process or as a separate V & V process activity.

• The Intention of automatic static analysis is to draw an inspector's attention to anomalies in

the program, such as variables that are used without initialization, variables that are unused

154

or data whose value could go out of range. Some of the checks that can Je detected by static

analysis are shown in Figure 22.8.

• Anomalies are often a result of programming errors or omissions, so they highlight things

that could go wrong when the program is executed.

• The stages involved in static analysis include:

1. Control flow analysis This stage identifies and highlights loops with multiple exit or entry points

and unreachable code. Unreachable code is code that is surrounded by unconditional go to

statements or that is in a branch of a conditional statement 'where the guarding condition can never

be true.

2. Data use analysis This stage highlights how variables in the program are used. It defects

variables that are used without previous initialization, variables that are written twice without an

intervening assignment and variables that are declared but never used. Data use analysis also

discovers ineffective tests where the test condition is redundant. Redundant conditions are

conditions that are either always true or always false.

3. Interface analysis This analysis checks the consistency of routine and procedure declarations and

their use. It is unnecessary if a strongly typed language such as Java is used for implementation as

the compiler carries out these checks. Interface analysis can detect type errors in weakly typed

languages like FORTRAN and C. Interface analysis can also detect functions and procedures that

are declared and never called or function results that are never used.

4. Information flow analysis This phase of the analysis identifies the dependencies between input

and output variables. While it does not detect anomalies, it shows how the value of each program

variable is derived from other variable values. With this information, a code inspection should be

able to find values that have been wrongly computed. Information flow analysis can also show the

conditions that affect a variable's value.

5. Path analysis This phase of semantic analysis identifies all possible paths through the program

and sets out the statements executed in that path. It essentially unravels the program s control and

allows each possible predicate to be analysed individually.

155

• Static analyzers are particularly valuable when a programming language such as C is used. C

does not have strict type rules, and the checking that the C compiler can do is limited.

• There is no doubt that, for languages such as C, static analysis is an effective technique for

discovering program errors. It compensates for weaknesses in the programming language

design.

• All variables must be initialized there are no go to statements so unreachable code is less

likely to be created accidentally, and storage management is automatic.

• To illustrate static analysis I use a small C program rather than a Java

• program. Unix and Linux systems include a static analyzer called LINT for C programs.

• LINT provides static checking, which is equivalent to that provided by the compiler in a

strongly typed language such as Java. An example of the output produced by LINT is shown

in Figure 22.9.

156

• In this transcript of a Unix terminal session, commands are shown in italics. The first

command (line 138) lists the (nonsensical) program. It defines a function with one

parameter, called print array, and then calls this function with three parameters. Variables i

and c are declared but are never assigned values. The value returned by the function is never

used.

• The line numbered 139 shows the C compilation of this program with no errors reported by

the C compiler. This is followed by a call of the LINT static analyzer, which detects and

reports program errors.

• The static analyzer shows that the variables;: and i have been used but not initialized and that

print array has been called with a different number of arguments than are declared. It also

identifies the inconsistent use of the first argument in print array and the fact that the

function value is never used. d reports program errors.

• Tool-based analysis cannot replace inspections, as there are some types of error that static

analyzers cannot detect.

• To address some of these problems, static analyzers such as LCLint (Orcero, 2000; Evans

anc Larochelle, 2002) support the use of annotations where users define constraints as

stylized comments in the program.

157

4.1(5) Verification and formal methods

• Formal methods of software development are based on mathematical representations of the

software, usually as a formal specification.

• These formal methods are mainly concerned with a mathematical analysis of the

specification; with transforming the specification to a more detailed, semantically equivalent

representation; or with formally verifying that one representation of the system is

semantically equivalent to another representation.

• You can think of the use of formal methods as the ultimate static verification technique.

They require very detailed analyses of the system specification and the program, and their

use is often time consuming and expensive.

• Formal methods may be . used at different stages in the V & V process:

1. A formal specification of the system may be developed and mathematically analyzed for

inconsistency. This technique is effective in discovering specification errors and omissions,

2. You can formally verify, using mathematical arguments, that the code of a software system is

consistent with its specification. This requires a formal specification and is effective in discovering

programming and some design errors. A transformational development process where a formal

specification is transformed through a series of more detailed representations or a Cleanroom

process may be used to support the formal verification process.

• The argument for the use of formal specification and associated program verification is that

formal specification forces a detailed analysis of the specification.

• The argument against the use of formal specification is that it requires specialized notations.

These can only be used by specially trained staff and cannot be understood by domain

experts. Hence, problems with the system requirements can be concealed by formality.

• Verifying a nontrivial software system takes a great deal of time and requires specialized

tools such as theorem provers and mathematical expertise. It is therefore an extremely

expensive process and, as the system size increases, the costs of formal verification increase

disproportionately. Many people therefore think that formal verification is not cost-effective.

158

• It is sometimes claimed that the use of formal methods for system development leads to

more reliable and safer systems. There is no doubt that a formal system specification is less

likely to contain anomalies that must be resolved by the system designer.

• However, formal specification and proof do not guarantee that the software will be reliable

in practical use.

• The reasons for this are:

• 1. The specification may not reflect the real requirements of system users. Lutz (Lutz, 1993)

discovered that many failures experienced by users were a consequence of specification

errors and omissions that could not be detected by formal system specification. Furthermore,

system users rarely understand formal notations so they cannot read the formal specification

directly to find errors and omissions.

• 2. The proof may contain errors. Program proofs are large and complex, so, like large and

complex programs, they usually contain errors.

• 3. The proof may assume a usage pattern which is incorrect. If the system is not used as

anticipated, the proof may be invalid.

• Cleanroom software development

• A model of the Cleanroom process is shown in Figure 22.10. The objective of this approach

to software development is zero-defect software.

• The name 'Cleanroom was derived by analogy with semiconductor fabrication units where

defects are avoided by manufacturing in an ultra-clean atmosphere.

• Cleanroom development is particularly relevant to this chapter because it has replaced the

unit testing of system components by inspections to check the consistency of these

components with their specifications.

• The Cleanroom approach to software development is based on five key strategies:

1. Formal specification The software to be developed is formally specified. A state transition

model that shows system responses to stimuli is used to express the specification.

159

2. Incremental development The software is partitioned into increments that are

developed and validated separately using the Cleanroom process. These increments are specified,

with customer input, at an early stage in the process.

3. Structured programming Only a limited number of control and data abstraction constructs are

used. The program development process is a process of stepwise refinement of the specification. A

limited number of constructs are used and the aim is to systematically transform the specification to

create the program code.

 4.Static verification The developed software is statically verified using rigorous software

inspections. There is no unit or module testing process for code components.

5. Statistical testing of the system The integrated software increment is tested statistically, as

discussed , to determine its reliability. These statistical tests are based on an operational profile,

which is developed in parallel with the system specification as shown in Figure 22.10.

• There are three teams involved when the Cleanroom process is used for large system

development:

• 1. The specification team This group is responsible for developing and maintaining the

system specification. This team produces customer-oriented specifications (the user

requirements definition) and mathematical specifications for verification. In some cases,

when the specification is complete, the specification team also takes responsibility for

development.

• 2. The development team This team has the responsibility of developing and verifying the

software. The software is not executed during the development process. A structured, formal

160

approach to verification based on inspection of code supplemented with correctness

arguments is used.

• 3. The certification team This team is responsible for developing a set of statistical tests to

exercise the software after it has been developed. These tests are based on the formal

specification. Test case development is carried out in parallel with software development.

The test cases are used to certify the software reliability. Reliability growth models may be

used to decide when to stop testing.

• Use of the Cleanroom approach has generally led to software with very few errors.

• Cobb and Mills discuss several successful Cleanroom development projects that had a

uniformly low failure rate in delivered systems.

• The approach to incremental development in the Cleanroom process is to deliver critical

customer functionality in early increments. Less important system functions are included in

later increments.

• Rigorous program inspection is a fundamental part of the Cleanroom process. A state model

of the system is produced as a system specification. The approach used for development is

based on well-defined transformations that attempt to preserve the correctness at each

transformation to a more detailed representation.

• At each stage, the new representation is inspected, and mathematically rigorous arguments

are developed that demonstrate that the output of the transformation is consistent with its

input.

• Inspection and formal analysis has been found to be very effective in the

 Cleanroom process. The vast majority of defects are discovered before execution and are not

introduced into the developed software

4.2 (1) Software Testing

• A general testing process that started with the testing of individual program units such as

functions or objects. These were then integrated into sub-systems and systems, and the

interactions of these units were tested.

161

• This model of the testing process is appropriate for large system development but for smaller

systems, or for systems that are developed through scripting or reuse, there are often fewer

distinct stages in the process. A more abstract view of software testing is shown in Figure

23.1.

• The two fundamental testing activities are component testing-testing the parts of the system-

and system testing-testing the system as a whole.

• The aim of the component testing stage is to discover defects by testing individual program

components.

• During system testing, these components are integrated to form sub-systems or the complete

system. At this stage, system testing should focus on establishing that the system meets its

functional and non-functional requirements, and does not behave in unexpected ways.

• The software testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software meets its requirements. For

custom software, this means that there should be at least one test for every requirement in the user

and system requirements documents.

For generic software products, it means that there should be tests for all of the system features that

will be incorporated in the product release. As discussed some systems may have an explicit

acceptance testing phase where the customer formally checks that the delivered system conforms to

its specification.

2. To discover faults or defects in the software where the behavior of the software is incorrect,

undesirable or does not conform to its specification. Defect testing is concerned with rooting out all

kinds of undesirable system behavior, such as system crashes, unwanted interactions with other

systems, incorrect computations and data corruption.

• The first goal leads to validation testing, where you expect the system to perform correctly

using a given set of test cases that reflect the systems expected use.

• The second goal leads to defect testing, where the test cases are designed to expose defects.

The test cases can be deliberately obscure and need not reflect how the system is normally

used.

162

• For validation testing, a successful test is one where the system performs correctly. For

defect testing, a successful test is one that exposes a defect that causes the system to perform

incorrectly.

• A general model of the testing process is shown in Figure 23.2. Test cases are specifications

of the inputs to the test and the expected output from the system plus a statement of what is

being tested. Test data are the inputs that have been devised to test the system.

•

Exhaustive testing, where every possible program execution sequence is tested, is

impossible. Testing, therefore, has to be based on a subset of possible test cases. Ideally,

software companies should have policies for choosing this subset rather than leave this to

the development team.

163

• These policies might be based on general testing policies, such as a policy that all program

statements should be executed at least once.

• Alternatively. the testing policies may be based on experience of system usage and may

focus 011 testing the features of the operational system.

• For example:

 1 . All system functions that are accessed through menus should be tested.

2. Combinations of functions (e.g., text formatting) that are accessed through the same menu must

be tested.

3. Where user input is provided, all functions must be tested with both correct and incorrect input.

• It is clear from experience with major software products such as word processors or

spreadsheets that comparable guidelines are normally used during product testing. When

features of the software are used in isolation, they normally work.

• Problems arise, as Whittaker explains , when combinations of features have not been tested

together

4.2 (2) System testing

• System testing involves integrating two or more components that implement system

functions or features and then testing this integrated system.

• In an iterative development process, system testing is concerned with testing an increment to

be delivered to the customer; in a waterfall process, system testing is concerned with testing

the entire system.

For most complex systems, there are two distinct phases to system testing:

1. Integration testing. where the test team have access to the source code of the system. When

a problem is discovered, the integration team tries to find the source of the problem and

identify the components that have to be debugged. Integration testing is mostly concerned

with finding defects in the system.

2. Release testing, where a version of the system that could be released to users is tested. Here, the

test team is concerned with validating that the system meets its requirements and with ensuring that

164

the system is dependable.

 Release testing is usually 'black-box' testing where the test team is simply concerned with

demonstrating that the system does or does not work properly. Problems are reported to the

development team whose job is to debug the program. Where customers are involved in release

testing, this is sometimes called acceptance testing.

• Fundamentally, you can think of integration testing as the testing of incomplete systems

composed of clusters or groupings of system components. Release testing is concerned with

testing the system release that is intended for delivery to customers.

1) Integration Testing

• The process of system integration involves building a system from its components and

testing the resultant system for problems that arise from component interactions.

• The components that are integrated may be off-the-shelf components, reusable components

that have been adapted for a particular system or newly developed components.

• For many large systems, all three types of components are likely to be used.

• Integration testing checks that these components actually work together, are called correctly

and transfer the right data at the right time across their interfaces.

• System integration involves identifying clusters of components that deliver some system

functionality and integrating these by adding code that makes them work together.

• Sometimes, the overall skeleton of the system is developed first, and components are added

to it. This is called top-down integration.

• Alternatively, you may first integrate infrastructure components that provide common

services, such as network and database access, then add the functional components. This is

bottom-up integration.

• A major problem that arises during integration testing is localizing errors. There are complex

interactions between the system components and, when an anomalous output is discovered,

you may find it hard to identify where the error occurred.

165

• To make it easier to locate errors, you should always use an incremental approach to system

integration and testing.

• Initially, you should integrate a minimal system configuration and test this system. You then

add components to this minimal configuration and test after each added increment.

• In the example shown in Figure 23.3, A, B, C and D are components and n to T5 are related

sets of tests of the features incorporated in the system. n, T2 and T3 are first run on a system

composed of component A and component B (the minimal system). If these reveal defects,

they are corrected.

• Component C is integrated and n, T2 and T3 are repeated to ensure that there have not been

unexpected interactions with A and B.

• If problems arise in these tests, this probably means that they are due to interactions with the

new component.

• The source of the problem is localized, thus simplifying defect location and repair. Test set

T4 is also run on the system.

• Finally, component D is integrated and tested using existing and new tests (T5).

• When planning integration, you have to decide the order of integration of components.

166

• In a process such as XP, the customer is involved in the development process and decides

which functionality should be included in each system increment. Therefore, system

integration is driven by customer priorities.

• In such cases, a good rule of thumb is to integrate the components that implement the most

frequently used functionality first.

• This means that the components that are most used receive the most testing.

• For example, in the library system, LIBSYS, you should start by integrating the search

facility so that, in a minimal system,

 users can search for documents that they need. You should then add the functionality to allow

users to download a document, then progressively add the components that implement other system

features.

• The testing may reveal errors in the interactions between these individual components and

other parts of the system.

• Repairing errors may be difficult because a group of components that implement the system

feature may have to be changed

• These problems mean that when a new increment is integrated, it is important to rerun the

tests for previous increments as well as the new tests that are required

 to verify the new system functionality.

• Rerunning an existing set of tests is called regression testing. If regression testing exposes

problems, then you have to check whether these are problems in the previous increment that

the new increment has exposed or whether these are due to the added.

• Regression testing is clearly an expensive process and is impractical without some automated

support.

2. Release testing

• Release testing is the process of testing a release of the system that will be distributed to

customers. The primary goal of this process is to increase the supplier's confidence that the

system meets its requirements.

167

• If so, it can be released as a product or delivered to the customer. To demonstrate that the

system meets its requirements, you have to show that it delivers the specified functionality,

performance and dependability, and that it does not fail during normal use.

• Release testing is usually a black-box testing process where the tests are derived from the

system specification. The system is treated as a black box whose behavior can only be

determined by studying its inputs and the related outputs.

• Another name for this is functional testing because the tester is only concerned with the

functionality and not the implementation of the software

• Figure 23.4 illustrates the model of a system that is assumed in black-box testing. The tester

presents inputs to the component or the system and examines the corresponding outputs. If

the outputs are not those predicted (i.e., if the outputs are in set 0,) then the test has detected

a problem with the software.

• When testing system releases, you should try to 'break' the software by choosing test cases

that are in the set in Figure 23.4. That is, your aim should be to select inputs that have a high

probability of generating system failures (outputs in set Oe)' You use previous experience of

what are likely to be successful defect tests and testing guidelines to help you make your

choice.

168

• Authors such as Whittaker have encapsulated their testing experience in a set of guidelines

that increase the probability that the defect tests will be successful.

Some examples of these guidelines are:

1. Choose inputs that force the system to generate all error messages.

2. Design inputs that cause input buffers to overflow.

3. Repeat the same input or series of inputs numerous times.

4. Force invalid outputs to be generated.

5. Force computation results to be too large or too small.

• To validate that the system meets its requirements, the best approach to use is scenario-based

testing, where you devise a number of scenarios and develop test cases from these scenarios.

For example, the following scenario might describe how the library system LIBSYS.

• A student in Scotland studying American history has been asked to write a paper on

'Frontier mentality in the American West from 1840 to 1880'. To do this, she needs to find

sources from a range of libraries. She logs on to the LIBSYS system and uses the search

facility to discover whether she can access original documents from that time. She

discovers sources in various US university libraries and downloads copies of some of

these. However, for one document, she needs to have confirmation from her university

that she is a genuine student and that use is for non- commercial purposes. The student

then uses the facility in LIBSYS that can request such permission and registers her

request. If granted, the document will be downloaded to the registered library's server and

printed for her. She receives a message from LIBS YS telling her that she will receive an

e-mail message when the printed document is available for collection.

• From this scenario, it is possible to device a number of tests that can be applied to the

proposed release of LIBSYS:

1. Test the login mechanism using correct and incorrect logins to check that valid users are accepted

and invalid users are rejected.

2. Test the search facility using queries against known sources to check that the search mechanism

is actually finding documents.

3. Test the system presentation facility to check that information about documents is displayed

169

properly.

4. Test the mechanism to request permission for downloading.

5. Test the e-mail response indicating that the downloaded document is available.

• For each of these tests, you should design a set of tests that include valid and invalid inputs

and that generate valid and invalid outputs.

• Figure 23.5 shows the sequence of operations in the weather station when it responds to a

request to collect data for the mapping system. You can use this diagram to identify

operations that will be tested and to help design the test cases to execute the test~. Therefore

issuing a request for a report will result in the execution of the following thread of methods:

CommsController:request --> WeatherStation:report --> WeatherData:summarise

• The sequence diagram can also be used to identify inputs and outputs that have

to be created for the test:

1. An input of a request for a report should have an associated acknowledgement and a report

should ultimately be returned from the request. During the testing. you should create summarized

data that can be used to check that the report is correctly organized.

2. An input request for a report to WeatherStation results in a summarized report being generated.

You can test this in isolation by creating raw data corresponding to the summary that you have

prepared for the test of CommsController and checking that the WeatherStation object correctly

produces this summary.

3. This raw data is also used to test the WeatherData object.

170

3) Performance testing

• Performance tests have to be designed to ensure that the system can process its intended

load. This usually involves planning a series of tests where the load is steadily increased until

the system performance becomes unacceptable.

• As with other types of testing, performance testing is concerned both with demonstrating that

the system meets its requirements and discovering problems and defects in the system.

• To test whether performance requirements are being achieved, you may have to construct an

operational profile. An operational profile is a set of tests that reflect the actual mix of work

that will be handled by the system.

• Therefore, if 90% of the transactions in a system are of type A, 5% of type B and the

remainder of types C, D, and E, then you have to design the operational profile so that the

vast majority of tests are of type A. Otherwise, you will not get an accurate test of the

operational performance of the system.

• This approach, of course, is not necessarily the best approach for defect testing. In

performance testing, this means stressing the system (hence the name stress testing) by

making demands that are outside the design limits of the software.

• For example, a transaction processing system may be designed to process up to 300

transactions per second; an operating system may be designed to handle up to 1,000 separate

terminals. Stress testing continues these tests beyond the maximum design load of the system

until the system fails. This type of testing has two functions:

I. It tests the failure behavior of the system. Circumstances may arise through

an unexpected combination of events where the load placed on the system exceeds the maximum

anticipated load. In these circumstances, it is important that system failure should not cause data

corruption or unexpected loss of user services. Stress testing checks that overloading the system

causes it to 'fail-soft‘ rather than collapse under its load.

2. It stresses the system and may cause defects to come to light that would not normally be

discovered. Although it can be argued that these defects are unlikely to cause system failures in

normal usage, there may be unusual combinations of normal circumstances that the stress testing

171

replicates.

4.2 (3) Component Testing

Component Testing (sometimes called unit testing) is the process of testing individual

components in the system. This is a defect testing process so its goal is to expose faults in these

components, for most systems, the developers of components are responsible for component testing.

There are different types of component that may be tested at this stage:

l. Individual functions or methods within an object

2. Object classes that have several attributes and methods

3. Composite components made up of several different objects or functions. These composite

components have a defined interface that is used to access their functionality.

Individual functions or methods are the simplest type of component and your tests are a set of calls

to these routines with different input parameters. You can use the approaches to test case design,

discussed in the next section, to design the function or method tests.

• When you are testing object classes, you should design your tests to provide coverage of all

of the features of the object. Therefore, object class testing should include:

1. The testing in isolation of all operations associated with the object

2. The setting and interrogation of all attributes associated with the object

3. The exercise of the object in all possible states. This means that all events that cause a state

change in the object should be simulated.

In Figure 23.6. It has only a single attribute, which is its identifier. This is a constant that is set

when the weather station is installed. You therefore only need a test that checks whether it has been

set up. You need to define test cases for reportWeather, calibrate, test, startup and shutdown.

Ideally, you should test methods in isolation but, in some cases, some test sequences are necessary.

For example, to test shutdown you need to have executed the startup method.

172

• To test the states of the weather station, you use a state model as shown in Figure 14.14.

Using this model, you can identify sequences of state transitions that have to be tested and

define event sequences to force these transitions. In principle, you should test every possible

state transition sequence, although in practice this may be too expensive. Examples of state

sequences that Should be tested in the weather station include:

Shutdown -> Waiting -> Shutdown

Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

Waiting -> Collecting -> Waiting -> Summarizing --> Transmitting -> Waiting

• If you use: inheritance, this makes it more difficult to design object class tests. Where a

superclass provides operations that are inherited by a number of subclasses, all of these

subclasses should be tested with all inherited operations.

1. Interface Testing

• Many components in a system are not simple functions or objects but are composite

components that are made up of several interacting objects.

• Testing these composite components then is primarily concerned with testing that the

component interface behaves according to its specification.

• Figure 23.7 illustrates this process of interface testing. Assume that components A, Band C

have been integrated to create a larger component or sub-system. The test cases are not

173

applied to the individual components but to the interface of the comp051te component

created by combining these components.

• Interface testing is particularly important for object-oriented and component-based

development. Objects and components are defined by their interfaces and may be reused in

combination with other components in different systems. Interface errors in the composite

component cannot be detected by testing the individual objects or components. Errors in the

composite component may arise because of interactions between its parts.

• There are different types of interfaces between program components and, consequently,

different types of interface errors that can occur:

1. Parameter interfaces These are interfaces where data or sometimes function references

are passed from one component to another.

2. Shared memory interfaces These are interfaces where a block of memory is shared

between components. Data is placed in the memory by one sub-system and retrieved from

there by other sub-systems.

3. Procedural interfaces These are interfaces where one component encapsulates a set of

procedures that can be called by other components. Objects and reusable components have

this form of interface.

4. Message passing interfaces These are interfaces where one component requests a service

from another component by passing a message to it. A return message includes the results of

174

executing the service. Some object-oriented systems have this form of interface, as do client-

server systems.

• Interface errors are one of the most common forms of error in complex systems. These errors

fall into three classes:

1. Interface misuse A calling component calls some other component and makes an

error in the use of its interface. This type of error is particularly common with

parameter interfaces where parameters may be of the wrong type, may be passed in

the wrong order or the wrong number of parameters may be passed.

2. Interface misunderstanding A calling component misunderstands the specification of the

interface of the called component and makes assumptions about the behavior of the called

component. The called component does not behave as expected and this causes unexpected

behavior in the calling component. For example, a binary search routine may be called with

an unordered array to be searched. The search would then fail.

3. Timing errors These occur in real-time systems that use a shared memory or a message-

passing interface. The producer of data and the consumer of data may operate at different

speeds. Unless particular care is taken in the interface design, the consumer can access out-

of-date information because the producer of the information has not updated the shared

interface information.

• Some general guidelines for interface testing are:

I. Examine the code to be tested and explicitly list each call to an external component.

Design a set of tests where the values of the parameters to the external components are at the

extreme ends of their ranges. These extreme values are most likely to reveal interface

inconsistencies.

2. Where pointers are passed across an interface, always test the interface with

null pointer parameters.

3. Where a component is called through a procedural interface, design tests that should cause

the component to fail. Differing failure assumptions are one of the most common

specification misunderstandings.

4. Use stress testing, as discussed in the previous section, in message-passing system;.

175

Design tests that generate many more messages than are likely to occur in practice. Timing

problems may be revealed in this way.

5. Where several components interact through shared memory, design tests that

Val) the order in which these components: are activated. These tests may reveal implicit

assumptions made by the programmer about the order in which the shared data is produced

and consumed.

4.2 (4)Test case design

• Test case design is a part of system and component testing where you design the test cases

(inputs and predicted outputs) that test the system.

• The goal of the test case design process is to create a set of test cases that are effective in

discovering program defects and showing that the system meets its requirements.

• To design a test case, you select a feature of the system or component that you are testing.

• You then select a set of inputs that execute that feature, document the expected outputs or

output ranges and, where possible, design an automated check that tests that the actual and

expected outputs are the same.

• There are various approaches that you can take to test case design:

1. Requirements-based testing where test cases are designed to test the system requirements.

This is mostly used at the system-testing stage as system requirements are usually

implemented by several components. For each requirement, you identify test cases that can

demonstrate that the system meets that requirement.

2. Partition testing where you identify input and output partitions and design tests so that the

system executes inputs from all partitions and generates outputs in all partitions. Partitions

are groups of data that have common characteristics such as all negative numbers. all names

less than 30 characters, all events arising from choosing items on a menu, and so on.

3. Structural testing where you use knowledge of the program's structure to design tests that

exercise all parts of the program. Essentially, when testing a program, you should try to

execute each statement at least once. Structural testing helps identify test cases that can make

this possible.

4. Path Testing Path testing is a structural testing strategy whose objective is to exercise

176

every independent execution path through a component or program. If every independent

path is executed, then all statements in the component must have been executed at least once.

1. Requirements-based testing

• A general principle of requirements engineering, is that requirements should be testable.

That is, the requirement should be written in such a way that a test can be designed so that an

observer can check that the requirement has been satisfied.

• Requirements-based testing, therefore, is a systematic approach to test case design where you

consider each requirement and derive a set of tests for it.

• Requirements-based testing is validation rather than defect testing-you are trying to

demonstrate that the system has properly implemented its requirements.

• For example, consider the requirements for the LIBSYS system .

1. The user shall be able to search either all of the initial set of databases or select a subset

from it.

2. The system shall provide appropriate viewers for the user to read documents in the

document store.

3. Every order shall be allocated a unique identifier (ORDER_ID) that the user shall be able

to copy to the account's permanent storage area.

• Possible tests for the first of these requirements, assuming that a search function has been

tested, are:

a)Initiate user searches for items that are known to be present and known not to be present.,

where the set of databases includes one database.

b)Initiate user searches for items that are known to be present and known not to be present.,

where the set of databases includes two databases.

c)Initiate user searches for items that are known to be present and known not to be present

where the set of databases includes more than two databases.

d)Select one database from the set of databases and initiate user searches for items that are

known to be present and known not to be present.

e)Select more than one database from the set of databases and initiate searches for items that

177

are known to be present and known not to be present.

2. Partition Testing

• The input data and output results of a program usually fall into a number of different classes

:that have common characteristics such as positive numbers, negative numbers and menu

selections.

• Programs normally behave in a comparable way for all members of a class. That is, if you

test a program that does some computation

and requires two positive numbers, then you would expect the program to behave in the

same way for all positive numbers.

• Because of this equivalent behavior, these classes are sometimes called equivalence

partitions or domains .

• One systematic approach to test case design is based on identifying all partitions for a

system or component.

• Test cases are designed so that the inputs or outputs lie within these partitions. Partition

testing can be used to design test cases for both systems and components.

• In Figure 2:3.8, each equivalence partition is shown as an ellipse. Input equivalence

partitions are sets of data where all of the set members should be processed in an equivalent

way. Output equivalence partitions are program outputs that have common characteristics, so

they can be considered as a distinct class. Valid and invalid inputs also form equivalence

partitions.

178

• Once you have identified a set of partitions, you can chose test cases from each of these

partitions.

• A good rule of thumb for test case selection is to choose test cases on the boundaries of the

partitions plus cases close to the mid-point of the partition.

• You identify partitions by using the program specification or user documentation and, from

experience, where you predict the classes of input value that are likely to detect errors.

• For example, say a program specification states that the program accepts 4 to 8 inputs that

are five-digit integers greater than 10,000. Figure 23.9 shows the partitions for this situation

and possible test input values.

• From this specification, you can see two equivalence partitions:

1. Inputs where the key element is a member of the sequence

 (Found =true)

2. Inputs where the key element is not a sequence member (Found =false).

179

• To illustrate the derivation of test cases, we can use the specification of a search component,

shown in Figure 23.10.

• This component searches a sequence of elements for a given element (the key). It returns the

position of that element in the sequence.

• When you are testing programs with sequences, arrays or lists, there are a number of

guidelines that are often useful in designing test cases:

180

1. Test software with sequences that have only a single value. Programmers naturally think

of sequences as made up of several values, and sometimes they embed this assumption in

their programs. Consequently, the program may not work properly when presented with a

single-value sequence.

2. Use different sequences of different sizes in different tests. This decreases the chances that

a program with defects will accidentally produce a correct output because of some accidental

characteristics of the input.

3. Derive tests so that the first, middle and last elements of the sequence are accessed. This

approach reveals problems at partition boundaries.

• From these guidelines, two more equivalence partitions can be identified:

1. The input sequence has a single value.

2. The number of elements in the input sequence is greater than 1.

• You then identify further partitions by combining these partitions-for example, the partition

where the number of elements in the sequence is greater than 1 and the element is not in the

sequence. Figure 23.11 shows the partitions that have identified to test the search component.

• A set of possible test cases based on these partitions is also shown in Figure 23.11. If the key

element is not in the sequence, the value of L is undefined ('n'). The guideline that different

sequences of different sizes should be used has been applied in these test cases

• The set of input values used to test the search routine is not exhaustive. The routine may fail

if the input sequence happens to include the elements 1, 2, 3 and 4.

181

3. Structural Testing

• Structural testing is an approach to test case design where the tests are derived from

knowledge of the software's structure and implementation.

• This approach is sometimes called 'white-box', 'glass-box' testing, or "clear-box' testing to

distinguish it from black-box testing.

• Understanding the algorithm used in a component can help you identify further partitions

and test cases.

• To illustrate this, the search routine specification (Figure 23.10) as a binary search routine

(Figure 23.14) is implemented.

• Of course, this has stricter pre-conditions. The sequence is implemented as an array that

array must be ordered and the value of the lower bound of the array must be less than

 the value of the upper bound.

182

• By examining the code of the search routine, you can see that binary searching involves

splitting the search space into three parts. Each of these parts makes up an equivalence

partition (Figure 23.13). You then design test cases where the key lies at the boundaries of

each of these partitions.

•

183

• This leads to a revised set of test cases for the search routine, as shown in Figure 23.15.

Notice that , modified the input array so that it is arranged in ascending order and have added

further tests where the key element is adjacent to the midpoint of the array.

4.

Path Testing

• Path testing is a structural testing strategy whose objective is to exercise every independent

execution path through a component or program. If every independent path is executed, then

all statements in the component must have been executed at least once.

• The number of paths through a program is usually proportional to its size. Path testing

techniques are therefore mostly used during component testing.

• Path testing does not test all possible combinations of all paths through the program.

• For any components apart from very trivial ones without loops, this is an impossible

objective. There are an infinite number of possible path combinations in programs with

loops.

• Even when all program statements have been executed at least once, program defects may

still show up when particular paths are combined.

• The starting point for path testing is a program flow graph. This is a skeletal model of all

paths through the program.

184

• A flow graph consists of nodes representing decisions and edges showing flow of control.

The flow graph is constructed by replacing program control statements by equivalent

diagrams.

• If there are no goto statements in a program, it is a simple process to derive its flow graph.

Each branch in a conditional statement (if-then-else or case) is shown as a separate path.

• An arrow looping back to the condition node denotes a loop. I have drawn the flow graph for

the binary search method in Figure 23.16.

• To make the correspondence between this and the program in Figure 23.14 more obvious, it

is shown that each statement as a separate node where the node number corresponds to the

line number in the program.

• The objective of path testing is to ensure that each independent path through the program is

executed at least once.

• The flow graph for the binary search procedure is shown in Figure 23.16 where each node

represents a line in the program with an executable statement.

185

• By tracing the flow, therefore, you can see that the paths through the binary search flow

graph are:

1,2,3,4,5,6,7,8,9, 10, 14

I, 2, 3, 4, 5, 14

1,2,3,4,5,6,7, 11, 12,5, ..

1,2,3,4,6,7,2,11,13,5, ..

• If all of these paths are executed, we can be sure that every statement in the method has been

executed at least once and that every branch has been exercised

 for true and false conditions.

• You can find the number of independent paths in a program by computing the cyclomatic

complexity of the program flow graph.

• A simple condition is logical expression without 'and' or 'or connectors. If the program

includes compound conditions, which are logical expressions including 'and' or 'or'

connectors, then you count the number of simple conditions in the compound conditions

when calculating the cyclomatic complexity.

• Therefore, if there are six if-statements and a while loop and all conditional expressions are

simple, the cyclomatic complexity is 8. If one conditional expression is a compound

expression such as 'if A and B or C', then you count this as three simple conditions. The

cyclomatic complexity is therefore 10. The cyclomatic complexity of the binary search

algorithm (Figure 23.14) is 4 because there are three simple conditions at lines 5, 7 and 11.

4.2 (5)Test Automation

• Testing is an expensive and laborious phase of the software process. As a result, testing tools

were among the first software tools to be developed.

• These tools now offer a rouge of facilities and their use can significantly reduce the costs of

testing.

• One approach to test automation (Mosley and Posey, 2002) where a testing framework such

as JUnit (Massol and Husted, 2003)

186

• is used for regression testing.

• JUnit is a set of Java classes that the user extends to create an automated testing

environment. Each individual test is implemented as an object and a test runner runs all of

the tests.

• The tests themselves should be written in such a way that they indicate whether the tested

system has behaved as expected.

• A software testing workbench is an integrated set of tools to support the testing process. In

addition to testing frameworks that support automated test execution, a workbench may

include tools to simulate other parts of the system and to generate system test data.

Figure 23.17 shows some of the tools that might be included in such a testing

workbench:

1. Test manager Manages the running of program tests. The test manager keeps track of test

data, expected results and program facilities tested. Test automation frameworks such as

JUnit are examples of test managers.

2. Test data generator Generates test data for the program to be tested. This may be

accomplished by selecting data from a database or by using patterns to generate random data

of the correct form.

3. Oracle Generates predictions of expected test results. Oracles may either be previous

program versions or prototype systems. Back-ta-back testing involves running the oracle

and the program to be tested in parallel. Differences in their outputs are highlighted.

4. File comparator Compares the results of program tests with previous test results and

reports differences between them. Comparators are used in regression testing where the

results of executing different versions are compared. Where automated tests are used, this

may be called from within the tests themselves.

• A software testing workbench is an integrated set of tools to support the testing process. In

addition to testing frameworks that support automated test execution, a workbench may

include tools to simulate other parts of the system and to generate system test data.

Figure 23.17 shows some of the tools that might be included in such a testing

workbench:

187

1. Test manager Manages the running of program tests. The test manager keeps

track of test data, expected results and program facilities tested. Test automation

frameworks such as JUnit are examples of test managers.

2. Test data generator Generates test data for the program to be tested. This may be

accomplished by selecting data from a database or by using patterns to generate random data

of the correct form.

3. Oracle Generates predictions of expected test results. Oracles may either be

previous program versions or prototype systems. Back-ta-back testing involves running the

oracle and the program to be tested in parallel.

Differences in their outputs are highlighted.

4. File comparator Compares the results of program tests with previous test results and

reports differences between them. Comparators are used in regression testing where the

results of executing different versions are compared. Where automated tests are used, this

may be called from within the tests themselves.

• Figure 23.17

4.3 (1) Software Quality Assurance

• Quality control and assurance are essential activities for any business that produces products

to be used by others.

• The first formal quality assurance and control function was introduced at Bell Labs in 1916

and spread rapidly throughout the manufacturing world.

188

• During the 1940s, more formal approaches to quality control were suggested. These relied

on measurement and continuous process improvement as key elements of quality

management.

• Today, every company has mechanisms to ensure quality in its products.

• The history of quality assurance in software development parallels the history of quality in

hardware manufacturing.

• Software quality assurance is a “planned and systematic pattern of actions” that are required

to ensure high quality in software.

• The scope of quality assurance responsibility might best be characterized by paraphrasing a

once-popular automobile commercial: “Quality Is Job #1.”

• The implication for software is that many different constituencies have software quality

assurance responsibility—software engineers, project managers, customers, salespeople, and

the individuals who serve within an SQA group.

• The SQA group serves as the customer’s in-house representative. That is, the people who

perform SQA must look at the software from the customer’s point of view.

• Does the software adequately meet the quality factors noted in Chapter 14?

• Has software development been conducted according to pre-established standards?

• Have technical disciplines properly performed their roles as part of the SQA activity?

• The SQA group attempts to answer these and other questions to ensure that software quality

is maintained.

4.3 (2) Elements of Software Quality Assurance

• Software quality assurance encompasses a broad range of concerns and activities that focus

on the management of software quality. These can be summarized in the following manner:

1) Standards. The IEEE, ISO, and other standards organizations have produced a broad

array of software engineering standards and related documents. Standards may be adopted

voluntarily by a software engineering organization or imposed by the customer or other

189

stakeholders. The job of SQA is to ensure that standards that have been adopted are followed

and that all work products conform to them.

2) Reviews and audits. Technical reviews are a quality control activity performed by

software engineers for software engineers (Chapter 15). Their intent is to uncover errors.

Audits are a type of review performed by SQA personnel with the intent of ensuring that

quality guidelines are being followed for software engineering work. For example, an audit

of the review process might be conducted to ensure that reviews are being performed in a

manner that will lead to the highest likelihood of uncovering errors.

3) Testing. Software testing is a quality control function that has one primary goal—to find

errors. The job of SQA is to ensure that testing is properly planned and efficiently conducted

so that it has the highest likelihood of achieving its primary goal.

4) Error/defect collection and analysis. The only way to improve is to measure how you’re

doing. SQA collects and analyzes error and defect data to better understand how errors are

introduced and what software engineering activities are best suited to eliminating them.

5) Change management. Change is one of the most disruptive aspects of any software

project. If it is not properly managed, change can lead to confusion, and confusion almost

always leads to poor quality. SQA ensures that adequate change management practices have

been instituted.

4.3 (3) SQA Tasks, Goals and Metrics

• Software quality assurance is composed of a variety of tasks associated with two different

constituencies—the software engineers who do technical work and an SQA group that has

responsibility for quality assurance planning, oversight, record keeping, analysis, and

reporting.

• Software engineers address quality (and perform quality control activities) by applying solid

technical methods and measures, conducting technical reviews, and performing well-

planned software testing.

SQA Tasks

The Software Engineering Institute recommends a set of SQA

190

actions that address quality assurance planning, oversight, record keeping, analysis, and

reporting. These actions are performed (or facilitated) by an independent SQA group that:

1) Prepares an SQA plan for a project.

• The plan is developed as part of project planning and is reviewed by all stakeholders.

Quality assurance actions performed by the software engineering team and the SQA group

are governed by the plan.

• The plan identifies evaluations to be performed, audits and reviews to be conducted,

standards that are applicable to the project, procedures for error reporting and tracking, work

products that are produced by the SQA group, and feedback that will be provided to the

software team.

2) Participates in the development of the project’s software process

 description.

• The software team selects a process for the work to be performed. The SQA group reviews

the process description for compliance with organizational policy, internal software

standards, externally imposed standards (e.g., ISO-9001), and other parts of the software

project plan.

3)Reviews software engineering activities to verify compliance with the defined

software process.

• The SQA group identifies, documents, and tracks deviations from the process and verifies

that corrections have been made.

4) Audits designated software work products to verify compliance with those defined as

part of the software process.

• The SQA group reviews selected work products; identifies, documents, and tracks

deviations; verifies that corrections have been made; and periodically reports the results of

its work to the project manager.

5) Ensures that deviations in software work and work products are

documented and handled according to a documented procedure.

• Deviations may be encountered in the project plan, process description,

191

applicable standards, or software engineering work products.

6) Records any noncompliance and reports to senior management.

• Noncompliance items are tracked until they are resolved.

Goals, Attributes, and Metrics

The SQA actions described in the preceding section are performed to achieve a set of

pragmatic goals:

• Requirements quality. The correctness, completeness, and consistency of the requirements

model will have a strong influence on the quality of all work products that follow. SQA must

ensure that the software team has properly reviewed the requirements model to achieve a

high level of quality.

• Design quality. Every element of the design model should be assessed by the software team

to ensure that it exhibits high quality and that the design itself conforms to requirements.

SQA looks for attributes of the design that are indicators of quality.

• Code quality. Source code and related work products (e.g., other descriptive information)

must conform to local coding standards and exhibit characteristics that will facilitate

maintainability. SQA should isolate those attributes that allow a reasonable analysis of the

quality of code.

• Quality control effectiveness. A software team should apply limited resources in a way that

has the highest likelihood of achieving a high-quality result. SQA analyzes the allocation of

resources for reviews and testing to assess whether they are being allocated in the most

effective manner.

• Figure 16.1 identifies the attributes that are indicators for the existence of quality for each of

the goals discussed. Metrics that can be used to indicate the relative strength of an attribute

are also shown.

192

4.3 (4) Formal Approaches to SQA

• Software quality is everyone’s job and that it can be achieved through competent software

engineering practice as well as through the application of technical reviews, a multi-tiered

testing strategy, better control of software work products and the changes made to them, and

the application of accepted software engineering standards.

• In addition, quality can be defined in terms of a broad array of quality attributes and

measured (indirectly) using a variety of indices and metrics.

• Over the past three decades, a small, but vocal, segment of the software engineering

community has argued that a more formal approach to software quality assurance is required.

It can be argued that a computer program is a mathematical object.

• A rigorous syntax and semantics can be defined for every programming language, and a

rigorous approach to the specification of software requirements is available.

• If the requirements model (specification) and the programming language can be represented

in a rigorous manner, it should be possible to apply mathematic proof.

193

4.3 (5) Statistical Software Quality Assurance

• Statistical quality assurance reflects a growing trend throughout industry to become more

quantitative about quality. For software, statistical quality assurance implies the following

steps:

1. Information about software errors and defects is collected and categorized.

2. An attempt is made to trace each error and defect to its underlying cause (e.g.,

nonconformance to specifications, design error, violation of standards, poor communication

with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all

possible causes), isolate the 20 percent (the vital few).

4. Once the vital few causes have been identified, move to correct the problems that have

caused the errors and defects.

1) Generic Example

• To illustrate the use of statistical methods for software engineering work, assume that a

software engineering organization collects information on errors and defects for a period of

one year. Some of the errors are uncovered as software is being developed.

• Others (defects) are encountered after the software has been released to its end users.

Although hundreds of different problems are uncovered, all can be tracked to one (or more)

of the following causes:

• Incomplete or erroneous specifications (IES)

• Misinterpretation of customer communication (MCC)

• Intentional deviation from specifications (IDS)

• Violation of programming standards (VPS)

• Error in data representation (EDR)

• Inconsistent component interface (ICI)

• Error in design logic (EDL)

• Incomplete or erroneous testing (IET)

• Inaccurate or incomplete documentation (IID)

194

• Error in programming language translation of design (PLT)

• Ambiguous or inconsistent human/computer interface (HCI)

• Miscellaneous (MIS)

• To apply statistical SQA, the table in Figure 16.2 is built. The table indicates that IES, MCC,

and EDR are the vital few causes that account for 53 percent of all errors.

• It should be noted, however, that IES, EDR, PLT, and EDL would be selected as the vital

few causes if only serious errors are considered. Once the vital few causes are determined,

the software engineering organization can begin corrective action.

• For example, to correct MCC, you might implement requirements gathering techniques to

improve the quality of customer communication and specifications.

• To improve EDR, you might acquire tools for data modeling and perform more stringent

data design reviews.

• It is important to note that corrective action focuses primarily on the vital few. As the vital

few causes are corrected, new candidates pop to the top of the stack.

• Statistical quality assurance techniques for software have been shown to provide substantial

quality improvement .

• In some cases, software organizations have achieved a 50 percent reduction per year in

defects after applying these techniques.

• The application of the statistical SQA and the Pareto principle can be summarized

in a single sentence: Spend your time focusing on things that really matter, but first be sure

that you understand what really matters!

2) Six Sigma for Software Engineering

• Six Sigma is the most widely used strategy for statistical quality assurance in industry today.

• Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and

disciplined methodology that uses data and statistical analysis to measure and improve a

company’s operational performance by identifying and eliminating defects’ in manufacturing

and service-related processes” . The term Six Sigma is derived from six standard deviations.

195

The Six Sigma methodology defines three core steps:

• Define customer requirements and deliverables and project goals via well-defined methods

of customer communication.

• Measure the existing process and its output to determine current quality performance

(collect defect metrics).

• Analyze defect metrics and determine the vital few causes.

• If an existing software process is in place, but improvement is required, Six Sigma suggests

two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the causes of defects.

• These core and additional steps are sometimes referred to as the DMAIC (define, measure,

analyze, improve, and control) method.

• If an organization is developing a software process (rather than improving an existing

process), the core steps are augmented as follows:

• Design the process to (1) avoid the root causes of defects and (2) to meet customer

requirements.

• Verify that the process model will, in fact, avoid defects and meet customer requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design, and

verify) method.

4.3 (6) Software Reliability

• There is no doubt that the reliability of a computer program is an important element of its

overall quality. If a program repeatedly and frequently fails to perform, it matters little

whether other software quality factors are acceptable.

• Software reliability, unlike many other quality factors, can be measured directly

 and estimated using historical and developmental data.

• Software reliability is defined in statistical terms as “the probability of failure-free operation

of a computer program in a specified environment for a specified time”. To illustrate,

program X is estimated to have a reliability of 0.999 over eight elapsed processing hours.

196

• In other words, if program X were to be executed 1000 times and require a total of eight

hours of elapsed processing time (execution time), it is likely to operate correctly (without

failure) 999 times.

• Whenever software reliability is discussed, a pivotal question arises: What is meant by the

term failure? In the context of any discussion of software quality and reliability, failure is

nonconformance to software requirements. Yet, even within this definition, there are

gradations.

• Failures can be only annoying or catastrophic. One failure can be corrected within seconds,

while another requires weeks or even months to correct. Complicating the issue even further,

the correction of one failure may in fact result in the introduction of other errors that

ultimately result in other failures.

1) Measures of Reliability and Availability

• Software reliability attempted to extrapolate the mathematics of hardware

reliability theory to the prediction of software reliability. Most hardware-related

reliability models are predicated on failure due to wear rather than failure due to design

defects.

• In hardware, failures due to physical wear (e.g., the effects of temperature, corrosion, shock)

are more likely than a design-related failure. Unfortunately, the opposite is true for software.

In fact, all software failures can be traced to design or implementation problems; wear (see

Chapter 1) does not enter into the picture.

• There has been an ongoing debate over the relationship between key concepts in hardware

reliability and their applicability to software. Although an irrefutable link has yet to be

established, it is worthwhile to consider a few simple concepts that apply to both system

elements.

• If we consider a computer-based system, a simple measure of reliability is meantime-

between-failure (MTBF):

197

 MTBF MTTF MTTR

where the acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to repair,

respectively.

• Many researchers argue that MTBF is a far more useful measure than other quality-related

software metrics Stated simply, an end user is concerned with failures, not with the total

defect count. Because each defect contained within a program does not have the same failure

rate, the total defect count provides little indication of the reliability of a system.

• For example, consider a program that has been in operation for 3000 processor hours without

failure. Many defects in this program may remain undetected for tens of thousand of hours

before they are discovered.

• The MTBF of such obscure errors might be 30,000 or even 60,000 processor hours. Other

defects, as yet undiscovered, might have a failure rate of 4000 or 5000 hours. Even if every

one of the first category of errors (those with long MTBF) is removed, the impact on

software reliability is negligible.

• However, MTBF can be problematic for two reasons: (1) it projects a time span between

failures, but does not provide us with a projected failure rate, and (2) MTBF can be

misinterpreted to mean average life span even though this is not what it implies.

• An alternative measure of reliability is failures-in-time (FIT)—a statistical measure of how

many failures a component will have over one billion hours of operation.

• Therefore, 1 FIT is equivalent to one failure in every billion hours of operation.

• In addition to a reliability measure, you should also develop a measure of availability.

• Software availability is the probability that a program is operating according to requirements

at a given point in time and is defined as

198

• The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availability

measure is somewhat more sensitive to MTTR, an indirect measure of the maintainability of

software.

• 2) Software Safety

• Software safety is a software quality assurance activity that focuses on the identification and

assessment of potential hazards that may affect software negatively and cause an entire

system to fail. If hazards can be identified early in the software process, software design

features can be specified that will either eliminate or control potential hazards.

• A modeling and analysis process is conducted as part of software safety. Initially, hazards

are identified and categorized by criticality and risk.

• For example, some of the hazards associated with a computer-based cruise control for an

automobile might be: (1) causes uncontrolled acceleration that cannot be stopped, (2) does

not respond to depression of brake pedal (by turning off), (3) does not engage when switch is

activated, and (4) slowly loses or gains speed. Once these system-level hazards are

identified, analysis techniques are used to assign severity and probability of occurrence.

• To be effective, software must be analyzed in the context of the entire system.

• Once hazards are identified and analyzed, safety-related requirements can be specified for

the software. That is, the specification can contain a list of undesirable events and the desired

system responses to these events.

• The role of software in managing undesirable events is then indicated. Although software

reliability and software safety are closely related to one another, it is important to understand

the subtle difference between them.

• Software reliability uses statistical analysis to determine the likelihood that a software failure

will occur. However, the occurrence of a failure does not necessarily result in a hazard or

mishap.

199

• Software safety examines the ways in which failures result in conditions that can lead to a

mishap. That is, failures are not considered in a vacuum, but are evaluated in the context of

an entire computer-based system and its environment.

4.3 (7) The ISO 9000 Quality Standards

• A quality assurance system may be defined as the organizational structure, responsibilities,

procedures, processes, and resources for implementing quality management.

•

• Quality assurance systems are created to help organizations ensure their

 products and services satisfy customer expectations by meeting their specifications.

• ISO 9000 describes quality assurance elements in generic terms that can be applied to any

business regardless of the products or services offered.

• To become registered to one of the quality assurance system models contained in ISO 9000,

a company’s quality system and operations are scrutinized by third-party auditors for

compliance to the standard and for effective operation.

• Upon successful registration, a company is issued a certificate from a registration body

represented by the auditors.

• The requirements delineated by ISO 9001:2000 address topics such as management

responsibility, quality system, contract review, design control, document and data control,

product identification and traceability, process control, inspection and testing, corrective and

preventive action, control of quality records, internal quality audits, training, servicing, and

statistical techniques.

• In order for a software organization to become registered to ISO 9001:2000, it must establish

policies and procedures to address each of the requirements just noted (and others) and then

be able to demonstrate that these policies and procedures are being followed. If you desire

further information on ISO 9001:2000.

200

• The SQA Plan

• The SQA Plan provides a road map for instituting software quality assurance. Developed by

the SQA group (or by the software team if an SQA group does not exist), the plan serves as a

template for SQA activities that are instituted for each software project.

• A standard for SQA plans has been published by the IEEE. The standard recommends a

structure that identifies:

(1) the purpose and scope of the plan,

(2) a description of all software engineering work products (e.g., models, documents, source

code) that fall within the purview of SQA,

(3) all applicable standards and practices that are applied during the software process,

(4) SQA actions and tasks(including reviews and audits) and their placement throughout the

software process,

(5) the tools and methods that support SQA actions and tasks,

(6) software configuration management procedures,

(7) methods for assembling, safeguarding, and maintaining all SQA-related records, and

(8) organizational roles and responsibilities relative to product quality.

201

UNIT V

Project Management: Management activities, Project planning, Project scheduling, Risk

management. Software Cost Estimation: Software Productivity, Estimation techniques- The

COCOMO II Model, Project duration and staffing.

5.1 (1) Project Management

• Software project management is an essential part of software engineering. Good

management cannot guarantee project success.

• However, bad management usually results in project failure: The software is delivered late,

costs more than originally estimated and fails to meet its requirements.

• Software managers are responsible for planning and scheduling project development. They

supervise the work to ensure that it is carried out to the required standards and monitor

progress to check that the development is on time and within budget.

• We need software project management because professional software engineering is always

subject to organizational budget and schedule constraints.

• The software project manager's job is to ensure that the software project meets these

constraints and delivers software that contributes to the goals of the company developing the

software.

• Software managers do the same kind of job as other engineering project managers. However,

software engineering is different from other types of engineering in a number of ways.

• These distinctions make software management particularly difficult. Some of the differences

are:

• 1. The product is intangible The manager of a shipbuilding project or of a civil engineering

project can see the product being developed. If a schedule slips, the 'effect on the product is

visible-parts of the structure are obviously unfinished. Software is intangible. It cannot be

202

seen or touched. Software project managers cannot see progress. They rely on others to

produce the documentation needed to review progress.

• 2. There are no standard software processes In engineering disciplines with a long history,

the process is tried and tested. The engineering process for some types of system, such as

bridges and buildings is well understood. However, software processes vary dramatically

from one organization to another. Although our understanding of these processes has

developed significantly in the past few years, we still cannot reliably predict when a

particular software process is likely to cause development problems.. This is especially true

when the software project is part of a wider systems engineering project.

• 3. Large software projects are often one-off projects Large software projects are usually

different in some ways from previous projects. Therefore, even managers who have a large

body of previous experience may find it difficult to anticipate problems. Furthermore, rapid

technological changes in computers and communications can make a manager s experience

obsolete. Lessons learned from previous projects may not be transferable to new projects.

• Because of these problems, it is not surprising that some software projects are late, over

budget and behind schedule. Software systems are often new and technically innovative.

Engineering projects (such as new transport systems) that are innovative often also have

schedule problems.

5.1 (2) Management activities

• It is impossible to write a standard job description for a software manager. The job varies

tremendously depending on the organization and the software product being developed.

However, most managers take responsibility at some stage for some or all of the following

activities:

1) Proposal writing

2) Project planning and scheduling

3) Project cost

4) Project monitoring and reviews

203

5) Personnel selection and evaluation

6) Report writing and presentations

1) Proposal writing

• The first stage in a software project may involve writing a proposal to win a contract to carry

out the work.

• The proposal describes the objectives of the project and how it will be carried out. It usually

includes cost and schedule estimates, and justifies why the project contract should be

awarded to a particular organization or team.

• Proposal writing is a critical task as the existence of many software organizations depends

on having enough proposals accepted and contracts awarded.

There can be no set guidelines for this task; proposal writing is a skill that you acquire

through practice and experience.

2) Project planning and scheduling

Project planning is concerned with identifying the activities. milestones and deliverables

produced by a project. A plan is drawn up to guide the development towards the project

goals.

3) Project cost

Cost estimation is a related activity that is concerned with estimating the resources required

to accomplish the project plan.

4) Project monitoring and reviews

• Project monitoring is a continuing project activity. The manager must keep track of the

progress of the project and compare actual and planned progress and costs.

• Although most organizations have formal mechanisms for monitoring, a skilled manager

can often form a clear picture of what is going on through informal discussions with project

staff.

204

• Informal monitoring can often predict potential project problems by revealing difficulties as

they occur.

• For example, daily discussions with project staff might reveal a particular problem in finding

some software fault. Rather than waiting for a schedule slippage to be reported, the software

manager might assign some expert to the problem or might decide that it should be

programmed around.

• During a project, it is normal to have a number of formal project management reviews. They

are concerned with reviewing overall progress and technical development of the project and

checking whether the project and the goals of the organization paying for the software are

still aligned.

• The outcome of a review may be a decision to cancel a project. The development time for a

large software project may be several years. During that time, organizational objectives are

almost certain to change. These changes may mean that the software is no longer required or

that the original project requirements are inappropriate.

• Management may decide to stop software development or to change the project to

accommodate the changes to the organizational objectives.

• Project managers usually have to select people to work on their project. Ideally, skilled staff

with appropriate experience will be available to work on the project.

• However, in most cases, managers have to settle for a less-than-ideal project team. The

reasons for this are:

1. The project budget may not cover the use of highly paid staff. Less experienced, less well-

paid staff may have to be used.

2. Staff with the appropriate experience may not be available either within an organization or

externally. It may be impossible to recruit new staff to the project. Within the organization,

the best people may already be allocated to other projects.

3. The organization may wish to develop the skills of its employees. Inexperienced staff may

be assigned to a project to learn and to gain experience.

205

• The software manager has to work within these constraints when selecting project staff

However, problems are likely unless at least one project member has some experience with

the type of system being developed. Without this experience, many simple mistakes are

likely to be made.

• 5.1 (3) Project planning

• Effective management of a software project depends on thoroughly planning the progress of

the project.

• Managers must anticipate problems that might arise and prepare tentative solutions to those

problems.

• A plan, drawn up at the start of a project, should be used as the driver for the project. This

initial plan should be the best

 possible plan given the available information.

• It evolves as the project progresses and better information becomes available.

• As well as a project plan, managers may also have to draw up other types of plans. These are

briefly described in Figure 5.1

206

• The pseudo-code shown in Figure 5.2 sets out a project planning process for software

development.

• It shows that planning is an iterative process, which is only complete when the project itself

is complete.

• As project information becomes available during the project, the plan should be regularly

revised.

• The goals of the business are an important factor that must be considered when formulating

the project plan.

• As these change, the project's goals also change so changes to the project plan are necessary

• At the beginning of a planning process, you should assess the constraints (required delivery

date, staff available, overall budget, etc.) affecting the. project.

• In conjunction with this, you should estimate project parameters such as its structure, size,

and distribution of functions. You next define the progress milestones and deliverables.

• The process then enters a loop. You draw up an estimated schedule for the project and the

activities defined in the schedule are started or given permission to continue.

• After some time (usually about two to three weeks), you should review progress and note

discrepancies from the planned schedule.

207

• Because initial estimates of project parameters are tentative, you will always have to modify

the original plan.

• As more information becomes available. you revise your original assumptions about the

project and the project schedule.

• If the project is delayed, you may have to renegotiate the project constraints, and deliverables

with the customer.

• If this renegotiation is unsuccessful and the schedule cannot be met, a project technical

review may be held.

The objective of this review is to find an alternative approach that falls within the project

constraints and meets the schedule.

1) The Project Plan

• The project plan sets out the resources available to the project, the work breakdown and a

schedule for carrying out the work.

• In some organizations, the project plan is a single document that includes the different types

of plan (Figure 5.1).

• In other cases, the project plan is solely concerned with the development process.

• References to other plans are included but the plans themselves are separate.

• However, most plans should include the following sections:

1. Introduction This briefly describes the objectives of the project and sets out the constraints

(e.g., budget, time, etc.) that affect the project management.

2. Project organization This describes the way in which the development team is organized, the

people involved and their roles in the team.

208

3. Risk analysis This describes possible project risks, the likelihood of these risks arising and the

risk reduction strategies that are proposed.

4. Hardware and software resource requirements This specifies the hardware and the support

software required to carry out the development. If hardware has to be bought, estimates of the prices

and the delivery schedule may be included.

5. Work breakdown This sets out the breakdown of the project into activities and identifies the

milestones and deliverables associated with each activity.

6. Project schedule This shows the dependencies between activities, the estimated time required to

reach each milestone and the allocation of people to activities.

7. Monitoring and reporting mechanisms This defines the management reports that should be

produced, when these should be produced and the project monitoring mechanisms used.

2) Milestones and deliverables

• When planning a project, you should establish a series of milestones. where a milestone is a

recognizable end-point of a software process activity.

• At each milestone, there should be a formal output, such as a report, that can be presented to

management. Milestone reports need not be large documents.

• They may simply be a short report of what has been completed. Milestones should represent

the end of a distinct, logical stage in the project.

• Indefinite milestones such as 'Coding 80% complete' that can't be checked are useless for

project management.

You can't check whether this state has been achieved because the amount of code that still has to be

developed is uncertain.

• A deliverable is a project result that is delivered to the customer. It is usually delivered at the

end of some major project phase such as specification or design.

• Deliverables are usually milestones, but milestones need not be deliverables.

209

• Milestones may be internal project results that are used by the project manager to check

project progress but which are not delivered to the customer.

• To establish milestones, the software process must be broken down into basic activities with

associated outputs.

• For example, Figure 5.3 shows possible activities involved in requirements specification

when prototyping is used to help validate requirements.

• The milestones in this case are the completion of the outputs for each activity.

• The project deliverables, which are delivered to the customer, are the requirements definition

and the requirements specification.

5.1 (4) Project scheduling

• Project scheduling is one of the most difficult jobs for a project manager. Managers estimate

the time and resources required to complete activities and organize them into a coherent

sequence.

• Unless the project being scheduled is similar to a previous project, previous estimates are an

uncertain basis for new project scheduling.

• Schedule estimation is further complicated by the fact that different projects may use

different design methods and implementation languages.

210

• Project scheduling (Figure 5.4) involves separating the total work involved in a project into

separate activities and judging the time required to complete these activities. Usually, some

of these activities are carried out in parallel.

Figure 5.4 The Project Scheduling Process

• Project activities should normally last at least a week. Finer subdivision means that

 a disproportionate amount of time must be spent on estimating and chart revision.

• It is also useful to set a maximum amount of time for any activity of about 8 to

10 weeks. If it takes longer than this, it should be subdivided for project planning and

scheduling

• When you are estimating schedules, you should not assume that every stage of the project

will be problem free.

• People working on a project may fall ill or may leave, hardware may break down, and

essential support software or hardware may be delivered late.

• If the project is new and technically advanced, certain parts of it may turn out to be more

difficult and take longer than originally anticipated.

• As well as calendar time, you also have to estimate the resources needed to complete each

task. The principal resource is the human effort required.

• A good rule of thumb is to estimate as if nothing will go wrong, then increase your estimate

to cover anticipated problems.

211

• A further contingency factor to cover unanticipated problems may also be added to the

estimate.

• This extra contingency factor depends on the type of project, the process parameters

(deadline, standards, etc.) and the quality and experience of the software engineers working

on the project.

• Project schedules are usually represented as a set of charts showing the work breakdown,

activities dependencies and staff allocations.

1) Bar charts and activity networks

• Bar charts and activity networks are graphical notations that are used to illustrate the project

schedule.

• Bar charts show who is responsible for each activity and when the activity is scheduled to

begin and end.

• Activity networks show the dependencies between the different activities making up a

project.

• Bar charts and activity charts can be generated automatically from a database of project

information using a project management tool.

• To illustrate how these charts are used, a hypothetical set of activities as shown in Figure

5.5.

212

• This table shows activities, their duration, and activity interdependencies.

• From Figure 5.5, you can see that Activity T3 is dependent on Activity Ti. This means that

T1 must be completed before T3 starts.

• For example, T1 might be the preparation of a component design and n, the implementation

of that design.

• Before implementation starts, the design should be complete.

• Given the dependencies and estimated duration of activities, an activity chart that shows

activity sequences may be generated

 (Figure 5.6).

• This shows which activities can be carried out in parallel and which must be executed in

sequence because of a dependency on an earlier activity.

• Activities are represented as rectangles; milestones and project deliverables are shown with

rounded comers.

• Dates in this diagram show the start elate of the activity and are written in British style,

where the day precedes the month.

• You should read the chart from left to right and from top to bottom.

• In the project management tool used to produce this chart, all activities must end in

milestones.

• An activity may start when its preceding milestone (which may depend

 on several activities) has been reached.

• Therefore, in the third column in Figure 5.5 shows the corresponding milestone (e.g., M5)

that is reached when the tasks finish

 (see Figure 5.6).

• Before progress can be made from one milestone to another, all paths leading to it must be

complete.

213

• For example, when activities n and T6 are finished, then activity

 T9, shown in Figure 5.6, can start.

• The minimum time required to finish the project can be estimated by considering the longest

path in the activity graph (the critical path). In this case, it is 11 weeks of elapsed time or 55

working days.

• In Figure 5.6, the critical path is shown as a sequence of emboldened boxes. The critical

path is the sequence of dependent activities that defines the time required to complete the

project.

• The overall schedule of the project depends on the critical path. Any slippage in the

completion in any critical activity causes project delays because the following activities

cannot start until the delayed activity has been completed.

• For example, if T8 is delayed by two weeks, it will not affect the final completion date of the

project because it does not lie on the critical path.

• Most project management tools compute the allowed delays, as shown in the project bar

chart.

214

• Managers also use activity charts when allocating project work. They can provide insights

into activity dependencies that are not intuitively obvious. It may be possible to modify the

system design so that the critical path is shortened.

• Figure 5.7 is a complementary way of representing project schedule information. It is a bar

chart showing a project calendar and the start and finish dates of activities.

• Sometimes these are called Gantt charts, after their inventor. Reading from left to right, the

bar chart clearly shows when activities start and end.

• Some of the activities shown in l:he bar chart in Figure 5.7 are followed by a shaded bar

whose length is computed by the scheduling tool.

• This highlights the flexibility in the completion date of these activities. If an activity does

not complete on time, the critical path will not be affected until the end of the period marked

by the shaded bar.

• Activities that lie on the critical path have no margin of error

 and can be identified because they have no associated shaded bar

• Large organizations usually employ a number of specialists who work on a project when

needed.

215

• In Figure 5.8, you can see that Mary and Jim are specialists who work on only a single task

in the project. This can cause scheduling problems.

• If one project is delayed while a specialist is working on it, this may have a knock on effect

on other projects.

• They may also be delayed because the specialist is not available.

5.1(5) Risk Management

• Risk management is increasingly seen as one of the main jobs of project managers.

• It involves anticipating risks that might affect the project schedule or the quality of the

software being developed and taking action to avoid these risks.

• The results of the risk analysis should be documented in the project plan along with an

analysis of the consequences of a risk occurring.

• Effective risk management makes it easier to cope with problems and to ensure that these do

not lead to unacceptable budget or schedule slippage.

• Simplistically, you can think of a risk as something that you'd prefer not to have happen.

Risks may threaten the project, the software that is being developed or the organization.

• There are, therefore, three related categories of risk:

216

1. Project risks are risks that affect the project schedule or resources. An example might be the

loss of an experienced designer.

2. Product risks are risks that affect the quality or performance of the software being developed.

An example might be the failure of a purchased component

to perform as expected.

3. Business risks are risks that affect the organization developing or procuring the software. For

example, a competitor introducing Ii new product is a business risk.

• Of course, these risk types overlap. If an experienced programmer leaves a project, this can

be a project risk because the delivery of the system may be delayed.

• It can also be a product risk because a replacement may not be as experienced and so may

make programming errors.

• Finally, it can be a business risk because the programmer’s experience is not available for

bidding for future business.

• The risks that may affect a project depend on the project and the organizational environment

where the software is being developed.

• However, many risks are universal- some of the most common risks are shown in Figure

5.9.

217

• The process of risk management is illustrated in Figure 5.10. It involves several stages:

1. Risk identification Possible project, product and business risks are identified.

2. Risk analysis The likelihood and consequences of these risks are assessed.

3. Risk planning Plans to address the risk either by avoiding it or minimizing its effects on the

project are drawn up.

4. Risk monitoring The risk is constantly assessed and plans for risk mitigation are revised as more

information about the risk becomes available.

• The risk management process, like all other project planning, is an iterative

 process which continues throughout the project. Once an initial set of plans are drawn up, the

situation is monitored. As more information about the risks becomes available, the risks have to be

reanalyzed and new priorities established.

• The risk avoidance and contingency plans may be modified as new risk information emerges.

218

1) Risk Identification

• Risk identification is the first stage of risk management. It is concerned with discovering

possible risks to the project

• There are at least six types of risk that can arise:

1. Technology risks Risks that derive from the software or hardware technologies that are used to

develop the system.

2. People risks Risks that are associated with the people in the development team.

3. Organizational risks Risks that derive from the organizational environment where the software is

being developed.

4. Tools risks Risks that derive from the CASE tools and other support software used to develop the

system.

5. Requirements risks Risks that derive from changes to the customer requirements and the process

of managing the requirements change.

6. Estimation risks Risks that derive from the management estimates of the system characteristics

and the resources required to build the system.

219

• Figure: 5.11 gives some examples of possible risks in each of these categories.

2) Risk Analysis

• During the risk analysis process, you have to consider each identified risk and make a

judgement about the probability and the seriousness of it.

• There is no easy way to do this-you must rely on your own judgement and experience, which

is why experienced project managers are generally the best people to help with risk

management.

• These risk estimates should not generally be precise numeric assessments but should be

based around a number of bands:

• The probability of the risk might be assessed as very low (<10%), low (l0-25%), moderate (25-

50%), high (50-75%) or very high (>75%).

• The effects of the risk might be assessed as catastrophic, serious, tolerable or insignificant.

220

Figure 5.12 illustrates this for the risks identified in Figure 5.11.

• Once the risks have been analyzed and ranked, you should assess which are most significant.

In general, catastrophic risks should always be considered, as should all serious risks that

have more than a moderate probability of occurrence.

• Boehm (1988) recommends identify and monitoring the 'top 10' risks, but I think that this

figure is rather arbitrary. The right number of risks to monitor must depend on the project. It

might be 5 or it might be 15.

• However, the number of risks chosen for monitoring should be manageable. A very large

number of risks would simply require too much information to be collected.

• From the risks identified in Figure 5.12, it is appropriate to consider all 8 risks that have

catastrophic or serious consequences.

221

3) Risk Planning

• The risk planning process considers each of the key risks that have been identified and

identifies strategies to manage the risk. Again. there is no simple process that can be

followed to establish risk management plans. It relies on the judgement and experience of the

project manager. Figure 5.13 shows possible strategies that have been identified for the key

risks from Figure 5.12. These strategies fall into three categories:

1. Avoidance strategies Following these strategies means that the probability that the risk will arise

will be reduced. An example of a risk avoidance strategy is the strategy for dealing with defective

components shown in Figure 5.13.

2. Minimization strategies Following these strategies means that the impact of the risk will be

reduced. An example of a risk minimization strategy is that for staff illness shown in Figure 5.13.

3. Contingency plans Following these strategies means that you are prepared for the worst and have

a strategy in place to deal with it An example of a contingency strategy is the strategy for

organizational financial problems in Figure 5.13

222

4) Risk Monitoring

• Risk monitoring involves regularly assessing each of the identified risks to decide whether or

not that risk is becoming more or less probable and whether the effects of the risk have

changed.

• Of course, this cannot usually be observed directly, so you have to look at other factors that

give you clues about the risk probability and its effects.

• These factors are obviously dependent on the types of risk. Figure 5.14 gives some

examples of factors that may be helpful in assessing these risk types.

• Risk monitoring should be a continuous process, and, at every management progress review,

you should consider and discuss each of the key risks separately.

5.2 (1) Software Cost Estimation

• Estimation involves answering the following questions:

1. How much effort is required to complete each activity?

2. How much calendar time is needed to complete each activity?

3. What is the total cost of each activity?

223

• Project cost estimation and project scheduling are normally carried out together. The costs of

development are primarily the costs of the effort involved, so the effort computation is used

in both the cost and the schedule estimate.

• There are three parameters involved in computing the total cost of a software development

project:

1) Hardware and software costs including maintenance

2) Travel and training costs

3) Effort costs (the costs of paying software engineers).

• For most projects, the dominant cost is the effort cost. Effort costs are not just the salaries of

the software engineers who are involved in the project.

• Organizations compute effort costs in terms of overhead costs where they take the total cost

of running the organization and divide this by the number of productive staff. Therefore, the

following costs are all part of the total effort cost:

1. Costs of providing, heating and lighting office space

2. Costs of support staff such as accountants, administrators, system managers, cleaners and

technicians

3. Costs of networking and communications.

4. Costs of central facilities such as a library or recreational facilities

5. Costs of Social Security and employee benefits such as pensions and health insurance.

• Once a project is underway, project managers should regularly update their cost and schedule

estimates.

• This helps with the planning process and the effective use of resources. If actual expenditure

is significantly greater than the estimates, then the project manager must take some action.

• Software costing should be carried out objectively with the aim of accurately predicting the

cost of developing the software.

• Software pricing must take into account broader organizational, economic, political and

business considerations, such as those shown in Figure 26.1.

224

• Therefore, there may not be a simple relationship between the price to the customer for the

software and the development costs.

5.2 (2) Software Productivity

• You can measure productivity in a manufacturing system by counting the number of units

that are produced and dividing this by the number of person-hours required to produce them.

• However, for any software problem, there are many different solutions, each of which has

different attributes.

• One solution may execute more efficiently while another may be more readable and easier

to maintain.

• When solutions with different attributes are produced, comparing their production rates is

not really meaningful.

• Nevertheless, as a project manager, you may be faced with the problem of estimating the

productivity of software engineers.

225

• You may need these productivity estimates to help define the project cost or schedule, to

inform investment decisions or to assess, whether process or technology improvements are

effective.

• Productivity estimates are usually based on measuring attributes of the software and dividing

this by the total effort required for development. There are two types of metric that have

been used:

1. Size-related metrics These are related to the size of some output from an activity. The most

commonly used size-related metric is lines of delivered source code.

• Other metrics that may be used are the number of delivered object code instructions or the

number of pages of system documentation.

2. Function-related metrics These are related to the overall functionality of the delivered software.

• Productivity is expressed in terms of the amount of useful functionality produced in some

given time. Function points and object points are the best-known metrics of this type.

• Lines of source code per programmer-month (LOC/pm) is a widely used software

productivity metric.

• You can compute LOC/pm by counting the total number of lines of source code that are

delivered, then divide the count by the total time in programmer-months required to

complete the project.

• This time therefore includes the time required for all other activities (requirements, design,

coding, testing and documentation) involved in software development.

• This approach was first developed when most programming was in FORTRAN, assembly

language or COBOL.

• Then, programs were typed on cards, with one statement on each card. The number of lines

of code was easy to count: It corresponded to the number of cards in the program deck.

• However, programs in languages such as Java or C++ consist of declarations, executable

statements and commentary.

226

• They may include macro instructions that expand to several lines of code.

• For example, consider an embedded real-time system that might be coded in 5,000 lines of

assembly code or 1,500 lines of C. The development time for the various phases is shown in

Figure 26.2.

• The assembler programmer has a productivity of 714 lines/month and the high-level

language programmer less than half of this 300 lines/month.

• Productivity is expressed as the number of function points that are implemented per person-

month. A function point is not a single characteristic but is computed by combining several

different measurements or estimates.

• You compute the total number of function points in a program by measuring or estimating

the following program features:

• external inputs and outputs;

• user interactions;

• external interfaces;

• file:; used by the system.

• Obviously, some inputs and outputs, interactions. and so on are more complex than others

and take longer to implement.

227

• The function-point metric takes this into account by multiplying the initial function-point

estimate by a complexity-weighting factor.

• You should assess each of these features for complexity and then assign the weighting factor

that vanes from 3 (for simple external inputs) to 15 for complex internal files .

• Either the weighting values proposed by Albrecht or values based on local experience may

be used.

• You can then compute the so-called unadjusted function-point count (UFC) by multiplying

each initial count by the estimated weight and summing all values.

 UFC = (number of elements of given type) x (weight)

• You then modify this unadjusted function-point count by additional complexity factors that

are related to the complexity of the system as a whole.

• This takes into account the degree of distributed processing, the amount of reuse, the

performance, and so or.

• The unadjusted function-point count is multiplied by these project complexity factors to

produce a final function-point count for the overall system.

• Object points (Banker, et al., 1994) are an alternative to function points. They can be used

with languages such as database programming languages or scripting languages.

• Object points are not object classes that may be produced when an object-oriented approach

is taken to software development. Rather, the number of object points in a program is a

weighted estimate of:

1. The number of separate screens that are displayed Simple screens count as 1 object point,

moderately complex screens count as 2, and very complex screens count as 3 object points.

2. The number of reports that are produced For simple reports, count 2 object points, for

moderately complex reports, count 5, and for reports that are likely to be difficult to produce, count

8 object points.

228

3. The number of modules in imperative programming languages such as Java or C++ that must

be developed to supplement the database programming code Each of these modules counts as 10

object points.

• Object points are used in the COCOMO II estimation model (where they are called

application points) The advantage of object points over function points is that they are easier

to estimate from a high-level software specification.

• Object points are only concerned with screens, reports and modules in conventional

programming languages. They are not concerned with implementation details, and the

complexity factor estimation is much simpler.

• If function points or object points are used, they can be estimated at an early stage in the

development process before decisions that affect the program size have been made.

• Function-point and object-point counts can be used in conjunction with lines of code-

estimation models. The final code size is calculated from the number of function points.

• Using historical data analysis, the average number of lines of code, AVC, in a particular

language required to implement a function point can be estimated.

• Values of AVC vary from 200 to 300 LOCIFP in assembly language to 2 to 40 LOCIFP for

a database programming language such as SQL.

• The estimated code size for a new application is then computed as follows:

 Code size = AVC x Number of function points

• The programming productivity of individuals working in an organization is affected by a

number of factors. Some of the most important of these are summarized in

Figure 26.3. However, individual differences in ability are usually more significant than any of

these factors.

229

• Software development productivity varies dramatically across application domains and

organizations.

• For large, complex, embedded systems, productivity has been estimated to be as low as 30

LOC/pm.

• For straightforward, well-understood application systems, written in a language such as Java,

it may be as high as 900 LOC/pm.

• The problem with measures that rely on the amount produced in a given time period is that

they take no account of quality characteristics such as reliability and maintainability.

• These measures also do not take into account the possibility of reusing the software

produced, using code generators and other tools that help create the software.

5.2 (3) Estimation Techniques

• There is no simple way to make an accurate estimate of the effort required to develop a

software system.

• You may have to make initial estimates on the basis of a high-level user requirements

definition.

230

• Project cost estimates are often self-fulfilling.

• The estimate is used to define the project budget, and the product is adjusted so that the

budget figure is realized.

• Nevertheless, organizations need to make software effort and cost estimates. To do so, one or

more of the techniques described in Figure 26.4 may be used

• However, there may be important differences between past and future projects. Many new

development methods and techniques have been introduced in the last 10 years.

• Some examples of the changes that may affect estimates based on experience include:

1. Distributed object systems rather than mainframe-based systems

2. Use of web services

3. Use of ERP or database-centered systems

4. Use of off-the-shelf software rather than original system development

5. Development for and with reuse rather than new development of all parts of a system

231

6. Development using scripting languages such as TCL or Perl (Ousterhout, 1998)

7. The use of CASE tools and program generators rather than unsupported software development

• If project managers have not worked with these techniques, their previous experience may

not help them estimate software project costs.

• You can tackle the approaches to cost estimation shown in Figure 26.4 using either a top-

down or a bottom-up approach. A top-down approach starts at the system level.

• The bottom-up approach, by contrast, starts at the component level. The system is

decomposed into components, and you estimate the effort required to develop each of these

components.

• The disadvantages of the top-down approach are the advantages of the bottom-up approach

and vice versa. Top-down estimation can underestimate the costs of solving difficult

technical problems associated with specific components such as interfaces to nonstandard

hardware.

• By contrast, bottom-up estimation produces such a justification and considers each

component.

• However, this approach is more likely to underestimate the costs of system activities such as

integration.

• Bottom-up estimation is also more expensive. Each estimation technique has its own

strengths and weaknesses.

• Each uses different information about the project and the development team, so if you use a

single model and this information is not accurate, your final estimate will be wrong.

• For large projects, therefore, you should use several cost estimation techniques and compare

their results.

• These estimation techniques are applicable where a requirements document for the system

has been produced. This should define all users and system requirements.

• However, in many cases, the costs of many projects must be estimated using only incomplete

user requirements for the system.

232

• This means that the estimators have very little information with which to work.

• Requirements analysis and specification is expensive, and the managers in a company may

need an initial cost estimate for the system before they can have a budget approved to

develop more detailed requirements or a system prototype.

• Under these circumstances, 'pricing to win" is a commonly used strategy. The notion of

pricing to win may seem unethical and un-business like.

• However, it does have some advantages. A project cost is agreed on the basis of an outline

proposal. Negotiations then take place between client and customer to establish the detailed

project specification.

5.2 (4) Algorithmic cost modeling

• Algorithmic cost modeling uses a mathematical formula to predict project costs based on

estimates of the project size, the number of software engineers, and other process and

product factors.

• An algorithmic cost model can be built by analyzing the costs and attributes of completed

projects and finding the closest fit formula to actual experience.

• Algorithmic cost models are primarily used to make estimates of software development

costs, but Boehm (2000) discusses a range of other uses for algorithmic cost estimates,

including estimates for investors in software companies, estimates of alternative strategies to

help assess risks, and estimates to inform decisions about reuse, redevelopment or

outsourcing.

• In its most general form, an algorithmic cost estimate for software cost can be expressed as:

 Effort = A x SizeB x M

• A is a constant factor that depends on local organizational practices and the type of software

that is developed.

• Size may be either an assessment of the code size of the software or a functionality estimate

expressed in function or object points.

233

• The value of exponent B usually lies between 1 and 1.5.

• M is a multiplier made by combining process, product and development attributes, such as

the dependability requirements for the software and the experience of the development team.

• Most algorithmic estimation models have an exponential component (B in the above

equation) that is associated with the size estimate. This reflects the fact that costs do not

normally increase linearly with project size.

• Unfortunately, all algorithmic models suffer from the same fundamental difficulties

1. It is often difficult to estimate Size at an early stage in a project when only a specfication is

available. Function-point and object-point estimates are easier to produce than estimates of code

size but are often still inaccurate.

2. The estimates of the factors contributing to B and M are subjective. Estimates vary from one

person to another, depending on their background and experience with the type of system that is

being developed.

• The number of lines of source code in the delivered system is the basic metric used in many

algorithmic cost models.

• Size estimation may involve estimation by analogy with other projects, estimation by

converting function or object points to code size, estimation by ranking the sizes of system

components and using a known reference component to estimate the component size, or it

may simply be a question of engineering judgement

• Accurate code size estimation is difficult at an early stage in a project because the code size

is affected by design decisions that have not yet been made.

• For example, an application that requires complex data management may either use a

commercial database or implement its own data-management system.

• If a commercial database is used, the code size will be smaller but additional effort may be

needed to overcome the performance limitations of the commercial product.

234

• The programming language used for system development also affects the number of lines of

code to be developed.

• A language such as Java might mean that more lines of code are necessary than if C (say)

were used. However, this extra code allows more compile-time checking so validation costs

are likely to be reduced.

• If you use an algorithmic cost estimation model, you should develop a range of estimates

(worst, expected and best) rather than a single estimate and apply the costing formula to all

of them.

• The accuracy of the estimates produced by an algorithmic model depends on the system

information that is available.

• As the software process proceeds, more information becomes available so estimates become

more and more accurate.

• If the initial estimate of effort required is x months of effort, this range may be from O.25x to

4x when the system is first proposed.

• This narrows during the development process, as shown in Figure 26.5. This figure, adapted

from Boehm's paper.

235

1) The COCOMO model

• A number of algorithmic models have been proposed as the basis for estimating the effort,

schedule and costs of a software project. These are conceptually similar but use different

parameter values.

• The model that is discussed here is the COCOMO model.

• The COCOMO model is an empirical model that was derived by collecting data from a large

number of software projects. These data were analyzed to discover formulae that were the

best fit to the observations. These formulae link the size of the system and product, project

and team factors to the effort to develop the system.

•

• Use the COCOMO model for several reasons:

1. It is well documented, available in the public domain and supported by public domain and

commercial tools.

2. It has been widely used and evaluated in a range of organizations.

236

3. It has a long pedigree from its first instantiation in 1981 (Boehm, 1981), through a refinement

tailored to Ada software development (Boehm and Royce, 1989). to its most recent version,

COCOMO II, published in 2000 (Boehm,et al. 2000).

• The COCOMO models are comprehensive. with a large number of parameters that can each

take a range of values. They are so complex

• The first version of the COCOMO model (COCOMO 81) was a three-level model where the:

levels corresponded to the detail of the analysis of the cost estimate.

• The first level (basic) provided an initial rough estimate; the second level modified this using

a number of project and process multipliers; and the most detailed level produced estimates

for different phases of the project.

• Figure 26.6 shows the basic COCOMO formula for different types of projects. The

multiplier M reflects product, project and team characteristics.

• COCOMO 81 assumed that the software would be developed according to a waterfall

process using standard imperative programming languages such as C or FORTRAN.

• Prototyping and incremental development are commonly used process models. Software is

now often developed by assembling reusable components with off-the-shelf systems and

'gluing' them together with scripting language.

237

• Existing software is re-engineered to create new software. CASE tool support for most

software process activities is now available.

• To take these changes into account, the COCOMO II model recognizes different approaches

to software development such as prototyping, development by component composition and

use of database programming.

• COCOMO II supports a spiral model of development and embeds several sub-models that

produce increasingly detailed estimates.

• These can be used in successive rounds of the development spiral. Figure 26.7 shows

COCOMO II sub-models and where they are used.

• Figure: 26.7 The COCOMO II Models

• The sub-models that are part of the COCOMO II model are:

1. An application-composition model

• This assumes that systems are created from reusable components, scripting or database

programming. It is 'designed to make estimates of prototype development.

• Software size estimates are based on application points, and a simple size/productivity

formula is used to estimate the effort required. Application points are the same as object

points but the name was changed to avoid confusion with objects in object-oriented

development.

238

2. An early design model

• This model is used during early stages of the system design after the requirements have been

established.

Estimates are based on function points, which are then converted to number of lines of source code.

The formula follows the standard form discussed above with a simplified set of seven multipliers.

3. A reuse model

• This model is used to compute the effort required to integrate reusable components and/or

program code that is automatically generated by design or program translation tools. It is

usually used in conjunction with the post-architecture model.

4. A post-architecture model

• Once the system architecture has been designed, a more accurate estimate of the software

size can be made. Again this model uses the standard formula for cost estimation discussed

above.

• However, it includes a more extensive set of 17 multipliers reflecting personnel capability

and product and project characteristics.

1) The application-composition model

• The application-composition model was introduced into COCOMO II to support the

estimation of effort required for prototyping projects and for projects where the software is

developed by composing existing components.

• It is based on an estimate of weighted application points (object points) divided by a standard

estimate of application-point productivity.

• Figure 26.8 shows the levels of object-point productivity suggested by the model developers.

239

• Application composition usually involves significant software reuse, and some of the total

number of application points in the system may be implemented with reusable components .

• Consequently, you have to adjust the estimate based on the total number of application

points to take into account the percentage of reuse expected.

• Therefore, the final formula for effort computation for system prototypes is:

 PM = (NAP x (1 - %reuse/100) / PROD

• PM is the effort estimate in person-months. NAP is the total number of application points in

the delivered system.

• %reuse is an estimate of the amount of reused code in the development.

• PROD is the object-point productivity

2) The early design model

• This model is used once user requirements have been agreed and initial stages of the system

design process are underway. However, you don't need a detailed architectural design to

make these initial estimates.

• Your goal at this stage should be to make an approximate estimate without undue effort.

Early design estimates are most useful for option exploration where you need to compare

different ways of implementing the user requirements.

• The estimates produced at this stage are based on the standard formula for algorithmic

models, namely:

 Effort = A x SizeBx M

240

• Based on his own large data set, Boehm proposes that the coefficient A should be 2.94.

• The size of the system is expressed in KSLOC, which is the number of thousands of lines of

source code.

• You calculate KSLOC by estimating the number of function points in the software.

• You then use standard tables that relate software size to function points for different

programming languages to compute an initial estimate of the system size in KSLOC.

• The exponent B reflects the increased effort required as the size of the project increases.

• This is not fixed for different types of systems, as in COCOMO 81, but can vary from 1.1 to

1.24 depending on the novelty of the project, the development flexibility, the risk resolution

processes used, the cohesion of the development team

 and the process maturity level.

• The multiplier M in COCOMO II is based on a simplified set of seven project and process

characteristics that influence the estimate. These can increase or decrease the effort required.

• These characteristics used in the early design model are product reliability and complexity

(RCPX), reuse required (RUSE), platform difficulty (PDIF), personnel capability (PERS),

personnel experience (PREX), schedule (SCED) and support facilities(FCIL).

• You estimate values for these attributes using a six-point scale where 1 corresponds to very

low values for these multipliers and 6 corresponds to very high values.

• This results in an effort computation as follows:

 PM = 2.94x SizeB x M

• where,

M=PERS x RCPX x RUSE x PDIF x PREX x FCIL x SCED

3) The reuse model

• Software reuse is now common, and most large systems include a significant percentage of

code that is reused from previous developments.

241

• The reuse model is used to estimate the effort required to integrate reusable or generated

code.

• COCOMO II considers reused code to be of two types. Black-box code is code that can be

reused without understanding the code or making changes to it.

• The development effort for black-box code is taken to be zero. Code that has to be adapted to

integrate it with new code or other reused components is called white-box code.

• Some development effort is required to reuse this because it has to be understood and

modified before it can work correctly in the system.

• The COCOMO II reuse model includes a separate model to

• estimate the costs associated with this generated code.

• For cede that IS, automatically generated, the model estimates the number of person months

required to integrate this code. The formula for effort estimation is:

• PM Auto=(ASLOC x AT/100) / ATPROD / / Estimate for generated code

• AT is the percentage of adapted code that is automatically generated and ATPROD is the

productivity of engineers m integrating such code.

• Boehm (2000) have measured ATPROD to be about 2,400 source statements per month.

Therefore. if there is a total of 20,000 lines of white-box reused code in a system and 30% of

this is automatically generated, then the effort required to integrate this generated code is:

• (20,000 x 30/100) / 2400 =2.5 person months //Generated code example

• The other component of the reuse model is used when a system includes some new code and

some reused white-box components that have to be integrated.

• In this case, the reuse model does not compute the effort -directly.

• Rather, based on the number of lines of code that are reused, it calculates a figure that

represents the equivalent number of lines of new code.

242

• Therefore, if 30,000 lines of code are to be reused, the new equivalent size estimate might be

6,000.

• Essentially, reusing 30,000 lines of code is taken to be equivalent to writing 6,000 lines of

new code.

• This calculated figure is added to the number of lines of new code to be developed in the

COCOMO II post-architecture model.

• The estimates in this reuse model are:

• ASLOC-the number of lines of code in the components that have to be adapted;

• ESLOC-the equivalent number of lines of new source code

• The formula used to compute ESLOC takes into account the effort required for software

understanding, for making changes to the reused code and for making changes to the system

to integrate that code.

• It also takes into account the amount of code that is automatically generated where the

development effort is calculated, as explained earlier in this section.

• The following formula is used to calculate the number of equivalent lines of source code:

 ESLOC=ASLOC x (1-AT/100) x AAM

• ASLOC is reduced according to the percentage of automatically generated code.

• AAM is the Adaptation Adjustment Multiplier, which takes into account the effort required

to reuse code

• Simplistically, AAM is the sum of three components:

1. An adaptation component (referred to as AAF) that represents the costs of making changes to

the reused code. This includes components that take into account design, code and integration

changes.

2. An understanding component (referred to as SU) that represents the costs of understanding the

code to be reused and the familiarity of the engineer with the code. SU ranges from 50 for complex

unstructured code to 10 for well-written,

243

object-oriented code.

3. An assessment factor (referred to as AA) that represents the costs of reuse decision making. That

is, some analysis is always required to decide whether code can be reused, and this is included in

the cost as AA. AA varies from 0 to 8depending

on the amount of analysis effort required.

The reuse model is a nonlinear model.

4) The post-architecture level

• The post-architecture model is the most detailed of the COCOMO II models. It is used one e

an initial architectural design for the system is available so the sub-system structure is

known.

• The estimates produced at the post-architecture level are based on the same basic formula

(PM == A X SizeB X M) used in the early design estimates.

• However, the size estimate for the software should be more accurate by this stage in the

estimation process.

• In addition, a much more extensive set of product, process and organizational attributes (17

rather than 7) are used to refine the initial effort computation.

• It is possible to use more attributes at this stage because you have more information about

the software to be developed and the development process.

• The estimate of the code size in the post-architecture model is computed using three

components:

• I. An estimate of the total number of lines of new code to be developed

• 2. An estimate of the equivalent number of source lines of code (ESLOC) calculated using

the reuse model

• 3. An estimate of the number of lines of code that have to be modified because of changes to

the requirements.

244

• These three estimates are added to give the total code size in KSLOC that you use in the

effort computation formula. The final component in the estimate-the number of lines of

modified code-reflects the fact that software requirements always change.

• The exponent term (B) in the effort computation formula had three possible values in

CDCOMO I. These were related to the levels of project complexity.

• As projects become more complex, the effects of increasing system size become more

significant.

• However, good organizational practices and procedures can control this 'diseconomy of

scale'. This is recognized in COCOMO II, where the range of values for the exponent B is

continuous rather than discrete.

• The exponent is based on five scale factors, as shown in Figure 26.9. These factors are rated

on a six-point scale from Very low to Extra high (5 to 0).

• You should then add the ratings, divide them by 1100 and add the result to 1.01 to get the

exponent that should be used.

• The organization has recently put a process improvement programe in place and has been

rated as a Level 2 organization according to the CMM model.

• Possible values for the ratings used in exponent calculation are:

• Precedentedness This is a new project for the organization-rated Low (4)

245

• Development flexibility No client involvement-rated Very high (1)

• Architecture/risk resolution No risk analysis carried out-rated Very low (5)

• Team cohesion New team so no information-rated Nominal (3)

• Process maturity Some process control in place-rated Nominal (3)

• The sum of these values is 16, so you calculate the exponent by adding 0.16 to 1.01, getting a

value of 1.17.

• The attributes (Figure 26.10) that are used to adjust the initial estimates and create multiplier

M in the post-architecture model fall into four classes:

1. Product attributes are concerned with required characteristics of the software product being

developed.

2. Computer attributes are constraints imposed on the software by the hardware platform.

 3. Personnel attributes are multipliers that take the experience and capabilities of the people

working on the project into account.

4. Project attributes are concerned with the particular characteristics of the software development

project.

246

• Figure 26.11 shows how these cost drivers influence effort estimates.

• In Figure 26.11, I have assigned maximum and minimum values to the key cost drivers to

show how they influence the effort estimate.

• The values taken are those from the COCOMO II reference manual (Boehm, 1997).

• You can see that high values for the cost drivers lead to an effort estimate that is more than

three times the initial estimate, whereas low values reduce the estimate to about one third of

the original.

• This formulae proposed by the developers of the COCOMO II model reflects their

experience and data, but it is an extremely complex model to understand and use.

• There are many attributes and considerable scope for uncertainty in estimating their values.

• Very large organizations may have the resources to employ a cost-modeling expert to adapt

and use the COCOMO II models.

247

2) Algorithmic cost models in project planning

• One of the most valuable uses of algorithmic cost modeling is to compare different ways of

investing money to reduce project costs.

• The algorithmic code model helps you assess the risks of each option. Applying the cost

model reveals the financial exposure that is associated with different management decisions.

• Consider an embedded system to control an experiment that is to be launched into space.

Space-borne experiments have to be very reliable and are subject to stringent weight limits.

• The number of chips on a circuit board may have to be minimized.

• In terms of the COCOMO model, the multipliers based on computer constraints and

reliability are greater than 1.

• There are three components to be taken into account in costing this project:

1. The cost of the target hardware to execute the system

2. The cost of the platform (computer plus software) to develop the system

3. The cost of the effort required to develop the software.

248

• Figure 26.13 shows some possible options for this project. These include spending more on

target hardware to reduce software costs or investing in better development tools.

• Additional hardware costs may be acceptable because the system is a specialized system that

does not have to be mass-produced.

• Figure 26.13 shows the hardware, software and total costs for the options A-F shown in

Figure 26.12.

• Applying the COCOMO II model without cost drivers predicts an effort of 45 person-months

to develop an embedded software system for this application. The average cost for one

person-month of effort is $15,000.

• The relevant multipliers are based on storage and execution time constraints (TIME and

STOR), the availability of tool support (cross-compilers, etc.) for the development system

(TOOL), and development team s experience platform experience (LTEX).

• In all options, the reliability multiplier (RELY) is 1.39, indicating that significant extra

effort is needed to develop a reliable system.

• The software cost (SC) is computed as follows:

SC=Effort estimate X RELY X TIME X STOR X TOOL X EXP X$15,000

• Option A represents the cost of building the system with existing support and staff. It

represents a baseline for comparison.

• All other options involve either more hardware expenditure or the recruitment (with

associated costs and risks) of new staff.

• Option B shows that upgrading hardware does not necessarily reduce costs.

• The staff lack experience with the new hardware so the increase in the experience multiplier

negates the reduction in the STOR and TIME multipliers.

• It is actually more cost-effective to upgrade memory rather than the whole computer

configuration.

249

Figure 26.13 Cost of Management options

• Option D appears to offer the lowest costs for all basic estimates. No additional hardware

expenditure is involved but new staff must be recruited onto the project.

• If these are already available in the company, this is probably the best option to choose.

• If not, they must be recruited externally, which involves significant costs and risks.

250

• These may mean that the cost advantages of this option are much less significant than

suggested by Figure 26.13.

• Option C offers a saving of almost $50,000 with virtually no associated risk. Conservative

project managers would probably select this option rather than the riskier Option D.

5.2 (5) Project Duration and Staffing

• To develop a software system and the overall project costs., project managers must also

estimate how long the software will take to develop and when staff will be needed to work

on the project.

• The development Line for the project is called the project schedule The relationship between

the number of staff working on a project, the total effort required and the development time

is not linear.

• As the number of staff increases, more effort may be needed. The reason for this is that

people spend more time communicating and defining interfaces between the parts of the

system developed by other people.

• Doubling the number of staff (for example) therefore does not mean that the duration of the

project will be halved.

• The COCOMO model includes a formula to estimate the calendar time (TDEV) required to

complete a project.

• The time computation formula is the same for all COCOMO levels:

• TDEV= 3 X (PM) (0.33+0.2*(B-1.01))

• PM is 1.he effort computation and 8 is the exponent computed, as discussed above (8 is 1for

the early prototyping model). This computation predicts the nominal schedule for the project.

• However the predicted project schedule and the schedule required by the project plan are not

necessarily the same thing.

• The planned schedule may be shorter or longer than the nominal predicted schedule.

251

• However, there is obviously a limit to the extent of schedule changes, and the COCOMO II

model predicts this:

• TDEV= 3 X (PM) (0.33+0.2*(B-1.01))X SCED Percentage / 100

• SCED Percentage is the percentage increase or decrease in the nominal schedule.

• If the predicted figure then differs significantly from the planned schedule, it suggests that

there is a high risk of problems delivering the software as planned.

• To illustrate the COCOMO development schedule computation, assume that 60 months 01

effort are estimated to develop a software system (Option C in Figure 26.12).

• Assume that the value of exponent B is 1.17. From the schedule equation, the time required

to complete the project is:

• TDEV= 3 X (60) 0.36= 13 months

• In this case, there is no schedule compression or expansion, so the last term in the formula

has no effect on the computation.

• An interesting implication of the COCOMO model is that the time required to complete the

project is a function of the total effort required for the project.

• It does not depend on the number of software engineers working on the project.

