
ANNAMACHARA INSTITUTE OF TECHNOLOGY & SCIENCES, 
RAJAMPET 

(AUTONOMOUS) 
 

LECTURE 
NOTES ON 

 Java programming 

(23A055ET) 
 

B.TECH III Year - I 
Sem (2025-26) 

 
 

DEPARTMENT OF MECHANICAL ENGINEERING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ANNAMACHARYA INSTITUTE OF TECHNOLOGY & SCIENCES 

(An Autonomous InsƟtuƟon) 

Title of the Course: JAVA PROGRAMMING 
Category: Open Elective-1 

Couse Code: 23A055ET 

Year: III B. Tech 

Semester: I Semester 

Branch: CE,EEE,ME,ECE 

 

Lecture Hours Tutorial Hours Practice Hours Credits 

3 - - 3 

 

Course Objectives: This course will be able to 

1. Identify Java language components and how they work together in applications 

2. Learn the fundamentals of object-oriented programming in Java, including defining classes,    

     invoking methods, using class libraries. 

3. Learn how to extend Java classes with inheritance and dynamic binding and  

    how to use exception 

4. Understand how to design applications with threads in Java 

5. Understand how to use Java apis for program development 

 

 

 
  

Course Outcomes: 

At the end of the course, the student will be able to 

CO1: Analyze problems, design solutions using OOP principles, and implement            

          them efficiently in Java.                                                                                       (L4)  

CO2: Design and implement classes to model real-world entities, with a focus on  

          attributes, behaviours, and relationships between objects                                   (L4) 

CO3: Demonstrate an understanding of inheritance hierarchies and polymorphic  

          behaviour, including method overriding and dynamic method dispatch.             (L3) 

CO4: Apply Competence in handling exceptions and errors to write robust and  

           fault-tolerant code.                                                                                              (L3) 

CO5: Perform file input/output operations, including reading from and writing to  

          files using Java I/O classes, graphical user interface (GUI) programming using 

           JavaFX.                                                                                                                 (L3) 

CO6: Choose appropriate data structure of Java to solve a problem                               (L6) 



Unit 1   

Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing 

Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, 

User Input to Programs, Escape Sequences Comments, Programming Style. Data Types, Variables, and 

Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of 

Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with printf() Method, Static 

Variables and Methods, Attribute Final, Introduction to Operators, Precedence and Associativity of Operators, 

Assignment Operator ( = ), Basic Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary 

Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators. Control Statements: 

Introduction, if Expression, Nested if Expressions, if–else Expressions, Ternary Operator?:, Switch Statement, 

Iteration Statements, while Expression, do–while Loop, for Loop, Nested for Loop, For–Each for Loop, Break 

Statement, Continue Statement. 

 

Unit 2   

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class 

Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of 

Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and 

Methods, Passing Arguments by Value and by Reference, Keyword this. 

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class 

Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding 

Methods, Attributes Final and Static. 

 

Unit 3   

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, 

Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic 

Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two dimensional Arrays, 

Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.  

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class Object Class, 

Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application 

of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, 

Abstract Classes, Interfaces and Inheritance.  

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested 

Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional 

Interfaces, Annotations. 

 

Unit 4         

Packages and Java Library : Introduction, Defining Package, Importing Packages and Classes into Programs, 

Path and Class Path, Access Control, Packages in Java SE, Java. lang Package and its Classes, Class Object, 

Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto un boxing, Java util Classes and Interfaces, 

Formatter Class, Random Class, Time Package, Class Instant (java. .Instant), Formatting for Date/Time in Java, 

Temporal Adjusters Class, Temporal Adjusters Class.  

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, 

catch, and finally Blocks, Multiple Catch Clauses, Class Throw able, Unchecked Exceptions, Checked 

Exceptions. 

Java I/O and File: Java I/O API, standard I/O streams, types, Byte streams, Character streams, Scanner class, 

Files in Java(Text Book 2) 



 

Unit 5   

String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting 

Characters from Strings, Comparison, Modifying, Searching; Class String Buffer. Multithreaded 

Programming: Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, 

Thread Class, Main Thread Creation of New Threads, Thread States, Thread Priority-Synchronization, 

Deadlock and Race Situations, Inter thread Communication - Suspending, Resuming, and Stopping of Threads.  

Java Database Connectivity: Introduction, JDBC Architecture, Installing My SQL and My SQL Connector/J, 

JDBC Environment Setup, Establishing JDBC Database Connections, Result Set Interface Java FX GUI: Java 

FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes 

in scene graph, mouse events (Text Book 3) 

 

Learning Resources:  

 

Textbooks:   

1. JAVA one step ahead, Anitha Seth, B.L. Juneja, Oxford.  

2. Joy with JAVA, Fundamentals of Object Oriented Programming, Debasis Samanta,  

     Monalisa Sarma, Cambridge, 2023.   

3. JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th  EdiƟon, Pearson.  

Reference Books:  

1. The complete Reference Java, 11thediƟon, Herbert Schildt,TMH   

2. IntroducƟon to Java programming, 7th  EdiƟon, Y Daniel Liang, Pearson  

 

Online Learning Resources:   

1. hƩps://nptel.ac.in/courses/106/105/106105191/ 

2. hƩps://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01288046454761881 6347 
_shared/overview 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://nptel.ac.in/courses/106/105/106105191/


E Ramesh 
Assistant professor ,cse 

UNIT-I 
1.   The history and evaluaƟon of java 

Ans: 

Java was originally designed for interactive television, but it was too advanced technology for the 
digital cable television industry at the time. 
The history of Java starts with the Green Team. Java team members (also known as Green Team), 
initiated this project to develop a language for digital devices such as set-top boxes, televisions, etc. 
However, it was best suited for internet programming. Later, Java technology was incorporated by 
Netscape. 
The principles for creating Java programming were "Simple, Robust, Portable, Platform-independent, 
Secured, High Performance, Multithreaded, Architecture Neutral, Object-Oriented, Interpreted, and 
Dynamic". 
Java was developed by James Gosling, who is known as the father of Java,in1995. 
James Gosling and his team members started the project in the early '90s. 
Currently, Java is used in internet programming, mobile devices, games, e-business solutions, etc. 
Following are given significant points that describe the history of Java. 

1) James Gosling, initiated the Java language project in June 1991. The small team of sun engineers 
called Green Team. 
2) Initially it was designed for small, embedded systems in electronic appliances like set-top boxes. 
3) Firstly, it was called "Greentalk" by James Gosling, and the file extension was .gt. 
4) After that, it was called Oak and was developed as a part of the Green project. 
5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like the 
U.S.A., France, Germany, Romania, etc. 
6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak Technologies. 
7) Java is an island in Indonesia where the first coffee was produced (called Java coffee). It is a kind of 
espresso bean. Java name was chosen by James Gosling while having a cup of coffee nearby his office. 
8) Notice that Java is just a name, not an acronym. 
9) Initially developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle 
Corporation) and released in 1995. 
10) In 1995, Time magazine called Java one of the Ten Best Products of 1995. 
11) JDK 1.0 was released on January 23, 1996. After the first release of Java, there have been many 
additional features added to the language. Now Java is being used in Windows applications, Web 
applications, enterprise applications, mobile applications, cards, etc. Each new version adds new 
features in Java. 
 

 

 

 

 

 

 

https://www.javatpoint.com/james-gosling-father-of-java
https://www.javatpoint.com/embedded-system-tutorial
https://www.javatpoint.com/sun-microsystems


 
2.   The features of Java  

Or 

Buzzwords of java 

Ans: 

Java is a general-purpose, class-based, object-oriented programming language. 
The principles for creating Java programming were "Simple, Robust, Portable, Platform 
independent, Secured, High Performance, Multithreaded, Architecture Neutral, Object 
Oriented, Interpreted, and Dynamic".  
The features of Java are also known as Java buzzwords. 
A list of the most important features of the Java language is given below. 

 

Simple 

Java is very easy to learn, and its syntax is simple, clean and easy to understand. 
According to Sun Microsystem, Java language is a simple programming language because: 

o Java syntax is based on C++ (so easier for programmers to learn it after C++). 

o Java has removed many complicated and rarely-used features, for example, explicit pointers, 

operator overloading, etc. 

o There is no need to remove unreferenced objects because there is an Automatic Garbage 

Collection in Java. 

 



Object-oriented 

Java is an object-oriented programming language. Everything in Java is an object. Object-
oriented means we organize our software as a combination of different types of objects that 
incorporate both data and behavior. 
Object-oriented programming (OOPs) is a methodology that simplifies software development 
and maintenance by providing some rules. 
Basic concepts of OOPs are: 

1. Object 

2. Class 

3. Inheritance 

4. Polymorphism 

5. Abstraction 

6. Encapsulation 

Platform Independent 

 

Java is platform independent because it is different from other languages like C, C++, etc. 
which are compiled into platform specific machines while Java is a write once, run anywhere 
language. A platform is the hardware or software environment in which a program runs. 
There are two types of platforms software-based and hardware-based. Java provides a 

software-based platform. 

The Java platform differs from most other platforms in the sense that it is a software-based 

platform that runs on top of other hardware-based platforms. It has two components: 

1. Runtime Environment 

2. API(Application Programming Interface) 

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/object-and-class-in-java#class
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial


Java code can be executed on multiple platforms, for example, Windows, Linux, Sun Solaris, Mac/OS, 

etc. Java code is compiled by the compiler and converted into bytecode. This bytecode is a platform-

independent code because it can be run on multiple platforms, i.e., Write Once and Run Anywhere 

(WORA). 

Secured 

Java is best known for its security. With Java, we can develop virus-free systems. Java is secured because: 

o No explicit pointer 

o Java Programs run inside a virtual machine sandbox 

 

o Classloader: Classloader in Java is a part of the Java Runtime Environment (JRE) which is used to 

load Java classes into the Java Virtual Machine dynamically. It adds security by separating the 

package for the classes of the local file system from those that are imported from network 

sources. 

o Bytecode Verifier: It checks the code fragments for illegal code that can violate access rights to 

objects. 

o Security Manager: It determines what resources a class can access such as reading and writing 

to the local disk. 

Robust 

The English mining of Robust is strong. Java is robust because: 
o It uses strong memory management. 
o There is a lack of pointers that avoids security problems. 
o Java provides automatic garbage collection which runs on the Java Virtual Machine to 

get rid of objects which are not being used by a Java application anymore. 



o There are exception handling and the type checking mechanism in Java. All these points 
make Java robust. 

Architecture-neutral 

Java is architecture neutral because there are no implementation dependent features, for example, the 
size of primitive types is fixed. 
In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes of 
memory for 64-bit architecture. However, it occupies 4 bytes of memory for both 32 and 64-bit 
architectures in Java. 
 

 

Portable 

Java is portable because it facilitates you to carry the Java bytecode to any platform. It doesn't require 

any implementation. 

High-performance 

Java is faster than other traditional interpreted programming languages because Java bytecode is 

"close" to native code. It is still a little bit slower than a compiled language (e.g., C++). Java is an 

interpreted language that is why it is slower than compiled languages, e.g., C, C++, etc. 

Distributed 

Java is distributed because it facilitates users to create distributed applications in Java. RMI and EJB are 

used for creating distributed applications. This feature of Java makes us able to access files by calling 

the methods from any machine on the internet. 

Multi-threaded 

A thread is like a separate program, executing concurrently. We can write Java programs that deal with 

many tasks at once by defining multiple threads. The main advantage of multi-threading is that it 

doesn't occupy memory for each thread. It shares a common memory area. Threads are important for 

multi-media, Web applications, etc. 

Dynamic 

Java is a dynamic language. It supports the dynamic loading of classes. It means classes are loaded on 

demand. It also supports functions from its native languages, i.e., C and C++. 

Java supports dynamic compilation and automatic memory management (garbage collection). 

 



 

3.   Comparison between Procedure-Oriented and Object-Oriented Approach 

Ans: 

1. In the case of POP, the program is divided into small parts based on the functions. On 

the other hand, in OOP, the program is divided into objects, which are instances of 

classes. 

2. In procedure-oriented programming, functions are the highest priority, and data is the 

lowest priority. Whereas in object-oriented programming, the data is a critical element.  

3. The procedure-oriented approach is less secure in comparison to the object-oriented 

approach. In OOP, due to abstraction data hiding is possible, which makes it more 

secure. 
 

4.   AbstracƟon  
Ans: 
Abstraction is a process of hiding the implementation details and showing only functionality 
to the user. 
Data abstraction is the process of hiding certain details and showing only essential 
information to the user. 
Abstraction can be achieved with either abstract classes or interfaces (which you will learn 
more about in the next chapter). 

The abstract keyword is a non-access modifier, used for classes and methods: 

Abstract class: 

A class which is declared as abstract is known as an abstract class. It can have abstract and non-abstract 
methods. It needs to be extended and its method implemented. It cannot be instantiated. 

o An abstract class must be declared with an abstract keyword. 
o It can have abstract and non-abstract methods. 
o It cannot be instantiated. 
o It can have constructors and static methods also. 
o It can have final methods which will force the subclass not to change the body of the 

method 

Example of abstract class 

abstract class A 

{ 
}  
Abstract Method in Java: 
A method which is declared as abstract and does not have implementation is known as an abstract method. 

abstract void printStatus(); 
Example of Abstract class that has an abstract method 

abstract class Bike 

{   

https://www.w3schools.com/java/java_interface.asp
https://www.javatpoint.com/java-constructor


  abstract void run();   
}   
class Honda4 extends Bike 

{   
void run() 
{ 
System.out.println("running safely"); 
}   
public static void main(String args[]) 
{   
 Bike obj = new Honda4();   
 obj.run();   
}   

}   

 

5.   The OOP Principles 

(Or) java concepts     (or) oops concepts 

Ans: 

All object-oriented programming languages provide mechanisms that help you implement the 
object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take a look at 
these concepts now. 
 1)class 

 2) object  
 3)inheritance  
 4) encapsulation 

 5)polymorphism 

 6)data abstraction  
1)Encapsulation: 
Encapsulation is a process of wrapping code and data together into a single unit. 
Encapsulation helps with data security, allowing you to protect the data stored in a class from system-
wide access. As the name suggests, it safeguards the internal contents of a class like a capsule. 
Encapsulation in Java: 

 Restricts direct access to data members (fields) of a class 

 Fields(data member) are set to private 

 Each field has a getter and setter method 

 Getter methods return the field 

 Setter methods let us change the value of the field 

2)Inheritance: 

Process of creating new class from existing class is known as inheritance . 



one class is allowed to inherit the features (fields and methods) of another class. We are achieving 
inheritance by using extends keyword. Inheritance is also known as “is-a” relationship. 

Let us discuss some frequently used important terminologies: 

 Superclass: The class whose features are inherited is known as superclass (also known as 

base or parent class). 

 Subclass: The class that inherits the other class is known as subclass (also known as 

derived or extended or child class). The subclass can add its own fields and methods in 

addition to the superclass fields and methods. 

 Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to create 

a new class and there is already a class that includes some of the code that we want, we 

can derive our new class from the existing class. By doing this, we are reusing the fields 

and methods of the existing class. 

3) polymorphism: 
If one task is performed in different ways, it is known as polymorphism. For example: to convince the 
customer differently, to draw something, for example, shape, triangle, rectangle, etc. 
In Java, we use method overloading and method overriding to achieve polymorphism. 
Another example can be to speak something; for example, a cat speaks meow, dog barks woof, etc. 

In Java polymorphism is mainly divided into two types: 
 Compile-time Polymorphism 

 Runtime Polymorphism 

 
Compile-Time Polymorphism 

It is also known as static polymorphism. This type of polymorphism is achieved by function 

overloading or operator overloading.  

Method Overloading 

When there are multiple functions with the same name but different parameters then these 

functions are said to be overloaded. Functions can be overloaded by changes in the number of 

arguments or/and a change in the type of arguments. 

 

Polymorphism in Java: 

 The same method name is used several times 

 Different methods of the same name can be called from an object 



 All Java objects can be considered polymorphic (at the minimum, they are of their own type 

and instances of the Object class) 

 Static polymorphism in Java is implemented by method overloading 

 Dynamic polymorphism in Java is implemented by method overriding 

6.   Java simple programs (or) 
What is program structure in java 

Or 

Programming Style 

Ans: 
we will learn how to write the simple program of Java. We can write a simple hello Java 
program easily after installing the JDK. 
To create a simple Java program, you need to create a class that contains the main method. 
Let's understand the requirement first. 
Let's create the hello java program: 

class Simple{   

    public static void main(String args[]){   

     System.out.println("Hello Java");   

    }   

}   
Save the above Įle as Simple.java. 
To compile: javac Simple.java 

To execute: java Simple 

Output: 
 Hello Java 

When we compile Java program using javac tool, the Java compiler converts the source code into byte 

code. 

 
Parameters used in First Java Program 

Let's see what is the meaning of class, public, static, void, main, String[], System.out.println(). 

o class keyword is used to declare a class in Java. 

o public keyword is an access modifier that represents visibility. It means it is visible to all. 

o static is a keyword. If we declare any method as static, it is known as the static method. The core 
advantage of the static method is that there is no need to create an object to invoke the static method. 



The main() method is executed by the JVM, so it doesn't require creating an object to invoke the main() 
method. So, it saves memory. 

o void is the return type of the method. It means it doesn't return any value. 

o main represents the starting point of the program. 

o String[] args or String args[] is used for command line argument. We will discuss it in coming section. 

o System.out.println() is used to print statement. Here, System is a class, out is an object of the PrintStream 
class, println() is a method of the PrintStream class. We will discuss the internal working 
of System.out.println() statement in the coming section. 

7.   How to Compile and Run Java Program 

And: 

how to compile and run java program step by step. 
Step 1: 
Write a program on the notepad and save it with .java (for example, DemoFile.java) extension. 

class Demo 

{   

public static void main(String args[])   

{   

System.out.println("Hello!");   

System.out.println("Java");   

}   

}   

Step 2: 
Open Command Prompt. 
Step 3: 
Set the directory in which the .java file is saved. In our case, the .java file is saved in D:\cse_DS>Demo 

 
Step 4: 
Use the following command to compile the Java program. It generates a .class file in the same folder. 
It also shows an error if any. 
javac Demo.java   

https://www.javatpoint.com/command-line-argument
https://www.javatpoint.com/system-out-println-in-java


 
Step 5: 
Use the following command to run the Java program: 

java Demo   

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



8. Elements or Tokens in Java Program  
Ans: 
In Java, a token is the smallest individual unit(small part of code) in a program that the 
compiler recognizes. These include keywords, identifiers, literals, operators, and separators. 
Tokens can be classified as follows 

1. Keywords: public, class, static, void, int 
2. Identifiers: Example, main, args, a 

3. Literals: 5, "Value of a: " 
4. Operators: =, + 

5. Separators: {, }, (, ), ;, [], . 
1. Keyword 

Keywords are pre-defined or reserved words in a programming language. Each keyword is 

meant to perform a specific function in a program. Since keywords are referred names for a 

compiler, they can’t be used as variable names because by doing so, we are trying to assign a 

new meaning to the keyword which is not allowed. Java language supports the following 

keywords: 

abstract     assert      boolean       

break        byte        case 

catch        char        class         

const        continue    default 

do           double      else          

enum         exports     extends 

final        finally     float         

for          goto        if 

implements   import      instanceof    

int          interface   long 

module       native      new           

open         opens       package 

private      protected   provides      

public       requires    return 

short        static      strictfp      

super        switch      synchronized 

this         throw       throws        

to           transient   transitive 

try          uses        void          

volatile     while       with  

2. Identifiers 

A method name, class name, variable name, or label is an identifier in Java. The user typically 

defines these. The identifier names cannot be the same as any reserved keyword. Let's see an 

example to understand identifiers: 

https://www.geeksforgeeks.org/java/java-keywords/
https://www.geeksforgeeks.org/java/java-identifiers/


public class Test 
{ 
    public static void main(String[] args) 
    { 
        int num = 10;  // identifies 

    } 
} 

There are rules for naming identifiers. 

 The characters allowed are [A-Z], [a-z], [0-9], _ and $. 

 Identifiers are case-sensitive. That is, “ninja” is not the same as “NINJA”. 
 Identifier names should not start with a digit. For example, “007IamNinja” is an invalid 

identifier. 

 Whitespace is not allowed inside an identifier. 

 Keywords can’t be used as an identifier. 

3. Constants/Literals  

Literals represent fixed values in a source code. These are similar to standard variables with the 
difference that these are constant. These can be classified as an integer literal, a string literal, a 
boolean etc. The user defines these mainly to define constants.  
Syntax to define literals: 
final data_type variable_name; 
There are five types of literals in Java: 

 Integer 

 FloaƟng Point 
 Boolean 

 Character 

 String 

4. Operators 

Java provides many types of operators which can be used according to the need. They are classified 
based on the functionality they provide. Some of the types are- 

Arithmetic Operators 

Unary Operators 

Assignment Operator 
Relational Operators 

Logical Operators 

Ternary Operator 
Bitwise Operators 

Shift Operators 

instance of operator 
Precedence and Associativity 

5. Separators 

Separators are used to separate diīerent parts of the codes. It tells the compiler about compleƟon of a 
statement in the program. The most commonly and frequently used separator in java is semicolon (;). 

https://www.geeksforgeeks.org/java/literals-in-java/
https://www.geeksforgeeks.org/java/operators-in-java/
https://www.geeksforgeeks.org/java/java-arithmetic-operators-with-examples/
https://www.geeksforgeeks.org/java/java-unary-operator-with-examples/
https://www.geeksforgeeks.org/java/java-assignment-operator-with-examples/
https://www.geeksforgeeks.org/java/java-relational-operators-with-examples/
https://www.geeksforgeeks.org/java/java-logical-operators-with-examples/
https://www.geeksforgeeks.org/java/java-ternary-operator/
https://www.geeksforgeeks.org/java/bitwise-operators-in-java/
https://www.geeksforgeeks.org/java/shift-operator-in-java/
https://www.geeksforgeeks.org/java/instanceof-keyword-in-java/
https://www.geeksforgeeks.org/java/operators-in-java/
https://www.geeksforgeeks.org/java/separators-in-java/


int variable;   //here the semicolon (;) ends the declaraƟon of the variable 

 

9. Java Statements 

Ans: 
In Java, each statement is a complete unit of execution. For example, 
int score = 9*5; 
Here, we have a statement. The complete execution of this statement involves multiplying 
integers 9 and 5 and then assigning the result to the variable score. 
In the above statement, we have an expression 9 * 5. In Java, expressions are part of 
statements. 
Expression statements 

We can convert an expression into a statement by terminating the expression with a ;. These 
are known as expression statements. For example, 

// expression 

number = 10 

// statement 
number = 10; 

 In the above example, we have an expression number = 10. Here, by adding a semicolon (;), we 
have converted the expression into a statement (number = 10;). 

Consider another example, 

// expression 

++number 
// statement 
++number; 

10. Command Line Arguments 

Ans: 
The command-line arguments in Java allow us to pass arguments during the execution of the 
program. 
In Java, command line arguments is a way to pass inputs to the java program during 
application execution. Command line arguments can be passed by multiple ways to Java 
application or program. 
 Program 

  
 

 import java.io.*; 
class commandlineargument 
 

 { 
 public static void main(String[] args) 
 { 
          int a=Integer.parseInt(args[0]); // commandline argument 
          int b=Integer.parseInt(args[1]); 

https://www.tutorialspoint.com/java/index.htm


  int c=a+b; 
  System.out.println("Sum of two variables "+ c); 
 } 
} 
Output: 

Compile: 
javac commandlineargument.java 

Run: 
         java commandlineargument 10 20 

Sum of two variables 30 

11. User Input to Programs  

Java provides different ways to get input from the user  
 There are two ways to use user input  

1) Command line argument 
2) Scanner class  

The command-line arguments in Java allow us to pass arguments during the execution of the 
program. 
In Java, command line arguments is a way to pass inputs to the java program during 
application execution. Command line arguments can be passed by multiple ways to Java 
application or program. 
 Program 

  import java.io.*; 
class commandlineargument 
 { 
 public static void main(String[] args) 
 { 
         // take input from the user 

 int a=Integer.parseInt(args[0]); // commandline argument 
          int b=Integer.parseInt(args[1]); 
  int c=a+b; 
  System.out.println("Sum of two variables "+ c); 
 } 
} 
Output: 
Compile: 
javac commandlineargument.java 

Run: 
         java commandlineargument 10 20 

Sum of two variables 30 

 

 
12. Escape Sequences Comments 

Ans: 

https://www.tutorialspoint.com/java/index.htm


tring that are preceded by a backslash (). These characters are referred to as Escape Sequences 
or Escape Characters, and they play a crucial role in various programming languages, including 
Java, Python, and C++. 
 

Escape sequences in Java aim to represent those characters in a string that are difficult to 
represent directly. We can achieve certain formatting effects and can print certain effects using 
escape sequences in Java. The escape sequences must be enclosed in double quotes (""). There 
are a total of 8 escape sequences in Java. 
Escape Sequences Purpose 

\n It is used to insert a new line. 

\t It is used to insert a tab. 

\r It is used to represent a carriage return. 

\' It is used to insert a single quotation mark. 

\" It is used to insert a double quotation mark. 

\\ It is used to insert a backslash. 

\f It is used to insert a form feed. 

\b It is used to represent a backspace character. 

 

13. Data Types in Java 

Ans: 
Data types specify the different sizes and values that can be stored in the variable. There are two types 
of data types in Java: 

1. Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float and 
double. 

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays, 
string, object 

3.  

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java


 

Java Primitive Data Types 

In Java language, primitive data types are the building blocks of data manipulation. These are the most 

basic data types available in Java language. 

There are 8 types of primitive data types: 

o boolean data type 

o byte data type 

o char data type 

o short data type 

o int data type 

o long data type 

o float data type 

o double data type 

Data Type Default Value Default size 

boolean false 1 bit 

char '\u0000' 2 byte 

byte 0 1 byte 

short 0 2 byte 

https://www.javatpoint.com/java-tutorial


int 0 4 byte 

long 0L 8 byte 

float 0.0f 4 byte 

double 0.0d 8 byte 

boolean type 

The boolean data type has two possible values, either true or false. 
Boolean data type represents only one bit of information either true or false which is intended to 
represent the two truth values of logic and Boolean algebra 

Default value: false. 
They are usually used for true/false conditions. 
The Boolean data type specifies one bit of information, but its "size" can't be defined precisely. 
Syntax:  
boolean booleanVar; 

example: 

class Main  

{ 

  public static void main(String[] args)  

{ 

    boolean flag = true; 

    System.out.println(flag);    // prints true 

  } 

} 

2)Byte Data Type: 

The byte data type can have values from -128 to 127 (8-bit signed two's complement integer). 

If it's certain that the value of a variable will be within -128 to 127, then it is used instead of int to 

save memory. 

Default value: 0 

The short data type can also be used to save memory just like byte data type. A short data type is 2 

times smaller than an integer. 

Syntax:  

byte byteVar; 

class Main  



{ 

  public static void main(String[] args)  

{ 

 

    byte range; 

    range = 124; 

    System.out.println(range);    // prints 124 

  } 

} 

3. short type: 

The short data type is a 16-bit signed two’s complement integer. Similar to byte, use a short to save 
memory in large arrays, in situations where the memory savings actually matters. 
The short data type in Java can have values from -32768 to 32767 (16-bit signed two's complement 
integer). 
Default value: 0 

The short data type can also be used to save memory just like byte data type. A short data type is 2 
times smaller than an integer. 
Syntax:  

short shortVar; 

class Main { 
  public static void main(String[] args) { 
      

    short temperature; 
    temperature = -200; 
    System.out.println(temperature);  // prints -200 

  } 
} 

4.Int Data Type: 

It is a 32-bit signed two’s complement integer. 
If you are using Java 8 or later, you can use an unsigned 32-bit integer. This will have a minimum 

value of 0 and a maximum value of 232-1. To learn more, visit How to use the unsigned integer in 

java 8? 

Default value: 0 

Syntax:  

int intVar; 

example: 



class Main { 

  public static void main(String[] args) { 

        int range = -4250000; 

    System.out.println(range);  // print -4250000 

  } 

} 

5.long type 

 The range of a long is quite large. The long data type is a 64-bit two’s complement integer and is 
useful for those occasions where an int type is not large enough to hold the desired value. The size of 
the Long Datatype is 8 bytes (64 bits). 
Syntax:  
long longVar; 
 

example: 
class LongExample { 
  public static void main(String[] args) { 
         long range = -42332200000L; 
    System.out.println(range);    // prints -42332200000 

  } 
} 
6. double type: 

The double data type is a double-precision 64-bit floating-point. 
It should never be used for precise values such as currency. 
Default value: 0.0 (0.0d) 
 

class Main { 

  public static void main(String[] args) { 

         double number = -42.3; 

    System.out.println(number);  // prints -42.3 

  } 

} 

7. float type: 

The float data type is a single-precision 32-bit floating-point. Learn more about single-precision and 
double-precision floating-point if you are interested. 
It should never be used for precise values such as currency. 
Default value: 0.0 (0.0f) 
class Main { 



  public static void main(String[] args) { 

         float number = 42.3f; 

    System.out.println(number);  // prints 42.3 

  } 

} 

8. char type 

It's a 16-bit Unicode character. 
The minimum value of the char data type is '\u0000' (0) and the maximum value of the is '\uffff'. 
Default value: '\u0000' 
class Main { 
  public static void main(String[] args) { 
        char letter = '\u0051'; 
    System.out.println(letter);  // prints Q 

  } 
} 
(or) 
class Main { 
  public static void main(String[] args) { 
         char letter1 = '9'; 
    System.out.println(letter1);  // prints 9 

         char letter2 = 65; 
    System.out.println(letter2);  // prints A 

 

  } 
} 
 

 

 

Single program: 
// Java Program to Demonstrate Char Primitive Data Type 

   

// Class 

class GFG { 

   

    // Main driver method 

    public static void main(String args[]) 

    { 

   

        // Creating and initializing custom character 

        char a = 'G'; 

   

        // Integer data type is generally 

        // used for numeric values 



        int i = 89; 

   

        // use byte and short 

        // if memory is a constraint 

        byte b = 4; 

   

        // this will give error as number is 

        // larger than byte range 

        // byte b1 = 7888888955; 

   

        short s = 56; 

   

        // this will give error as number is 

        // larger than short range 

        // short s1 = 87878787878; 

   

        // by default fraction value 

        // is double in java 

        double d = 4.355453532; 

   

        // for float use 'f' as suffix as standard 

        float f = 4.7333434f; 

   

        // need to hold big range of numbers then we need 

        // this data type 

        long l = 12121; 

   

        System.out.println("char: " + a); 

        System.out.println("integer: " + i); 

        System.out.println("byte: " + b); 

        System.out.println("short: " + s); 

        System.out.println("float: " + f); 

        System.out.println("double: " + d); 

        System.out.println("long: " + l); 

    } 

} 

Output 
char: G 

integer: 89 

byte: 4 

short: 56 

float: 4.7333436 

double: 4.355453532 

long: 12121 



Non-Primitive Data Type or Reference Data Types 

The Reference Data Types will contain a memory address of variable values because the reference 

types won’t store the variable value directly in memory. They are strings, objects, arrays, etc.   
1. Strings  

Strings are defined as an array of characters. The difference between a character array and a string 

in Java is, that the string is designed to hold a sequence of characters in a single variable whereas, a 

character array is a collection of separate char-type entities. Unlike C/C++, Java strings are not 

terminated with a null character. 

Syntax: Declaring a string 

<String_Type> <string_variable> = “<sequence_of_string>”; 
Example:  

// Declare String without using new operator  

String s = "GeeksforGeeks";  

 

// Declare String using new operator  

String s1 = new String("GeeksforGeeks");  

2. Class 

A class is a user-defined blueprint or prototype from which objects are created.  It represents the set 

of properties or methods that are common to all objects of one type. In general, class declarations 

can include these components, in order:  

1. Modifiers: A class can be public or has default access. Refer to access specifiers for 
classes or interfaces in Java 

2. Class name: The name should begin with an initial letter (capitalized by convention). 
3. Superclass(if any): The name of the class’s parent (superclass), if any, preceded by the 

keyword extends. A class can only extend (subclass) one parent. 
4. Interfaces(if any): A comma-separated list of interfaces implemented by the class, if any, 

preceded by the keyword implements. A class can implement more than one interface. 
5. Body: The class body is surrounded by braces, { }. 

3. Object 

An Object is a basic unit of Object-Oriented Programming and represents real-life entities.  A typical 

Java program creates many objects, which as you know, interact by invoking methods. An object 

consists of : 

1. State: It is represented by the attributes of an object. It also reflects the properties of an 
object. 

2. Behavior: It is represented by the methods of an object. It also reflects the response of an 
object to other objects. 

3. Identity: It gives a unique name to an object and enables one object to interact with 
other objects. 

4. Interface 

Like a class, an interface can have methods and variables, but the methods declared in an interface 

are by default abstract (only method signature, no body).    

 Interfaces specify what a class must do and not how. It is the blueprint of the class.  

https://www.geeksforgeeks.org/strings-in-java/
https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/access-specifiers-for-classes-or-interfaces-in-java/
https://www.geeksforgeeks.org/access-specifiers-for-classes-or-interfaces-in-java/
https://www.geeksforgeeks.org/classes-objects-java/
https://www.geeksforgeeks.org/interfaces-in-java/


 An Interface is about capabilities like a Player may be an interface and any class 
implementing Player must be able to (or must implement) move(). So it specifies a set of 
methods that the class has to implement. 

 If a class implements an interface and does not provide method bodies for all functions 
specified in the interface, then the class must be declared abstract. 

 A Java library example is Comparator Interface. If a class implements this interface, then it 
can be used to sort a collection. 

5. Array 

An Array is a group of like-typed variables that are referred to by a common name. Arrays in Java 

work differently than they do in C/C++. The following are some important points about Java arrays.  

 In Java, all arrays are dynamically allocated. (discussed below) 
 Since arrays are objects in Java, we can find their length using member length. This is 

different from C/C++ where we find length using size. 
 A Java array variable can also be declared like other variables with [] after the data type.  
 The variables in the array are ordered and each has an index beginning with 0. 
 Java array can also be used as a static field, a local variable, or a method parameter. 
 The size of an array must be specified by an int value and not long or short. 
 The direct superclass of an array type is Object. 
 Every array type implements the interfaces Cloneable and java.io.Serializable. 

 

 

 

 

 

 

 

 

 

 

 
 

14.  Type Casting 

Ans: 

 Type Casting 

The process of converting the value of one data type (int, float, double, etc.) to another data type is 
known as typecasting. 
In Java, there are 13 types of type conversion. However, in this tutorial, we will only focus on the major 
2 types. 
1. Widening Type Casting 

2. Narrowing Type Casting 

Widening Type Casting 

In Widening Type Casting, Java automatically converts one data type to another data type. 
Example: Converting int to double 

class Main { 

https://www.geeksforgeeks.org/comparator-interface-java/
https://www.geeksforgeeks.org/arrays-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/


  public static void main(String[] args) { 
    // create int type variable 

    int num = 10; 
    System.out.println("The integer value: " + num); 
 

    // convert into double type 

    double data = num; 
    System.out.println("The double value: " + data); 
  } 
} 
Output 
he integer value: 10 

The double value: 10.0 

Narrowing Type Casting 

In Narrowing Type Casting, we manually convert one data type into another using the parenthesis. 
Example: Converting double into an int 
class Main { 
  public static void main(String[] args) { 
    // create double type variable 

    double num = 10.99; 
    System.out.println("The double value: " + num); 
 

    // convert into int type 

    int data = (int)num; 
    System.out.println("The integer value: " + data); 
  } 
} 
Output 
The double value: 10.99 

The integer value: 10 

 
 

15. What is variable and explain diīerent types of variables 

(or) 
Scope of Variable Identifier 
Ans: 
Variable is name that can hold a data  
A variable is a container which holds the value while the Java program is executed.  
Variable is a name of memory location. There are three types of variables in java: local, instance 
and static. 
A variable is assigned with a data type. 



 
int data=50;//Here data is variable  

Types of Variables 

There are three types of variables in Java: 

o local variable 

o instance variable 

o static variable 

 
1) Local Variable 

A variable declared inside the body of the method is called local variable. You can use this 
variable only within that method and the other methods in the class aren't even aware that the 
variable exists. 
A local variable cannot be defined with "static" keyword. 

import java.io.*; 

  

class GFG { 

    public static void main(String[] args) 

    { 

        // Declared a Local Variable 

https://www.javatpoint.com/java-tutorial


        int var = 10; 

  

        // This variable is local to this main method only 

        System.out.println("Local Variable: " + var); 

    } 

} 

Output: 
Local Variable: 10 

2) Instance Variable 

A variable declared inside the class but outside the body of the method, is called an instance 
variable. It is not declared as static. 
It is called an instance variable because its value is instance-specific and is not shared among 
instances. 
3) Static variable 

A variable that is declared as static is called a static variable. It cannot be local.  
You can create a single copy of the static variable and share it among all the instances of the 
class.  
Memory allocation for static variables happens only once when the class is loaded in the 
memory. 
Example to understand the types of variables in java 

public class A   

{   
    staƟc int m=100;//staƟc variable   

    void method()   
    {     
        int n=90;//local variable     

    }   
    public staƟc void main(String args[])   
    {   
        int data=50;//instance variable     

    }   
}//end of class    

 

 

 

 

 

16. Literal Constants 

Ans: 
Literals in Java 

 Java, a Literal is value of boolean, numeric, character, or string data. Any constant value that can be 
assigned to the variable is called a literal.  
// Here 100 is a constant/literal. 
int x = 100;  



 
Types of Literals in Java 

Java supports the following types of literals: 

 Integral Literals 

 FloaƟng-Point Literals 

 Char Literals 

 String Literals 

 Boolean Literals 

 

Integral Literals in Java 

For Integral data types (byte, short, int, long), we can specify literals in four ways, which are 
listed below: 
1. Decimal literals (Base 10): In this form, the allowed digits are 0-9. 
int x = 101; 
2. Octal literals (Base 8): In this form, the allowed digits are 0-7. 
// The octal number should be preĮx with 0. 
int x = 0146;  
3. Hexadecimal literals (Base 16): In this form, the allowed digits are 0-9, and characters are a-f. 
We can use both uppercase and lowercase characters, as we know that Java is a case-sensiƟve 
programming language, but here Java is not case-sensiƟve. 
// The hexa-decimal number should be preĮx 

// with 0X or 0x. 
int x = 0X123Face;  
4. Binary literals: From 1.7 onward, we can specify literal value even in binary form also, 
allowed digits are 0 and 1. Literals value should be preĮxed with 0b or 0B. 
int x = 0b1111; 
Example:  

public class Geeks { 
    public staƟc void main(String[] args) 
    { 
          // decimal-form literal 
        int a = 101;  
          // octal-form literal 
        int b = 0100;  
        // Hexa-decimal form literal 
        int c = 0xFace;  
          // Binary literal 
        int d = 0b1111;  
       
        System.out.println(a); 
        System.out.println(b); 
        System.out.println(c); 
        System.out.println(d); 



    } 
} 

FloaƟng-Point Literal in Java 

For FloaƟng-point data types, we can specify literals in only decimal form, and we can not specify in 
octal and Hexadecimal forms.  

1. Decimal literals(Base 10): In this form, the allowed digits are 0-9.  
double d = 123.456; 
Example: 
Char Literals in Java 

For char data types, we can specify literals in four ways which are listed below:  
1. Single quote: We can specify literal to a char data type as a single character within the single 
quote. 
char ch = 'a'; 
2. Char literal as Integral literal: we can specify char literal as integral literal, which represents 
the Unicode value of the character, and that integral literal can be speciĮed either in Decimal, 
Octal, and Hexadecimal forms. But the allowed range is 0 to 65535. 
char ch = 062; // Octal literal represenƟng character with Unicode code 50 (which is '2') 
Note: If invalid digits are used for octal (means digit other than 0=7), it will it will cause a 
compile-Ɵme error, for example: 
char b = 0789; // Invalid octal literal due to digits 8 and 9 — causes compile-Ɵme error 

3. Unicode RepresentaƟon: We can specify char literals in Unicode representaƟon ‘\uxxxx’. Here 
xxxx represents 4 hexadecimal numbers. 
char ch = '\u0061';// Here /u0061 represent a. 
4. Escape Sequence: Every escape character can be speciĮed as char literals. 
char ch = '\n'; 

String Literals in Java 

Any sequence of characters within double quotes is treated as String literals.  
String s = "Hello"; 
String literals may not contain unescaped newline or linefeed characters. However, the Java 
compiler will evaluate compile-Ɵme expressions, so the following String expression results in a 
string with three lines of text. 
Example: 
String text = "This is a String literal\n" 

+ "which spans not one and not two\n" 

+ "but three lines of text.\n"; 
Boolean Literals in Java 

Only two values are allowed for Boolean literals, i.e., true and false.  
boolean b = true; 
boolean c = false; 
 

 

 

 

 

 



17.  Symbolic Constants 

Ans: 

Java - symbolic constants 

In Java, a symbolic constant is a named constant value defined once and used throughout a program. 
Symbolic constants are declared using the final keyword. 

 Which indicates that the value cannot be changed once it is initialized. 
 The naming convention for symbolic constants is to use all capital letters with underscores 

separating words. 
Syntax of Symbolic Constants 

final data_type CONSTANT_NAME = value; 
 final: The final keyword indicates that the value of the constant cannot be changed once it is 

initialized. 
 data_type: The data type of the constant such as int, double, boolean, or String. 
 CONSTANT_NAME: The name of the constant which should be written in all capital letters with 

underscores separating words.  
 value: The initial value of the constant must be of the same data type as the constant. 

Initializing a symbolic constant: 
final double PI = 3.14159; 

18. Formatted Output with printf() Method 

Ans: 
Print some formaƩed text to the console. 
The %s character is a placeholder for the string "World": 
System.out.prinƞ("Hello %s!", "World"); 
The prinƞ() method outputs a formaƩed string. 
Data from the addiƟonal arguments is formaƩed and wriƩen into placeholders in the formaƩed string, 
which are marked by a % symbol. The way in which arguments are formaƩed depends on the sequence 
of characters that follows the % symbol. 
 

19. Understanding staƟc  (or) staƟc keyword 

Ans: 

if we want to access class members, we must first create an instance of the class. But there will be 
situations where we want to access class members without creating any variables. 
 

In those situations, we can use the static keyword in Java. If we want to access class members 
without creating an instance of the class, we need to declare the class members static. 
The Math class in Java has almost all of its members static. So, we can access its members without 
creating instances of the Math class. For example,    

The static can be: 

1. Variable  

2. Method  

3. Block 



4. Nested class 

1) Java static variable: 

If you declare any variable as static, it is known as a static variable. 

o The static variable can be used to refer to the common property of all objects (which is not 

unique for each object), for example, the company name of employees, college name of 

students, etc. 

o The static variable gets memory only once in the class area at the time of class loading. 

Example of static variable 

//Java Program to demonstrate the use of static variable   
class Student 
{   
    int rollno;//instance variable   
    String name;   
    static String college ="ITS";//static variable   

   //constructor   
   Student(int r, String n) 
{   

   rollno = r;   
     name = n;   
    }   
    //method to display the values   
    void display () 

{ 
System.out.println(rollno+" "+name+" "+college); 

}   
}   
//Test class to show the values of objects   
public class TestStaticVariable1 

{   
 public static void main(String args[]) 
{   

 Student s1 = new Student(111,"Karan");   
 Student s2 = new Student(222,"Aryan");   
 //we can change the college of all objects by the single line of code   
 //Student.college="BBDIT";   
 s1.display();   
 s2.display();   

 }   
}   

2) Java static method: 



If you apply static keyword with any method, it is known as static method. 

o A static method belongs to the class rather than the object of a class. 

o A static method can be invoked without the need for creating an instance of a class. 

o A static method can access static data member and can change the value of it. 

Example of static method 

//Java Program to demonstrate the use of a static method.   
class Student 
{   
     int rollno;   
     String name;   
     static String college = "ITS";   
     //static method to change the value of static variable   
     static void change() 

{   
      college = "BBDIT";   
      }   
      //constructor to initialize the variable   
      Student(int r, String n) 

{   
       rollno = r;   
       name = n;   
      }   
     //method to display values   
     void display() 

{ 
System.out.println(rollno+" "+name+" "+college); 

}   
}   
//Test class to create and display the values of object   
public class TestStaticMethod 

{   
     public static void main(String args[]) 

{   
    Student.change();//calling change method   
    //creating objects   
    Student s1 = new Student(111,"Karan");   

     Student s2 = new Student(222,"Aryan");   
    Student s3 = new Student(333,"Sonoo");   

     //calling display method   
     s1.display();   

    s2.display();   



    s3.display();   
     }   
}   

3) Java static block: 
Is used to initialize the static data member. 
It is executed before the main method at the time of classloading. 
class A2 

{   
  Static 

{ 
System.out.println("static block is invoked"); 

}   
   public static void main(String args[]) 

{   
   System.out.println("Hello main");   
  }   

}   
Output:static block is invoked 

       Hello main 
4) staƟc class 

A class can be made static only if it is a nested class. We cannot declare a top-level class 
with a static modifier but can declare nested classes as static. Such types of classes are 
called Nested static classes. Nested static class doesn’t need a reference of Outer class. 
In this case, a static class cannot access non-static members of the Outer class. 
import java.io.*; 
 public class test  
{ 
     private staƟc String str = "GeeksforGeeks"; 
     // StaƟc class 

    staƟc class MyNestedClass  
{ 

               // non-staƟc method 

          public void disp() 
{ 

            System.out.println(str); 
          } 
     } 
       public staƟc void main(String args[]) 
     { 
          test.MyNestedClass obj    = new test.MyNestedClass(); 
          obj.disp(); 
     } 
} 
Output: GeeksforGeeks 

 



Q) Why is the Java main method static? 

Ans) It is because the object is not required to call a static method. If it were a non-static 

method, JVM creates an object first then call main() method that will lead the problem of extra 

memory allocation. 

 

20. Introducing Įnal . (or) Įnal keyword 

Ans: 
In Java, the Įnal keyword is used to denote constants. It can be used with variables, methods, and classes. 
Once any enƟty (variable, method or class) is declared Įnal, it can be assigned only once. That is, 

 the Įnal variable cannot be reiniƟalized with another value 

 the Įnal method cannot be overridden 

 the Įnal class cannot be extended 

1. Java Įnal Variable 

In Java, we cannot change the value of a Įnal variable. For example, 

class Main 

 { 
  public staƟc void main(String[] args)  
{ 
      // create a Įnal variable 

      Įnal int AGE = 32; 
      // try to change the Įnal variable 

      AGE = 45; 
      System.out.println("Age: " + AGE); 
   } 
} 
2. Java Įnal Method 

Before you learn about Įnal methods and Įnal classes, make sure you know about the Java Inheritance. 
 

In Java, the Įnal method cannot be overridden by the child class. For example, 
class FinalDemo  
{ 
     // create a Įnal method 

     public Įnal void display()  
{ 
        System.out.println("This is a Įnal method."); 
     } 
} 
 

class Main extends FinalDemo  
{ 
   // try to override Įnal method 

   public Įnal void display()  
{ 
     System.out.println("The Įnal method is overridden."); 
  } 
 

  public staƟc void main(String[] args)  

https://www.javatpoint.com/jvm-java-virtual-machine


{ 
    Main obj = new Main(); 
      obj.display(); 
  } 
} 
3. Java Įnal Class 

In Java, the Įnal class cannot be inherited by another class. For example, 
// create a Įnal class 

Įnal class FinalClass  
{ 
  public void display() 
 { 
      System.out.println("This is a Įnal method."); 
  } 
} 
 

// try to extend the Įnal class 

class Main extends FinalClass 

 { 
  public  void display()  
{ 
       System.out.println("The Įnal method is overridden."); 
  } 
 

  public staƟc void main(String[] args)  
{ 
    Main obj = new Main(); 
      obj.display(); 
   } 
} 

 

21. operator 

Ans: 

Operator in Java is a symbol that is used to perform operations. For example: +, -, *, / etc. 

There are many types of operators in Java which are given below: 

o Unary Operator, 

o Arithmetic Operator, 

o Shift Operator, 

o Relational Operator, 

o Bitwise Operator, 

o Logical Operator, 

o Ternary Operator and 

o Assignment Operator. 

https://www.javatpoint.com/java-tutorial


Operator 

Type 

Category Precedence 

Unary postfix expr++ expr-- 

prefix ++expr --

expr +expr -expr ~ ! 

Arithmetic multiplicative * / % 

additive + - 

Shift shift << >> >>> 

Relational comparison < > <= >= instanceof 

equality == != 

Bitwise bitwise AND & 

bitwise 

exclusive OR 

^ 

bitwise 

inclusive OR 

| 

Logical logical AND && 

logical OR || 

Ternary ternary ? : 

Assignment assignment = += -= *= /= %= &= 

^= |= <<= >>= >>>= 

Java Unary Operator 

The Java unary operators require only one operand. Unary operators are used to perform various 
operations i.e.: 
incrementing/decrementing a value by one. 
negating an expression. 
inverting the value of a Boolean. 

 Example: 

public class OperatorExample{   

public static void main(String args[]){   



int x=10;   

System.out.println(x++);//10 (11)   

System.out.println(++x);//12   

System.out.println(x--);//12 (11)   

System.out.println(--x);//10   

}}   
Output: 
10 

12 

12 

10 

Java Arithmetic Operators 

Java arithmetic operators are used to perform addition, subtraction, multiplication, and division. They 

act as basic mathematical operations. 

Arithmetic Operator Example 

public class OperatorExample{   

public static void main(String args[]){   

int a=10;   

int b=5;   

System.out.println(a+b);//15   

System.out.println(a-b);//5   

System.out.println(a*b);//50   

System.out.println(a/b);//2   

System.out.println(a%b);//0   

}}   

Output: 

15 

5 

50 

2 

0 

Arithmetic Operator Example: 
public class OperatorExample{   

public static void main(String args[]){   

System.out.println(10*10/5+3-1*4/2);   



}}   

Output: 

 

21 

Java Left Shift Operator 

The Java left shift operator << is used to shift all of the bits in a value to the left side of a specified 

number of times. 

Example 

public class OperatorExample{   

public static void main(String args[]){   

System.out.println(10<<2);//10*2^2=10*4=40   

System.out.println(10<<3);//10*2^3=10*8=80   

System.out.println(20<<2);//20*2^2=20*4=80   

System.out.println(15<<4);//15*2^4=15*16=240   

}}   

Output: 

40 

80 

80 

240 

Java Right Shift Operator 

The Java right shift operator >> is used to move the value of the left operand to right by the number 

of bits specified by the right operand. 

Java Right Shift Operator Example 

public OperatorExample{   

public static void main(String args[]){   

System.out.println(10>>2);//10/2^2=10/4=2   

System.out.println(20>>2);//20/2^2=20/4=5   

System.out.println(20>>3);//20/2^3=20/8=2   

}}   

Output: 
2 

5 

2 

AND Operator Example: Logical && and Bitwise & 



The logical && operator doesn't check the second condition if the first condition is false. It checks the 

second condition only if the first one is true. 

The bitwise & operator always checks both conditions whether first condition is true or false. 

public class OperatorExample{   

public static void main(String args[]){   

int a=10;   

int b=5;   

int c=20;   

System.out.println(a<b&&a<c);//false && true = false   

System.out.println(a<b&a<c);//false & true = false   

}}   
Output: 
false 

false 

OR Operator Example: Logical || and Bitwise | 

The logical || operator doesn't check the second condition if the first condition is true. It checks the 

second condition only if the first one is false. 

The bitwise | operator always checks both conditions whether first condition is true or false. 

The logical || operator doesn't check the second condition if the first condition is true. It checks the 

second condition only if the first one is false. 

The bitwise | operator always checks both conditions whether first condition is true or false. 

Output: 
true 

true 

true 

10 

true 

11 

Ternary Operator: 
Java Ternary operator is used as one line replacement for if-then-else statement and used a lot in Java 
programming. It is the only conditional operator which takes three operands. 
Example 

public class OperatorExample{   

public static void main(String args[]){   

int a=2;   

int b=5;   

int min=(a<b)?a:b;   

System.out.println(min);   



}}   
Output: 
2 

Assignment Operator 
Java assignment operator is one of the most common operators. It is used to assign the value on its 
right to the operand on its left. 
Example: 

public class OperatorExample{   

public static void main(String args[]){   

int a=10;   

int b=20;   

a+=4;//a=a+4 (a=10+4)   

b-=4;//b=b-4 (b=20-4)   

System.out.println(a);   

System.out.println(b);   

}}   

Output: 
 

14 

16 
22.  Control statement (or) control Ňow statement 

Ans: 
Java compiler executes the code from top to bottom. The statements in the code are executed 
according to the order in which they appear. However, Java provides statements that can be 
used to control the flow of Java code. Such statements are called control flow statements. It is 
one of the fundamental features of Java, which provides a smooth flow of program. 

   Java provides three types of control flow statements. 

1. Decision Making statements 

o if statements 

o switch statement 

2. Loop statements 

o do while loop 

o while loop 

o for loop 

o for-each loop 

3. Jump statements 

o break statement 



o continue statement 

Decision-Making statements: 
As the name suggests, decision-making statements decide which statement to execute and when. 
Decision-making statements evaluate the Boolean expression and control the program flow depending 
upon the result of the condition provided. There are two types of decision-making statements in Java, 
i.e., If statement and switch statement. 
1) If Statement: 

the "if" statement is used to evaluate a condition. The control of the program is diverted depending 

upon the specific condition. The condition of the If statement gives a Boolean value, either true or false. 

In Java, there are four types of if-statements given below. 

1. Simple if statement 

2. if-else statement 

3. if-else-if ladder 

4. Nested if-statement 

1) Simple if statement: 
It is the most basic statement among all control flow statements in Java. It evaluates a Boolean 
expression and enables the program to enter a block of code if the expression evaluates to true. 
 

Syntax of if statement 

if(condition) {     

statement 1; //executes when condition is true    

}    

Example: 

public class Student {     

public static void main(String[] args) {     

int x = 10;     

int y = 12;     

if(x+y > 20) {     

System.out.println("x + y is greater than 20");     

}     

}       

}      
Output: 

x + y is greater than 20 

2) if-else statement 



The if-else statement is an extension to the if-statement, which uses another block of 
code, i.e., else block. The else block is executed if the condition of the if-block is 
evaluated as false. 

Syntax: 

if(condition) {     

statement 1; //executes when condition is true    

}   

else{   

statement 2; //executes when condition is false    

}   

Example: 
public class Student {   

public static void main(String[] args) {   
int x = 10;   

int y = 12;   
if(x+y < 10) {   

System.out.println("x + y is less than      10");   
}   else {   

System.out.println("x + y is greater than 20");   
}   

1. }   
2. }   

Output: 

x + y is greater than 20 

3) if-else-if ladder: 

The if-else-if statement contains the if-statement followed by multiple else-if statements. In other 
words, we can say that it is the chain of if-else statements that create a decision tree where the 
program may enter in the block of code where the condition is true. We can also define an else 
statement at the end of the chain. 
Syntax of if-else-if statement is given below. 
if(condition 1) {     
statement 1; //executes when condition 1 is true    

}   
else if(condition 2) {   
statement 2; //executes when condition 2 is true    

}   
else {   

https://www.javatpoint.com/java-if-else


statement 2; //executes when all the conditions are false    

}   
Consider the following example. 
public class Student {   
public static void main(String[] args) {   
String city = "Delhi";   
if(city == "Meerut") {   
System.out.println("city is meerut");   
}else if (city == "Noida") {   
System.out.println("city is noida");   
}else if(city == "Agra") {   
System.out.println("city is agra");   
}else {   
System.out.println(city);   
}   
}   
}   

Output: 

Delhi 

4. Nested if-statement 

In nested if-statements, the if statement can contain a if or if-else statement inside another if or else-
if statement. 
Syntax of Nested if-statement is given below. 
if(condition 1) {     
statement 1; //executes when condition 1 is true    

if(condition 2) {   
statement 2; //executes when condition 2 is true    

}   
else{   
statement 2; //executes when condition 2 is false    

}   
}   

Consider the following example. 

Student.java 

public class Student {     
public static void main(String[] args) {     
String address = "Delhi, India";     
    if(address.endsWith("India")) {     



if(address.contains("Meerut")) {     
System.out.println("Your city is Meerut");     
}else if(address.contains("Noida")) {     
System.out.println("Your city is Noida");     
}else {     
System.out.println(address.split(",")[0]);     
}     
}else {     
System.out.println("You are not living in India");     
}     
}     
}     

Output: 

Delhi 

Switch Statement: 

In Java, Switch statements are similar to if-else-if statements. The switch statement contains multiple 

blocks of code called cases and a single case is executed based on the variable which is being switched. 

The switch statement is easier to use instead of if-else-if statements. It also enhances the readability of 

the program. 

Points to be noted about switch statement: 

o The case variables can be int, short, byte, char, or enumeration. String type is also supported since version 
7 of Java 

o Cases cannot be duplicate 

o Default statement is executed when any of the case doesn't match the value of expression. It is optional. 

o Break statement terminates the switch block when the condition is satisfied. 
It is optional, if not used, next case is executed. 

o While using switch statements, we must notice that the case expression will be of the same type as the 
variable. However, it will also be a constant value. 

The syntax to use the switch statement is given below. 

switch (expression){   

    case value1:   
     statement1;   

     break;   
    .   

https://www.javatpoint.com/java-switch


    .   
    .   

    case valueN:   
     statementN;   

     break;   
    default:   

     default statement;   
}   

Consider the following example to understand the flow of the switch statement. 

Student.java 

public class Student implements Cloneable {   
public static void main(String[] args) {   
int num = 2;   
switch (num){   
case 0:   
System.out.println("number is 0");   
break;   
case 1:   
System.out.println("number is 1");   
break;   
default:   
System.out.println(num);   
}   
}   
}   

Output: 

2 

While using switch statements, we must notice that the case expression will be of the same type as the 

variable. However, it will also be a constant value. The switch permits only int, string, and Enum type 

variables to be used. 

Loop Statements 

In programming, sometimes we need to execute the block of code repeatedly while some condition 

evaluates to true. However, loop statements are used to execute the set of instructions in a repeated 

order. The execution of the set of instructions depends upon a particular condition. 



In Java, we have three types of loops that execute similarly. However, there are differences in their syntax 

and condition checking time. 

1. for loop 

2. while loop 

3. do-while loop 

Let's understand the loop statements one by one. 

 

Java for loop 

In Java, for loop is similar to C and C++. It enables us to initialize the loop variable, check the condition, 

and increment/decrement in a single line of code. We use the for loop only when we exactly know the 

number of times, we want to execute the block of code. 

for(initialization, condition, increment/decrement) {     
//block of statements     

}     
Example: 
public class Calculattion {   
public static void main(String[] args) {   
// TODO Auto-generated method stub   

int sum = 0;   
for(int j = 1; j<=10; j++) {   
sum = sum + j;   
}   
System.out.println("The sum of first 10 natural numbers is " + sum);   
}   
}   

Output: 

The sum of first 10 natural numbers is 55 

Java for-each loop 

Java provides an enhanced for loop to traverse the data structures like array or collection. In the for-

each loop, we don't need to update the loop variable. The syntax to use the for-each loop in java is 

given below. 

for(data_type var : array_name/collection_name){     

//statements     

}     

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial


Consider the following example to understand the functioning of the for-each loop in Java. 

Calculation.java 

public class Calculation {     
public static void main(String[] args) {     
// TODO Auto-generated method stub     

String[] names = {"Java","C","C++","Python","JavaScript"};     
System.out.println("Printing the content of the array names:\n");     
for(String name:names) {     
System.out.println(name);     
}     
}     
}     

Output: 

Printing the content of the array names: 

Java 

C 

C++ 

Python 

JavaScript 

Java while loop 

The while loop is also used to iterate over the number of statements multiple times. However, if we 
don't know the number of iterations in advance, it is recommended to use a while loop. Unlike for 
loop, the initialization and increment/decrement doesn't take place inside the loop statement in while 
loop. 
It is also known as the entry-controlled loop since the condition is checked at the start of the loop. If 
the condition is true, then the loop body will be executed; otherwise, the statements after the loop 
will be executed. 

The syntax of the while loop is given below. 

while(condition){     
//looping statements     

}     
Example 

public class Calculation {     
public static void main(String[] args) {     
// TODO Auto-generated method stub     

int i = 0;     
System.out.println("Printing the list of first 10 even numbers \n");     

https://www.javatpoint.com/java-while-loop


while(i<=10) {     
System.out.println(i);     
i = i + 2;     
}     
}     
}     

Output: 

Printing the list of first 10 even numbers  

 

0 

2 

4 

6 

8 

10 

Java do-while loop 

The do-while loop checks the condition at the end of the loop after executing the loop statements. 

When the number of iteration is not known and we have to execute the loop at least once, we can use 

do-while loop. 

It is also known as the exit-controlled loop since the condition is not checked in advance. The syntax of 

the do-while loop is given below. 

do      

{     
//statements     

} while (condition);     
Example 

public class Calculation {     

public static void main(String[] args) {     

// TODO Auto-generated method stub     

int i = 0;     

System.out.println("Printing the list of first 10 even numbers \n");     

do {     

System.out.println(i);     

i = i + 2;     

}while(i<=10);     

}     

}     

Output: 

https://www.javatpoint.com/java-do-while-loop


 

Printing the list of first 10 even numbers  

0 

2 

4 

6 

8 

10 

 

Jump Statements 
Jump statements are used to transfer the control of the program to the specific statements. In other 

words, jump statements transfer the execution control to the other part of the program. There are 

two types of jump statements in Java, i.e., break and continue. 

 

Java break statement 

As the name suggests, the break statement is used to break the current flow of the program and 
transfer the control to the next statement outside a loop or switch statement. However, it breaks only 
the inner loop in the case of the nested loop. 
The break statement cannot be used independently in the Java program, i.e., it can only be written 
inside the loop or switch statement. 
The break statement example with for loop 

Consider the following example in which we have used the break statement with the for loop. 
BreakExample.java 

 

public class BreakExample {   
   
public static void main(String[] args) {   
// TODO Auto-generated method stub   

for(int i = 0; i<= 10; i++) {   

System.out.println(i);   

if(i==6) {   

break;   

}   

}   

}   

}   

Output: 

 

0 

1 



2 

3 

4 

5 

6 

 

 

continue statement 

Unlike break statement, the continue statement doesn't break the loop, whereas, it skips the specific 

part of the loop and jumps to the next iteration of the loop immediately. 

Consider the following example to understand the functioning of the continue statement in Java. 

public class ConƟnueExample  

{   
public static void main(String[] args) 
 {   

// TODO Auto-generated method stub   

for(int i = 0; i<= 2; i++) 
 {    

for (int j = i; j<=5; j++)  
{   

   

if(j == 4)  
{   

continue;   
}   
System.out.println(j);   

}   
}   

}   
  }   

Output: 
0 

1 

2 

3 

5 

1 

2 

3 

5 

2 

3 

5 

https://www.javatpoint.com/java-continue


UNIT-II 
 

 

23. what is object 
ans: 

In object-oriented programming technique, we design a program using objects and classes. 
An object in Java is the physical as well as a logical entity, whereas, a class in Java is a logical entity 
only. 

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen, table, 
car, etc. It can be physical or logical (tangible and intangible). The example of an intangible 
object is the banking system. 

An object has three characteristics: 
State: represents the data (value) of an object. 
Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc. 
Identity: An object identity is typically implemented via a unique ID. The value of the ID is not visible 
to the external user. However, it is used internally by the JVM to identify each object uniquely. 
For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is used to 
write, so writing is its behavior. 
An object is an instance of a class. A class is a template or blueprint from which objects are created. 
So, an object is the instance(result) of a class. 
Object Definitions: 

 An object is a real-world enƟty. 
 An object is a runƟme enƟty. 
 The object is an enƟty which has state and behavior. 
 The object is an instance of a class. 

3 Ways to initialize object 

There are 3 ways to initialize object in Java. 

1. By reference variable 

2. By method 

3. By constructor 

1) Object and Class Example: Initialization through reference 

Initializing an object means storing data into the object. Let's see a simple example where 
we are going to initialize the object through a reference variable. 

class Student{   

 int id;   

 String name;   

}   

class TestStudent2{   



 public static void main(String args[]){   

  Student s1=new Student();   

  s1.id=101;   

  s1.name="Sonoo";   

  System.out.println(s1.id+" "+s1.name);//printing members with a white space   

 }   

}   

Output: 

101 Sonoo 

We can also create multiple objects and store information in it through reference variable. 

class Student{   

 int id;   

 String name;   

}   

class TestStudent3{   

 public static void main(String args[]){   

  //Creating objects   

  Student s1=new Student();   

  Student s2=new Student();   

  //Initializing objects   

  s1.id=101;   

  s1.name="Sonoo";   

  s2.id=102;   

  s2.name="Amit";   

  //Printing data   

  System.out.println(s1.id+" "+s1.name);   

  System.out.println(s2.id+" "+s2.name);   

 }   

}   

Output: 

101 Sonoo 

102 Amit 

2) Object and Class Example: Initialization through method 

In this example, we are creating the two objects of Student class and initializing the value to these 
objects by invoking the insertRecord method. Here, we are displaying the state (data) of the objects 
by invoking the displayInformation() method. 



class Student{   

 int rollno;  // class members 

 String name;   

 void insertRecord(int r, String n){   

  rollno=r;   

  name=n;   

 }   

 void displayInformation() 

{System.out.println(rollno+" "+name); 

}   

}   

class TestStudent4{   

 public static void main(String args[]){   

  Student s1=new Student();   

  Student s2=new Student();   

  s1.insertRecord(111,"Karan");   

  s2.insertRecord(222,"Aryan");   

  s1.displayInformation();   

  s2.displayInformation();   

 }   

}   

Output: 

111 Karan 

222 Aryan 

2) Object and Class Example: Initialization through a constructor 

An constructor is similar to method  
Syntx of constructor : class name with parenthesis   
Object and Class Example: Employee 

Let's see an example where we are maintaining records of employees. 
class Employee{   

    int id;   

    String name;   

    float salary;   

    void insert(int i, String n, float s) {   

        id=i;   

        name=n;   

        salary=s;   



    }   

    void display(){System.out.println(id+" "+name+" "+salary);}   

}   

public class TestEmployee {   

public static void main(String[] args) {   

    Employee e1=new Employee();  // Employee() is constructor 

    Employee e2=new Employee();   

    Employee e3=new Employee();   

    e1.insert(101,"ajeet",45000);   

    e2.insert(102,"irfan",25000);   

    e3.insert(103,"nakul",55000);   

    e1.display();   

    e2.display();   

    e3.display();   

}   

}   
Output: 
101 ajeet 45000.0 

102 irfan 25000.0 

103 nakul 55000.0 

101 ajeet 45000.0 

102 irfan 25000.0 

103 nakul 55000.0 

 
24. What is class 

(or) 
Declaration of Class Objects 

(0r) 
Class Members 

Ans: 

  A class is a group of objects which have common properties. It is a template or blueprint from which 
objects are created. It is a logical entity. It can't be physical. 
A class in Java can contain: 

 Fields 

 Methods 

 Constructors 

 Blocks 

 Nested class and interface 

Syntax to declare a class: 
class <class_name>{   
    field;   
    method;   



}   
Instance variable 

A variable which is created inside the class but outside the method is known as an instance 
variable. Instance variable doesn't get memory at compile time. It gets memory at runtime 
when an object or instance is created. That is why it is known as an instance variable. 

Method: 
In Java, a method is like a function which is used to expose the behavior of an object. 
Advantage of Method 

 Code Reusability 

 Code Optimization 

new keyword 

The new keyword is used to allocate memory at runtime. All objects get memory in Heap memory 
area. 
Object and Class Example: main within the class 

In this example, we have created a Student class which has two data members id 
and name. We are creating the object of the Student class by new keyword and 
printing the object's value. 
Here, we are creating a main() method inside the class. 
//Java Program to illustrate how to define a class and fields   

//Defining a Student class.   

class Student{   

 //defining fields   

 int id;//field or data member or instance variable   

 String name;   

 //creating main method inside the Student class   

 public static void main(String args[]){   

  //Creating an object or instance   

  Student s1=new Student();//creating an object of Student   

  //Printing values of the object   

  System.out.println(s1.id);//accessing member through reference variable   

  System.out.println(s1.name);   

 }   

}   

Output: 
0  

null 

Object and Class Example: main outside the class 

In real time development, we create classes and use it from another class. It is a better approach than 

previous one. Let's see a simple example, where we are having main() method in another class. 



We can have multiple classes in different Java files or single Java file. If you define multiple classes in a 

single Java source file, it is a good idea to save the file name with the class name which has main() 

method. 

//Java Program to demonstrate having the main method in    

//another class   

//Creating Student class.   

class Student{   

 int id;   

 String name;   

}   

//Creating another class TestStudent1 which contains the main method   

class TestStudent1{   

 public static void main(String args[]){   

  Student s1=new Student();   

  System.out.println(s1.id);   

  System.out.println(s1.name);   

 }   

}   
Output: 

0  

null 

 
25. Assigning One Object to Another 

Ans: 
It creates a new instance of the class of the current object and initializes all its fields with exactly the 
contents of the corresponding fields of another object. 
 class GFG { 
    int x, y; 
 

    // Constructor to iniƟalize  
    // object Įelds 

    GFG() { 
        x = 10; 
        y = 20; 
    } 
} 
 

public class Main1 { 
   



    public staƟc void main(String[] args)  
    { 
        GFG o1 = new GFG();  
         
        // Cloning obj1 into obj2 

        GFG o2 = new GFG(); 
  o2=o1; 
 

        System.out.println("o1: " + o1.x + " " + o1.y); 
        System.out.println("o2: " + o2.x + " " + o2.y);  
    } 
} 
output: 
 

D:\cse>javac Main1.java 

 

D:\cse>java Main1 

o1: 10 20 

o2: 10 20 

26.  Access ModiĮers in Java    
(Or )access control 

There are two types of modifiers in Java: access modifiers and non-access modifiers. 
access modiĮers are used to set the accessibility (visibility) of classes, interfaces, variables, methods, 
constructors, data members, and the seƩer methods. 
There are four types of Java access modifiers: 

1. Private: The access level of a private modifier is only within the class. It cannot be accessed from 

outside the class. 

2. Default: The access level of a default modifier is only within the package. It cannot be accessed 

from outside the package. If you do not specify any access level, it will be the default. 

3. Protected: The access level of a protected modifier is within the package and outside the 

package through child class. If you do not make the child class, it cannot be accessed from 

outside the package. 

4. Public: The access level of a public modifier is everywhere. It can be accessed from within the 

class, outside the class, within the package and outside the package. 

There are many non-access modiĮers, such as staƟc, abstract, synchronized, naƟve, volaƟle, transient, etc. 
Here, we are going to learn the access modiĮers only. 
1) Private: 

The private access modifier is accessible only within the class. 



we have created two classes A and Simple. A class contains private data member and private method. 
We are accessing these private members from outside the class, so there is a compile-time error. 
class A 

{   
private int data=40;   
private void msg() 
{ 

System.out.println("Hello java"); 
}   

}   
   
public class Simple 

{   
 public staƟc void main(String args[]) 
{   

   A obj=new A();   
     System.out.println(obj.data);//Compile Time Error   

   obj.msg();//Compile Time Error   
    }   
}   

2) Default: 
If we do not explicitly specify any access modifier for classes, methods, variables, etc, then by default 
the default access modifier is considered. 
If you don't use any modifier, it is treated as default by default. The default modifier is accessible only 
within package. It cannot be accessed from outside the package. It provides more accessibility than 
private. But, it is more restrictive than protected, and public. 
//save by A.java   
package pack;   
class A 

{   
  void msg() 
{ 

System.out.println("Hello"); 
}   

}   
 

//save by B.java   
package mypack;   
import pack.*;   
class B 

{   
  public staƟc void main(String args[]) 
{   

     A obj = new A();//Compile Time Error   
     obj.msg();//Compile Time Error   
   }   
}   

3) Protected: 
The protected access modifier is accessible within package and outside the package but through 
inheritance only. 



The protected access modifier can be applied on the data member, method and constructor. It can't be 
applied on the class. 
class Animal  
{ 
    // protected method 

    protected void display() 
  { 
        System.out.println("I am an animal"); 
    } 
} 
 

class Dog extends Animal 
 { 
     public static void main(String[] args)  

{ 
 

         // create an object of Dog class 

         Dog dog = new Dog(); 
          // access protected method 

         dog.display(); 
    } 
} 

4) Public: 
The public access modifier is accessible everywhere. It has the widest scope among all other 
modifiers. 
When methods, variables, classes, and so on are declared public, then we can access them from 
anywhere. The public access modifier has no scope restriction. For example, 
// A.java file 

// public class 
class A 

{   
public int data=40;   
public void msg() 
{ 

System.out.println("Hello java"); 
}   

}   
   
public class Simple 

{   
 public staƟc void main(String args[]) 
{   

   A obj=new A();   
     System.out.println(obj.data); 

   obj.msg(); 
    }   



}   
 

27. method 

ans: 
A method is a block of code or collection of statements or a set of code grouped together to 
perform a certain task or operation. 
 It is used to achieve the reusability of code. We write a method once and use it many times. 
We do not require to write code again and again. It also provides the easy 
modification and readability of code, just by adding or removing a chunk of code.  
The method is executed only when we call or invoke it. 
Method Declaration 

The method declaration provides information about method attributes, such as visibility, 
return-type, name, and arguments. It has six components that are known as method header, as 
we have shown in the following figure. 
 

 
Syntax: 
type name(parameter-list) 
 { // body of method } 
Return Type: Return type is a data type that the method returns. It may have a primitive data 
type, object, collection, void, etc. If the method does not return anything, we use void keyword. 

Method Name: It is a unique name that is used to define the name of a method. It must be 

corresponding to the functionality of the method. Suppose, if we are creating a method for subtraction 

of two numbers, the method name must be subtraction(). A method is invoked by its name. 

Parameter List: It is the list of parameters separated by a comma and enclosed in the pair of 

parentheses. It contains the data type and variable name. If the method has no parameter, left the 

parentheses blank. 

Method Body: It is a part of the method declaration. It contains all the actions to be performed. It is 

enclosed within the pair of curly braces. 



Types of Method 

There are two types of methods in Java 

 Predefined Method 

 User-defined Method 

Predefined Method: 
n Java, predefined methods are the method that is already defined in the Java class libraries is known 
as predefined methods. It is also known as the standard library method or built-in method. We can 
directly use these methods just by calling them in the program at any point. Some pre-defined 
methods are length(), equals(), compareTo(), sqrt(), etc. When we call any of the predefined methods 
in our program, a series of codes related to the corresponding method runs in the background that is 
already stored in the library. 
Each and every predefined method is defined inside a class. Such as print() method is defined in the 
java.io.PrintStream class. It prints the statement that we write inside the method. For example, 
print("Java"), it prints Java on the console. 
 

public class Demo    
{   
public static void main(String[] args)    
{   
// using the max() method of Math class   
System.out.print("The maximum number is: " + Math.max(9,7));   
}   
}   
User-defined Method 

The method written by the user or programmer is known as a user-defined method. These methods 
are modified according to the requirement. 
How to Create a User-defined Method 

Let's create a user defined method that checks the number is even or odd. First, we will define the 
method 

//user defined method   

public static void findEvenOdd(int num)   

{   

//method body   

if(num%2==0)    

System.out.println(num+" is even");    

else    

System.out.println(num+" is odd");   

}   

 

 

 

 



28. Passing Arguments by Value and by Reference 

Or 

Adding a Method That Takes Parameters 

Ans: 
Parameter passing in Java refers to the mechanism of transferring data between methods or functions. 
Java supports two types of parameters passing techniques 

1. Call-by-value 

2. Call-by-reference. 

Understanding these techniques is essential for effectively utilizing method parameters in Java. 

 

Types of Parameters: 
1. Formal Parameter: 

A variable and its corresponding data type are referred to as formal parameters when they exist in the 

definition or prototype of a function or method. As soon as the function or method is called and it 

serves as a placeholder for an argument that will be supplied. The function or method performs 

calculations or actions using the formal parameter. 

Syntax: 

returnType functionName(dataType parameterName)   

{   
    // Function body   

    // Use the parameterName within the function   

}   

In the above syntax: 

o returnType represents the return type of the function. 

o functionName represents the name of the function. 

o dataType represents the data type of the formal parameter. 

o parameterName represents the name of the formal parameter. 

2. Actual Parameter: 

The value or expression that corresponds to a formal parameter and is supplied to a function or method 

during a function or method call is referred to as an actual parameter is also known as an argument. It 

offers the real information or value that the method or function will work with. 



Syntax: 

functionName(argument) 

In the above syntax: 

o functionName represents the name of the function or method. 

o argument represents the actual value or expression being passed as an argument to the function or 
method. 

1. Call-by-Value: 

In Call-by-value the copy of the value of the actual parameter is passed to the formal parameter of the 

method. Any of the modifications made to the formal parameter within the method do not affect the 

actual parameter. 

class Student{   

 int rollno;  // class members 

 String name;   

 void insertRecord(int r, String n){   

  rollno=r;   

  name=n;   

 }   

 void displayInformation() 

{System.out.println(rollno+" "+name); 

}   

}   

class TestStudent4{   

 public static void main(String args[]){   

  Student s1=new Student();   

  Student s2=new Student();   

  s1.insertRecord(111,"Karan");  // 111, karan are call by values 

  s2.insertRecord(222,"Aryan");   

  s1.displayInformation();   

  s2.displayInformation();   

 }   

}   

Output: 

111 Karan 



222 Aryan 

 

Call-by-Reference: 
call by reference" is a method of passing arguments to functions or methods where the memory address 

(or reference) of the variable is passed rather than the value itself. This means that changes made to 

the formal parameter within the function affect the actual parameter in the calling environment. 

In "call by reference," when a reference to a variable is passed, any modifications made to the parameter 

inside the function are transmitted back to the caller. This is because the formal parameter receives a 

reference (or pointer) to the actual data. 

class Student{   

 int rollno;  // class members 

 String name;   

 void insertRecord(int r, String n){   

  rollno=r;   

  name=n;   

 }   

 void displayInformation() 

{System.out.println(rollno+" "+name); 

}   

}   

class TestStudent4{   

 public static void main(String args[]){   

  Student s1=new Student();  // s1 is reference object of student class 

  Student s2=new Student();   

  s1.insertRecord(111,"Karan");   

  s2.insertRecord(222,"Aryan");   

  s1.displayInformation();   

  s2.displayInformation();   

 }   

}   

Output: 

111 Karan 

222 Aryan 
 



29.  Constructors 

Ans: 

In Java, a constructor is a block of codes similar to the method. It is called when an instance of 
the class is created. At the time of calling constructor, memory for the object is allocated in the 
memory. 
It is a special type of method which is used to initialize the object. 
Every time an object is created using the new() keyword, at least one constructor is called. 
It calls a default constructor if there is no constructor available in the class. In such case, Java 
compiler provides a default constructor by default. 
There are two types of constructors in Java: no-arg constructor, and parameterized constructor. 
 

Note: It is called constructor because it constructs the values at the time of object creation. It is 
not necessary to write a constructor for a class. It is because java compiler creates a default 
constructor if your class doesn't have any. 
 

Rules for creating Java constructor 
There are two rules defined for the constructor. 
 

Constructor name must be the same as its class name 

A Constructor must have no explicit return type 

A Java constructor cannot be abstract, static, final, and synchronized 

Types of Java constructors 

There are two types of constructors in Java: 

1. Default constructor (no-arg constructor) 

2. Parameterized constructor 

Default constructor (no-arg constructor) 
//Let us see another example of default constructor   

//which displays the default values   

class Student3 

{   

int id;   

String name;   

//method to display the value of id and name   

void display() 

{ 

System.out.println(id+" "+name); 

}   

   

public static void main(String args[]) 



{   

//creating objects   

Student3 s1=new Student3();   

Student3 s2=new Student3();   

//displaying values of the object   

s1.display();   

s2.display();   

}   

}   

Output: 
0 null 

0 null 

 

Parameterized Constructors 

 
//Java Program to demonstrate the use of the parameterized constructor.   
class Student4 

{   
    int id;   
    String name;   
    //creaƟng a parameterized constructor   

    Student4(int i,String n) 
{   
     id = i;   
     name = n;   
    }   
   //method to display the values   

   void display(){System.out.println(id+" "+name); 
}   
    

    public staƟc void main(String args[]) 
{   
      //creaƟng objects and passing values   

      Student4 s1 = new Student4(111,"Karan");   
      Student4 s2 = new Student4(222,"Aryan");   
      //calling method to display the values of object   

    s1.display();   
      s2.display();   
   }   
}   
Output: 
111 Karan 

222 Aryan 

 

 

 

 



30.   The this Keyword 

Ans: 
this is a keyword which is used to refer current object of a class. we can it to refer any member 
of the class. It means we can access any instance variable and method by using this keyword. 
 

The main purpose of using this keyword is to solve the confusion when we have same variable 
name for instance and local variables. 

 
Usage of Java this keyword 

Here is given the 6 usage of java this keyword. 
We can use this keyword for the following purpose. 
 

1) this keyword is used to refer to current object. 
2) this is always a reference to the object on which method was invoked. 
3) this can be used to invoke current class constructor. 
4) this can be passed as an argument to another method. 

1) this keyword is used to refer to current object. 
The this keyword can be used to refer current class instance variable. If there is ambiguity 
between the instance variables and parameters, this keyword resolves the problem of 
ambiguity. 

 

class Student 

{   

int rollno;   

String name;   

float fee;   

Student(int rollno,String name,float fee) 

{   

this.rollno=rollno;   

this.name=name;   

this.fee=fee;   

}   

void display(){System.out.println(rollno+" "+name+" "+fee);}   



}   

   

class TestThis2 

{   

public static void main(String args[]) 

{   

Student s1=new Student(111,"ankit",5000f);   

Student s2=new Student(112,"sumit",6000f);   

s1.display();   

s2.display();   

} 

}   

Output: 
111 ankit 5000.0 

112 sumit 6000.0 

2) this: to invoke current class method 

You may invoke the method of the current class by using the this keyword. If you don't use 
the this keyword, compiler automatically adds this keyword while invoking the method. 
Let's see the example 

class A 

{   

void m() 

{ 

System.out.println("hello m"); 

}   

void n() 

{   

System.out.println("hello n");   

//m();//same as this.m()   

this.m();   

}   

}   

class TestThis4 

{   

public static void main(String args[]) 

{   

A a=new A();   

a.n();   



} 

}   

Output: 
hello n 

hello m 

3) this() : to invoke current class constructor 

The this() constructor call can be used to invoke the current class constructor. It is used to reuse 

the constructor. In other words, it is used for constructor chaining. 
class A 

{   
A() 
{ 

System.out.println("hello a"); 
}   
A(int x) 
{   

this();   
System.out.println(x);   

}   
}   
class TestThis5 

{   
public staƟc void main(String args[]) 
{   

A a=new A(10);   
} 

}   

Output: 
hello a 

10 

 

 

 

 

 

 

 

 

 

 

 

 
 



31. Finalize()  method 

Ans: 

finalize() method in Java is a method of the Object class that is used to perform cleanup activity 
before destroying any object. It is called by Garbage collector before destroying the objects 
from memory.  
finalize() method is called by default for every object before its deletion. This method helps 
Garbage Collector to close all the resources used by the object and helps JVM in-memory 
optimization. 
Syntax 
protected void finalize() throws Throwable  

Throw 

Throwable - the Exception is raised by this method 

Example 1 

public class JavaĮnalizeExample1  

{   
     public static void main(String[] args)    
    {    
        JavaĮnalizeExample1 obj = new JavaĮnalizeExample1();    
        System.out.println(obj.hashCode());    
        obj = null;    
        // calling garbage collector     
        System.gc();    
        System.out.println("end of garbage collection");    
   

    }    
    @Override   

    protected void Įnalize()    
    {    
        System.out.println("finalize method called");    
    }    
}   
   

32.  Overloading Methods 

Ans: 
If a class has multiple methods having same name but different in parameters, it is known as 

Method Overloading. 

If we have to perform only one operation, having same name of the methods increases the 
readability of the program. 
 

Suppose you have to perform addition of the given numbers but there can be any number of 
arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for 
three parameters then it may be difficult for you as well as other programmers to understand 
the behavior of the method because its name differs. 
So, we perform method overloading to figure out the program quickly. 

https://www.javatpoint.com/object-and-class-in-java


Advantage of method overloading 

Method overloading increases the readability of the program. 
 

Diīerent ways to overload the method 

There are two ways to overload the method in java 

 

1. By changing number of arguments 

2. By changing the data type 

1) Method Overloading: changing no. of arguments 

In this example, we have created two methods, Įrst add() method performs addiƟon of two numbers and second 
add method performs addiƟon of three numbers. 
 

In this example, we are creaƟng staƟc methods so that we don't need to create instance for calling methods. 
class Adder 
{   

static int add(int a,int b) 
{  

return a+b; 
}   
static int add(int a,int b,int c) 
{ 

return a+b+c; 
}   
}   
class TestOverloading1 

{   
public static void main(String[] args) 
{   

System.out.println(Adder.add(11,11));   
System.out.println(Adder.add(11,11,11));   

}  

}   
Output: 
 

22 

33 

2) Method Overloading: changing data type of arguments 

In this example, we have created two methods that differs in data type. The first add method 
receives two integer arguments and second add method receives two double arguments. 
class Adder 
{   

static int add(int a, int b) 
{ 

return a+b; 
}   
static double add(double a, double b) 
{ 



return a+b; 
}   

}   
class TestOverloading2 

{   
public static void main(String[] args) 
{   

System.out.println(Adder.add(11,11));   
System.out.println(Adder.add(12.3,12.6));   

} 
} 
Output: 
22 

24.9   
 

33.  Overloading Constructors 

ans: 

we can overload constructors like methods. The constructor overloading can be defined as the 
concept of having more than one constructor with different parameters so that every constructor can 
perform a different task. 
Consider the following Java program, in which we have used different constructors in the class. 
Example 

public class Student  
{   

//instance variables of the class   

int id;   
String name;   

   

Student() 
{   

System.out.println("this a default constructor");   
}   

   

Student(int i, String n) 
{   

id = i;   
name = n;   

}   
   

public static void main(String[] args) 
 {   

//object creation   

Student s = new Student();   
System.out.println("\nDefault Constructor values: \n");   

https://www.javatpoint.com/java-tutorial


System.out.println("Student Id : "+s.id + "\nStudent Name : "+s.name);   
   

System.out.println("\nParameterized Constructor values: \n");   
Student student = new Student(10, "David");   

System.out.println("Student Id : "+student.id + "\nStudent Name : "+student.name);   
}   

}  
Output: 

this a default constructor 

 

Default Constructor values:  
 

Student Id : 0 

Student Name : null 
 

Parameterized Constructor values:  
 

Student Id : 10 

Student Name : David 

 

34. Using Objects as Parameters 

Or 

Class Objects as Parameters in Methods 

Ans: 

Although Java is strictly passed by value, the precise effect differs between whether a primitive 

type or a reference type is passed. When we pass a primitive type to a method, it is passed by value. 

But when we pass an object to a method, the situation changes dramatically, because objects are 

passed by what is effectively call-by-reference. Java does this interesting thing that’s sort of a hybrid 
between pass-by-value and pass-by-reference.  

Basically, a parameter cannot be changed by the function, but the function can ask the parameter to 

change itself via calling some method within it. 

 While creating a variable of a class type, we only create a reference to an object. Thus, 
when we pass this reference to a method, the parameter that receives it will refer to the 
same object as that referred to by the argument. 

 This effectively means that objects act as if they are passed to methods by use of call-by-
reference. 

 Changes to the object inside the method do reflect the object used as an argument. 
Illustration: Let us suppose three objects ‘ob1’ , ‘ob2’ and ‘ob3’ are created:  

ObjectPassDemo ob1 = new ObjectPassDemo(100, 22); 
ObjectPassDemo ob2 = new ObjectPassDemo(100, 22); 
ObjectPassDemo ob3 = new ObjectPassDemo(-1, -1); 

https://www.geeksforgeeks.org/g-fact-31-java-is-strictly-pass-by-value/
https://www.geeksforgeeks.org/data-types-in-java/
https://www.geeksforgeeks.org/data-types-in-java/


 

// Class 

// Helper class 

class ObjectPassDemo { 

    int a, b; 

  

    // Constructor 

    ObjectPassDemo(int i, int j) 

    { 

        a = i; 

        b = j; 

    } 

  

    // Method 

    boolean equalTo(ObjectPassDemo o) 

    { 

        // Returns true if o is equal to the invoking 

        // object notice an object is passed as an 

        // argument to method 

        return (o.a == a && o.b == b); 

    } 

} 

  

// Main class 

public class GFG { 

    // MAin driver method 

    public static void main(String args[]) 

    { 

        // Creating object of above class inside main() 

        ObjectPassDemo ob1 = new ObjectPassDemo(100, 22); 

        ObjectPassDemo ob2 = new ObjectPassDemo(100, 22); 

        ObjectPassDemo ob3 = new ObjectPassDemo(-1, -1); 

  

        // Checking whether object are equal as custom 

        // values 

        // above passed and printing corresponding boolean 

        // value 

        System.out.println("ob1 == ob2: " 

                           + ob1.equalTo(ob2)); 



        System.out.println("ob1 == ob3: " 

                           + ob1.equalTo(ob3)); 

    } 

} 

 

Output: 

ob1 == ob2: true 

ob1 == ob3: false 

anther Example  

class Add { 

  int a; 

  int b; 

 

  Add(int x, int y) // parametrized constructor  

  { 

    a = x; 

    b = y; 

  } 

  void sum(Add A1) // object  'A1' passed as parameter in function 'sum' 

  { 

    int sum1 = A1.a + A1.b; 

    System.out.println("Sum of a and b :" + sum1); 

  } 

} 

 

public class Main { 

  public static void main(String arg[]) { 

    Add A = new Add(5, 8); 

    /* Calls  the parametrized constructor  

    with set of parameters*/ 

    A.sum(A); 

  } 

} 

  

35. Recursion 



Ans: 
Java supports recursion. Recursion is the process of defining something in terms of itself. As 

it relates to Java programming, recursion is the attribute that allows a method to call itself. 
A method that calls itself is said to be recursive. 
The classic example of recursion is the computation of the factorial of a number. The 

factorial of a number N is the product of all the whole numbers between 1 and N. For 
example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed by use of a 

recursive method: 
// A simple example of recursion. 
class Factorial  
{ 

// this is a recursive method 

int fact(int n) 
 { 

int result; 
if(n==1) return 1; 
result = fact(n-1) * n; 
return result; 

} 
} 
class Recursion  
{ 

public static void main(String args[]) 
 { 

Factorial f = new Factorial(); 
System.out.println("Factorial of 3 is " + f.fact(3)); 
System.out.println("Factorial of 4 is " + f.fact(4)); 
System.out.println("Factorial of 5 is " + f.fact(5)); 

} 
} 
The output from this program is shown here: 
Factorial of 3 is 6 

Factorial of 4 is 24 

Factorial of 5 is 120 

If you are unfamiliar with recursive methods, then the operation of fact( ) may seem a 

bit confusing. Here is how it works. When fact( ) is called with an argument of 1, the function 

returns 1; otherwise, it returns the product of fact(n–1)*n. To evaluate this expression, fact( ) 
is called with n–1. This process repeats until n equals 1 and the calls to the method begin 

returning 

To better understand how the fact( ) method works, let’s go through a short example. 
When you compute the factorial of 3, the first call to fact( ) will cause a second call to be 

made with an argument of 2.  
This invocation will cause fact( ) to be called a third time with an argument of 1.  
This call will return 1, which is then multiplied by 2 (the value of n in the second invocation).  



This result (which is 2) is then returned to the original invocation of fact( ) and multiplied by 3 
(the original value of n). This yields the answer, 6.  
You might find it interesting to insert println( ) statements into fact( ) 

36. Nested class 

Ans: 
In Java, it is also possible to nest classes (a class within a class). The purpose of nested classes is to 
group classes that belong together, which makes your code more readable and maintainable. 
To access the inner class, create an object of the outer class, and then create an object of the inner 
class: 
Example 

class OuterClass { 
  int x = 10; 
 

  class InnerClass { 
    int y = 5; 
  } 
} 
 

public class Main { 
  public staƟc void main(String[] args) { 
    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.y + myOuter.x); 
  } 
} 
 

// Outputs 15 (5 + 10) 
Private Inner Class 

Unlike a "regular" class, an inner class can be private or protected. If you don't want outside objects to 
access the inner class, declare the class as private: 
class OuterClass { 
  int x = 10; 
 

  private class InnerClass { 
    int y = 5; 
  } 
} 
 

public class Main { 
  public staƟc void main(String[] args) { 
    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.y + myOuter.x); 
  } 
} 



StaƟc Inner Class 

An inner class can also be staƟc, which means that you can access it without creaƟng an object of the 
outer class: 
class OuterClass { 
  int x = 10; 
 

  staƟc class InnerClass { 
    int y = 5; 
  } 
} 
 

public class Main { 
  public staƟc void main(String[] args) { 
    OuterClass.InnerClass myInner = new OuterClass.InnerClass(); 
    System.out.println(myInner.y); 
  } 
} 
 

// Outputs 5 

Access Outer Class From Inner Class 

One advantage of inner classes, is that they can access aƩributes and methods of the outer class: 
class OuterClass { 
  int x = 10; 
 

  class InnerClass { 
    public int myInnerMethod() { 
      return x; 
    } 
  } 
} 
 

public class Main { 
  public staƟc void main(String[] args) { 
    OuterClass myOuter = new OuterClass(); 
    OuterClass.InnerClass myInner = myOuter.new InnerClass(); 
    System.out.println(myInner.myInnerMethod()); 
  } 
} 
 

// Outputs 10 

 

 

 

 

 



37. NesƟng of Methods 

Ans: 
 

If declare method inside another method is know nested method  
Syntax: 
 

class Main 

{ 
    method1(){  
         
        // statements 

    }  
     
    method2() 
    { 
       // statements 

 

      // calling method1() from method2() 
       method1(); 
    } 
    method3() 
    { 
      // statements 

       
      // calling of method2() from method3() 
      method2(); 
    } 
} 

38. Overriding Methods 

Ans: 
Overriding in Java occurs when a subclass or child class implements a method that is already deĮned 
in the superclass or base class. When a subclass provides its own version of a method that is already 
deĮned in its superclass, we call it method overriding. The subclass method must match the parent 
class method's name, parameters, and return type. 
// Example of Overriding in Java 

class Animal { 
    // Base class 

    void move() { System.out.println( 
      "Animal is moving."); } 
    void eat() { System.out.println( 
      "Animal is eaƟng."); } 
} 
 

class Dog extends Animal { 



    @Override void move() 
    { // move method from Base class is overriden in this 

      // method 

        System.out.println("Dog is running."); 
    } 
    void bark() { System.out.println("Dog is barking."); } 
} 
 

public class Geeks { 
    public staƟc void main(String[] args) 
    { 
        Dog d = new Dog(); 
        d.move(); // Output: Dog is running. 
        d.eat(); // Output: Animal is eaƟng. 
        d.bark(); // Output: Dog is barking. 
    } 
} 
Output 

Dog is running. 
Animal is eaƟng. 
Dog is barking. 
ExplanaƟon: The Animal class deĮnes base funcƟonaliƟes like move() and eat(). The Dog class inherits 
from Animal and overrides the move() method to provide a speciĮc behavior Dog is running. Both 
classes can access their own methods. When creaƟng a Dog object, calling move() executes the 
overridden method. 

 
39.  Understanding static  (or) static keyword 

Ans: 

if we want to access class members, we must first create an instance of the class. But there will be 
situations where we want to access class members without creating any variables. 
 

In those situations, we can use the static keyword in Java. If we want to access class members 
without creating an instance of the class, we need to declare the class members static. 
 

The Math class in Java has almost all of its members static. So, we can access its members without 
creating instances of the Math class. For example,    

The static can be: 



5. Variable  

6. Method  

7. Block 

8. Nested class 

1) Java static variable: 

If you declare any variable as static, it is known as a static variable. 

o The static variable can be used to refer to the common property of all objects (which is not 

unique for each object), for example, the company name of employees, college name of 

students, etc. 

o The static variable gets memory only once in the class area at the time of class loading. 

Example of static variable 

//Java Program to demonstrate the use of static variable   
class Student 
{   
    int rollno;//instance variable   
    String name;   
    static String college ="ITS";//static variable   

   //constructor   
   Student(int r, String n) 
{   

   rollno = r;   
     name = n;   
    }   
    //method to display the values   
    void display () 

{ 
System.out.println(rollno+" "+name+" "+college); 

}   
}   
//Test class to show the values of objects   
public class TestStaticVariable1 

{   
 public static void main(String args[]) 
{   

 Student s1 = new Student(111,"Karan");   
 Student s2 = new Student(222,"Aryan");   
 //we can change the college of all objects by the single line of code   
 //Student.college="BBDIT";   
 s1.display();   



 s2.display();   
 }   

}   
2) Java static method: 

If you apply static keyword with any method, it is known as static method. 

o A static method belongs to the class rather than the object of a class. 

o A static method can be invoked without the need for creating an instance of a class. 

o A static method can access static data member and can change the value of it. 

Example of static method 

//Java Program to demonstrate the use of a static method.   
class Student 
{   
     int rollno;   
     String name;   
     static String college = "ITS";   
     //static method to change the value of static variable   
     static void change() 

{   
      college = "BBDIT";   
      }   
      //constructor to initialize the variable   
      Student(int r, String n) 

{   
       rollno = r;   
       name = n;   
      }   
     //method to display values   
     void display() 

{ 
System.out.println(rollno+" "+name+" "+college); 

}   
}   
//Test class to create and display the values of object   
public class TestStaticMethod 

{   
     public static void main(String args[]) 

{   
    Student.change();//calling change method   
    //creating objects   
    Student s1 = new Student(111,"Karan");   



     Student s2 = new Student(222,"Aryan");   
    Student s3 = new Student(333,"Sonoo");   

     //calling display method   
     s1.display();   

    s2.display();   
    s3.display();   

     }   
}   

3) Java static block: 
Is used to initialize the static data member. 
It is executed before the main method at the time of classloading. 
class A2 

{   
  Static 

{ 
System.out.println("static block is invoked"); 

}   
   public static void main(String args[]) 

{   
   System.out.println("Hello main");   
  }   

}   
Output:static block is invoked 

       Hello main 
4) staƟc class 

A class can be made static only if it is a nested class. We cannot declare a top-level class 
with a static modifier but can declare nested classes as static. Such types of classes are 
called Nested static classes. Nested static class doesn’t need a reference of Outer class. 
In this case, a static class cannot access non-static members of the Outer class. 
import java.io.*; 
 public class test  
{ 
     private staƟc String str = "GeeksforGeeks"; 
     // StaƟc class 

    staƟc class MyNestedClass  
{ 

               // non-staƟc method 

          public void disp() 
{ 

            System.out.println(str); 
          } 
     } 
       public staƟc void main(String args[]) 
     { 
          test.MyNestedClass obj    = new test.MyNestedClass(); 
          obj.disp(); 
     } 



} 
Output: GeeksforGeeks 

Q) Why is the Java main method static? 

Ans) It is because the object is not required to call a static method. If it were a non-static 

method, JVM creates an object first then call main() method that will lead the problem of extra 

memory allocation. 

40.  Introducing final . (or) final keyword 

Ans; 
In Java, the Įnal keyword is used to denote constants. It can be used with variables, methods, and classes. 
Once any enƟty (variable, method or class) is declared Įnal, it can be assigned only once. That is, 

 the Įnal variable cannot be reiniƟalized with another value 

 the Įnal method cannot be overridden 

 the Įnal class cannot be extended 

1. Java Įnal Variable 

In Java, we cannot change the value of a Įnal variable. For example, 

class Main 

 { 
  public staƟc void main(String[] args)  
{ 
      // create a Įnal variable 

      Įnal int AGE = 32; 
      // try to change the Įnal variable 

      AGE = 45; 
      System.out.println("Age: " + AGE); 
   } 
} 
2. Java Įnal Method 

Before you learn about Įnal methods and Įnal classes, make sure you know about the Java Inheritance. 
 

In Java, the Įnal method cannot be overridden by the child class. For example, 
class FinalDemo  
{ 
     // create a Įnal method 

     public Įnal void display()  
{ 

        System.out.println("This is a Įnal method."); 
     } 
} 
 

class Main extends FinalDemo  
{ 
   // try to override Įnal method 

   public Įnal void display()  
{ 

https://www.javatpoint.com/jvm-java-virtual-machine


     System.out.println("The Įnal method is overridden."); 
  } 

 

  public staƟc void main(String[] args)  
{ 
    Main obj = new Main(); 

      obj.display(); 
  } 

} 
3. Java Įnal Class 

In Java, the Įnal class cannot be inherited by another class. For example, 
// create a Įnal class 

Įnal class FinalClass  
{ 

  public void display() 
 { 

      System.out.println("This is a Įnal method."); 
  } 
} 
 

// try to extend the Įnal class 

class Main extends FinalClass 

 { 
  public  void display()  

{ 
       System.out.println("The Įnal method is overridden."); 

  } 
  public staƟc void main(String[] args)  
{ 

    Main obj = new Main(); 
      obj.display(); 
   } 
} 


	DEPARTMENT OF MECHANICAL ENGINEERING
	Object-oriented
	Platform Independent
	Secured
	Robust
	Architecture-neutral
	Portable
	High-performance
	Distributed
	Multi-threaded
	Dynamic

	Compile-Time Polymorphism
	Method Overloading
	1. Keyword

	Java Primitive Data Types
	Non-Primitive Data Type or Reference Data Types
	1. Strings
	2. Class
	3. Object
	4. Interface
	5. Array
	Types of Variables
	Q) Why is the Java main method static?
	Java Unary Operator
	Example:
	Java Arithmetic Operators
	Arithmetic Operator Example
	Java Right Shift Operator Example
	3) if-else-if ladder:
	4. Nested if-statement
	Switch Statement:
	Loop Statements
	Java for loop
	Java for-each loop
	Java while loop
	Java do-while loop
	continue statement

	Types of Parameters:
	1. Formal Parameter:
	2. Actual Parameter:
	1. Call-by-Value:

	Call-by-Reference:
	Types of Java constructors
	Throw
	Example 1
	Q) Why is the Java main method static?


