

THERMAL ENGINEERING LABORATORY

LIST OF THE EQUIPMENTS

- 1) OLD FIAT CAR ENGINE**
- 2) TWO STAGE AIR COMPRESSOR**
- 3) FOUR STROKE SINGLE CYLINDER DIESEL ENGINE**
- 4) FOUR STROKE SINGLE CYLINDER PETROL ENGINE**
- 5) FOUR STROKE MULTI CYLINDER PETROL ENGINE**
- 6) VCR REFRIGERATION TEST RIG**
- 7) (a) CUT SECTION MODEL OF 4 STROKE DIESEL ENGINE**
(b) CUT SECTION MODEL OF 2 STROKE PETROL ENGINE
- 8) SAYBOLT VISCOMETER APPARATUS**
- 9) BOMB CALORIMETER**

Name of the Equipment:	OLD FIAT CAR ENGINE
 OLD FIAT CAR ENGINE	

Specifications:

- **Engine:** 4 Stroke in line petrol engine of FIAT car
- **Cooling system:** Water cooling system
- **Fuel supply system:** Carburettor engine (type: Solex)
- **Lubrication system:** Full pressure lubrication system
- **Ignition system:** Spark ignition system
- **Working cycle:** 4 Stroke cycle
- **Thermodynamic cycle:** Otto cycle
- **Field of Application:** Automobiles
- **NO. of cylinder- 4**

Experiments that can be conducted:

- 1) To determine how to assemble and disassemble the engine components and observing the function of each component.

Name of the Equipment:

TWO STAGE AIR COMPRESSOR

Specifications:

- **Compressor Horse Power : 3 H.P**
H.P L.P
- **Bore (D): 63mm 87mm**
- **Stroke (L): 82mm 82mm**

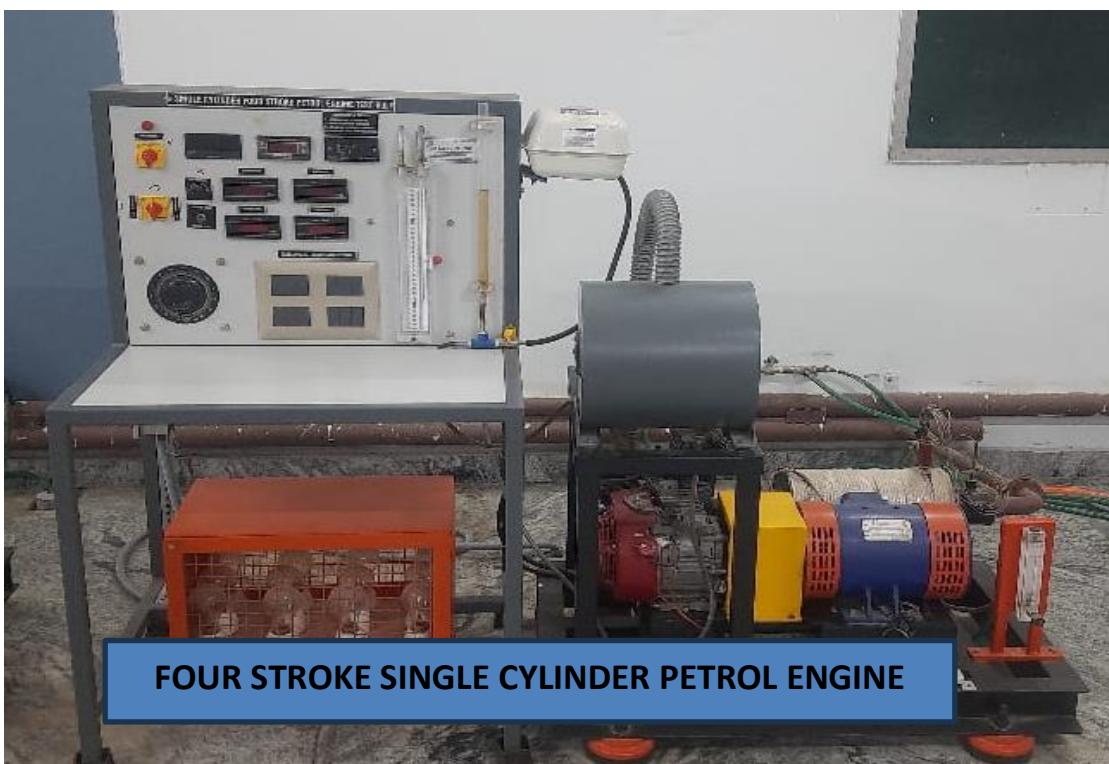
Experiments that can be conducted:

- 1) To conduct performance test on reciprocating air compressor, to determine it's volumetric efficiency and Isothermal efficiency

Name of the Equipment:

FOUR STROKE SINGLE CYLINDER DIESEL ENGINE

Specifications:

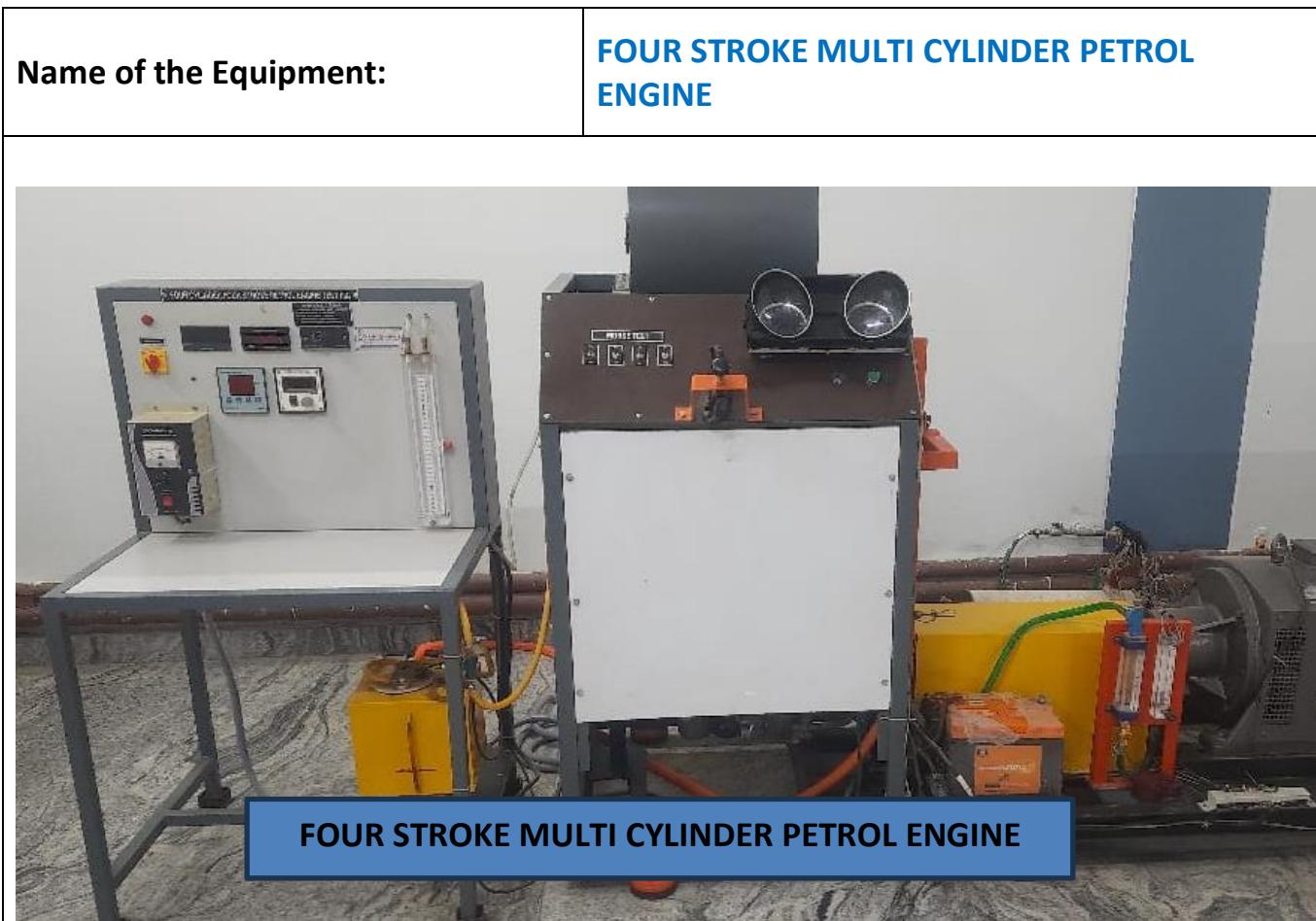

- **Make:** Kirloskar
- **BHP:** 5 HP
- **Speed:** 1500 rpm
- **No of cylinders:** one
- **Compression ratio:** 16.5:1
- **Bore:** 80 mm
- **Stroke:** 110mm
- **Orifice dia:** 20 mm
- **Type of ignition:** Compression ignition
- **Method of loading:** Rope brake
- **Method of starting:** Crank start
- **Method of cooling:** Water cooling

Experiments that can be conducted:

- 1) To conduct a load test on 4-stroke, single cylinder diesel engine, to study its performance under various loads.
- 2) To conduct a Heat Balance Test on a 4- stroke single cylinder vertical diesel engine at different loads and to draw up a heat balance sheet on minute basis.

Name of the Equipment:

FOUR STROKE SINGLE CYLINDER PETROL ENGINE

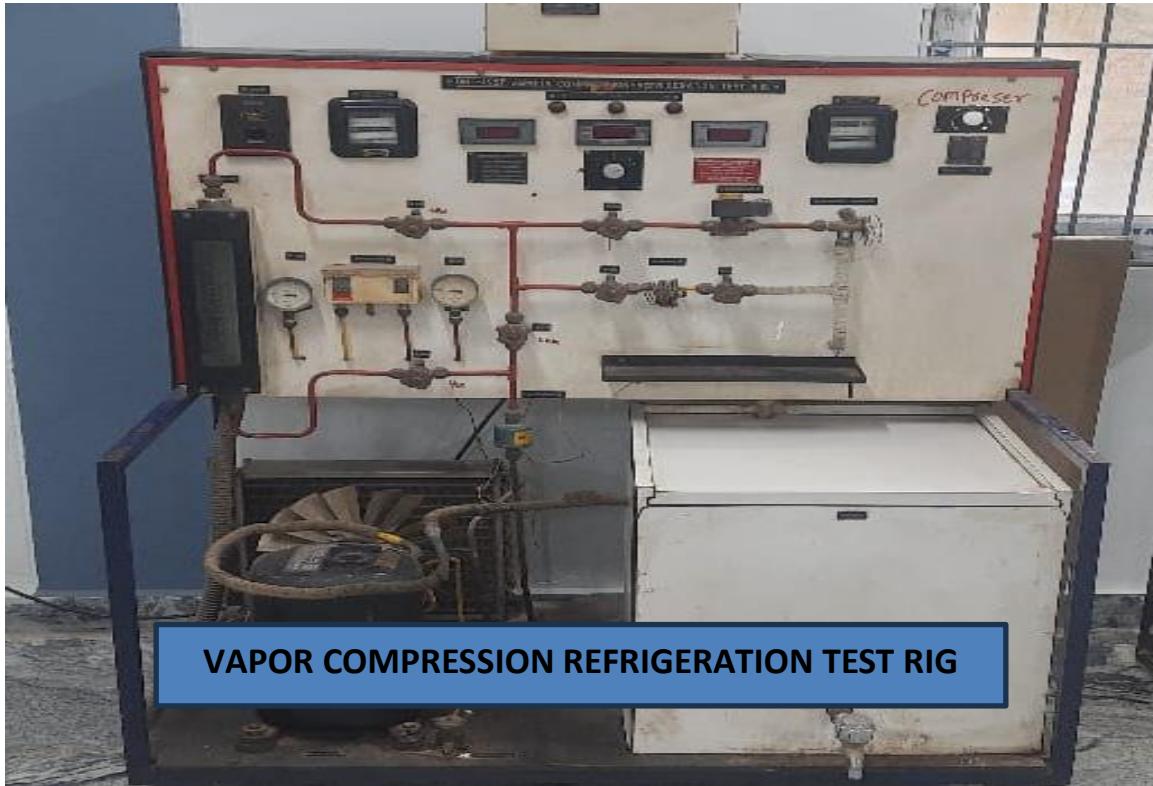


Specifications:

- **Engine :** Honda gx160
- **BP:** 2.9 KW
- **RPM:** 3000 RPM
- **Fuel:** Petrol
- **No of cylinders:** Single
- **Bore:** 68 mm
- **Stroke Length:** 45 mm
- **Starting:** Rope & pulley/motoring
- **Working Cycle:** Four stroke
- **Method of Cooling:** Air cooled
- **Method of ignition:** Spark ignition
- **Orifice diameter:** 20 mm
- **Compression ratio:** 4.67:1
- **Spark plug:** Mico w 16022
- **Governor system:** Mechanical

Experiments that can be conducted:

- 1) To conduct performance test on 4 stroke single cylinder petrol engine.
- 2) To conduct a Heat Balance Test on a 4- stroke single cylinder petrol engine at different loads and to draw up a heat balance sheet on minute basis.

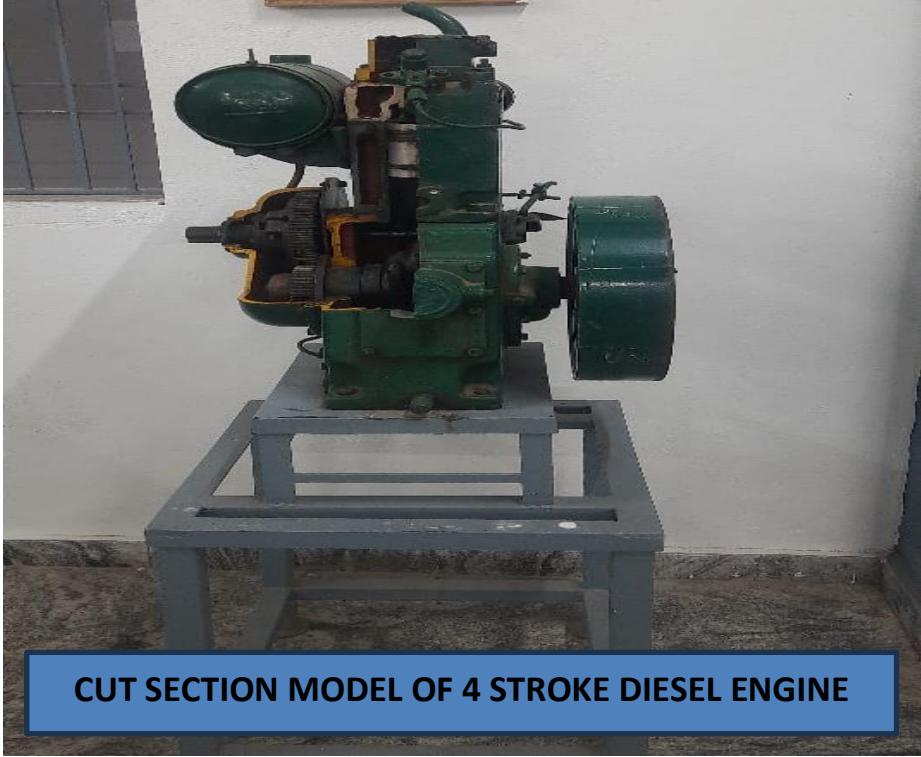

Specifications:

- **Engine Type:** Four Stroke Four Cylinder Engine
 - **Engine Make:** Maruti swift
 - **Rated Power output:** 81hp/62kw
 - **Bore Diameter, D :** 73 mm.
 - **Stroke Length, L :** 71.5 mm
 - **Compression Ratio:** 13:0
 - **Displacement:** 1197 cm³
 - **Starting:** Ignition
 - **Cooling System:** Water Cooled
 - **Loading:** Eddy current with torque controller
 - **Speed Measurement:** Digital Speed Indicator with proximity sensor
- Air Flow Measurement:** U-Tube Manometer

Experiments that can be conducted:

- 1) To conduct performance test on 4 stroke multi cylinder petrol engine.
- 2) To conduct a Heat Balance Test on a 4- stroke multi cylinder petrol engine at different loads and to draw up a heat balance sheet on minute basis.
- 3) To determine Mechanical Efficiency, Indicated power & Frictional power.

Name of the Equipment:	VAPOR COMPRESSION REFRIGERATION TEST RIG
------------------------	--



Specifications:

- **Tonnage Capacity:** 1.5 Ton
- **Parts:** Compressor, Condenser, 1-capillary tube and 1 thermostatic expansion valve, Evaporator

Experiments that can be conducted:

- 1) The aim of the experiment is to find COP (actual, theoretical, Carnot) using capillary tube as expansion device and solenoid valve as expansion device.

Name of the Equipment:	CUT SECTION MODEL OF 4 STROKE DIESEL ENGINE
A photograph of a cut-section model of a 4-stroke diesel engine. The engine is mounted on a metal stand and is painted green. The top cover is removed, revealing the internal components: the cylinder, piston, connecting rod, and crankshaft. The flywheel is on the right side. The engine is positioned in a room with a window in the background.	

CUT SECTION MODEL OF 4 STROKE DIESEL ENGINE

Specifications:

- **Make:** kirloskar
- **BHP:** 5 HP
- **Speed:** 1500 rpm
- **No of cylinders:** one
- **Compression ratio:** 16.5:1
- **Bore:** 80 mm
- **Stroke:** 110mm
- **Orifice dia:** 20 mm

Type of ignition: Compression ignition

Experiments that can be conducted:

- 1) To analyze and plot the valve timing diagram for a four-stroke internal combustion engine, determining the precise opening and closing points of the intake and exhaust valves in relation to the crankshaft position.

Name of the Equipment:	CUT SECTION MODEL OF 2 STROKE PETROL ENGINE
CUT SECTION MODEL OF 2 STROKE PETROL ENGINE	

Specifications:
<ul style="list-style-type: none"> Type: 2-stroke, 2-stroke, air-cooled
<ul style="list-style-type: none"> Displacement: 145 cc / 145.45 cc
<ul style="list-style-type: none"> Maximum Power: 7.5 bhp (5.93 kW) @ 5500 rpm
<ul style="list-style-type: none"> Maximum Torque: 10.8 Nm @ 3500 rpm
Ignition System: CDI electronic
Experiments that can be conducted:
<ol style="list-style-type: none"> 1) To analyse and plot the Port Timing Diagram (PTD) for a two-stroke petrol engine, identifying the precise opening and closing points of the inlet, exhaust, and transfer ports relative to the crankshaft position.

Name of the Equipment:

SAYBOLT VISCOMETER APPARATUS

Experiments that can be conducted:

- 1) To determine the viscosity of a lubricating oil by using a saybolt viscometer.

Name of the Equipment:

CLEVELAND OPEN CUP APPARATUS

Experiments that can be conducted:

- 1) To determine the flash and power point temperatures of the given sample of lubricating oil using Cleveland open cup apparatus.

Name of the Equipment:	BOMB CALORIMETER

Experiments that can be conducted:

- 1) To determine the calorific value of the given fuel by bomb calorimeter.