Switching Theory and Logic Design

Prepared by:
Y.Pavan Kumar Reddy& M.Tejaswi
Dept of ECE
Assisitant Professor
Annamacharya University
Rajampet

ANNAMACHARYA UNIVERSITY

(ESTD UNDER AP PRIVATE UNIVERSITIES (ESTABLISHMENT AND REGULATION) ACT, 2016) (UNIVERSITY LISTED IN UGC AS PER THE SECTION 2(f) OF THE UGC ACT, 1956) RAJAMPET, Annamayya District, AP-516126, INDIA

SWITCHING THEORY AND LOGIC DESIGN

Unit 1: Number systems, Codes & Boolean Algebra

Philosophy of number systems – r, (r-1) somplement, representation of negative numbers, binary arithmetic, binary codes, error detecting & error correcting codes, hamming codes. Boolean algebra: Fundamental postulates of Boolean algebra, Basic theorems and properties, digital logic gates, properties of XOR gate, universal gates.

Unit 2 Switching Functions and their Minimization

Switching Functions-Canonical and Standard forms, algebraic simplification using Boolean theorems, two level & Multilevel Realization of Boolean Functions using Universal Gates. Minimization: K-Map methods, Prime Implicants, don't care combinations, Minimal SOP and POS forms, Tabular Method, Prime-Implicants chart, simplification rules.

Unit 3 Combinational Logic Design & Programmable Logic Devices

Design using conventional logic gates-Binary Adders, Subtractors, Ripple Adder, Magnitude comparator, Encoder, Decoder, Multiplexer, De-Multiplexer, Code converters, PLA, PAL, ROM AND COMPARISION OF PAL, PLA, ROM

Unit 4 Sequential Circuits

Classification of sequential circuits (Synchronous, Asynchronous, Pulse mode, Level mode with examples), Basic flip-flops, Triggering and excitation tables, flip flop conversions, Steps in synchronous sequential circuit design, Design of modulo-N Synchronous counters – up/down counter.

Unit 5 FSM Minimization

Finite state machine- capabilities and limitations, Mealy and Moore models and their conversions, Serial binary adder. Minimization of completely specified sequential machines-Partition techniques. . Salient features of the ASM chart, Simple examples.

NUMBER SYSTEM & BOOLEAN ALGEBRA

DI ntraduction to Analog & Digital Signals & Systems: -

-> The signals may be broadly classified into following two categories:

- (i) Amalog Signals
- 5 (ii) Digital signals

D'Analog Signals:

analy signals are the signals which may have infinite no ob different magnitudes or values. They vary continuously with time.

Enc: - Sine wave, triangular wave etc

5 (ii) Digital Signals: -

A Signal is known as a digital signal it it has only a finite no of predetermined distint magnitudes.

Ex: - Binary, Hexardecimal etc

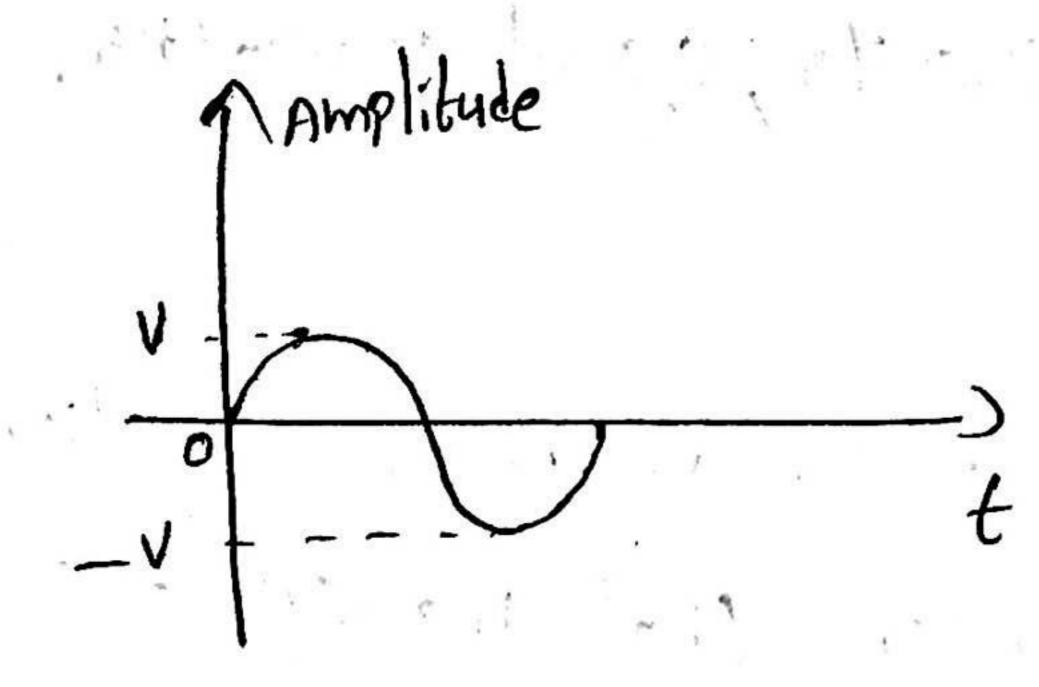


Fig (a): Amalog Sigmal

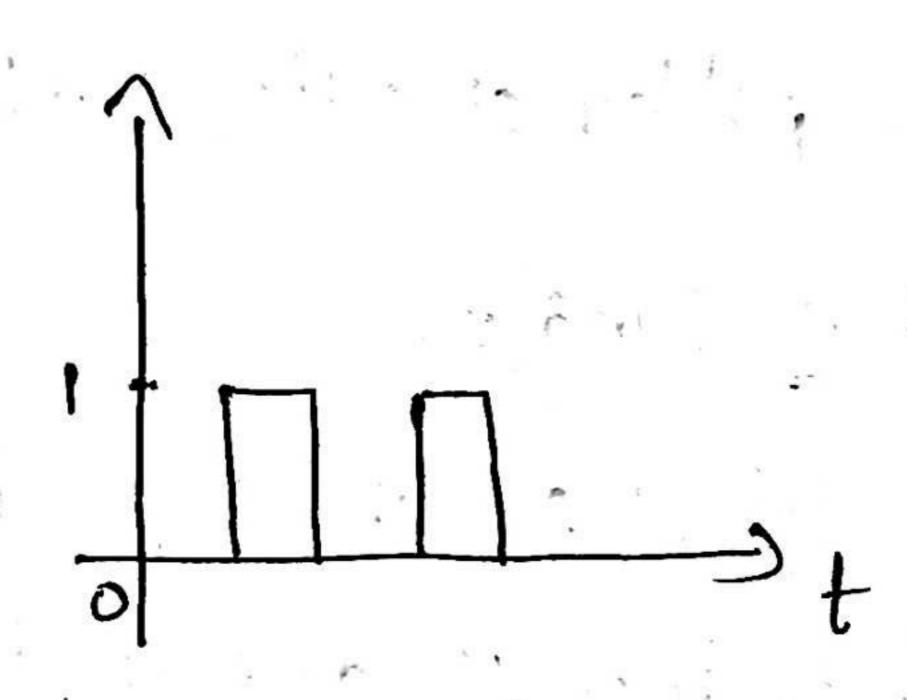


Fig (B): Digital Signal

parameter of comparison	Analog Signals	Digital Signals
No of values	Infinite	Finite (2,8, 16 etc)
Nature of signals		Discrete-time
Source of Signals		computers, A to D conventers etc
Excamples	Sine, triangular waves	Binary signal

* Analog signals vary gradually and continuously, while digital Signals produce discrete voltage levels commonly reflered as "High" and "Low".

Analog systems.

-> The Systems which process the analog signals are known as the Analog Systems.

EDC:- Filter circuits, Amplifier circuits, Signal generators.

Digital Systems:-

-> A digital system may be defined as an interconnection at digital modules and it is a system that manipulates discret elements of internation that is nepresented internally in the binary form.

Salient features of Digital systems:

- Digital systems manipulate discrete elements of information.
- Discrete elements are nothing but the digits such as 10 decimal digits, 26 letters of alphabets and So on.
- Digital Systems make use of physical quantities coulled signals to represent discrete elements.
- In digital systems, the signals have two discrete value and are therefore said to be bimory.
- -> A signal in digital system represents one binary digit, colled a "bit". The bit has a value either 'o' or '1'.
 - -> Discrete elements of information are represented with group of bits called "binary codes".

Advantages of Digital Systems:

(i) Easy to Design.

-) Digital systems are quite easy to design than analog systems, because digital design involves logic design which does not require special maths skills and its behaviour may be visualized part-by-part.

5(ii) Reliability and Repnoducibility of Results:-

-> The olp of analog systems vovies with the variation in temperature, power supply voltages, component-aging and

several other factors. Therefore, it is difficult to reproduce the same nesult, each time with same set at ilps and circuit components. However, this is not in case with digital systems.

-> Digital systems always reproduce excactly same results with same set of ilps and circuits components.

(iii) Flexibilityo

-> Digital systems are more blexible to design since their design involves a set et logical steps and have various discrete and integrated options aviolable to the user.

C

C ...

(iv) Functionality:-

-) It is easy to provide additional functionality in digital system than analy systems. 6

(v) programmability;-

-> Now adays, digital design is carried out by writing programs, in "hardware description language" (HDL). These languages allow us to simulate and test the performance ob digital circuits.

-> This feature is quite useful in designing critical digital 3 y stems for various applications.

(Vi) Device speed :-

-> Digital devices are very fast and they can produce 500 millions nescults. since their operating speed is smaller than 2 mano seconds.

(Vii) Economy in manufacturing:-

-> Digital circuits can easily be integrated into a single chip and can be produced in larger quantity to have Smaller cast compared to discrete circuits.

Viii upgrading Technology.

3

—) As digital technology is becoming more and more popular, more neason research is going on in this field. Therefore, technological upgrade is expected in the digital world and we know that after about every Sinc months, there is a launching of a new processor, new memory technology etc.

> Comparison of Analog and Digital systems :-

SNO	parameter of: comparison	Analog systems	Digital Systems
1	Type of signals processed	Analog Signals	Dit Digital Signals
2	Type of display		Digital displays using
			LED and LCD
	Accuracy		High
4	Design complexity	Difficult to design	Easien to design
5	Memory Attached	No memosz	Easier to design They have memory

\			A CONTRACTOR OF THE PARTY OF TH
6	Noise effect	High	3 mall
7	Distortion	High	Small
8	Effect of tempe- nature traging on	High	Small
	performance		
9	communication b/w	Not east	Easz
	Systems.		
10	Examples	Filters, amplifiers, power supplies	counters, registers, micro processors.

Number Systems:

^{—)} Number system is a basis for counting various items.

⁻⁾ A number system is nothing more than a code that uses symbols to refer to a no of items.

In any number system there is an ordered set of symbols (hnown as digits)

^{-&}gt; Basically two types of number systems are present.

They are ① positional number systems
② NON-positional number systems.

- > In positional number system, the position of each digit ot a number indicates the Significance to be attached to that digit. Ex:- Decimal number system.
- > -> In non-positional number system, a digit at a number does not indicate any significance of its position & weight. Ex:-Roman numerical system.
 - -) The most widely used number system is positional number
- In this system, the digits in a number are placed side by side and each position in the number is assigned a "weight" on "index" of importance by some predesigned null.
 - -) The "base or nadisc" decides the total number of digits (unique) available in that number system.

Decimal Number system:

- 3-) 0,1,2,3,4,5,6,7,8,9,
- > Radioc & Base = 10
- 5 -> EOU- (578)10
- Binary Number system.
- > -> Radiox & Base = 2 -> Exc (1011)2

- -> octal Number system: -
- -> 0,1,2,3,4,5,6,7.
- -> Base on Radioc = 8
- -> Ex (573)8

Hexardelimal:

- -> 0,1,2,3,4,5,6,7,8,9,A,B,GD,E,F.
- -) Base on Radia = 16
- -> E>c (1AC2)16

Binant Number systems-

The Bit: The Smallest unit of data is defined as a single hit."

The Nibble: - A "Nibble" is a combination of "4 bits".

The Byte: - A "Byte" is a combination of "8 bits".

Relation blw Decimal, Binary, octol 4 Hexadecimal Numbers 3-

Decimal	Binary	octal	Hexa decimal
0	0000	O · ·	0
	0001		
2	0010	2_	2_
3	0011	3	3
4	0100	4	4
5	0101	5	5

*	Deciman.	Binony	octal	Hexadecimal
	6	0110	6	6
	7	0111	7	7
11.	8	1000	10	8
	9	1001		9
	10	1010	12	A
	11	1011	13	B
	12	1100	14	C
	13	1101	15	D
	j4	1110	16	E
	15		17	

Number base conversions o-

-) conversion at nom any number system to Decimal Number system &

-) Any number can be converted into its decimal equivalent by adding the products of each digit and its weight.

Esla convert (159) n into decimal

Ex@ convert (573.16), in to decimal $(573.16)_{\pi} = (5x\pi^2 + 7x\pi^4 + 3x\pi^4 + 1x\pi^4 + 6x\pi^2)_{10}$

X Binary to decimal conversion o-

-> conversion of general example

-) convert (An-1 An-2 An-3 An-4-- AzA1Ao A-1 A-2 A-3-- A. im) n @ in to decimal

Set Let (N) 10 be the decimal equivalent of given number.

$$(N)_{10} = (A_{m-1} \eta^{m-1} + A_{m-2} \eta^{m-2} + A_{m-3} \eta^{m-3} + - - + A_{2} \eta^{2} + A_{1} \eta^{1} + A_{0} \eta^{0} + A_{-1} \eta^{n} + A_{1} \eta^{m} + A_{1} \eta^{m} + A_{2} \eta^{2} + A_{1} \eta^{m} + A_{1} \eta^{m} + A_{2} \eta^{0} + A_{2} \eta^{0}$$

(3

Bimany to decimal conversions-

Ex: - convert 826 (101101) 2 into decimal.

$$\frac{Sd}{(101101)_2} = (1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 0.2^4 + 1.62^2)_{10}$$

$$= (32 + 0 + 8 + 4 + 0 + 1)_{10}$$

$$(101101)_2 = (45)_{10}$$

Eze! - convert (101.11)2 into decimal.

$$\frac{501}{(101.11)_{2}} = (1.2 + 0.2 + 1.2 + 1.2 + 1.2 + 1.2)_{10}$$

$$= (4 + 0 + 1 + 0.5 + 0.25)_{10}$$

$$(101.11)_{2} = (5.75)_{10}$$

y. powan inuman kedallo

octol to Decimal conversions -Esc:- convert (475.25) 8 to decimal $(475.25)_8 = (4x8 + 7x8 + 5x8 + 2x8 + 5x8 + 5x8 = 2)_{10}$ = [256+56+5+0.25+0.078125]10 5 (475·25)8= (317·32825)10

Hexadecimal to decimal?

> Ex:- convert (3A.2F), to its decimal equivalent.

 $(3A \cdot 2F)_{16} = (3x16 + 10x16 + 2x16 + 15x16)_{10}$ (3A·2F)16 = (58·1836)10

other Radisc(9) system-to-decimal conversion.s-

Esc! - convert (239) y into decimal system.

Sol (234)4 = (2×34+3×4+2×4)10 = (2x16+3x4+2x1),0 = (32+12+9)₁₀ (234)4 = (年的)46)

Decimal System to-other nadire (71) system.

_ The conversion from decimal to any other nadiolen) System is done differently for integer part a and fractional part.

- The integer part of a decimal number can be converted into its equivalent radioc (n) number System by successively dividing by (n), till the final remainder becomes less than 'n' or equal to zero.
- The number in n-number system can be obtained by writing all the remainders of each division from bottom to top
- -) For browlional part of the decimal number, the conversion is done successively multiplying by 'n' and keeping the track of the integers (carry) generated.

Ex! - convert (724.63) 10 into madisc 4 4 modix 6 number 5

$$4 | 724$$
 $181-0 | LSD$
 $0.63 \times 4 = 2.52 | -2$
 $1 | 181-0 | LSD$
 $0.52 \times 4 = 2.08 | -2$
 $1 | 11-1$
 $1 | 2 | -3$
 $0 | -2$
 $0.63 \times 4 = 2.52 | -2$
 $0.63 \times 4 = 2.08 | -2$

$$(724.63)_{10} = (23110.220)_{4}$$

$$(724-63)_{10} = (?)_{6}$$

Ese convert the decimal number (26-85) 10 into bimary.

$$\frac{50}{2}$$
 $\frac{1}{2}$ $\frac{26}{2}$ $\frac{13}{2}$ $\frac{-0}{4}$ $\frac{13}{2}$ $\frac{6}{3}$ $\frac{-1}{2}$ $\frac{3}{2}$ $\frac{-0}{1}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$0.85 \times 2 = 1.7 -)$$
 $0.70 \times 2 = 1.4 -)$
 $0.4 \times 2 = 0.8 -)$
 $0.8 \times 2 = 1.6 -)$
 $0.6 \times 2 = 1.2 -)$
 $0.2 \times 2 = 0.4 - 0$
 $0.4 \times 2 = 0.8 - 0$

$$(26.85)_{10} = (11010 \cdot 1101100)_{2}$$

- —) successive division is used for integer part conversion.

 —) successive multiplication is used for fractional part conversion.

Decimal to octal conversions

_> convert the decimal number 35.45 to octal number.

$$501 \left(35.45\right)_{10} = \left(?\right)_{8}$$

$$8 | 35
8 | 4-31
0.45 x8 = 3.6 - 3
0.6 x8 = 4.8 - 34
0.8 x8 = 6.4 - 36
0.4 x8 = 3.2 - 3
0.2 x8 = 1.6 - 31
0.45)10 = (43)8$$

$$(35)10 = (43)8$$

$$(9.45)10 = (0.34631)8$$

-> convert (95.5) 10 in to hexadecimal number

$$16 | 95$$
 $0.5 \times 16 = 8.0 - 0.8$
 $16 | 5 - 15 \rightarrow F_{\uparrow}$
 $0 - 5 | 1$

Binary to Hescardecimal conversion. o_

-> convert [101101010101011] in to hexadecimal number.

010101010100111

$$5 A A A A$$

 $(01011010101010111)_2 = (5A A A A)_{16}$

y. pavan human kedy (2) - Frconvert (101101.100110) 2 into hexadecimal. 00/01/01/00/1000 2 D • 98 @(101101·100110)2=(27·98)16 Hexadecimal to Binary conversion o. - Econvert the number (7AC2-1B6), into Binony. $(7 \text{ AC2} \cdot 186)_{16} = ()_{2}$ 0111 1010 1100 0010 · 0001 1011 0110 (7AC2.1B6)18 = (01111010110000010.000110110110) Bimany to octal conversions_ -> E24-convert (10110-010011) into octal. 0101100010011 (10110-010011)2=(26-23)8

 $\frac{\text{octal to Binary conversion 6}}{\text{octal to Binary conversion 6}} = \frac{\text{octal to Binary conversion 6}}{37.24)8} = \frac{\text{onvert (37.24)8 into t Binary 6}}{37.24}$

$$37.24$$
 $011 111.010 100$
 $(37.24)_8 = (011111.010100)_2$

octal to Hexadecimal conversions-

-) Exi Convert (32-164) intoto hexadecimal

 $-(32.164)_8=(?)_{16}$

32.164 / 1. October 70 Bimany 011 010.011 110 100

00011010.01110100000 Binony to Hex (1A.7A0)16

(32.164)₈ = (1A.7A0)₁₆

Hexadecimal to octal con versions

Esc! - Conver (2AC.12)16 into octal

2 A C · 12 . 7 Hex to Birnary 00/0 10/00 1000 00010010

001010100 · 000100100 Binary to octal. 1 2 5 4 · 044 (2AC-12) 16=(1254.044)8

3-> Birany Anithmetic:

(i) Binary Addition:-

1	INPU	TC	OUT PUT	5
ı	A	B	Sum	arry
	0	0	0	O
	0	1		0
		0		0
			O	

$$\frac{\text{covy}}{(111000)}$$

$$\begin{array}{c} 55 \\ +32 \\ \hline 87 \\ \hline \end{array} \begin{array}{c} 100000 \\ \hline 1010111 \\ \hline \end{array}$$

Binary Sub-traction 8-

1	IIPS		olps	
I	Α	В	Difference	Bonnow
	0	0	0	0
	0	1	ı	1
		0		0
	f	1	0	0

-> perboin binary subtraction (1) the numbers (101101) 2 (1111)2

50/ 101101

-00111

(01110)

	4			
->(0)	nolemant	. L	Numbers:	
	1) TEMPL	0 0	Numbers 3	_

- -> complements are used in digital computers for simplifying the Subtraction operation and for logical manipulation.
 - -> There are two type of complements for each base n' system.
 - (1) Radix complement (81) 71's complement
 - 2) Diminished nædix complement (81) (91-1) 5 complement.

(1) Ravdisc complement (81) n's complement; -

-) Roudisc complement of 'N'=(n^-N)

where x 'N' is a number with modise'n'
in is no of digits in 'N'
Esc: - 10's complement, 2's complement etc

-) Esco perform nodix complement of (23621)10.

 $\frac{501}{10^{-23621}} = (76379)_{10}$

- 2) Diminished modix complement on [n-1)'s complement:
- —) Diminished modix complement of N' = (m-1) -N
 Est: 938 complement, 1's complement eta
- -) E2 Find (21-N's complement of (2576)10

sol (n-1) & (9/3) complement of (2576) = 104-1-2576 = (7423) 10

Note: -

- Radix complement. can be found by adding 1 to diminished nadisc complement.

Decilmal 3-

-> Radisc complement (a) 10's complement

-) Diminished nadix complement of 9's complement

ESC:- perfor Find (radix) 10's complement 4 9's complement of the number (57921)10

 $\frac{Sol!}{9!5}$ complement at 57921 = 999999 - 57921 = 942078

10's complement of 57921 = 9's complement of 57921+1

= 42078+1 B

7 42079

Birary.

-> Radix complement (21) 2's complement

- Diminished nadiae complement(81) 1's complement

-> EDUI- Find 2/3 A1's complement at number (101101)2. 1's complement at (101101) = 111111-101101 = (010010)2 2/3 complement of (101101) 2 = 1's complement of (101101) 2 + 1 = 010010+1

2/3 complement of (101101)2 = [010011)2

Note

-) 1's complement of a binary number can be found Simply by neplacing o's with 1's and 1's with o's in the given number.

octal

- -> Radisc complement of 8's complement
- —) Diminished nadioc complement on 7's complement

EDI)- Find 8/347/3 complement of 5 6271)8.

Sol 7/3 complement of (6271)8 = 7777 - 6271 $=(1506)_{8}$

8/3 complement of (627) 8= 7/3 complement of (6271) 8+1

= 1506+1

I 1507

Hexadecimal:-

-> Radix complement of 16's complement

-> Diminished modisc complement 81 15's complement

Ex:- Find 16's complement 1s's complement of (5A10)16

Sol:- 15/3 complement of (5A10)18 = FFFF-5A10

= (A5 EF)16

16's complement of [5A10]16 = 15's complement of (5A10)16 + 1

= ASEF+1

= (A5F0)16

	-) Sub-traction using complements:-
	* Sub-traction using & 1's complement:
	Case(i):- "Higher number - Smaller number. i.e minuend > subtrahend
	procedure: Larger
	Procedure: (i) Find i's complement of the smaller number (sub-trahend). (ii) Add this complement to Larger number. (iii) Carry generated it is called as End Around Carry (EAG).
	6 all this complement to Larger number.
	(3) It carry generated it is called as End Around Carry (EAG).
	(3) Lo Carry & Add it to the nesult.
	(4) Kembre 1
>=-	

THE REAL PROPERTY.

1

-> Ex:- perform i's complement subtraction for the following.

$$\frac{50!}{(1)}(1)(36)_{10} > (100100)_{2}$$

$$(17)_{10} > (01000)_{2} \frac{1!s}{comp} > 101110$$

$$\begin{array}{c}
36 -) 100100 \\
-17 -) +101110 \\
\hline
19 -) (010010 \\
EAC +1 \\
19 -) (010011)_{2}
\end{array}$$

(ii)
$$(45.25)_{10}$$
 $(101101.01)_2$ $(19.5)_{10}$ $(101101.10)_{10}$ $(101100.01)_2$

$$45.25$$
 —) 101101.01
 -19.50 + 101100.01
 25.75 . 001100010
EAC 011001.10

	y. pavamhumai neag(3)
	case (ii) :- smaller-Larger, i.e. Minuend < subtrahend
•	
5	-D Find 1's complement of Lorger number (subtrahend). (2) Add this complement to the Smaller number (Minuend).
3	3) perform i's complement to the sum to get diginal nesult.
3	9 It carry generated is or it is -ve number, it is it is
	tre number.
>	Esc! - perform is complement sub-traction for the following.
3	Esc: - perform 1's complement sub-traction for the following. (1) [57]-[93] (1) (23)-(35) (1)
1	$\frac{501}{6} (57)_{10} \rightarrow (0111001)_{2}$
	$(93)_{10}$ $\rightarrow (1011101)_{2}$ $\xrightarrow{15}$ 0100010
	57> 0111001
 	-93
ر د	1011011
\bar{\}{\}	123 complement
3	$-(0100100)_{2}$
3	-) Here there is no carry. i.e carry is 'o'. So it is -ve num
)	

23 -)00011 $\frac{1/3 comp}{35 -)100011 - \frac{1/3 comp}{35} 011100$ 23 ---> 01011 1 is complement (001100), corry=0 so it is -ve -(001100), Subtraction using 2/8 complement o-Case(i): Larger num-Smaller num i.e Minuend > subtrahend? procedure o_ (1) Find the 2's complement of subtrahen (Smaller num). 2) Add this 2's complement to Minuend (Langernumber). (3) Discord the carry generated. Exc1- perform 2's complement subtraction for the following (i) (45.25) - (19.50) 10

 $\frac{90}{19.50}$ $\frac{45.25}{10100.00}$ $\frac{10100.00}{10100.00}$ $\frac{10.50}{101100.00}$

	y. pavan Kuman Reddy (14)
	Y. Pawari
45.25> 101101 45.25> ¥101100	.01
-19.50	
25.75 E Discord (011001	J2. Ltenhend.
<u>se ii</u> 8- smaller - Larger i.e	Minuend 2 Subrand
Find the 2's complement of Add this 2's complement to perform 2's complement to to megult.	the sub-trahered.
Find the 21s complement of	minuend.
Add this 21s complement t	ne result to get original
perform 2's complement to mesult.	
The court generated is 'o' it	is ve number. It it
s tre number. = perform 2/3 complement-su	broughtion for the boutury.
) 37.5 - 48.75	
1 37.5> 100101.	10 13 000101.00
1 37.5 —) 100101. 58.75 —) 111010.	comp
22.5-3:100101.10	000101.01
_58.75 ->+ 000101·0	
-21-25 10:1010·1	1-35.010101-00
· covy generaled is zero, it	is -ve number.

- -> Representation of signed binary numbers: 3 types
 - (1) Signed Magnitude Repnesentation.

- (2) Signed is complement representation.
- (3) Signed 2/s complement nepresentation.

(1) Signed Magnitude Repnesentation:

- -> In Signed magnitude nepresentation an additional bit is added at MSB position (ie Left most position).
- -> This bit is called sign bit. Sign bit is 'o' for positive mumbers and 1' for negative numbers.

 Sign bit $Ex! - +3 \rightarrow 6011 +7 \rightarrow 0111$

$$Ex! - +3 \rightarrow 0011 +7 \rightarrow 0111$$

(2) Signed 1's complement Representations-

- -) In signed is complement nepresentation, representing of the numbers is same as in signed marginitude nepnesentation. nepnesentation.
- -> 1-ve numbers can be represented by performing is complément to tre number.

$$\frac{E^{2C}}{-9}$$
 +9-) 10001001

13

•

1-3

3 Signed 2's complement repriesentation: -

- -> In this tre number nepresentation is same as signed magnitude ne presentation.
- -) -ve numbers are obtained by performing 2's complement to the numbers.

$$\frac{Ex:-}{+9 \longrightarrow 0000|001}$$

$$-9 \longrightarrow 0111|0111$$

-> convert all decimal numbers from +7 to -7 in-to Signed binary numbers.

Decimal	signed magnitude nepresentation	Signed 1's complement nepresentation	Signed 218 complement nepresentation.
++ ++	0111	0111	0111
+5	0101	0101	0101
+4 +3	0100	0100	0100
42	0010	0010	0010
+1	000	0001	0000

0	-1000		
	1001	1110	
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
5	1101	1010	1011
-6	1110	1001	1010
		1000	1001

--) Binanz codes :-

-> The digital data is nepresented, stoned & transmitted as group of binary digits (bits).

-> The group of bits also known as binary code!

-> Binary codes nepnesent numbers & letters of the Alphabets as well as many special characters 4 control functions.

classification et Binary codes =
Binary codes

weighted Non-weighted Reflective Sequential Alphanumeric Ervol defecting to XS-3 (nonexpecting BCD 242) S211 XS-3 842) XS-3 ASCII EBEDIC Hollerith Derity 12

etc

0421 2421

5211 4221 54

- 30 Weighted codes: -
- > In weighted codes, each digit position of the number represents

 or specific weight.
 - -> For example, in decimal code, it number is 256, then weight of 2 is 100, weight of 5 is 10 4 weight of 6 is 1.
 - -> In weighted binary codes (8421) each digit has a weight 8,4,2 por1.
 - -> 8421, 2421, 5211 etc are weighted codes.
 - 2) NON-weighted codes g-
 - —) NON-weighted codes are not assigned with any weight to each digit position.
 - -) Excess-3 (xs-3) 4 gray codes are non-weighted codes.
 - (3) Reflective codes?_

-)

-5

CT

- -> A code is said to be neflective when the code for 9 is the complement of code for 0, 8 for 1, 7 tor 2, 6 for 3 4. 5 for 4.
- -> 2421,5211 & XS-3 codes are neflective codes.
- (4) Sequential codes :-
- —) In "sequential" codes, each succeeding code is one binary number greater than its preceding code.
- -> 8421 4 Excess-3 codes are sequential codes.
 - (5) Alphamumeric codes :_
- __ The codes which consists of both numbers & alphabetic characters are called "alphanumeric" codes.

-> ASCII 4 EBCDIC and Hollenith codes are Alphanumeric codes. 36) Ennon Detecting and connecting and order :--> when the digital information in the binary form is transmitted from one circuit or System to another circuit or system, an error may occur. -) This means that a signal cornesponding to 'o' may change c to 1' & vice-versor due to priesence et noise. -> To maintain the data integrity blu Txler and Rxler, extra bition more than one bit are added in the data. -> These extra bits allows the detection 4 some times cornection of evron in the data. -) The data along with extra bit/bits forms the code." -> Codes which allow only evron detection are called "evron detecting codes" and codes which allows evron detection & connection are called "evron detecting and connecting codes! -> parity codes are evron detecting codes. -> Hamming code is even detecting 4 correcting code. -> Comparison blu weighted codes & Non-weighted codes:-NON-Weighted codes weighted codes 1-> In this each bit position is -) In this no specific weights are assigned to bit positions. assigned a specific weight. 1-DEDL:-BCD, 8421, 2421, 5211etc -> Escess-3, gray codes.

- -> Applications:-These are used in
- Data manuplation during anithmetic operations.
- (b) For I/o operations indigital chits.
- To represent decimal digits in calculators, voltmeters etc.

- -> Applications! These are
 - 6) To perform certain arithmetic operations.
- (b) In Shift position Encoders.
- © For evrondetecting purpose.

Binary coded Decimal: (BCD)

- -> In BCD code each decimal digit is nepresented by Separate 4-bits.
- -> The most commonly used BCD code is 8421 code.

8421 code: -

THE THE	
Decimal	8 4 2 1 code
0	0 0 0 0
	0001
2	0 0 1 0
3	0011
4	0 1 00
5	0 1 0 1
6	0 1 10
7	0 1 1
3	1000
9	1001

- -) It is a weighted code
- -) It is not self-complementary code.
 -> It is a sepuration code.

2421 code 3-

/	
Decimal	2 4 2 1 Code
0	0 0 0 0
	0001
2_	0010
3	0011
4	0 1 0 0
5	1011
6	.1 00
7	1 0 1
8	1 1 0
8	

-> It is self-complementary

-> It is a weighted code

Decimal	8 4 -2 -1 code
O	0000
	0 1 1
2	0 1 1

p.T.0 cont - --

Dack		
Decimal	8 4 -2 -1	Code
3	0101	
4	.0100	
5	1011	
6	1010	
• 7	1001	
8	1000	
9		

-> Excess-3 (xs-3) code:-

Decimal	Excess-3 code.
0	0011
2	0 1 0 0
3	0 1 0 0
4	0 1 1
5	1000
6	1001
7	1010
8	1 0 1 1
9	1 100

-> Non-weighted code, -> Reflective, Sequential, Selt complementage

Simy code: 6-

· · · · · · · · · · · · · · · · · · ·	
Decimal	innort code
	0000
	0001
2	0011
3	0010
4	0110
5	0111
6	.0101
7	0100
8	1100
. 9	11.01

Shorteut

	00	01		10	_
00	0		2_	3	
01	7	6	5	4	
11	8	9	lo	11	
10	15	14	13	12	

- -> Non-weighted code
- -) Not Self complementary
- -> Reflective code. i e code of 15 is complement of of 4 13/3 code is complement of i's code ---
- -> Binning to Givery code conversion.

Steps

- 1) MSB in ovroye code is same as MSB in binary.
- Discourse from left to right odd adjacent pair of bits to get next gray code bits.
- 3) reglect all carrier generated. (i.e. x-or +ne.bits).

11 3

LOSON KON

Ex: - convert the following numbers into Group code. (i) (1011)2 (ii) (527)8 (iii) (5B6)16 (iv) (38)10 Birnozy 1 0 1 1 + 1 + 1 1111(1011)2 -> 1110 (Gray) (527)8 = (101010111)2 0101011 1+1+1+1+1+1+1 +0+ (527)8 = 11111100 (corray) (5B6)₁₈ = (0101101101)₂ 0/0/10/10/10 (Bimory) 011101101101(2002) $(38)_{10} -) (100110)_{2}$ (38)₁₀ = 110101 (groy)

y. pavam munici

- Boolean Algebra: -

- -> Boolean Algebra is a set of nules, laws of theorems by which logical operations can be mathematically expressed.
- It is also Imoun as "Switching Algebra".
 - -) It is a convenient way of expressing the operation in digital cincuits of systems.

- Boolean operations: -

1) AND operation: -

$$1 \text{ AND } 0 = 0$$

$$0 \text{ OR } 1 = 1$$
 $0+1=1$

3 NOT operation: -

$$T = 0$$

-Boolean Laws o-

(AND Laws:

$$A \cdot \overline{A} = 0$$

$$A \cdot A = A$$

@ OR Lows -

$$A+A = A$$

$$A+\overline{A} = 1$$

3 NOT LOWS ? -

$$\overline{A} = A$$

@ commutative Low &-

$$A+(B+c) = (A+B)+c = A+B+c$$

 $A\cdot(B\cdot c) = (A\cdot B)\cdot c = A\cdot B\cdot c$

$$A \cdot (B+c) = A \cdot B + A \cdot c$$

 $A + (B \cdot c) = (A+B) \cdot (A+c)$

Proof
$$A + A \cdot B = A$$

$$A \perp H s = A + A \cdot B$$

$$= A \left(1 + B \right) \quad ; 1 + A = 1$$

$$A + A \cdot B = A$$

$$A = (A+\overline{A}) (A+B) \qquad \therefore A+\overline{A} = 1$$

$$= 1 (A+B) \qquad \therefore 1 \cdot A = A$$

$$A+\overline{A}B = A+BT$$

Basic Theorems:

AB+AC+BC = AB+AC

LH-5 - AB+AC+BC

= AB+AC +BC (A+A)

= AB+AC+BC(A+A)

= AB+ AC+ ABC + ABC

= AB(I+c) + Ac(I+B) : HA=1

ABHACHBET ABHAC = RH.S

: 1.A = A

proot

LHS = (A+B) · (A+c)·(B+c)

= (A+B) (AB+AC+BC+C)

= AAB+ AAC+ABC+AC+ABB+ABC+BBC+BE

= O+O+ABC+AC+AB+ABC+BC+BC

= ABC+AC+AB+ ABC+RC

- BC (A+A+1) + AC+ AB

LHS = BC+AC+AB

RHS =
$$(A+B)(\overline{A}+c)$$

= $A\overline{A}+AC+\overline{A}B+BC$
RHS = $AC+\overline{A}B+BC$
 $LHS=RHS$

-Ve legic :-

- -) more the voltage is represented by 'o'
- -) mone we voltage is nepresented by 1

-Duals :-

- -> Duality of a Boolean function is obtained by replacing "OR" operator by "AND" operator by "OR" operator b
- The implicant of duality concept is that once a theorem of Statement is proved, the dual also thus Stands proved. This is called the primciple of duality.

Given expression	Dual
0 = 1	T = 0
0.1=0	1+0=1
0.0 =0	1+1=1
1.1=1	0+0=0
A.0 = 0	A+1=1
$A \cdot A = A$	A+A=A
A·B=B·A	A+B = 13+A
(B+C) = AB+AC	A+(B·c)=(A+B)-(A+c)

AB = A+B

Ex: - Find comple the duality of the function F= (247). (243)

Sol
$$F = (x+y)(xy3)$$

$$F_d = (x-y) + (x+y+3)$$

- Complement of Boolean function:

1 Find out the duality of given boolean function.

Take the complement of each variable (literal) in the dual,

Est - Find the complement of boolean function F(x,d,3)= 6(+3+3) (2+3)

-> Simplification of Boolean function using Lawt Theorems of Boolean

F(2/1/3)= ocyty3+ ocz

Reduce the following boolean function into 3 literals. F(A,B,C) - A'C' + ABC+AC'

F(A,B,c) = Act ABC+Act

$$= \frac{c'+ABc}{(c+c')} (c'+AB)$$

$$\Rightarrow A+Bc \Rightarrow (A+B)(A+c)$$

- Reduce the tollowing boolean functions

F = AB(D+cd)+B(A+Acd) into 1 literal.

Logic gates:-

AND gate 8
The AND gate has two or more i/ps but only one o/p.

- -) The oppossumes the logic 1 State, when all i/ps are at logic '1'.
- -> AND gate also Known as all or nothing gate"!

B	Y=AB
0	0
1	0
0	0
1	1
	1

Truth toble

OR gate:

- The "OR" gate has two of more i/ps but only one of P.
- -> The olpassumes the logic 1 State, even it one of its ilp is in logic 1 & state.
- -) The ofp assumes the logic'o', when all ilps are at logic 'o' state.
- -> OR gate is also called as "any gate"

A -	y=A+B
2 ip orgatelogic	Soum bo
21/porgatelogic	gina

A	В	Y=A+B
0	0	0
0	1	1
1	0	-1
1	1	1

4

4

4

4

6

Truth table.

NOT gate

-> NOT gate also called as an "inverter"

-) It has one i/p. 4 one o/p only.

	A	A
A Y=A	0	1
Logic Symbol	1	0
	Truth	toble

Note

- The AND, OR, NOT gates are "basic gates,"

Universal gates.

> NAND gate, NORgate are universal gates.

NAND gate 8-

- The NAND gate has two or more ilps and only one off.

Α —	0	Y=A·B
B-		

Logic Symbol

A	13	Y= AB
0	0	1
0	1	1
1	0	1
31	1	0

Truth table

Bubbled ORgate:

Y=A+B

A	В	Ā	B	y=A+B			
0	0	1	1	1			
0	1	1	0	1			
1	0	0	1	1			
1	- 1	0	0	0			
muth toble							

-> The touth toble of bubbled of gate 4 NAND gate are Same

$$\therefore \left[\overline{A} + \overline{B} = \overline{A} \cdot \overline{B} \right]$$

NORgates -

- The NOR gate has two or more ilps and only one of.

Α —	To	A= HB
B		

Logic Symbol

A	В	Y = A+B
0	0	1
0	1	0
1	0	0
1	1	0

ex.

0

6

Truth table.

Bubbled AMD gale :

A Do Y=A-B	=	A y A B
B+10		В

A	B	Ā	B	$Y = \overline{A} \cdot \overline{B}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
ı	1	0	0	0

-) The truth table of bubbled AND gate & NOR gate are same

3

3

0

9

-) The X-OR gate has only two ilp 4 one olp.

XoR gate as an inverter: -

- An X-oR gate can be used as an inverter by connecting one of the two i/p terminals to logic 1' and feeding the i/p sequence to be inverted to the other terminal as shown in fig.

Truth toble

А	Imput	X=Imput
1	0	1
1	1	0

Truth table

-> properties of Exclusive-or gate &-

DEX-OR as modulo 2 Adder

- The X-OR gate can be used as a modulo 2 andder because its truth table is same as the truth table of modulo-2 adder.

- The X-NOR gate has two i/p to one ofp only.

A
$$Y = A \oplus B = A \oplus B = AB + \overline{AB}$$

Logic Symbol

A	B	Y = AOB
0	0	1
0	1	0
1	0	0
_ 1	1	1

Thath table of X-NOR gate.

-> Representation of the boolean functions :-

The boolean functions are represented by following 4 ways.

- 1 Canonical form
- (2) Standard form
- 3 Gate Implementation form (81) Logic diagram nepresentation.
- (4) Truth table form.

1 Canonical form : -

—) It the boolean function is in Sum of minterms (81)

product of maxterns from then the function is Said to be in

Canonical form.

Mintering : -

- The following table gives the three variable minterns A its designations.

Designations
mo
mı
mz
m3
my
ms
me
m7

Maxtering:

— three variable

The following table gives the maxtering 4 its designations.

Max term	Designation
	72
oct 2+3	M_o
20+2+31	M^{1}
octg1+3	M2
x+21+31	M_3
x^1+y+3	M4
201731	M5
20142143	M6
x1+21+31	M7

$$x=6$$

$$\frac{Ext'-}{F} = \frac{2cy'z'+2cy'z+2cy'z'}{2}$$

$$F = (x+y+z)(x+y+z')(x+y+z')$$

$$Comonical form$$

$$F = \frac{2}{3} \left[\frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} \right]$$

$$= \frac{1}{3} \left[\frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} \right]$$

$$= \frac{1}{3} \left[\frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} \right]$$

$$= \frac{1}{3} \left[\frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} \right]$$

$$= \frac{1}{3} \left[\frac{1}{3} + \frac{2}{3} + \frac{2}{$$

product of Maxtering: -

-> Conversion of general boolean function into canonical form;-

F(x,3) = x >

Sol Given function
$$F(x_1y_1, z) = x_1y_1^2z_1^2$$

Sum of minterms form

$$F = \chi (g_1g_1) + g_3(x_1x_2) \qquad \therefore A + \overline{A} = 1$$

$$= \chi g_1 + \chi g_1 + \chi g_2 + \chi g_3 + \chi$$

Conversion with in the canonical fam: -

Statement 1: The complement of the epine expression of Sum of minterms is equal to sum of missing minterms from the original function.

Statement -2:-

-> The complement of the product of maxterms is erual to product of missing max terms from the original functions.

-> Find out the product of maxterms form of the function F(A,B,C) = A'B'C' + ABC + AB'C + AB'C'

F(A,B,C) = $MO+M_{7}+M_{5}-+M_{9}$

According to Statement 1

F'(A,B,c)= m,+m2+m3+m6

Again take the complement on both sides.

F'(A,B,c) = {A'BC + A'BC + A'BC + ABC)

From demograns theorem

3

F-(A,B,C) = (A'B'C) (A'BC) (A'BC) (ABC)

Again Applying demogran's theorem

F(A,B,C) = (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C)

= M; M2: M3M6

FAB,C)=TI(1,2,3,6)

-) Find oul Sum of minterms of the function F(A,B,C) = (A'+B+C') (A+B+C) (A+B+C') * (A+B+C')

Given function F(A,B,C) = (A'+B'+C')(A+B+C)(A'+B+C')(A'+B+C)

From Statement (2) F(A, B, C) = M7M0M5M6

F(A,B,C) = A M, M2 M3 M4

F'(A,B,C) = (A+B+C) (A+B+C) (A+B+C) (A+B+C)

Again talking complement on both Sides

F'(A,B,c) = (A+B+c) (A+B+c) (A+B+c) (A'+B+c)

= Applying demograms theorem

F(A,B,c) = (A+B+c') + (A+B'+c) + (A+B'+c') + (A+B+c')

= Again Applying demogons theorem.

F(A,B,C) = (A'B'C) + A'BC' + A'BC + AB'C' $F(A,B,C) = m_1 + m_2 + m_3 + m_4$

Standard form 8 -

- 1) Sum of products form (SOP)
- Deproduct of sums form (pos)

() Sum of products: (SOP)

- -> The Sop expression contains two 81 more AND functions ORed together.
- -> Each AND term (product term) consists of one or more variables appearing in either complemented or uncomplemented
- -> All these product terms are connected with or operation.

 This Kind at logic expression is called as "Sop" Sum at

products. Ex:- f = AB + Bc' + CA

@ products of Sums (pos) 6-

-> The pos expression contains two or more OR functions ANDed together. -> Each OR term (Sum term) contains one or more variable in complemented or uncomplemented born. 6

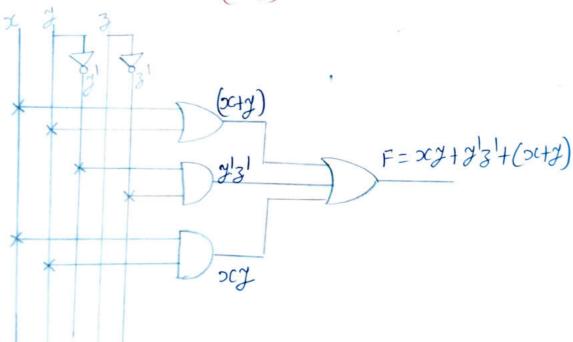
6

5

- These sum terms are connected by AND operation.
- -> This Kind of logic expression is called as "POS" product of sums.

- Find out sop form of the function, F = oc(x+2+23)

See
$$F = \infty(349493)$$


-> Find out the pos form of the function F=>(+ 73+>17

from distributive love i.e AtBOT O. A+B(=A+B)Ar)

A+A=A = (octg+x) (c+ztg) (x+z+x) (x+z+g)

-> Logic diagram nepresentation (81) Gate Implementation form :-

- -> The conversion of boolean functions into gale implementation process having the following operator precedence.
 - 1 paranthesis
 - 2 NOT-operation.
 - 3 AND-operation.
 - 9 OR operation.
- Find out gate implementation form at the function.

Truth table form:

-> The truth table consists of all possible combinations of ilps of coversponding ofps.

-) Find the truth table form of the bunction, $F = (A+B)(\overline{A}+C)$ Sol Given function $F = (A+B)(\overline{A}+C)$ 4

4

/	7	B	C	Ā	A+B	Ā+c	F=(A+B)(A+C)
0)	0	0	1	0	1	0
0		0	ı	1	0	1	0
0		1	0	1	1	1	
0		1	1	1	1	1	1
1		0	0	6	1	0	0
1		0	1	0	1	1	1
1		I	0	0	1	0	6
١		1	ı	0	1	,1	1

GATE LEVEL MINIMIZATION

-> Karnaugh map (81) K-map 8-

- Harmaugh map method is a Straight forward method both the Simplification of the boolean functions.
- -> 14-map is made upot group of squares.
- Each Square represent one minterm/maxterm.
- The no of squares in a 14-map dependent on the number of Variables in a given boolean function.
- Depending on number of variable 15-maps are divided as
 - 1) 2- Variable 15-map
 - 2) 3- Variable 14-map
 - 3 4- Variable K-map
 - 9 5- variable 14-map.

-> Minterms in 16-maps o-

-) In this 14-maps each and every square nepresents the minterns.

1 2- Variable 14-map:-

- -) This 14-map consists of 22=4 shuares.
- -> Each square represents one 2-variable minterm.
- -) The following diagram gives the minterm nepresentation & designation nepresentation & of 2-variable K-map.

$$x$$
 y
 0
 x
 y
 x
 y

3. Variable 14 map . -

-> This 14-map consists of 23=8 Shuares.

4- Variable 14-map 8-

_____ Maxterms in 14-map

2-3 In this 14-maps each square represents one max term. 0

0

0

C

0

2-Variable 19-map: -

-> In This 14-map consists of 2=4 Squares.

-> Each structe nepnesonts one 2- variable mintering

-> The following diagram gives the max terms representation of its designation representation of 2-variable Ki-map.

3-Variable 14-map :-

-) This K-map consists of 23=8 squares.

Four variable 14-map:

-> This 14-map consists of 24=16 Squares.

147	-> Inus	15-map	Consist	500 2	. 243	•			
80	00	01	11	10	with 1	00	01	11	10
00	w+2+3+30	W+x+2+3	w+x+2+31	WX+7+32	00	Moo	M, ,	M3-3	M2-2
	wtxtgtz 4					My y	,	M7 7	
11	wtxtg+3 12	wtxtg+313	wtatgtz 15	wtxtgtz,4	1)	M(2 12	M13 13	M15 15	MM 14
10	ध्येत्रम्याउ 8	wtoctytz g	Wtx+243'11	いまなない	10	Mg g	Mag	MIL II	Mb 10

-> Simplification of Boolean functions by using 14-map method:

-> The following Steps are needed to find out the simplified expression of given boolean function using 14-map.

(1) (a) It the given boolean function is in & sum of minterms form of sum of products form, then take the minterms 14-map.

- B) It the given boolean function in product of maxterns of product of Sums form, then take max terms 14-map.
- Marit'i' on the connesponding squares by using the minterns or maxterns form from the given boolean function.
- But the max number of adjacent squares is always 2n. when n=0,1,2,3--.
- (9) Find expression for each group 4 combine them to get simplified expression.
- -> Find out the simplified expression of the function using 15-map. F(x,y) = x(y+x(y)+xy

Sol
$$F(y,y) = xy + xy + xy$$

$$6y - 1/3 \cdot xy$$

$$6y - 1/3 \cdot xy$$

$$692 - 273$$

$$692 - 273$$

$$3 - 311$$

$$11$$

$$692 - 3$$

4

6

6

•

C

6

-) Find simplified expression of the functions using 14-map.

Simplify the following boolean functions in to minimal Sop formasing 14-map

(i) F(xd,3)= E(0,1, \$5,7)

(ii) F(A,B,C) = E(0,2,5,7)

(iii) F(A,B,c) = E(0,2,3,4,6,7)

(i) F(x18,8) = E(0,1,5,7)

G, -> 0,1 -> >lg1

62->5,7->x3

(i) Given function
$$F(A,B,C) = \mathcal{E}(0,2,5,7)$$

$$61 \rightarrow 01$$

$$0 \rightarrow 000$$

$$1 \rightarrow 000$$

$$000$$

$$000$$

$$x|x|$$

G2-) 57 5-0 101

$$G_1 \rightarrow 5,7$$
 $G_2 \rightarrow 0,2$
 $S \rightarrow 191$
 $2 \rightarrow 0,70$
 $2 \rightarrow 0,70$
 1×1
 ABC
 $A^{\dagger}c^{\dagger}$

(ii) Given function

$$F = (0, 2, 3, 4, 6, 7)$$

$$A = (0, 2, 4, 6)$$

$$A$$

y. pavan Kuman Reddy (41) - Simplify the following boolean functions using 14-map F(A,B,C) = ABC+ABC+ABC+ABC Sol Given F(A,B,c) = ABc' + ABc + A'B'c + A'B'c'= m6+m7+m1+m0 F(A,B,C)= & (0,1,6,7) G, ->0, 1 0-2004 1-00/ G, -> 0,1-> A'B' A'B' 6,7 G2 -> 6,7-> AB 6-) 116 7->111 F (AB,C) = AB+AB - Simplify the following boolean functions into minimal Sop form using 14-map (i) F(A,B,C,D) = E(0,1,2,3,4,6,8,9,10,11) (i) F(A,B,GD) = & (0,1,3,7,8,9,11,15) Sol Given F(A, B, C, D) = E(0,1, 2, 3, 4, 6, 8, 9, 10, 11) G,-0,1,2,3,48,9,10,11-1B 612-0,2,4,6 -> AD

$$AB,CD$$
 = $AD+B'$

612-0,2,4,6

0000

00 10

0 * * 0

4-) 0180

6-30110

A'D'

$$61 - 3,7,011,15$$
 $612 - 0,1,8,9$
 $3 - 0,1,8,9$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 - 0,000$
 $1 -$

Simplify the following switching functions into minimal SOP Using K-map.

Sol () F(A, B, GD) = E(1, 3, 6, 8, 9, 10)

AB C	P 00	01	1)	10	
00	0	T,	D,	70	
01	4	5		(I)	
11		3	+	06	
10	12 D	D9	15	1 10	١

G, -1,3 -> ABD 612-18,9- ABC 63-) 8,10 -> AB'D' 64-) 6-) A'BCD'

G13 -> 8,10

(i) Given
$$F(W,X,Y,Z) = WX'Y'Z' + WXY'Z' + WXYZ + WXYZ$$
 $F(W,XY,Z) = m_0 + m_{12} + m_3 + m_{15}$

$$W \times \frac{12}{00} = \frac{1}{00} = \frac{1}$$

G1-0-1000-) ABCD WXYZ G2-3->0011-> ABCD WXYZ G3->12->1100-> ABC WXYZ G4->15->1111-> WXYZ

[w,x,y,z) = wx/yz/+ w/x/42+wxy/2/+wxyz

$$F(A,B,C,D) = AB^{|C|} + AC + A^{|C|}$$

6

6

$$G_1 \rightarrow O_1 \rightarrow (A+B)$$

 $G_2 \rightarrow 3, 7 \rightarrow (B'+c')$
 $G_3 \rightarrow 6, 7 \rightarrow (A'+B')$

$$F(A,B,C) = (A+B)(B'+C')(A'+B')$$

F(A,B,C,D) =
$$\pi(0,1,3,5,6,7,12,13,15)$$

AB 00 01 11 10 $\pi(0,1,3,5,6,7,12,13,15)$

AB 11 $\pi(0,1,3,5$

$$G_{1} \rightarrow 1, 3, 5, 7$$
 $G_{3} \rightarrow 6 \rightarrow 011 \ p$
 $G_{4} \rightarrow 12 \rightarrow 110 \ p$
 $G_{5} \rightarrow 0 \rightarrow 000 \ p$
 $G_{5} \rightarrow 0 \rightarrow 000 \ p$
 $G_{7} \rightarrow 011 \ p$
 $G_{8} \rightarrow 011 \ p$
 $G_{1} \rightarrow 011 \ p$
 $G_{1} \rightarrow 011 \ p$
 $G_{1} \rightarrow 011 \ p$
 $G_{2} \rightarrow 011 \ p$
 $G_{3} \rightarrow 011 \ p$
 $G_{3} \rightarrow 011 \ p$
 $G_{4} \rightarrow 011 \ p$
 $G_{5} \rightarrow$

F(A(B, (,D) = (A+D')(B'+D')(A+B'+C')(A'+B'+C)(A+B+C)

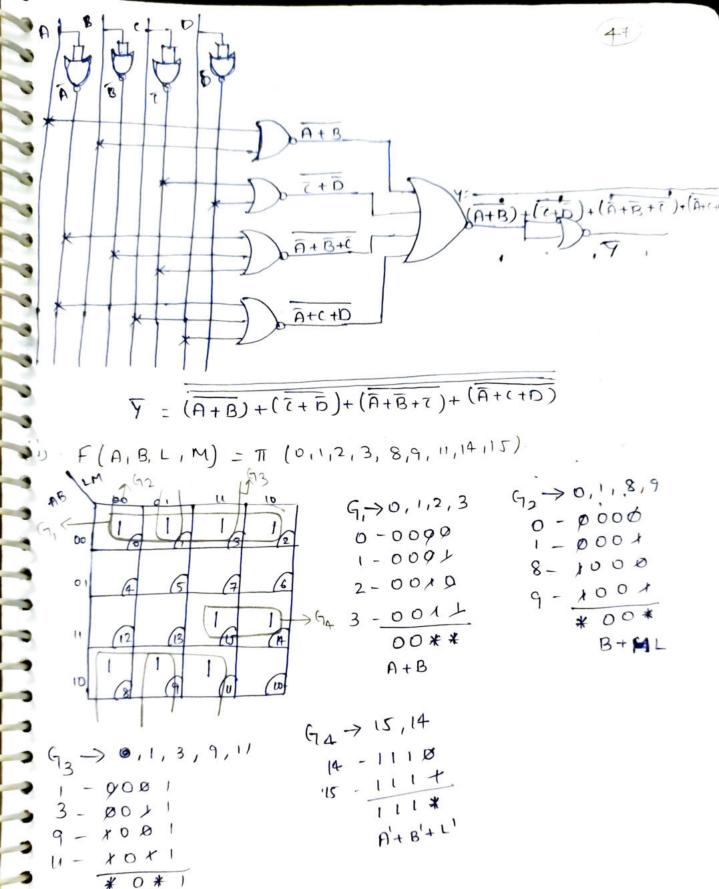
B'+8

000

Aten

6

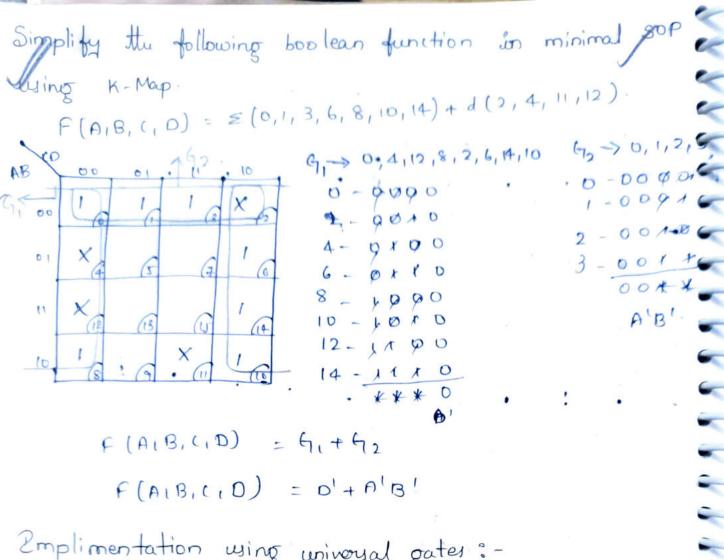
6


$$B'+c'+D' = Q + 1 + 1 - M_{4}$$
 $A'+B' = 1 + 1 - Q - M_{12}$ $A'+B' = 1 + Q - M_{13}$ $A'+B' = 1 + Q - M_{14}$ $A'+B' = 1 + Q - M_{14}$

$$G_1 \rightarrow A+B+C$$
 $G_2 \rightarrow B+C+D$
 $G_3 \rightarrow B'+C'+D'$
 $G_4 \rightarrow A'+B'$

Impliment the following function using NOR gates. (1) · F(AIB, (, D) = & (0,1,2,3, 7,8,11, 12,14,15). 3-0011 0-0000 7-011 0001 >62 6 001 60 (13 CD A'B' 10 4478112 G2 > 14,15 8-1900 14 - 1110 1114 Ac'D' ABC F (A,B, (,D) = 97 4+ (73+674 F (AIB, (ID) = (A'B')+(CD) + ABC)+(AC'D') = (AB) + (CD) + (ABC) + (ATD) (AB) (CD) (ABC) (ACD) (A+B) (T+D) (A+B+T) (A+C+D) F (AIB, (ID) = (A+B) + (T+D) + (A+B+T)+(A+(+D)

4


4

F(A,B,L,M) = G,G,G,G,4 = (A+B)(B+L)(B+M)(A+B+L)

B+M1

F(A1B,(10) = 91+92+93+94 = A'B'+ CD + AB C + AC'D' SOP \$0 POS => F(AIB, (10) = \(\(\begin{array}{c} \(\begin{array}{c} \(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \) 00 00 GI E 01 93 ATT (18 G3 -> 13,9 G1 > 4,5 G2 > 4,6 9-1001 4-0190 4-0109 6-0120 0 10* A C' D A'B D' A'BC' F(A1B1(10) = 91+ 92+ 93+ 94 = A'BC'+ A'BD'+ AC'D+ AB'CD'. Don't Core Condition: * The undefined combinations are called as Don't core conditions. It is indicated by 'x'. By using don't core condition we can reduce boolean functions to a greater extent. Ex: - En BLD 1010 to 1111 are undefined * Don't lare condition, are grouped when the size of the group is increasing.

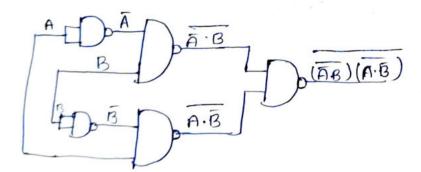
NAR NOT gate using NAND:-

AND gate using NAND:-

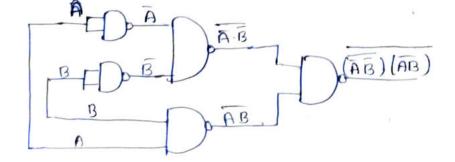
-

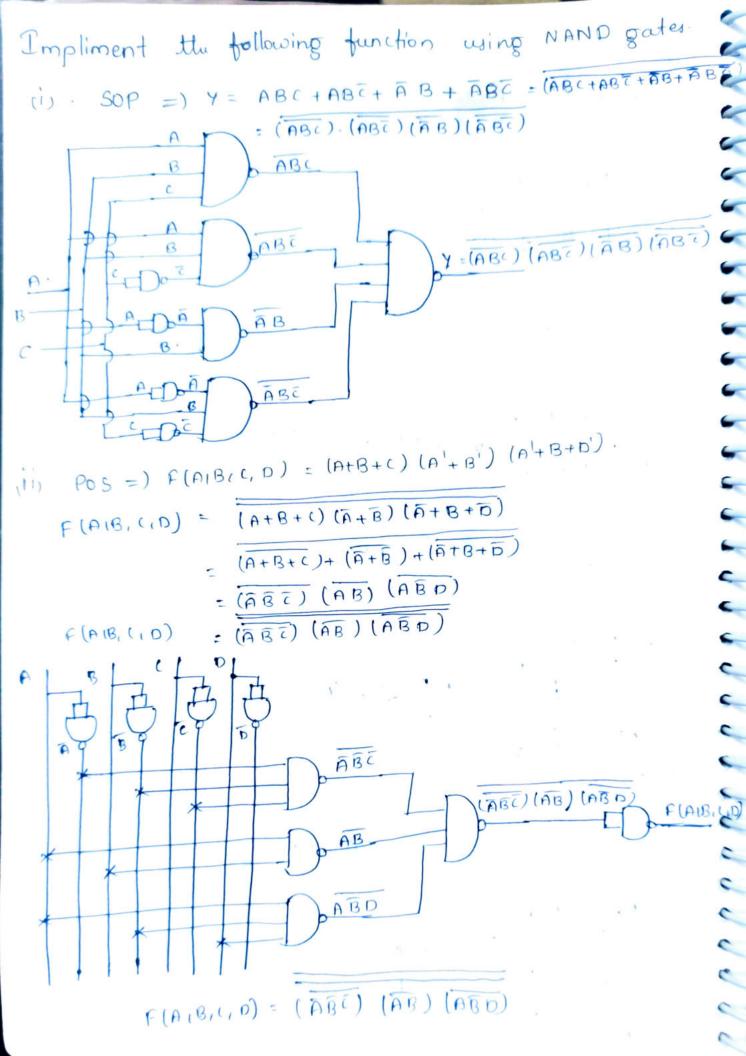
OR gate using NAND:-

NOR gate wing NAND: -


$$Y = \overline{A + B} = \overline{A \cdot B}$$

$$= (\overline{A \cdot B})$$


X-OR wing NAND:-


0 0 0

3

-X-NOR wing NAND :-

OR wing NOR!-
$$y = A + B = (\overline{A} + \overline{B})$$

$$A \longrightarrow \overline{A + B} \longrightarrow \overline{(A + B)}$$

X-NOR wing NOR:

$$y = \overline{AB} + \overline{AB} = \overline{AB} + \overline{AB} = \overline{(\overline{AB}) \cdot (\overline{AB})}$$
 $\overline{(A+B)} + \overline{(\overline{A+B})}$
 $\overline{(A+B)} + \overline{(\overline{A+B)}}$
 $\overline{(A$

14.110 (13 -> A RO

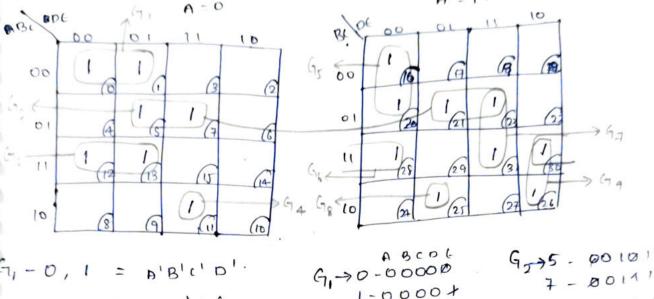
0-0090

A'B'D'

4

C

•


C

2

Simplify the following boolean function into minimal sop using

K-Map.

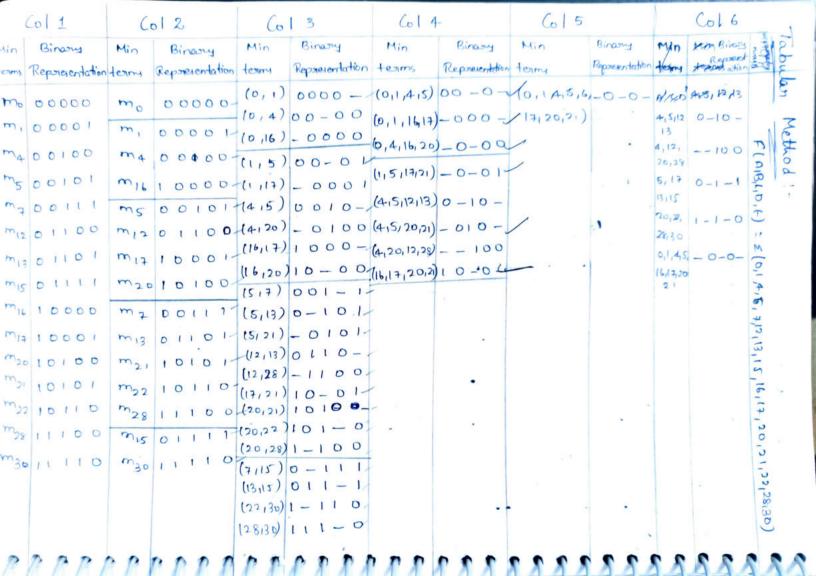
F(AIB, (1D, E) = (0, 11517, 11, 12, 13, 16, 20, 21, 23, 25, 26, 28, 30, 31).

G1-0,1 = 7-00111 1-00001 09, - 5, 7,21,23 = 13'(F 21-10101 0000 * 10111 A'B (D' A' B' (10' C73-12,13 A'BI'DE G3->12-01100 AB10' € 1 64-11-01011 95 -16,20 13-0110+ ABCDE. ABLE G6 - 28, 30 = 0110# A CDE - 23,31 = AB'C'D'

Gs - 25 = ABC'D'E.

G5->14-10000 16-10000

G9 - 26,30 = ABBE'


G5->14-10000 16-10000

10*00

 $G_{6} \rightarrow 28 - 11100$ $G_{7} \rightarrow 23 - 10111$ $G_{8} \rightarrow 25 - 11001$ $30 - \frac{11170}{11111}$ $G_{8} \rightarrow 25 - 11001$ ABCOE $G_{9} \rightarrow 26 - 11010$ ABCEI $G_{9} \rightarrow 26 - 11010$ $G_{9} \rightarrow 26 - 11010$

F (AIBICIDIE) = 41+42+43+64+45+66+67+68+69
= (A'B'C'D')+(B'CE)+(A'BCD')+(A'BC'DE)+(AB'D'E)+

(AB(E') + (ACDE)+(ABC'D'E)+(ABDE')

Parime Emplicant Chart: Min en 12 terms w13 en13 (4,5,12,13) (4,12,20,28) (5/7/13/15) (20,22,28,30) 0,1 ,4,5,16, 17 00 (B 20121) 3

F (AIB, (, D, E) = A'(D'+ A'CE + A(E'+ B'D')

Tabular Method (Quine - Mc Chuskey):-0

0

3

31)

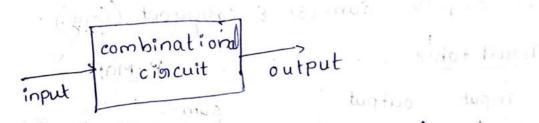
-

ABI ? 1's place differs.

I've can say that the mirterms whose binary equivalent differ only in one place can be combined to reduce the 3 minterns. This is the fundamental Principle of the

B. C Method. Algorithm for generating Prime Emplicants: Mark i a coording to minterms.

(ampose each binary number with every term is the adjacent next higher category & if they differ only


by one position, put a check much and copy the term in the next column with '- in the position that they diffressed.

- 3) Apply the same process described in step 2 for the nesultant column & continue these cycles until a single pass through cycle yield no fronther elimination of literals
- 4) List all Poince Emplicants
- 5) Select the minimum num of parime implicants which must cover all the minterns.

3 COMBINATIONAL LOGIC DESIGN

combinational logic cincuit contains combination of logic gates. In combinational circuit output depends on paresent inputs only.

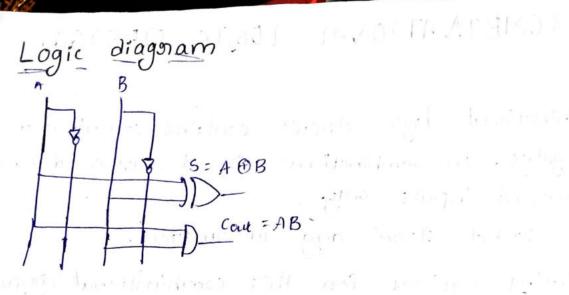
- * we connot stone any information.
- * Timing nequined for this combinational cincuit is less.
- * Handwane complexity is mone.

Binany addens :-In binasy addess generally we are using half adden, full adden, nipple canny adden etc

Malf addem :-

100

100


Half addess contains two inputs A & B and two outputs sum (s) and carrony (cout).

The touth table of half adden is as follows

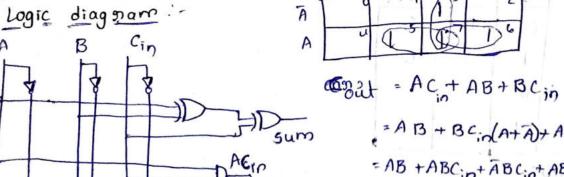
A	В	. 5	Cout
0	0	0.	0
0	1)	0
1.0	0	11	O
1	1.1.	, 0	S. J.

1	Bo	BI	4 7 7 7 7
Ao	0	B 1	S- AB+AB
AI	1	0	S · A OB

1	B	B			
A	0	0	1 01	=	AB
٨	0	1	1	1	

@Full addem :-

Full addess contains theree inputs A, B, Cin and two outputs sum (5) & canonyout (Cout).

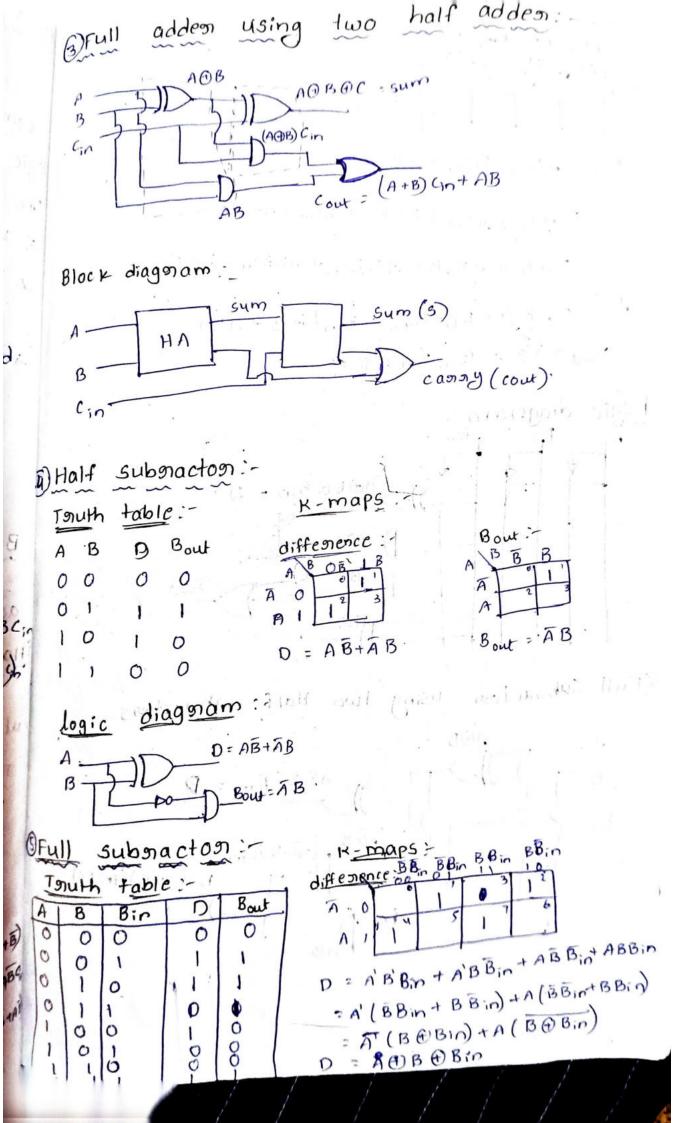

Tonuth table: K-Maps

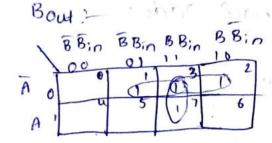
•	0	0	N/	,	1
)	r	α	M	Κ.	1
	1	u,	, ,		,

100					
	Inp	out	ou	tput	
A	В	Cin	5	Cout	
0	0	0	0	0	
0	0	i	1	0	
- 0	ĺ	0	1	0	
0	1.	1	0	1	
1	0	0	1	0	
l	0	1	0	1 /	
1	100	.0	0	1 1 10 10	
1)	l.	1	

Su	m: -	BC	BC	36	'n
AO	7	1	3	12] ,
AI	1 4	1115	1, 7	, 6	
1900	1 1 1			10.	

Sum = ABCit ABCit ABCit ABCin = A (BC+BC)+A (BC+BC). = A (BOG) + A (BOG) Sum = A + B + Cin

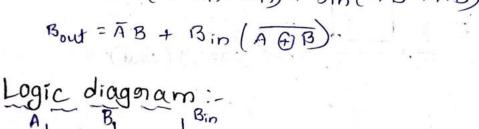


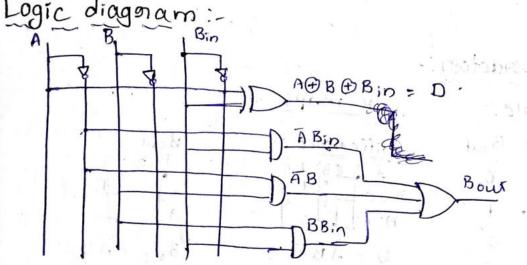

ha so a			
canny :-	0 9/40	(47.50)	71.4
\ ā č	B Cin B Cin	Bicin .	- : /
- Journal	1 13	2	Λ
A	5 5	76	5 /
A	(90)	D	

= A B + BCin(A+A)+ Acin(B+B)

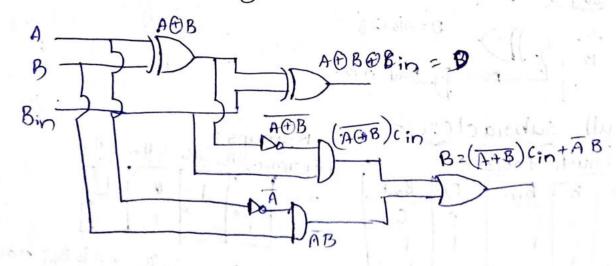
= AB + ABCin+ ABCin+ ABGin+ ABGin+ ABGin - AB (I+Cin+Cin)+ Cin(AB+AB

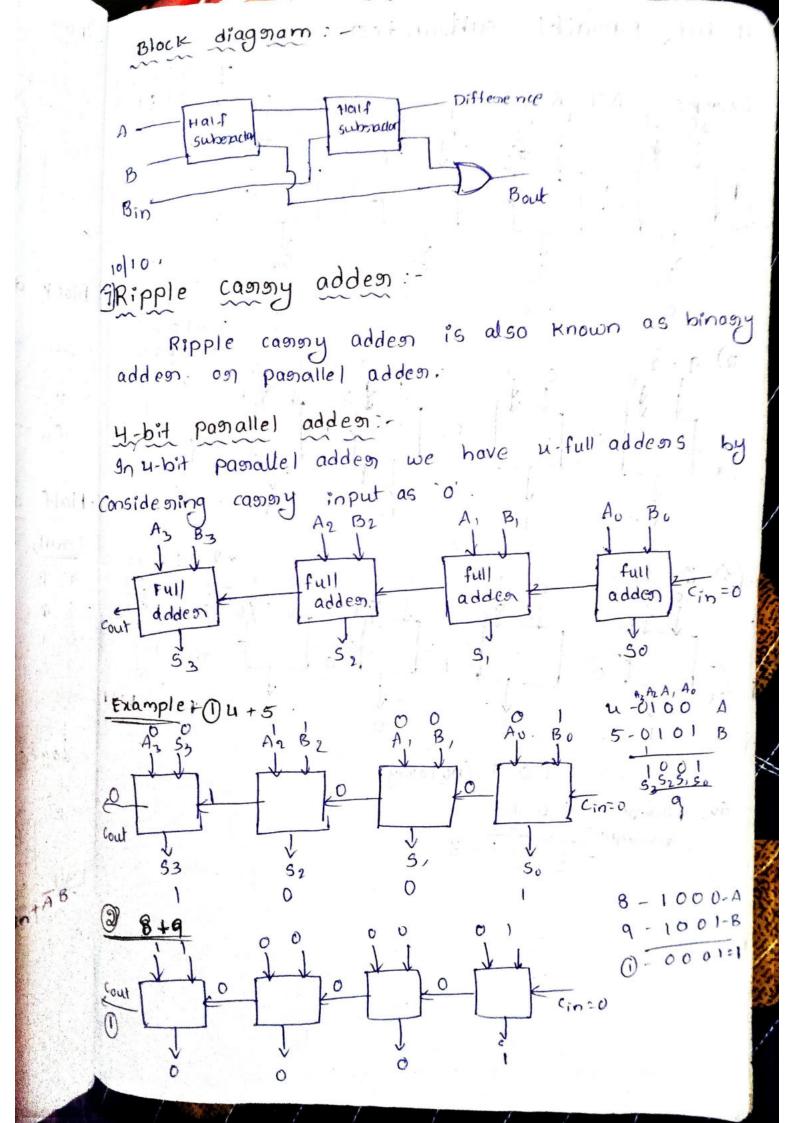
Cout = AB + Cin(A @ B)

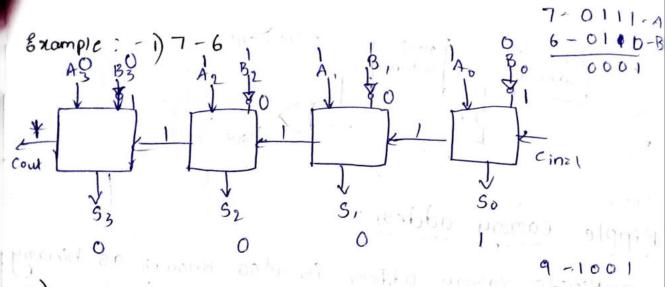


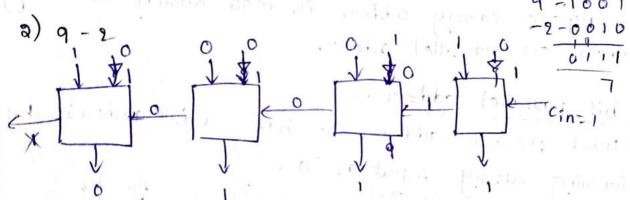

$$B_{out} = \overline{A}B_{in} + BB_{in} + \overline{A}B$$

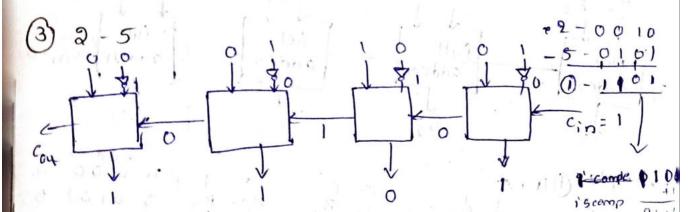
$$= \overline{A}B + \overline{A}B_{in}(B+\overline{B}) + BB_{in}(A+\overline{A})$$

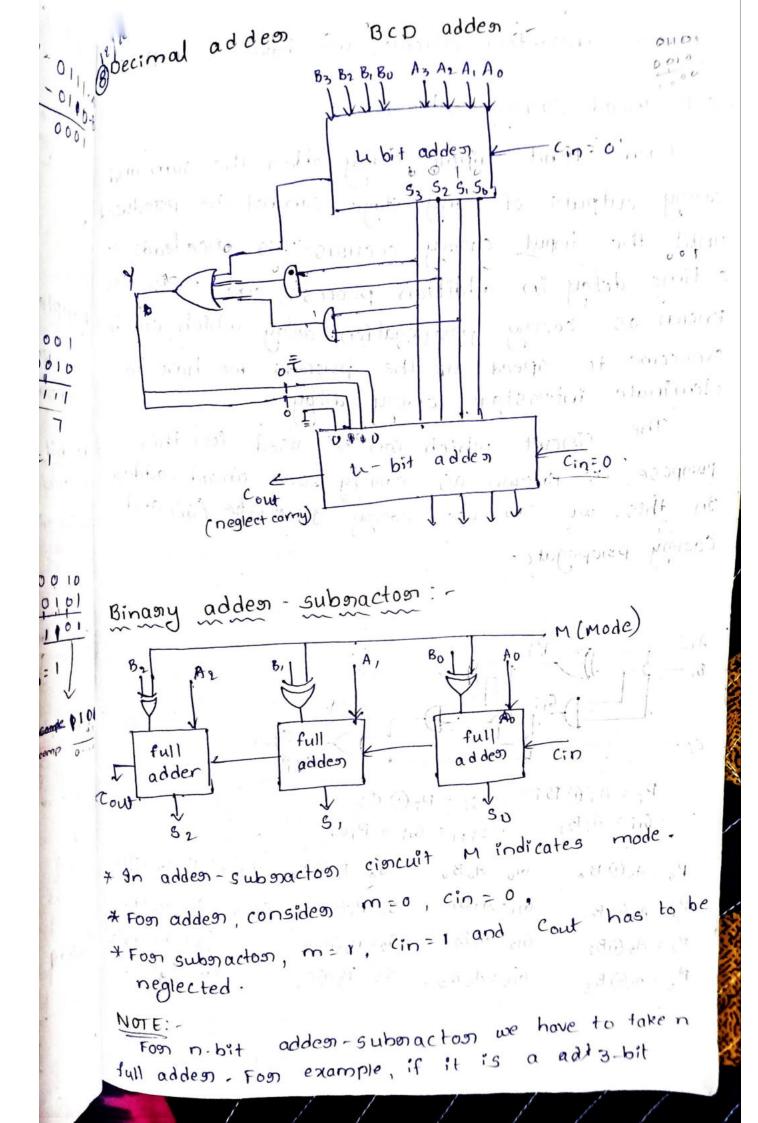

$$= \overline{A}B + \overline{A}B_{in}B + \overline{A}BB_{in} + \overline{A}BB_{in} + \overline{A}BB_{in}$$


$$= \overline{A}B(1+B_{in}+B_{in}) + B_{in}(\overline{A}B+\overline{A}B)$$



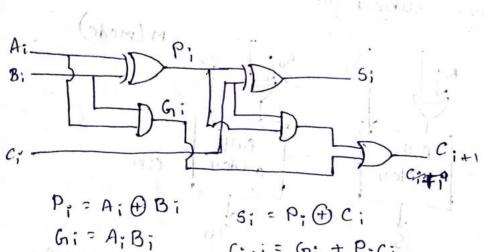

OFull submaction using two Half submactions.





50,
$$15 comple = > 0.0 10$$

 $25 comple = > 0.0 10$
 $25 comple = > 0.0 11 = 3$



adden-subnaction cincuit, we have 3 full adder

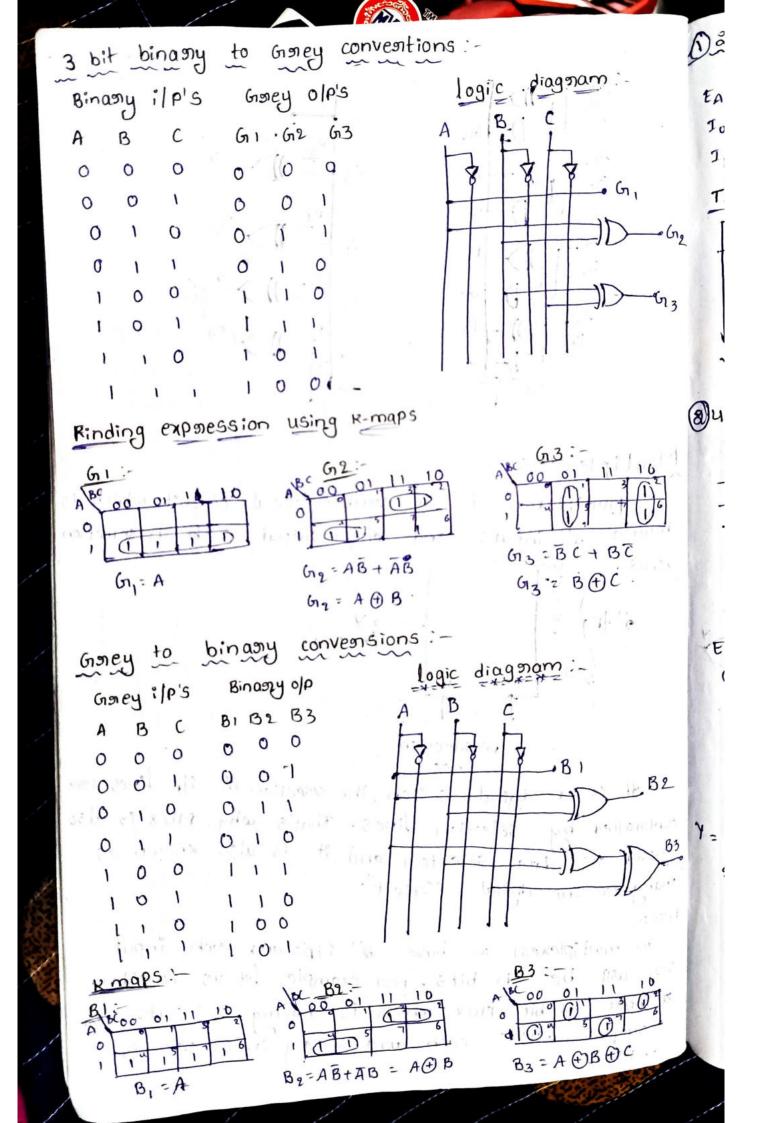
Look-ahead canny Adden

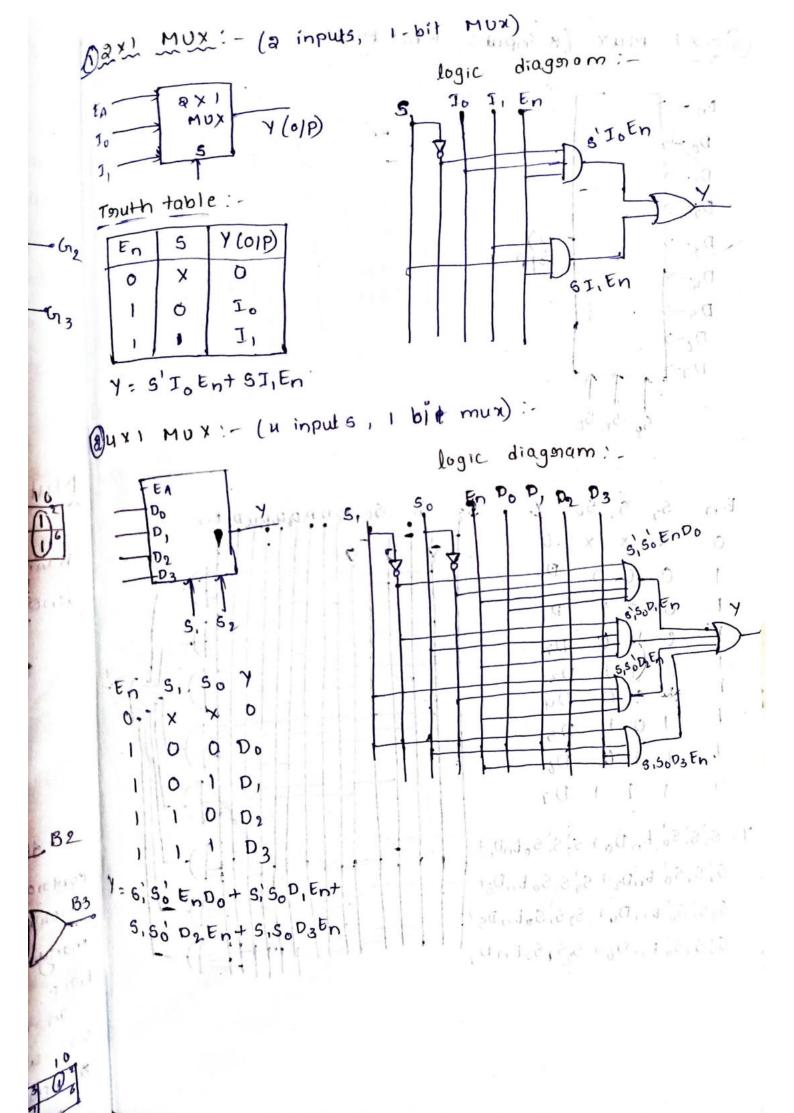
Forom 4-bit sipple canny addess the sum and casiny outputs of any stage can not be poroduced until the input carry occurs. This mealeads to a time delay in addition process, and it is also known as carry propogation delay which can be ovencome to speed up the process we have to eleminate intenstage canny delay.

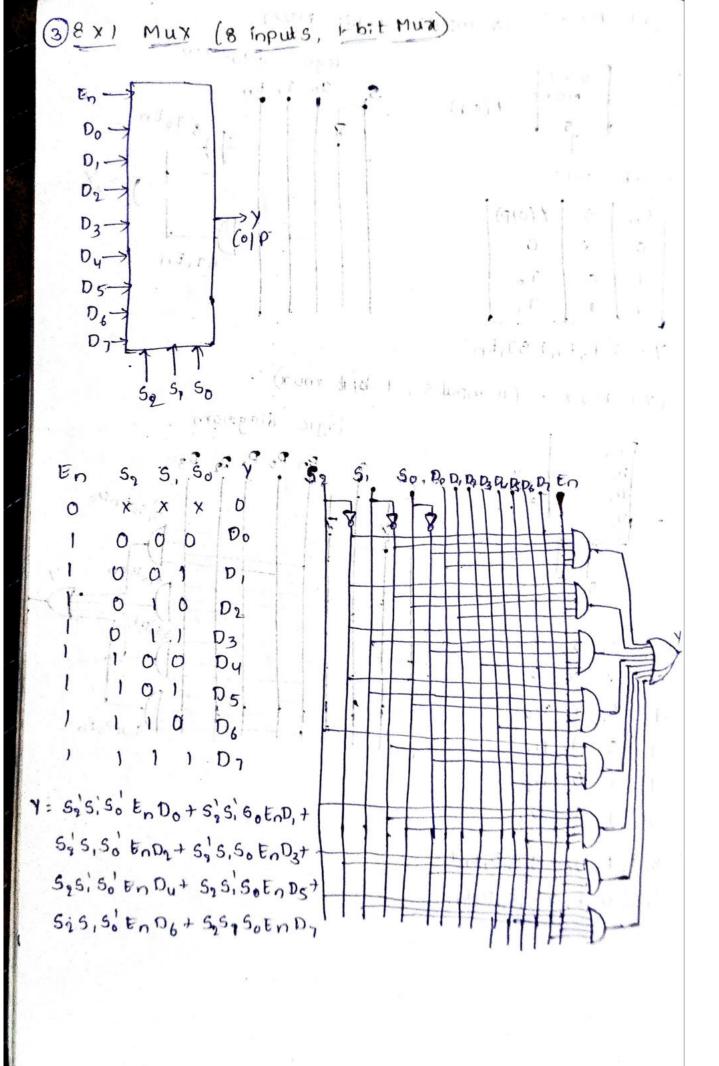
The cioncuit which can be used foon this pumpose is known as carry look ahead addern. In this, we can use consul generate (6) and canny buobogate.

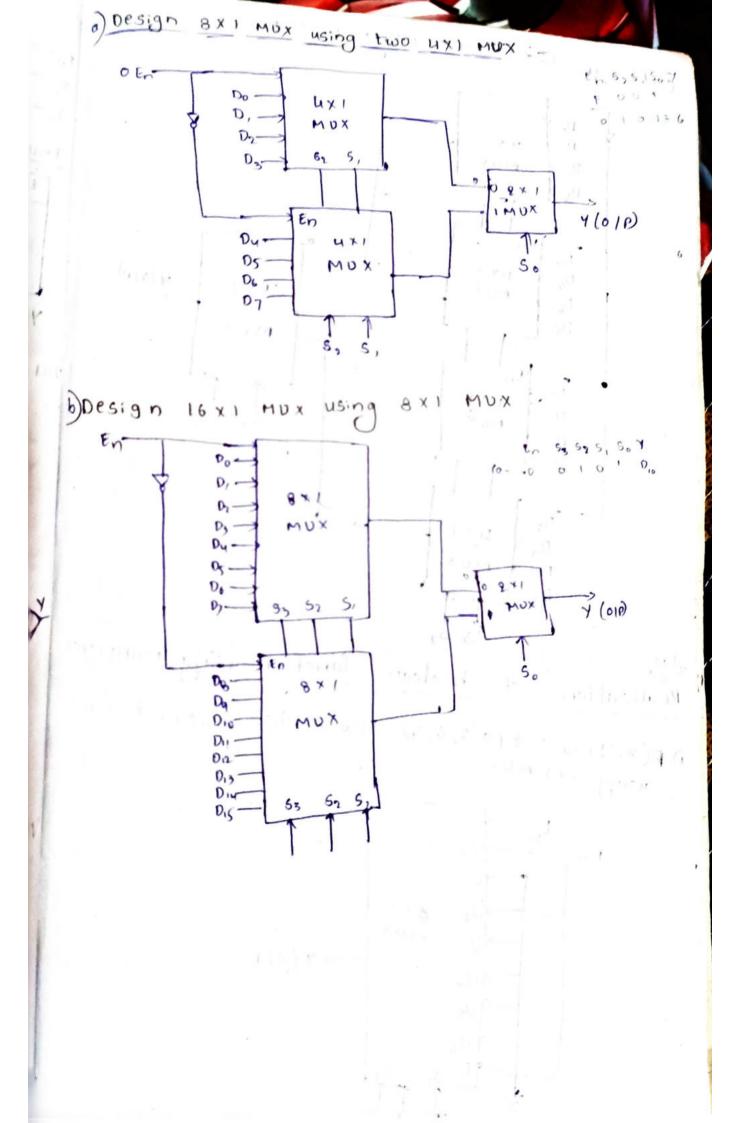
Gi= A; B; Citi = Gi + Pici

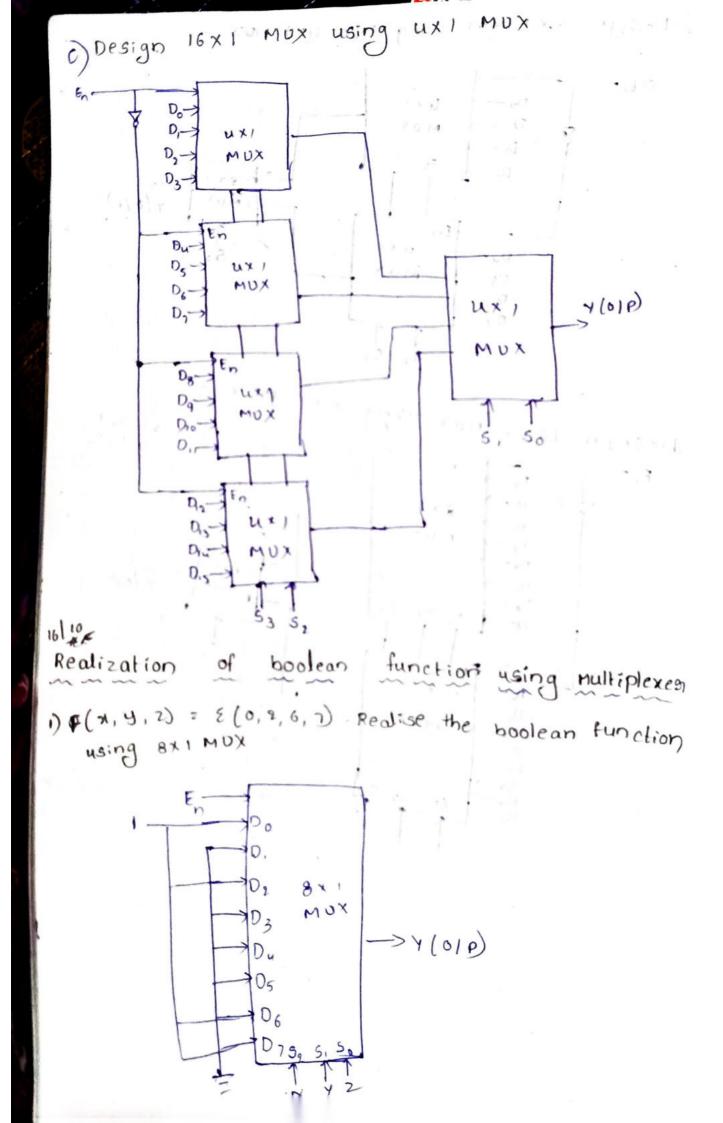
address subspacion as have to take ...

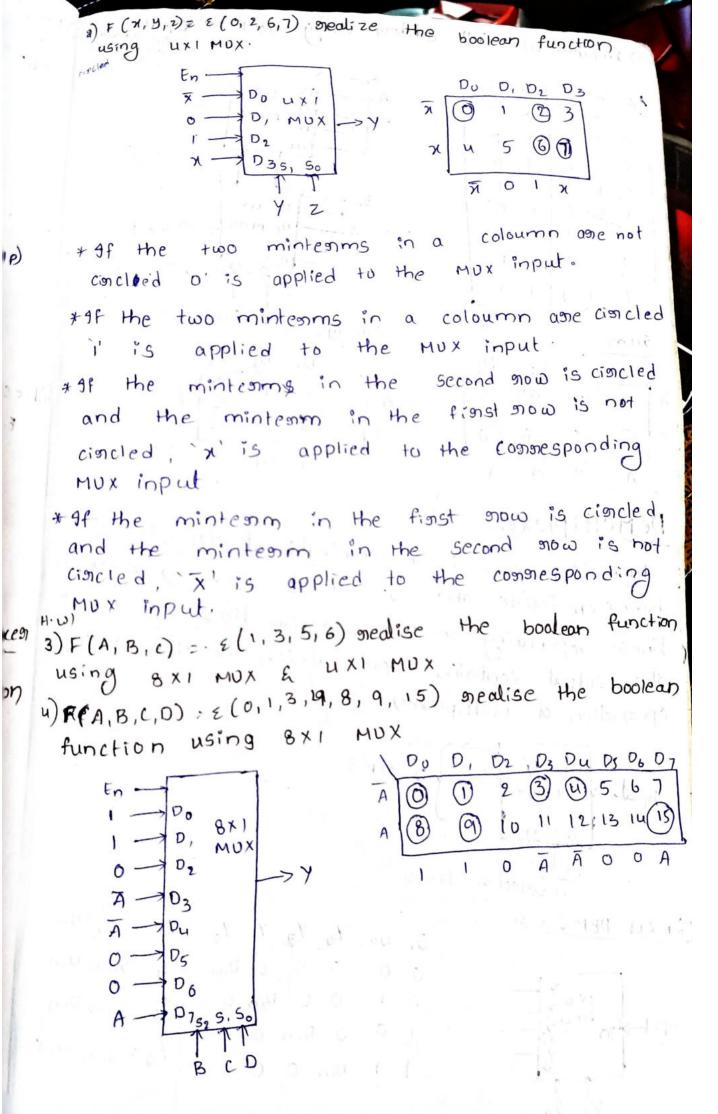

50 = PO + CO Ci+1=> C1 = G10+POC0 Po = Ao + B. Go = AoBo G1: A1B, 51=P, +C, C:+2=> C2=G1,+P,C, Pr + A + B, G12 = A2B2 S2= P2+C2 P2 = A2 +B2 C3 = G12+P2C2 Cu = G1 + . P3 (3 G13 = A383 50 = P3 +C3 P3: A3+ B3

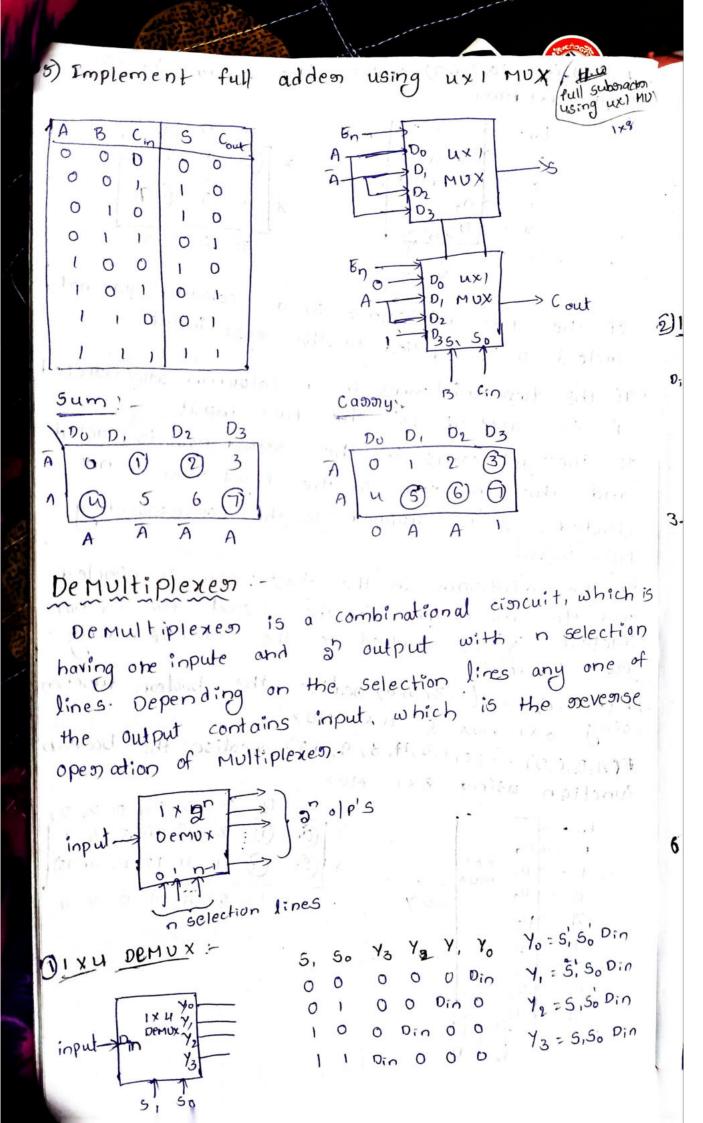

tid. Ette o el 11 ft, organoses cest a conti

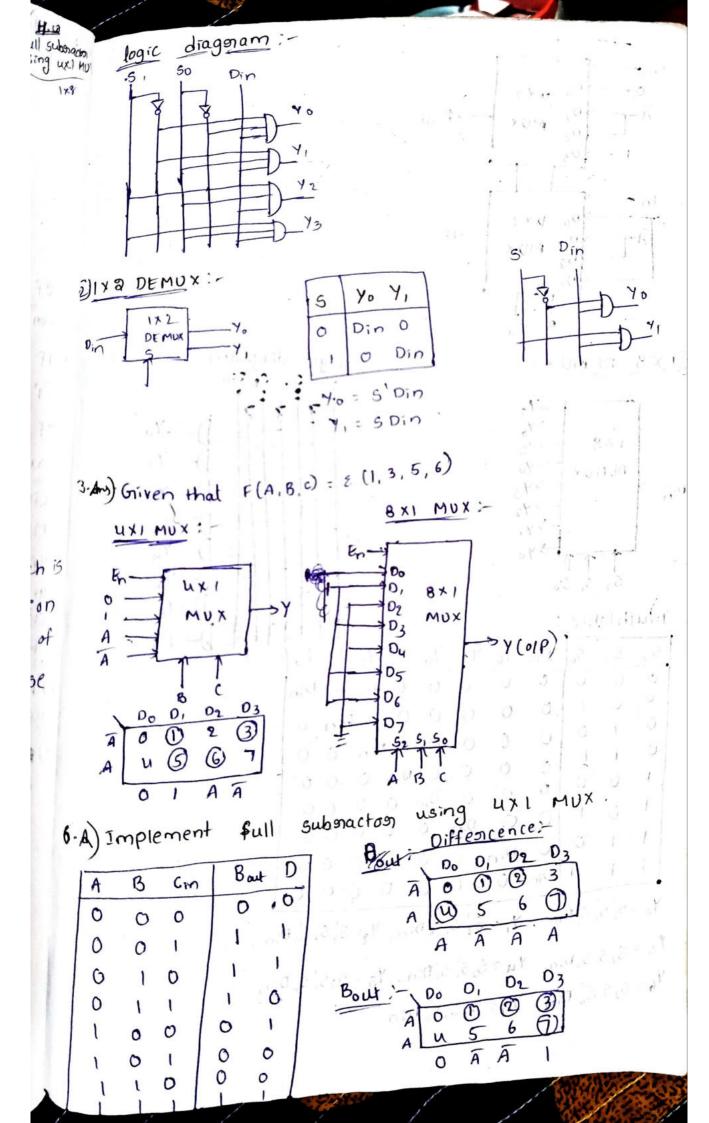

Mull havir lines

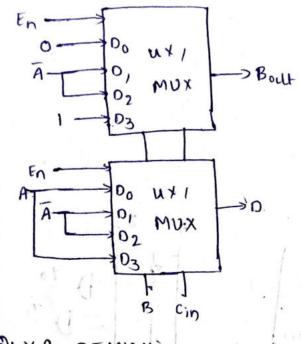

conta Knou wani NOTE 20 size ir

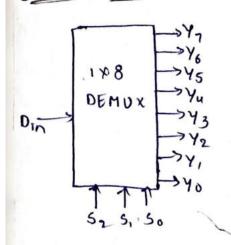

11 adder 600 o and noduced 61, ads to C, P2 s also 612 C, can be P3 to 613 is dden. Multiplexeens combinational cioncuit, which is and 15 Multiplexes and one output with a selection an inputs lines. (output) n' selection ilp lines are lines switch, the selection of selection lines. That's why, Mux is also digital selector and it is also controlled by knowin as I data cioncuit". many to one digital 612+P2C2 we have on ilps and each input NOTE: size will be in bits. Foon example, let us consider a input; u-bit mux which is having . a inputs and where each and every input size is 4-bits.







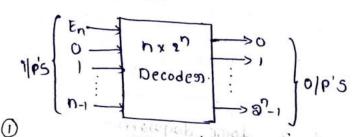




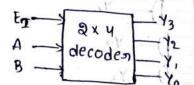
Touthtable:

52	5,	50	47/10	46	45	Yu	43	42	٧,	70
0	0	0	0	O	0	0	0	0	0	Din
0	O)	O	0	0	0	O	0 1	متر	0
0	1	0	O	0	0	0	O. r.			0
0	1	1	0	0			Dia			
1.	0	0	0	0	0	Dia		0	0	0
1	0	1	0.	O	Dia	We MI	0	111	0	-
1	1	0	10 5	2 11		14.7	10	3 9		
1	١	ΔŠ	Din						0	Ö

Yo = 5, 5, 5, 0in, Y, = 5, 5, 5, 0in, Y2= 5, 5, 5, 0in,
Y3 = 5, 5, 5, 0in, Yu = 5, 5, 5, 0in, Y5 = 5, 5, 5, 0in
Y6 = 5, 5, 5, 0in, Y7 = 5, 5, 5, 0in


Decodes :-

having n inputs and a outputs of is used in seceives logic diagram - side of the communication system

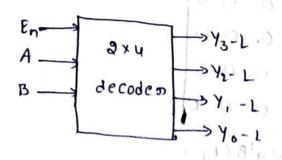

11

giadevaw:

E. Janobanok

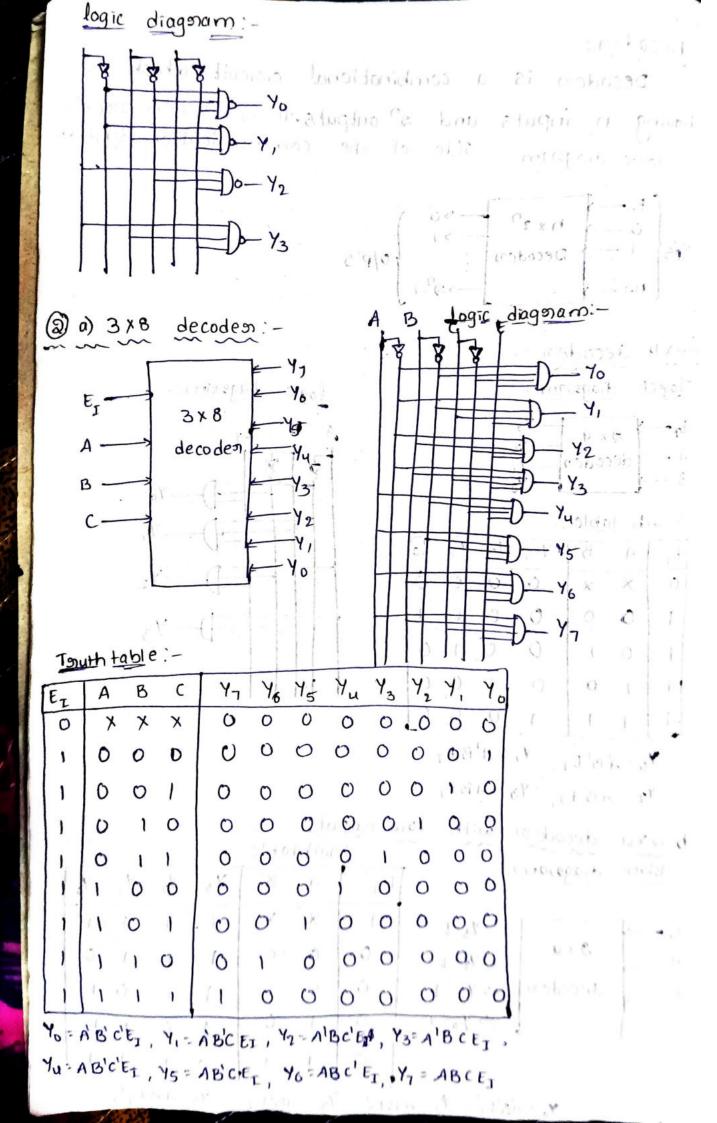
@axy decodes :-

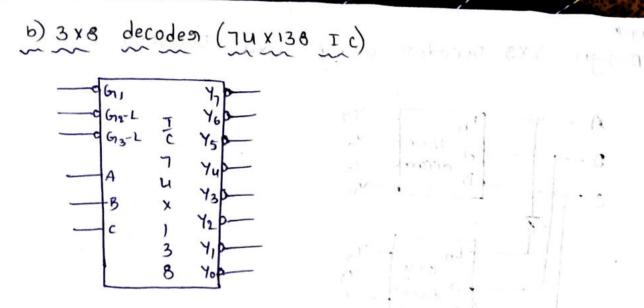
Toruth table


E_1	A	B	Y3 Y2	Υ,	401
0	×	×	0.0	0	Ö
1	0	0	0.0	0	,
1	0)	0 0	1	0
1)	0	0 1	0	0
)	1)	1 0	0	0

Yo = A'B'EI, Y, = A'BEI

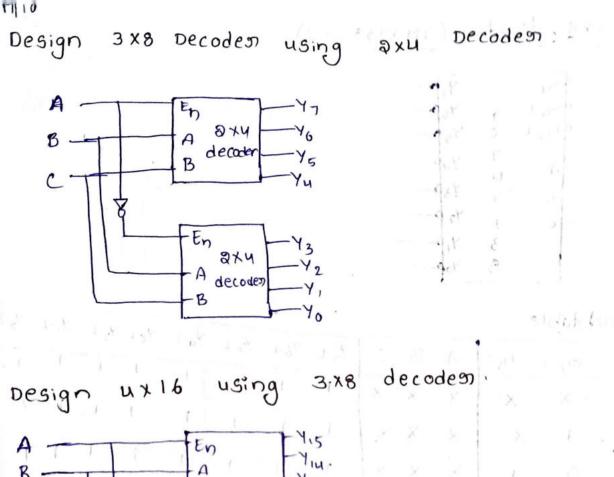
Y2 = AB' EI, Y3 = ABEI

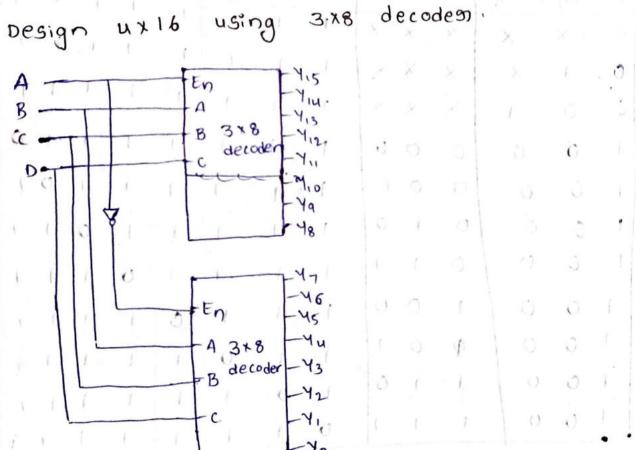

Block diagram with low outputs


Touthtable:

urnt	able:	0			
A_{ij}	B	73	72	7.	Y.
X	X	O)	<u></u>	1
0	0	01	10	. 1	0
0	\mathcal{L}	11	1	, n	,
1	0		. '		1, 1
١	, 1	Jan.	,,0	, Pa	Sh
	X ₁	A B X X X O O O	0 0 0 01 X X 01	A B Y ₃ Y ₂ X X 1 1 O O 1 1 O 1 1	A B Y ₃ Y ₂ Y, X X 1 1 1 1 O O 1 1 1 0

Yo = AB'E, Y = A'BE, Y2 = AB'E, Y3 ABE,

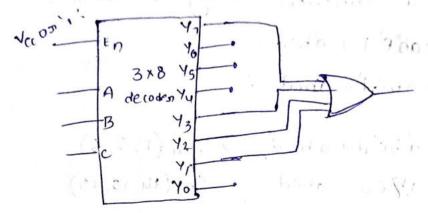

Tonuthtable :-

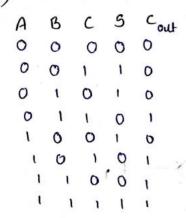

	-	Die				y 1 Y-1
61,	Gnq	- L 63-L	A	B	C	17-L Y6-L Y5-L Yu-L Y3-L Y2-L Y,-L Y6-L
0	×	Х	×	×	1	10 10 10 10 10 00 00 00 00 00 00 00 00 0
0	1	×	×	X	×	1 1 1 1 1 1 1 1 1
0	0	1	×	X	×	1 1 1 1 1 1 1
1	0	0	0	0	0	1 1 1 1 1 1 1 + 0
1	0	0	0	0	1	1 1 1 1 6 1
1	0	0	O	١	0	
1	0	0	0	١	1	
)	0	0	1	0	0	
1	0	0	•	0	1	
l	0	0	١	1	0	
1	0	0	1	1)	

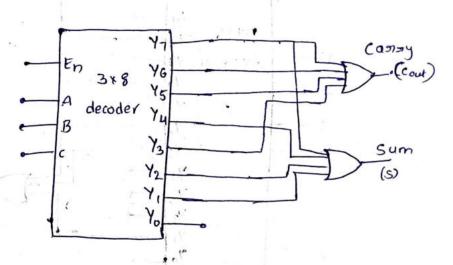
Realisation of bookers function "I'FT ""

is and out and granted of the townstrail

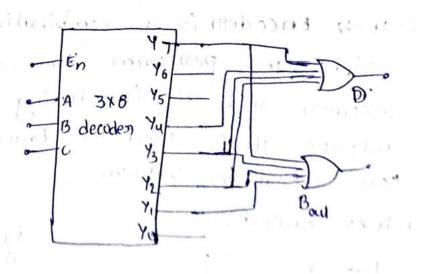
([, 5, 2, 1) m 3 . 1 + 100 book 8x6




Realisation of boolean function using decoder OImplement the following boolean function using 3x8 decoder . F = Em (1, 2, 3, 7).


Yu = ..

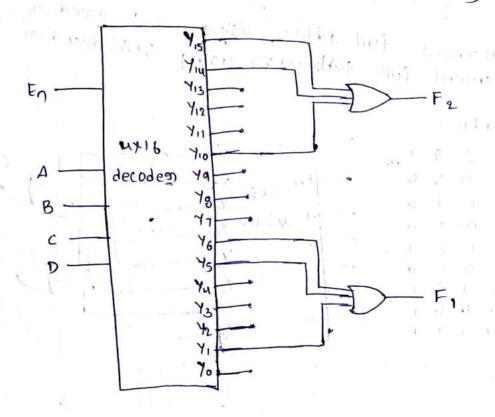
Given F = Em(1, 2, 3, 7)



- 3×8 decodes,. a) Implement full addess using 3x8 decodes. 3) Implement full subspactor using
- J.Am Full addes

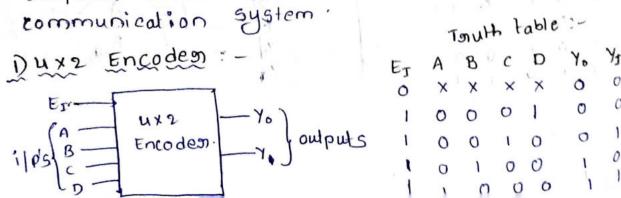
3.A) Full Subpracton:

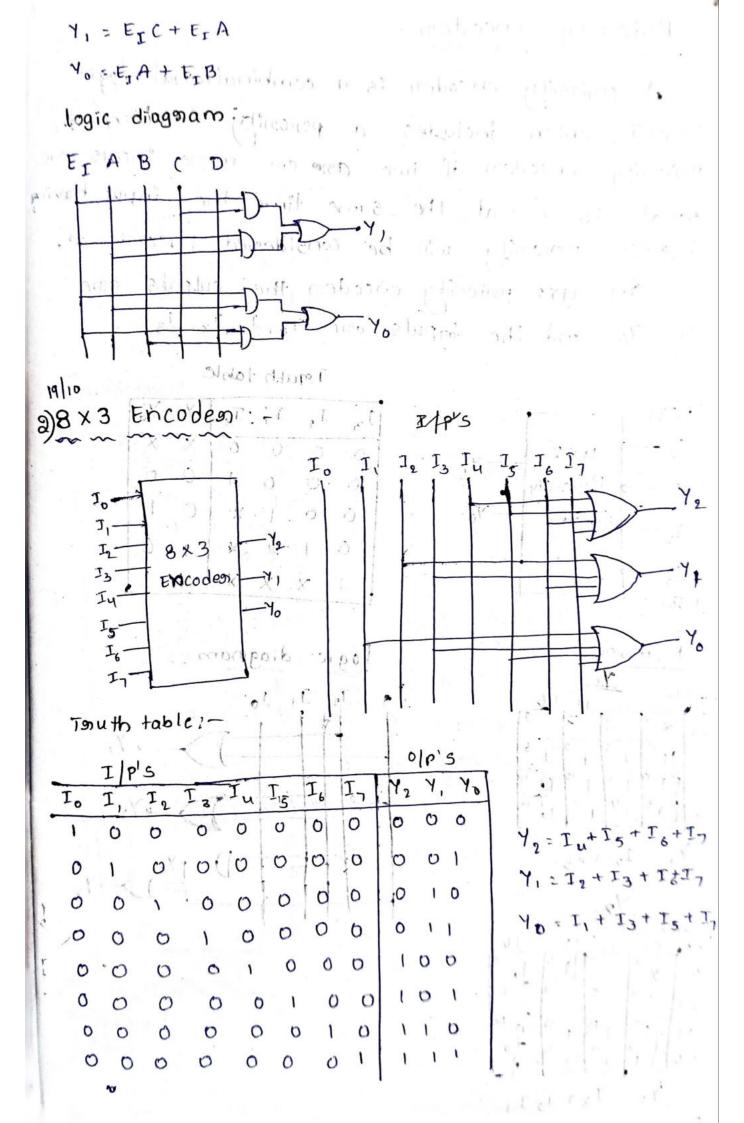
9300041

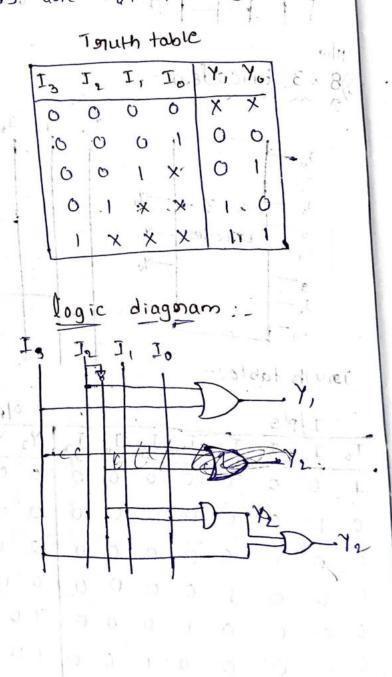

and built such formation .

u) Implement a combinational logic cincuit and defined by a function using decodes .

Fi = a'b'c'd +ab'c'd + a'bcd'


F2 = abcd' + ab'cd' + abcd'


And) $F_1 = a'b'c'd + a'bc'd + a'bcd' \implies &m(1,5,6)$ $F_2 = abcd' + ab'cd' + abcd \implies &m(14,16,15)$

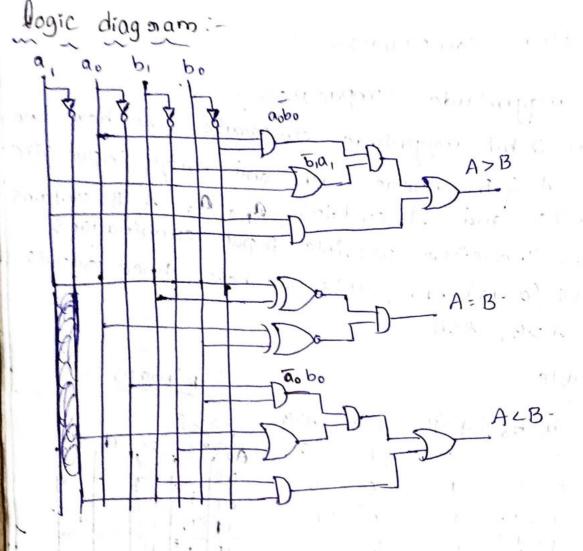

ENCODER :

which can penform the nevenue operation of decoden and it is having of inputs and now puts. It is used in transmission side of the

Ma

1)9.

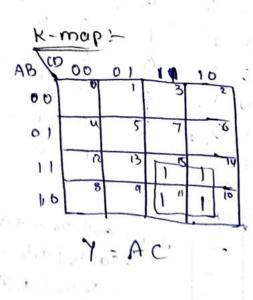
in

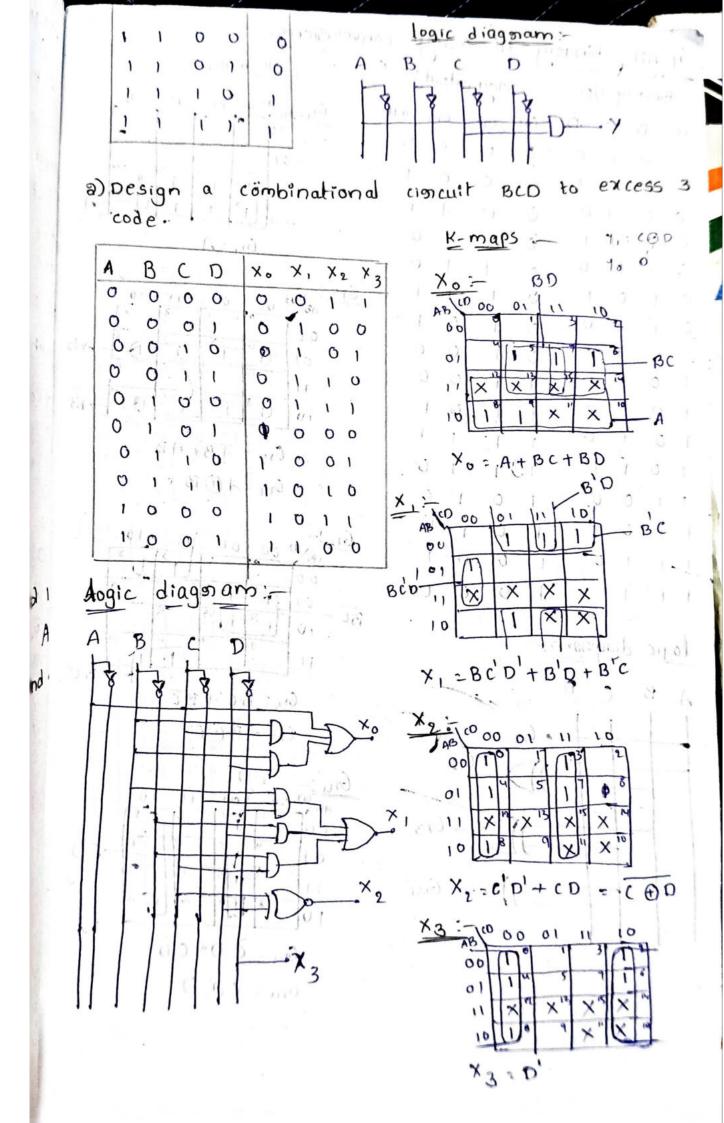

1

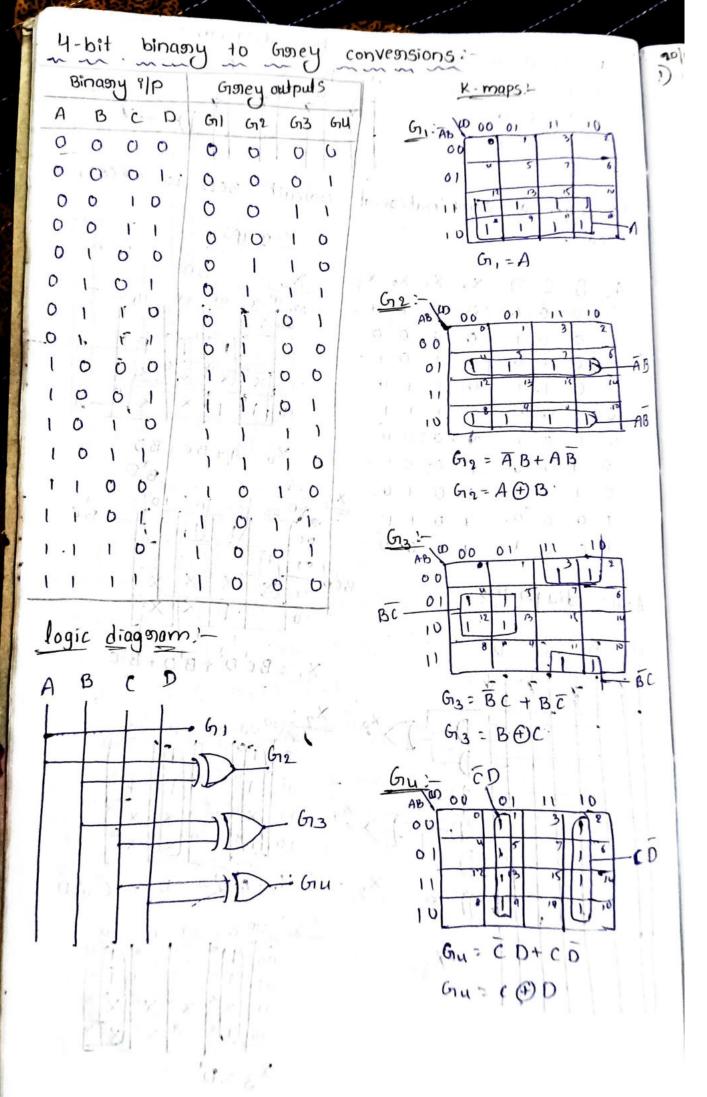
Magnitude companaton: 89ic i) a-bit magnitude companation: In 2-bit magnitude companation we have uts oal A & B. where each and every input size of piant a bits and A. contains, a, , a, & B contains en ce b., bo. Thesefosse, possible input combinations 1soe 16 (0-15). Foon this, we have there outputs. A=B, A>B, ALB Touth table K-maps b, b0 A=B . A>B a o ALB. 0. 0 0 VI 01 0 0 O 0 0 0 0 0 0 0 0 0 0 0 A>B = a,b, + a,b, b,+b,a,0 0, 1 0, 1 Pia 0 0 (5, + a,) +a,b, 0 11/1 ollaped attomorphica ACB 0,00/6,00 0 00 01 11 10 0 . 0 0 ACB = b, a, + a, b, b, + b. 0 O 0 0 -1boarao ACB = aobo (+b1) +b1a, = B 10 01 11 A=B= aoa, bob, + aoa, bob, + aoa, bob, + aoa, bob, 01 (1) = a, b, (a, b, +a, b,) + a, b, (a, b, +a, b,) (1) = a, b, (a, Ab,) + a, b, (a, b, Ab) (1)

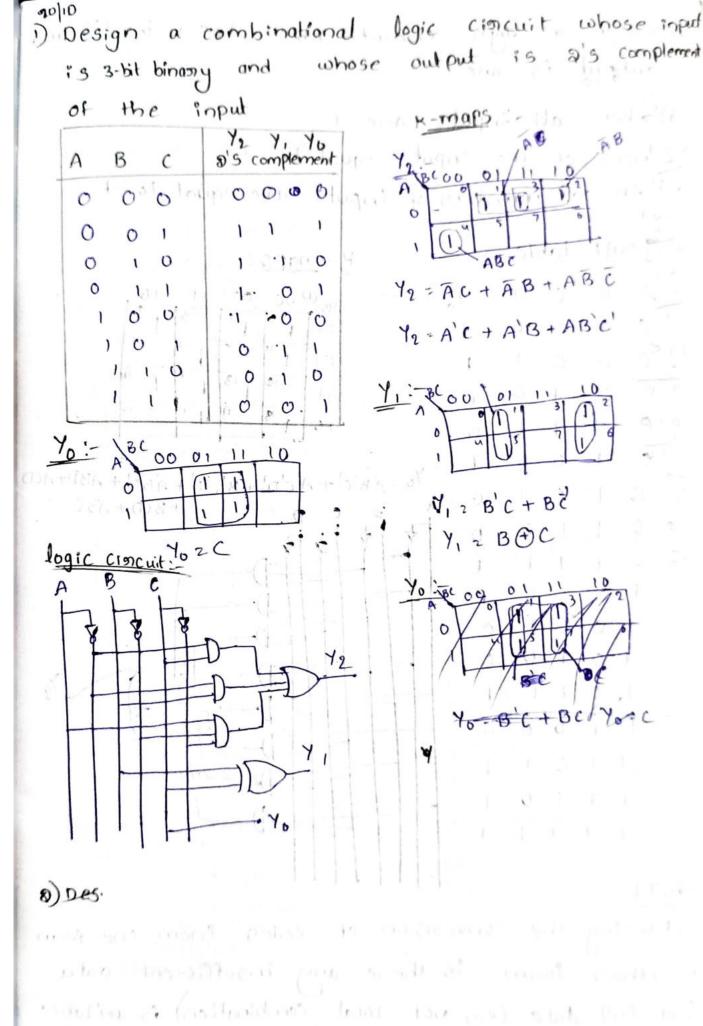
70

= (a, (b) (a. b. + a.b.)


.. A=B = (a, 0 b)) · (a, 0 b)




CODE CONVERTERS :-


Doesign a combination cioncuit with u ilp's and I ofp. The output thegoes high if and only if A inputs and high, Donaw the touth table and did donaw the logic diagram.

-	-			2		0
	A	B	c	1	0	y
	0	0	O		5	0
	O	0	0		١	0
6	0	0	•		2	0000
1	000	1,0			0	0
1	0	1	. 0	3	0	0
	0	133	116	3	1	0
	0)	1-1	11,0	0	0
	(5	1	1	1	,0
	0	R C	0000	0	0	000
	1	1	0	O	1	0
		1	0	1	0	1
		1	0	1	- 1	1

and the color of the color of the color of the colors

Design a logic cioncuit which has u input's an output is one in a south

X)

DO

CO

D) D

3)00

- i) when all inputs ane 1
- ii) None of the inputs equal to 1
- of inputs ane equal to 1

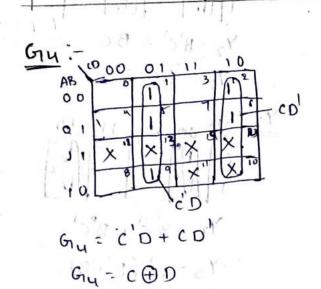
iii	iii) An odd number of inputs and	equal
	10 10 1	1 10
n)) Touth table : K-maps:	ABC 10 / ABC
T	0. 8° 01/	3 12
1	0 0 8 0 8 9 1 1 1 8 1	ABC
	0 0 0 1 1	13 D 9 1 ACD
	0 00-1100	9 1"
	0 0 1	D. ABD+ACC
	0 1 0 0 1 Yo = AB'C' + A'C'D' +	B'c'D+ A'B'D+ ABD+ACC +BCD+ ABC
	0 1 00 1 00 4 8 6 0	1417
	011000	2 - 01 7 30 15 11 ho.
	O I I I D	
	D-	
	1000 D	7 10
	0000 D	
	1 1 0 1 1 P	
	11101	
	1 1 1 1	2
		25-0

*) Duning the convension of codes forom one form to other form, is there any insufficient data (not full data (on) not total combination) is available then we have to consider don't came' combination Ex: BCD to Goney, BCD to excess-3

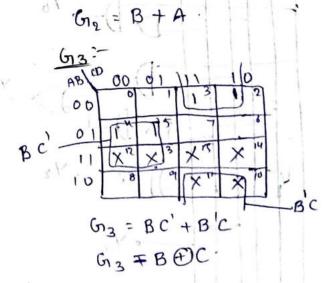
- ane binary to Grey, Groney to excess 3 code.
- Design a combinational cincuit which can convent 8,4,2,1 code to Geney code
- a) Design a combinational cioncuit which can convent 3-bit binary to excess-3 code.
- 3) pesign a combinational cioncuit which can convent 4-bit binary to Groney code

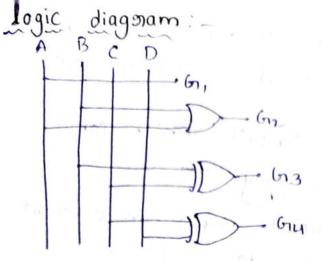
·An			_	ible:	6,	Giz	G	₃ G	4
	A	B	77.	0		~	0	0	
()	0	Q.	0	O.	. 0	1	_	,	
	0	0	O	1	O	O	0	1	
	0	Ö	11	O	0	01	I^{T}	١	
112	0	- 0	/1	1	0	0	١	Ō)
	0	ι	0	0	0	1	1	0	ĺ
	0	١	0	y	0	J.	١	1)
	O	1	i i	0	0	1	0	1	
	0	83	1	T CLA	0	1 .1	0	0	

-BCD

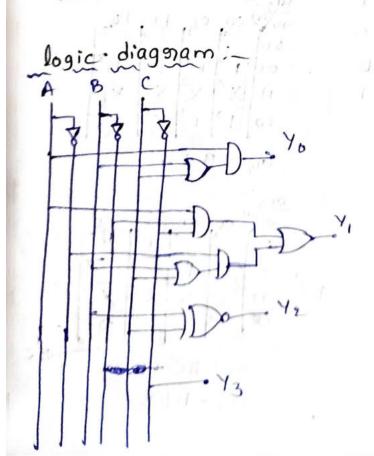

-AB

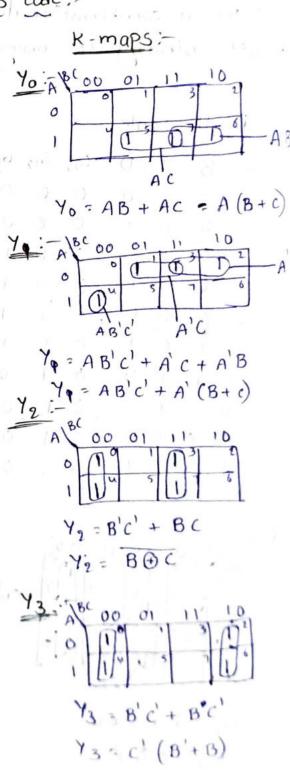
ACD


ABD+AD


BC

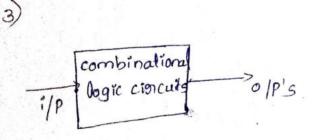
7)		K-r	nap	s !-	
	G1:	00	01	11	
, į	ABO	9		3	-
	01	1 X 12	X 13	X	
	10	1 8	19	X "	
	Ü	G,	- A	- 1	
	. 0	ľ	1	f	
	GI 2:	00	0)	11	
	00	174	1-5	7(7	
			- 5		-


0 0

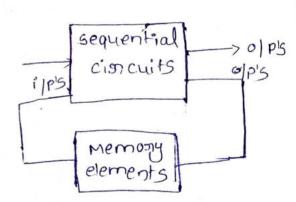


a. Am) 3-bit binasy to excess-3 code:

В	С	70	Y,	72	Y3	
0	0	0	O	1	1	
0	1	0	1	0	0	
. 1	0	0	1	0	ì	
١	ï	0	() b	1	0	
0.	0	0	1	1	١	
0	1	1	0	0	0	
1	0	1	0	0	1	
)	1	1	0	1	0	
	0 ,,	0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1


combinational cioncuits

- D combinational logic cioncuit contains, combination of logic gates.
- a) combinational concuit, output depends on posesent ilp's only.


sequential cincuits.

- i) sequential cioncuits contains, combination of logic gates and memony elements.
- D'an sequential cincuits olp depends on posesent ilp's and past olp's.

3)

- u) we can not stoone the information.
- 5) The operation is speed 5) The operation is slow
- 6) In combinational, the handwane complexity is mone.

- u) we can stoone the information by using memori elements
- 6) less hand ware complexity.

classification of sequential cincuit: sequential cioncuits ane classified into two types -

- 1) synchonorous, sequential cioncuit
- a) Asynchmonous sequential cioncuit
- => 4n synchronous sequential circuit, signals can effect the memony elements only at disconete time
- >> In Asynchmonous sequential cincuits, signals can effect the memosy elements at any instant of time integrals
- => The memory elements used in both cigrouits agre flip-flops. Flip-flops ane capable of stoning 1-bit of infoormation.

5 ynchonous

lits

its

ion x

remo

cuits

nese

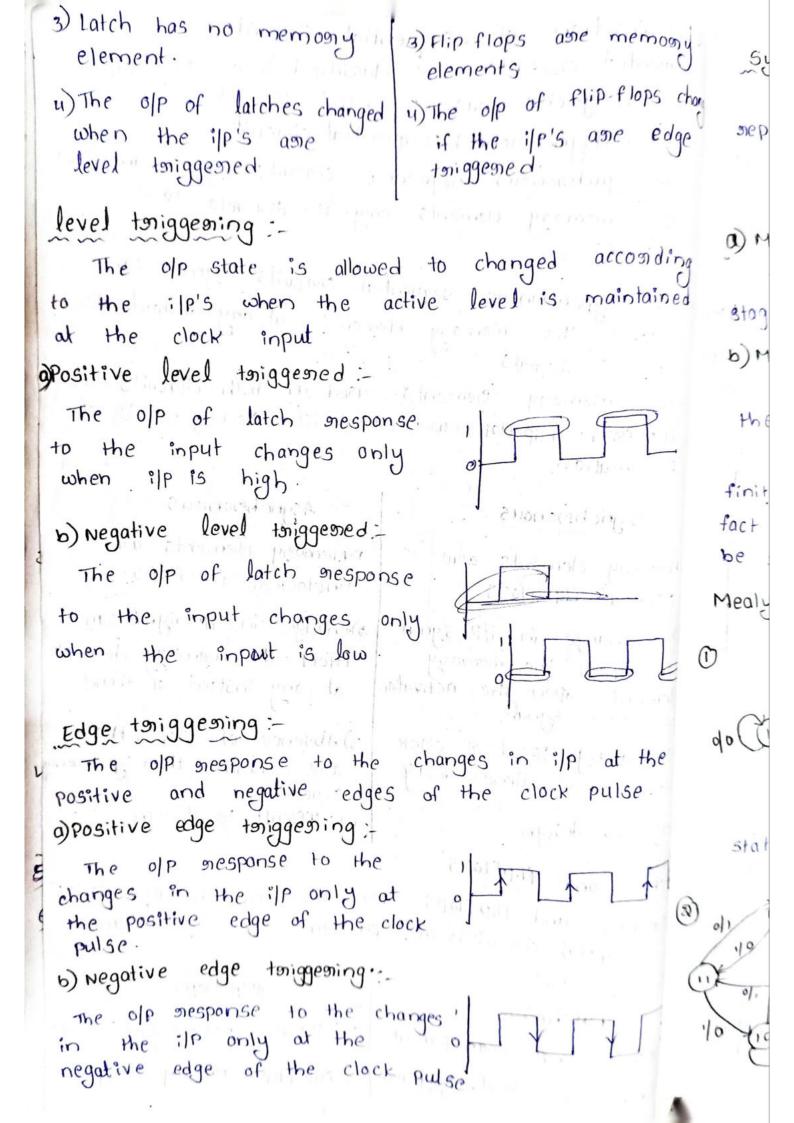
5 .

- i) Memony elements ane clocked flip-flops
- 2) The change in i/P signal can effect the memosy element upon the activation of clock signal:
- 3) Opemating speed of clock depends on time delay
- 4) easy to design 27/10

Latches and flipflops:-

latches and flipflops ame the basic building blocks of sequential cioncuits. The difference blw latches and flipflops ame

Latches

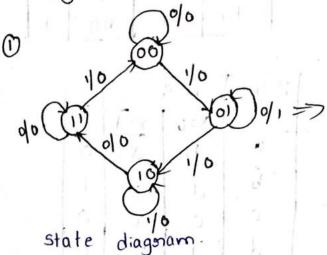

-) latches ame tonansparent
- 2) Latches ane level taniggemed

Asynchmonous.

- DMemony elements ane unclocked flip-flops.
- a) change in i/p signal can effect the memony element at any instant of time.
- 3) Absence of clock, these fasten than synchmona cioncuit
- u) difficult to design.

flip flops

- i) flip flops ame not tenansparent
- a) flip flops ane edge tanggeared

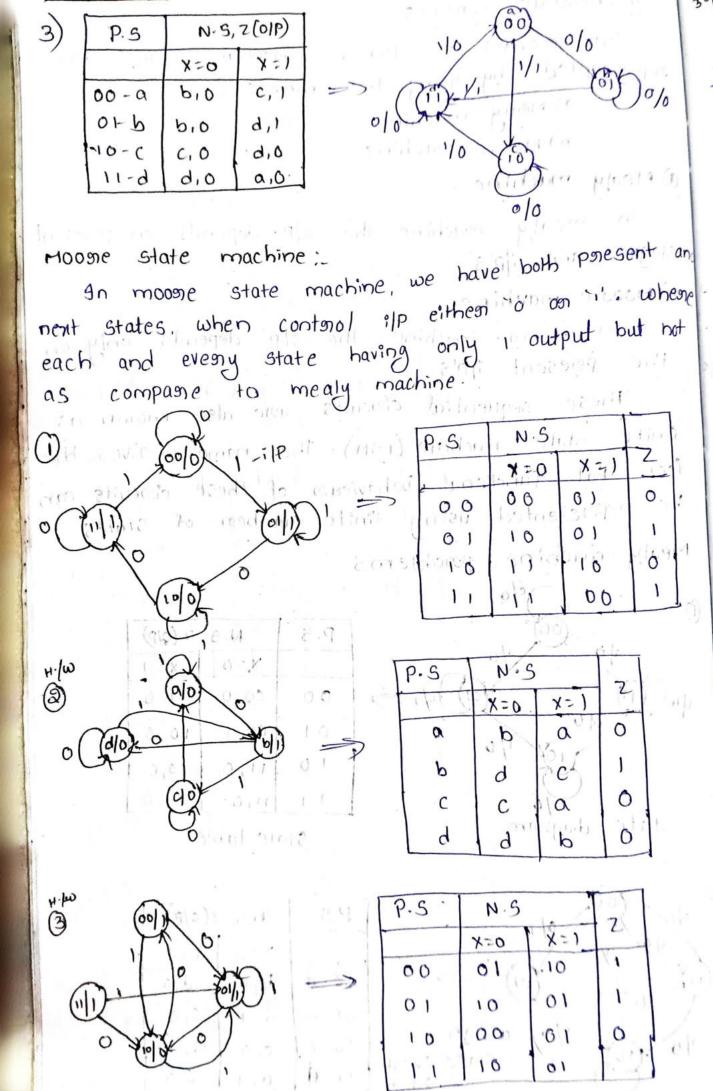

Synchmonus cincuits:synchmonus on clocked sequential cincuits ane suppresented by using two models a) Mealy machine b) Moogne machine.

a) Mealy machine: In mealy machine the olp depends on posesent stage and ipis

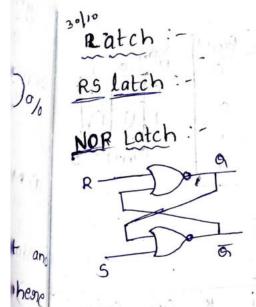
b) Moone machine the olp depends only the present ilp's.

These sequential cincuits ane also known as finite state machine (FSM). The name degrives, the fact that functional behavious of these cincuits can be nepnesented using finite number of states.

Mealy machine problems



p.s	Nis	, z (OIP)
1.0	X=0	LX = 1
00	60,0	01, 6,
01	61., 1	10,0
10	11,0	10,0
1)	1110	00,6


State table

6 ~	
(2) 01) 700	. 04 1 7
19/ V	111
0	(01)
7 01,	
10 00	b assign State of
705	State of
	0
0 0	1 (

P.S	N.S,	z(0/P)
	X = 0	X = 1
00-9	6,1	. q'0
01-6	d.11	C, 0
10 - C	c. o	a. 1.
ii d	0,1	C,0

3 6

NAND

hot

NOR	Latch	touth table
~~~	~~~	~~~~

R	5	9
0	0	Nochange
0	1	1 0 (get e)
1	O	O 1 (Reset)
١	1	Invalid

# Non gate touth table A B o o I o o I of the ilp is of then olp is

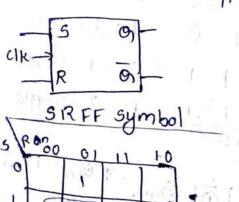
NOR Latch touth table

R	5	0 0
0	0	Invalid state
0	)	1 0 (set)
)	0	0 1 (Reset
1	1	No change

T3	uth	Fabir
A	В	C
0	10	.1
0	J.,	124
1	0	١ .

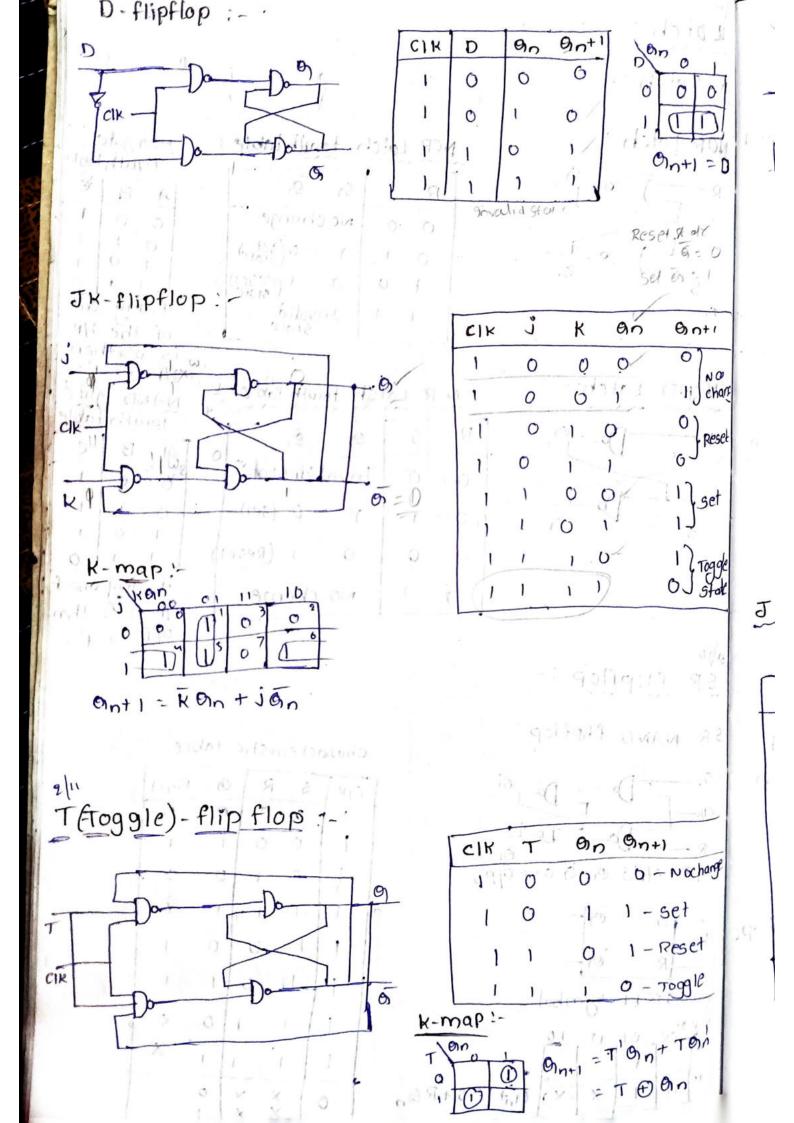
NAND

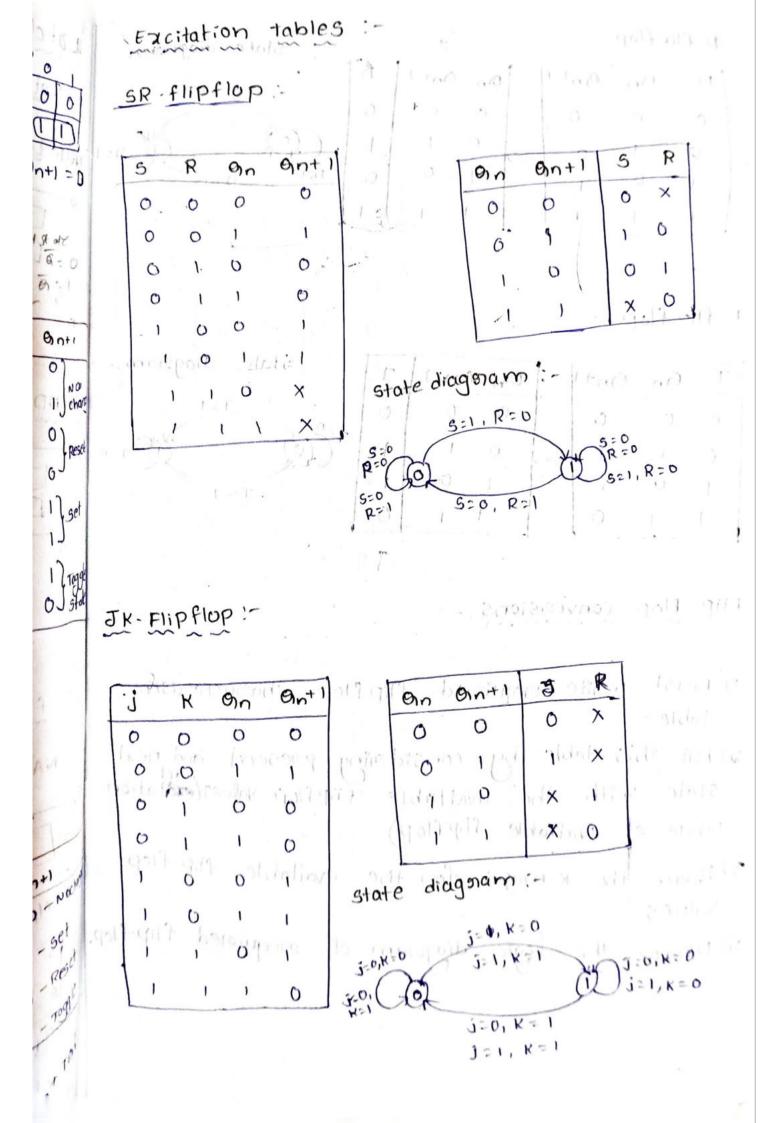

if any one of then of Pisil'.

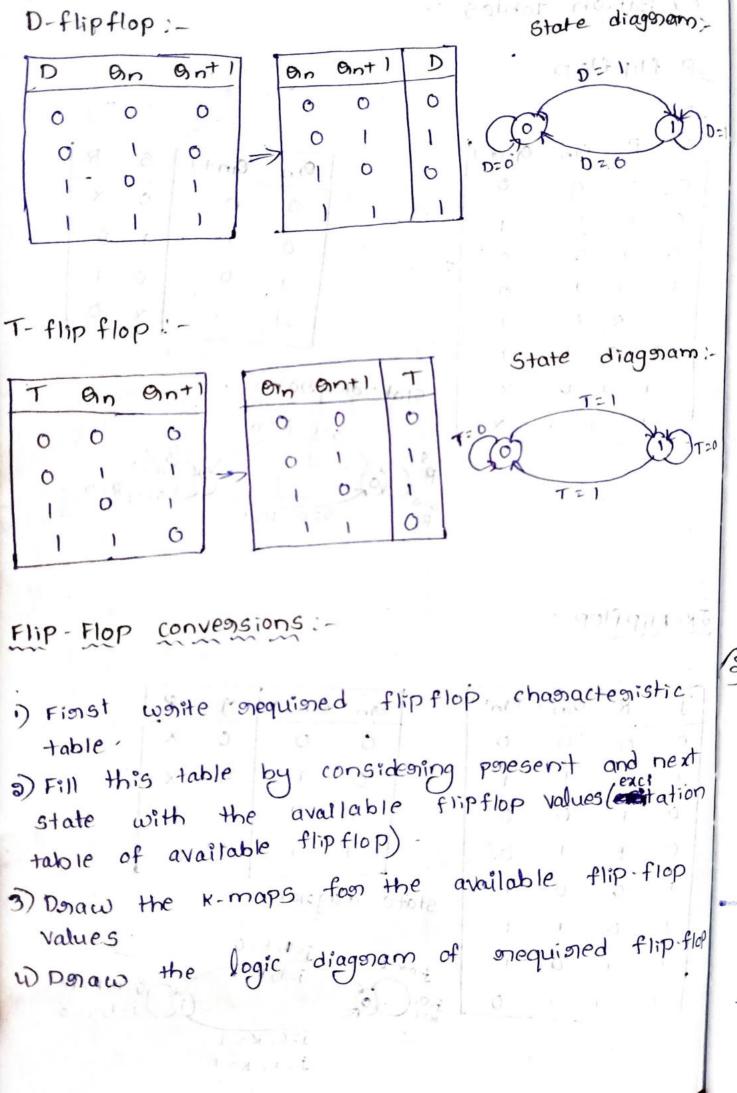

toe (	The Part of the Pa	
5		9

Latch :-

31/10		
SR	flipflop	` -
~~	~~	


SR NAND flipflop:




chanacteristic table.

CIK	5	R	0)	9n+1
1	0	0	0	100,
İ	0	0	1	1
1	0	1	0	0
1	0	Jr.	. 1	0
1	1	-0	0	1
1	- <u>j</u>	. 0	1	1
1	1		10	×
1	1. 1		١	X
0	1	× ;	×	2





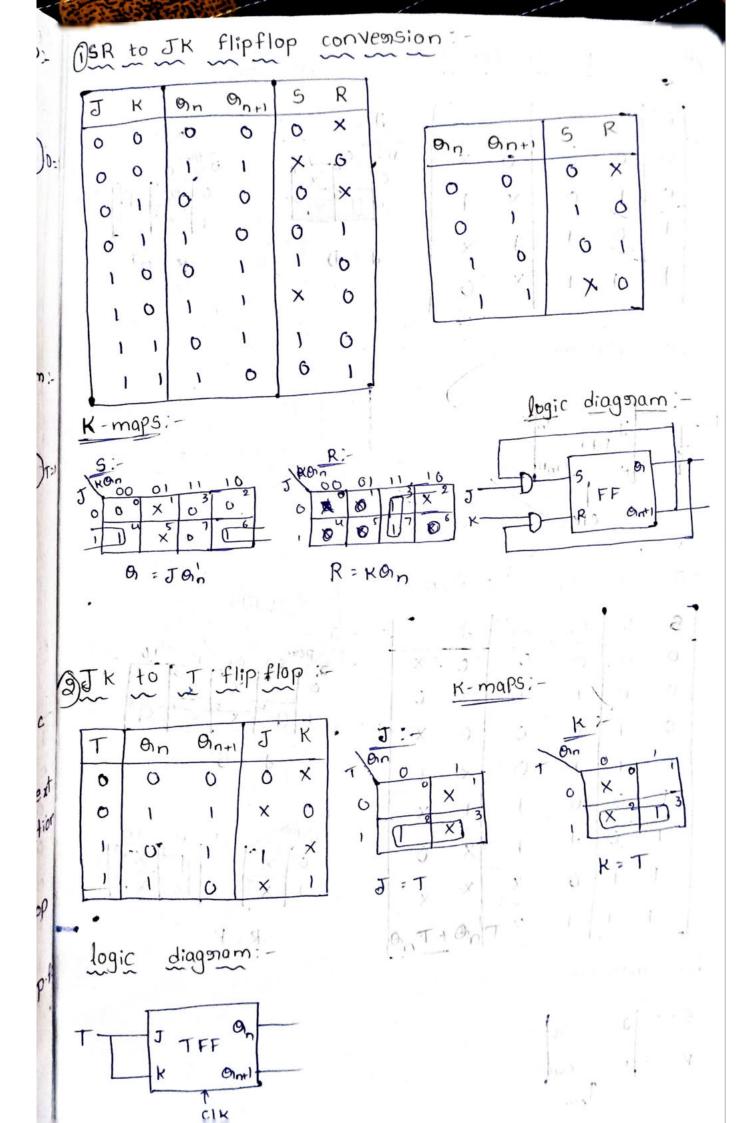


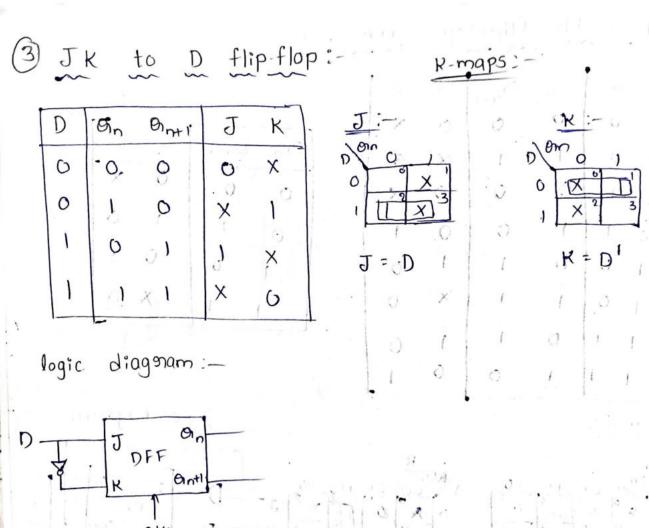
05

JJ

0

S


.

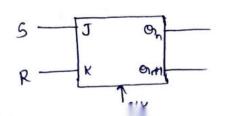

T

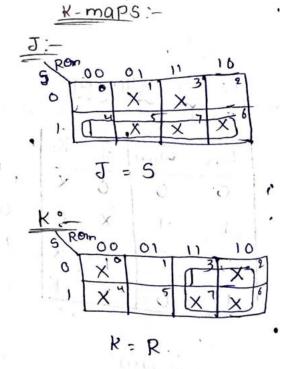
1

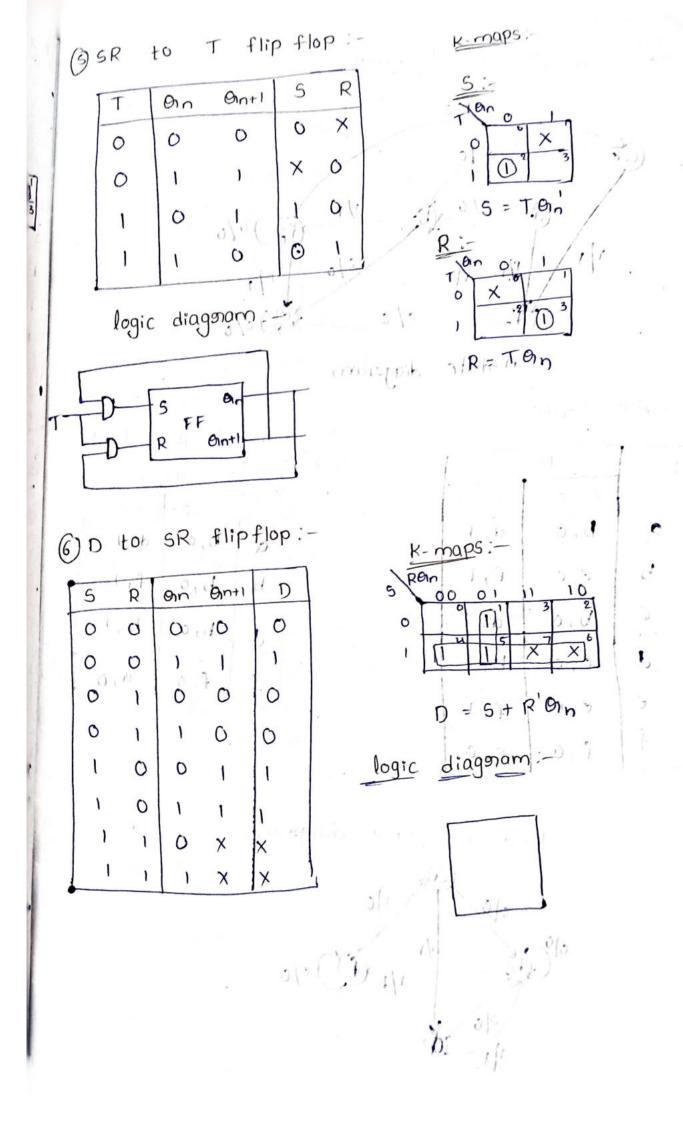
•

loc

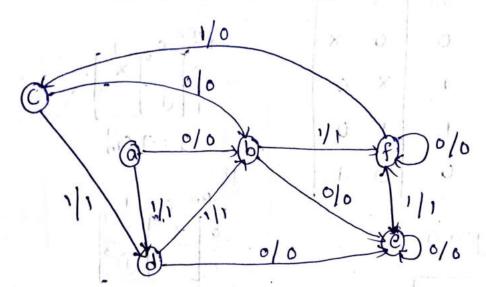






0 -			0) (1)	6.7
(4) JK	to	SR	flip-flop	i-

9	R ·	90	On+1	J	K	1
0	0	0	0	0	×	Ť
0	0	1	1	×	0	
0	1	0	0	0	X	-
0	1.1	7	. 0	×	- ;1 0	1
(c-1)	.0	O	1	1	×	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O	1	١	×	0	1
1	1	0	Х	×	X	
	1 / 1	1	×	X	×	


logic diagnam:-



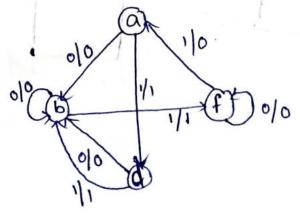




State meduction Technique:



a) state diagnam


state table

0.6	NS	,2
P.S	X=0	X = )
a	b., o	d, 1 !
b	e, o	f,1
C	6,0	4, 1
ð	le, o	6,1
e	e,6	ti 1-
t	f,0	c, 0

	6 1	1.1
Reduced	State	table

	NS	, 7_
P.5	X =0	X = 1
a	b,0	a,,)
Ь	b,0	(f,)
5 4	ೆ6,0	b,1
1. 5	f, o	a,0

Reduced state diagonam.

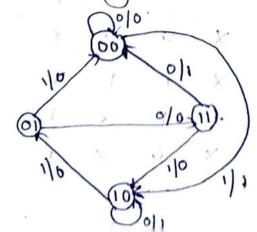


steps in synchronus sequencial circuit design:

step 1: Obtain state table forom the given cioncuit which is stepsesented as state diagnom.

step ? The numbers of states may be nedificed by state neduction technique of the sequencial cincuit can be change categorised of input & op nelationships independent of numbers of steps.

step 3: Assign binary values to each state in the


step u : Determine the number of flipflops (FFs)
needed a lettern symbol for each flipflop
step 5: - choose the type of flipflop to be used
step 6: - From the state table derive the circuit
step 6: - From the state tables (flow table).

excitation and olp tables (flow table)

Step 7. Using the k-map method desive the cishcuit of equations and flipflop input functions.

Step 8: Dessive the sequencial ciencuit logic diagram

1) For the given state diagram, design a sequential circuit using Jk flipflops

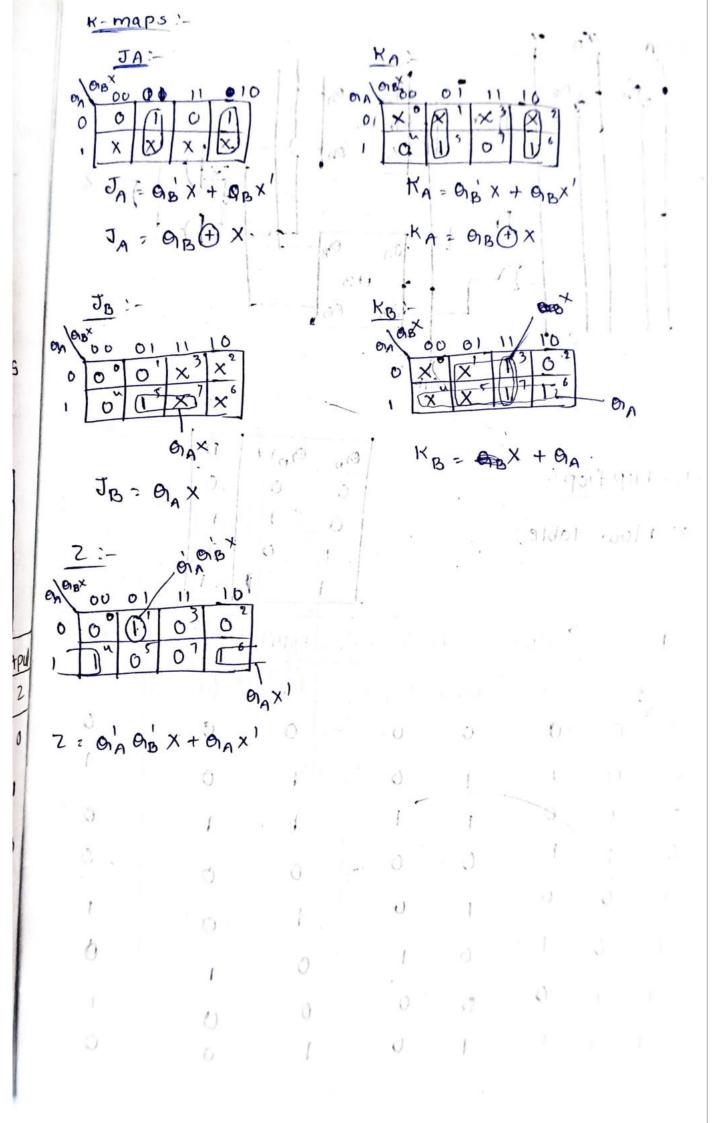


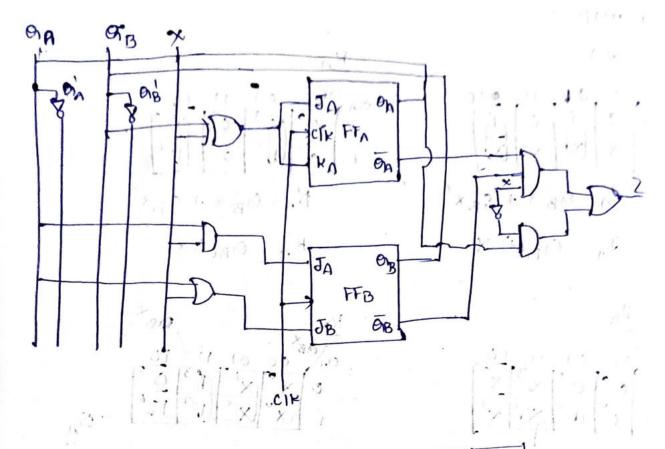
1 State table

13,00	NS	/	morel state state aintale
1,125		1	hofassacque et doda
00			oto to shirum soll
01	11,6	00,0	bor nottsuben ottota yst id not through University sa
10	10,1	01,0	d nos tiusnes bisangua Henostelae qui a tugai
1.1	00,1	10,0	1 29912 To residentia

side in state inco at compar pricing in merin Heme, we ame using two bit's to meponesents foun states that is why we one using two leaning and of the sale flip. flops.

12.11		0, 0	1 -
(5)	JK.	flip-f	lop


TIFIOW table :-6) Flow

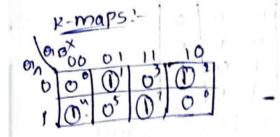

an t	9n+1	J	K
0	0	O	×
300	11111	)	X
1771	11000	×	1
c /: 1	1.	Х	0

		7. 7.		Spar	7	01:1	J.	X	0
力可	P. 5 151	input	. 1	V.5	- 0	flipfle	op : 1 p	5	output
GA	Ø _B	×	9n+	9B	JA	KA	JB	KB	2
Cu a	0	0000	O	J O O	0	×	0	×	0
O	O	1 .	١	0	١	X	O	×	1
0	1	0	1	1 "	- 1	X	×	0	0
O	١	1	O	0	0	×	×	)	0
- 1	O	0	1	0	×	0	.0.	х	1
1	0	1	O	1	×	11	1	×	O
1	1	D	0	0	×	/ C T _	×	1 .	1
1	1	1	١	0	×	0	×	1.	0
				1		÷	to pro-		1

J

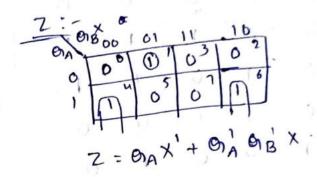
JB

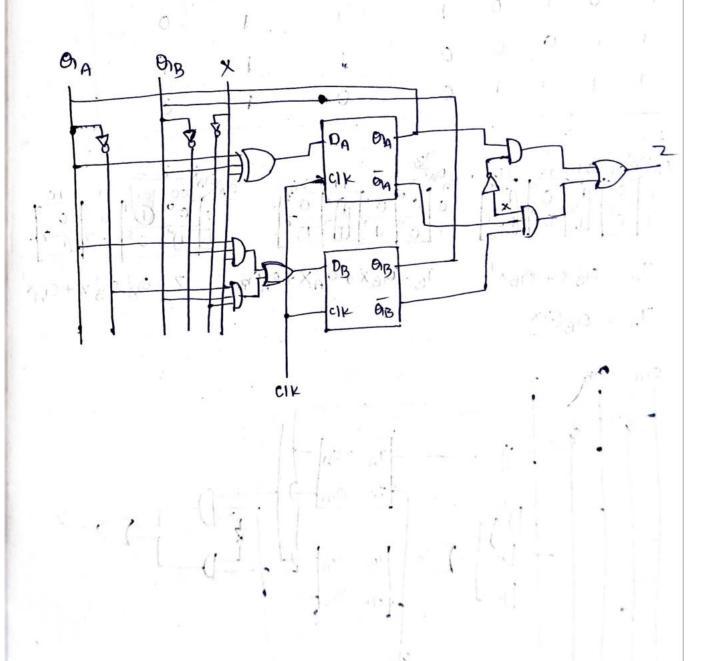


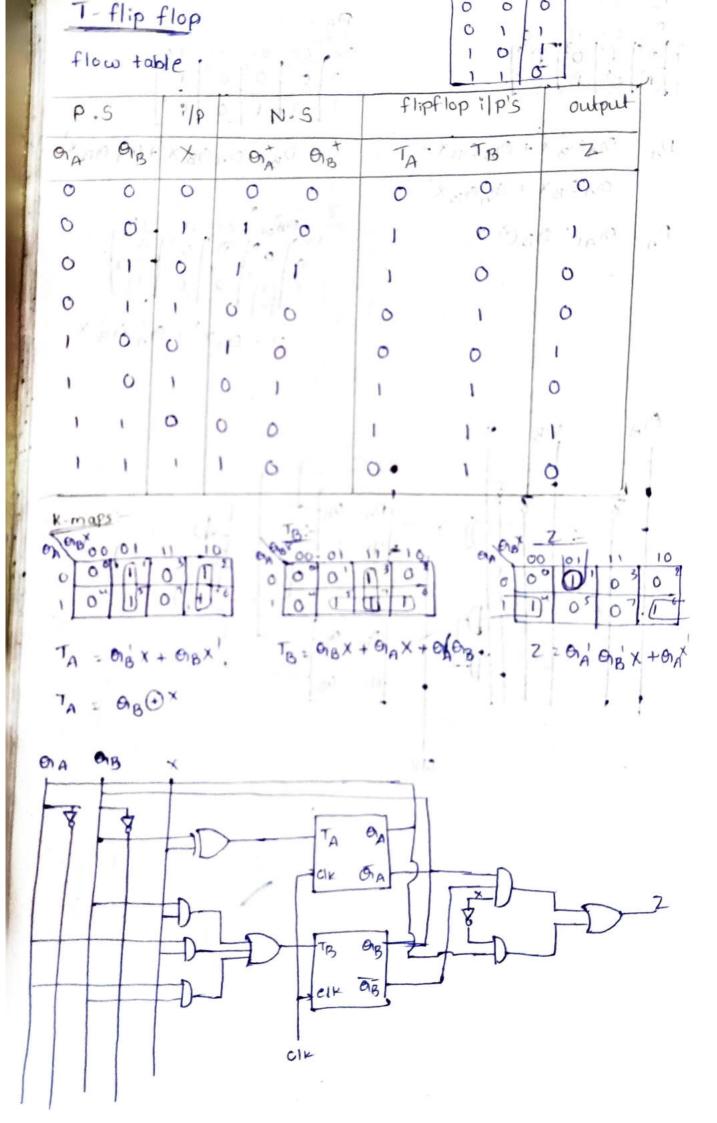



# OD-flipflop!

6 Flow table:

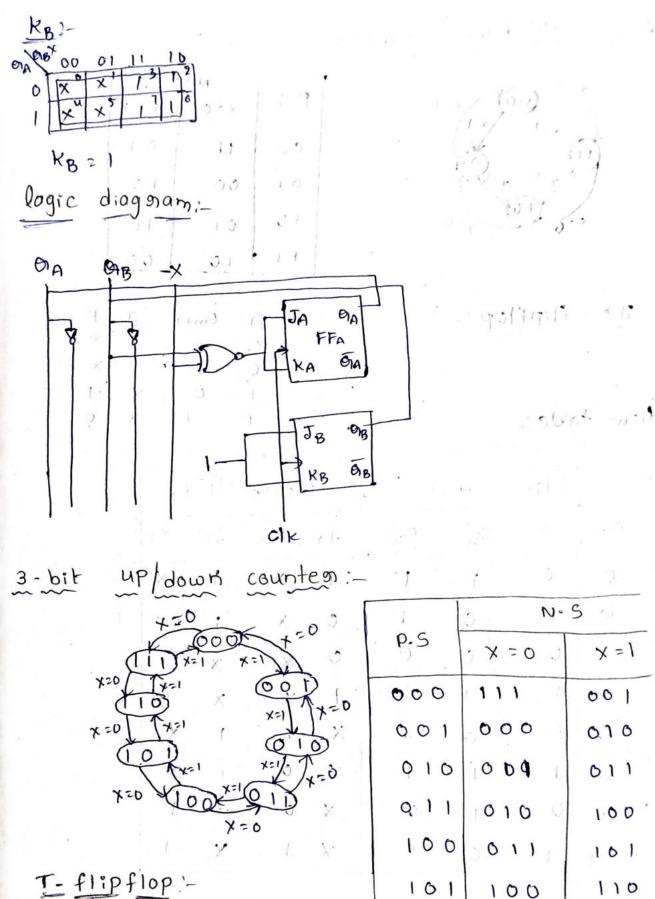

Øi,	9n+1	D
0	0	0
0	. 1	١ ١
1	O	0
1	7	(1)


. F	0.5	ilp	r	v· s	flipf	lop-ilps	output
91A	OB	Х	S, t	eng +	DA.	DB	2.
0	0	0	O	0-	0	1×6 -× 8	0
0	O	)	1	O	1	0	1
0	1	0	1	1	1	l	0
0	1 .	1	0	0	6	O	0
1	O	0	1	D	1	0	1
1	0.	1	0	١	0	1	Ø
	1 . 1	O	0	0	0	0	1
	1 1	1	1	b	1	0	0



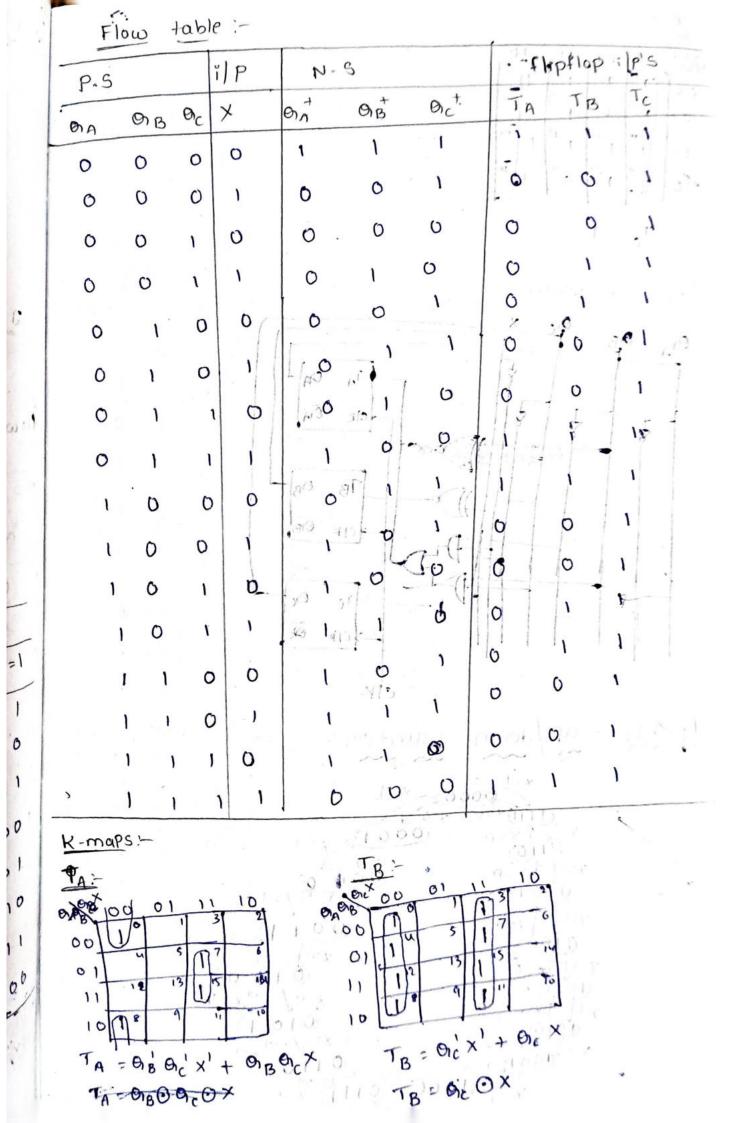

DB	-			1-11-
and	g.00	01	11	10
0	o°	0	03	1 2
١	o	15	0	0 6

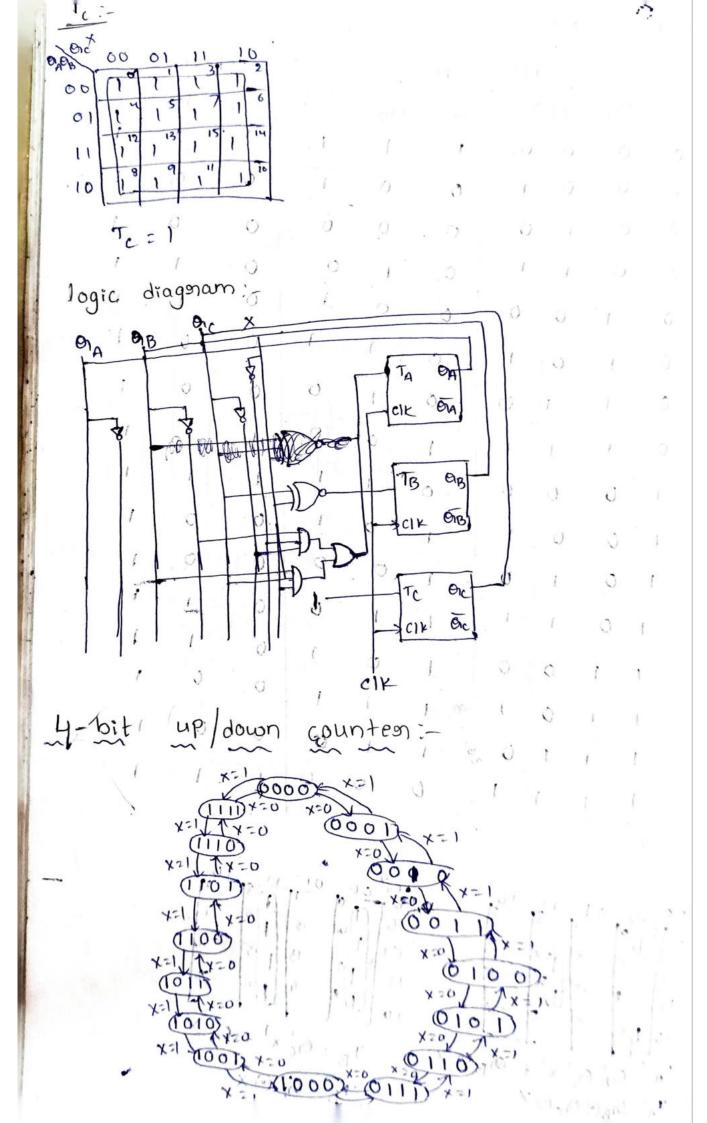
DB = ON OB X + ON OBX









put



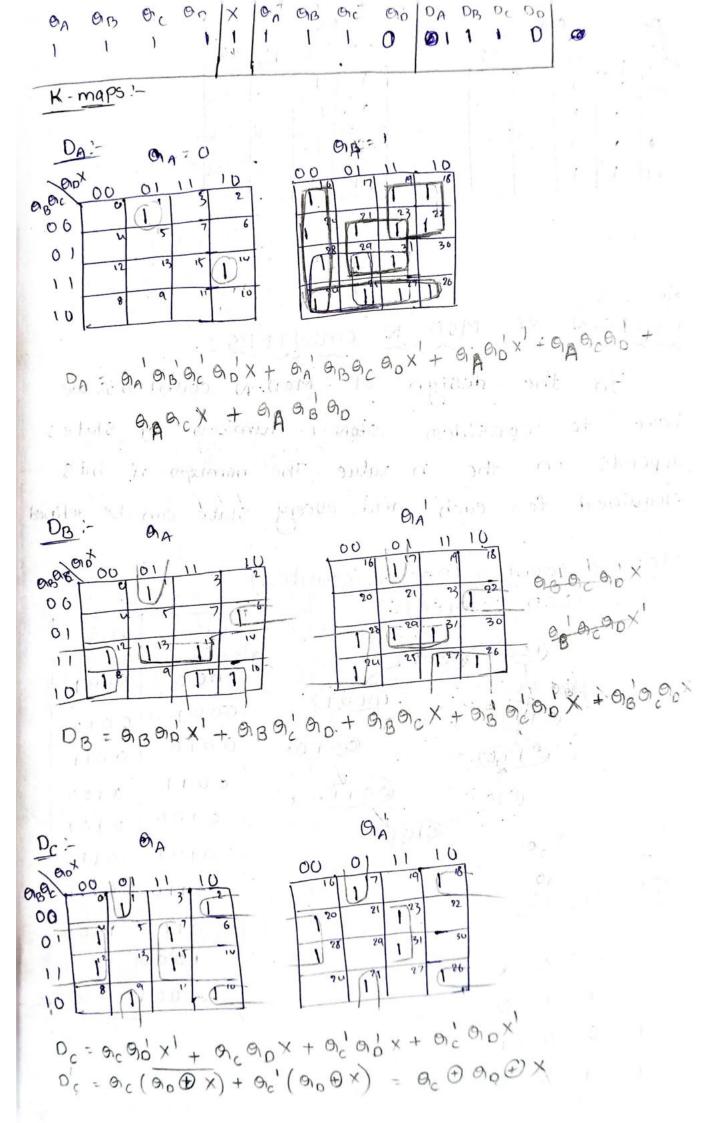
- +	11P+101		
6n	On+1	T	
.0	0	0,0	. ) .
0	.1,	F.110	. •
,	0		

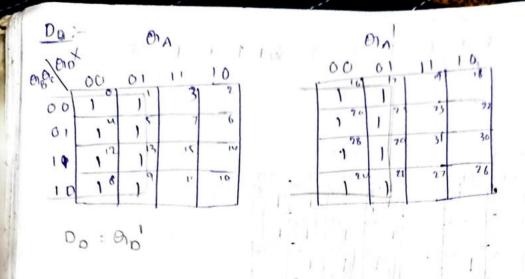
000	(1))	001
0.01	000	010
010	000	011
Q 11	1010	100
100	0011	101
101	100	110
110	101	111
11.1	1.10	000
	1 2 3	
1		1 1 1





	N·S	
P.5	X = 0	× = 1
2222	0001	1111
0000	0010	0000
0010	0011	0001
0011	0100	0010
0 100	0101	0011
0101	0110	0100
0110	0111	0101
0111		0110
1000	1001	0111
	1010	1000
100)	101)	1001
1011	1100	1010
1100	1	1011
1001		1300
1 1	0 11111	1110

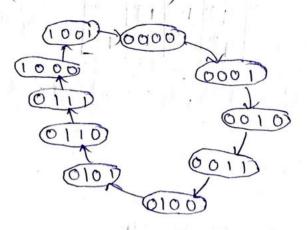

D	-flip flop:
	The second secon


on.	an+1	D
0	0	0
0	1	1
1	O	0
ĭ	1	1

Flow table :-

Flow	70	161e	.¬ ——	))	Ų.			1.7		flip	flop	ilp:	5
P. 5	-		1	ilp			N.S	+	a t				
ena e	y ^B	9 _c	3/12	X		On A	OB	Orc	ent b	DA		-	
	0	0	O	D		0	0	0	)	0	0	0	,
0	0	O	0	1	Í	f	Ì	$\mathbf{Y}^{I}$	1	1	1	١	1
0	0	O	1	0	1	Ó	O	1	O	0	O	١	O.
0	0	0	١			()	0	O	0	O	O	0	0
0	0	v.	0	0		0	O	1	١	O	0	1	t
0	O	A				O	0	0	١	0	0	0	١
0	O		1 1	0		0	1	0	0	0	1	0	0
							- 1						

en _A .	en _B	en _c	OD	×	BA	OB	$\Theta_{c}^{\dagger}$	On t	Dn	DB	$D_c$	00	0A 0B
0	0	1	١	1	0	0	١	. 0	0	. 0	1	0	1/ 00006
0	1	0	0	0,	0	1	0	1	0	١	0	1.4	K-maps
0	١	0	0	1	0	0	1	1	0	0	1	1 1	Da:
0	1	0	1	0	O	Α	-,1"	0	0	1	1	0	00000
0	1	0	١	1	0	1	0,0	00	0	1 +	0 .	0	01
0	١	1	0	٥.	0	1,0	_1 <u>.</u>	1 6	0	1	1	1 1	10
0	1	. 1	0	١	O	1	0	),	, 0	l _o	0	1 15	1
0	١	1	١	O	1	0	. 0	O	5 11	Oi	O	0 14	D _n
0	1	. )	1	)	0	1000	1	O	0,	- Y	ा १३	0 15	
1	0	0	O	0	1	0	O	1	1	0	0	1 16	be Pro
1	0	0	0	)	0	110	, 1	10	0	١,	11.	0 18	DB:
1	O	0	1	O	1	.110	1	O.	, , \	.0	ō II	0 19	000
1	0	O	1	1	1	000	0	0	11	0	0	1 20	01
1	C	1	O	0	10	0	- 1	1 <i>1</i> /	111		0	. 1 21	10 1
	1	0 1	0	1	1	0	0	1		0	0	0 n	08:
1 2 7	1	0.1	, 1	0	1	1	0	0	1	1,:	U	0     	
0	1.	.0	) )	)	1	O	-1	0	١	0	)	0 %	
1 0	10	100	0	O	- 1	1,	O	1	1	Ì	0	1 1	1000
1	1.	1 / 0	) 0	1,	1	0	I	1	1	0	, 1	0 4	000
C 1	ı Ö	1	0 1	0	0	12	1	0	)	1	١	1	0, 1
0 0	1	10	0	1	0	1	O	0	1	١	0	0	101
1 1	1	1 5	1	0		ĺ	1	1	1	١	١	,	0
1 0	1	1	1	) 1	1	í	O	1	7	١	0	١	3 00
0 .	1/	10	1	0	C	0	O	0	0	0	0	0	






DESTGN OF MOD-N COUNTERS:

In the design of MOD-N counters, we have to consider obon-, number of states depends on the n-value. The number of bits nequired for each and every state can be defined

Mod-10 countem (Decade countem)

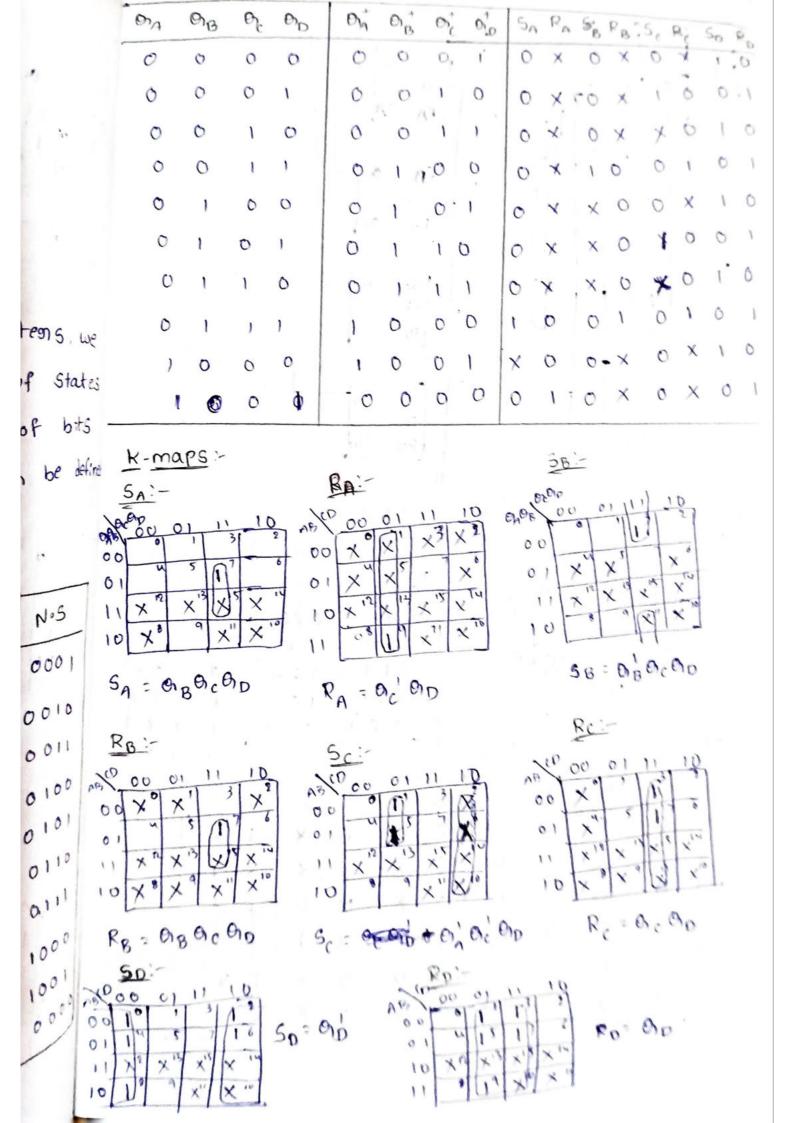


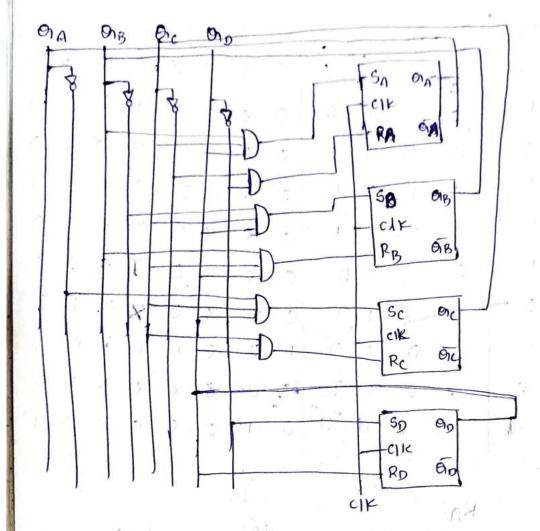
5 R -	flip flop: -
-------	--------------

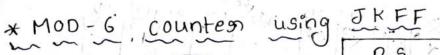
0	0	0	×
0	1	١	0
1	Ö	0	1
,	١	X	0

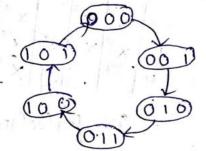
P.5	N.S
0000	0001
0001	0010
0010	0011
0011	0 100
0100	010)
0101	0110
0110	0,111
0111	1000
1000	1001
1001	0000

RESOCITO SA RESOCITO RESOCITO


Onn


0


O


0

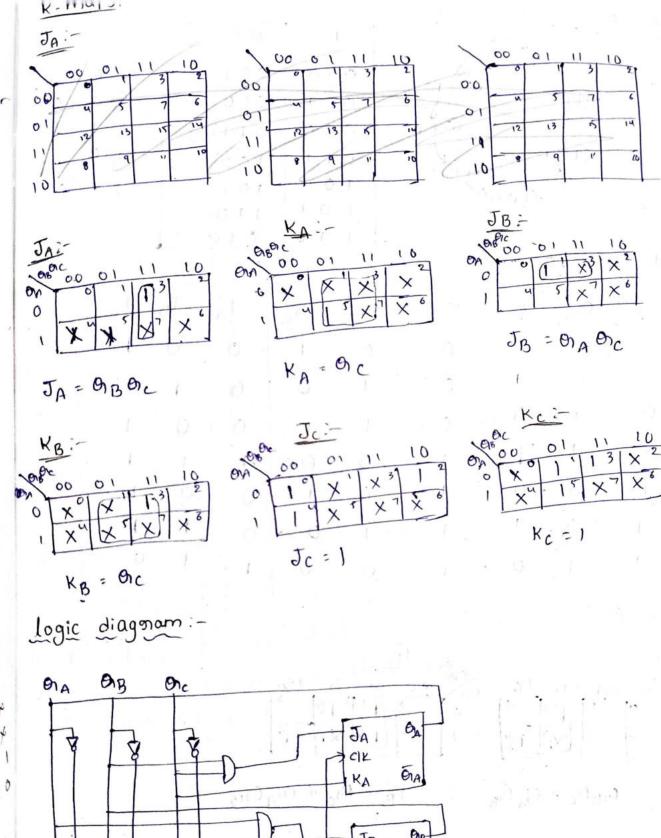
0

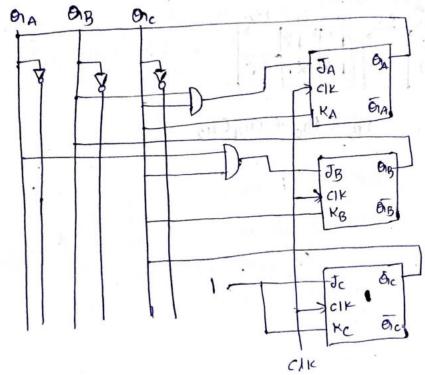


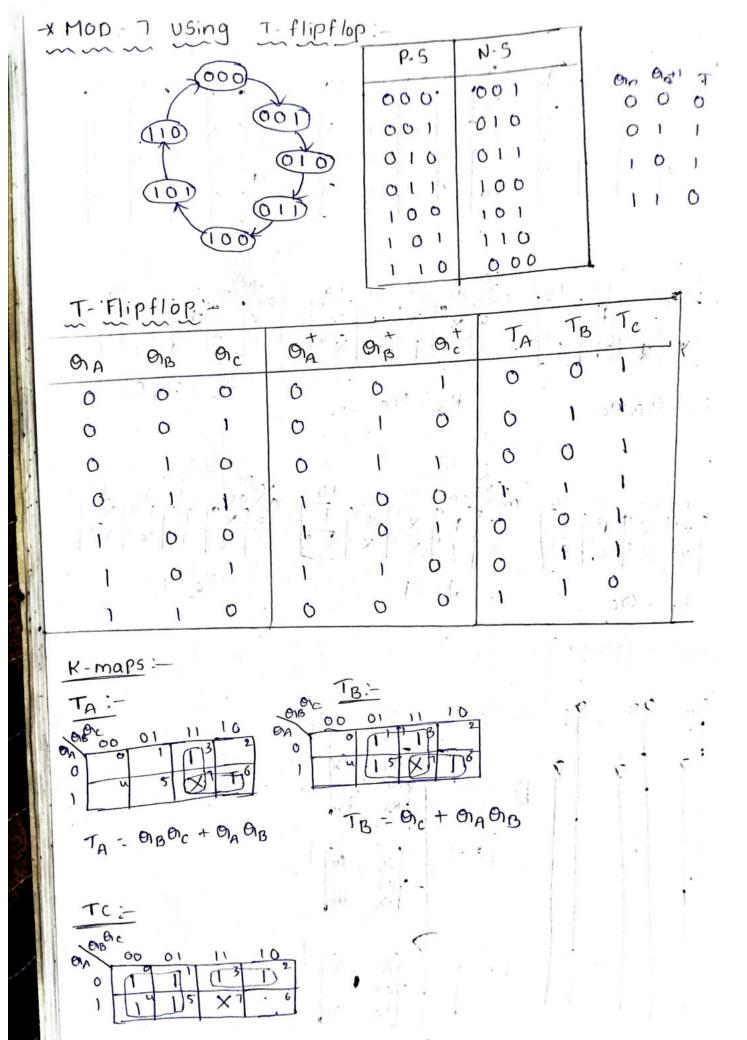




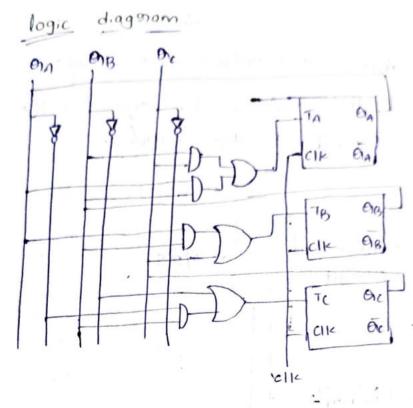



P.5	N.5
000	001
001	010
010	011
011	100
100	101


000


101

J	K	FF	
J	r	rı	
_			-


Ø _A	91B	Onc	OiA+	93	Oic.	JA	KA	JB	. KB	Je Ke
0	0	0	0	0	1 1	0	X	0	×	1 ×
0	0	1	0	1	O	0	×	- 1	×	X
0	1	O	0	1	)	0	×	×	0	) X
0	1	( 1, 8)	17	0	0	1	×	X	١	V 1
1	0	0	1	0	1	X	0	C	X	,
١	0	1	0	O	0,	×	i	0	X	1 X







TC = OB + O'A OB



20/11

0

0

level mone and pulse sequential cincuit

At consists of a combinational logic cincuits and delay elements.

- * According to how input vaniables are to be considered, there are two types of asychnomus Sequential cioncuits.
  - I level mode aggrasynchmonus sequential ciment
  - 2) Pulse mode asynchronus sequencitial cioncuit.

& level mode cincuit assumes that

The input vaniables change only when the cioncuit is stable.

* only one input vaniable can change at given time.

r input variables are levels, not pulses.

Pulse mode cioncuit assumes that * Input vagniables are pulses not levels. * The width of the pulses is long foon the ciencuit to mespond to the inputs.

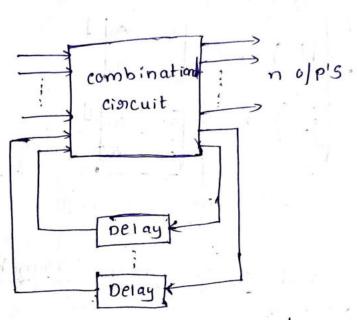



fig asynchronous sequential cioncuit

nd of norn soldenness. Jego mest by a consentage of conference of conference

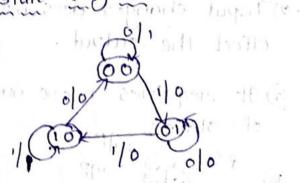
during both maple is almost appropriate mon.

e forms becoming to medicalize their securities

not restrict the species into a con-

poste la repolación a monte la que ma

## 115


## MINIMIZATION

FSM 1: 11 Finite state machine is separesented as divided two types . ) Mealy finite state machine into

a) Moone finite state machine.

machine's ane synchmonous gene on clocked sequential cincuits Both mealy & moone sequential cincuits garrentanich is o' institut er higheste

) Mealy FSM : - 1 many



state table : the

1	N.S	1,2
P.5	X = O	x = 1
00	. 00,1	01,0
01	01,0	10,0
10	00,0	2 10,1

functions A store to con

2) Moosne

a) state diagnam

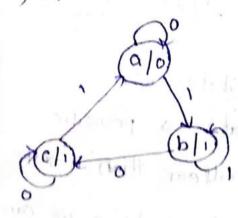
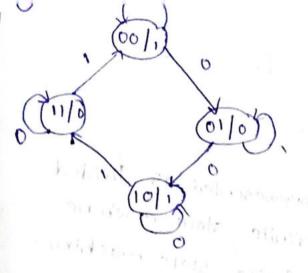




table :state

P. 5	N-6	3	
	X = 0	X = )	
Q.	a	Ь	01
Ь	C	þ	1
c	C	a	1

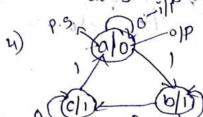


PS	N.S	7	
	X = 0	X = 1	-
00	01	00	1
01	10	01	6
10	10	1)	,
13	i pr	00.	0

Difference blu Mea

14.

19100310


Mealy Machine

Doubput is a function of Penesent state & penesent state & penesent state & penesent

- a) Input changes may effect the output
- 3) 9+ nequines less numbers
  of states
- u) P.5 00/1-20/P

Moone Machine

- posesent state only.
- 2) Input changes does not effect the output.
- 3) It snequisies mosne number of states ...



capabilities & limitations of finite state

Destrodic sequence of finite state: with in state we can generate a periodic sequence of n state on smaller than histate

Foon example, of it is a 6-state machine we are have 0,1,2,3,4,5 states (on) less than 6 states

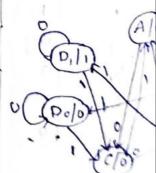
e) No infi

of pos

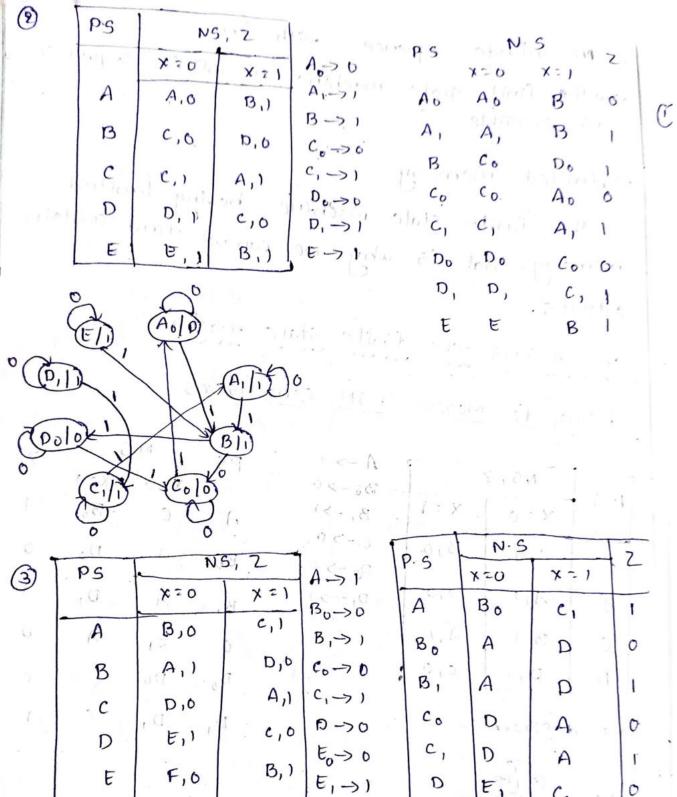
3) limited

memony.

Convension


D Mealy to

(i) PS X=0
A C,0
B A,1


State diagno

D

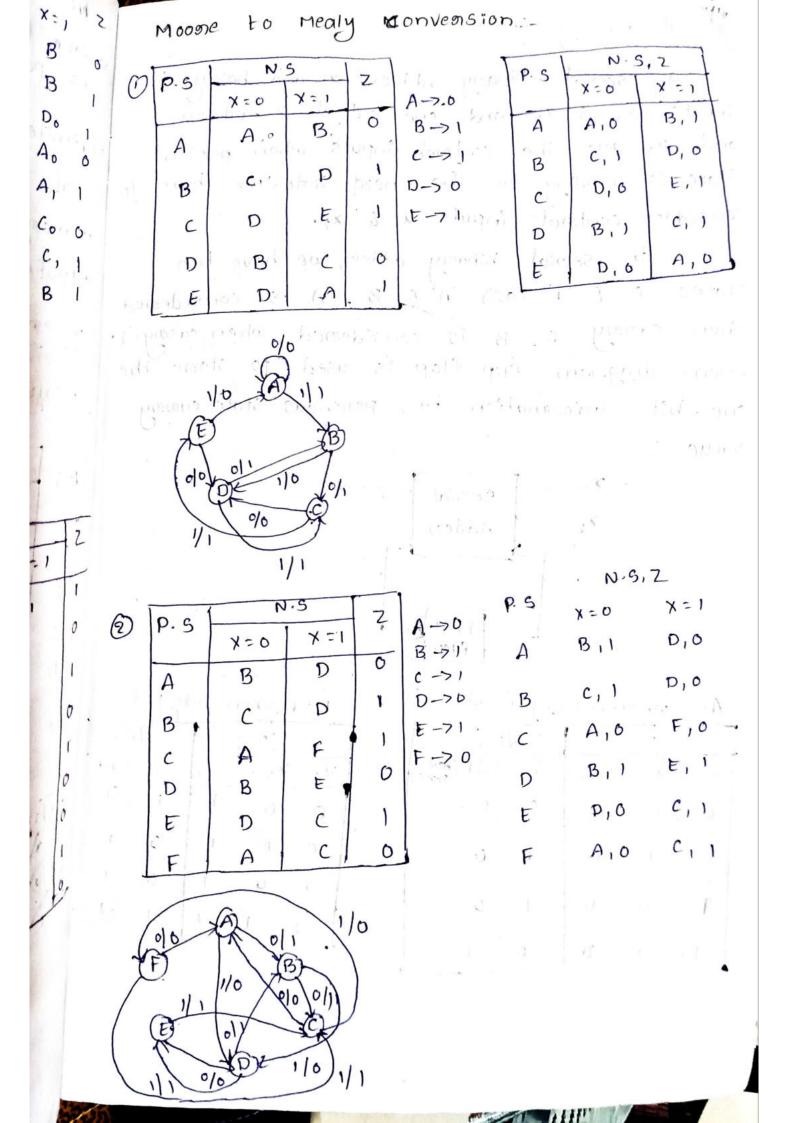
D,



No infinite sequence: - with fini with finit state machine No infinite sequence is possible 3) limited memony:-The finite state machine having limited memony. that is why we can not find centain finite state machine Convensions of D Mealy to Moone FSM convensions: A -> 1 N5,2 130->0 P. 5 Bo X = 1 X = 0 B,0 Do D, 0,0 0 A AN 13,1 C, 0. 0 State diagram: -



F->0


0,0

(F10) (B010) (B010) (B10) (C010) (C010) (C010)

E,O

F

0.0.8	N.S		7
P. 5	X = O	x - 1	_
А	Bo	c,	1
80	A	D .	0
В,	A	P	1
C o	D _i	A	0
С,	D	·A	r
D	F,	Co	0
E		Bo	0
E	ı F	В.	4
F	E	D	16

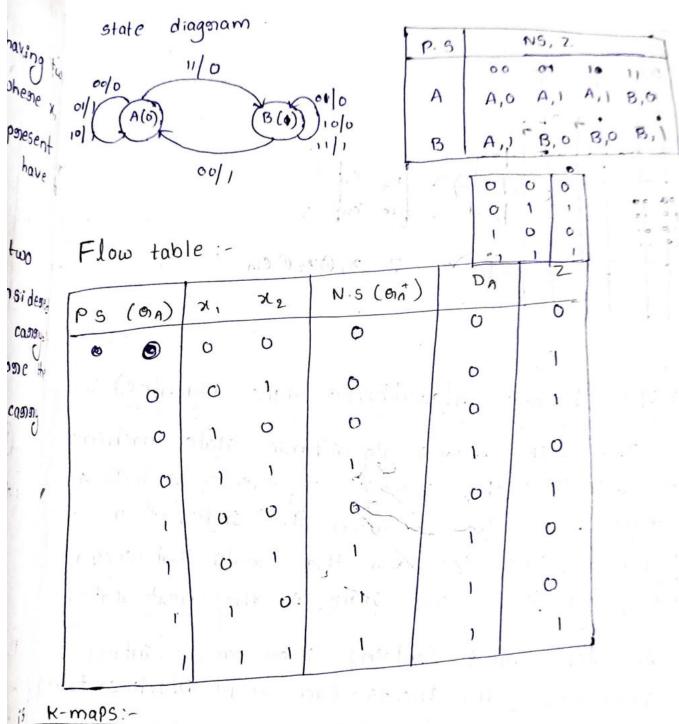


senial binary adders:

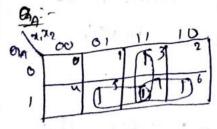
In sessial binassy addess, we asso having two inputs  $x_1$  &  $x_2$  and one output z where  $x_1$  and  $x_2$  asso the control inputs when present state is moving to the next state, we have to consider control inputs  $x_1$  &  $x_2$ .

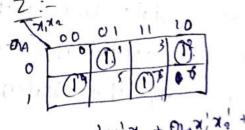
states o' & 1' (on) A' & B', A is considered when carry = 0, B is considered when carry = 1 to stone the From diagram, flip flop is used to stone the one-bit information i.e., previous state carry value.

21 Sessial
Addess


Flip
Flop

C . C .	. 4	30	(,
A=0 (when	Canny	15	9)
A=0 (WILL			


1119	A=0 (where		
	Cin	Sa	Cout (next
0 0	O	O	0
0 1 1	0	N	0
o o	v	1	O
	ъ	0	1


B=1 (when canny is

,	:1P'	3	0	18'5
x, .	Ne	'Cin	5	Cou
0	0	)	1	0
0	1	,	0	1
1	0	,	0	1
,	1	A. )	, )	1









$$Z : \mathcal{X}_1 \mathcal{X}_2 + \Theta_A \mathcal{X}_3 + \Theta_A \mathcal{X}_1$$

$$Z : \Theta_A \mathcal{X}_1 \mathcal{X}_2 + \Theta_A \mathcal{X}_3 + \Theta_A \mathcal{X}_1 \mathcal{X}_2 + \Theta_A \mathcal{X}_1 \mathcal{X}_2 + \Theta_A \mathcal{X}_2 \mathcal{X}_2 + \Theta_A \mathcal{X}_3 \mathcal{X}_3 + \Theta$$

*C

ASM chants (Algorithmic state Machine):

D The ASM means algorithmic state machine. It describes the sequence of events as well as timing nelationship between the states of a sequencial controller and the events that occur while going from one state to the next state.

associated with the states.

3) Every block in an ASM block specifies the operations that are to be performed during one common clock pulse.

and one on more exit paths nepnesented by the structure of the decision boxes.

~

St

5

0

the

W.

06

- 5) A path though on ASM block from etmonce to exit is known as link path . The interned feedbook within the ASM block is not permitted.
- 6) The openation specified within the state & conditional output boxes in the block age penformed in the data path sub system.

*components of ASM chants: of includes ) state box

Decision box

3) conditional output box

State box of an ASM chant is in nectangular ichine. State box:shape. iell as

a

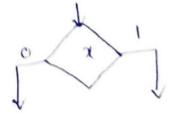
occus

state

-697 contains

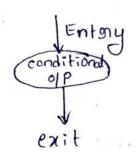
of

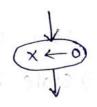
State name State code


Exit

Decision box :-

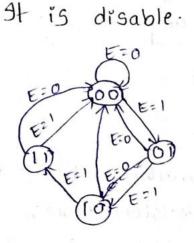
The Decision box is in shombous shape and the inputs agre taken forom the decision boxes, mone numbers of parts path are there for

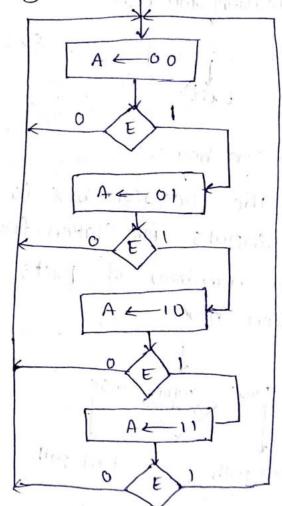

the Decision box 1979

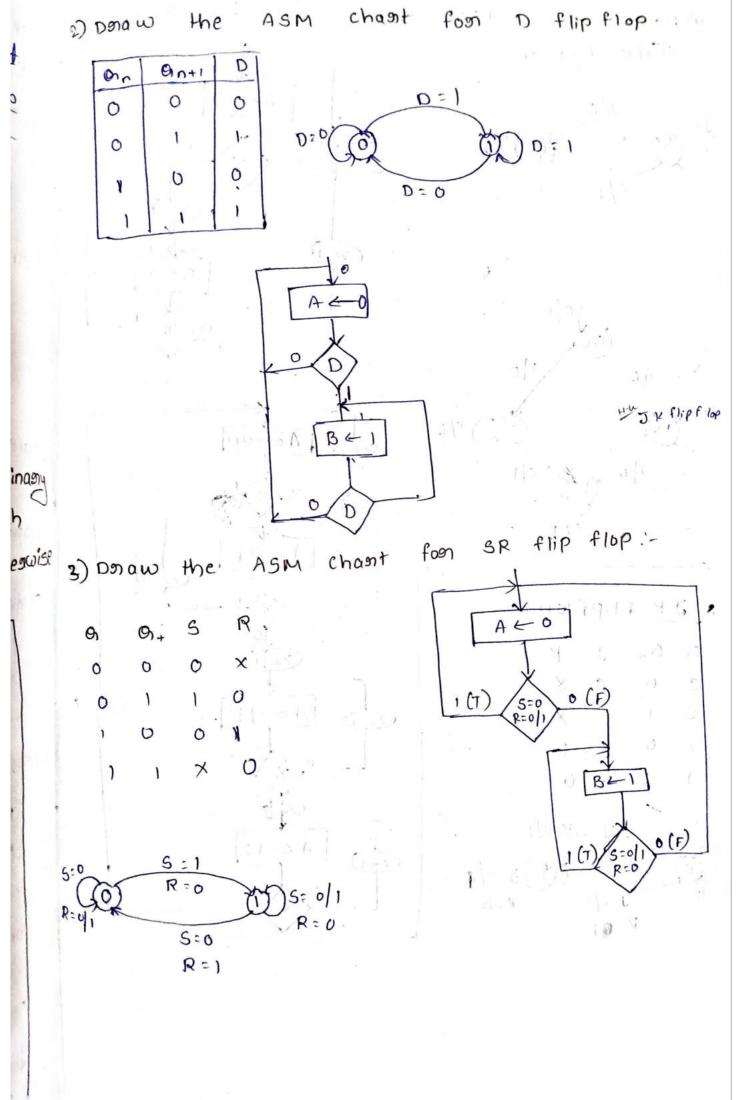

txit path Exil path

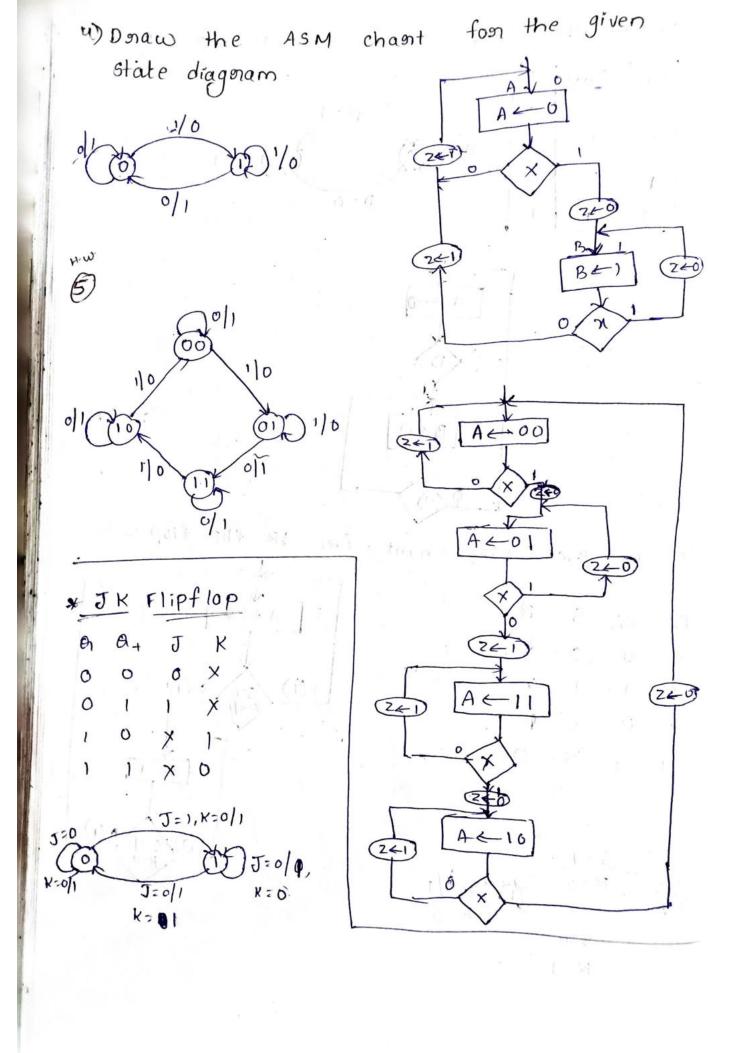


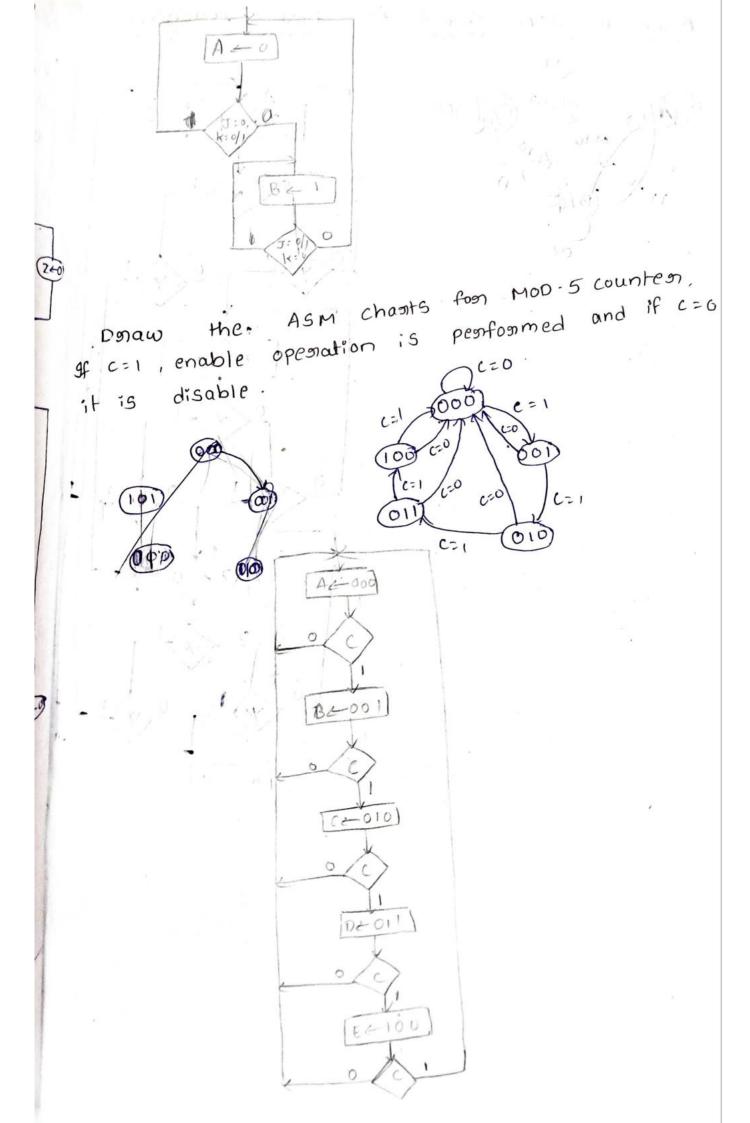
conditional output box:

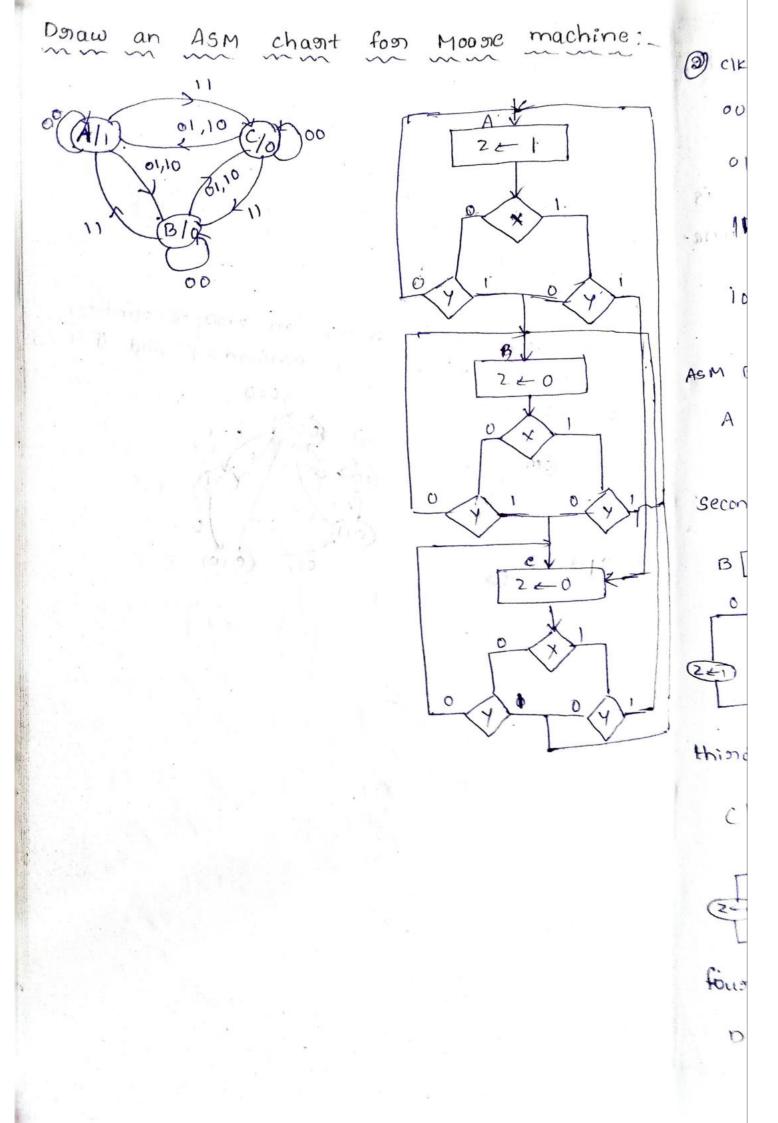

The shape of the conditional output box is ovel. It is used always aftern the decision box. Before decision box we can not use the conditional output boxes.

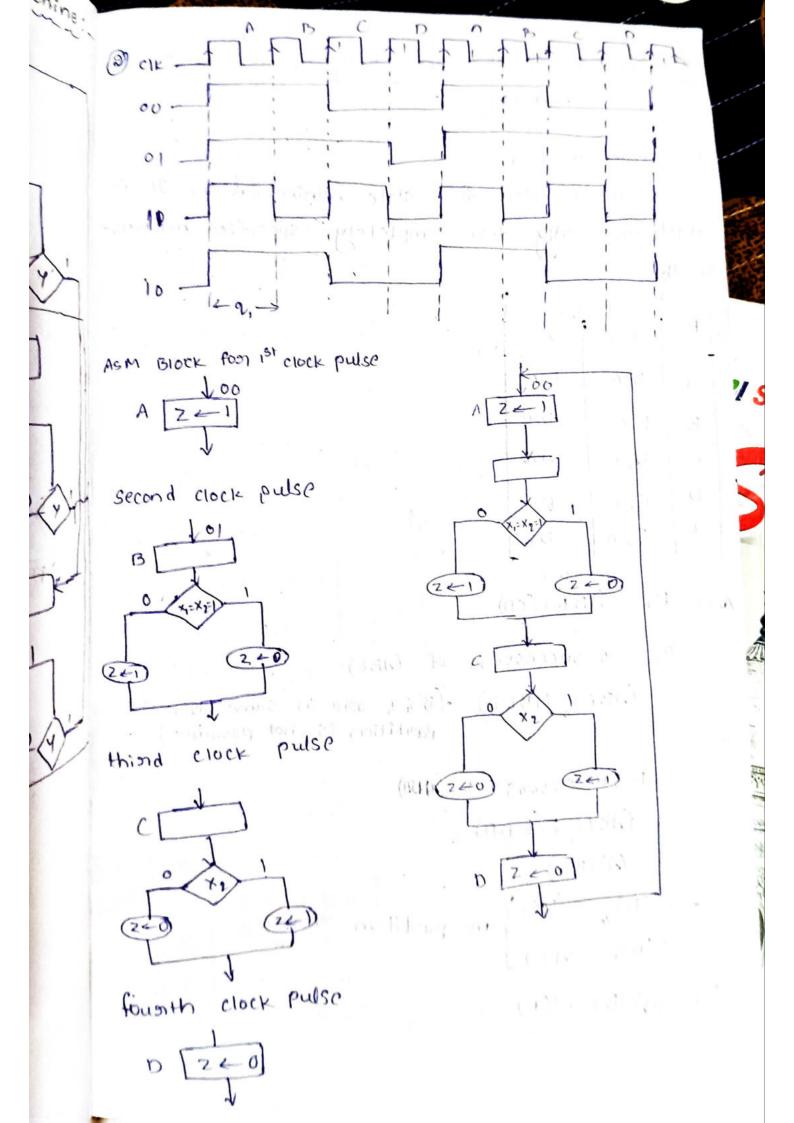




Examples !-


Desaw the ASM chast for a two bit binasing counters having one enable input E' such that E=1. Then counting is enabled otherwise














Minimization of completely specified sequential machine's

Pasitition method:

It is used for state minimization. It is applicable only foor completely specified machine. 50 to.

	N.S	,2
P.S	220	X=)
A	В,О	E,O
В	E,0	D, 0
С	0,1	AID
D	c, 1	E,0
E	8,0	0,0

Am) P1:- (AB =) (CD)

P2: - 6- Successions of (ABE)

(ABE) : (BEB) - (BEE ane in same block, 50 Partition is not possible

1- Successors of (AB)

(ABE) : (EDD)

(A) (BE)

-> (CD) : (DC) ] No pastition sequ (CD), = (AE)

P 2 = (A) (BE) (CO)

$$P_3 : -(BE)_0 \rightarrow (EB)$$
 no position
$$(BE)_1 \rightarrow (DC)$$

$$(CD)_0 \rightarrow (DC)$$

$$(CD)_{i} \rightarrow (AE)$$

Reduced state table - (080) - 1711

4		Ne	3,2	S (NI) - (NI)
1	ps'	X=0	X = 1	
	A	B, 0	13,0	(a)(18)(1)(21) 4
	В	8,0	P16	har (in) (ci) asof
	5	חו	A, O	(an) - Cvo
	C		13,0	(au) (49)
	ν .	+ 6.4		

a) 1		NS, 7	-
(a)	PS	X=O	X = 1
	A	c,0	F,0
	B	D,)	F10.
	c	E,0	B,0
	D	B,1	E.0
	E	D 10.	8,0
	F	(, a	B, 0

Closings

P.5	NS, 72	
1.9	X20	X=1
A	C, 6	8,0
В	D, 1	8,0
c	: E,0	B,0
D	B, 1,	E, O
E	0,0	B. 0

١		NS, Z	2
	PS	X = 0	x = 1
+	A	E.0	Dil
	В	F10	0,0
	0	E,o	B,1
	D	E,0	B16
	E	c, 6	F1 1
	F	8,0	C, 0:

(3)

NS

$$(BD)(F)(ACE)$$
 $(BD)_{0} = (FE) = (B)(D)$ 
 $(BD)_{1} - (DB)$ 
 $(BD)_{1} - (DB)$ 

Actes gore equivalent

ACCE X

$$(ACE)_0 = (EEC)$$
  
 $(ACE)_1 = (DBF) => (AQ)(E)$ 

$$P_{\mu} \Rightarrow (Ac)_{o} - (EE)$$

$$(Ac)_{1} - (DB) \Rightarrow (A)(c)$$

Hene we cannot minimize the states because there is no equivalent states present in the given state table.

P.S	NS, 2		
	X20 ,	X = 1	
A	F. 0' .	B ,)	
B	6,0	A,)	
C	Bio	c, )	
D	C, 0	B,1	
E	D,0	A, ) ( )	
(F)	(.E,17)	FULL	
6	E, )	6,1	

(8)

$$\Rightarrow P_3 \Rightarrow (AB)_{\circ} - (FG)$$
 $(AB)_{\circ} - (BA)$ 
 $\Rightarrow (CDE)_{\circ} - (BCD) \Rightarrow (C)(DE)$ 
 $(CDE)_{\circ} - (CBA) \Rightarrow (C)(DE)$ 
 $\Rightarrow (FG)_{\circ} - (FG)$ 
 $(FG)_{\circ} - (FG)$ 

*	(FG), - (FG)
	P3 = (AB) (e) (DE) (FG)
1	Pu => (AB), - (FG)
,	(AB), - (AB)
	(DE) 0 - (CD) - (D) (E)
	(DE), ~ (BA)

6 21 - 610	(2)/610
(FG) - (EE)	(1)(6) 4 (00) -, (1/6)
(FG), - (FG)	(1)(1)(0)(0)(0)(0)(1)

$$(AB)$$
,  $(AB)$ 

St E A&B and F& G ane equivalent states

		500 B	W. 3.1
8	p. 5	as her N	:S
(3)	P. 5	X = 0	x = 1
	A	13,1	14 10
1367	B	F,1	וום
9.1	c	0,0	E,1
	D	0,0	F, 1
	· E 38	0,1	611
mm	F	(c,)	C, 1
	6	(c,)	0,1
7V   1955	H	C10	A, 1

$$P_{1} = (ABEFG)(CDH)$$

$$P_{2} = (ABEFG)_{0} = (BFDCC)^{2}$$

$$(ABEFG)_{1} = (HDCCD)$$

$$(CDH)_{1} = (DCC)$$

$$(CDH)_{1} = (EFA)^{2}$$

$$P_{2} = (AB)(EFG)(CDH).$$

$$P_3 := (AB)_0 - (BF) = > (A)(B)$$
 $(AB)_1 - (HD)_1 - (DCC)_1 - (CDH)_2 - (DCC)_1 + (CDH)_1 - (EFA)_1 = > (CD)(H)$ 
 $(EFG)_1 - (CCD)_1 - (CCD)_1 - (CCD)_1 + (CCD)_1$ 

PB1 = (1	a) (B) (	EFG)	(CD)(H)
			120

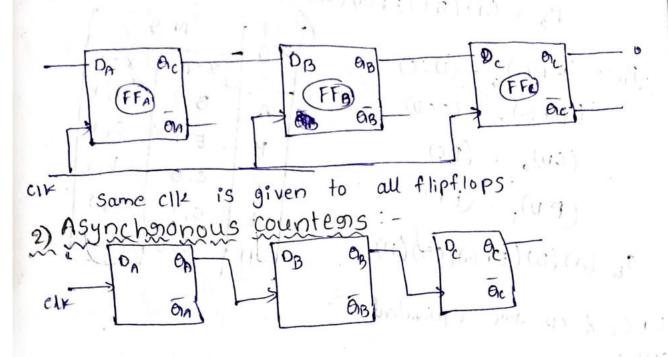
[-1	N·S	
PIS -	X=0	X = 1
HAT	8,1	H, 1
	E,1	C, 10
B	c,0	F,1 .
C	c,1	·c, 1
E	c,0	11,9
~ J. H		1.

: EFG & CD ane equivalent

## COUNTERS:

A digital counter is a set of flipflops whose states change in mesponse pulses applied at input to the counter. The flipflops are interconnected such that, their combined state at any time is the binary equivalent of the total no. of Pulses.

a counter is used to count the pulses.


* These are also used to perform the timing function as in digital walches, frequency counters etc.

counters are divided into two types ..

1) synchmonous countems.

a) Asyncharonous counters ) sipple counters

Deynchmonous counters:



Shif

D R:

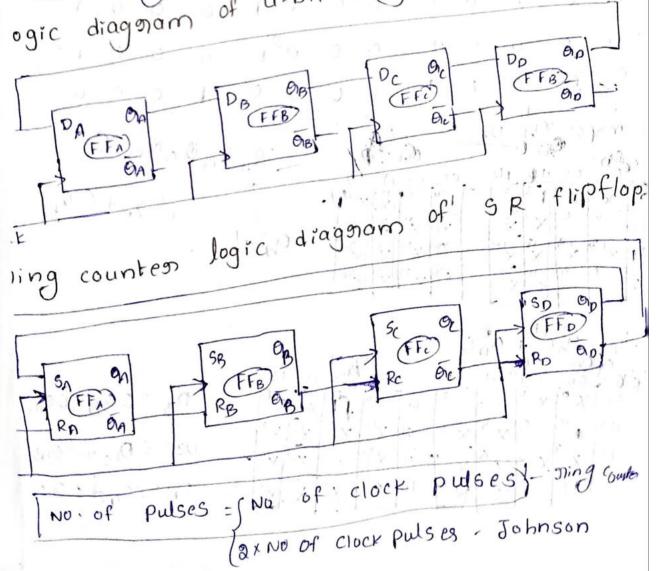
9n

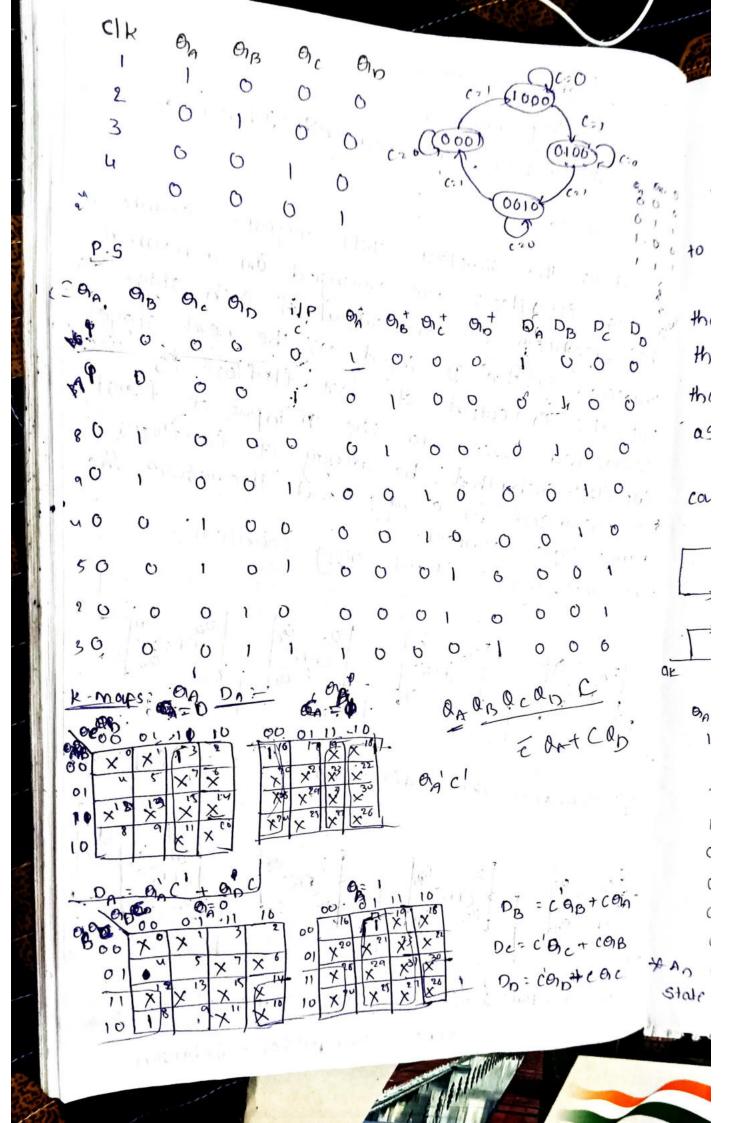
51

Cc

7.

E


.

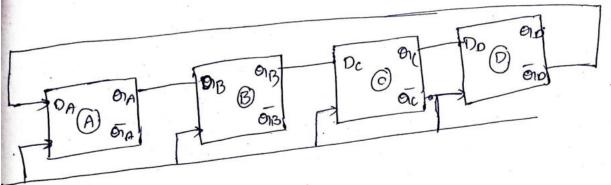

Shift negisten countens:

- 1) sing countes
- a) Twisted ning countes / Johnson countes.

Dring counter:

at is the simplest shift negisten counter. In this flipaflops ane annunged an a nonmal shif negisten i.e., a output of each stage is connected to the D input of the next stage, But the or output of last flipflop is connected back to the prinput of finst thip flop, such that, the array of flipflops
is amonanged in a sing and therefore the name sing countes.






Twisted sing counter:

This countern is obtained from a serial in, segrial out shift register by providing feed back from the invented of of the last flip from to the d-input of the first flip flop.

the Dinput of each state is commected to the Dinput of the next state, but given if p of the last stage is connected to the Dinput of the first stage. Therefore the name agranival the first stage. Therefore the name agranival so it wisted oning counteri.

The logic diagonam of a u-bit Johnson counter is shown in the below figure.



BA OB OC ON After CIK pulse

1 0 0 0

1 1 0 0 3

1 1 1 1 5

0 1 1 1 5

0 0 0 1 5

0 0 0 0 7

9 0 0 0 0 8

AAn n-fliftop Johnson counters can have an unique